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Gene-Based Association Tests Using New Polygenic Risk
Scores and Incorporating Gene Expression Data
Shijia Yan, Qiuying Sha and Shuanglin Zhang *

Department of Mathematical Sciences, Michigan Technological University, 1400 Townsend Drive,
Houghton, MI 49931, USA; shijiay@mtu.edu (S.Y.); qsha@mtu.edu (Q.S.)
* Correspondence: shuzhang@mtu.edu

Abstract: Recently, gene-based association studies have shown that integrating genome-wide associa-
tion studies (GWAS) with expression quantitative trait locus (eQTL) data can boost statistical power
and that the genetic liability of traits can be captured by polygenic risk scores (PRSs). In this paper,
we propose a new gene-based statistical method that leverages gene-expression measurements and
new PRSs to identify genes that are associated with phenotypes of interest. We used a generalized
linear model to associate phenotypes with gene expression and PRSs and used a score-test statistic
to test the association between phenotypes and genes. Our simulation studies show that the newly
developed method has correct type I error rates and can boost statistical power compared with other
methods that use either gene expression or PRS in association tests. A real data analysis figure based
on UK Biobank data for asthma shows that the proposed method is applicable to GWAS.

Keywords: PRS; TWAS; gene-base association studies

1. Introduction

To date, conventional genome-wide association studies (GWAS) have been successfully
applied to identifying the association of genetic variants with phenotypes. However,
despite its many successes, there are two major challenges for GWAS: one is missing the
heritability of complex diseases due to polygenic effects [1–3]; the other is the ambiguous
biological interpretation of its findings, because some identified genetic variants are not in
protein-coding regions.

Many alternative methods have been developed to handle these challenges. The
International Schizophrenia Consortium (ISC) proposed a polygenic risk score (PRS) [4],
which is now widely used in assessing the genetic liability to phenotypes [5]. Studies show
that PRS not only can be applied to predict disease [6], but can also be used in gene-based
association tests [7]. Moreover, there has been increased interest in integrating expres-
sion quantitative trait loci (eQTL) studies and GWAS to improve complex trait mapping.
PrediXcan [8] and transcriptome-wide association studies (TWAS) [9] are two of the most
widely used integrative methods for testing the associations between phenotypes and
gene-expression values predicted from SNP genotyping or sequencing data. PrediXcan and
TWAS offer increased power over traditional GWAS methods and facilitate the biological
interpretation of their discoveries.

The polygenic risk score (PRS) is a sum of the trait-associated alleles across many
genetic loci, typically weighted by effect sizes estimated from a GWAS. Although PRS-
type methods can provide higher statistical power in gene-based association studies, they
may suffer from great uncertainty in PRS estimation, with imperfect choices of effect-size
estimates [10]. PrediXcan [8] and TWAS [9] integrate GWASs with eQTL data to discover
candidate genes that are associated with phenotypes. Both PrediXcan [8] and TWAS [9]
use a weighted burden test, and the weights are the cis-effects of the SNPs on the gene
expressions derived from eQTL datasets [11]. Therefore, these methods are not suitable in
situations in which SNPs influence phenotypes directly and are not associated with gene
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expression [9]. Studies show that TWAS retains high power when the expression mediates
between SNPs and phenotypes, but has very-low-to-moderate power when SNPs directly
and independently affect gene expression and phenotypes [12].

Taking the advantage of the methods involving the use of PRS and the methods
involving the integration of GWAS with eQTL data in gene-based association studies,
we develop a powerful gene-based association method leveraging both gene expression
measurements and PRS. We also propose two new weights for PRS. The aim of the proposed
methods is to improve upon the standard PRS method and the TWAS-type method in
gene-based association tests. In our study, we use a generalized linear model to associate a
phenotype with gene expression and PRS. Through simulation studies, we evaluate both
the type I error rates and the powers of the proposed methods and compare the power
of the new methods with other methods that use either gene expression data or PRS in
gene-based association tests under different scenarios. Our simulation studies show that
the proposed methods have correct type I error rates and are either the most powerful
methods, or at least comparable with the most powerful methods.

2. Methods

In our gene-based association study, we assumed that individual-level phenotypes
and genotypes were available. Suppose there are n individuals; each individual has
a phenotype and genotypes of M SNPs in a gene. For the ith individual, let yi and
xi = (xi1, . . . , xiM)T denote the phenotype and genotypes in the gene, where i = 1, . . . , n.
Then, X = (x1, . . . , xn)

T is the genotype matrix. In the following sections, we first give
a brief review of the TWAS method [9]; next, we introduce the standard PRS and our
new PRSs; finally, we describe a powerful gene-based association method leveraging both
gene-expression measurements and PRSs.

2.1. TWAS

TWAS estimates gene expression based on an additional eQTL dataset with ne unre-
lated individuals. Let gei denote the expression level of the gene. Assume that the gene
expression is a linear model of the following genotype scores: gei = ∑M

m=1 Wmxim + εi
for i = 1, 2, . . . , ne, where Wm is the cis-effect of SNP m on gene expression and εi is the
noise. Based on the linear model, elastic net [13] is used to obtain the estimate of Wm. Next,
on a test set with n unrelated individuals, the gene expression of the ith individual can
be predicted by the M SNP genotype of the ith individual xi = (xi1, . . . , xiM)T , that is,
Ei = ∑M

m=1 Wmxim = WTxi, where W = (W1, . . . , WM)T and i = 1, . . . , n.
For a trait of interest, TWAS applies a generalized linear regression model to test for

association between the trait and predicted expression by using one of the asymptotically
equivalent Wald, score, and likelihood ratio tests [11]. In this paper, we use the score
test [14] for TWAS and use pre-calculated weights to construct the predicted gene expression
corresponding to a given tissue. The pre-calculated weights are available at Gusev_Lab [8,9]
(http://gusevlab.org/projects/fusion/; accessed on 2 January 2022).

2.2. Newly Developed LD-Adjusted PRSs

The standard PRS of the ith individual in a gene is given by PRSi = ∑M
m=1 β̂mxim = β̂Txi,

where β̂m is the estimated genetic effect of the mth SNP on the phenotype and can be obtained
from the summary statistics of a GWAS [15]. In fact, PRS can be viewed as a weighted sum of
genotypes in a gene PRSi = ∑M

m=1 wmxim = wTxi, where w = (w1, . . . , wM)T. In the standard
PRS, the weight wm is given by the estimated effect size β̂m for the mth SNP. Good choices of
wm should satisfy two conditions: (1) |wm| should be large if the mth SNP is strongly associated
with the phenotype, and (2) wm can reflect the directions of the association. Based on these
two conditions, we develop two new PRSs. Let Tm be the score test statistic to test whether
the mth SNP is associated with a phenotype. We can define new PRSs based on the following
two weights: (1) wm = Tm, the score test statistic for the mth SNP, and (2) wm= sign(Tm)T2

m,
the squared score-test statistic with its sign. Note that the score-test statistic Tm can be obtained
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from the Z-score based on the GWAS summary statistics. If Z-score is not available, but the
p-value is available in GWAS summary statistics, we can obtain the absolute value of the score
test statistic T by |T| = Φ−1(1− p/2), where Φ is the standard normal cumulative distribution
function; the sign of T is the same as the sign of the corresponding β̂m. Corresponding to the
three kinds of weight, we have three PRSs: (1) PRSB with wm = β̂m, (2) PRST with wm = Tm,
and (3) PRSQ with wm = sign(Tm)T2

m.
For constructing PRSs, Baker et al. [10] proposed a LD-adjusted PRS. The presence

of markers in LD gives a larger contribution to the PRS than a single or uncorrelated
marker [10]. Instead of using LD pruning [16] to remove the LD for the standard PRS, we
account for LD by using the LD-adjusted PRS with some modifications.

Let R denote the sample correlation matrix of genotypes in a gene. Baker et al. used
x̃i = R−1/2xi to replace xi in PRS to adjust for LD between SNPs. If we let e1, . . . , eM and
λ1 ≥ · · · ≥ λM denote the eigenvectors and corresponding eigenvalues of R, the eigen-
vectors e1, . . . , eL represent new orthogonal axes corresponding to decreasing variability of
the genotype data. We can then write R−1/2 as R−1/2 = ∑M

l=1 eleT
l /
√

λl . Since very small
values of λl can make R−1/2 unstable, we propose to use the following approach to calcu-
late R−1/2. Let L denote the smallest number such that ∑L

l=1 λl/∑M
l=1 λl ≥ 0.999, then we

only use the first L components to calculate R−1/2, that is, R−1/2 ≈ ∑L1
l=1 eleT

l /
√

λl . After
we calculate R−1/2, based on Baker et al.’s approach [10], we use the adjusted genotypes
x̃i = R−1/2xi to calculate PRS, that is, PRSi = wT x̃i. We adjust all three PRSs using the
method mentioned above in the following studies.

2.3. Association Test Leveraging Both Gene Expression Measurements and PRSs

We assumed that we had GWAS summary statistics for a phenotype and an additional
eQTL data set or pre-calculated weights for gene expression, such as the weights provided
at Gusev_Lab [8,9] (http://gusevlab.org/projects/fusion/; accessed on 2 January 2022).
Our proposed method is based on the following model: yi = β0 + β1Ei + β2PRSi + εi
if the phenotype is quantitative, and logit(P(yi = 1|Ei, PRSi)) = β0 + β1Ei + β2PRSi if
the phenotype is qualitative for i = 1, . . . , n. To test whether a gene is associated with a
phenotype, the null hypothesis is given by H0 : β1 = β2 = 0. We use a score test with a
chi-squared distribution χ2

2 to test the null hypothesis.
We denote our methods by TWAS-PRSs. Corresponding to the three kinds of weights

in the PRSs, there are three TWAS-PRSs: (1) TWAS-PRSB with wm = β̂m, (2) TWAS-PRST
with wm = Tm, and (3) TWAS-PRSQ with wm= sign(Tm)T2

m.

3. Comparison of Methods

We compared the performance of TWAS-PRSs with the other four methods: TWAS [9] and
three PRS-based methods, PRSB, PRST, and PRSQ. The three PRS-based methods are based on
the model yi = β0 + β1PRSi + εi if the phenotype is quantitative, or log it(P(yi = 1|PRSi)) =
β0 + β1PRSi if the phenotype is qualitative. To test whether a gene is associated with the
phenotype, the null hypothesis is H0 : β1 = 0. The score-test statistic with χ2

1 distribution is used
for the association test. Corresponding to the three PRSs, we have three PRS-based association
tests: PRSB, PRST, and PRSQ. If there are covariates, we adjust the phenotypes for the covariates
by a linear regression and use the residuals as new phenotypes in the corresponding association
tests [17,18].

4. Simulations

The COPD gene dataset [19] was used in the simulation studies. This dataset contains
genotypes of 5430 unrelated individuals on 630,860 SNPs. We chose three genes: GTF2H2
(gene1), ZNF514 (gene2), and RP11-426C22 (gene3), which contain 15, 37, and 64 SNPs, respec-
tively. We use the program fastPHASE [20] to infer haplotype phases for the 5430 individuals
to obtain 10,860 haplotypes. To generate the genotype of an individual, we randomly chose
two haplotypes from 10,860 haplotypes. We obtained weights W = (W1, . . . , WM)T for
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gene expression from the TWAS website (http://gusevlab.org/projects/fusion/; accessed on
2 January 2022).

To generate gene expression, we used the model Ei = ∑M
m=1 Wmxim + ei, where

ei ∼ N(0, σ2), σ2 = WTcov(X)W, and W = (W1, . . . , WM)T . To generate the phenotype of
an individual, we used a model similar to that described by Liang et al. [21]:

yi = β(aEi + ∑c
j=1 xij) + εi, (1)

where Ei is the gene expression for the ith individual, xi1, . . . , xic are genotypes of c causal
variants that are directly associated with the phenotype, a is a constant weight to indicate
how the phenotype is influenced by gene expression compared with those directly associ-
ated causal variants, β is the total effect of gene expression and directly associated causal
variants, and εi ∼ N(0, 1).

To generate a qualitative trait, we used a liability threshold model based on a continu-
ous phenotype (quantitative trait). An individual was defined as affected if the individual’s
phenotype was at least one standard deviation larger than the phenotypic mean. This
yielded a prevalence of 16% for the simulated disease in the general population. In this
study, we performed 1000 simulations with a significance level of 0.05.

We generated individual-level genotype and phenotype data for n = 5000 unrelated
individuals. To obtain GWAS summary statistics (β̂m and Tm), we additionally generated
genotypes and phenotypes with sample size N = 5000, 10,000, and 20,000 , respectively.
We considered a proportion of causal variants in each gene, prop = 0.2, and 0.3, then the
total number of causal variants c was the ceiling of M·porp, c = ceiling(M·porp). We used
a = 1 in the simulation study.

We also considered using different gene expression weights to generate Ei. Let mmax =

argmax{W1, . . . , WM} and Wmax = (0, . . . , 0, Wmmax , 0, . . . , 0)T . Let W∗ = (W∗1 , . . . , W∗M)T =

W −Wmax, m∗max = argmax
{

W∗1 , . . . , W∗M
}

, W∗max = (0, . . . , 0, W∗m∗max
, 0, . . . , 0)T , and Wh =

Wmax + W∗max. The two weights, Wmax and Wh, were used in our simulations.
Based on Equation (1), the two weights (Wmax and Wh), and the three genes (gene1,

gene2, and gene3), we considered a total of six models for every particular setting: Models
1 to 3 with W = Wmax for gene1, gene2, and gene3; and Models 4 to 6 with W = Wh for
gene1, gene2, and gene3.

5. Simulation Results
5.1. Type I Error Rates

To evaluate the type I error rates of the seven methods, we considered different
sample sizes of GWAS data sets (5000, 10,000, and 20,000) and different genes (gene1,
gene2, and gene3). We first generated the phenotypes and genotypes under the null
hypothesis; next, we calculated the GWAS summary statistics based on the GWAS data sets;
finally, we calculated the Type I error rates for the seven methods. For the 1000-replicates
samples, the 95% confidence interval (CI) for the estimated type I error rates of 5%wais
(0.0365,0.0635). Table 1 summarizes the estimated type I error rates of the seven methods
under different scenarios. We can see that all of the estimated type I error rates were
within the corresponding 95% CIs for the different sample sizes of the GWAS data sets and
different genes, which indicates that all of the seven tests were valid.

5.2. Powers

We compared the powers of the seven tests with different values of the total effect size
β, different sample size for the GWAS N, and different proportions of causal variants prop
for quantitative traits. Figures 1–3 show the power comparisons for the sample sizes N
= 5000, 10,000, 20,000 with prop = 0.2. Figures S1–S3 also show the power comparisons
for the sample sizes N = 5000, 10,000, 20,000 with prop = 0.3. These figures show similar
power patterns. In general, TWAS-PRSs are more powerful than PRSs, and PRSs are
more powerful than TWAS; among the three different PRSs, PRSQ performs better than
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PRSB and PRST; PRSB and PRST perform similarly. When the sample size for the GWAS
N increases, the power of PRSs and TWAS-PRSs increase. The powers also increase as
a proportion of increase in the causal variants. We also evaluated the powers of the
seven tests for qualitative traits with different models and settings. Similar results can be
found in Figures S4–S9 for the qualitative traits. In conclusion, TWAS-PRSs leveraging the
information from eQTL and GWAS showed a better performance. In the following section,
we apply the seven methods to the UK Biobank data.

Table 1. Estimated type I error rates of the seven methods for different sample sizes of GWAS data
sets (5000, 10,000, and 20,000) and different genes (gene1, geme2, and gene3). Type I error rates are
evaluated using 1000-replicates sample at significance level of 0.05.

N Gene TWAS PRSB PRST PRSQ TWAS-PRSB TWAS-PRST TWAS-PRSQ

5000

1 0.044 0.056 0.062 0.057 0.056 0.057 0.058

2 0.048 0.051 0.048 0.050 0.063 0.061 0.063

3 0.046 0.042 0.045 0.045 0.049 0.051 0.050

10,000

1 0.044 0.055 0.057 0.051 0.060 0.063 0.058

2 0.054 0.046 0.047 0.049 0.052 0.047 0.047

3 0.050 0.052 0.054 0.056 0.060 0.057 0.046

20,000

1 0.043 0.049 0.047 0.047 0.054 0.051 0.055

2 0.039 0.040 0.040 0.041 0.043 0.044 0.047

3 0.040 0.042 0.039 0.047 0.040 0.042 0.042
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for which we used the two eQTLs with the first two largest weights to generate gene expression.
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the eQTL with the largest weight to generate gene expression; Models 4–6 correspond to genes 1–3,
for which we use two eQTLs with the first two largest weights to generate gene expression.
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6. Application to UK Biobank Data
6.1. UK Biobank Data

The UK Biobank [22] is a population-based cohort study with a wide variety of
genetic and phenotypic information [23]. We applied the seven methods to analyze the
UK Biobank [22] dataset for asthma. In this study, we only considered SNPs located in
autosomal chromosomes and subjects with white British ancestry. The quality control
of the samples and variants was performed by plink2. We filtered out the variants with
minor allele frequency (MAF) of less than 0.05 and with p-values of the Hardy–Weinberg
equilibrium (HWE) exact test below 10−6. We exclude variants with missing call rates
exceeding 0.01 and dosage certainty of less than 0.9. We deleted samples with missingness
exceeding 0.01.

The asthma cases were defined based on field code 6152_8 (doctor-diagnosed asthma),
the International Classification of Diseases version-10 (ICD10) J45 (asthma)/J46 (severe
asthma), and self-reported asthma [24]. Field 6152 is a summary of the distinct main
diagnosis codes the participants recorded across all their hospital visits. The non-asthmatic
controls were defined as individuals free from field code 6152_8 and field code 6152_9
(doctor-diagnosed allergic diseases), ICD10 J45/J46/J30 (hay fever)/L20 (dermatitis and
eczema), and self-reported asthma/hay fever/eczema/allergy/allergy to house dust mites
(HDMs). This strategy resulted in a broad definition of asthma, with 45,016 cases and
240,511 controls in the UK Biobank after quality control.

Since many thyroid diseases can lead to pulmonary problems [25,26], we considered
using weights for gene expression based on the thyroid of GTEx v7. The pre-computed
weights are available at: http://bogdan.bioinformatics.ucla.edu/software/twas/ (accessed
on 2 January 2022). We used the weights estimated by BLUP, and only considered variants
with both genotypes and gene-expression weights available. For each gene, we considered
SNPs located between the gene boundary and ±500 kb.

6.2. Results

After pre-processing, there were 285,527 individuals and 9807 genes for the analysis.
We considered age, sex, the first ten principal components, and the genotype array as
the covariates in this study. We then adjusted the phenotype by the covariates using a
linear regression model [17,18]. To compare the performances of the three TWAS-PRSs, we
divided the 285,527 individuals into two sets with different sample sizes, corresponding to
three settings: (1) N = 2n; (2) N = n; and (3) 2N = n, where N is the sample size of the
dataset to calculate the GWAS summary statistics and n is the sample size of the individual-
level genotype and the phenotype dataset for the association test, and N + n = 285,527 .
Since there were a total of 9807 genes on the 22 chromosomes, at 5% significance level, the
Bonferroni threshold of 5.098× 10−6 was used to determine the significant genes.

We applied the seven methods, TWAS, PRSB, PRST, PRSQ, TWAS-PRSB, TWAS-PRST,
and TWAS-PRSQ, to the data set under different settings. Table 2 summarizes the number
of genes identified by each method. Both PRSQ and TWAS-PRSQ identified more genes
than the corresponding methods; PRST and TWAS-PRST identified almost the same number
of genes as PRSB and TWAS-PRSB, respectively; and TWAS identified the lowest number
of genes. As the sample size of the individual-level dataset became lager, more genes were
identified by all the methods. We also compared the number of identified genes that were
reported in TWAS hub (http://twas-hub.org/; accessed on 2 January 2022), represented
by the numbers in the parentheses in Table 2. It can be seen that PRSQ and TWAS-PRSQ
identify more genes near the loci reported in TWAS hub than the corresponding methods.
Overall, our proposed methods, PRSQ, and TWAS- PRSQ, are applicable to GWAS and
perform better than TWAS and the corresponding methods.

http://bogdan.bioinformatics.ucla.edu/software/twas/
http://twas-hub.org/
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Table 2. The number of genes identified by seven methods under different settings. The numbers
in the parentheses indicate the number of identified genes that are reported in TWAS hub (http:
//twas-hub.org/; accessed on 2 January 2022).

Setting TWAS PRSB PRST PRSQ TWAS-PRSB TWAS-PRST TWAS-PRSQ

n = (1/2)N 47 (28) 190 (98) 198 (98) 218 (124) 198 (100) 195 (99) 212 (113)

n = N 65 (34) 257 (149) 249 (148) 258 (152) 249 (145) 247 (145) 268 (157)

n = 2N 82 (43) 319 (185) 312 (186) 337 (203) 304 (186) 297 (185) 324 (205)

7. Discussion

Gene expression is an important mechanism, since the regulatory variants influence
complex traits through transcriptional regulation [27]. On the other hand, PRS is exploited
to assess shared etiologies between phenotypes [15], which is a powerful tool in predictions
and tests. In this research, we provide new weights for constructing PRS, which can boost
the statistical power of using PRS in gene-based association tests. Furthermore, we propose
the TWAS-PRS method, which can take both PRS and gene expression into consideration.

However, there are several limitations to the current study. Although the incorporation
of gene-expression measurements will facilitate biological interpretation, we still cannot
claim causality, for which experimental validations are required. Furthermore, since we did
not consider trans-eQTLs, but only cis-eQTLs, many genes were not included in our study.
When calculating gene expression, the choice of weights also influences the performance
of our methods. Although we performed real data analysis using thyroid tissue for our
asthma study, further studies are needed to assess which tissue could be more relevant to
the pathogenesis of asthma, such as nasal or lung tissues [28].

In conclusion, we provided two additional weights to construct PRSs and compare
their performances. We leveraged both gene-expression measurements and PRSs to fit a
linear model and used a score test to test the associations between genes and phenotypes.
The simulation studies showed that our proposed methods, PRSQ and TWASQ, can not
only control type I error rates but also have higher power than the corresponding methods.
Furthermore, the application of our proposed methods to the UK biobank data analysis
shows that the proposed methods are applicable to real data GWAS and perform better
than the corresponding methods.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13071120/s1. Figures S1–S3: Powers of the seven tests
versus the total effect size β for a quantitative trait with N = 5000, 10,000, and 20,000, respectively;
Figures S4–S6: Powers of the seven tests versus the total effect size β for a qualitative trait with
N = 5000, 10,000, and 20,000 and the proportion of causal variants 0.2, respectively; Figures S7–S9:
Powers of the seven tests versus the total effect size β for a qualitative trait with N = 5000, 10,000, and
20,000 and the proportion of causal variants 0.3, respectively.
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