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Introduction
 With the advances in sensory systems and 

artificial intelligence (AI) engines, autonomous 
systems have been increasingly deployed in daily 
tasks. As autonomous features continue to be 
deployed and utilized, there is an increasingly 
important need for these systems to be tested for 
both safety and security.

 There are several methods such as formal 
methods, simulation and physical real-life testing 
for the safety and security testing of autonomous 
systems. Applying formal methods has been 
difficult due to the increasing complexity of 
autonomous systems. Physical tests are dangerous, 
costly and extremely slow for sufficient bug 
coverage. Hence, methods based on scenario-based 
testing and scenario generation in simulation have 
been developed to overcome these challenges.

 This paper presents a nature-inspired 
approach for scenario-based safety and 
cybersecurity testing of autonomous systems using 
long walk together with local search. The main 
contributions of this paper are as follows:

• A scenario-based approach for bug finding 
during cybersecurity testing.

• A concise approach to generating a bug 
profile and identifying profile boundaries.

• A performance evaluation which compares 

exhaustive testing, random testing, and low 
discrepancy sequence testing, against long walk-
with-local search adaptations.

• Finally, a graphical comparison of 
approaches with and without long walk-with-local 
search adaptation.

 The remainder of the paper is organized 
as follows: Related work is given in Section II. 
The methodology of the scenario-based approach 
is presented in Section III. Then a performance 
evaluation with approach comparisons is presented 
in Section IV and finally, the paper concludes in 
Section V.

Related Work
 Testing and validation of autonomous 

systems has been a vexing issue, and considerable 
effort has been directed towards providing safe and 
secure autonomous systems [1]–[3].

 The random test generation has been a 
common approach in software and autonomous 
system testing [4]–[6]. Recently, there have been 
approaches to combine random test generation 
with formal scenario definition [7], [8]. These 
approaches create significant benefits in several 
areas, such as falsification or AI training. However, 
it has also been argued that the random testing 
is inefficient such that it requires extremely large 
number of tests to detect bugs or failures [9], [10].
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 The random test generation has the 
problem of high discrepancy and dispersion, 
which result in the clustering of test cases in 
certain areas. Hence, low discrepancy sequences 
are introduced to solve the issues in irregularity of 
random distribution [11], [12]. The utilization of 
low discrepancy sequences has been proposed for 
various fields of numerical analysis applications 
including software debug testing [13].

 Morokoff and Caflisch [14] showed that 
the discrepancies of low discrepancy sequences 
depend on the number of dimensions they are 
used in. The performance of the sequences degrade 
with increasing number of dimensions in terms 
of discrepancy. Therefore, several mechanisms 
have been proposed to extend low discrepancy 
sequences when they are utilized for large number 
of dimensions [15]. Another important extension 
to low-discrepancy sequences for their utilization 
in testing has been randomizing their deterministic 
behavior [16].

Scenario-Based Approach
 Scenario based approaches are used to 

explore complex systems such as autonomous 
systems through observation. This approach 
utilizes autonomous systems scenarios of functional 
abstraction level with parameter ranges (functional 
scenarios), and scenarios of concrete abstraction 
level where parameter values are given and there 
is no ambiguity (concrete scenarios). A concrete 
scenario is reproducible and its input, i.e. the 
concrete parameter values, and its output, i.e. 
outcome of the test (bug or not a bug) are 
recorded. The details of the scenario do not need to 
be observed to find a bug, which can be considered 
as any unexpected outcome.

A. Finding bugs
 The approach for finding the bugs is given 

in Algorithm 1. At a high level, the purpose of the 
algorithm is to run numerous scenarios and collect 
a sequentially ordered list of the input parameters 
of the scenario P where each list item p is an 
array of real numbers, and whether or not a bug 
occurred B.

The input of the algorithm is as follows:

• A functional scenario with parameter 
ranges F, which is the template scenario used when 
generating concrete scenarios.

• A sequence L to be used for the long 
walk portion of the algorithm. Each sequence 
sample should be in the shape of 1 by r where 
r is the number of parameter ranges in F. If 
L has randomness, a seed must be used for 
reproducibility.

• The number of indices z to skip ahead L to 
warm-up the sequence at the start of the algorithm.

• A rapidly-exploring random tree (RRT) is 
used for local search. A strategy commonly used 
in robot path planning, applied to parameter 
space rather than physical space. The way-points 
of the RRT are sampled and the path is discarded. 
Therefore, path optimization is not necessary.

• The number of local searches to perform 
before reverting to long walk nlocal

• The number of scenarios to test in all nall.

Algorithm 1: Algorithm to find bugs.
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 After the long walk sequence, and the 
empty lists for sampled parameters and bug statuses 
are initialized (lines 2-4), the scenario testing loop 
(lines 5-21) runs until nall scenarios are executed. 
The procedure is exited when all nall scenarios are 
executed (lines 10 and 18).

 The procedure begins with a long walk, 
where a point is sampled from L (line 6). Then, a 
concrete scenario C is generated by distributing the 
dimensions of that point to the parameter ranges of 
F (line 7). Next, the concrete scenario is executed 
and returns true if a bug is observed and false 
otherwise (line 8). Here is one example, where F is 
a functional scenario with two parameter ranges r1 
and r2, which looks like F(r1,r2 ). Parameters  r1 and 
r2 both have ranges between 0 and 1. L is a random 
sequence which returns a point of two dimensions 
when sampled, e.x. (0.2, 0.7). This point is 
distributed to parameters of F such that C = F (0.2, 
0.7).

 If the concrete scenario C with parameters 
sampled from L results in a bug, a local search is 
started (line 11). The root of the RRT is centered 
on the last point and all other waypoints and 
paths in the RRT are cleared. (line 12). Then nlocal 
searches are performed (lines 13-18) as the RRT 
is stepped and then sampled for a point (line 14), 
which is distributed to F to generate a concrete 
scenario (line 15) which is executed and the bug 
status is recorded.

B. Constructing bug profiles.
 Testing scenarios in Algorithm 1 returns a 

list of input parameters P and information about 
outputs on whether they are bugs or not B. All p 
in P exist as a point in n-d where n is the length 
of the array p. The points p form clusters of bugs 
or not bugs based on the corresponding b in B. 
This approach also includes Algorithm 2, which 
identifies points at the boundaries of the bug 
clusters to form a bug profile. In addition to P and 
B, two more parameters are input into Algorithm 
2:

• Granularity of the testing space k in each 
dimension. The space must be discretized in order 
for the neighbor estimation equation at line 6 to be 
valid.

• Decimal places m is the number of 
decimal places to round values to at lines 2 and 
12. Rounding is used at line 2 to discretize the 
points. If k = 0.01 then m should be 2. At line 12, 
rounding to m corrects float rounding error.

Algorithm 2: Algorithm to locate bugs at the boundary of the clusters.

 To start the procedure, the points are 
fit to discretized space (line 2) and statistics for 
the points are generated in a redundancy data 
frame R (line 3). The columns of the data frame 
are described in Table I. The row index describes 
the test. It is sequential and must not be altered. 
Column nhits in Table I is the count of repeated 
points up to the current test. Column nbugs is the 
total number of bugs observed up to the current 
test. The rows with unique bugs U are selected (line 
4) since the calculations for counting neighbors 
will be inaccurate otherwise. Then the estimated 
number of neighbors, h, is calculated based on the 
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discretized space.

Table 1: Redundancy data frame showing the columns of the data frame.

 Next step in the approach is the neighbor 
counting loops (lines 9-19) where the Manhattan 
distance d of each point to all other points is 
compared (lines 12-13). For instance, two points 
are considered as the same point When all d = 
0. Neighbors will have a Manhattan distance of 
the granularity k away from the point. The count 
of neighbors with bugs is appended to the list G 
(line 17). Another important piece of information 
recorded to the list L is whether the point is a bug 
at the boundary of the cluster (line 18). Finally, 
G and L are added as columns to the unique 
bugs data frame U, and unnecessary columns are 
dropped for efficiency (lines 20-22). A description 
of the columns of the output U is shown in Table 
II.

Table 2: Unqiue bugs generated as output.

Performance Evaluation
 An experiment is designed to evaluate 

the approach and also to compare the impact of 
variations within the approach to the resulting 
behavior and performance in autonomous systems 
scenarios. The experiment parameters are described 
in Table III, organized by procedure parameters 
input into Algorithm 1 for bug finding and 
Algorithm 2. Three functional scenarios F are tests:

• A one dimensional (1D) space with one 
parameter range of [0,1].

• A two dimensional (2D) space with two 
parameter ranges rn which is [0,1] for both rn.

• A three dimensional (3D) space with three 

parameter ranges rn which is [0,1] for all rn.

Table 3: Experiment parameters as organized by the Algorithms.

 Bug clusters are placed in the created 
spaces. During each set of n_all tests, each assessed 
approach provides coordinates as a point and 
the functional scenario returns if the point is 
within a bug cluster. The following approaches are 
compared:

•  Lattice sequence, which is the baseline. 
After 101n  tests where n is the number of 
dimensions, the testing space is exhaustively 
sampled.

• Random sequence, which samples the 
testing space randomly.

• The low discrepancy sequences Halton, 
Sobol, and Faure, which use the OpenTurns [17] 
implementations.

• Variants of the five sequences used for long 
walk, combined with an RRT for local search. The 
RRT implementation uses a branch length of 0.01, 
and a seed of 555.

A. Finding Bugs
 One Dimension: There are 55 unique bugs 

placed across 101 points in the testing space, which 
are distributed as shown in Figure 1a, along with 
the summary of bugs found after 101 tests. In one 
dimension, with just 101 points, exhaustive testing 
using lattice exceeded bug finding performance 
of the other approaches. This result shows that 
the benefits of parameter selection using other 
approaches or the performance difference they 
offer is inconclusive in such small state space with a 



Beyond Vol. 6
A Nature-Inspired Approach for Validation of Autonomous Systems

5

single dimension.

 Two Dimensions: There are 887 unique 
bugs out of 10,201 points in the testing space, 
which are shown in Figure 1b, along with the 
summary of bugs found after 10,201 tests.

 In two dimensions, the parameter 
approaches become more positively distinct, 
with random diverging around 2000 tests. 
Additionally, adding the local search component 
to the sequences sharply increases the rate at 
which unique bugs are found and consistently 
sooner than lattice. After around 2000 tests, 
random sequence with RRT diverges from the 
low discrepancy sequences that are integrated with 
RRT.

 Three Dimensions: There are 17065 bugs 
out of 1,030,301 points in the testing space, which 
are shown in Figure 1c, along with the summary 
of bugs found after 1,030,301 tests. Non-bugs are 
omitted from the plot since they obscure the bugs 
profiles in the plot.

 In three dimensions with more total points 
to test, there are several notable observations:

• Low discrepancy sequences perform 
significantly better compared to random selection. 
Random parameter selection diverges from the 
low discrepancy sequences, and random with RRT 
diverges from the low discrepancy sequences with 
RRT around 10% of tests.

• The low discrepancy approaches are 
effective, and their performances are close to each 
other.

• At test 533,119 or 51.74% of all tests, 
lattice meets Faure at 8,396 or 49.20% of bugs 
found, while Faure with RRT has found 15,901 or 
93.18% of bugs.

B. Bug Profiles
 To visualize the bug profiles, the scatter 

plots of input parameters are shown for the 2D 
scenarios after 10, 201 tests in Figure 2. The 2D 
tests are selected as the example for the simplicity 
and uncluttered plotting. Observations of adding a 
local search to sequence are as follows:

• The density of the points outside of bug 
clusters is lower and the density of the points 
within the bug profile is higher compared to the 
case where RRT is not used. This result shows 
targeted exploration around the bug profile.

• Each bug profile has a “shadow” around 
the profile limits. This scenario dense area is caused 
when a long walk test results in a bug, and the 
unweighted RRT in the local search portion grows 
outside of the bug profile.

 Note again, that Figure 2 is in 2D for a 
graphical inspection of the approaches. The lattice, 
i.e. exhaustive testing, is the best option for only 
the case with a single dimension, however as seen 
in Figure 1c as the amount of dimensions increase 
and the resource requirement for running scenarios 
increases, long walk with local search targets 

Figure 1: Comparison of approaches from one to three dimensions. (Top) Distribution 
of bugs. (Bottom) Total unique bugs found as tests are run.
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scenarios in the bug profile in increasingly fewer 
tests.

Conclusion
 This paper provides a scenario-

based testing methodology to find bugs and 
vulnerabilities for autonomous systems. The 
approach integrates quasi-random sequences with 
RRT to locate bugs and find boundaries of bug 
clusters. The modularity of the approach allows 
utilization of different quasi-random sequences 
along with different local search algorithms. 
Extensive simulations are run to demonstrate 
the performance of the approach. The results 
show that the scenarios generated by using quasi-
random sequences lead to faster discovery of bugs 
in the system compared to the random generation 
of scenarios. This is critical for both the early 
detection of problems and also the efficient usage 
of computation time. Our results also show that 
there are performance differences among quasi 
random sequences. Therefore, the operational 
design domain of a system must be analyzed first 
before selecting the quasi random sequence in our 
solution. The results demonstrate the significant 
impact of local search on the identification of 
errors when integrated with the quasi-random 
generated scenarios. For all of the sequences, 
addition of RRT improved the speed of finding 

bugs. The performance evaluation included 
comparison to exhaustive search, as well. For the 
cases where the state space is not extremely large, 
exhaustive search could be a viable option as well. 
However, our approach had significantly better 
performance for all cases other than the single-
dimension and the performance difference became 
larger as the number of dimensions increased.

 As future work, we plan to apply the 
approach in an existing autonomous system 
setting such as an autonomous vehicle intersection 
scenario or an unmanned aerial vehicle sense-and-
avoid scenario. Furthermore, we plan to explore 
the impact of local search parameters in the overall 
performance.
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