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Abstract: This paper proposes an algorithm that provides operational strategies for multiple heteroge-
neous mobile robot systems utilized in many real-world applications, such as deliveries, surveillance,
search and rescue, monitoring, and transportation. Specifically, the authors focus on developing an
algorithm that solves a min–max multiple depot heterogeneous asymmetric traveling salesperson
problem (MDHATSP). The algorithm is designed based on a primal–dual technique to operate given
multiple heterogeneous robots located at distinctive depots by finding a tour for each robot such that
all the given targets are visited by at least one robot while minimizing the last task completion time.
Building on existing work, the newly developed algorithm can solve more generalized problems,
including asymmetric cost problems with a min–max objective. Though producing optimal solutions
requires high computational loads, the authors aim to find reasonable sub-optimal solutions within a
short computation time. The algorithm was repeatedly tested in a simulation with varying problem
sizes to verify its effectiveness. The computational results show that the algorithm can produce
reliable solutions to apply in real-time operations within a reasonable time.

Keywords: multi-robot systems; task allocation; path planning; autonomous navigation

1. Introduction

The applications for heterogeneous multi-robot systems (MRS) are increasing thanks to
the fast advances in autonomy and artificial intelligence in recent decades [1–6]. However, it
is still difficult to overcome some of the limitations of current technologies due to the dynamic
and unpredictable nature of the world. For the systematic operations of MRS to accomplish
complex tasks, four main topics should be resolved: (1) task decomposition, (2) coalition
formation, (3) task allocation, and (4) task execution/planning and control [7]. These topics
are correlated to each other, which makes the problems even more challenging to solve. The
heterogeneity of MRS significantly increases the complexity while causing more layers to the
operating system with respect to task decompositions and allocations [8].

Generally, heterogeneity is categorized into either structural or functional heterogene-
ity. Structural heterogeneity typically includes differences in the robot designs, for instance,
differences in motion constraints, running speed, yaw rate, and fuel capacity. On the other
hand, functional heterogeneity includes differences in the functions, such as different types
of data coming from various sensors, maximum payloads, and the ability to collect samples.
Sensor-related issues on each robot are one of the factors that make task allocation and
planning more challenging, and there are several active ongoing research inquiries into
this [9–12]. The more heterogeneity factors, the greater the computational load to find an
efficient operational strategy for MRS.

This paper focuses on solving a task allocation and planning problem for an MRS with
structural heterogeneity. Although it is desirable to consider various heterogeneity factors,
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we deal with a problem that includes the structural heterogeneity of MRS at this time.
Specifically, we assume that the system has heterogeneous mobile robots in a 2D space,
such as autonomous surface vessels or ground robots, with different motion constraints
and running velocities. We are interested in finding paths for the robots that complete all of
the given tasks within the minimum period with a given system. When the robots depart
from distinctive locations, and the travel costs do not guarantee symmetricity, we call
the problem a min–max multiple depot heterogeneous asymmetric traveling salesperson
problem (MDHATSP). This problem is a generalized TSP, which means that it is an NP-
hard problem [13]. As preliminary research, two robot problems (2DHTSP, 2DHATSP)
were studied in [14], and the problem for multiple structurally heterogeneous robots with
symmetric travel costs (MDHTSP) was studied in [15]. At this time, we relax the symmetric
travel cost condition by assuming the robots to be Dubin’s vehicles [16] with different
minimum turning radii. To focus on the practical aspects of the approach, we put our
efforts into lightening the computational loads for large problems while maintaining good
solution qualities.

As research on the task allocation of MRS has become more active than in previous
years, some publications are dealing with similar problems. However, as is characteristic of
MRS operational research, each publication deals with its specific scenario, which makes it
difficult to deploy to other scenarios. In a recent publication, Sun and Escamilla proposed
an unscented transform-based approach for a task allocation process with uncertainty in
situational awareness in [17]. While dealing with functional heterogeneity, they proposed a
Hungarian algorithm by focusing on handling uncertainties. Li et al. presented a hybrid
large-neighborhood search algorithm that solves a multiple depot autonomous aerial
vehicle (AAV) routing problem [18]. The article is focused on addressing an open constraint
on return depots without considering heterogeneity. Similarly, Cho et al. presented a
sampling-based tour generation algorithm for multiple AAVs by formulating the problem
into a generalized MDHATSP [19]. While [19] dealt with the most similar problem to
that of this paper, their objective is min-sum, and there is a constraint that the robots
must return to one of the terminal nodes. A decentralized auction algorithm for the task
allocation of MRS under a limited communication range with a min-sum objective has
been proposed in [20]. The task allocation problem of autonomous underwater vehicles’
problems with time and resource constraints and a min–max objective is dealt with in [21].
In [22], an ant colony algorithm for a min–max MDTSP without heterogeneity is proposed,
and the results are compared with those of a linear program (LP)-based algorithm. While
these approaches deal with the task allocation for MRS, they have distinct objectives and
constraints, and none deal with the same problem as that of this paper. This paper aims to
fill this gap by targeting the production of reasonable solutions within a short time for a
generalized problem.

This paper has several unique contributions as an extension of the preliminary work
presented in [15]. The heuristic in [15] is developed for a min–max MDHTSP, which only
solves problems with symmetric costs. This paper’s novelty is based on the following
contributions: First, we present a new approach in Algorithm 1 for deciding on the dual
variables Wk, which play a role as the weights on travel costs for each robot. Due to
generalized travel costs, the algorithm is designed to embrace the asymmetricity of the
costs. In addition, new pruning steps for the primal–dual heuristic were developed in
Algorithm 2 to enhance the task distribution between the robots. The algorithms are
implemented and compared with LP solutions with relaxed integer constraints, the LP
rounding method, and our work on a min-sum MDHATSP [23] to verify the effectiveness of
the proposed algorithm from the perspective of workload balancing. Lastly, the real-world
experimental results are added to verify the feasibility of the algorithm in the field.

The remainder of this paper is structured as follows: In Section 2, we specify the prob-
lem and present the formulations. Section 3 presents the primal–dual heuristic approach
for a min–max MDHATSP. We present the computational results in Section 4 and, finally,
conclude in Section 5.
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2. Problem Description and Formulation

This section specifies the problem of allocating tasks between robots in a given het-
erogeneous MRS visiting a given set of targets. In the end, we aim to find a path for
each robot that satisfies its motion constraints and completes all of the given tasks by
the MRS while minimizing the maximum travel cost among the agents. We assume that
the travel costs are asymmetric but still satisfy triangle inequalities. The robots depart
from distinct locations and return to their depots once they have completed the assigned
tasks. We assume that the robots have different running velocities and minimum turn-
ing radii, as briefly introduced earlier. The travel cost is defined as the travel time of
the robot and is calculated by costk

ij = dk
ij ÷ vk, where dk

ij represents the distance of the
shortest path from vertex i to j for robot k, and vk represents the average running ve-
locity of robot k. We also assume that each robot is labeled as their running velocities
decrease and the minimum turning radius increases as their indices increase. Under
this assumption, all travel costs will monotonically increase based on their indices, i.e.,
cost1

ij ≤ cost2
ij ≤, · · · ,≤ costm

ij , ∀{i, j} ∈ Vk, k = 1, · · · , m.
Given a set of m robots and n targets, the parameters and decision variables used in

the formulation are described as follows:

Parameters:
D = {d1, · · · dm} A set of depots
T = {t1, · · · , tn} A set of targets
Vk = {{dk} ∪ T} A set of vertices for the kth robot
Ek = {(i, j), ∀i, j ∈ Vk} A set of edges that connect all vertices in Vk
costk

ij The travel cost of the edge from vertex i to vertex j for the kth robot
δ+k (S) The subset of the edges of Ek that enter S from Vk\S

Decision variables:

xk
ij

the decision variable that represents whether the edge (i, j) is used for the tour of the kth
robot

xk
ij =

{
1 if the edge (i, j) is traveled by the kth robot
0 otherwise

zk
U the decision variable that represents the assignment of targets in T for the kth robot

zk
U =

{
1 if U contains all vertices not assigned to 1st, · · · , kth robot
0 otherwise

q the maximum travel cost among the given m robots

Based on the provided parameters and decision variables, the formulation for a linear
program (LP) relaxation of the problem is shown below:

CLP = min q (1)

∑
(i,j)∈δ+1 (S)

x1
ij ≥ 1− ∑

T⊇U⊇S
z1

U ∀S ⊆ T, (2)

∑
(i,j)∈δ+k (S)

xk
ij ≥ ∑

T⊇U⊇S
(zk−1

U − zk
U) ∀S ⊆ T, k = 2, · · · , m− 1, (3)

∑
(i,j)∈δ+m (S)

xm
ij ≥ ∑

T⊇U⊇S
zm−1

U ∀S ⊆ T, (4)

q ≥ ∑
i,j∈Vk

costk
ij xk

ij k = 1, · · · , m, (5)

xk
ij ≥ 0 ∀i, j ∈ Vk, k = 1, · · · , m, (6)

zk
U ≥ 0 ∀U ⊆ Vk, k = 1, · · · , m− 1, (7)

q ≥ 0. (8)

To have the formulation in an LP form, we made the objective to be minimizing q as
presented in (1), and q represents the maximum travel cost, as shown in (5). As the travel
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costs can be asymmetric, we focused on finding a heterogeneous directed spanning tree
by relaxing the outgoing degree constraints while keeping the entering degree constraints
in (2)–(4). The non-negativity constraints for the decision variables are (6)–(8). The dual
problem of the LP relaxation is derived as follows to develop a primal–dual heuristic:

Cdual = max ∑
S⊆T

Y+
1 (S) (9)

∑
S:e∈δ+k (S)

Y+
k (S) ≤Wkcostk

ij ∀i, j ∈ Vk, k = 1, · · · , m, (10)

∑
S⊆U

Y+
k (S) ≤ ∑

S⊆U
Y+

k+1(S) ∀U ⊆ T, k = 1, · · · , m− 1, (11)

∑
k=1,··· ,m

Wk ≤ 1 (12)

Y+
k (S) ≥ 0 ∀S ⊆ T, k = 1, · · · , m, (13)

Wk ≥ 0 k = 1, · · · , m. (14)

In this formulation, Wk can be interpreted as the weights that prioritize the robots
based on their capabilities, and Y+

k (S) can be considered the price that the vertices in set S
are willing to pay to be connected to the depot dk.

3. A Heuristic for Min–Max MDHATSP

The heuristic for a min–max MDHATSP consists of two main procedures, which
are presented in Algorithms 1 and 2. While Algorithm 1 focuses on determining the
Wk values for each robot to improve the workload distribution, Algorithm 2 produces a
feasible task allocation and path planning solution for the fixed Wk values. In Algorithm 1,
we try to transfer the workloads from the robot with the maximum travel cost to other
robots to reduce the maximum travel cost in each iteration. In the heuristic presented in
Algorithm 2, we used the dual problem (9)–(14) to find a heterogeneous directed spanning
forest (HDSF). The resulting forest will become the allocation of the tasks. As we have
mentioned, the algorithms treat Wk similarly to the weights on robots to prioritize based
on their capabilities. Y+

k (S) is treated as the prices that all targets in S are willing to pay
to become reachable from dk. The weighted costs should satisfy the monotonic increase
inequalities, W1cost1

ij ≤ W2cost2
ij ≤ · · · ≤ Wmcostm

ij ∀i, j ∈ T, all of the time in order to
guarantee the feasibility of the algorithm. The notations below are utilized to present the
algorithm’s details.

Algorithm Notations:
Fk A set of edges added to the graph for the kth robot

Ck
A collection of vertex sets in the graph for the kth
robot

Yk(S) The dual variable of set S for the kth robot
activek(S) The variable that represents the status of Yk(S)

activek(S) ={
1 if set S can increase its dual variable
0 otherwise

Cost = {Cost1, · · · , Costm} A set of costs for all robots
W = {W1, · · · , Wm} A set of all Wk
Tour = {Tour1, · · · , Tourm} A set of assigned paths
TourCost = {TourCost1, · · · , TourCostm} A set of travel costs of Tourk

The algorithm starts with setting the Wk values to an equally distribution. This step
ensures that at least one feasible solution is produced for the problem as it should satisfy
the monotonically increasing inequalities in the default. Once the algorithm finds a feasible
solution, it iteratively runs a primal–dual heuristic (Algorithm 2) while changing the
Wk values to reduce the maximum travel cost. To satisfy the monotonically increasing
inequalities of the weighted costs, we designed the algorithm such that the Wk also satisfies
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the monotonically increasing inequalities, i.e., W1 ≤W2 ≤ · · · ≤Wm. Wk is adjusted with a
small amount ε (heuristically determined by the user) to share the overloaded work with
other robots while remaining tight (12).

Algorithm 1 A Heuristic for a Min–Max MDHATSP

1: Wk = 1/m for k = 1, · · · , m;
2: [TourCost, Tour] = GetPartition(Cost, W)
3: G ← max(TourCost)
4: while there is no improvement in G do
5: [TourCostk, k] = max(TourCost)
6: if k > 1 then
7: for j= 1:k− 1 do
8: Wj = Wj − ε
9: end for

10: for j= k:v do
11: Wj = Wj + ε
12: end for
13: else
14: break,
15: end if
16: Wk = Wk

∑m
k=1 Wk

for k = 1, · · · , m
17: [TourCost, Tour] = GetPartition(Cost, W)
18: if G < max(TourCost) then
19: G ← max(TourCost)
20: end if
21: end while
22: return TourCost, Tour

With every fixed Wk value, the task assignment is determined by Algorithm 2. Each
robot has its own graph, with all targets and a depot as the vertices. Initially, each vertex is
in its own set, all dual variables are zero, and the edge set Fk is empty. For every iteration,
the algorithm search for the dual variable that can make one of the constraints (10) tight
with the smallest increment. Add the corresponding edge ek to Fk. Then, we look into the
graph for this robot and check if any valuable changes have been made. First, if a new
strongly connected component is formed, but the new component is not reachable from dk,
then let the new component be an active set. Second, if any set became newly connected to
dk, then let dk and all reachable sets from dk be a new inactive set. This new component’s
subsets should also all be deactivated, while supersets should all be marked. Lastly, if
neither the first nor the second happened, deactivate the component. When the algorithm
proceeds further, there may be a phase in which there is no active set without entering
edges, but some sets are still not connected to the depot. Then, the algorithm generates a
new active component for each graph by combining some connected sets with at least one
that is marked. The iteration will stop when all sets in the graphs are inactive.



Sensors 2022, 22, 5637 6 of 12

Algorithm 2 [TourCost, Tour] = GetPartition(Cost, W)
1: Initialization

2: Fk ← ∅, Ck ← {{v} : v ∈ Vk}, for k = 1, · · · , m
3: All vertices are unmarked.
4: All dual variables are set to zero.
5: activek({v})← 1, ∀v ∈ Vk , for k = 1, · · · , m
6: activek({dk})← 0, for k = 1, · · · , m
7: Main loop

8: while there exists any active component in C1, · · · , Cm do
9: for k = 1, · · · , m do

10: Find an edge ek = (i, j) ∈ Ek with i ∈ Ci , j ∈ Cj where Ci , Cj ∈ Ck, Ci 6= Cj that minimizes εk =
Wkcostk

ij−dualk(j)

activek(Cj)
.

11: end for
12: Let the corresponding Cj ∈ Ck be Sk while S = {S1, · · · , Sm} satisfies S1 ⊇ S2 ⊇ · · · ⊇ Sm and all are active.

13: Fk ← {ek} ∪ Fk
14: Increase the dual variables of Sk with the amount of εk
15: if ek forms a new strongly connected component, and the component is not reachable from dk , then
16: Let the new strongly connected component be a new active component.
17: else if ek makes any vertex v ∈ S reachable from dk , then
18: Let dk and the all the reachable vertices from dk be a new inactive component.
19: if k < m then
20: Deactivate all subsets of this component in Ck+1, · · · , Cm.
21: end if
22: if k > 1 then
23: Mark all the vertices in the supersets of this component in C1, · · · , Ck−1. Deactivate them if the

corresponding components consist of all marked vertices.
24: end if
25: else
26: Deactivate Sk .
27: end if
28: if there exists any inactive set without an entering edge that is not connected to the depot, and there exists

no S = {S1, · · · , Sm} that can be chosen to satisfy the given conditions for any k ∈ {1, · · · , m}, then
29: Pick an inactive component for each k consisting of marked vertices with entering or outgoing edges.

Combine the connected components until the new component does not have any entering edges. Let the
new component be active.

30: end if
31: end while
32: Pruning

33: Let F′k be the resulting forest after performing reverse-deleting steps to remove all unnecessary edges.
34: Let P′k be the vertices in F′k for k = 1, · · · , m.
35: Let Pk be the vertices that are only connected to dk for k = 1, · · · , m.
36: if there exist any v ∈ T that do not belong to any Pk for k = 1, · · · , m then
37: Let Pc be a set of such vertices.
38: while Pc 6= ∅ do
39: Find the closest distances to the depots for all vertices in Pc.
40: Find the shortest distance. Let vc be the corresponding vertex, and dk be the closest depot.
41: Pc ← Pc\vc; vc → Pk
42: end while
43: else
44: Pk = P′k
45: end if
46: Find the shortest tour for Pk for k = 1, · · · , m.
47: return TourCost, Tour

Lemma 1. The proposed heuristic produces a feasible plan for the given set of robots such that every
given target is visited only once by one of the robots.

Proof. In Algorithm 2, the main loop terminates when all of the components are inactive.
There are only three cases in which the components can be deactivated. First, the component
is not any part of the strongly connected components that do not have entering edges, and
none of the components’ vertices are reachable from the depots. Second, the component
becomes reachable from its depot. Third, one of its supersets/subsets becomes reachable
from its depots. As the first condition can deactivate only one component within S, the
termination condition cannot be met by only the first condition. That means that the second
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or third condition should meet at least one in order to terminate the main loop, thereby
implying that all components should be connected to at least one depot. The pruning
steps ensure that each target is connected to only one depot if there exists any target that
is connected to multiple depots. Thus, Algorithm 2 produces a feasible solution for the
given set of robots such that every given target is visited only once by one of the robots.
As Algorithm 1 updates the Wk values while maintaining the monotonically increasing
inequalities, the proposed heuristic produces a feasible solution to the problem.

4. Implementation Results
4.1. Simulation Results

We implemented the heuristic and performed the simulation repeatedly with varying
problem sizes to validate the proposed heuristic. All simulations were performed in a
PC equipped with an Intel®Core™ i7-7800X CPU running at 3.5 GHz with 64 GB RAM.
The numbers of robots and targets varied from 3 to 6 and 20 to 50, respectively. To have a
standard for the produced solution qualities, we used the optimal costs for the LP relaxation
problem calculated by the commercial software CPLEX [24] as lower bounds. Though we
repeated the tests 50 times for each size, we only tested the heuristic for 100 targets to
estimate the computational time due to the extensive computation time of LP for large-sized
problems. Using the LP solution, We also applied the LP rounding method, which assigns
the target to the one with the largest partitioning variable value in order to compare the
results based on the calculated LP relaxation costs. In addition, we applied our previous
algorithm that solves a min-sum MDHATSP [23] to verify the effectiveness of the algorithm
and, specifically, to reduce the last task completion time. The coordinates of depots and
targets are randomly generated within a space of 3 m× 3 m with a uniform distribution. As
previously mentioned, the robots are labeled as their running velocities decrease while the
minimum turning radius increases in order with the index. costk

ij was set to the minimum
travel time by calculating the Dubin’s path [16] from i to j divided by the average running
velocity of the kth robot. The path within each assignment was generated using LKH [25]
for both LP rounding and the proposed heuristic.

The average and maximum posteriori bounds are shown in Figure 1. The posteriori
bound has been calculated by Costalgo ÷ CostLP, where Costalgo represents the cost gener-
ated by an algorithm, and CostLP represents the optimal cost of the LP relaxation problem.
As the objective of the problem is min–max, which is nonlinear, the gap between the costs
of the original mixed-integer problem and the LP relaxation problem is a bit large, which
means that the actual solution qualities are more reasonable than the presented numbers.
As we can see from the results, the average posteriori bounds of the proposed heuristic
stayed the lowest, while the min-sum heuristic remained in the middle, and the LP round-
ing method was the highest. The worst posteriori bounds for the proposed algorithm also
remained the lowest regardless of the problem sizes.

The average and maximum computation times are shown in Table 1. Compared to the
results of the min-sum heuristic, which was an average of 9 s for six robots and 50 targets,
the computation time is longer for min–max cases, with an average of 35 s. For 10 instances
of 20 robots and 100 targets, the algorithm produced a solution within an average of
35 min. Considering the fact that the algorithm can handle more generalized problems, the
computation time is still within an acceptable range for real-world operations, especially
for large-sized problems. Figure 2 shows the results from three different algorithms for an
instance of three robots and 30 targets within a 3 m × 3 m space, and Figure 3 shows the
results from the proposed heuristic for an instance of 20 robots and 100 targets within a
20 m × 20 m space.
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Table 1. Computation time in seconds.

Tasks LP
Rounding Min-Sum Proposed LP

Rounding Min-Sum Proposed

Average with 3 robots Worst with 3 robots

20 4.36 0.23 0.68 6.41 0.58 1.95
30 67.39 0.65 1.77 85.97 1.07 3.38
40 619.08 1.46 4.04 888.91 1.83 7.01
50 3614.6 2.83 8.66 4922.4 3.42 12.75

Average with 4 robots Worst with 4 robots

20 5.89 0.38 1.06 8.66 1.47 2.29
30 82.22 1.07 3.30 112.46 1.99 5.93
40 952.54 2.36 7.77 4183.8 3.22 12.92
50 5128.1 4.34 13.66 4434.8 5.11 24.33

Average with 5 robots Worst with 5 robots

20 14.37 0.52 1.60 18.97 1.00 4.16
30 267.74 1.50 4.75 446.77 2.02 9.27
40 2960.1 3.41 11.55 4183.8 3.89 20.96
50 10,920 6.67 23.88 15,875 7.56 39.74

Average with 6 robots Worst with 6 robots

20 14.22 0.69 2.12 17.29 1.53 5.39
30 265.13 2.14 8.00 347.92 2.59 15.97
40 3153.3 4.62 16.79 4434.8 5.52 32.63
50 15,527 8.99 35.05 21,225 10.32 64.30

4.2. Field Experiments

In addition to the simulation, we performed field experiments to verify the effective-
ness of the MRS in real-time applications with a small-sized problem. The MRS consists of
four ground mobile robots, Turtlebot3 Waffle Pi [26], and each robot has a different limited
running velocity. The experiment site is a size of 16 ft × 12 ft and is equipped with an
OptiTrack Motion Capture System (with 8 OptiTrack Prime 17W cameras) to transfer the
locations of the robots in real-time. The central control system is implemented in ROS [27]
to navigate the robots. The experimental setup is shown in Figure 4.

We tested the proposed algorithm for a problem with 29 targets and distinctive depots
for the robots. Once the task allocation and the path generation are completed, the robots
immediately work on the given tasks by following the provided paths. In our experiments,
the linear velocities were set to 0.1, 0.083, 0.071, and 0.063 m/s, respectively, to include
the heterogeneity of the system. To verify the effectiveness of the proposed heuristic, we
compared the results with our preliminary research, the primal–dual heuristic for min-sum
MDHATSP [23].

The results from the field experiment results are shown in Figure 5 and Table 2.
Figure 5 shows that the robots were able to complete their tasks as provided by the heuris-
tics. As shown in Table 2, though the min-sum heuristic ran in 0.95 s to complete the task
allocation and path generation, the workload was overloaded to robot 3, which caused a
longer last task completion time. On the other hand, the proposed heuristic ran in 3.23 s,
which is a bit longer, but the workload has been well distributed, resulting in a shorter last
task completion time. However, the sum of the travel costs was better with [23] than with
the proposed algorithm, which makes sense as it aimed to minimize the total travel costs to
reduce the complexity of the problem. The results show that the newly proposed approach
is practical for the real-time operations of actual applications as the new heuristic deals
with a more generalized problem with a better workload distribution within a reasonable
computation time.
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Table 2. Computation and travel time in seconds of the field experiments. The min-max heuristic-
based run had the minimum last task completion time, as presented in red, and the min-sum
heuristic-based run had the minimum sum of all travel time, as shown in blue.

Computation Robot1 Robot2 Robot3 Robot4 Sum of Travel Last Task
Completion

Min–Max heuristic 3.23 83.3 81.5 88.7 103 356.5 106.23

Min-Sum heuristic 0.95 56.7 85 142.7 24.7 309.1 143.65

Figure 4. An experimental scene for one of the field experiments. The colored locations represent the
depots, and others represent the target locations.
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Figure 5. The resultant trajectories of the robots with the proposed algorithm (left) and min-sum
heuristic (right) for an instance with 4 robots and 29 targets. The numbers next to the depots represent
the index of the robots. The green, red, blue, and yellow paths represent the trajectories for robots 1,
2, 3, and 4, respectively.

5. Conclusions

This paper proposes a heuristic that efficiently allocates the given tasks among the
heterogeneous mobile robots while minimizing the last task completion time. The min–max
MDHATSP is a fundamental problem that may arise in many multi-robot systems’ applica-
tions. The problem’s formulation, used to design a primal-dual heuristic, is presented, and
the details of the algorithm are discussed. Finally, as validation steps, the implementation
results are presented to show the effectiveness and potential of the algorithm for use in
actual applications. Our future work aims to extend this research to more generalized
problems by considering more constraints from the heterogeneity in MRS, such as capacity
restrictions or fuel constraints.
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