Tensile Testing of 3D Printed TPU Samples for Pediatric Biomaterial Applications

S. Perry¹, V. Huayamave¹, B. Gonzalez¹, Z. Nadeau¹, R. Rodriguez¹ ¹Department of Mechanical Engineering Embry-Riddle Aeronautical University

Background

- Additive Manufacturing (AM) is becoming a widespread manufacturing method.
- The most common form of AM is Fused Deposition Modeling (FDM)
- 3D printing relies on material commonly known as filament
- Information on the material properties of filament post printing is scarce
- The information that is available focuses on niche properties and filaments with few generalized analyses available

Fused Deposition Modeling (FDM)

- FDM printing relies on a simple feeding system
- The extruded material is fed onto a bed.
- Extruded material binds to the previous layer fusing layers together which is why FDM is sometimes referred to as Fused Filament Fabrication (FFF)

FDM – ADDITIVE MANUFACTURING

https://apm-designs.com/fdm-vs-sla-3d-printer-tech-comparison/

Materials

- 3D printing filament is commonly a thermoplastic.
- Carbon fiber and metal filaments are less prevalent, but still available to the consumer market.
- Common filaments include Polylactic Acid (PLA), Thermoplastic Polyurethane (TPU), Acrylonitrile Butadiene Styrene (ABS), and Polycarbonate (PC).
- Some companies produce filled filaments and filaments with additives that change the color, heat resistance, chemical resistance, and/or coefficient of friction.

Thermoplastic Polyurethane – (TPU)

- TPU is one of a small series of "flexible" filaments.
- The TPU in this study had a shore hardness of 95A.
- TPU is one of the harder materials to print due to its flexibility causing issues with filament supports and extrusion.
- The TPU used in the study was created in accordance with ISO 9001:2015 quality control standards.

https://overture3d.com/products/overture-tpu-filament-1-75mm

Testing Method

Ļ

- Standard for AM testing is ASTM D638-14 with ASTM D883-00 and ASTM F2971 used as references.
- D638-14 specifies the Type IV sample for comparing rigid and nonrigid samples.

Dimension Variables	Dimension (mm)
Width (W)	6.0 ± 0.50
Cross Sectional Width (Wc)	6.0 +0.00 -0.100
Length (L)	33.0 ± 0.50
Outer Width (WO)	19.0 + 6.40 -0.00
Outer Length (LO)	115 no max
Gauge Length (G)	25 ± 0.13
Grip Distance (D)	65 ± 5.00
Inner Radius (R)	14 ± 1.00
Outer Radius (RO)	25 ± 1.00
Thickness (T)	3.2 ±0.40

3D Printer – Prusa 3D Mini

- The nozzle was an E3d 0.4 mm nozzle
- Heating block and heat break are original to the printer
- Stepper motors are custom made for Prusa3D's printers
- Widely considered one of the best companies for hobby 3D printing.

Samples and Printer Settings

Printer setting	Values
Detect bridging perimeters	ON
Nozzle	230 C
Enable Auto Cooling	OFF
Fan Speed	100%
Bridge Fan speed	100%
Disable fan for the first	0 layers

Testing Parameters and Setup

- MTS Criterion Model 43.504 with extended height modification
- Max load of 50kN
- ASTM D638 specifies that for nonrigid plastics with an E of less than 70 MPa a testing rate of 500 mm/min.

Testing Results

- Stress-Strain curves were plotted in MATLAB.
- The elastic limit is reached nearly instantaneously
- The ultimate stress is relatively low, but the elongation of the material is comparable to elastomers

- Stress-Strain curves were plotted in MATLAB.
- Averages were created from existing data using MATLAB commands

• TPU behaves similarly to the elastomer

Discussion

- TPU is technically classed as a Thermoplastic Elastomer (TPE)
- The samples don't fail due to their large plastic deformation region
- The assumption of nonrigid was proved

Average Mat. Properties	15% Diagonal Infill	50% Diagonal Infill
Moduli of Elasticity	19.09 MPa ±0.38	23.13 MPa +0.91 -0.87
Peak Stress	21.50 MPa +0.3 -0.2	23.92 MPa +1.38 -1.12

https://polymerdatabase.com/polymer%20physics/Stress-Strain%20Behavior.html

FEA Simulation-Material Assignment

Material Assignment	Moduli of Elasticity	Poisson's Ratio
15D	19.09 MPa	0.3897
50D	23.133 MPa	0.3897

- Finite Element Analysis using the same geometry and experimentally given data [Lee, H. et. al 2019].
- Average Moduli of Elasticity was used.
- Average Peak force was assigned as the boundary condition

- Elements used are C3D8R which is a type of 8 node brick element
- Final node and element count is 52,725 and 43,554 respectively
- Both experimental results were tested, and a mesh convergence analysis was performed.

FEA Simulation Results

- Peak Stress and Displacement are in agreement with the experimental results
- Discrepancies can be attributed due to assuming elastic isotropic
- Note that the displacement does vary significantly and is dependent on slippage.

MAXIMUM NORMAL STRESS	MAXIMUM DISPLACEMENT
24.17 MPA	74.35 MM
27.06 MPA	75.92 MM
	MAXIMUM NORMAL STRESS 24.17 MPA 27.06 MPA

F

Limitations

- Several additional infills were unable to be tested
- Controlling the temperature during printing was not possible
- Slippage affected the results of the samples
- Were not able to run compressive testing due to not being able to find an acceptable standard for nonrigid plastics
- Non unified testing and printing could cause discrepancies in results

F

Conclusions and Next Steps

- To conclude TPU 95A behaves as an elastomer and has a relatively low ultimate stress.
- The next logical step is to continue FEA analysis on complex nonlinear geometries
- Additionally, testing prints out of these nonlinear geometries could validate the use of the data in FEA simulations.
- A unique protocol could be created allowing for future researchers to expand the bank of existing information

Acknowledgements

Ę

Dae-Won Kim, Ph.D.

Sergey Drakunov V, Ph.D.

Patrick Currier, Ph.D.

Questions