
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Michigan Tech Publications

6-11-2022

Kernel Matrix-Based Heuristic Multiple Kernel Learning Kernel Matrix-Based Heuristic Multiple Kernel Learning

Stanton R. Price
Geotechnical and Structures Laboratory

Derek T. Anderson
University of Missouri

Timothy C. Havens
Michigan Technological University, thavens@mtu.edu

Steven R. Price
Geotechnical and Structures Laboratory

Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Price, S., Anderson, D., Havens, T. C., & Price, S. (2022). Kernel Matrix-Based Heuristic Multiple Kernel
Learning. Mathematics, 10(12). http://doi.org/10.3390/math10122026
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/16225

Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p

 Part of the Electrical and Computer Engineering Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/michigantech-p
https://digitalcommons.mtu.edu/michigantech-p?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F16225&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F16225&utm_medium=PDF&utm_campaign=PDFCoverPages
http://doi.org/10.3390/math10122026
https://digitalcommons.mtu.edu/michigantech-p?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F16225&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F16225&utm_medium=PDF&utm_campaign=PDFCoverPages

����������
�������

Citation: Price, S.R.; Anderson, D.T.;

Havens, T.C.; Price, S.R. Kernel

Matrix-Based Heuristic Multiple

Kernel Learning. Mathematics 2022,

10, 2026. https://doi.org/10.3390/

math10122026

Academic Editors: Chengyou Wang,

Xiao Zhou, Zhaobin Wang and

Yingchun Guo

Received: 13 May 2022

Accepted: 8 June 2022

Published: 11 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Kernel Matrix-Based Heuristic Multiple Kernel Learning
Stanton R. Price 1,* , Derek T. Anderson 2, Timothy C. Havens 3 and Steven R. Price 1

1 U.S. Army Engineer Research and Development Center, Geotechnical and Structures Laboratory,
Vicksburg, MS 39180, USA; steven.r.price@usace.army.mil

2 Department of Electrical Engineering and Computer Science, University of Missouri,
Columbia, MO 65211, USA; andersondt@missouri.edu

3 Department of Electrical Engineering and Computer Science, College of Computing, Michigan Technological
University, Houghton, MI 49931, USA; thavens@mtu.edu

* Correspondence: stanton.r.price@usace.army.mil

Abstract: Kernel theory is a demonstrated tool that has made its way into nearly all areas of machine
learning. However, a serious limitation of kernel methods is knowing which kernel is needed in
practice. Multiple kernel learning (MKL) is an attempt to learn a new tailored kernel through the
aggregation of a set of valid known kernels. There are generally three approaches to MKL: fixed rules,
heuristics, and optimization. Optimization is the most popular; however, a shortcoming of most
optimization approaches is that they are tightly coupled with the underlying objective function and
overfitting occurs. Herein, we take a different approach to MKL. Specifically, we explore different
divergence measures on the values in the kernel matrices and in the reproducing kernel Hilbert space
(RKHS). Experiments on benchmark datasets and a computer vision feature learning task in explosive
hazard detection demonstrate the effectiveness and generalizability of our proposed methods.

Keywords: multiple kernel learning; divergence measures; heuristics; SVM

MSC: 68T20; 68Q15

1. Introduction

Most state-of-the-art technologies, e.g., smart cars, unmanned aerial vehicles, remote
sensing, internet of things (IoT), Big Data, and countless other examples, are heavily reliant
on, if not bottle necked by, pattern recognition and machine learning. Kernel theory is a
simple, in theory, and elegant way to extend, typically in a transparent fashion, pattern
recognition algorithms. This ranges from classifiers, e.g., kernel support vector machines
(SVM) [1,2], to unsupervised learning, e.g., kernel clustering [3–5], to dimensionality reduc-
tion, e.g., kernel principle component analysis [6–8]. The point is the following—kernel
theory is a well demonstrated method but sadly the reality is we are not typically privileged
in practice to know what kernel, and associated parameters, to apply. Furthermore, it is
possible that the “correct” kernel is not one of our known functions, e.g., polynomial, linear,
intersection, histogram, radial basis function (RBF), etc. Multiple kernel learning (MKL) is an
extension to kernel theory focused on discovering the task-specific kernel based on the
aggregation of valid base kernels (those functions satisfying Mercers conditions). Thus,
MKL allows us to generate a wealth of new kernel solutions.

MKL can be divided into at least three approaches: fixed rules, heuristics, and
optimization-based. In general, there does not exist well-defined boundaries between
these three approaches, i.e., their specifics vary from author-to-author. Typically, fixed rule
methods do not consider any training data or optimization formula, e.g., the SVM cost
function. For example, uniform weight assignment (i.e., all kernels are equally “important”)
is one, be it extreme, method. Next, heuristic MKL approaches tend to be influenced by
the training data in some fashion, but they do not connect themselves to the underlying
optimization function. Last, optimization-based MKL methods embed MKL into the cost

Mathematics 2022, 10, 2026. https://doi.org/10.3390/math10122026 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10122026
https://doi.org/10.3390/math10122026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2278-1015
https://doi.org/10.3390/math10122026
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10122026?type=check_update&version=2

Mathematics 2022, 10, 2026 2 of 17

function, e.g., replacing the single kernel mathematics by the aggregated kernel mathe-
matics in the SVM cost function, resulting in something such as alternating optimization.
Be it a gross oversimplification, fixed rule approaches suffer from not including any data
information, optimization methods suffer from overfitting because kernel methods are very
powerful and can often easily obtain one hundred percent classification rate on training
data but fail to generalize, and heuristic methods somewhat represent a trade off between
these two extremes. In Section 2, we review some existing MKL approaches.

In [9,10], we started to explore the possibility of deriving the kernel weights (discussed
in detail in Section 2), which dictate how a given set of kernels are combined and ultimately
contribute to the task at hand, based on kernel matrix properties. That is, we do not make
any connections between weight derivation and the underlying optimization task. We
observed a noticeable improvement in the generalizability of our methods on test data
without the need to resort to additional methods such as penalty assignment/regularization.
Following that work, we developed a number of state-of-the-art optimization-based MKL
methods: `p norm genetic algorithm based MKL (GAMKLp) for feature-in-feature-out (FIFO)
fusion and `p norm fuzzy integral MKL (FIMKLp) for non-linear decision-in-decision-out
(DIDO) MKL. We also explored their extensions to linear regression and their efficient
computation via linearization and Nystrom kernel sampling for Big Data [11]. Herein, we
revisit our earlier idea of divergence measure-based heuristic MKL and we investigate
new measures and their computation in the kernel matrix space and the reproducing kernel
Hilbert space (RKHS) space. As we discovered in our GAMKLp, FIMKLp, and comparison
to other works such as MKL based group lasso (MKLGL), no method appears to theoretically
or empirically “win” across all problems (datasets). Obviously these methods find different
solutions due to their differences in optimization and the complexity in the underlying
optimization function. Therefore, we find it interesting to compare these methods to see
what trends, if any, arise. Furthermore, comparing these approaches is important because
it stresses something we find important. If there is not a clear MKL winner, then there
exists a need to discover new interesting, well-grounded and performance benefiting
methods so a user can run a battery of approaches and pick a winner for their task at
hand. To that end, we compare our existing and new indices in the kernel matrix space
and RKHS to state-of-the-art linear and non-linear FIFO and DIDO optimization-based
methods and show that, depending on the dataset, our heuristic divergence measure-based
weight assignment procedure is both well-grounded and competitive, if not better in many
cases. Last, the computational cost of our approach is nominal and scales well versus most
existing optimization-based MKL solvers. Table 1 provides a list of acronyms and notation
used herein.

Table 1. Acronyms and Notation.

IoT Internet of things GMKL Generalized MKL
SVM Support vector machine MRMKL Matrix regularized MKL
RBF Radial basis function HRK H2-reproducing kernel
MKL Multiple kernel learning MFKL Multi-feature kernel learning

GAMKLp `p norm genetic algorithm based MKL MKLGLp `p norm MKLGL
FIFO Feature-in-feature-out DeFIMKL Decision-level FIMKL

FIMKLp `p norm fuzzy integral MKL IQR Interquartile range
DIDO Decision-in-decision-out DiMKL Divergence-based MKL
RKHS Reproducing kernel Hilbert space NAUC Normalized area under the curve

MKLGL MKL based group lasso iECO improved evolution constructed
PSD Positive semi-definite GA Genetic algorithm
LCS Linear convex sum HOG Histogram of oriented gradients

SKSVM Single kernel SVM SD Statistical descriptor
MKLEA MKL via ensemble artifice EHD Edge histogram descriptor

The primary contribution of this work is studying the applicability of computationally
inexpensive heuristic-based MKL weight assignments compared to that of optimization-
based MKL strategies. Herein, we propose five heuristic-based MKL indices that are derived
directly from the kernel matrix, each considering different aspects of class divergence

Mathematics 2022, 10, 2026 3 of 17

represented by the kernel matrix proximity values. It is our conjecture that, as with kernel
matrix theory in which a theoretical kernel exists that enables complete class separability
(e.g., in infinite dimensional space), how one arrives in this space is not trivial, there is also
no universal MKL weight assignment strategy that guarantees optimal performance across
all problem spaces. We do not view this as a negative, but rather a reality of real-world
data and solutions to these problems. The benefit of our proposed heuristic-based MKL
indices is that they are computationally inexpensive, shown to generalize well, and tend to
outperform optimization-based MKL strategies.

The remainder of the paper is organized as follows. In Section 2, we review necessary
kernel and MKL concepts to understand the remainder of the article. In Section 3 we
explore different divergence measures of the values of the kernel matrices and Section 4
discusses divergence in the RKHS space. In Section 5 we explore the proposed methods
on learned features in infrared imagery for explosive hazard detection and benchmark
machine learning datasets. Last, Section 6 summarizes our findings and future work.

2. Background

The aim of this section is to provide, as sufficiently as possible, necessary kernel and
MKL preliminaries to facilitate understanding and analysis of the proposed divergence
measures applied to kernels. The reader can refer to [12–14] for a more complete overview
of the mathematics and applications.

2.1. Multiple Kernel

Let φ : x Ñ φpxq P <DK be a nonlinear mapping function that transforms feature vector
x to dimensionality DK. It is common for DK to exist in a much higher dimensionality than
x’s original space. There are many forms for the kernel function κ, e.g.:

1. Linear: κpxi, xjq “ xT
i xj;

2. Polynomial: κpxi, xjq “ pxT
i xj ` 1qq, q ą 0;

3. Radial Basis Function (RBF): κpxi, xjq “ exp
´

´
||xi´xj||

2

σ2

¯

, σ ą 0;

4. Hyperbolic Tangent: κpxi, xjq “ tanhpβxT
i xj ` γq, β ą 0, γ ą 0.

Let X “ tx1, . . . , xnu be a set of n objects, we can produce the kernel matrix
K “ rKij “ κpxi, xjqs

nˆn. The kernel matrix represents all pairwise dot products of the n
objects’ feature vectors in the transformed DK space: the RKHS. It is common to use a
single kernel; however, it is extremely difficult to identify the “best” kernel and/or set
of corresponding kernel parameters in practice. To help address this shortcoming, MKL
provides an approach to combining more than one kernel. Kernel theory expresses that
there exists a “perfectly” separable space, but fails to tell us how to find this space in
practice. Further, commonly used kernels such as an RBF, polynomial, or linear kernel often
does not represent the optimal kernel. MKL is an appealing solution to this problem as it
enables the combination of different component kernels which opens the door to unique
transformations that could get us closer to the desired solution space. It has been shown
in computer vision applications that different features descriptors benefit from unique
image pre-processing steps unique to the descriptor (see [15]); in the same manner, it is
feasible that different feature subsets require different transformations. Starting with a set
of base kernels, i.e., Mercer’s conditions are satisfied, we assume kernel K is a weighted
combination of those kernel matrices by:

K “
m
ÿ

k“1

σkKk, (1)

where there are m kernels and σk is the weight applied to the kth kernel. The above
operation is a linear convex sum (LCS) as 0 ď σk ď 1 and

řm
k“1 σk “ 1.

Considering the implicit feature space that MKL induces can be beneficial. Let φk be
the kth non-linear mapping function, then:

Mathematics 2022, 10, 2026 4 of 17

Kij “
〈
φσpxiq, φσpxjq

〉
“

m
ÿ

k“1

σkpKkqij “

¨

˝

?
σ1φ1

i
...

?
σmφm

i

˛

‚

t¨

˚

˝

?
σ1φ1

j
...

?
σmφm

j

˛

‹

‚

, (2)

where φ1
i is the first basis function for the ith feature vector. Given that the ith feature

vector could be a subset of xi, the fused result is the concatenation of the different individ-
ual RKHSs. Considering this, one interpretation of the weights is as both feature space
shrinkage and importances.

2.2. MKL-SVM

Let σk denote a set of weights, then single kernel SVM (SKSVM) is extended by MKL
SVM by optimizing over σk as:

min
σP∆

max
α

#

1Tα´
1
2
pα ˝ yqT

˜

m
ÿ

k“1

σkKk

¸

α ˝ yq

+

, (3a)

subject to (typically)
0 ď αi ď C, i “ 1, . . . , n; αTy “ 0, (3b)

where ∆ is the domain of σ. Note, assuming σk is constant, this is the same problem
as SKSVM.

Recently, Lu et al. [16] proposed MKL via ensemble artifice (MKLEA) in RKHS which
integrated multiple SKSVM losses into a single ensemble loss. Therein, it was shown
to outperform and empirically remain more stable than other known MKL strategies, i.e,
generalized MKL (GMKL) [17], SpicyMKL [18], and matrix regularized MKL (MRMKL) [19],
for experiments conducted on UCI benchmark datasets as well as computer vision datasets.
For completeness: SpicyMKL scales very well as the number of kernels increases and
presents an iterative optimization strategy; GMKL extends traditional MKL formulations
to generalized kernel combinations subject to regularization on the kernel parameters; and
MRMKL put forth a closed-form solution for kernel weight assignment with a guarantee
of global convergence. Xu et al. put forth an efficient approach to MKL in the RKHS
in [20], which identifies a new kernel, H2-reproducing kernel (HRK), in RKHS and satisfies
Mercer’s conditions. In [21], Banerjee and Das proposed multi-feature kernel learning
(MFKL), a weight assignment technique that seeks to identify the optimal combination of
feature kernels for a given classification task based upon Eigen-domain transformation in
the RKHS.

2.3. MKL Optimization Approaches

Regardless of how kernel theory is used, e.g., MKL-SVM or MKL-based clustering,
the question is how do we learn or specify the fusion parameters. To date, a number of
solutions have been proposed (see [22] for a recent MKL review). We quickly summarize
three state-of-the-art `p-norm MKL optimization approaches: MKLGLp, GAMKLp, and
FIMKLp. We discuss these three solvers to demonstrate variety in MKL and they are good
methods to benchmark against. MKLGLp is LCS and is based on group-lasso, GAMKLp is
also LCS and based on a genetic algorithm solver, and FIMKL is nonlinear and is based on
the fuzzy integral.

2.3.1. MKLGLp

The first MKL optimization approach explored here is the work of Xu et al., called `p-
norm MKL group lasso (MKLGLp) [23]. MKLGLp is efficient as it uses a closed form solution
for solving the outer minimization in (3). MKLGLp (see Algorithm 1) is an alternating
optimization algorithm.

Mathematics 2022, 10, 2026 5 of 17

Algorithm 1: MKLGLp Classifier Training.
Data: (xi, yi)—feature vector and label pairs; Kk - kernel matrices
Result: α—MKLGLp classifier solution; σ - kernel weight vector
Initialize σk “ 1{m, k “ 1, ..., m - set kernel weights equal
while not done do

Solve unbalanced SKSVM for kernel matrix K “
m
ř

k“1
σkKk for the optimal

solution α
Update the kernel weights, σk using

σk “
f 2{p1`pq
k

ˆ m
ř

k“1
f 2p{p1`pq
k

˙1{p
, k “ 1, ..., m; (4a)

fk “ σ2
k pα ˝ yqTKkpα ˝ yq. (4b)

2.3.2. GAMKLp

The reader can refer to [11] for full mathematical, algorithmic and empirical explo-
ration of GAMKLp. However, for brevity’s sake, GAMKLp and MKLGLp are both LCS
MKL, i.e., they have the same mathematical capability, they just differ in terms of the un-
derlying solver. As such, it is no surprise that GAMKLp was shown to often discover better
solutions than MKLGLp. However, it generally does so at a higher computational cost.

2.3.3. DeFIMKLp

GAMKLp and MKLGLp both operate at the so-called “feature-level”. Specifically, they
both operate a pre-decision maker (e.g., classifier). On the other hand, DeFIMKLp combines
kernels in a post-decision maker fashion. Algorithms 2 and 3 summarize DeFIMKLp
training and testing.

Algorithm 2: DeFIMKL Classifier Training.
Data: (xi, yi)—feature vector and label pairs; Kk - kernel matrices
Result: u—Lexicographically ordered g vector
for each kernel matrix do

Compute the kernel SVM classifier decision values, ηk.
Remap the decision values onto the interval r´1,`1s as fk using

fkpxq “
ηkpxq

b

1`η2
k pxq

.

Based on the normalized fk values and our respective target labels, formulate and
solve a quadratic programming problem (see [24]) to obtain the 2m ´ 2 free
Choquet integral parameters (g).

Algorithm 3: DeFIMKL Classifier Testing.
Compute the normalized SVM decision values fkpxq.
Apply the Choquet integral with respect to the learned g and fkpxq inputs.
Compute the class label by sgnt fgpxqu.

As Algorithms 2 and 3 show, DeFIMKLp is based on: (1) running a different decision
maker (e.g., SVM) for each kernel; (2) normalizing those decision makers outputs; (3) form-
ing a quadratic optimization problem using the normalized outputs and known labels to
learn the Choquet integral parameters g; and then (4) for testing, run the kernel machines,
normalize their outputs and do nonlinear aggregation with the Choquet integral using the

Mathematics 2022, 10, 2026 6 of 17

learned g. Note, in [11] we showed how to do DeFIMKLp, GAMKLp, and MKLGLp for
large numbers of samples via Nystrom kernel sampling and linearization.

2.4. Heuristic MK Approaches

In [25,26], de Diego et al. define the following function for combining two kernels:

K “ 1
2
pκ1 ` κ2q ` f pκ1 ´ κ2q,

where the functional term f pκ1´ κ2q represents the informational difference between κ1 and
κ2. Therein, the class label is considered in the functional term to provide class information
in the derivation of the kernel weight. In [27], Moguerza et al. put forth heuristics that
combined kernels in a data-dependent manner,

Kpxi, xjq “

P
ÿ

m“1

ηmpxm
i , xm

j qκmpxm
i , xm

j q,

where ηm assigns a weight to κm based directly upon instances xi and xj. This approach is
greedy and could run into difficulties on relatively large datasets. Additionally, many real-
world applications, such as computer vision image classification tasks, need to gracefully
handle translation and scale, which would cause this approach to suffer because the data
are rarely one-to-one. To the best of our knowledge, there are not very many viable
heuristic approaches to MKL; therefore, we propose divergence-based heuristic techniques
to address this shortfall.

3. Divergence Measures on Kernel Matrices

Whereas the above methods are based on optimization, the following discussion is
based directly on the kernel matrices. Assume we have a binary classification problem;
however, the following discussion and formulas extend to multi-class problems naturally.
For a binary classification problem, assume we first reorder our training data such that
class 1 data comes first, followed by class 2 data. This is a simplification for visualization
sake; it is not a necessary step in our following indices. In this reordered kernel matrix
there are four quadrants, q1, q2, q3, and q4 (shown in Figure 1) representing class 1 to class
1, class 1 to class 2, class 2 to class 1, and class 2 to class 2, respectively.

Figure 1. Four quadrants for a supervised two class kernel matrix. The similarity represented in each
quadrant is denoted with respect to class. C1: class 1, C2: class 2, and s

Ø: similarity between.

Intuitively, for a “good” kernel, q1 and q4 will each have high inner class proximities
and q2 (and, therefore, q3 due to symmetry of the PSD kernel matrix) will have low
between class proximities. The questions are: (1) how do we mathematically express these
preferences, and (2) what truly are their implications, e.g., geometrically? In the following
subsections we investigate different formula to answer these questions.

Mathematics 2022, 10, 2026 7 of 17

3.1. Key Factors for the Proposed Weight Assignments

In this article, our heuristic weight assignment is restricted to LCS (as is MKLGLp
and GAMKLp). In future work we will consider the evaluation of combinations of kernels
and their nonlinear aggregation. In order to determine the individual importance of each
kernel, we first build a distribution for each quadrant, fq1 to fq4. The remainder of this
article is based on the following simple but important properties.

Property 1. (Inner class similarity): The mean of fq1 and fq4 should be high and fq2 (and thus
fq3) should be low.

Property 2. (Class separation): Distribution fq3 should have as low of overlap as possible with
distributions fq1 and fq4. There should be little-to-no confusion between objects in the two classes.

Property 3. (Inner class spread): Each quadrant should have low variation/spread.

There are many ways to measure Properties 1–3. The following subsections explore
different mathematical formulations and why we might want to use them, and the experi-
ments section demonstrates their performance on a collection of benchmark data.

First, we need to establish some notation. To measure the spread within each quadrant,
the interquartile range (IQR) is computed, denoted herein as IQR, which is thought to be a
more robust measure of distribution spread (except when the distribution is truly Normal
Gaussian). This measure is robust to outliers as it measures the distance between the 25th
and 75th percentile values of the given distribution. This results in a description of the
distribution’s spread that is not as effected by outliers. Note, the pth percentile is a number
such that approximately p% of the data, when sorted in ascending order, exist below the
pth percentile and p100´ pq% of the data exist above it.

3.2. Index 1 (Class Separation—Non-Normal Distribution): DiMKL1

The first index we propose focuses on class separation under a non-normal distribution
of the kernel matrix promixities:

DiMKL1 “ exp

¨

˝´

¨

˝

b

pµq2 ´ IQRq2q
2

2σq1

˛

‚

˛

‚. (5)

Specifically, DiMKL1 attempts to derive each kernel’s weight assignment based solely on
the statistical information extracted from q1 and q2, the regions of the kernel matrix that
exploits how proximate class 1 is to itself along with the interactions between classes 1
and 2. Equation (5) is rationalized as follows. To begin, it is feasible to explore the idea
that we can adequately derive the kernel weights looking at only q1 and q2’s statistical
information. That is, if a kernel matrix’s values for the cross-class proximity (i.e., q2) is high
for the quadrant as a whole, which is undesirable as it indicates that there is little-to-no class
separability, taking the exponential of this large negative value would drive the weight
assignment to 0. Conversely, if q2 as a whole had highly dissimilar values, its statistical
values would move towards 0 and taking the exponential of this tiny negative value would
push the weight assignment to 1. In the numerator, the Euclidean distance between µq2

and IQRq2 is computed, which, under such circumstances (i.e., specific to q2) we desire
µq2 Ñ 0 and IQRq2 Ñ 0. Therefore, the closer these two values are to 0, the better we
believe that the given kernel is at discriminating between the two classes. Similar desires
are reflected in the denominator, but this is where statistical information pertaining to
q1 becomes involved. Specifically, σq1 expresses the amount of spread that exists in q1
(i.e., how ideal the intra-class proximities are to each other). Intuitively, q1 is desired to
possess some amount of spread, as this would indicate that the transformed feature space
is generalizable, which will greatly help prevent overfitting.

Mathematics 2022, 10, 2026 8 of 17

3.3. Index 2 (Class Separation—Normal Distribution): DiMKL2

Our second index, again, looks for class separation, but assuming a Normal distribu-
tion of the kernel matrix proximities:

DiMKL2 “ exp

¨

˝´

¨

˝

b

pµq2 ´ σq2q
2

2σq1

˛

‚

˛

‚. (6)

DiMKL2 takes a similar approach to that of DiMKL1 above. The key differentiation here is
that IQRq2 is replaced with the standard deviation in q2, denoted as σq2 , in the numerator.
This measure will be better fit for kernel matrices whose q2 exhibits a Normal distribution,
whereas DiMKL1 is better suited to handle non-Normal distributions.

3.4. Index 3 (Class Separation—Euclidean of Overlap): DiMKL3

For the third index, let d1 and d2 be defined as follows,

d1 “ µq1 ´ IQRq1 ,

d2 “ µq2 ´ IQRq2 .

Then, we define DiMKL3 as

DiMKL3 “

ˆ

b

pd1 ´ d2q2
˙

” |d1 ´ d2|. (7)

Through this measure, we are attempting to include more kernel matrix information when
deriving the weights by including more statistical information from q1. This measure has
two terms, d1 and d2, that measure the distance between q1 and q2’s corresponding mean
and IQR values, respectively. The Euclidean distance is computed between d1 and d2 with
the goal being to obtain an idea of how much the two distributions overlap with one another.
In the extreme (optimal) case, one quadrant’s distance, call it da, would approach 0, while
the other quadrant’s distance, db, would approach 1 (i.e., no overlap, with extreme/optimal
class separation). Therefore, under such a scenario, the calculated result would approach 1.
Such a result leads to the given kernel receiving a very high weight assignment.

3.5. Index 4 (Class Separation—Euclidean of Means): DiMKL4

The fourth index is defined as:

DiMKL4 “
|µq1 ´ µq2 |

a

pIQRq1 ` IQRq2q
. (8)

This measure takes the absolute value, or Euclidean distance for the 1-D case, of the
difference between µq1 and µq2 (in the numerator). For the denominator, we take the square
root between the sum of IQRq1 and IQRq2 . By taking the square root of the sum between
IQRq1 and IQRq2 , when the two IQR values are both very small, the square root has the
effect of increasing the value and thus keeps the denominator from causing the result to
blow up to a very large number that causes the given kernel to potentially demand full
weight assignment.

3.6. Index 5 (Class Separation—Bhattacharyya): DiMKL5

Our fifth proposed heuristic considers the Bhattacharyya divergence measure on the
kernel matrix proximities for deriving the weight assignments:

DiMKL5 “
b1 ` b2

b1 ` b2 ` σq1 ` σq2 ` σq3

, (9)

Mathematics 2022, 10, 2026 9 of 17

where

b1 “
pµq1 ´ µq2q

2

4pσ2
q1
` σ2

q2
q
` 0.5 ln

˜

σ2
q1
` σ2

q2

2
b

σ2
q1

σ2
q2

¸

,

b2 “
pµq4 ´ µq2q

2

4pσ2
q4
` σ2

q2
q
` 0.5 ln

˜

σ2
q4
` σ2

q2

2
b

σ2
q4

σ2
q2

¸

.

This measure first takes the Bhattacharyya distance between q1 and q2 (b1) as well as be-
tween q4 and q2 (b2). Hence, the divergence between these distributions is being measured.
This is effectively seeking to capture how similar the inner products are within each class
as well as between classes.

4. Divergence Measures in the RKHS

In Section 3 we explored the measuring of divergence directly from the kernel matrices.
This follows our intuition that classes should have high inner-class similarity and low
between-class similarity. In this section we go further and explore the calculation of
divergence instead explicitly on distributions in the RKHS. Thus, larger divergence values
are directly related to a geometric interpretation of increasing separation between our
class patterns in the underlying RKHS. The primary reason for exploring this route is
to facilitate a comparison between a computationally expensive theoretical pathway, i.e.,
RKHS pathway, versus our inexpensive operations on the kernel matrices themselves.

Herein, without loss of generality, we focus on the Bhattacharyya distance in the
RKHS—referred to as DiMKL6 hereafter. In [28], Zhou and Chellappa tackled this exact
challenge mathematically with respect to ensemble similarity. Specifically, they formu-
lated analytic expressions and algorithms to compute the Chernoff distance (of which the
Bhattacharyya distance is a special case), Kullback–Leibler divergence, etc. In summary, it
starts with formulating the mean and covariance (first and second-order statistics) in the
RKHS. However, the covariance is rank-deficient. Thus, inverting it is impossible and an
approximation is needed. The approximation of Zhou and Chellappa is based on three
features: maintaining the principle structure of the covariance matrix, making sure that the
solution is compact and regularized, and ensuring that it is easy to invert. Establishment
of mathematical nomenclature and description of this procedure exceeds the space of the
current article. The reader can refer to [28] for full detail.

5. Experiments
5.1. Feature Learning for Explosive Hazard Detection

We begin by investigating results on a real-world application for automatic detection
of buried explosive hazards. This dataset was collected at a U.S. Army test site that
contains multiple target and clutter types, burial depths, and times of day. Performance is
summarized using normalized area under the curve (NAUC) values and experiments were
performed using MATLAB. The test site was an arid environment and the targets varied
in terms of metal content and burial depth. Herein, we denote the three lanes used for
experimentation as Lane A, Lane B, and Lane C. Thermal variations were accounted for
through the collection of data in both the morning and afternoon. We point out that Lane C
was by far the most difficult due to a large number of weakly expressed targets. Lane-based
three-fold cross-validation is used herein. Specifically, Fold-1 uses Lane A and B for training
and tests on Lane C; Fold-2 uses Lane B and Lane C for training and tests on Lane A; and
Fold-3 uses Lane A and Lane C for training and tests on Lane B. Table 2 summarizes
this dataset.

Mathematics 2022, 10, 2026 10 of 17

Table 2. Data collection summary for each lane.

Lane Number of Targets Area (m2) Metal
Shallow

Metal
Deep

Non-Metal
Shallow

Non-Metal
Deep

A 44 3626.9 21 3 11 9
B 50 4212.7 22 4 14 10
C 79 3944.8 31 15 21 12

Finally, we briefly discuss the features utilized, our improved Evolution COnstructed
(iECO) features [15]. To over simplify, iECO is a feature learning technique that optimizes
imagery data for feature extraction on a per image descriptor basis using a genetic algorithm
(GA) as the basis for the search of optimal compositions of image transforms. At the
end of the day, the GA produces a population of individuals who have learned unique
approaches to extracting discriminative information for its assigned image descriptor.
Herein, we employ three different image descriptors: Histogram of Oriented Gradients
(HOG) [29–31], statistical descriptor (SD) [15], and edge histogram descriptor (EHD) [32,33].
For each, we investigate employing MKL to fuse the top five individuals learned for each
image descriptor. Therefore, we have a total of 15 individuals—five for HOG, five for
SD, and five for EHD. We also use a pre-screener score as a feature. There are numerous
MKL-based approaches that one could use to attack this problem. For example, we could
concatenate all of the iECO features into a single feature vector and use MK to fuse it with
the pre-screener score. Another approach might be to group the features, i.e., concatenate
all five iECO features for the HOG into a single feature vector, do the same for the SD and
EHD iECO features, and then the pre-screener scores (thus, four groupings), and apply a
single kernel to each grouping to fuse these feature space matrices via MKL.

Two experiments were conducted to investigate MKL and our proposed kernel weight
assignment strategies. One is to employ a single RBF kernel to each iECO descriptor’s
individual and the pre-screener score, giving 16 kernels to be fused. In [15], we showed that
iECO individuals are extremely diverse, therefore each individual (even for the same image
descriptor) finds very unique ways to extract discriminative information for its given image
descriptor. Therefore, it is our conjecture that each individual has very useful ways of
extracting information from the imagery and, thus, there is a strong desire to find a method
to fuse these individual’s information together to strengthen the systems understanding of
the imagery (e.g., classification accuracy). The second experiment is to apply a single RBF
kernel to each group of features—concatenate all five HOG iECO individuals into a single
feature vector, all five SD iECO individuals into a single feature vector, all five EHD iECO
individuals into a single feature vector, and the pre-screener score. Therefore, we apply a
total of four RBF kernels and investigate their performance.

Results for our first experiment are summarized in Table 3. Recall from above, this
experiment applies a single RBF kernel to each iECO individual and to the pre-screener
score, resulting in 16 kernels to be fused. We note that, herein, the RBF parameter (σ), for
all 16 inputs was set to 1

dk
, where dk is the dimensionality of input k. Additionally, we point

out that results for DeFIMKL were not obtained due to there being 16 inputs, resulting in
216 capacity terms, which is too much for our current solver and DeFIMKL implementation.
Taking a closer look at Table 3, we see very encouraging results for our proposed heuristic
measures, with four out of five performing either best overall or within a single percentage
point of all other methods for each fold (the exception here is DiMKL1). Additionally, we
see the need for multiple approaches to MKL weight assignment, as no single approach
gives the overall best performance for each fold. However, because the proposed heuristic
approaches are so simple in their computations, it is very efficient and fast (so one can easily
run each metric and use the best performer for their given problem). For example, going
forward, if we were considering using the training data from Fold-1 or Fold-2, we would
want to implement DiMKL2’s weight assignment, and the kernel assignment utilizing
DiMKL5 when using Fold-3 for training data. To understand why the performance for
DiMKL1 is so poor, it is helpful to consider its derived weights, shown in Figure 2.

Mathematics 2022, 10, 2026 11 of 17

Figure 2. Bar plot showing the weights derived by DiMKL1 for each Fold.

We quickly see that for this dataset and each of its folds, DiMKL1 attempted to
focus the worth of the group on a relatively few individuals (in this case, only 3 of the
16 kernels were considered useful). However, as we alluded to earlier and have seen in
our preliminary results, iECO individuals are very unique and bring their own useful
information to the table, therefore the system as a whole is expected to perform better if it
considers information from each pretty uniformly, with the exception of perhaps one or two
instances having a little stronger weight assignment. This is reiterated when looking at the
fixed rule approach, which simply provides a uniform weight assignment to each kernel.
We see that this fixed rule strategy actually outperforms the very popular optimization
approach, MKLGL, and is very close to most of our proposed metrics Finally, we show
in Figure 3 the weights derived using DiMKL2 for Fold-1 and Fold-2, and using DiMKL5
for Fold-3. Therein, we see that, overall, weights are pretty uniformly distributed for this
feature set (as expected).

Figure 3. Bar plot showing the highest performing weight assignments for each Fold. Specifically,
for Fold-1 and Fold-2, DiMKL2 was the best performer, and for Fold-3, DiMKL5. Finally, we see
evidence validating that each iECO individual brings unique and useful information as the weight
assignments are nearly uniform.

Mathematics 2022, 10, 2026 12 of 17

Table 3. Experiment 1: Fusing 16 RBF kernels. NAUC values are reported for each fold and MKL
technique. Highest performing method is shown in blue; lowest performing is shown in red.

Learning Strategy Weight Assignment Fold-1 Fold-2 Fold-3

Fixed Rule DiMKL1 0.290 0.560 0.570
DiMKL2 0.336 0.643 0.570
DiMKL3 0.335 0.633 0.611
DiMKL4 0.333 0.633 0.598Heuristic:

DiMKL5 0.335 0.616 0.617Proposed Metrics

DiMKL6 0.336 0.633 0.565

Optimization Function MKLGL 0.317 0.583 0.599

Next, we present results for our second experiment in Table 4, which applied a single
RBF kernel to each grouping of features, for a total of four kernels to be fused. Here, we
see the robustness and generalizability our metrics possess as a similar story is expressed
as in the previous experiment. Specifically, all but one of our proposed metrics performs
either best, or extremely close to being the best. The one instance in which DeFIMKL
outperformed our heuristic metrics, we actually have two methods that are within a
single percentage point of DeFIMKL. Again, DiMKL1’s performance suffers on this dataset,
performing worst in all Folds. It is also important to discuss the results of MKLGL here,
which is a commonly used optimization approach to MKL. Here, we see that it consistently
under performs our proposed metrics, especially on Fold-2 and Fold-3. This is very likely
contributed to its susceptibility to over-fitting the training data and not generalizing well.
These methods should theoretically find an optimal solution; however, given that real-
world data rarely (if ever) captures the entire data distribution space, empirical evidence
indicates these methods suffer under such conditions.

Table 4. Experiment 2: Fusing four RBF kernels—one for each iECO descriptor grouping and the
pre-screener score. MAUC values are reported for each fold and MKL technique. Highest performing
method is shown in blue; lowest performing is shown in red.

Learning Strategy Weight Assignment Fold-1 Fold-2 Fold-3

Fixed Rule Uniform 0.328 0.608 0.610

DiMKL1 0.290 0.571 0.570
DiMKL2 0.338 0.635 0.576
DiMKL3 0.344 0.635 0.608
DiMKL4 0.334 0.628 0.596Heuristic:

DiMKL5 0.330 0.611 0.610Proposed Metrics

DiMKL6 0.334 0.633 0.571

MKLGL 0.318 0.595 0.578Optimization Function DeFIMKL 0.317 0.607 0.614

5.2. Benchmark Datasets

Three benchmark UCI datasets [34] are used to evaluate the proposed metrics. Specif-
ically, we use the Sonar, Ionosphere, and Breast Cancer Wisconsin datasets. These are
summarized in Table 5. The data were split into training and testing data, with 80% be-
ing randomly assigned to the training data and the remaining for testing. Furthermore,
each experiment was executed 100 times for statistical analysis and algorithm sensitivity.
For all experiments, 5 RBF kernels were implemented with the following σ parameters:
σ “ t2ˆ 10´3, 1

d , 5
d , 10

d , 25
d u, where d is the number of features.

Mathematics 2022, 10, 2026 13 of 17

Table 5. UCI Benchmark Datasets.

Dataset Instances Features Classes

Sonar 208 60 2
Ionosphere 351 34 2

Breast Cancer Wisconsin 683 10 2

Classification results/accuracies and their standard deviations for the 100 trials on the
UCI benchmark datasets (80% training, 20% testing) for our proposed metrics, MKLGL,
DeFIMKL, and GAMKLp are shown in Table 6. Immediately, DiMKL1 proves its utility for
such a task, whereas if we looked solely at the explosive hazards detection experiments,
we might wonder why even use DiMKL1. On all three datasets, DiMKL1 produces very
competitive results, in terms of classification accuracy and standard deviations (relative to
each dataset). For the Sonar dataset, we do see a pretty high value for standard deviation,
but this is the result of the individual kernels themselves expressing much variation
depending on the partitioning of the data. Since our heuristic approach is based on the
kernel matrix itself, such variation in the heuristic fusion methods can be expected. For
all experiments spanning these benchmark datasets, the proposed heuristics outperform
the optimization function strategies, at times by a relatively large margin. This is achieved
with the additional major benefit of efficiency and a low computational cost, as these do
not require multiple iterations nor optimizers to be implemented.

Table 6. Classification accuracy and standard deviation for 100 trials on UCI benchmark datasets.
Note: 80% training, 20% testing. Highest performing method is shown in blue; lowest performing is
shown in red.

Learning Strategy Method Sonar Ionosphere Breast Cancer

Individual K1 58.39 (11.22) 71.14 (6.01) 96.16 (1.55)
Individual K2 78.17 (6.36) 92.14 (3.01) 97.08 (1.29)
Individual K3 84.63 (5.98) 94.31 (2.46) 96.66 (1.43)
Individual K4 84.56 (5.83) 94.27 (2.36) 96.29 (1.44)

SKSVM

Individual K5 82.15 (7.97) 92.34 (2.74) 95.64 (1.53)

DiMKL1 86.17 (5.54) 94.07 (2.36) 96.57 (1.46)
DiMKL2 81.68 (6.35) 94.71 (2.39) 97.13 (1.26)
DiMKL3 85.22 (5.77) 94.70 (2.32) 97.10 (1.27)
DiMKL4 85.17 (5.93) 94.69 (2.33) 97.09 (1.29)Heuristic:

DiMKL5 83.41 (6.53) 94.57 (2.34) 97.05 (1.26)Proposed Metrics

DiMKL6 84.75 (6.10) 94.63 (2.41) 97.09 (1.28)

DeFIMKL 82.60 (7.89) 93.01 (2.96) 96.11 (1.63)
GAMKL 85.60 (5.22) 94.49 (2.49) 97.06 (1.48)Optimization Strategies
MKLGL 83.31 (7.98) 94.08 (2.32) 95.68 (1.49)

Next, we take a deeper look at the weights being learned by each method. For the
weight assignments reported in Tables 7–9, a single randomly selected trial from the 100 tri-
als is reported. The purpose is to provide analysis on the metrics in a real setting on
benchmark datasets. We do omit inclusion of DeFIMKL weights in these tables for compact-
ness, though we note their performance was comparable but did not differentiate itself as a
best performer. Note, naming is as follows: κi,wt denotes the ith kernel’s weight assignment,
with the row of values being the weight assigned for the given kernel. Additionally, the
classification accuracy for each individual kernel is provided in the last column of the table.
In each table, the highest performer for the given trial is highlighted in green and the lowest
performer is highlighted in red.

First and foremost, we see that each proposed equation, DiMKL1-DiMKL6, derives
its weight assignments uniquely, with none of the measures assigning weights in a similar
manner. This has the obvious benefit that none of the equations are redundant in their

Mathematics 2022, 10, 2026 14 of 17

exploitation of information and therefore can each provide distinct ways of characterizing
the kernel matrices. This can allow for a quick understanding of the behavior of different
kernels implemented such as how a particular dataset’s features are being separated (e.g.,
is the intra-class information for class 1 providing the discriminative information or do we
have features that separate the classes, seen through cross-class separation but does not
discriminate within classes very well).

Second, the two measures based on the Bhattacharyya distance, DiMKL5 and DiMKL6,
appear to distribute the weights close to uniformity for all three experiments reported in
Tables 7–9. It is important to note that DiMKL6 does a better job at identifying the very
poor kernels, as it assigned a near zero-valued weight assignment in all three cases to the
worst kernel (i.e., κ1, which had the worst individual performance on all three benchmark
datasets). Beyond this, there are signs that each equation, if given the same σ parameter
RBF kernel, tends to assign its weights in a similar manner, regardless of the dataset. This
is not universal nor is it constant between all datasets. This is a mere observation when
looking at the weight assignments for Tables 7–9 that there does appear to be some trend
in the weights assigned, but there does not appear to be any type of linear correlation
present. Evidence also supports this when analyzing the standard deviation of the weight
assignments for each metric across all 100 trials, shown in Figure 4. In Figure 4a–c, the
standard deviation is shown by intervals, and it is easily seen that there is very little spread
for each kernels weight assignment.

Table 7. Sonar: highest performing method is shown in blue; lowest performing is shown in red.

Sonar DiMKL1 DiMKL2 DiMKL3 DiMKL4 DiMKL5 DiMKL6 GAMKL MKLGL Ind Kernel Perf

κ1,wt 0.00 0.00 0.00 0.09 0.22 0.08 0.13 0.00 58.54%
κ2,wt 0.00 0.81 0.07 0.14 0.15 0.23 0.22 0.00 87.80%
κ3,wt 0.45 0.05 0.07 0.25 0.18 0.25 0.21 1.00 90.24%
κ4,wt 0.23 0.08 0.12 0.25 0.20 0.34 0.22 0.00 91.68%
κ5,wt 0.31 0.04 0.72 0.25 0.22 0.34 0.22 0.00 82.93%

Fused Performance 92.68% 87.80% 90.24% 90.24% 90.24% 90.24% 87.19% 90.24%

Table 8. Ionosphere: highest performing method is shown in blue; lowest performing is shown in red.

Ionosphere DiMKL1 DiMKL2 DiMKL3 DiMKL4 DiMKL5 DiMKL6 GAMKL MKLGL Ind Kernel Perf

κ1,wt 0.00 0.00 0.00 0.09 0.26 0.07 0.12 0.00 52.86%
κ2,wt 0.01 0.15 0.17 0.19 0.16 0.25 0.20 0.00 88.57%
κ3,wt 0.32 0.40 0.22 0.24 0.17 0.25 0.23 0.99 94.29%
κ4,wt 0.32 0.37 0.23 0.24 0.19 0.24 0.23 0.00 95.71%
κ5,wt 0.34 0.08 0.38 0.24 0.23 0.20 0.22 0.00 92.86%

Fused Performance 95.71% 95.71% 95.71% 95.71% 95.71% 95.71% 96.42% 94.28% N/A

Table 9. Breast Cancer: highest performing method is shown in blue; lowest performing is shown
in red.

Breast Cancer DiMKL1 DiMKL2 DiMKL3 DiMKL4 DiMKL5 DiMKL6 GAMKL MKLGLL Ind Kernel Perf

κ1,wt 0.00 0.00 0.00 0.09 0.21 0.06 0.14 0.00 68.38%
κ2,wt 0.01 0.79 0.40 0.21 0.19 0.24 0.12 0.00 97.79%
κ3,wt 0.33 0.00 0.26 0.23 0.19 0.24 0.25 0.99 96.32%
κ4,wt 0.33 0.12 0.19 0.23 0.20 0.23 0.25 0.00 96.32%
κ5,wt 0.33 0.09 0.14 0.23 0.20 0.23 0.24 0.00 94.12%

Fused Performance 96.32% 98.53% 97.79% 97.06% 97.79% 97.06% 96.69% 96.32% N/A

Mathematics 2022, 10, 2026 15 of 17

(a) Sonar (b) Ionosphere (c) Breast Cancer

Figure 4. Mean weights and standard deviations (error bars) for each individual kernel for the six
proposed heuristic MKL weight assignment equations.

5.3. Computational Complexity

Finally, we consider the proposed indices’ computational complexity. Let n be an
array of values representing those in q1 and m be an array of values representing those in
q2. The computational complexity of the indices computed directly on the kernel matrix is
Opnˆmq. If we assume the worst case scenario, the size of n “ m, then we have Opn2q. We
provide the computational time for DiMKL1-DiMKL6 and MKLGL on synthetic data of
increasing size in Table 10. For perspective, considering n “ 10, 000, DiMKL1 is over 56 kˆ
faster than the corresponding MKLGL approach.

Table 10. Computational complexity: empirical study (reported in seconds); n represents the size of
the array.

Method n = 500 n = 1000 n = 5000 n = 10,000 n = 25,000

DiMKL1 0.0002 0.0003 0.0005 0.0008 0.0023
DiMKL2 0.0006 0.0005 0.0010 0.0011 0.0019
DiMKL3 0.0008 0.0006 0.0009 0.0011 0.0018
DiMKL4 0.0006 0.0004 0.0004 0.0005 0.0009
DiMKL5 0.0001 0.0001 0.0001 0.0003 0.0006
DiMKL6 0.0949 0.4117 0.8293 1.2882 3.7554
MKLGL 0.3637 0.3760 10.1476 45.3782 305.3951

6. Conclusions

Herein, novel MKL weight assignment metrics are proposed to address the complexi-
ties and shortcomings of optimization strategies used for deriving MK weights. To address
these issues, DiMKL1–DiMKL6 provide a computationally efficient and highly effective
heuristic approach for weight assignment based solely on the statistical information within
a kernel’s similarity matrix. These metrics allow for the automatic determination of kernel
weights without the need for highly complex and sophisticated learning strategies that are
susceptible to overfitting the training data and/or getting stuck in local minima due to poor
initialization. While there is not a single metric given to encompass this task, the proposed
derivations are simple to implement and very efficient (i.e., low computational complexity).
Further, it is similar to one of the needs for MKL: for different problems/applications,
different kernels will be better suited to exploiting discriminative information and the
combination of MK can help exploit additional information that is not easily captured by a
single kernel. Hence, there is a need for different kernel assignment heuristics as each looks
at the kernel’s discriminative information differently when assigning weights. While the
proposed indices do not provide any convergence guarantees, their experimental results

Mathematics 2022, 10, 2026 16 of 17

on several UCI benchmark datasets and an automatic explosive hazards detection dataset
validate the utility of our proposed metrics and why there is a need for multiple metrics.

Author Contributions: Conceptualization, S.R.P. (Stanton R. Price); Methodology, S.R.P. (Stanton
R. Price); Supervision, D.T.A.; Writing—original draft, S.R.P. (Stanton R. Price); Writing—review &
editing, D.T.A., T.C.H. and S.R.P. (Steven R. Price). All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
2. Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27:1–27:27.

Available online: http://www.csie.ntu.edu.tw/~cjlin/libsvm (accessed on 20 March 2018). [CrossRef]
3. Das, S.; Abraham, A.; Konar, A. Automatic kernel clustering with a multi-elitist particle swarm optimization algorithm. Pattern

Recognit. Lett. 2008, 29, 688–699. [CrossRef]
4. Kim, D.W.; Lee, K.Y.; Lee, D.; Lee, K.H. Evaluation of the performance of clustering algorithms in kernel-induced feature space.

Pattern Recognit. 2005, 38, 607–611. [CrossRef]
5. Liao, L.; Lin, T.; Li, B. MRI brain image segmentation and bias field correction based on fast spatially constrained kernel clustering

approach. Pattern Recognit. Lett. 2008, 29, 1580–1588. [CrossRef]
6. Mika, S.; Schölkopf, B.; Smola, A.J.; Müller, K.R.; Scholz, M.; Rätsch, G. Kernel PCA and de-noising in feature spaces. In

Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 29 November–4 December 1999;
pp. 536–542.

7. Schölkopf, B.; Smola, A.; Müller, K.R. Kernel principal component analysis. In Proceedings of the International Conference on
Artificial Neural Networks, Lausanne, Switzerland, 8–10 October 1997; Springer: Berlin/Heidelberg, Germany, 1997; pp. 583–588.

8. Kim, K.I.; Franz, M.O.; Scholkopf, B. Iterative kernel principal component analysis for image modeling. IEEE Trans. Pattern Anal.
Mach. Intell. 2005, 27, 1351–1366.

9. Price, S.R.; Anderson, D.T.; Havens, T.C. Fusion of iECO image descriptors for buried explosive hazard detection in forward-
looking infrared imagery. Proc. SPIE 2015, 9454, 945405.

10. Price, S.R.; Murray, B.; Hu, L.; Anderson, D.T.; Havens, T.C.; Luke, R.H.; Keller, J.M. Multiple kernel based feature and decision
level fusion of iECO individuals for explosive hazard detection in FLIR imagery. In Detection and Sensing of Mines, Explosive
Objects, and Obscured Targets XXI; SPIE Defense+ Security; International Society for Optics and Photonics: Bellingham, WA, USA,
2016; p. 98231G.

11. Pinar, A.J.; Rice, J.; Hu, L.; Anderson, D.T.; Havens, T.C. Efficient Multiple Kernel Classification Using Feature and Decision Level
Fusion. IEEE Trans. Fuzzy Syst. 2017, 25, 1403–1416. [CrossRef]

12. Schölkopf, B.; Smola, A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; MIT Press:
Cambridge, MA, USA, 2002.

13. Schölkopf, B.; Smola, A.J.; Williamson, R.C.; Bartlett, P.L. New support vector algorithms. Neural Comput. 2000, 12, 1207–1245.
[CrossRef] [PubMed]

14. Hsu, C.W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classification. 2003. Available online: https://www.csie.
ntu.edu.tw/~cjlin/papers/guide/guide.pdf (accessed on 20 March 2018).

15. Price, S.R.; Anderson, D.T.; Luke, R.H. An improved evolution-constructed (iECO) features framework. In Proceedings of the
2014 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP), Orlando, FL,
USA, 9–12 December 2014; pp. 1–8. [CrossRef]

16. Lu, K.; Zhao, J.; Zhang, J.; Qin, C. Multiple Kernel Learning via Ensemble Artifice in Reproducing Kernel Hilbert Space. In
Proceedings of the 2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC),
Chongqing, China, 29–30 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 264–267.

17. Varma, M.; Babu, B.R. More generality in efficient multiple kernel learning. In Proceedings of the 26th Annual International
Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 1065–1072.

18. Suzuki, T.; Tomioka, R. SpicyMKL: A fast algorithm for multiple kernel learning with thousands of kernels. Mach. Learn. 2011,
85, 77–108. [CrossRef]

19. Han, Y.; Yang, Y.; Li, X.; Liu, Q.; Ma, Y. Matrix-Regularized Multiple Kernel Learning via pr, pq Norms. IEEE Trans. Neural Netw.
Learn. Syst. 2018, 29, 4997–5007. [CrossRef] [PubMed]

http://doi.org/10.1007/BF00994018
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1016/j.patrec.2007.12.002
http://dx.doi.org/10.1016/j.patcog.2004.09.006
http://dx.doi.org/10.1016/j.patrec.2008.03.012
http://dx.doi.org/10.1109/TFUZZ.2016.2633372
http://dx.doi.org/10.1162/089976600300015565
http://www.ncbi.nlm.nih.gov/pubmed/10905814
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://dx.doi.org/10.1109/CIMSIVP.2014.7013275
http://dx.doi.org/10.1007/s10994-011-5252-9
http://dx.doi.org/10.1109/TNNLS.2017.2785329
http://www.ncbi.nlm.nih.gov/pubmed/29994755

Mathematics 2022, 10, 2026 17 of 17

20. Xu, L.; Luo, B.; Tang, Y.; Ma, X. An efficient multiple kernel learning in reproducing kernel Hilbert spaces (RKHS). Int. J. Wavelets
Multiresolution Inf. Process. 2015, 13, 1550008. [CrossRef]

21. Banerjee, S.; Das, S. Kernel selection using multiple kernel learning and domain adaptation in reproducing kernel hilbert space,
for face recognition under surveillance scenario. arXiv 2016, arXiv:1610.00660.

22. Gönen, M.; Alpaydın, E. Multiple kernel learning algorithms. J. Mach. Learn. Res. 2011, 12, 2211–2268.
23. Xu, Z.; Jin, R.; Yang, H.; King, I.; Lyu, M.R. Simple and Efficient Multiple Kernel Learning by Group Lasso; Fürnkranz, J., Joachims, T.,

Eds.; ICML; Omnipress: Madison, WI, USA, 2010; pp. 1175–1182.
24. Pinar, A.; Havens, T.C.; Anderson, D.T.; Hu, L. Feature and decision level fusion using multiple kernel learning and fuzzy

integrals. In Proceedings of the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Istanbul, Turkey, 2–5 August
2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–7.

25. de Diego, I.; Moguerza, J.; Munoz, A. Combining kernel information for support vector classification. In Proceedings of the
International Workshop on Multiple Classifier Systems, Cagliari, Italy, 9–11 June 2004; pp. 102–111.

26. de Diego, I.M.; Muñoz, A.; Moguerza, J.M. Methods for the combination of kernel matrices within a support vector framework.
Mach. Learn. 2010, 78, 137. [CrossRef]

27. Moguerza, J.M.; Munoz, A.; de Diego, I.M. Improving Support Vector Classification via the Combination of Multiple Sources of
Information; SSPR/SPR; Springer: Berlin/Heidelberg, Germany, 2004; pp. 592–600.

28. Zhou, S.K.; Chellappa, R. From sample similarity to ensemble similarity: Probabilistic distance measures in reproducing kernel
hilbert space. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 917–929. [CrossRef] [PubMed]

29. Edelman, S.; Intrator, N.; Poggio, T. Complex Cells and Object Recognition. 1997. Available online: https://shimon-edelman.
github.io/Archive/nips97.pdf (accessed on 3 June 2016).

30. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference
on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1150–1157.

31. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the International Conference
on Computer Vision and Pattern Recognition, CVPR 2005, San Diego, CA, USA, 20–26 June 2005; IEEE Computer Society:
Washington, DC, USA, 2005; Volume 1, pp. 886–893.

32. Frigui, H.; Gader, P. Detection and discrimination of land mines in ground-penetrating radar based on edge histogram descriptors
and a possibilistic k-nearest neighbor classifier. IEEE Trans. Fuzzy Syst. 2009, 17, 185–199. [CrossRef]

33. Stone, K.; Keller, J.; Anderson, D.; Barclay, D. An automatic detection system for buried explosive hazards in FL-LWIR and
FL-GPR data. SPIE Def. Secur. Sens. 2012, 8357, 83571E.

34. Lichman, M. UCI Machine Learning Repository. 2013. Available online: https://archive.ics.uci.edu/ml/index.php (accessed on
14 October 2017).

http://dx.doi.org/10.1142/S0219691315500083
http://dx.doi.org/10.1007/s10994-009-5135-5
http://dx.doi.org/10.1109/TPAMI.2006.120
http://www.ncbi.nlm.nih.gov/pubmed/16724586
https://shimon-edelman.github.io/Archive/nips97.pdf
https://shimon-edelman.github.io/Archive/nips97.pdf
http://dx.doi.org/10.1109/TFUZZ.2008.2005249
https://archive.ics.uci.edu/ml/index.php

	Kernel Matrix-Based Heuristic Multiple Kernel Learning
	Recommended Citation

	Introduction
	Background
	Multiple Kernel
	MKL-SVM
	MKL Optimization Approaches
	MKLGLp
	GAMKLp
	DeFIMKLp

	Heuristic MK Approaches

	Divergence Measures on Kernel Matrices
	Key Factors for the Proposed Weight Assignments
	Index 1 (Class Separation—Non-Normal Distribution): DiMKL1
	Index 2 (Class Separation—Normal Distribution): DiMKL2
	Index 3 (Class Separation—Euclidean of Overlap): DiMKL3
	Index 4 (Class Separation—Euclidean of Means): DiMKL4
	Index 5 (Class Separation—Bhattacharyya): DiMKL5

	Divergence Measures in the RKHS
	Experiments
	Feature Learning for Explosive Hazard Detection
	Benchmark Datasets
	Computational Complexity

	Conclusions
	References

