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Effects of the Hall Conductivity in Ionospheric Heating
Experiments

B. Tulegenov!'” and A. V. Streltsov!

IDepartment of Physical Sciences, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA

Abstract We investigate the role of Hall conductivity in ionospheric heating experiments. Ionospheric
heating by powerful X-mode waves changes the Hall and Pedersen conductances in the E and D regions,
which lead to the generation of ultra-low frequency (ULF)/extremely-low frequency/very low frequency
waves, when the electric field exists in the ionosphere. The importance of the Hall currents in the
magnetosphere-ionosphere interactions, carried by ULF waves and field-aligned currents, has been
consistently overlooked in studies devoted to the active experiments. Simulations of the three-dimensional
two-fluid magnetohydrodynamic (MHD) model, presented in this paper, demonstrate that the Hall
conductivity changes (1) the growth rate and the amplitude of ULF waves generated by the heating and (2)
the orientation and the direction of propagation of the generated waves. These findings provide insight in
the experiments where the waves were generated with a geometric modulation technique and suggest a
new and more efficient approach for conducting such experiments in the future.

1. Introduction

Shear Alfvén waves carrying magnetic field-aligned currents (FACs) are one of the major participants in the
redistribution of electromagnetic power, particle density, mass, and momentum between the ionosphere
and magnetosphere at high latitudes (Chaston et al., 2002; Inan et al., 1985; Lysak, 1991; Streltsov & Lotko,
2008). That fact makes these waves an object of intensive experimental and theoretical study, and a large
number of experiments devoted to the artificial excitation of these waves in the magnetosphere from the
ground-based facilities have been conducted in Europe, Russia, and the United States for more than 60 years.
Comprehensive reviews of these experiments and their results can be found in Gurevich (2007) and Streltsov
et al. (2018).

One of the most well-known and widely used methods of generation of ultra-low frequency (ULF) waves
from the ground is heating the ionosphere with X-mode high-frequency (HF) waves. These waves increase
the bulk temperature of the electron population in the ionospheric D and E regions. The variations in the
electron temperature change the Hall and Pedersen conductances in the ionosphere. Ionospheric conduc-
tivity is directly proportional to the ions' mobility. Studies and observations show that the ion mobility
decreases by a factor of 1.4 or 2.0 when the ions are heated threefold or sevenfold by the perpendicular
electric field, respectively (Aikio et al., 2004; Paschmann et al., 2003). If there is a large-scale electric field
in the ionosphere, then the changes in the conductances cause changes in the Hall and Pedersen currents
flowing in the ionosphere, which, in turn, generate magnetic FAC flowing into the magnetosphere. This
is a so-called Getmantsev's effect (Getmantsev et al., 1974), which was introduced in 1974 and extensively
used after that in the high-latitude ionosphere-magnetosphere system. The auroral and subauroral zones
are particularly favorable for this mechanism because, normally, there is a large-scale electric field in the
ionosphere associated with the electrojet (Gurevich, 1978; Robinson et al., 1998; Stubbe & Kopka, 1977;
Stubbe et al., 1981).

If the frequency of the generated ULF waves matches one of the eigenfrequencies of the global mag-
netospheric resonator (formed by the entire magnetic flux tube and bounded by the ionosphere), then
these waves can form a standing pattern along the magnetic field line between the conjugate hemispheres
and reach large amplitudes after some time. Simulations by Streltsov et al. (2005, 2010) show that a
large-amplitude (in the order of 50 nT) ULF wave can be generated even by a relatively small ionospheric
disturbance modulated with the eigenfrequency of the resonator.
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Because the HF power available for the ionospheric modification from ground transmitters is always lim-
ited, there are many theoretical and experimental studies devoted to the efficiency of how this power is
used (Streltsov et al., 2018). Two of the most efficient methods described in the literature include “beam
painting” and geometric modulation techniques. The beam painting technique, suggested by Papadopoulos
et al. (1989, 1990), means that the beam focuses in a small spot, which moves rapidly across some area in
the ionosphere to heat electrons inside this area. The entire process is modulated with the frequency of the
generated wave. The geometric modulation means that instead of heating one spot (or some area) in the
ionosphere and turning the transmitter ON and OFF with the wave period, the transmitter sends a constant
beam of HF power and moves it in the ionosphere along some particular geometrical path. The injection of
extremely-low frequency (ELF)/very-low frequency (VLF) waves into the magnetosphere by the modulated
heating of the electrojet by the High Altitude Active Research Program (HAARP) facility in Alaska has been
extensively studied by Papadopoulos et al. (2003), Golkowski et al. (2008, 2011), and Cohen et al. (2010).

Streltsov and Pedersen (2010) proposed a modification to the geometric modulation technique. They sug-
gest to move the heating spot in the ionosphere in the direction of the background electric field with the
phase speed of the feedback-unstable ULF wave. This suggestion was based on numerical simulations of
the two-fluid magnetohydrodynamic (MHD) model describing active ionospheric response (also known as
feedback) on the structure and amplitude of magnetospheric FACs interacting with the ionosphere and mod-
ifying conductivity by precipitating electrons in it. The ionospheric feedback mechanism has been studied
for almost 50 years (Atkinson, 1970). The basic idea is that the ULF FAC changes the ionospheric conduc-
tivity (almost four-fold from 2.0 mho to less than 0.5 mho) by precipitating/removing electrons into/from
the E layer and the variation in the conductivity “feedback” on the structure and amplitude of the incident
FAC. When the large-scale electric field exists in the ionosphere, the feedback may work in a constructive
way and increase the amplitude of the ULF waves and the density disturbances on the ionosphere, which
lead to instability.

Streltsov and Pedersen (2010) used the X-mode heating to trigger and enhance the ionospheric feedback
instability by synchronizing the heating regime with the dynamics of the most feedback-unstable ULF mode.
This idea had been implemented during the 2014 BRIOCHE research campaign at HAARP and did not
produce any positive results. There are several possible reasons why these particular experiments were not
successful. Among them could be the absence of the electrojet, the high density of the ionosphere above the
HAARP, unknown information about ionospheric parameters in the magnetically conjugate location, and
so forth. However, there is one particular shortage in the Streltsov and Pedersen (2010) model, which may
significantly compromise the applicability of the numerical results to real experiments. This shortage comes
from the fact that the numerical model used was two-dimensional (with a one-dimensional ionosphere) and
did not include effects of the Hall current in the ionosphere. At the same time, the importance of the Hall
current for the ionospheric feedback mechanism has been emphasized in almost every classical paper about
the instability (e.g., Atkinson, 1970; Borisov & Stubbe, 1997; Miura et al., 1982; Pokhotelov et al., 2000; Sato,
1978; Trakhtengerts & Feldstein, 1991).

The goal of this paper is to eliminate this shortage and investigate the effects of the Hall current on the
dynamics of the magnetosphere-ionosphere interactions involving the ionospheric feedback mechanism
triggered and controlled by the artificial ionospheric heating. This study is based on a 3-D reduced two-fluid
MHD model described in the following sections.

2. Model and Numerical Implementation

The model used in this study is described in detail in Jia and Streltsov (2014). It consists of two coupled parts.
The “magnetospheric” part describes propagation of the dispersive Alfven waves and magnetic FACs in the
magnetosphere, and the “ionospheric” part describes generation of the FACs by the perpendicular electric
field and the ionospheric density disturbances caused by the heating. The ionospheric part also describes
active feedback interactions between the magnetospheric FACs and the ionospheric density changes caused
by these currents.

The magnetospheric part of the model includes the electron parallel momentum equation
My,

e 1
T3 + Ve Vv + o E+ e e Vy(rT,) = = fov)es (1)
e e
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the current continuity equation

1 1\ 0k, .
A [(g"'g) 7] = oV - (jyb), (2
and the density continuity equation
on
E =-V. (l’l\)“eb). (3)

Here subscripts || and L indicate parallel and perpendicular vector components to b = B, /B, respectively,
v, is the electron velocity, n, is the background quasi-neutral plasma density, T, is the background electron
temperature, f, is the electron collision frequency, v, = B,/(uon,m,)*> is the Alfvén speed, and m; is the
proton mass. The collisional resistivity is included in the model because some studies (e.g., Borovsky, 1993;
Lessard & Knudsen, 2001) suggest that it may cause an absorption of very small scale (<1 km) waves at
altitudes below 1,000 km. The electron temperature is modeled as T, = (T,h.)/n,, where T,. = 2 eV and n.
is the density at the equator. Such an assumption satisfies the equilibrium condition V,(n,T,) = 0.

The ionospheric part consists of the density continuity equation

on_ N 21—
at_eh+a(n° (1-Hn?) 4

and the height-integrated current continuity equation

V- (ZpE; +Z4E, xb) = +j. ©)

Here, X, = Mpnhe/ cos A and X = Mynhe/ cos A are the height-integrated Pedersen and Hall conductivi-
ties; H indicates the effect of the HF heating on the recombination rate, M, = 10* m?/sV is the ion Pederson
mobility, and M, is the Hall mobility, which is one of the model's free parameters; h = 20 km is the effective
thickness of the E region; 4 is the angle between the normal to the ionosphere and the corresponding dipole
magnetic field line at 100-km altitude, and @ = 3 x 107 cm?/s is the recombination coefficient. The sign “+”
in (5) is used in the Southern Hemisphere, and the sign “—” is used in the Northern Hemisphere.

Effect of the HF heating is modeled via a decrease in the coefficient of the recombination in the E region.
It is specified by the function H(p) in (4), which is chosen as H(p) = 0.1e~/ 7’ Here p is the distance in
the ionosphere from the center of the heated spot (where the heater power maximizes), and p, = 10 km is
a half width of the heated spot beam. The maximum amplitude of H at p = 0 is 0.1, which means that the
heating changes the coefficient of the recombination by 10%.

The model equations are written in the orthogonal dipole coordinates (L, ¢, 1), where L = r/ sin%0, u =
cosf/r?, and r, 0, and ¢ are spherical coordinates. Computations have been performed in the
three-dimensional dipole magnetic flux tube bounded by the ionosphere in the Northern and Southern
Hemispheres. The latitudinal boundaries of the domain are formed by the L = 4.6 and L = 5.2 magnetic
shells. The azimuthal size of the domain is ¢ = 1.91°. The computational grid inside the domain has 101
steps in the L direction, 64 steps in the ¢ direction, and 101 steps in the u direction. The steps are uniform
in the L and ¢ directions and strongly nonuniform in the u direction. In particular, the size of steps in the y
direction decreases 200 times from the equator to the ionosphere, and as a result, the grid is denser at low
altitudes and sparser in the equatorial magnetosphere. Periodic boundary conditions are implemented on
the boundaries in the ¢ direction, and the Dirichlet boundary conditions are implemented on the boundaries
in the L direction.

2.1. Background Parameters

The background parameters of the model are similar to the typical parameters of the
ionosphere-magnetosphere system considered in other studies (e.g., Streltsov & Pedersen, 2010). The
geomagnetic field is assumed to be dipole, B, = B,(1 + 3sin’9)*3/r3, where B. = 31,000 nT and r is a
geocentric distance in Ry = 6,371.2 km.

The background density along the L = 4.9 magnetic field line, whose ionospheric footprint corresponds to
the HAARP location, is defined as

a,(r—r)+a,, ifry <r<r,
ny = b. e=20013) -4 ; (6)
1€ 24+ bt 4+ by, ifr>r,.
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Figure 1. Isosurfaces of j = —0.1pA/m? (blue) and j; = 0.1pA/m? (red) are
shown from the 3-D magnetohydrodynamic simulation with Xz /Xp = 0.
() The snapshot of the parallel current density, jy|, generated by heating the
Northern ionosphere at a fixed location at ¢ = 651 s. (b) Time evolution of j
on the Northern ionosphere generated by heating the Northern ionosphere
at a fixed location.

Here r is the radial distance to point on the field line, r, = 1 + 100/R,
and r, = 1+ 220/R,. The constants a,, a,, b;, b,, and b; are parameters
that satisfy a density of 1.00 x 10* cm~3 at E region altitude of 100 km,
2.63x 10° cm~3 at F region altitude of 220 km, and 129 cm~3 in the equa-
torial magnetosphere. The density of 1.00 x 10* cm™ in the E region
provides the height-integrated Pedersen conductivity of 0.32 mho. Inside
the computational domain, the density is assumed to be homogeneous in
the direction perpendicular to the ambient magnetic field. This is a rea-
sonable assumption due to the relatively small perpendicular size of the
domain (0.6 L shell in the L direction and less than 2° in the ¢ direction).

The background electric field in the domain is defined as E, = -V,
where @ is the electric potential. In the ionosphere, the potential @ is cho-
sen to provide a uniform electric field with a magnitude 20 mV/m pointed
in the north-south direction. This electric potential remains constant
along the ambient magnetic field lines, so there is not any background
parallel electric field (or the parallel potential drop) present in the mag-
netosphere. This field is comparable with the background electric field
considered in 2-D simulations of the ionospheric heating by Streltsov and
Pedersen (2010).

3. Results and Discussion

We start this section with a verification of the main results from the 2-D simulations by Streltsov and
Pedersen (2010). Namely, that the movement of the heating spot in the ionosphere with the phase velocity
of the feedback-unstable mode leads to a generation of larger amplitude waves in a shorter time than the
heating of some stationary location in the ionosphere. To verify this result, we run the 3-D code with £;; = 0.

In the first run, the heating was focused on a stationary spot in the ionosphere. The results from this run are
shown in Figure 1. In particular, Figure 1a shows a snapshot of the parallel current density j, inside the 3-D

i, A/

@,
[}
£ L 11 i
= 500
450 [ 17 7
400 ' :
0 50 100 0 50 100
N-S Distance [km] N-S Distance [km]
| — |

-1 0 1
iy IMA/mM?]

Figure 2. (a, ¢) The simulation output where the heater was heating a fixed
location in the Northern ionosphere. (b, d) The simulation output in a case
where the heating spot was moving in the direction of background E; with
velocity of 100 m/s. Panels (c) and (d) show the time evolution of
field-aligned currents on the Northern ionosphere along the direction of
background electric field from L = 4.84 to L = 5.16 in a case when Xy /Xp =
0. Panels (a) and (b) show the amplitude of the field-aligned currents at
t=651s.

domain, at time ¢t = 651 s after the beginning of heating. Figure 1a shows
the surfaces of j; = 0.1pA/m? in red and surfaces of j; = —0.1pA/m? in
blue. Figure 1b shows the temporal dynamics of j; measured at an altitude
of 100 km in the Northern Hemisphere. Again, the red color is used to
show the surfaces of j; = 0.1pA/m? and the blue color is used to show
the surfaces of j; = —0.1pA/m?. Figure 1 illustrates development of the
ionospheric feedback instability driven by the uniform 20-mV/m electric
field and triggered by the constant heating of the ionosphere.

The results from this run had been used to estimate the phase velocity of
the feedback-unstable waves in the ionosphere. Comparison of j in the
ionosphere in several instances in time shows that the waves generated by
the instability propagate in the direction of the background electric field
(in this case it is the L direction) with a phase speed of ~100 m/s. This
value is equal to the phase velocity calculated from the linear dispersion
relation given for the most unstable mode by Sato (1978), which for the
parameters used in this study is w/k;, = MpE /2 = 100 m/s.

To model the moving of the heating spot in the ionosphere, we make
the H function in equation (4) depending on time, namely, H = H(v, t +
Lo, vyt + ¢p), where v, and v are the wave front’s phase velocity com-
ponents estimated from the simulation with stationary heating spot in
the ionosphere. In case £;; = 0, the L component of the phase velocity
in the ionosphere is 100 m/s and vy = 0. Figure 2 illustrates a compari-
son between j; obtained in the simulations with a stationary heating spot
(left panels) and with a moving heating spot (right panels). In particular,
Figures 2c¢ and 2d show time evolution of j, in the Northern Hemisphere
ionosphere, at a 2-D longitudinal cut through the computational domain
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Figure 3. Snapshots of j; on the Northern ionosphere at ¢ = 356 s under
different ionospheric conditions: (a) X /Zp = 0, (b) Zy /Zp = 0.5, (¢)
2y/Zp =1.0,(d) 25 /Zp = 1.5, and (e) g /Zp = 2.0. The line plots in each
panel show the amplitude of field-aligned current along the dashed arrow.
The black circles indicate the propagation in time of the first wave fronts.
The time step between circles is 59.43 s.

at L = 49 from ¢t = 400 s to t = 651 s after the heater was turned
on. Figures 2a and 2b show magnitudes of j in the ionosphere in the
Northern Hemisphere at t = 651 s.

Figure 2 demonstrates that the ULF waves are generated faster when the
heater moves along the E . The amplitudes of the waves generated by
moving the heating spot are ~ 3 times larger than those generated by
heating a fixed spot in the ionosphere. These results confirm the con-
clusion made by Streltsov and Pedersen (2010) that without Hall current
in the ionosphere the instability indeed develops more rapidly when the
heating spot moves along the direction of the background electric field at
the phase velocity of the wave front.

Next, we perform 3-D simulation of the instability initiated by the heat-
ing of a stationary spot in the ionosphere when the Hall conductivity is
not equal to zero. Figure 3 shows the structure and magnitude of j, in the
Northern Hemisphere ionosphere at time ¢t = 356 s in simulations with
¥p = 0.32mho and (a) /2, =0, (b) 25 /2, = 0.5, (c) 2, /Zp = 1.0, (d)
Xy /Zp =1.5,and (e) /X, = 2.0. It shows two effects. First, the ampli-
tude of j increases with the increase of . This effect follows directly
from equation (5), which shows that the magnitude of j; in the iono-
sphere is proportional to Xp, Z;;, and E | ; therefore, if one of these three
parameters increases and two other remain constant, then j, is expected
to increase as well.

The second effect shown in Figure 3 is that the feedback-unstable waves
propagate across the magnetic field in the direction that makes an angle
with the background E | (which is in the north-south direction in all these
simulations). This angle increases with an increase in X /X,. This effect
is also expected, and it has been previously reported by Jia and Streltsov
(2014) from the simulations of discrete auroral arcs produced by the iono-
spheric feedback mechanism involving the Hall conductivity. This can be
explained by the fact that in the magnetosphere-ionosphere coupled sys-
tem, the magnetic FACs are closed in the ionosphere by Hall and Pedersen
currents. Therefore, larger Hall conductivity provides a greater contri-
bution from the Hall current, and the entire current system changes its
orientation with increase in X, /%.

The angles between the wave phase velocity and the background elec-
tric field observed in the simulations for different values of X /%, are
0°, 23.4°, 37.1°, 49.4°, and 57.9°. The corresponding angles calculated
analytically as arctan(X;/Z,) are 0°, 26.6°, 45.0°, 56.3°, and 63.4°. The
analytical and numerical sets of angles show the same dependency on
the X, /%, ratio, but they are different in magnitudes. The possible
explanation of the differences between the corresponding values is that
the angle calculated as arctan(X /%) assumes that the electric field is
constant. This assumption does not work when the amplitude of the
feedback-unstable waves reaches larger value. At this stage, the ampli-
tude of the electric field produced in the ionosphere by the waves becomes
comparable with the amplitude of the background field: so the amplitude
and the orientation of the total field in the ionosphere differ from the
background/initial field.

To evaluate the effect of the moving heating spot on the development of the instability, a simulation was per-
formed with the heating spot moving in the ionosphere with a velocity estimated from the simulations with
stationary heating. Thus, the circles in Figure 3 indicate locations of the first wavelength of the generated
wave in time. Figure 4 shows j, in the Northern ionosphere obtained from the simulations with £ /%, = 2.0
at time ¢ = 356 s (a) when the heating spot is fixed in space and (b) when the heating spot moves at the angle
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moving heating spot in the ionosphere with the wave phase velocity.

This finding may provide a possible explanation of the failure of the
experiments with the “directional” heating described in this study in the
2014 BRIOCHE HAARP campaign: These experiments were based on
2-D simulations not taking into account the Hall current in the iono-
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Figure 4. The snapshots of the j at ¢ = 356 s on the Northern ionosphere
from simulations with X /%p = 2.0 under different heating methods: (a)
fixed heating spot and (b) moving heating spot. The line plots in both
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E-W Distance [km] sphere. The effect of this current is quite significant, particularly, when

Y, /2p = 2.0. It may also explain the more efficient wave generation
observed in some experiments with the geometric modulation of heating
reported by Cohen et al. (2008, 2010). Our results suggest that the heat-

panels show the amplitude of field-aligned current along the dashed arrow. ~ ing is more efficient when the heating spot moves with a velocity which
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component in the direction of the total ionospheric current is close to the

phase velocity of the feedback-unstable waves. Possibly, such an agree-
ment between the velocity of the heating spot and the phase speed of the generated waves happened during
some of experiments with geometric modulation of the ionosphere.

There are two major conclusions from our study. The first one is that the Hall conductivity indeed plays
an important role in the generation of large-amplitude ULF waves by the ionospheric feedback mechanism
driven by the electric filed in the ionosphere. Our simulations confirm results from earlier studies that the
Hall conductivity (1) increases the growth rate of the instability and (2) changes the direction of propaga-
tion of the feedback-unstable waves relative to the background electric field in the ionosphere. The second
conclusion is that the efficiency of generation of ULF waves by the ionospheric HF heating can be increased
significantly by moving the heating spot with a phase velocity of the feedback-unstable waves taking into
account the presence of the Hall current in the ionosphere. The amplitude and direction of this velocity can
be estimated during the experiment from the observations of plasma density, temperature, and the ion drift
speed with phase radars (if they are available) and digisonds and from 3-D numerical simulations performed
in advance for various possible combinations of the background parameters.

References

Aikio, A. T., Mursula, K., Buchert, S., Forme, F., Amm, O., Marklund, G., et al. (2004). Temporal evolution of two auroral arcs as
measured by the cluster satellite and coordinated ground-based instruments. Annales Geophysicae, 22, 4089-4101. https://doi.org/10.
5194/angeo-22-4089-2004

Atkinson, G. (1970). Auroral arcs: Result of the interaction of a dynamic magnetosphere with the ionosphere. Journal of Geophysical
Research, 75, 4746-4755. https://doi.org/10.1029/JA075i1025p04746

Borisov, N., & Stubbe, P. (1997). Excitation of longitudinal (field-aligned) currents by modulated HF heating of the ionosphere. Journal of
Atmospheric and Solar-Terrestrial Physics, 59, 1973-1989. https://doi.org/10.1016/S1364-6826(97)00019-9

Borovsky, J. E. (1993). Auroral arc thicknesses as predicted by various theories. Journal of Geophysical Research, 75, 4746-4755. https://
doi.org/10.1029/92JA02242

Chaston, C. C., Bonnell, J. W., Carlson, C. W., Berthomier, M., Peticolas, L. M., Roth, I, et al. (2002). Electron acceleration in the ionospheric
Alfven resonator. Journal of Geophysical Research, 107(A11), 1413. https://doi.org/10.1029/2002JA009272

Cohen, M. B, Inan, U. S., & Golkowski, M. A. (2008). Geometric modulation: A more effective method of steerable ELF/VLF wave
generation with continuous HF heating of the lower ionosphere. Geophysical Research Letters, 35, L12101. https://doi.org/10.1029/
2008GL034061

Cohen, M. B.,Inan, U.S., Golkowski, M. A., & McCarrick, M. J. (2010). ELF/VLF wave generation via ionospheric HF heating: Experimental
comparison of amplitude modulation, beam painting, and geometric modulation. Journal of Geophysical Research, 115, A02302. https://
doi.org/10.1029/2009JA014410

Getmantsev, G., Zuikov, N., Kotik, D., Mironenko, L., Mityakov, N., Rapoport, V., et al. (1974). Combination frequencies in the interaction
between high-power short-wave radiation and ionospheric plasma. ZhETF Pis Red., 20, 101.

Golkowski, M., Cohen, M. B., Carpenter, D. L., & Inan, U. S. (2011). On the occurrence of ground observations of ELF/VLF magnetospheric
amplification induced by the HAARP facility. Journal of Geophysical Research, 116, A04208. https://doi.org/10.1029/2010JA016261

Golkowski, M., Inan, U. S., Gibby, A. R., & Cohen, M. B. (2008). Magnetospheric amplification and emission triggering by ELF/VLF waves
injected by the 3.6 MW HAARP ionospheric heater. Journal of Geophysical Research, 113, A10201. https://doi.org/10.1029/2008JA013157

Gurevich, A. (1978). Nonlinear phenomena in the ionosphere. New York: Springer-Verlag.

Gurevich, A. (2007). Nonlinear effects in the ionosphere. Phys.-Uspekhi, 50(11), 1091. https://doi.org/10.1070/PU2007v050n11AB
EH006212

TULEGENOV AND STRELTSOV

6193


https://doi.org/10.5194/angeo-22-4089-2004
https://doi.org/10.5194/angeo-22-4089-2004
https://doi.org/10.1029/JA075i025p04746
https://doi.org/10.1016/S1364-6826(97)00019-9
https://doi.org/10.1029/92JA02242
https://doi.org/10.1029/92JA02242
https://doi.org/10.1029/2002JA009272
https://doi.org/10.1029/2008GL034061
https://doi.org/10.1029/2008GL034061
https://doi.org/10.1029/2009JA014410
https://doi.org/10.1029/2009JA014410
https://doi.org/10.1029/2010JA016261
https://doi.org/10.1029/2008JA013157
https://doi.org/10.1070/PU2007v050n11ABEH006212
https://doi.org/10.1070/PU2007v050n11ABEH006212
https://doi.org/10.6084/m9.figshare.7994306
https://doi.org/10.6084/m9.figshare.7994306

~1
AGU

100

ADVANCING EARTH
AND SPACE SCIENCE

Geophysical Research Letters 10.1029/2019GL083340

Inan, U. S., Chang, H. C., Helliwell, R. A., Imhof, W. L., Reagan, J. B., & Walt, M. (1985). Precipitation of radiation belt electrons by
man-made waves: A comparison between theory and measurement. Journal of Geophysical Research, 90(A1), 359-369. https://doi.org/
10.1029/JA090iA01p00359

Jia, N., & Streltsov, A. V. (2014). Ionospheric feedback instability and active discrete auroral forms. Journal of Geophysical Research: Space
Physics, 119, 2243-2254. https://doi.org/10.1002/2013JA019217

Lessard, M. R., & Knudsen, D. J. (2001). Ionospheric reflection of small-scale Alfven waves. Geophysical Research Letters, 28, 3573-3576.
https://doi.org/10.1029/2000GL012529

Lysak, R. L. (1991). Feedback instability of the ionospheric resonant cavity. Journal of Geophysical Research, 96(A2), 1553-1568. https://
doi.org/10.1029/90JA02154

Miura, A., Ohtsuka, S., & Tamao, T. (1982). Coupling instability of the shear Alfven wave in the magnetosphere with the ionospheric ion
drift wave, 2. Numerical analysis. Journal of Geophysical Research, 87(A2), 843-851. https://doi.org/10.1029/JA087iA02p00843

Papadopoulos, K., Chang, C. L., Vitello, P., & Drobot, A. (1990). On the efficiency of ionospheric ELF generation. Radio Science, 25(6),
1311-1320. https://doi.org/10.1029/RS025i006p01311

Papadopoulos, K., Sharma, A. S., & Chang, C. L. (1989). On the efficient operation of a plasma ELF antenna driven by modulation of
ionospheric currents. Comments Plasma Physics Controlled Fusion, 13(1), 1-17.

Papadopoulos, K., Wallace, T., McCarrick, M., Milikh, G. M., & Yang, X. (2003). On the efficiency of ELF/VLF generation using HF heating
of the auroral electrojet. Plasma Physics Reports, 29, 561. https://doi.org/10.1134/1.1592554

Paschmann, G., Haaland, S., & Treumann, R. (Eds.) (2003). Auroral plasma physics, J. Geophys. Res. Edited by Paschmann, G., Haaland, S.,
& Treumann, R.Netherlands: Springer Netherlands.

Pokhotelov, O. A., Pokhotelov, D., Streltsov, A., Khruschev, V., & Parrot, M. (2000). Dispersive ionospheric Alfvén resonator. Journal of
Geophysical Research, 105(A4), 7737-7746. https://doi.org/10.1029/1999JA900480

Robinson, T. R., Bond, G., Eglitis, P., Honary, F., & Rietveld, M. T. (1998). RF heating in a strong auroral electrojet. Advances in Space
Research, 21(5), 689-692. https://doi.org/10.1016/S0273-1177(97)01004-1

Sato, T. (1978). A theory of quiet auroral arcs. Journal of Geophysical Research, 83(A3), 1042-1048. https://doi.org/10.1029/
JA083iA03p01042

Streltsov, A. V., Berthelier, J.-J., Chernyshov, A. A., Frolov, L. V., Honary, F., Kosch, M. J., et al. (2018). Past, present and future of active
radio frequency experiments in space. Space Science Reviews, 214, 122. https://doi.org/10.1007/s11214-018-0549-7

Streltsov, A. V., & Lotko, W. (2008). Coupling between density structures, electromagnetic waves and ionospheric feedback in the auroral
zone. Journal of Geophysical Research, 113, A05212. https://doi.org/10.1029/2007JA012594

Streltsov, A., Lotko, W., & Milikh, G. (2005). Simulations of ULF field-aligned currents generated by HF heating of the ionosphere. Journal
of Geophysical Research, 110, 629. https://doi.org/10.1029/2004JA010

Streltsov, A. V., & Pedersen, T. R. (2010). An alternative method for generation of ULF waves by ionospheric heating. Geophysical Research
Letters, 37, L14101. https://doi.org/10.1029/2010GL043543

Streltsov, A. V., Pedersen, T. R., Mishin, E. V., & Snyder, A. L. (2010). Ionospheric feedback instability and substorm development. Journal
of Geophysical Research, 115, A07205. https://doi.org/10.1029/2009JA014961

Stubbe, P., & Kopka, H. (1977). Modulation of the polar electrojet by powerful HF waves. Journal of Geophysical Research, 82(16), 2319-2325.
https://doi.org/10.1029/JA082i016p02319

Stubbe, P., Kopka, H., & Dowden, R. L. (1981). Generation of ELF and VLF waves by polar electrojet modulation: Experimental results.
Journal of Geophysical Research, 86(A11), 9073. https://doi.org/10.1029/JA086iA11p09073

Trakhtengerts, V. Y., & Feldstein, A. Y. (1991). Turbulent Alfven boundary layer in the polar ionosphere: 1. Excitation conditions and
energetics. Journal of Geophysical Research, 96(A11), 19,363-19,374. https://doi.org/10.1029/91JA00376

TULEGENOV AND STRELTSOV

6194


https://doi.org/10.1029/JA090iA01p00359
https://doi.org/10.1029/JA090iA01p00359
https://doi.org/10.1002/2013JA019217
https://doi.org/10.1029/2000GL012529
https://doi.org/10.1029/90JA02154
https://doi.org/10.1029/90JA02154
https://doi.org/10.1029/JA087iA02p00843
https://doi.org/10.1029/RS025i006p01311
https://doi.org/10.1134/1.1592554
https://doi.org/10.1029/1999JA900480
https://doi.org/10.1016/S0273-1177(97)01004-1
https://doi.org/10.1029/JA083iA03p01042
https://doi.org/10.1029/JA083iA03p01042
https://doi.org/10.1007/s11214-018-0549-7
https://doi.org/10.1029/2007JA012594
https://doi.org/10.1029/2004JA010
https://doi.org/10.1029/2010GL043543
https://doi.org/10.1029/2009JA014961
https://doi.org/10.1029/JA082i016p02319
https://doi.org/10.1029/JA086iA11p09073
https://doi.org/10.1029/91JA00376

	Effects of the Hall Conductivity in Ionospheric Heating Experiments
	Scholarly Commons Citation

	Abstract

