
Beyond: Undergraduate Research Beyond: Undergraduate Research

Journal Journal

Volume 6 Article 1

A Nature-Inspired Approach for Scenario-Based Validation of A Nature-Inspired Approach for Scenario-Based Validation of

Autonomous Systems Autonomous Systems

Quentin Goss
Embry-Riddle Aeronautical University, gossq@my.erau.edu

Mustafa Akbas
Embry-Riddle Aeronautical University, akbasm@erau.edu

Follow this and additional works at: https://commons.erau.edu/beyond

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Goss, Quentin and Akbas, Mustafa () "A Nature-Inspired Approach for Scenario-Based Validation of
Autonomous Systems," Beyond: Undergraduate Research Journal: Vol. 6 , Article 1.
Available at: https://commons.erau.edu/beyond/vol6/iss1/1

This Article is brought to you for free and open access by the Journals at Scholarly Commons. It has been
accepted for inclusion in Beyond: Undergraduate Research Journal by an authorized administrator of Scholarly
Commons. For more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/beyond
https://commons.erau.edu/beyond
https://commons.erau.edu/beyond/vol6
https://commons.erau.edu/beyond/vol6/iss1/1
https://commons.erau.edu/beyond?utm_source=commons.erau.edu%2Fbeyond%2Fvol6%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=commons.erau.edu%2Fbeyond%2Fvol6%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/beyond/vol6/iss1/1?utm_source=commons.erau.edu%2Fbeyond%2Fvol6%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

1

Introduction
 With the advances in sensory systems and

artificial intelligence (AI) engines, autonomous
systems have been increasingly deployed in daily
tasks. As autonomous features continue to be
deployed and utilized, there is an increasingly
important need for these systems to be tested for
both safety and security.

 There are several methods such as formal
methods, simulation and physical real-life testing
for the safety and security testing of autonomous
systems. Applying formal methods has been
difficult due to the increasing complexity of
autonomous systems. Physical tests are dangerous,
costly and extremely slow for sufficient bug
coverage. Hence, methods based on scenario-based
testing and scenario generation in simulation have
been developed to overcome these challenges.

 This paper presents a nature-inspired
approach for scenario-based safety and
cybersecurity testing of autonomous systems using
long walk together with local search. The main
contributions of this paper are as follows:

• A scenario-based approach for bug finding
during cybersecurity testing.

• A concise approach to generating a bug
profile and identifying profile boundaries.

• A performance evaluation which compares

exhaustive testing, random testing, and low
discrepancy sequence testing, against long walk-
with-local search adaptations.

• Finally, a graphical comparison of
approaches with and without long walk-with-local
search adaptation.

 The remainder of the paper is organized
as follows: Related work is given in Section II.
The methodology of the scenario-based approach
is presented in Section III. Then a performance
evaluation with approach comparisons is presented
in Section IV and finally, the paper concludes in
Section V.

Related Work
 Testing and validation of autonomous

systems has been a vexing issue, and considerable
effort has been directed towards providing safe and
secure autonomous systems [1]–[3].

 The random test generation has been a
common approach in software and autonomous
system testing [4]–[6]. Recently, there have been
approaches to combine random test generation
with formal scenario definition [7], [8]. These
approaches create significant benefits in several
areas, such as falsification or AI training. However,
it has also been argued that the random testing
is inefficient such that it requires extremely large
number of tests to detect bugs or failures [9], [10].

A Nature-Inspired Approach for Scenario-Based
Validation of Autonomous Systems

Quentin Goss, Mustafa Ilhan Akbas Ph.D.

Abstract

 Scenario-based approaches are cost and time effective solutions to autonomous cyber-physical system
testing to identify bugs before costly methods such as physical testing in a controlled or uncontrolled envi-
ronment. Every bug in an autonomous cyber-physical system is a potential safety risk. This paper presents
a scenario-based method for finding bugs and estimating boundaries of the bug profile. The method utiliz-
es a nature-inspired approach adapting low discrepancy sampling with local search. Extensive simulations
demonstrate the performance of the approach with various adaptations.

Beyond Vol. 6
A Nature-Inspired Approach for Validation of Autonomous Systems

2

 The random test generation has the
problem of high discrepancy and dispersion,
which result in the clustering of test cases in
certain areas. Hence, low discrepancy sequences
are introduced to solve the issues in irregularity of
random distribution [11], [12]. The utilization of
low discrepancy sequences has been proposed for
various fields of numerical analysis applications
including software debug testing [13].

 Morokoff and Caflisch [14] showed that
the discrepancies of low discrepancy sequences
depend on the number of dimensions they are
used in. The performance of the sequences degrade
with increasing number of dimensions in terms
of discrepancy. Therefore, several mechanisms
have been proposed to extend low discrepancy
sequences when they are utilized for large number
of dimensions [15]. Another important extension
to low-discrepancy sequences for their utilization
in testing has been randomizing their deterministic
behavior [16].

Scenario-Based Approach
 Scenario based approaches are used to

explore complex systems such as autonomous
systems through observation. This approach
utilizes autonomous systems scenarios of functional
abstraction level with parameter ranges (functional
scenarios), and scenarios of concrete abstraction
level where parameter values are given and there
is no ambiguity (concrete scenarios). A concrete
scenario is reproducible and its input, i.e. the
concrete parameter values, and its output, i.e.
outcome of the test (bug or not a bug) are
recorded. The details of the scenario do not need to
be observed to find a bug, which can be considered
as any unexpected outcome.

A. Finding bugs
 The approach for finding the bugs is given

in Algorithm 1. At a high level, the purpose of the
algorithm is to run numerous scenarios and collect
a sequentially ordered list of the input parameters
of the scenario P where each list item p is an
array of real numbers, and whether or not a bug
occurred B.

The input of the algorithm is as follows:

• A functional scenario with parameter
ranges F, which is the template scenario used when
generating concrete scenarios.

• A sequence L to be used for the long
walk portion of the algorithm. Each sequence
sample should be in the shape of 1 by r where
r is the number of parameter ranges in F. If
L has randomness, a seed must be used for
reproducibility.

• The number of indices z to skip ahead L to
warm-up the sequence at the start of the algorithm.

• A rapidly-exploring random tree (RRT) is
used for local search. A strategy commonly used
in robot path planning, applied to parameter
space rather than physical space. The way-points
of the RRT are sampled and the path is discarded.
Therefore, path optimization is not necessary.

• The number of local searches to perform
before reverting to long walk nlocal

• The number of scenarios to test in all nall.

Algorithm 1: Algorithm to find bugs.

Beyond Vol. 6
A Nature-Inspired Approach for Validation of Autonomous Systems

3

 After the long walk sequence, and the
empty lists for sampled parameters and bug statuses
are initialized (lines 2-4), the scenario testing loop
(lines 5-21) runs until nall scenarios are executed.
The procedure is exited when all nall scenarios are
executed (lines 10 and 18).

 The procedure begins with a long walk,
where a point is sampled from L (line 6). Then, a
concrete scenario C is generated by distributing the
dimensions of that point to the parameter ranges of
F (line 7). Next, the concrete scenario is executed
and returns true if a bug is observed and false
otherwise (line 8). Here is one example, where F is
a functional scenario with two parameter ranges r1
and r2, which looks like F(r1,r2). Parameters r1 and
r2 both have ranges between 0 and 1. L is a random
sequence which returns a point of two dimensions
when sampled, e.x. (0.2, 0.7). This point is
distributed to parameters of F such that C = F (0.2,
0.7).

 If the concrete scenario C with parameters
sampled from L results in a bug, a local search is
started (line 11). The root of the RRT is centered
on the last point and all other waypoints and
paths in the RRT are cleared. (line 12). Then nlocal
searches are performed (lines 13-18) as the RRT
is stepped and then sampled for a point (line 14),
which is distributed to F to generate a concrete
scenario (line 15) which is executed and the bug
status is recorded.

B. Constructing bug profiles.
 Testing scenarios in Algorithm 1 returns a

list of input parameters P and information about
outputs on whether they are bugs or not B. All p
in P exist as a point in n-d where n is the length
of the array p. The points p form clusters of bugs
or not bugs based on the corresponding b in B.
This approach also includes Algorithm 2, which
identifies points at the boundaries of the bug
clusters to form a bug profile. In addition to P and
B, two more parameters are input into Algorithm
2:

• Granularity of the testing space k in each
dimension. The space must be discretized in order
for the neighbor estimation equation at line 6 to be
valid.

• Decimal places m is the number of
decimal places to round values to at lines 2 and
12. Rounding is used at line 2 to discretize the
points. If k = 0.01 then m should be 2. At line 12,
rounding to m corrects float rounding error.

Algorithm 2: Algorithm to locate bugs at the boundary of the clusters.

 To start the procedure, the points are
fit to discretized space (line 2) and statistics for
the points are generated in a redundancy data
frame R (line 3). The columns of the data frame
are described in Table I. The row index describes
the test. It is sequential and must not be altered.
Column nhits in Table I is the count of repeated
points up to the current test. Column nbugs is the
total number of bugs observed up to the current
test. The rows with unique bugs U are selected (line
4) since the calculations for counting neighbors
will be inaccurate otherwise. Then the estimated
number of neighbors, h, is calculated based on the

Beyond Vol. 6
A Nature-Inspired Approach for Validation of Autonomous Systems

4

discretized space.

Table 1: Redundancy data frame showing the columns of the data frame.

 Next step in the approach is the neighbor
counting loops (lines 9-19) where the Manhattan
distance d of each point to all other points is
compared (lines 12-13). For instance, two points
are considered as the same point When all d =
0. Neighbors will have a Manhattan distance of
the granularity k away from the point. The count
of neighbors with bugs is appended to the list G
(line 17). Another important piece of information
recorded to the list L is whether the point is a bug
at the boundary of the cluster (line 18). Finally,
G and L are added as columns to the unique
bugs data frame U, and unnecessary columns are
dropped for efficiency (lines 20-22). A description
of the columns of the output U is shown in Table
II.

Table 2: Unqiue bugs generated as output.

Performance Evaluation
 An experiment is designed to evaluate

the approach and also to compare the impact of
variations within the approach to the resulting
behavior and performance in autonomous systems
scenarios. The experiment parameters are described
in Table III, organized by procedure parameters
input into Algorithm 1 for bug finding and
Algorithm 2. Three functional scenarios F are tests:

• A one dimensional (1D) space with one
parameter range of [0,1].

• A two dimensional (2D) space with two
parameter ranges rn which is [0,1] for both rn.

• A three dimensional (3D) space with three

parameter ranges rn which is [0,1] for all rn.

Table 3: Experiment parameters as organized by the Algorithms.

 Bug clusters are placed in the created
spaces. During each set of n_all tests, each assessed
approach provides coordinates as a point and
the functional scenario returns if the point is
within a bug cluster. The following approaches are
compared:

• Lattice sequence, which is the baseline.
After 101n tests where n is the number of
dimensions, the testing space is exhaustively
sampled.

• Random sequence, which samples the
testing space randomly.

• The low discrepancy sequences Halton,
Sobol, and Faure, which use the OpenTurns [17]
implementations.

• Variants of the five sequences used for long
walk, combined with an RRT for local search. The
RRT implementation uses a branch length of 0.01,
and a seed of 555.

A. Finding Bugs
 One Dimension: There are 55 unique bugs

placed across 101 points in the testing space, which
are distributed as shown in Figure 1a, along with
the summary of bugs found after 101 tests. In one
dimension, with just 101 points, exhaustive testing
using lattice exceeded bug finding performance
of the other approaches. This result shows that
the benefits of parameter selection using other
approaches or the performance difference they
offer is inconclusive in such small state space with a

Beyond Vol. 6
A Nature-Inspired Approach for Validation of Autonomous Systems

5

single dimension.

 Two Dimensions: There are 887 unique
bugs out of 10,201 points in the testing space,
which are shown in Figure 1b, along with the
summary of bugs found after 10,201 tests.

 In two dimensions, the parameter
approaches become more positively distinct,
with random diverging around 2000 tests.
Additionally, adding the local search component
to the sequences sharply increases the rate at
which unique bugs are found and consistently
sooner than lattice. After around 2000 tests,
random sequence with RRT diverges from the
low discrepancy sequences that are integrated with
RRT.

 Three Dimensions: There are 17065 bugs
out of 1,030,301 points in the testing space, which
are shown in Figure 1c, along with the summary
of bugs found after 1,030,301 tests. Non-bugs are
omitted from the plot since they obscure the bugs
profiles in the plot.

 In three dimensions with more total points
to test, there are several notable observations:

• Low discrepancy sequences perform
significantly better compared to random selection.
Random parameter selection diverges from the
low discrepancy sequences, and random with RRT
diverges from the low discrepancy sequences with
RRT around 10% of tests.

• The low discrepancy approaches are
effective, and their performances are close to each
other.

• At test 533,119 or 51.74% of all tests,
lattice meets Faure at 8,396 or 49.20% of bugs
found, while Faure with RRT has found 15,901 or
93.18% of bugs.

B. Bug Profiles
 To visualize the bug profiles, the scatter

plots of input parameters are shown for the 2D
scenarios after 10, 201 tests in Figure 2. The 2D
tests are selected as the example for the simplicity
and uncluttered plotting. Observations of adding a
local search to sequence are as follows:

• The density of the points outside of bug
clusters is lower and the density of the points
within the bug profile is higher compared to the
case where RRT is not used. This result shows
targeted exploration around the bug profile.

• Each bug profile has a “shadow” around
the profile limits. This scenario dense area is caused
when a long walk test results in a bug, and the
unweighted RRT in the local search portion grows
outside of the bug profile.

 Note again, that Figure 2 is in 2D for a
graphical inspection of the approaches. The lattice,
i.e. exhaustive testing, is the best option for only
the case with a single dimension, however as seen
in Figure 1c as the amount of dimensions increase
and the resource requirement for running scenarios
increases, long walk with local search targets

Figure 1: Comparison of approaches from one to three dimensions. (Top) Distribution
of bugs. (Bottom) Total unique bugs found as tests are run.

Beyond Vol. 6
A Nature-Inspired Approach for Validation of Autonomous Systems

6

scenarios in the bug profile in increasingly fewer
tests.

Conclusion
 This paper provides a scenario-

based testing methodology to find bugs and
vulnerabilities for autonomous systems. The
approach integrates quasi-random sequences with
RRT to locate bugs and find boundaries of bug
clusters. The modularity of the approach allows
utilization of different quasi-random sequences
along with different local search algorithms.
Extensive simulations are run to demonstrate
the performance of the approach. The results
show that the scenarios generated by using quasi-
random sequences lead to faster discovery of bugs
in the system compared to the random generation
of scenarios. This is critical for both the early
detection of problems and also the efficient usage
of computation time. Our results also show that
there are performance differences among quasi
random sequences. Therefore, the operational
design domain of a system must be analyzed first
before selecting the quasi random sequence in our
solution. The results demonstrate the significant
impact of local search on the identification of
errors when integrated with the quasi-random
generated scenarios. For all of the sequences,
addition of RRT improved the speed of finding

bugs. The performance evaluation included
comparison to exhaustive search, as well. For the
cases where the state space is not extremely large,
exhaustive search could be a viable option as well.
However, our approach had significantly better
performance for all cases other than the single-
dimension and the performance difference became
larger as the number of dimensions increased.

 As future work, we plan to apply the
approach in an existing autonomous system
setting such as an autonomous vehicle intersection
scenario or an unmanned aerial vehicle sense-and-
avoid scenario. Furthermore, we plan to explore
the impact of local search parameters in the overall
performance.

References
[1] A. Corso, R. J. Moss, M. Koren, R. Lee,

and M. J. Kochenderfer, “A survey of algorithms
for black-box safety validation,” arXiv preprint
arXiv:2005.02979, 2020.

[2] M. I. Akbas¸, “Testing and Validation
Framework for Autonomous Aerial Vehicles,”
Journal of Aviation/Aerospace Education &
Research, vol. 30, no. 1, pp. 1–19, 2021.

Figure 2: Found bugs in two dimensions, after 10, 201 tests.

Beyond Vol. 6
A Nature-Inspired Approach for Validation of Autonomous Systems

7

[3] C. Medrano-Berumen and M. I. Akbas¸,
“Validation of decision-making in artificial
intelligence-based autonomous vehicles,” Journal of
Information and Telecommunication, vol. 5, no. 1,
pp. 83–103, 2021.

[4] R. Hamlet, “Random testing,” Encyclopedia
of software Engineering, vol. 2, pp. 971–978,
1994.

[5] C. Ebert and M. Weyrich, “Validation of
autonomous systems,” IEEE Software, vol. 36, no.
5, pp. 15–23, 2019.

[6] Q. Goss, Y. AlRashidi, and M. I. Akbas¸,
“Generation of modular and measurable validation
scenarios for autonomous vehicles using accident
data,” in IEEE Intelligent Vehicles Symposium
(IV), July 2021.

[7] S. Hallerbach, Y. Xia, U. Eberle, and
F. Koester, “Simulation-based Identification of
Critical Scenarios for Cooperative and Automated
Vehicles,” tech. rep., SAE Technical Paper: 01-
1066, 2018.

[8] D. J. Fremont, E. Kim, Y. V. Pant, S. A.
Seshia, A. Acharya, X. Bruso, P. Wells, S. Lemke,
Q. Lu, and S. Mehta, “Formal scenario-based
testing of autonomous vehicles: From simulation
to the real world,” in IEEE ITSC, pp. 1–8, IEEE,
2020.

[9] G. J. Myers, The Art of Software Testing.
John Wiley and Sons Ltd, 1979.

[10] J. W. Duran and S. C. Ntafos, “An
evaluation of random testing,” IEEE Transactions
on Software Engineering, no. 4, pp. 438–444,
1984.

[11] H. Niederreiter, “Low-discrepancy and low-
dispersion sequences,” Journal of number theory,
vol. 30, no. 1, pp. 51–70, 1988.

[12] P. Bratley, B. L. Fox, and H. Niederreiter,
“Implementation and tests of low-discrepancy
sequences,” ACM Transactions on Modeling and
Computer Simulation (TOMACS), vol. 2, no. 3,
pp. 195–213, 1992.

[13] T. Y. Chen and R. Merkel, “Quasi-random
testing,” IEEE Transactions on Reliability, vol. 56,
no. 3, pp. 562–568, 2007.

[14] W. J. Morokoff and R. E. Caflisch, “Quasi-
random sequences and their discrepancies,” SIAM
Journal on Scientific Computing, vol. 15, no. 6,
pp. 1251–1279, 1994.

[15] H. Chi, Scrambled quasirandom sequences
and their applications. PhD thesis, The Florida
State University, 2004.

[16] H. Liu and T. Y. Chen, “Randomized
quasi-random testing,” IEEE Transactions on
Computers, vol. 65, no. 6, pp. 1896–1909, 2015.

[17] M. Baudin, A. Dutfoy, B. Iooss, and A.-L.
Popelin, OpenTURNS: An Industrial Software
for Uncertainty Quantification in Simulation, pp.
1–38. Cham: Springer International Publishing,
2016.

	A Nature-Inspired Approach for Scenario-Based Validation of Autonomous Systems
	Recommended Citation

	A Nature-Inspired Approach for Scenario-Based Validation of Autonomous Systems

