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Abstract 

Carbon monoxide is well known as a toxic gas but can also be an important input and 

intermediary for microbial metabolisms. Carbon monoxide dehydrogenases (CODHs) 

serve as key enzyme complexes for a variety of microbial carbon monoxide (CO) 

utilization pathways. Such pathways include the Wood-Ljungdahl pathway, which is 

important in methanogenesis and acetogenesis, metal and sulfate reduction pathways, 

hydrogen production, and others. The CODH enzymes allow microbes to turn the 

traditionally toxic waste gas of CO into a useful carbon and energy source. Despite the 

flexibility of CODH enzymes, the use of carbon monoxide is still believed to be a fringe 

metabolism. Here we seek to expand the known diversity, distribution, and phylogeny of 

CODH catalytic subunit proteins by searching an expansive dataset of over 50,000 

metagenome assembled genomes. Our work has shown that this dataset contains 5,426 

putative CODH protein sequences found within 4,001 metagenome assembled genomes.  

Despite the considerable expansion of the known set of CODH sequences, our 

phylogenetic analysis has validated the protein's previously established phylogeny while 

showing a wider environmental and taxonomic distribution of CODHs. Often considered 

to be found primarily in areas with high levels of CO, CODHs are typically associated 

with thermal and extremophiles. In addition to the expected high temperature 

environments, CODHs were found in metagenomes from diverse environments from 

soils to subway benches, and in phyla ranging from archaeal Euryarchaeota to bacterial 

Actinobacterota. We also have constructed a machine learning model to extract 

functional predictions and information using a sequence-only method to predict gene 

ontologies (GO-terms) associated with CODH function. While our model can achieve 

accurate prediction of GO-terms, our work has shown some of the current limitations in 

the approach. This study reveals CODHs to be a more diverse and ubiquitous enzyme 

than previously anticipated. Despite tripling the number of sequences in the phylogeny, 

we provide strong support for the previously established clades and report no new clades.  

This work has also identified some key areas for experimental follow up regarding the 

importance of carbon monoxide and CODH genes in many environments.
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1 Introduction 

Carbon monoxide (CO) is a household name due to its danger as a colorless, odorless, 

toxic gas. Usually found as an atmospheric gas in only harmless trace concentrations, CO 

is also found in more substantial concentrations in a variety of natural and anthropogenic 

locales. Hydrothermal vents, industrial gas flues, and volcanic environments all 

experience CO levels greater than 1 ppm (Robb & Techtmann, 2018). Despite carbon 

monoxide's toxic reputation, some microorganisms can thrive in CO-rich environments 

by utilizing the gas as a carbon and energy source for downstream reactions in a process 

known as carboxydotrophy. While carboxydotrophs have been found to be common in 

extreme environments, the low concentrations of carbon monoxide in most environments 

suggests that carboxydotrophy is likely a fringe metabolism performed by a limited range 

of microorganisms in restricted environments. However, some microorganisms release 

CO as a metabolic byproduct, creating local pockets of high CO concentrations in many 

more, much less extreme environments (Voordouw, 2002). It has been proposed that 

these biogenic pockets of CO may support the growth of carboxydotrophs in a wider 

range of common environments (Techtmann et al, 2009). 

Metabolism of carbon monoxide is largely facilitated by versatile carbon monoxide 

dehydrogenase (CODH) enzymes. This family of enzymes consists of protein complexes 

involved in the oxidation or reduction of CO. CODHs are divided into two distinct 

protein families: aerobic and anaerobic CODHs. CODH complexes can be made up of a 

variety of different subunits to modulate the complex's function, but across CODHs the 

active site containing catalytic subunit remains foundational. These foundational subunits 

catalyze the reversible reaction CO + H2O <=> CO2 + 2H+ + 2e-; with aerobic and 

anaerobic CODHs requiring differing metals in their active sites. Aerobic CODHs, also 

known as coxSML CODHs, rely on a Mo-Cu active site to transfer electrons from CO to 

oxygen or nitrate (King et al., 2007). Anaerobic CODHs instead utilize a Ni-Fe based 

active site for either the oxidation or reduction of CO/CO2 for a much wider variety of 

pathways (Techtmann et al., 2012). More specifically, anaerobic CODHs have either a 

CooS or Cdh catalytic subunit, both of which have very similar structures with only 

minor differences. CooS proteins are found predominantly in bacterial genomes with 

some exceptions, while Cdh proteins are found almost exclusively in archaeal genomes 

(Inoue et al., 2019). This study focuses specifically on the versatility of anaerobic 

CODHs, which will be abbreviated to simply CODHs. Additionally, due to having a very 

similar structure and function, both CooS and Cdh proteins will be hereafter referred to 

collectively as 'CODH proteins', as they are the defining and identifying characteristic of 

all anaerobic CODH complexes.  

Interestingly, the reaction catalyzed by anaerobic CODH proteins can serve in a variety 

of different downstream pathways; a characteristic unusual for a single enzyme family 

and one not shared with aerobic CODHs. CODH facilitated oxidation of CO can be used 

as the initial step of the Wood-Ljungdahl pathway for methanogens and acetogens, or the 

reaction can provide a source of electrons to be utilized for metal and sulfate reducing 

pathways. These electrons from CO can also fuel hydrogen production in hydrogenogens 

through the energy converting hydrogenase or can be used to produce reducing 
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equivalents to be used for other cellular functions. These diverse functions are further 

illustrated in Figure 1 by Robb and Techtmann (2018). The metabolic fate of CO 

catalyzed by a specific CODH has 

been proposed to be determined by 

the presence of specific additional 

subunits in the CODH complex 

(Robb and Techtmann, 2018). 

Many CODH possessing 

organisms have been found to 

have multiple different CODH 

operons encoded in their genomes 

(Techtmann et al., 2011). For 

example, the prototype 

thermophilic carboxydotroph – 

Carboxydothermus 

hydrogenoformans, encodes five CODHs, shown in Figure 2 originally from Wu et al. 

(2005), which have been proposed to have diverse metabolic fates including hydrogen 

production, generation of reducing equivalents, coping with oxidative stress, as well as 

the Wood-Ljungdahl pathway for autotrophic growth on CO (Wu et al., 2005; 

Svetlitchnyi et al., 2001). Similarly, the thermophilic metal reducing bacteria 

Thermincola potens contains four distinct CODH gene clusters (Byrne-Bailey et al., 

2010). The phenomenon of a single organism encoding multiple CODH gene clusters has 

been shown to be common in CODH possessing bacteria and archaea (Techtmann et al., 

2012). The presence of multiple CODHs in a single genome suggests that these 

organisms may be capable of utilizing CO as an input or electron source to multiple 

different pathways simultaneously (Techtmann et al., 2011). 

  

Figure 1. Originally published as Figure 1A in Robb 

and Techtmann (2018) with the caption “Potential 

fates of CO in microbial physiologies” 
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Figure 2. Originally published as Figure 3 in Wu et al. (2005), Life in Hot Carbon 

Monoxide: The Complete Genome Sequence of Carboxydothermus hydrogenoformans Z-

2901, with the caption “The genome locations [in C. hydrogenoformans] of the genes 

encoding the five CooS homologs (labelled CooS I-V) are shown. Also shown are 

neighboring genes that are predicted to encode the five distinct CODH complexes 

(CODH I-V) with each CooS homolog. Possible cellular roles for four of the five CODH 

complexes are indicated.” 

 

Elucidating the functional roles of CODHs can have important broader implications in 

understanding the ecological roles and evolution of CO and CO-based metabolisms, as 

well as informing the biotechnological applications of these metabolisms. Carbon 

fixation using CO, facilitated by CODHs, has been proposed to be an ancient metabolic 

pathway present in the Last Universal Common Ancestor (LUCA) (Adam et al., 2018). 

Other studies have indicated that CODHs as part of the Wood-Ljungdahl pathway 

represent one of the 355 proteins that trace back to the LUCA. Weiss et al. (2016) posit 

that the origin of autotrophic life involved the Wood-Ljungdahl pathway for CO2/CO 

fixation. Therefore, elucidating the mechanisms and evolution of CO based carbon 

fixation via that CODH-containing Wood-Ljungdahl pathway could further clarify the 

evolution of life on earth, the evolution of later forms of carbon fixation, and potential 

pathways for carbon fixation in astrobiological contexts (Russell et al., 2014; King 2015).  

In modern environments where CODHs are found, the organisms encoding these genes 

may be utilizing them for important and diverse functional purposes. A given CODH 

could be a step in the Wood-Ljungdahl pathway, serving as an important factor in 

anaerobic carbon fixation especially in high CO environments (Robb and Techtmann, 

2018). Alternatively, that given CODH could serve as a source of metabolic 

intermediates to a wide range of other pathways with further ecological significance. 
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There is growing evidence that carbon monoxide-based metabolisms may be important 

and ubiquitous in diverse environments, potentially serving as a critical intermediate step 

in broader community-driven processes, rather than a niche form of carbon fixation only 

reserved for thermophilic carboxydotrophs (Cordero et al 2019; Bay et al 2021).  

Carboxydotrophs and CODHs are additionally important in industrial processes including 

biofuel production or as CO detecting biosensors (Tissera et al., 2019, Reginald et al., 

2021). Typically produced as an industrial waste gas or as synthesis gas (CO/H2), CO can 

be captured and utilized by harnessing CODH-possessing acetogenic bacteria to produce 

useful products such as ethanol or other biofuels. Such industrial applications also serve 

the critically important dual purpose of offsetting carbon emissions by repurposing 

harmful CO and CO2 into valuable chemicals. 

Phylogenetic analyses of catalytic CODH subunit proteins have previously been used to 

elucidate the evolution of the protein family. Among some of the previous phylogenetic 

work done with CODH proteins, Techtmann et al. (2012) established a six-clade 

phylogenetic structure for the protein. Inoue et al. (2019) verified the established six 

clades and introduced a seventh clade (Clade G) with a single representative member. 

Inoue et al. (2019) also described more specific CooS subclades based on structural 

motifs. Phylogenetic analysis has also been used to better understand the ancient origin of 

this protein family. Adam et al. (2018) used CODH phylogeny to predict CO utilization 

capabilities of the LUCA based on observed evolutionary trends throughout the protein 

family. Complicating the evolutionary analysis of the CODH protein family, however, is 

that both Techtmann et al. (2012) and Adam et al. (2018) showed indications of 

horizontal gene transfer occurring with CODHs. These studies found that the evolution of 

the catalytic CODH subunit does not exclusively follow taxonomic or functional patterns; 

while the CODHs of clade A were found overwhelmingly in archaeal genomes, other 

clades were composed of more diverse collections of taxonomic groups, including both 

bacteria and archaea. This lack of clear taxonomic signal in CODH phylogeny was 

demonstrated to likely be caused by genetic transfer events (Techtmann et al 2012). 

Most studies on the phylogeny and distribution of CODHs have focused on genomes of 

isolated bacterial groups. This has thus far biased our findings based on what can be 

cultured in the lab. Metagenomic sequencing has shown a vast array of uncultivated 

organisms that are present and important members of many environmental microbial 

communities (Parks et al., 2017; Nayfach et al., 2021), and many of these uncultivated 

phyla have been shown to contain CODHs and some posited to perform carboxydotrophy 

(Farag et al., 2020). Drawing upon the rapidly increasing wealth of data provided by 

metagenomics can be an effective way to query a broad range of otherwise inaccessible 

organisms, environments, and samples to expand phylogenetic analyses. However, the 

flexibility in metabolic outcomes of CODHs make it difficult to confidently determine 

the functional implications of the presence of these proteins using current metagenomic 

methods. Typically, metagenomic methods of protein annotation rely solely on the 

predicted amino acid sequence to determine a protein's putative function; genetic context 

data is generally not available or not considered. Without genetic context, the availability 

of the accessory subunits needed to indicate the fate of CO in a given CODH are 
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unknown and the protein complex’s overall function unclear. Common methods will 

discern - based on the presence of a catalytic CODH subunit - that the organism could 

perform some form of CO metabolism, but the pathways and functions that CODH 

facilitates will remain uncertain. As a result, specialized analysis is necessary to 

completely and accurately predict the full functional capabilities of CODH proteins and 

their metabolic implications.  

Machine learning (ML) methods have previously shown promising ability to accurately 

annotate protein function and pathway involvement (Gligorijević et al., 2021). Machine 

learning is foundationally adept at pattern recognition, even without specific knowledge 

of recognized patterns from the model's designers. This aspect of machine learning can 

be leveraged to make accurate predictions based on patterns and mechanisms even when 

those patterns are not completely understood by researchers. It is currently not known if 

catalytic CODH subunit proteins have telltale sequence characteristics that determine 

their subunit binding and functional involvement. These proteins could potentially have 

specific binding sites for accessory proteins, subunit attachment sites, function-

accommodating alterations in structure, or other information that is encoded in the 

sequence. While this information can be determined through biochemical assays, it’s 

possible that these sequences could be detectable by a ML approach, despite lacking 

direct knowledge of the structure. With such an approach a complete prediction of a 

CODH’s function could potentially be attained solely from the sequence of the catalytic 

subunit. 

To expand the breadth of knowledge and understanding of CODH proteins and their 

corresponding complexes, we have identified catalytic CODH proteins in one the largest 

collections of metagenome assembled genomes from publicly available metagenomic 

datasets. Using a Hidden Markov Model, we have searched over 50,000 MAGs to 

identify novel putative CODH protein sequences. The distribution of originating 

environment and genome taxonomy of these CODHs have been analyzed to elucidate 

evolutionary patterns. With the goal of expanding consideration to the distribution of 

downstream function of these CODHs, a machine learning model was trained to predict 

and assign functional labels to putative catalytic CODH protein sequences. These 

analyses have shown a more ubiquitous nature of CODH proteins, present everywhere 

from thermal springs to subway benches, suggesting broader ecological implications 

from their involvement in microbial functional pathways. 
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2 Methods 

2.1 Dataset 

This study utilized two publicly available metagenomic datasets, the “Genomes from 

Earth’s Microbiomes” catalog (GEMs) and the “Uncultivated Bacteria and Archaea” 

dataset (UBA), as representatives of a broad range of environmental samples for analysis 

(Figure 3). The UBA dataset (Parks et al., 2017) includes 7,903 metagenomically 

assembled genomes (MAGs) from 1,550 environmental samples, each with generally 

high reported genome quality and completeness. MAGs are species specific draft 

genomes constructed from unspecific community level metagenomic reads. Though they 

often represent incomplete genomes, MAGs are useful for targeted genomic analysis of 

organisms otherwise impractical or impossible to isolate. The detailed methods for the 

generation of the metagenome assembled genomes from the UBA are described in Parks 

et al. (2017). Briefly, 1,550 metagenomes from primarily environmental and non-human 

gut microbiome samples were individually assembled using the CLC de novo assembler 

(CLCBio) and binned into MAGs using MetaBAT (Kang et al., 2015). The MAGs were 

subsequently refined based on anomalous genomic or taxonomic signatures using 

CheckM (Parks et al., 2015), CompareM and RefineM (Parks et al., 2017), and only high-

quality MAGs were published. The GEMs dataset (Nayfach et al., 2021) includes 52,515 

MAGs from 10,450 different environmental samples. The MAGs from the GEMs dataset 

were generated similarly, with metagenomes from 10,331 different samples in the 

IMG/M database were individually assembled using metaSPAdes (Nurk et al., 2017), 

binned using MetaBAT (Kang et al., 2015), and quality controlled using CheckM (Parks 

et al., 2015) and RefineM (Parks et al., 2017). Only MAGs meeting the MIMAG standard 

as high-quality MAGs were kept, requiring them to have ≥90% completeness and ≤5% 

contamination (Bowers et al., 2017). The MAGs were clustered into OTUs based on 

GTDB taxonomy (Chaumeil et al., 2020). More detailed methods for the generation of 

the GEMs database are described in Nayfach et al. (2021). 

 

Figure 3. Schematic of the analysis pipeline used for this study. Throughout the flowchart 

rounded boxes represent datasets and pointed boxes indicate analysis steps. 
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Environmental metadata from these samples was compiled to categorize each MAG into 

one of 10 environmental categories slightly modified from the GOLD ecosystem 

classification system. The GOLD ecosystem classification is a hierarchical classification 

scheme used in the Genomes Online Database (GOLD) to group ecosystems into similar 

categories; providing a standardized framework for classifying and referring to 

ecosystems (Ivanova et al., 2010). In this study we have modified the GOLD ecosystem 

categories as follows: Ecosystem categories that were subgroups of 'Host-Associated', 

including 'Animal', 'Human', or 'Plant', were condensed into one broad 'Host-Associated' 

label. The 'Aquatic' category was subdivided into 'Marine', 'Freshwater', 'Thermal 

Springs', and 'Other Aquatic', to better suit the distribution of CODHs. The 'Other' 

category broadly includes 'engineered' GOLD ecosystem categories, such as lab 

enrichments or bioremediation samples. Additional metadata provided with the GEMs 

and UBA datasets regarding assigned MAG taxonomy was also used. The distribution of 

samples and their assigned environmental categories is visualized in Figure 4. 
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Figure 4. Map of geographic locations of all MAGs in metagenomic dataset. Where applicable, MAGs are represented by a point 

placed at the latitude and longitudinal coordinates supplied in the dataset’s metadata. Points are colored by the metadata reported, 

slightly modified GOLD ecosystem categories of the MAGs. Some MAGs do not have associated geographic coordinate data
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2.2 Hidden Markov Model 

313 CODH amino acid sequences, representative of the known range of the protein 

family's variation, were curated for use as a training set for a Hidden Markov Model 

(HMM). Using HMMER with default parameters, a HMM was built to detect putative 

CODHs from input protein sequences (Eddy, 2009). The built HMM was applied with 

HMMER's default parameters to each of the called protein sequences available in the 

GEMs and UBA metagenomic datasets with an e-value cutoff of 1e-50 to identify 

sequences as CODHs. 

2.3 Construction of Phylogenetic Tree 

Putative CODHs found using the built HMM were combined with the original training 

sequences and CODH sequences with known phylogenic clades from Inoue et al. (2019). 

Inoue et al. (2019) previously constructed the most comprehensive phylogeny of the 

CooS gene to date. The inclusion of known sequences from the previously curated 

training set and from Inoue et al. (2019) ensures that the resulting phylogeny includes 

representatives of all known clades of CODHs, allowing our phylogeny to be grounded in 

and compared with previously established phylogenetic work. The combined putative and 

known CODH sequences were aligned using MAFFT with automatically selected 

parameters (Katoh et al., 2002). The resulting multiple sequence alignment was used with 

FastTree to generate a distance based phylogenetic tree (Price et al., 2010). FastTree was 

run with default parameters, meaning a JTT+CAT modelled approximated maximum 

likelihood tree was constructed. ggtree was used for tree visualization and metadata 

overlay (Yu, 2020). 

2.4 Predictive ML Model 

To attempt to elucidate functional pathway involvement from putative CODH sequences, 

a ML model was trained to identify input sequences as being involved in 

'Methanogenesis', 'Acetogenesis', both, or neither. 780,014 protein sequences were used 

from the UniProtKB by using search parameters finding all sequences labeled with the 

Gene Ontology (GO) terms 'methanogenesis [15948]' or 'acetyl-CoA metabolic process 

[6084]'. This set of sequences included both reviewed and non-reviewed sequences. The 

non-reviewed sequences were assigned GO terms in the UniProtKB in an automated 

fashion, while the reviewed sequences were curated and manually annotated to ensure 

proper annotation. Additionally, we included sequences labelled as reviewed and having 

the GO terms 'carbon-monoxide dehydrogenase (acceptor) activity [18492]' or '4 iron, 4 

sulfur cluster binding [51539]'. The GO terms 'methanogenesis' and 'acetyl-CoA 

metabolic process' were used during model training as indicators of methanogenesis or 

acetogenesis pathway involvement, respectively. 15% of the training data, chosen 

randomly, was held out of training for model validation.  

Gligorijević recently developed a deep learning model based on Graph Convolutional 

Networks for automatically predicting protein function from protein sequences, termed 

Deep Functional Residue Identification (DeepFRI). We constructed a model using a 

similar structure to DeepFRI (Gligorijević et al., 2021), with a schematic of our model 
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shown in Figure 5. The primary difference between our approach and that of DeepFRI is 

in the vectorization step. DeepFRI uses simple one-hot vectorization, characterizing each 

amino acid by a vector where a one is present in a specific location to identify the amino 

acid the rest of the vector is filled with zeroes. Sequences input to DeepFRI can also be 

supplemented with contact map information. Our model instead utilizes a novel 

vectorization step inspired by Asgari et al. (2015) to better capture the biological context 

of the protein sequence when transforming amino acid sequences into the vectorized 

values needed for machine learning. This vectorization step serves as the first step in our 

model process and involves splitting input sequences into 3 frameshifts of 3 amino acid 

trimers which are then vectorized using the FastText text vectorization algorithm treating 

each trimer as a 'word' (Bojanowski et al., 2017). In this method, each amino acid 'word' 

is assigned a vector based on the context the 'word' was found in throughout the training 

data. Based on the findings of Asgari et al. (2015), borrowing text vectorization strategies 

for protein vectorization can lead to proteins being vectorized in a manner more closely 

based on their biochemical properties, as 'words' with similar chemistry should be found 

in similar sequence contexts. T-distributed stochastic neighbor embedding (t-SNE) plots 

of vector distance colored by biochemical properties were generated and used to verify 

that our protein vectorization step captured additional context rooted in real amino acid 

biochemistry (Figure 6 and Figure 7). T-SNE plots are a form of dimensionality reduction 

that enables graphical representation of highly dimensional data in 2-D space, with 

observations of similar properties being found close together on the plot. Molecular 

weight and hydrophobicity were used as representative biochemical properties, with both 

molecular weight and hydrophobicity approximated for each trimer by summing the 

individual values for each constituent amino acid of the trimer. If the vectorization 

preserves biological information than we expect that amino acid trimers with similar 

biochemical properties would group together on the t-SNE plots. We chose molecular 

weight and hydrophobicity as representative properties as they are values that can be 

directly computed from amino acid trimer sequences and have biochemical significance 

for protein function.  
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Figure 5. Schematic of the predictive model for CODH functions, starting with input 

amino acid protein sequences and resulting in predicted labels for the function of those 

sequences. 
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Figure 6. t-SNE plot depicting similarity of vectorized amino acid trimer ‘words’ based 

on biochemical property molecular weight. Similar clustering indicates that nearby 

‘words’ have similar context and are interpreted to have similar ‘meaning’. 
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Figure 7. t-SNE plot depicting similarity of vectorized amino acid trimer ‘words’ based 

on biochemical property of hydrophobicity approximated by summing the individual 

hydrophobicity levels of each amino acid that constitute a trimer ‘word’. Similar 

clustering indicates that nearby ‘words’ have similar context and are interpreted to have 

similar ‘meaning’. 

 

After vectorization, input sequences are zero-padded to a uniform length of 500 amino 

acid trimers. Sequences greater than 500 amino acid trimers, or 1500 total amino acids, 

were not present. Vectors calculated from each of the three possible frameshifts of the 

input sequence are summed together, resulting in the processed input vector that is input 

into a recurrent neural network (Figure 5). The recurrent neural network consists of four 

sequential layers: first is a bidirectional Long Short-Term Memory (LSTM) layer, 
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followed by two Rectified Linear Unit (ReLU) activated dense layers, and finalized with 

a sigmoid output layer. The bidirectional LSTM layer interprets information from both 

the forward and reverse directions of an input sequence, as well as contextual information 

from distant portions of the sequence. Additionally, the LSTM layer eliminates any 

artifacts caused by zero-padding input sequences. The results of the LSTM layer are 

passed on to two dense layers, which can extract additional predictive ability from the 

LSTM layer. Finally, the sigmoid output layer condenses the model's prediction into a 

value between 0 and 1 for both ‘Methanogeneis’ and ‘Acetogenesis’ labels, where 

sequences assigned values greater than 0.5 are predicted to be members of that label.  

The prediction model was trained in batches of 100 samples for 5 epochs (epoch = 

covering entire dataset once), using a binary cross entropy loss function and the Adam 

optimization algorithm (Kingma et al., 2014). The model was implemented in Python 

using the Gensim implementation of FastText and Keras and Tensorflow libraries to 

implement the neural network (Rehurek et al., 2010; Abadi et al., 2016). Model accuracy 

was validated using SciKit-Learn (Pedregosa et al., 2011). 
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3 Results 

Searching the GEMs and UBA metagenome datasets using the CODH targeting HMM 

resulted in 5,426 hits. 4,960 of those hits were from the GEMs dataset, and 466 were 

from the UBA dataset. Of these hits, 25.3% of them were found in the same MAG as at 

least one other putative CODH (Table S2). Combined with the 313 protein sequences 

used to build the HMM and the 1,942 grounding CODH sequences from the previously 

constructed phylogeny described in Inoue et al. (2019), a total of 7,665 sequences were 

used to generate an expanded phylogeny of the CODH protein family. The distribution of 

CODHs found are visualized in Tables 1 and S3 and Figure 8; with Table 1 reporting the 

proportion of putative CODHs found in each ecosystem category, Table S3 reporting the 

proportion of putative CODHs grouped by their phylum-level taxonomic assignment, and 

Figure 8 visualizing the geographic distribution of samples containing CODHs. 

Table 1. Proportion of GEMs dataset MAGs containing putative CODHs grouped by 

their metadata-reported, slightly-modified GOLD ecosystem labels. 

 

Ecosystem Type 

MAG 

Count 

CODH 

Count 

Proportion 

Containing 

CODHs 

Air 21 0 0 

Built environment 2640 70 0.026 

Freshwater 7263 546 0.075 

Host-Associated 20775 1120 0.053 

Marine 8581 389 0.045 

Other 2980 459 0.154 

Other Aquatic 1860 228 0.122 

Terrestrial 3356 300 0.089 

Thermal springs 1545 322 0.208 

Wastewater 2613 220 0.084 

 



21 

 

Figure 8. Map of geographic locations of all MAGs in the metagenomic dataset in which putative CODHs were found. Where 

applicable, MAGs are represented by a point placed at the latitude and longitudinal coordinates supplied in the dataset’s metadata. 

Points are colored by the metadata reported, slightly modified GOLD ecosystem categories of the MAGs. Some MAGs do not have 

associated geographic coordinate data. 
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The newly generated phylogeny maintains the same clade structure as reported in Inoue 

et al. (2018) and initially described in Techtmann et al. (2012). Each clade includes the 

expected reference sequences, along with expansion from new putative CODH sequences 

from the MAGs. Of particular note is that no new clades were found despite the inclusion 

of over 5,000 new CODHs sequences. Based on the matching clades, the naming scheme 

will be hereafter inherited from Techtmann et al. (2012) and Inoue et al. (2018) as shown 

in Figure 9. Notably, clade G (graphically located just above clade A), originally 

represented by a single CODH in Inoue et al. (2018), is here expanded with 30 closely 

matching sequences found from the metagenome datasets.
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Figure 9. Phylogenetic tree of CooS/Cdh protein sequences. Tree tips and outer ring are colored by the clade assigned to the sequence 

by Inoue et al. (2019) where applicable. As a result, only grounding sequences are colored. Branches are colored by branch support 

reported by FastTree. NA represents sequences that were not previously used in the Inoue et al. (2019) tree and thus were not 

previously assigned to a clade. Branch supports are shown by a gradient of branch colors, with black representing 100% branch 

support and red representing 0% branch support. A larger version of this figure is available at 

https://github.com/isbigcra/ThermalSpringsAndSubwayBenches.  

https://github.com/isbigcra/ThermalSpringsAndSubwayBenches
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Figure 10. Phylogenetic tree of CooS/Cdh protein sequences. Tree tips and outer ring are colored by the taxonomy assigned to 

sequence’s source MAG at the phylum level. Taxonony of MAGs was assigned using the GTDB taxonomic classification scheme. 

Branch supports are shown by a gradient of branch colors, with black representing 100% branch support and red representing 0%  

branch support. A larger version of this figure is available at https://github.com/isbigcra/ThermalSpringsAndSubwayBenches. 

https://github.com/isbigcra/ThermalSpringsAndSubwayBenches
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Figure 11. Phylogenetic tree of CooS/Cdh protein sequences. Tree tips and outer ring are colored by modified GOLD ecosystem 

category label (Environ) assigned to the sequence’s source MAG. Branch supports are shown by a gradient of branch colors, with 

black representing 100% branch support and red representing 0% branch support. A larger version of this figure is available at 

https://github.com/isbigcra/ThermalSpringsAndSubwayBenches. 

https://github.com/isbigcra/ThermalSpringsAndSubwayBenches
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3.1 Taxonomic Distribution Within Clades 

Matching with previously reported phylogenies, and shown in Figure 10, most protein 

sequences found from archaeal sources are concentrated in clade A (Techtmann et al., 

2012). Archaeal phyla including Crenarchaeota, Euryarchaeota, and Halobacterota 

dominate the clade. Also present are sequences from some Chloroflexota, Firmicutes D, 

Desulfobacterota, a single Nitrospirota, and a single Planctomycetota. 

Clade B is predominated by Campylobacterota, Firmicutes A, and Firmicutes C. Some 

Actinobacteriota sequences are included, along with a branch with similar composition to 

clade A. Notably, clade B includes many clusters of very similar sequences with very 

short branch lengths, all found in likely very similar Clostridia species from similar 

‘Host-Associated’ environments. The frequency of these sequences may be more 

indicative of a bias towards human microbiome samples in the GEMs dataset and does 

not necessarily reflect the abundance of the clade. 

Clade C consists mostly of protein sequences found in MAGs from the phylum 

Firmicutes A. A few clade C sequences are from Crenarcheaota, Euryarcheaota, 

Firmicutes B, Firmicutes C, and Halobacterota MAGs. Clade C also has short branch 

length clusters similar to clade B. 

Clade D contains sequences from a more diverse set of phyla including Actinobacteriota, 

Chloroflexota, Crenarcheaota, Desulfobacterota and Desulfobacterota B, Euryarchaeota, 

Firmicutes A through D, and Halobacterota. Additionally, a single protein sequence from 

Planctomycetota was included. 

Clade E is the largest of the clades but is less diverse than its size would suggest. The 

clade is mostly made up of Desulfobacterota, but also includes branches of sequences 

from Actinobacteriota, Chloroflexota, Desulfobacterota B, Firmicutes A B and D, 

Halobacterota, Nitrospirota, and Plactomycetota. Notably, clade E contains the majority 

of branches belonging to Nitrospirota and Planctomycetota MAGs, with both phyla 

typically not previously associated with carboxydotrophy. Interestingly, there is one clade 

E branch closely related to clade F that includes some sequences from the archaeal phyla 

Crenarchaeota and Euryarchaeota. This is of note due to the previously reported 

association of archaea with Clade A. The presence of archaeal CODHs in clades typically 

associated with bacteria may be an indication of horizontal gene transfer. 

Clade F is mostly composed of sequences from Firmicutes B and D, with sequences from 

Desulfobacterota and Halobacterota are also being minor constituents of this clade. Some 

sequences from Chloroflexota, Firmicutes A and C, Nitrospirota, and Planctomycetota 

are also present. Clade F additionally includes a single sequence found in a 

Campylobacterota MAG. 

Clade G was originally reported with a single CooS sequence from a 

Deltaproteobacterium MAG (Inoue et al., 2019). Our results have further populated this 

clade. Clade G is here mostly composed of other Desulfobacterota (previously classified 
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as Deltaproteobacteria), along with some sequences from Firmicutes B and C, and a 

single sequence from Chloroflexota. This taxonomic distribution is most similar to the 

distribution of phyla found populating clades E and F. 

 

3.2 Environmental Distribution Among Clades 

CODH hits from the HMM were present in metagenomes from a wide variety of 

environments. When grouped by broad GOLD ecosystem categories, as shown in Figure 

11, the different clades do not appear to have any clear ecosystem-related patterns besides 

a grouping of sequences from 'Host-associated' metagenomes. 'Host-associated' 

sequences make up a substantial majority of clades B and C, and a branch of clade E. 

Other clades do not have consistent patterns in reported source environment, suggesting 

that generalized environmental conditions do not clearly the impact evolution of CODHs. 

Many 'Host-associated' branches appear to be composed of very similar sequences, 

indicating that their clustering may be caused more by their being from MAGs of closely 

related species rather than being from similar 'Host-associated' environments. 

3.3 Distribution of Taxa Among Environments 

Among putative CODH containing MAGs from 'Host-associated' environments, 

Firmicutes A and C dominated (Figure 12). These MAGs were almost entirely Clostridia 

from human digestive system metagenomes. Firmicutes A and C also made up the 

majority of sequences from ‘built environment’ MAGs, which were largely metagenomes 

from New York City subway benches collected by Afshinnekoo et al. (2015), likely 

human associated, and also belonging to the class Clostridia. CODH protein sequence 

hits from Chloroflexota, Desulfobacterota, and Halobacterota were found to be abundant 

in all environmental categories excluding ‘Host-associated’ (Figure 13). Crenarchaeota 

sourced CODH sequences were primarily found in 'Thermal Springs' environments and 

Actinobacteriota sequences were primarily in 'Terrestrial' environments. Euryarchaeota 

CODHs were markedly present in wastewater and bioreactor metagenomes. 
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Figure 12. Bar chart showing taxonomic diversity of CODHs among different GOLD 

ecosystem categories at the phylum level. Frequency indicates the count of CODH 

containing MAGs for given conditions. 
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Figure 13. Bar chart showing diversity of source ecosystems among different CODHs at 

the phylum level. Frequency indicates the count of CODH containing MAGs for given 

conditions.  

 

3.4 Performance of Recurrent Neural Network Model 

After the initial training epoch, the GO label predictive machine learning model achieved 

a binary accuracy of 98.98% on validation data. After the fifth and final training epoch, 

the model reported a binary accuracy of 99.4%. Verifying the model on the held out 15% 

of the training data yielded an overall accuracy of 98.8%, with generally high precision, 

recall, and f1 score metrics for both 'Methanogenesis' and 'Acetyl-CoA metabolic process' 

labels. Accuracy, precision, recall, and f1 are all standard metrics for assessing 

performance of machine learning models. These metrics suggest the model to be high 

performing and capable of accurately predicting assignment of the two GO labels for 

input protein sequences. 

Applying the machine learning predictions to the putative CODH protein sequences 

yielded unexpected results, however. Despite methanogenesis pathways being known as 

exclusive to Archaea, the model assigned 'Methanogenesis' labels to sequences from both 

Bacteria and Archaea across the phylogenetic tree. Approximately 11% of all input CooS 

sequences were predicted with the 'Methanogenesis' label, with no clear patterns in 

taxonomy, phylogeny, or source environment among those predictions. The 'Acetyl-CoA 

metabolic process' label, despite not being known to be limited to Archaea, appeared to 

be noticeably biased towards being assigned to archaeal sequences by the model. Almost 
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all the sequences assigned this label were concentrated in clade A or in a clade F branch 

of predominantly Halobacterota sequences. 47.6% of Archaeal sequences were assigned 

the 'Acetyl-CoA metabolic process' label by the model, contrasted with only 2.5% of 

bacterial sequences being assigned the label. 25% of sequences from 'Thermal Springs' 

were assigned the label, with other ecosystem categories having around 18% of their 

sequences labelled. Some of the sequences included in the phylogeny from non-

metagenomic sources were also included in the ML model training data. These sequences 

appeared to be labelled with appropriate GO terms by the model, as expected. 

 



31 

4 Discussion 

In this study putative CODH protein sequences were found in MAGs from a wide range 

of environments and phyla, extending their distribution far beyond the extreme 

environments and extremophilic organisms CODHs are often associated with. The 

presence of CODHs in diverse environments such as marine and freshwater, soils and 

deep subsurface, digestive systems, thermal springs, wastewater, and subway benches 

suggests a broader ecological significance beyond an ancient yet fringe carbon fixation 

pathway. Due to the versatile nature of the enzyme complex, however, it is currently 

unclear which pathways are being utilized in each of these environments. As many of the 

environments CODH encoding MAGs were present in do not have obvious sources of 

abundant CO, we speculate that these microbes may instead be using biogenically 

sourced CO produced by other organisms. Previous work has shown that both 

methanogens and sulfate reducers can produce CO as part of their metabolism, providing 

plausible sources of such biogenic CO (Voordouw et al., 2002). 

Many MAGs additionally encode multiple different putative CODH proteins (Table S2), 

a phenomenon also observed in previous studies, further suggesting that these CODHs 

may be contributing to a variety of different pathways within a given environment (Wu et 

al., 2005; Techtmann et al., 2012). Each of the CODH copies, in most cases, appeared in 

different clades despite being from the same MAG; providing further evidence that 

CODHs could be involved in multiple different pathways, even within a single organism. 

The presence of multiple CODHs within a MAG, each found in different clades, 

additionally provides support for the assertion that CODHs have undergone horizontal 

gene transfer events. If these sequences were the result of gene duplication, the sequences 

would be phylogenetically very similar and therefore would be expected to be found 

within the same clade. Additionally, such horizontal gene transfer events have been 

previously reported for CODHs (Techtmann et al., 2012; Adam et al., 2018). It is also 

possible, however, that cases where a MAG appears to encode an extra CODH with no 

close same-phylum relatives could instead be the product of metagenomic binning 

artifacts or chimera sequences. Addressing this, the datasets used only included medium 

and high quality MAGs, which according to the MIMAG standard must have less than 

10% contamination (Bowers et al., 2017). The overall mean contamination of MAGs in 

the GEMs dataset was 1.3%, indicating that binning artifacts and chimeric MAGs are 

unlikely in the dataset (Nayfach et al., 2021). Cases where a multitude of similar MAGs 

exhibit this phenomenon are therefore much more likely to be the result of gene transfer 

events. 

The observed trend of large clustering of CODH sequences from host-associated 

metagenomes is likely due to a bias in the GEMs dataset towards human host-associated 

metagenomes. Many of the host-associated clusters are not deeply branching, suggesting 

that the member sequences of the cluster are very similar with very small branch lengths 

between tips in those clades. Most of these host associated CODHs were found in 

Clostridia MAGs. Considering these effects of sampling bias, there do not appear to be 

any other clear trends between clade membership and environmental source. This 

suggests that the evolution of CODHs is generally independent of environment, and that 
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although CODHs from different clades could perform different functions, those functions 

do not appear to be restricted or driven by the ecosystem category in which they are 

found. It is still possible that more specific environmental parameters, such as 

temperature, light, or oxygen levels, which could vary within an ecosystem category, 

could direct CODH evolution. As these kinds of environmental parameters are known to 

influence microbial activity, they are a clear next step in investigating CODH evolution.  

Beyond generalized trends, the specific phyla to which putative CODH containing MAGs 

belong are also noteworthy. Many CODHs were found in MAGs from known and 

expected carboxydotrophic phyla, such as Halobacterota, Desulfobacterota, and 

Chloroflexota. CODHs were also found in MAGs from phyla that contain members only 

recently considered to perform CO metabolism, such as Actinobacterota and 

Planctomycetota (Jiao et al., 2021). Unlike the aforementioned carboxydotrophic phyla 

including Halobacterota or Desulfobacterota, the mechanisms and function of CODH 

activity is still not completely understood in Actinobacterota and Planctomycetota.  

CODHs were additionally found in MAGs from multiple poorly characterized phyla, 

including Armatimonadetes, Omnitrophota, Bipolaricaulota, and others. While the 

presence of putative CODH proteins does not directly reveal the functional capabilities of 

members of these phyla, the ability to encode CODHs lends strong support to hypotheses 

that these organisms have the potential to use CO as a metabolic intermediate in their 

metabolism. It’s possible that these CODHs could be used in performing 

hydrogenogenesis, methanogenesis, or acetogenesis through CO metabolism and the 

Wood-Ljungdahl pathway. More targeted research will be necessary to more completely 

elucidate the metabolic abilities of these organisms and how they are using CO. 

To explore solely using sequences to identify metabolic potential, we constructed a 

predictive model to predict GO-terms from amino acid sequence. The GO-term predictive 

model, from available metrics, is highly effective at accurately labelling protein 

sequences with 'Methanogenesis' and 'Acetyl-CoA metabolic process' GO pathway labels. 

Additionally, the t-SNE plots suggest that the initial vectorization step is able to capture 

meaningful biological context from input amino acid trimer 'words'. This biological 

context is passed as input for the recurrent neural network portion of the model, which 

can continue maintenance of contextual information, as well as further considering 

context from position in the input sequence. As such, the model's predictions likely have 

some biological foundation beyond simple sequence similarity. While other similar 

machine learning studies have generally been successful at prediction of protein 

characteristics, including GO labels, and other biological predictive tasks (Gligorijević et 

al., 2021), applying text vectorization strategies to amino acid sequences is a novel 

approach to provide additional biological context to protein identification machine 

learning models.  

Although the model appears to be quite effective at assigning sequences into the two GO 

terms of methanogensis and acetogenesis, when its predictions were applied to putative 

CODH sequences from MAGs, the results did not match expectations. It was expected 

that CODHs involved in methanogenesis would be restricted to the archaea, as 
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methanogenesis via CODHs is exclusively found in the archaea. Conversely, we expected 

that acetogenesis would be distributed amongst both the bacteria and the archaea. Our 

results, however, show that the methanogenesis label was given to sequences from both 

archaea and bacteria. While it is possible that the predictions are still highly accurate and 

highly unexpected, it is much more likely that the task assigned to the model and the task 

intended for the model did not match. The data used to train the model to predict GO 

labels may not have been high enough quality, and the model may have learned patterns 

and biases outside of the labels' intended meanings. Both 'Methanogenesis' and 'Acetyl-

CoA metabolic process' labels are GO pathway labels, which incorporate proteins from 

the entirety of the pathway, potentially resulting in a too-diverse collection of sequences. 

Additionally, a minority of Uniprot sequences are manually and confidently assigned GO 

labels and a majority of sequences are assigned labels with an automated method based 

on similarity. Although automated assignments are generally reliable, it is possible for 

automated annotation to mislabel some proteins. We used both manually and 

automatically annotated sequences due to the limited number of sequences within these 

two GO term categories that had been manually curated. The quantity and diversity of 

database sequences is limited to the number of experiments done to find them; proteins 

less frequently studied - CODHs among them - will have poorer database representations. 

For these described reasons, the training data used for the model may have led it to 

ultimately make erroneous 'Methanogenesis' label predictions. The 'Acetyl-CoA 

metabolic process' label appears to still be effective at predicting Wood-Ljungdahl 

pathway functionality at some level, although that is distinct from the intended scope of 

the label.  

DeepFRI, a similar neural network model for predicting GO labels for input protein 

sequences, gave similarly erroneous results to the predictive model described here when 

applied to putative CODH sequences. Scrutinizing the training data used by DeepFRI 

revealed that CODH proteins, and proteins with related functions, were completely 

absent. Without similar sequences in the dataset, and therefore having complete training 

data appropriate for the assigned task, it is unreasonable to expect meaningful predictions 

from the model. As an additional but likely less impactful confounding factor, both GO-

term labelling predictive models were trained using complete sequences from Uniprot but 

were applied to proteins from MAGs that may not be complete, further reducing model 

performance. 

With CO metabolism proposed as the ancient carbon fixation mechanism for the LUCA, 

understanding the mechanisms and evolution of this pathway is key to understanding 

early evolution on Earth or in astrobiological contexts. More fully understanding these 

mechanisms will require further research experimentally characterizing and confirming 

the broad diversity present in CODHs shown in this study. For example, CODH 

encoders, or their CODH proteins, could be individually isolated and analyzed to confirm 

which pathways, if any, these complexes are involved in throughout non-thermophilic 

communities. Additionally, as CODHs are able to reversibly catalyze the reaction of CO 

→ CO2, understanding if these diverse CODH enzymes are primarily using CO or CO2 as 

their input is important to deduce the kinds of metabolic pathways these enzymes 

facilitate (Hadj-Saïd et al., 2015). Current sequence based approaches, as previously 
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described, are lacking in their ability to answer these functional questions for CODHs; 

based solely on sequence data, neither the directionality or pathway involvement of a 

CODH can be readily discerned. This highlights the need for further experimental data to 

elucidate the mechanisms of diverse CODHs and to inform the development of more 

advanced sequence based approaches to their prediction.  

Machine learning has been shown to be a promising approach to predicting protein 

functions, but high-quality training data is severely lacking for CODHs and their range of 

functions. Experimentally collecting a large dataset of ideal training data based on 

biochemical data would be an impossibly monumental task due to the difficulty of 

isolating these organisms, challenges associated with high throughput protein expression 

and purification, among other challenges. So a different approach to model training may 

be necessary. Future models may instead rely on additional information from genomic 

context, active sites, or predicted protein folding from programs such as Alphafold 

(Jumper et al., 2021) to make predictions; with genomic context likely being the most 

feasible information source to incorporate. Future models predicting CODH function may 

also rely more on data clustering rather than defined label categorization, limiting the 

depth of training data necessary. With a known set of possible CODH functions, putative 

CODH sequences could hypothetically be clustered based on sequence features or 

recruitment to limited representative sequences; each cluster being indicative of one of 

the possible functions. 

The expansion of CODH phylogeny with over 5000 putative CODHs performed in this 

study has provided substantial support for the previously established clades of the CooS 

protein. The broad diversity in taxa and environments of MAGs found to encode these 

CODHs provides a basis for future research to investigate the functions of CODH 

enzymes beyond the Wood-Ljungdahl pathway in extremophiles. This diversity also 

further illustrates the need for understanding the ecological role of CODHs; an enzyme 

found everywhere from thermal springs to subway benches is sure to be biologically 

significant. 
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6 Supplemental Data 

Higher resolution PDF formatted versions of Figures 9 through 11 are available at 

https://github.com/isbigcra/ThermalSpringsAndSubwayBenches. Compared to the 

versions presented here, the PDF versions allow for much more magnification to more 

fully and effectively explore the breadth of data presented. 

 

Table S2. Number of MAGs containing multiple putative CODHs. 

 

Number of 

CODHs in 

MAG 

MAG Count 

1 3018 

2 745 

3 202 

4 63 

5 12 

 

 

Table S3. Proportion of GEMs dataset MAGs containing putative CODHs grouped by 

their assigned phylum-level taxonomy, sorted by number of CODHs found. Taxonomy 

was originally assigned to MAGs using GTDB (Chaumeil et al., 2020). 

 

Phylum-level Taxon 

MAG 

Count 
CODH Count 

Proportion 

of CODHs 

Found 

Firmicutes A 8376 925 0.110 

Desulfobacterota 975 584 0.598 

Halobacterota 764 431 0.564 

Chloroflexota 1141 294 0.257 

Firmicutes C 1222 254 0.207 

Crenarchaeota 1040 166 0.159 

Firmicutes B 184 86 0.467 

https://github.com/isbigcra/ThermalSpringsAndSubwayBenches
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Phylum-level Taxon 

MAG 

Count 
CODH Count 

Proportion 

of CODHs 

Found 

Actinobacteriota 4009 83 0.020 

Desulfobacterota B 87 77 0.885 

Euryarchaeota 137 77 0.562 

Nitrospirota 167 56 0.335 

Firmicutes D 84 53 0.630 

Planctomycetota 902 53 0.058 

Campylobacterota 364 51 0.140 

Bacteroidota 8868 41 0.004 

Spirochaetota 533 39 0.073 

Thermoplasmatota 621 35 0.056 

Bipolaricaulota 72 26 0.361 

Omnitrophota 259 26 0.100 

Acidobacteriota 742 24 0.032 

Aquificota 53 22 0.415 

Desulfuromonadota 84 16 0.190 

Armatimonadota 155 14 0.090 

Verrucomicrobiota 1382 14 0.010 

Proteobacteria 10606 11 0.001 

Altiarchaeota 26 10 0.384 

Firmicutes F 37 9 0.243 

RBG-13-61-14 10 9 0.900 

Aerophobetota 13 8 0.615 

Unspecified Bacteria 39 8 0.205 

Fibrobacterota 68 8 0.117 
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Phylum-level Taxon 

MAG 

Count 
CODH Count 

Proportion 

of CODHs 

Found 

Hadesarchaeota 20 8 0.400 

JdFR-18 9 7 0.777 

WOR-3 105 7 0.066 

Elusimicrobiota 62 6 0.096 

KSB1 52 6 0.115 

UBP3 15 6 0.400 

Asgardarchaeota 10 5 0.500 

Firmicutes G 142 5 0.035 

MBNT15 17 5 0.294 

Firmicutes E 45 4 0.088 

Latescibacterota 41 4 0.097 

Micrarchaeota 130 4 0.030 

Myxococcota 269 4 0.014 

Nitrospinota 44 4 0.090 

UBP10 86 4 0.046 

AABM5-125-24 21 3 0.142 

Caldisericota 55 3 0.054 

CG03 3 3 1.000 

Deferribacterota 9 3 0.333 

Desantisbacteria 3 3 1.000 

Eremiobacterota 10 3 0.300 

Hydrogenedentota 46 3 0.065 

Nanoarchaeota 258 3 0.011 

Synergistota 152 3 0.019 
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Phylum-level Taxon 

MAG 

Count 
CODH Count 

Proportion 

of CODHs 

Found 

TA06 17 3 0.176 

DTU030 5 2 0.400 

Firestonebacteria 5 2 0.400 

Firmicutes 1936 2 0.001 

Firmicutes H 27 2 0.074 

Methylomirabilota 19 2 0.105 

Moduliflexota 2 2 1.000 

UBA3054 11 2 0.181 

UBA9089 2 2 1.000 

UBP7 14 2 0.142 

Bdellovibrionota 193 1 0.005 

Caldatribacteriota 44 1 0.022 

Calditrichota 8 1 0.125 

CG2-30-53-67 1 1 1.000 

Coprothermobacterota 16 1 0.062 

Eisenbacteria 22 1 0.045 

GWC2-55-46 3 1 0.333 

Margulisbacteria 35 1 0.028 

Patescibacteria 2222 1 0.0005 

Poribacteria 8 1 0.125 

Riflebacteria 15 1 0.066 

SAR324 239 1 0.004 

Thermotogota 201 1 0.004 

UBP1 18 1 0.056 
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Phylum-level Taxon 

MAG 

Count 
CODH Count 

Proportion 

of CODHs 

Found 

UBP18 1 1 1.000 

UBP6 21 1 0.047 
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