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Abstract

Arctic acoustics have been of concern in recent years for the US navy. First-year ice

is now the prevalent factor in ice coverage in the Arctic, which changes the previously

understood acoustic properties. Due to the ice melting each year, anthropogenic

sources in the Arctic region are more common: military exercises, shipping, and

tourism. For the navy, it is of interest to detect, classify, localize, and track these

sources to have situational awareness of these surroundings. Because the sources are

on-water or on-ice, acoustic radiation propagates at a longer distance and so acoustics

are the method by which the sources are detected, classified, localized, and tracked.

These methods are all part of sound navigation and ranging (SONAR).

This dissertation describes algorithms which will better SONAR results without mod-

ification of the sensors or the environment and the process by which to arrive to this

point. The focus is to use supervised machine learning algorithms to facilitate such

technological enhancements. Specifically, neural networks analyze labeled experimen-

tal data from a first-year, shore-fast, shallow and narrow water environment. The

experiments were conducted over the span of three years from 2019 to 2022, mostly

during the months from January to March where ice formed over the Keweenaw Wa-

terway at the Michigan Technological University. All experiments were conducted to

analyze a passive acoustic source; that is, the source was non-cooperative and did not

xxi



send any localizing pings for active SONAR. The experiments were recorded using an

underwater pa-type acoustic vector sensor (AVS). The data and analysis were done

intermittently to update any upcoming experiments with discrepancies found in the

analysis to create a more generalized algorithm.

The work in this dissertation focuses on two topics for passive SONAR: localization

and classification. Because of the “black box” nature in machine learning, tracking

the target source is an extension of localization and thought of as the same goal within

machine learning. To introduce and verify the complexity of the testing environment,

an underwater acoustic simulation is shown with Ray tracing and bathymetry data

to compare with the experimental results used in machine learning. The focus of

the algorithms is to produce the best results for the experiments and compare the

results with traditional methods, such as a simulation or a linear Gaussian localization

with a Kalman filter. Experiments studying neural network types have shown that

the Vision Transformer (ViT) produces excellent results. The ViT is capable of

analyzing acoustic intensity azimuthal spectrogram (azigram) data and localizing a

moving target at high accuracy, and the ViT is capable of classifying multiple acoustic

sources with the acoustic intensity magnitude spectrogram at high accuracy as well.

xxii



Chapter 1

Introduction

1.1 Motivation

It is well known that the global climate change is affecting the Arctic ice layers

[1, 2, 3, 4]. In general, the ice layer formations are much different than those which

were studied in early acoustic experiments. The majority of multi-year pack ice,

which has been extensively studied, is now melting between seasons giving rise to an

increase of annually formed first-year ice [1, 2]. The shore-fast ice sheet has previously

been composed of multi-year ice that travels to shore on currents and gets trapped

in the first-year ice. Due to the overwhelming loss of multi-year ice in the Arctic as a

whole, the near-shore environment is now composed of predominantly first year ice.
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First-year, shore-fast ice is thinner, more saline, and of different density and strength

than multi-year ice [5, 6] and is deserving of specific study into its acoustic properties.

In addition, this changing Arctic environment warrants new investigation into the

acoustic detection, identification, and tracking of anthropogenic sources. Because

there is less ice in the Arctic environment for longer time periods during the year,

there is expected to be increased near-shore anthropogenic activity [7, 8, 9, 10, 11].

This activity may come in the form of Arctic shipping through the Northwest Pas-

sage, natural resource exploration, tourism, and both foreign and domestic military

activity. It is of interest to determine the location and type of these anthropogenic

sources for situational awareness in the ocean battlespace. Sensing of sources in the

first-year shore-fast ice environment is non-trivial due to ice ridging and ever-changing

ice movements. Furthermore, first-year, near-shore ice is not well understood in terms

of acoustic properties. Therefore, new data are required to understand the acoustic

transmission paths in the first-year, near-shore ice environment and to validate algo-

rithms for detection, identification, and tracking of anthropogenic sources in shallow

water (less than 50 meters) with thin, irregular ice sheets.

New data analysis techniques are explored to adaptively respond to the chaotic under-

ice environment in the Arctic near-shore zones. The ice bottom-profiles are constantly

changing making a fixed localization algorithm sensitive to errors due to the chang-

ing acoustic scattering field. Modern deep learning approaches, enabled by major

2



advances in computational hardware and software architectures, have shown to be

very effective for localization, tracking, and classification problems, and are the win-

ning approaches in nearly every major pattern recognition challenge. Deep learning

approaches require large databases of existing labeled data: data for which the answer

is known—in this case, the location and class of the anthropogenic source. Deep learn-

ing algorithms essentially learn implicit models from these labeled data to produce

predictions from future measured data.

1.2 Objectives

This dissertation will focus on practical applications to machine learning in the on-

ice and underwater acoustic environment. The applications fall under any portion

of SONAR, be it detection, classification, and localization. The objectives are as

follows:

† Prepare a test set up for on-ice and under-ice experiments to generate labeled

anthropogenic acoustic data for use with deep neural networks.

† Determine optimal pre-processing methods for acoustic vector sensor data be-

fore being analyzed by deep neural networks.

† Compare the effectiveness of various neural network architecture types for on-ice

3



and underwater acoustic source localization and tracking.

† Compare the effectiveness of various neural network architecture types for on-ice

and underwater acoustic source classification.

† Determine an understanding as to why certain neural network architectures

may perform better than others for on-ice and underwater sensing applications.

1.3 Layout of Chapters

Chapter 2 is a reprint of a Journal of the Acoustical Society of America (JASA)

article, titled Recurrent networks for direction-of-arrival identification of an acoustic

source in a shallow water channel using a vector sensor [12]. The article describes the

incremental progress found when studying a deep neural network utilizing an LSTM.

The data was conducted over June 2020 using a boat from the Great Lakes Research

Center at Michigan Technological University and a handheld GPS receiver to track its

position while simultaneously recording the boat’s acoustic signature with one Meggit

VS-209 acoustic vector sensor (AVS). With a single AVS receiver, only direction of

arrival could be determined, and as such, an additional AVS set up was required for

true localization, which leads to the next chapter.

Chapter 3 is a reprint of a Multidisciplinary Digital Publishing Institute (MDPI)

4



Sensors journal article, titled Through-ice Acoustic Source Tracking Using Vision

Transformers with Ordinal Classification [13]. The Sensors article is a continuation

of a International joint conference on neural networks (IJCNN) conference proceed-

ing, titled Uncertain Inference Using Ordinal Classification in Deep Networks for

Acoustic Localization [14]. The article describes a novel approach to localization,

using an ordinal classification approach. The initial study for ordinal classification

attempted to find a measure of uncertainty in the neural network prediction, but two

other benefits to ordinal classification were found. The two benefits were a higher

accuracy for certain networks and a simpler method to constrain prediction results.

The article pushes a newer type of network, a Vision Transformer (ViT) that per-

formed exceptionally well. With localization analyzed with a ViT, the next chapter

discusses classification using the ViT.

Chapter 4 is a reprint of a Proceedings of Meetings in Acoustics (POMA), titled Using

Vision Transformers for classification of through-ice acoustic sources [15]. With the

success of the ViT found in localization, we extended these results to classifying

multiple acoustic targets with great success too. The discrepancy between classes

limits the extend of this paper with certain classes having a small number of samples

while other classes have a high number of samples. This chapter shows the feasibility

of classifying acoustic sources in a first-year ice environment using machine learning.

Chapter 5 is the concluding remarks about the dissertation and what can be used
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with this analysis, as well as what further studies can be continued after analyzing

this data.
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Chapter 2

Recurrent networks for DOA

identification of an acoustic source

in a shallow water channel using a

vector sensor

This chapter is a reprint of a JASA article on DOA estimation [12]. The permission

for reprint has been given in Appendix B.1. Reproduced from “Recurrent networks for

direction-of-arrival identification of an acoustic source in a shallow water channel using

a vector sensor.” The Journal of the Acoustical Society of America, 150(1):111–119,

July 2021, with the permission of AIP Publishing [12]. Copyright 2021, Acoustic
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Society of America.

2.1 Introduction

Source DOA estimation in shallow water has seen strong advancements for applied

water acoustics in the past decade with success specifically in machine learning [16,

17, 18]. It is of interest to determine the location of anthropogenic sources for many

applications: naval operations, merchant shipping, and environmental studies, to

name a few. Using neural networks to estimate the DOA of an underwater acoustic

source is of recent interest, including the use of multi-layer perceptron (MLP) networks

[19, 20, 21], convolutional neural networks (CNNs) [22, 23], and recurrent neural

networks (RNNs) [24, 25].

This paper discusses conventional and machine learning methods of improving surface-

water angle-finding utilizing a single underwater acoustic vector sensor (AVS). Gen-

erally, multiple sensors working together are required to find the angle-of-arrival of a

signal source [19, 26, 27]. A pressure-particle acceleration (pa) AVS is capable of de-

termining the angle-of-arrival with a triaxial piezoelectric accelerometer in a neutrally

buoyant body. The triaxial accelerometer in the AVS generates a vector quantity of

the DOA of the acoustic wave[28, 29, 30]. There are different types of AVSs: pressure-

particle velocity (pu), pressure-particle acceleration (pa), pressure-pressure (pp), and
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particle velocity-particle velocity (uu); all have their advantages and disadvantages.

This paper solely discusses angle-finding utilizing a Meggitt VS-209 underwater pa

AVS for its broader frequency response, though the methods described here would

generalize to any AVS.

We will investigate a shallow RNN architecture and a deep RNN architecture as the

machine learning algorithms in the paper. The parameters, such as the inner node

lengths and depth of the network, were tested and compared for accuracy. The best

models we found with our data are shown in Section 2.4.

2.2 Materials and methods

2.2.1 Acoustic vector sensor

The Meggitt VS-209 AVS consists of a hydrophone and a triaxial accelerometer ori-

ented with its −x, −y, and −z orientations—as shown in Fig. 2.1—with respect to

the physical sensor’s orientation. The underwater pa-type AVS records the parti-

cle acceleration in three orthogonal axes together with a scalar underwater sound

pressure measurement. The particle acceleration and sound pressure are combine to

produce a sound intensity vector, where the intensity vector contains the strength

and angle-of-arrival of all the incident wavefronts.
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Figure 2.1: Underwater acoustic vector sensor (AVS) accelerometer orien-
tation

2.2.2 Acoustic post-processing

The estimation techniques in this paper require some post-processing of the AVS data.

Let ax(t), ay(t), and az(t) be the three components of the time-domain accelerometer

data, and p(t) be the pressure time-series data from the underwater pa-AVS. To

account for sensor bandwidth and noise, the sensor measurements are first projected

into the frequency domain, where ax(ω) = F(ax(t)) is the Fourier transform of ax(t),

and respectively for each component of the sensor data. Since we are concerned with

a moving acoustic source, a short-time Fourier transform (STFT) facilitates its time-

dependence. Using the STFT, we compute Ax, Ay, Az, P ∈ CN×T for the respective

three time-domain accelerometer data and hydrophone data where N is the block-size

of the STFT and T is the number of time-series samples divided by the block-size,

rounded down. Eqs. (2.1) and (2.2) are computed along each axis with only the x-axis

shown for brevity. The measurements are composed into the crosspower spectra, via

GAxP = A∗xP, (2.1)
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where A∗x is the complex conjugate of the frequency domain accelerometer data in

the x-axis direction and P is the pressure vector. With the crosspower spectra,

GAxP ∈ CN×T , the acoustic intensity is computed as

Ix = R
{
GAxP

jω

}
, (2.2)

where Ix ∈ RN×T are the active intensity levels in the x-axis direction. The intensities

are computed for all three axes, i.e., the x-, y-, and z-directions corresponding to the

3-axis accelerometer. With the three AVS-relative intensity orientations, an intensity

vector, Ir = (Ix, Iy, Iz)
T ∈ R3×N×T , can be composed. The intensity vector is relative

to the orientation of the AVS, as shown in Fig. 2.1.

The Meggitt VS-209 AVS has a magnetic heading sensor and a gravitational sensor

to remove any relative orientation in data collection. The pitch, roll, and heading are

the respective rotations along the x-, y-, and z-axes in Fig. 2.1. A rotation matrix,

Qfixed, is calculated from the magnetic and gravitational sensors [31], such that

Ig =


Iwest

Inorth

Iup

 = QT
fixedIr = QT

fixed


Ix

Iy

Iz

 . (2.3)

After the rotation, the intensity vector Ig is no longer oriented with respect to the

sensor’s orientation; instead, it is oriented relative to magnetic North and the gravity
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vector. We call this a global coordinate system, and global angle measurements are

now considered for localization.

The re-oriented intensity vector, Ig = (Iwest, Inorth, Iup)
T , is then converted to a spher-

ical coordinate system with

|I| =
√
I2north + I2west + I2up, (2.4a)

Θ = arctan
Iwest

Inorth
, (2.4b)

Φ = arctan
Iup√

I2north + I2west

, (2.4c)

where |I|, Θ, and Φ are the magnitude of the acoustic intensity vector, azimuth angle,

and elevation angle of the received signal, respectively. Notice that each of these is

a function of frequency and time. The magnitude of the intensity vector shows the

signal strength at each frequency at a specific time. |I| is an indicator of the signal-

to-noise ratio (SNR) in the system. The two angles show the DOA of the incident

sound wave at each frequency at a specific time. If a particular magnitude of the

signal, |Iωi,ti |, is at the noise floor, then the associated angle of arrivals, θωi,ti and

φωi,ti , correspond to a DOA of noise; therefore, the measurement at that frequency is

not a useful measurement. A noise gate is used to remove these angles at the noise

floor in post-processing. Table 2.1 shows the post-processing parameters used in this

paper.
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Table 2.1
Post-processing Parameters

Parameter Value
Sample Rate 17067 Hz

STFT Block-size 1706 Samples
STFT Zero Padding 1024 Samples

Noise Gate Threshold −40 dB (re 1 pW/m2)
Frequency Range 100− 8000 Hz

In the experiments in this paper, all signal sources are assumed to be on the surface of

the water; hence, we only need to estimate the azimuth angle Θ from the AVS signals.

Also note that this paper focuses on DOA estimation; so, range is not of interest. To

determine the estimated azimuth angle, θ∗, of the signal source in our experiment, Θ

must be processed along its frequency axis into a single angle prediction at each time

step, such that

θ∗t = f(θf,t). (2.5)

To process Θ in a machine learning approach, a linear regression—i.e., single-layer

perceptron (SLP) network—can be trained to output θ∗ using the input Θ. Compar-

atively, a conventional approach can average Θ along its frequency axis to generate a

θ∗ angle prediction.

After processing Θ to estimate θ∗, time-series filtering can be performed to smooth out

the effect of noise and outliers to generate more realistic results. Considering machine

learning, our hypothesis is that an RNN architecture can be trained to output a better

estimate of θ∗ than conventional averaging, enhancing the localization performance
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of the AVS.

2.2.3 Weighted average

We use a weighted average with our experimental data to demonstrate a conventional

approach for combining the predicted DOA of an acoustic signal from an AVS. For

each frequency component in the AVS signal, there is an angle measurement Θ and

intensity measurement |I|. The intensity measurement is directly proportional to

the SNR; hence, the intensity is used as a weight for the angle measurement. The

sampled-based average of the weighted angles are the estimated θ∗. It follows that

θ∗avg =

∑N
i=1 |Ifi|θfi∑N
i=1 |Ifi |

, (2.6)

with the intensities, I, in decibel (dB) scale normalized on the interval [0, 1], and each

fi term corresponds to a frequency bin from i = 1, 2, ..., N . This estimate gives more

weight to an angle that has a stronger corresponding intensity, with the assumption

that this signal is emanating from the direct path of the source to be localized. This

approach works well with high SNR measurements [29], though the results deteriorate

appreciably with band-limited, low SNR responses, as demonstrated in Section 2.5.

When the acoustic source generates a strong signal, the acoustic intensity, I, at that

point dominates the weighted average, while a weak signal will vary greatly depending
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upon the noise. To address this degraded performance with low SNR measurements,

we next explore use of an SLP as an alternative approach to estimate DOA.

2.2.4 SLP network

While the weighted average is a reasonable approach for processing the AVS measure-

ments into a predicted DOA, there are numerous sources of error which are not taken

into account. The source may be a band-limited signal and thus only be present in

certain frequencies; there may be signal outside these bands that emanates from other

sources, say marine mammals, other underwater activity, or noise. Hence, in order to

implicitly learn the best relationship between the AVS measurements, |I| and θ, we

will employ machine learning, specifically a neural network. For this experiment, we

use an SLP network regression to process the frequency domain of the signal. The

SLP network processes the frequency domain angle measurements by

θ∗t =
N∑

f=1

wfθf,t + b, ∀t, (2.7)

where wf is a vector of weights for each frequency bin in θt and b is a scalar bias. In

essence, if wf = 1/N , ∀f , where N is the number of frequency bins, and b = 0, then

the neural network would estimate a non-weighted average of the angle measurements

across the frequency axis. To create a weighted average, the neural network learns wf
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and b such that it minimizes E, with respect to the root-mean squared error (RMSE),

E =

√√√√ 1

T

T∑
t=1

‖θ∗t − θtruet ‖2, (2.8)

where θtruet is the true angle measurement (or label) and the neural network predicts

θ∗t at each time step, t.

Since the AVS is the source of the angle measurements, the neural network must

minimize a modified RMSE that considers the AVS’s polar nature. The angle mea-

surements for the noise source are wrapped around a −180◦ and 180◦ range, so a

circular RMSE where the error is the difference between two angles is necessary. This

is important because a prediction that is at −179◦ with a true angle at 181◦ should

have an angle difference of 2◦. A standard RMSE would have an angle difference of

358◦, overly penalizing this small error. The circular mean squared error that the

neural network incorporates is

E =

√√√√ 1

T

T∑
t=1

∣∣∣∣arctan
sin dt
cos dt

∣∣∣∣2 (2.9)

where dt = ||θ∗t − θtruet ||1 is the absolute difference of predicted angle and truth angle

at each time step, t. The SLP processes the AVS measurements in a linear fashion—

see Eq. (2.7)—hence, this algorithm may be unable to capture non-linearity present

in the system. Thus, we next describe a neural network architecture that can better
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model non-linearities.

2.2.5 Recurrent neural network

The SLP network is useful in determining the frequencies at which a band-limited

signal is present; the learned weights wf in Eq. (2.7) show how the SLP weights the

measurements at each frequency. On the other hand, the SLP architecture does not

handle time-dependent parameters or non-linearity in the environment. Following

Eq. (2.7), the SLP estimates at each time step, t, calculated independently of one

another. However, an RNN considers the current and previous samples [32]. Thus,

an RNN is better able to handle temporal aspects of the signal, creating a time-

dependency in its predictions from looking at previous samples. We use a conventional

form of an RNN, a fully recurrent neural network with no gates as a basis for the

simplest neural network model. A fully RNN predicts with n previous samples and

its current sample,

ht−n = wTθt−n + hT
t−n−1θt−n−1, (2.10)
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where w and h are trainable parameters. Eq. (2.10) is repeated n times, for each θt

until

ht = wTθt + hT
t−1θt−1 (2.11a)

θ∗RNN = hT
t θt + b, (2.11b)

where b is also a trainable bias parameter. There is an inherent issue with fully RNN

architectures where w is back-propagated n times during training. The issue arises

with values significantly greater than 1 or significantly less than 1 cause very large

gradient or close to zero gradients respectively [33]. For example, with n = 20 and

w = 1.4, the gradient would increase to 1.420 = 836. An SLP is used to reduce the

dimensionality of the RNN backbone and a small n value is used to prevent forms of

the gradient descent failing due to this issue. The weights in the RNN—w, h, and b—

are learned using the truncated back-propagation through time (TBPTT) algorithm

[34] to minimize E in Eq. (2.9).

The output of an RNN is either multi-input, multi-output (MIMO) or multi-input,

single-output (MISO), shown in Fig. 2.2. In this paper, the MIMO-type RNN is used

for internal layers. With the output of the MIMO-type RNN having the same vector

length as the input, the internal layers can be connected multiple times, permitting

use of a deep neural network (DNN) architecture. The MISO-type RNN is used for

the final prediction layer so that a single prediction is made, θ∗. The MISO-type
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(a) (b)

Figure 2.2: (a) Multi-input, multi-output RNN and (b) multi-input, single-
output RNN

RNN is useful for predicting a single angle measurement based off of the previous

n samples. A combination of both the SLP network and the RNN network can be

combined such that the output of one network is the input of another. Now that we

have described the basis of the three main algorithms we will use for predicting DOA,

we turn to our experiments.

2.3 Experiments

To record angle data, we staged collections from three events on the Keweenaw

Portage Waterway in Houghton, Michigan, on July 14, July 27, and August 18, 2020.

Fig. 2.3 shows the location of the Keweenaw Portage Waterway in Michigan. The

events consisted of driving a boat near the AVS while recording the boat’s GPS posi-

tion at a 1 Hz sample rate. The three experiments total roughly 79 minutes of GPS

and acoustic data. A bathymetric cross section and measured sound speed profile

is shown in the Section 2.6. The sensor data were recorded using a data acquisi-
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Figure 2.3: Experiment location at Keweenaw Portage Waterway, (A) lo-
cation in upper peninsula of Michigan, (B) location in Keweenaw peninsula,
and (C) on-site location of experiment.

tion (DAQ) unit, the National-Instruments (NI) cRIO-9035, which has 8 slots for NI

C-series modules. The C-series modules used in this setup were two NI-9234 analog-

to-digital converters (ADC) for reading the acoustic data, one NI-9467 GPS receiver

for timing and location, and one NI-9344 switch module for system-related control.

The NI-9234 ADC has 24-bit precision and stored each data point as a 32-bit, single

floating point number. The acoustic data collected on the cRIO-9035 were sampled

at 17.067 kHz and chunked into 4-minute intervals. These intervals are continuous,

meaning that there is no missing data between each 4-minute interval. The 17.067

kHz sample rate was used since this rate is the closest discrete range that the NI-9234

module has above the Meggitt VS-209 pa-AVS 3-dB frequency cutoff above 7 kHz.
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Figure 2.4: First experiment’s GPS data

The post-processing of these data, described in Table 2.1, converts the 17.067 kHz

sampled data into 1, 023 frequency bins at a block-size of 0.1 seconds using the STFT.

The four AVS channels are used to generate Θ in Eq. (2.4). Since the GPS data were

recorded at 1 Hz, we linearly interpolated between GPS measurements to match the

time interval at which the AVS data were post-processed. Fig. 2.4 shows the 1 Hz

rate at which the GPS locations were mapped onto the Keweenaw Portage Waterway.

2.4 Architectures

Table 2.2 shows the parameters used within the two compared RNN architectures

and Table 2.3 shows the layer structures, which are illustrated visually in Fig. 2.5.

The optimizer used is stochastic gradient descent (SGD) with a learning rate of 0.01.

No activation function is used on the output layer of the neural network to prevent

any skewing of the angle measurement data. The experimental data is split between

training and testing for the machine learning algorithm 20 times, so that 20 different
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(a) (b)

Figure 2.5: Deep RNN (a) and shallow RNN (b) architectures

Table 2.2
Experimental Parameters

Parameter Value
SLP Activation None
RNN Activation tanh
RNN Lookback 5 Steps

Epochs 20
Train/Validation/Test split 90%/5%/5%

Optimizer SGD
Learning rate 0.01

models are generated per neural network architecture to test on every portion of the

data set in a cross-fold validation setup. Within a single data split, 5% of the training

data is used as validation data to determine lowest error in the training set. Then,

the neural network predicts the test data using the lowest validation error along each

fold of the data split. To generate the network architectures, we use the Keras open-

source library for its simple modularity and ease of use. Since Keras is written in

Python, the AVS post-processing in Section 2.2.2 is also written in Python.
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Table 2.3
RNN architecture shape

Layer Type Deep RNN dimensions Shallow RNN dimensions
SLP R1023×1 R1023×1

RNN R1×32 R1×1

RNN R32×32 -
RNN R32×32 -
SLP R32×1 R1×1

Table 2.4
Root mean squared error results of experiments

Weighted Average Shallow RNN Deep RNN
RMSE 39.4◦ 33.5◦ 24.8◦

STD 45.3◦ 22.4◦ 13.8◦

2.5 Results

All results in this section only use the test data defined per model described in Section

2.4. Once the networks have been trained on the experiment training data, the

networks are compared with one another. The RMSE of the test data follow Eq. (2.9)

and are shown in Table 2.4.

Each neural network has its test data folded 20 times and averaged to yield a RMSE

and standard deviation (STD). The time-series predictions of the different algorithms

are compared to the total testing truth data in Fig. 2.6 with Fig. 2.6(b) using a

Kalman filter added to the output of each algorithm. The covariance of the process

noise (Q = 10−6) and covariance of the observation noise (R = 0.025) are chosen
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(a)

(b)

Figure 2.6: (a) Subset of algorithm predictions and (b) full test data pre-
dictions with Kalman filter

empirically to show the differences between each algorithm along a larger portion of

the data set. It should be noted that no results other than Fig. 2.6(b) use this filtered

data; every other figure, table, result and discussion use the original algorithm data.
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The results show that the trained deep RNN has the lowest total error throughout the

data set, but a single RMSE does not fully convey the deep RNN’s results. Another

representation is the average angle error with respect to the SNR of the signal. The

SNR is calculated by subtracting the ambient acoustic intensity off the acoustic source

intensity. A time average of 4 minutes before the acoustic experiment was conducted

is used as the acoustic ambient signature. Fig. 2.7 shows the comparison of the

acoustic source signal at different boat distances with a time average of 30 seconds

each.

Fig. 2.8 shows the error with respect to SNR. These data are presented by averaging

the RMSEs according to the respective 0.5−dB SNR bins, then comparing the results

of the three different estimation techniques. For example, at the discrete SNR range

of 10 to 10.5 dB, there contains 121 error points inside this range, and the mean

of these errors for a deep RNN is 13.47 degrees. The shallow RNN and weighted

average at this range have an error of 30.26 degrees and 44.22 degrees. To prevent

any discrepancies, if an SNR average contains less than 5 samples within the SNR

bin, the SNR average is removed. The data with high SNR correspond to a small

portion of very fast crossings of the boat driving by the sensor. Due to the high vessel

speed, the experimental timing errors become noticeable at these data.

What is of particular note is in the range from 0 dB to 20 dB SNR. Both RNN

architectures perform significantly better than the weighted average. The shallow
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Figure 2.7: Comparison of ambient background and acoustic signal source
at varying SNRs

Figure 2.8: Algorithm mean errors with respect to SNR

RNN produces results slightly better than a weighted average of the angles and the

deep RNN produces results significantly better than the shallow RNN and a weighted

average of the angles inside this range. The shallow RNN architecture gives more non-

linearity in the algorithm, but the amount of training data permits the usage of a
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deeper RNN without overfitting. The large amount of training data prevents the deep

RNN from overfitting the data while training.

Each model converges in quality at an SNR of 20 dB. We see that the weighted

average algorithm performs equally well to the neural network architectures at this

SNR. An SNR of 20 dB is high enough for the weighted average, a linear model, to

perform as well as the neural networks, a non-linear model. Our data finds the neural

networks unnecessary for signals above 20 dB SNR in our acoustic environment.

In some points in these data, the acoustic source’s distance from the AVS is too

large, and/or there is no direct acoustic path to the AVS. Using solely the weighted

frequency intensity analysis, the results are poor at high angle values, above 100o,

shown in Fig. 2.9. The high angles map to the boat to the west of the sensor, Fig. 2.4

with no direct acoustic path present and is far away from the sensor itself. These

data are kept in the analysis, as the purpose of the machine learning algorithms are

to work with these highly noisy signals and still map the DOA with higher accuracy

than the weighted average. The results in Table 2.4 show this is the case.

27



Figure 2.9: First experiment’s data with (a) weighted average analysis and
(b) the distance from the source.

2.6 Experimental Validation

The experimental data contain multi-path interferences. To validate this claim, two

simulations were created to compare the Portage Waterway acoustic channel and

an open field. Fig. 2.10 shows a comparison of two RAMGeo [35] simulations (one

with multi-path and one without) and the corresponding experimental data. The

distance is used equally among all subfigures in Fig. 2.10 using the experimental GPS

distances from a single pass in Fig. 2.4, and each simulation time step is computed

independently. The Portage Waterway simulation parameters are shown in Fig. 2.11

from recorded bathymetry and water velocity on the Portage Waterway. Note that

the sound speed varies by less than 0.05 m/s at 1471.5 m/s.

The open water simulation has the same sound speed velocity with an infinite depth.
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(a) (b)

(c)

Figure 2.10: Moving source past sensor of a single pass for (a) Portage
Waterway simulation (b) open water simulation and (c) Portage Waterway
experimental data

The swept frequency patterns are a common result of acoustic interference patterns

from a moving source in a channel, while the open water simulation contains very

little of this pattern. Multi-path constructive and destructive interference is present

in the shallow waveguide both in the Portage Waterway simulation and in the Portage

Waterway experimental data. The experimental data also show electrical power noise

present at harmonics of 60 Hz, common for working with AC power in a marine

environment.
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Figure 2.11: Portage Waterway environment simulation input from histor-
ical measured data

2.7 Conclusion and future work

In this paper, we compared two types of recurrent neural networks and a weighted

acoustic intensity average to predict the direction-of-arrival from acoustic vector sen-

sor data. The recurrent neural networks helped in predicting the temporal aspect

of a moving acoustic source. The weighted acoustic intensity average was a good

indicator to determine the benefits of using deep learning. Our real-world experi-

ment results suggest that deep neural networks are a strong candidate for use for

direction-of-arrival estimation in high-noise scenarios. Conversely, if the signal has

a relatively high SNR—our data shows in our environment the threshold is around

25 dB SNR—linear methods, such as weighted averaging or single-layer perceptrons,
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suffice.

These results encourage further study of the use of machine learning for localiza-

tion with multiple acoustic vector sensors in difficult-to-model acoustic environments.

There is also opportunity to analyze detection and estimation tasks in near-shore ice

in Houghton’s surrogate Arctic environment [31, 36] with the neural network models.

Near-shore ice has been shown to be a difficult acoustics environment [31, 36] and we

anticipate that machine learning will show to be a good candidate for increased per-

formance in detection and estimation tasks in this scenario. We are currently carrying

out experiments to test this hypothesis. Future work will also examine advanced ma-

chine learning methods, such as other deep network architectures—long-short term

memory networks [37], transformers [38], etc.—which will be enabled by ongoing data

collects.
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Chapter 3

Through-ice Acoustic Source

Tracking Using Vision

Transformers with Ordinal

Classification

This chapter is a reprint of the Sensors article entitled “Through-ice Acoustic Source

Tracking Using Vision Transformers with Ordinal Classification” [13]. This article

is a continuation of the international joint conference on neural networks(IJCNN)

conference paper [12]. The permission for reprinting the Sensors article is in Appendix

B.3.
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3.1 Introduction

Acoustic source localization is important in underwater acoustics. In underwater

environments, acoustic frequencies propagate long distances, which permits acoustic

analysis to be ideal for localization. Localizing a source is beneficial in numerous

applications: search and rescue for the coast guard, tracking ships for merchant ship-

ping, and situational awareness for military purposes, to name a few. In a deep water

environment, such as the ocean, varying sound speed profiles present challenges in

properly simulating the environment [39, 40, 41]. In ice environments, even more

challenges arise: multi-path, scattering fields, interference patterns with a reflective

ice surface, non-linear propagation through the ice, and a temporally changing field

[31, 36]. Additionally, shallow-depth, narrow, ice-covered waveguide environments

(e.g., a frozen river or a canal) generate more multipath reflections on the bottom

and edges of the environment. These narrow ice environments are important for

tracking snowmobiles or other anthropogenic sources on or under the ice. Therefore,

Machine Learning (ML) is a promising method to investigate for such a highly com-

plicated environment that can incorporate all the complex water environment and

the complex ice environment.

ML has been used previously in acoustic localization approaches with great results

[12, 14, 41, 42, 43, 44]. Long Short-Term Memory (LSTM) neural networks have
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been shown to analyze time-series acoustic data with success [12, 14, 37, 45]. LSTM is

designed to analyze data with time dependence [37], but its computational complexity

causes difficulty in training large networks, which is shown in Section 3.3. A newer

concept is to utilize Vision Transformer (ViT) architectures [46, 47]. The ViT is a

modified version of a Transformer neural network [48, 49] where the ViT is specialized

for data with a large number of dimensions, e.g., acoustic spectrum data. The ViT

has been used extensively in computer vision and image analysis [46, 50, 51], but to

date, there has been no paper published on ViT-based localization for through-ice or

underwater acoustic localization.

To combine multiple state-of-the-art concepts, our previous work showed that local-

ization framed as a classification problem outperforms regression [14]. With a con-

strained area of interest, the regression values can be transformed to be classes that

represent a grid of positions, and then, the neural network estimates these classes.

This classification is an alternative to localizing the source with regression. With

respect to our prior research [14], we tested the claims proposed in the classification

method with new data and show that the proposed classification method has more

nuanced results. We show that networks suited for classification problems show bet-

ter localization performance with the proposed method, while networks suited for

regression problems better localize the source with a regression loss. We validated

this claim with newly conducted experiments on ice, a larger training dataset, and

new, state-of-the-art neural network architectures.
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We show the results of these algorithms with newly recorded data for localizing and

tracking on-ice snowmobiles on the Keweenaw Waterway in Houghton, Michigan,

by comparing the four described neural network architectures—Convolutional Neu-

ral Networks (CNNs), LSTMs, Transformers, and ViTs—with three loss functions:

regression, categorical classification, and ordinal classification. We first provide an

understanding for how our data are recorded to explain which properties our ML

algorithms will exploit.

3.2 Materials and Methods

To record our acoustic source, we used an Acoustic Vector Sensor (AVS), which is

capable of recording acoustic pressure and acoustic particle velocity (or acceleration)

within a single sensor module [52]. Our experiments used two Meggitt VS–209 under-

water pressure and particle acceleration (pa-type) AVSs [53], which record acoustic

pressure and acoustic acceleration simultaneously. A pa-type AVS consists of a hy-

drophone and a triaxial accelerometer in the same module and is a good choice for

the experiments in this paper because the accelerometers’ bandwidth reaches higher

frequencies than a pu-type (pressure and particle velocity) AVS [53]. A snowmobile’s

response is a relatively broadband signal; hence, we can record more of the signal

source’s frequency domain signature. The Meggitt VS–209 has a bandwidth up to

8000 Hz, and the snowmobile’s broadband signal goes up to 10,000 Hz [54, 55], which
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is also seen in the raw data in Section 3.2.7.1.

3.2.1 Acoustic Post-Processing

A single pa-type AVSs generates four time-series data streams. Using a single sensor,

we can produce an angle measurement by post-processing these time-series streams.

This angle measurement, the Direction Of Arrival (DOA), tells us from which di-

rection the sound arrives, no matter if the sound is from the acoustic source we are

trying to track or if the sound is from other sources, e.g., waves crashing, biometrics,

or anthropogenic sources that are not our target, to name a few. Each AVS produces

its own acoustic intensity, I, with post-processing [52]:

Ix,y,z(f, t) =
P (f, t)A∗x,y,z(f, t)

j2πf
, (3.1)

where P (f, t) is the acoustic pressure in the frequency domain at time t (i.e., P is the

Short-Time Fourier Transform (STFT) of the pressure time-series p(t)), Ax,y,z(f, t) is

the three-dimensional acoustic accelerations in the three axial directions, x, y, z, from

the AVS accelerometer in the frequency domain at time t, f is frequency, ∗ is the

complex conjugate, and j =
√
−1. The VS-209 contains a coordinate transform to

transform the Ix,y,z positions into a “global” coordinate system that is aligned from
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Earth’s magnetic field and Earth’s gravitational field:

Iwest,north,up(f, t) = QT Ix,y,z(f, t), (3.2)

where QT is the coordinate transform defined in the VS-209 system manual. Acoustic

intensity is then used for azimuth calculation via

θ(f, t) = arctan
Iwest(f, t)

Inorth(f, t)
, (3.3)

where θ is the azimuth DOA of the acoustic source; east is 0 degrees, and north

is 90 degrees. When using an STFT, θ is a spectrum of angles, called an azigram

[56]. From this point on, we will consider azigrams as a two-dimensional image,

where θf,t = θ(f, t), which matches well with the computer vision background of deep

networks. The vector θt denotes the column of the matrix θ at time t.

Thus far, our post-processing has yet to deal with any aspect of multi-path, scattering

fields, interference patterns, or reflections prevalent in this signal, i.e., interferences

are still incorporated in θ. Suppose a target were not generating a signal at some

time, e.g., the target has moved out of range of the sensors or the target powered off

its noise source. In this scenario, angle measurements would come from the ambient

background, which often presents a localized noise or “noise coming from certain

angles.” Because θ is a noisy signal, we need to further process this signal. We will
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use ML to handle the noise, which is an excellent algorithm for working with high-

dimensional and noisy data. Specifically, we discuss four different neural network

approaches. The four neural networks we investigated are: (i) a CNN, (ii) an LSTM

neural network, (iii) a Transformer neural network [48], and (iv) a ViT [46]. Let us

now describe each of these networks in detail and adapt these different networks to

our localization problem.

3.2.2 Convolutional Neural Network

The CNN performs convolution operations on the input signal, and in this regard, we

perform a 2-dimensional convolution along both the frequency and time:

Y = W ? θ, (3.4)

where ? is the convolution operation, W are the trainable parameters in the CNN,

and Y is the output of a single CNN operation. The convolution operation, W ? θ:

Yf,t =
F∑
i=0

T∑
j=0

Wi,jθf−i,t−j, (3.5)

elucidates local relations spanning across the time domain, t ∈ [0, T ], and the fre-

quency domain, f ∈ [0, F ]. The kernel size—i.e., the dimensionality of W—is a

parameter that can be adjusted to allow larger relations across time and frequency.
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With an activation function, such as tanh or ReLU:

ReLU(x) =


x if x ≥ 0

0 otherwise,

(3.6)

surrounding Equation (3.4), the CNN is now a non-linear transform. CNN layers are

extremely powerful in a Deep Neural Network (DNN) [57], but there are some pitfalls.

The CNN handles spatially localized features, but the CNN lacks any temporal aspect,

i.e., any long-term or temporal relations are not represented or handled. With a CNN,

each input is independent of the next. Our data are not independent of each other,

since our data are time-series and the position of an acoustic source traveling by the

sensors is dependent on its previous position; that is, real-world sources have temporal

correlation in their acoustic signal. We incorporated this temporal information with

an LSTM.

3.2.3 Long Short-Term Memory Neural Network

LSTMs address some of the weaknesses of CNNs for time-series data. They look into

the temporal and long-term relations with the short-term hidden state, ht−1, and

long-term candidate state, ct−1, in each LSTM cell, seen in Figure 3.1 [37].

40



×
σ σ tanh σ

+×

×
tanh

ct-1

ht-1

xt

ft it
ot

ct

ht

Figure 3.1: A long short-term memory cell, where blue rectangles indi-
cate trainable parameters and red ovals indicate a math operation (non-
trainable).

The equations derived from Figure 3.1 consist of “gating” the logical flow. For ex-

ample, the “forget” gate, ft, limits how much the long-term candidate state, ct−1, is

incorporated into the output, ht. The other two gates operate similarly; the “input”

gate, it, limits the effect of input data, ht−1 and xt, and the “output” gate; ot, limits

the effect of total data on the output, ht. This is reminiscent of a Kalman filter’s

capability to adjust the estimate based on its prior knowledge; however, an LSTM can

also adjust the output of its prior knowledge in addition to the new measurements.

The equations for these gates are

it = σ(Wi

[
hT
t−1 xT

t

]T
+ bi) (3.7)

ft = σ(Wf

[
hT
t−1 xT

t

]T
+ bf ) (3.8)

ot = σ(Wo

[
hT
t−1 xT

t

]T
+ bo), (3.9)

where matrices W and vectors b correspond to the trainable gate parameters (input,
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forget, output), σ (shown in Figure 3.1) is the sigmoid activation function, 1/(1+e−x),

and [·] is a concatenation of the vectors. The equations for the LSTM outputs are

ct = ft ◦ ct−1 + it ◦ tanh
([

hT
t−1 xT

t

]T)
(3.10)

ht = ot ◦ tanh(ct), (3.11)

where ◦ is an elementwise multiplication.

LSTMs are “chained together” successively using the LSTM cells in Figure 3.1; that

is, the output, Equation (3.10), of the previous LSTM cell is the input to the next

LSTM cell. This chaining can be used for long-term memory in the system. The

vectors, c and h, are stateful values of the LSTM, i.e., they are dependent on the

input data to and internal weights of the LSTM cell (and subsequently, all previous

LSTM cells). The LSTM is dependent on its previous state because the outputs

of the previous LSTM cell is the input of the next LSTM cell (along with xt), and

so, the mathematical operations are sequential for each LSTM cell. This means

the LSTM operations cannot be computed in parallel. Because of this limitation,

LSTMs inherently train slower because other neural network architectures can utilize

GPU parallel processing more. The training speeds are shown in Section 3.3. The

Transformer architecture attempts to avoid the LSTM’s sequential computational

processing while keeping temporal relations with attention-based networks, which we

explain now.
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3.2.4 Transformers

Since Transformers have seen promising results in natural language processing [48]

and image classification [46], we anticipate Transformers and Transformer variants

will perform well in spectrum analysis. Transformers utilize self-attention [58], where

self-attention is defined as the normalized dot product:

attention(θ) = softmax

(
QKT

√
d

)
V, (3.12)

where Q, K, and V are the projected query, key, and value tensors: Q = WQθ,

K = WKθ, V = WV θ, where W are trainable parameters [48]. θ are the input data,

i.e., the azigram image. The scaling parameter,
√
d, is found to better normalize the

data, suggested in [48]. For our data, d = 512, the number of frequency bins in the

azigram. The softmax function:

softmax(x) =
ex∑K

k=1 e
xk

, (3.13)

normalizes the data such that
∑

softmax(x) = 1. Multi-Head Attention (MHA) cal-

culates Equation (3.12) multiple times to permit different attention interconnections

with the same data. MHA allows for multiple relations to be found within the same

layer in the Transformer.
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Figure 3.2: Transformer neural network encoder.

The Transformer then projects the results of Equation (3.12) by

y = φ(θ + attention(θ)) + θ + attention(θ), (3.14)

where φ is a projection operator; in our case, φ is a fully connected neural network.

Figure 3.2 illustrates Equation (3.14), along with the additional normalizing used

within the Transformer architecture. The normalization ensures invariance to scale

differences in the feature space, as suggested in [48].

The benefit to self-attention is any abstract relation can be represented within a

sample along the temporal and frequency dimensions of our azigram data [48]. This

abstraction results in a more broadly applicable CNN. Additionally, a Transformer
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outperforms the LSTM in training speed with its capability to train in parallel, rather

than sequentially, since all the operations in Equation (3.12) are independent of one

another. With a spectrum, the Transformer finds attention across all possible az-

imuth, θ, values, which generates a massive matrix of attended values. If there are a

large number of dimensions to which the Transformer attends, there is a large scope

to search. The vanilla Transformer struggles to analyze such high-dimensional data.

The Vision Transformer better handles this issue using positional embedding.

3.2.5 Vision Transformers

A ViT is a modified Transformer that encodes a highly dimensional image (in our case,

an azigram) into smaller patches within its position embedded into the Transformer.

A positional embedding is added; Figure 3.3 shows a setup where the spectrum data

are chunked into the Transformer with the positions embedded [46].

For example, with 16 positional embeddings and a 512 × 512 image, the ViT can

embed 16 images of size 128 × 128 in a 4 × 4 grid pattern, enclosing the 512 × 512

azimuth input. The positional embedding is a trainable parameter, so this example is

not used in the network itself, but rather as a simple representation of the positional

embeddings being adjusted by the ViT. Generalizing this example, we change from

N2 parameters with the Transformer to N2/M attention values with the ViT when
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Figure 3.3: Example Vision Transformer (ViT) where our input data are
positionally embedded prior to passing into the Transformer, being Equa-
tions (3.12)–(3.14).

each of M embeddings are the same size [46, 50]. The reduced attention relations are

beneficial for data with large numbers of dimensions, the benefits of which are shown

in Section 3.3.
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3.2.6 Loss Functions

With each of the networks described, we now turn to defining our separate loss func-

tions for localizing our target, the first of which is the “standard,” or most common

loss function for localization: regression.

3.2.6.1 Regression

A regression loss function is typically an lp-norm equation, commonly the Mean-

Squared Error (MSE) or Root-Mean-Squared Error (RMSE). For example, the RMSE

is

L =
∥∥p∗ − ptrue

∥∥
2
, (3.15)

where p∗ and ptrue are the predicted target position and true target position, respec-

tively.

Fundamental faults of a typical regression loss function are the lack of predicted

certainty of the results and the inability to constrain predictions in a nuanced manner.

It is of importance in some applications to know how confident the localization is,

e.g., tracking the signal while it travels out of the sensors’ effective Signal-to-Noise

Ratio (SNR) ranges. Additionally, a more constrained field of predicted values can
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benefit performance if one is predicting in a predetermined area (such as the bend

of a river) [14]. As such, we will now propose a classification approach whereby we

predict locations on a predetermined grid and then aggregate to predict a location.

This method also provides the confidence or uncertainty of the prediction.

3.2.6.2 Categorical Classification

A regression loss function provides no measure of confidence and, thus, simply pro-

vides a localization estimate even when the network is presented with pure noise.

This is not adequate for a generalized solution for localization. In contrast, categori-

cal classification was initially investigated as a method to not only provide a location

prediction, but also the confidence in this prediction [12]. Another benefit of a clas-

sification approach to localization is that the localization region can be predefined,

i.e., a neural network with a classification output can be designed to only predict

at specific regions (e.g., water, and not beach). Neural networks with a regression

output predict any output, and this may not be viable in a real-world scenario, such

as a water vessel being constrained to within the banks of a river.

Our categorical classification method manipulates a grid mapping of locations, then

predicts the classes in a manner where one can determine the certainty of the network
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prediction. We use a soft label classification equation:

yk =
1

∆

D∏
d=1


∆− |pd − (ck)d| if |yd − (ck)d| ≤ ∆

0 otherwise,

(3.16)

where p is the true target position, ck is the vector location of the kth classification

grid position, ∆ is a distance threshold, and yk is the soft-labeled true target cor-

responding to the classification grid positions, ck. To generate ck, a D-dimensional

grid of positions is created that correspond to positions in the real world.

Our data are 2D in nature with variations in only latitude and longitude; thus, D = 2.

To simplify calculations, the distance between adjacent classes—i.e., grid positions

ck—is normalized to be 1. To ensure that only adjacent classes in ck to any given

ground truth location p are non-zero-valued, we chose ∆ < 1. For example, in Figure

3.4, the green circles would be the only elements of y that are non-zero-valued.

Figure 3.4 shows a position, p, among the 4 closest grid points, c1, c2, c3, and c4.

The associated soft label yk for each of these grid locations is inversely proportional

to the distance from class location ck and p, described in Equation (3.16). As such,

the upper-right truth label y2 of the 4 classes in Figure 3.4 has the smallest soft label,

and the lower-left truth label y3 has the highest value.

If a position, p, is equidistant to all surrounding classes, the non-zero values of y are
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Figure 3.4: Soft classification of linear position where ∆ = 1. The star is
the original position, and the circle size corresponds to the weight of each
value.

all equal. Additionally, suppose the ground truth position, p, is positioned directly

on a class, ck, then

yk =


1 p = ck

0 otherwise.

(3.17)

When converting back to a continuous location space, each classification grid is defined

on specific coordinates; thus, we can yield the original position,

p =
N∑
k=1

ykgk (3.18)
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where g corresponds to the “real-world” grid mapping to the classification locations,

y. For example, g can be a grid of GPS coordinates or a grid of pixel positions in an

image.

Soft classification is also useful when the truth data are uncertain (e.g., a distribution)

as opposed to classifying a single class for the truth data. For the purposes of this

paper, the errors in the truth data and their distribution are not considered because

the uncertainties of our truth data (within 2.5 m [59]) are smaller than the the

distances between each class (28 m), i.e., there are no benefits to adding uncertainty

when localizing our target.

When calculating Equation (3.16) for our target positions, we may find that the

locations are constrained to smaller regions of the full rectangular grid; thus, the grid

can be adjusted such that only certain locations are used. The dimensionality of

the prediction can be reduced by removing classes—i.e., grid locations. For example,

these removed locations can materialize if there are physical obstructions at those

locations. Additionally, we observed that background noise often will manifest as

position estimates that are outside the region of interest (i.e., the water body). In

the future, we will look at how we can specifically design our algorithms to identify

background noise when no source to track is present, but for this study, we simply

constrained the classification grid to within the banks of the region of study (a canal),

where Figure 3.5 shows the regions outside the banks. Because our experiments are
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Figure 3.5: Eighty-five classes, out of the possible 100, for a 10 × 10 grid
where the training and test data are not present in any of the “out of bounds”
labels.

simulating environments of a ship in the water or a snowmobile traveling across the

ice, we can constrain the classification grids to regions where the acoustic sources can

only reach physically. These constrains are a benefit to the classification approach to

localization, but further constraints could bias our results to the data.

An example of the grid location classes for a 10× 10 grid is shown in Figure 3.5. The

“out of bounds” labels on the bottom-left corner in Figure 3.5 correspond to outside

the banks of the Keweenaw Waterway, and no data are present on these grid location

classes.
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When the classification labels are represented as soft-labeled grid locations, we can

use an MSE loss between each dimension,

L =
1

K

K∑
k=1

(yk − ŷk)2 , (3.19)

where K corresponds to the number of classes, y is the true (soft) classification label

vector, and ŷ is the predicted (soft) classification label vector.

The weakness of classifying with grid representation and the categorical loss in Equa-

tion (3.19) is their ordinal (spatial) nature is not fully considered. If the network

were to predict an incorrect location physically close to the true location, this should

not be equally penalized to predicting a location far away from the true location.

Categorical classification fails to represent this; hence, we describe how to extend this

idea to ordinal classification for localization.

3.2.6.3 Ordinal Classification

To give an example of the impetus for the ordinal (spatial) property of the classifica-

tion grid, consider a prediction at position (0, 1) when the correct class is at position

(0, 0); clearly, this incorrect prediction is not as poor as predicting at the position

(99, 99). Categorical loss would consider these two incorrect predictions to be equally

poor, but our proposed ordinal loss properly represents the relative error of each
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of these predictions. Extending ordinality to the classification problem introduces

complexity, as the loss function becomes more advanced, but this added complexity

better represents our localization problem [60]. Our proposed ordinal loss function

gives lower weight to closer predictions to the truth [12],

L =
1

K
yTW (y − ŷ)2, (3.20)

where W is a weighting matrix and (·)2 indicates an elementwise square operation in

this equation. The weighting matrix, W , Wi,j = ‖ci − cj‖2, is a K × K matrix of

the pairwise l2-norm distances between each grid position c. One can think of the

product yTW as the weighted mean distance of each grid location to the predicted

location represented by y. This is then multiplied by the vector that represents the

squared differences between the predicted location y and the truth ŷ. Consider the

following example.

Consider a 2×2 grid of locations, where ck, k = 1, 2, 3, 4, represent the grid positions

[(0, 0), (0, 1), (1, 0), (1, 1)]. In this scenario, the weight matrix is

W =



0 1 1
√

2

1 0
√

2 1

1
√

2 0 1

√
2 1 1 0


.
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Suppose y = [0, 1, 0, 0]T (representing a prediction at position (0, 1)) and ŷ =

[0, 0, 1, 0]T (representing the ground truth position (1, 0)). The product yTW =

[1, 0,
√

2, 1], and the loss is

L =
1

4
[1, 0,

√
2, 1]([0, 1,−1, 0]T )2

=
1

4
[1, 0,

√
2, 1][0, 1, 1, 0]T

=

√
2

4
≈ 0.35.

Now, suppose y =
[
1
2
, 1
2
, 0, 0

]T
(representing a prediction at position

(
0, 1

2

)
) and

ŷ =
[
1
4
, 1
4
, 1
4
, 1
4

]T
(representing the ground truth position

(
1
2
, 1
2

)
). Clearly, the pre-

diction in this example is better than the previous example. The product yTW =[
1
2
, 1
2
, (1+

√
2)

2
, (1+

√
2)

2

]
, and the loss is

L =
1

4

[
1

2
,
1

2
,
(1 +

√
2)

2
,
(1 +

√
2)

2

]([
1

4
,
1

4
,−1

4
,−1

4

]T)2

=
1

4

[
1

2
,
1

2
,
(1 +

√
2)

2
,
(1 +

√
2)

2

][
1

16
,

1

16
,

1

16
,

1

16

]T
=

2 +
√

2

64
≈ 0.05.

As expected, the loss in the second example is less than that of the first example.
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3.2.7 Experiments

Eight experiments were conducted between February 17 and 20, 2021, on the Ke-

weenaw Waterway near Michigan Technological University. Figure 3.6 shows the

experimental setup. The Keweenaw Waterway is a narrow and shallow channel of

water (a canal), which causes many multipath reflections and scattering. The ice was

between 0.4 and 0.5 m thick, and the water was between 6 and 8 m deep. The first

three experiments (one on February 17 and two on 18) had snow above the ice, insu-

lating the ice, which caused an uneven, thin layer of slush. By February 19th, high

winds had removed the snow, and the surface ice hardened again, so the remaining

five experiments were conducted in a hard ice environment.

A snowmobile drove back and forth in front of our sensors to represent a moving

acoustic source. A handheld GPS on the snowmobile kept track of the position of

the snowmobiles. The two AVSs passively recorded the noise from the snowmobile,

which included engine intake and exhaust, as well as track–ice structural–acoustic

interaction, for the purpose of localization.

After the data were synchronized, trimmed, and labeled, a total of roughly 3.2 h—

11, 526 s—of snowmobile acoustic data were recorded on the two AVSs. The position

of these AVSs were kept constant, 30 m apart, on either end of the dock next to the
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Figure 3.6: Conditions under which the experiments were conducted: (A)
shows the Keweenaw Waterway frozen over, looking SSW at Michigan Tech-
nological University; (B) shows the sensors and data acquisition system on
a dock near the Great Lakes Research Center; (C) shows a close-up of where
the sensors are deployed in the water; (D) shows a snowmobile driving in
one of the experiments; (E) is a close up of the AVS.

Great Lakes Research Center.

3.2.7.1 Data Explanation

The acoustic data were recorded in time-series at a sample rate of 17, 067 Hz using

a National Instruments cRIO-9035 with NI-9234 data acquisition cards. The sample

rate was set to 17, 067 Hz since the sensor’s 3 dB cutoff frequency was at 8000 Hz;

thus, frequencies above 8000 Hz were not used in post-processing. The data were

transformed into an azigram using Equations (3.1)–(3.3). The STFT used a Hanning
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Figure 3.7: Azigram response from a single AVS of a snowmobile driving
past the AVS at roughly 40 and 85 s.

window, 50% overlap, and a segment size of 1706 samples to yield a time step of

0.05 s. Figure 3.7 shows an example of the azigram of the first 100 s of data. Note

there are two snowmobile passes in the azigram, around the 40 and 85 s marks. The

snowmobile drives by the sensor around the 40 s mark (heading eastwardly), turns

around, then drives by the sensor again near the 85-second mark (heading eastwardly

again).

The truth data, being GPS data, were recorded at 1 Hz using a handheld GPS

receiver. Figure 3.8 shows the GPS data through all the experiments. The GPS data

were then linearly interpolated, resulting in an upsampling of 20 times, to match the

sample rate of the azigram data.
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Figure 3.8: Bird’s eye view of the total amount of GPS data in all datasets
before 20-times interpolated. GPS data are accumulated from 8 experiments.
The two AVS positions are shown for a reference.

To prepare the data for input to the neural network, the azigram was linearly nor-

malized from its [−π, π] range to [0, 1] and the GPS data were linearly normalized

with the total maximum and minimum latitude and longitudes set to the interval

[0, 1]: latitude was normalized from [47.1200◦, 47.1225◦] to [0, 1] and longitude from

[−88.548◦,−88.542◦] to [0, 1]. For classification networks, the GPS data were pro-

cessed with Equation (3.16) with k = 100 to represent a 10× 10 grid of latitude and

longitude position.
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3.2.8 Network Explanations

The neural networks process the same data, i.e., the data are pre-processed in the

same manner for every neural network. The azigram data are shaped to use the

prior 512 time steps for a single prediction. Each AVS’s azigram frequencies are

downsampled to contain 256 frequency bins. The two AVS’s frequency data are

concatenated along the frequencies; hence, the input data are a 512× 512 azigram in

the neural network. Each network predicts a single output value, y, at the final time

step of the 512× 512 sample. In other words, the networks’ input data are a sliding

window of 512 samples, and each network predicts the new location at the end of the

512 window, then the window is moved forward by 1 sample from a time window of

[n, n+ 512] to [n+ 1, n+ 513].

We compared four large neural networks and four small neural networks. The small

neural networks are demonstrated as a simpler method in localizing an acoustic source;

less training time, less training data collection, and less calculation time are required

for “small” networks. Because our dataset is very large, we also explored large neural

networks, though this may not be practical for situations where data collection is

difficult or impossible to achieve due to budget limitations, lack of available data,

or time limitations in labeling, or the environment is not complex enough to require

such a large network.
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Table 3.1
Depths of the backbone for each type of network shown in Figures 3.9 and

3.10.

CNN LSTM Transformer ViT
Large 16 5 8 12
Small 4 1 1 8

Table 3.2
Total trainable parameters for each neural network architecture.

CNN LSTM Transformer ViT
Large 23, 849 k 13, 825 k 16, 911 k 85, 846 k
Small 892 k 905 k 843 k 928 k

The four large networks are the following: a ResNet50 [57] CNN-based network, an

LSTM-based network, a Transformer-based network [48], and a ViT-based network

[46]. The four small networks have an arbitrary requirement to contain less than 1

million parameters to give a fair comparison. Figures 3.9 and 3.10 show a comparison

of each of the networks. The difference between a “small” and “large” network is

adjusted in the architectures by the ×N value in both Figures 3.9 and 3.10, i.e., N

is smaller in small networks. Table 3.1 shows the number of layers N for each of the

neural networks, and Table 3.2 contains the number of trainable parameters for each

neural network.

The categorical classification neural networks predict a probability of each grid lo-

cation class. This classification network predicts its results in a softmax activation

function—Equation (3.13)—to assert a probability output. The benefit of the cate-

gorical classification neural network is its opportunity to add uncertainty to its pre-

diction.
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Figure 3.9: Network architectures for the CNN (left) and LSTM (right).

The ordinal classification neural network predicts exactly the same type of output

as the categorical classification network, but rather than using the mean-squared

error loss function in Equation (3.19), the network uses the ordinal loss function in

Equation (3.20).
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3.2.9 Training and Hyperparameters

Each network used the Adam optimizer [61] with a learning rate of 0.0001 and pa-

rameters β1 = 0.9 and β2 = 0.999. We batched 32 samples of size 512 × 512 in a

single backwards propagation step. Each batch had its data randomized except for

the LSTM, where batches were sequential to support the LSTM’s long-term memory.
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Seven of the 8 experiments were used as training data, consisting of a total of 189.868

samples, i.e., roughly 2.6 h of data. Ten percent of the training data were used to

validate the model, i.e., 18.987 samples. The model weights with the lowest loss using

this validation set were then tested on the test data, which we can now show.

3.3 Results

The data on which we tested our algorithms consisted of an experiment where a single

snowmobile moved by the sensors back and forth on February 17. There were 39.628

samples, i.e., 1.981 seconds, and no neural network was trained on any data from this

day to isolate the training and test data.

The neural networks were programmed in Python using the Tensorflow backend and

Keras frontend to create these models [62, 63]. The networks were trained using an

NVIDIA GeForce RTX 3090.

The accuracies of each neural network and their respective loss functions are shown

in Table 3.3. Notice the ViT has almost over a 10-fold increase in accuracy. When

comparing the two sizes of networks, the training times for each are telling, tabulated

in Table 3.4. The timing differences between each model are significantly different,

except for the large and small CNN models.
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Table 3.3
Neural network results on test data from February 17. The results indicate

the mean distance in meters between the predicted results by the neural
network and the recorded results by the GPS. A ±1σ deviation is shown.

CNN LSTM
Large Small Large Small

Regression
39.3±
29.1

27.1±
21.7

44.2±
53.9

58.7±
62.7

Categorical
26.7±
57.3

28.4±
27.0

49.4±
47.8

41.9±
40.0

Ordinal
21.4±
31.2

33.1±
35.2

64.6±
49.2

68.2±
54.3

Transformer ViT
Large Small Large Small

Regression
42.1±
30.3

65.7±
48.8

4.9±
3.7

5.9±
4.8

Categorical
49.8±
39.3

44.5±
45.1

3.1±
2.5

3.7±
3.0

Ordinal
53.9±
45.0

44.5±
45.1

2.9±
2.5

6.7±
6.1

Table 3.4
Neural network mean training times per epoch.

CNN LSTM
Large Small Large Small

Regression 671 s 654 s 2,358 s 1,931 s
Categorical 620 s 657 s 2,170 s 1,933 s

Ordinal 675 s 656 s 2,150 s 1,930 s

Transformer ViT
Large Small Large Small

Regression 1,358 s 639 s 1,700 s 654 s
Categorical 1,188 s 648 s 1,785 s 658 s

Ordinal 1,070 s 647 s 1,752 s 660 s

The results may be misunderstood simply reading Tables 3.3 and 3.4. For a visual

representation of our data, we will start off with the predicted coordinates for what the

MSE actually represents. Figure 3.11 shows a section of a time-series representation
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of the data using both the latitude and longitude positions of the snowmobile and

each algorithms’ predicted positions of the snowmobile. Figure 3.11 can be misleading

where one may see the CNN and Transformer networks seem to be on-par with, or

close to, the results of the ViT. Mapping these results to an −x,−y plane, Figure 3.12

shows a more critical view for what these small amounts of errors indicate. Even with

a top-down view of the experiment, the ViT tracks the snowmobile at high accuracy

in comparison to the other models. For the ViT, it should be noted that its mean

accuracy is 2.9 m. This is very close to the accuracy of our GPS receiver: the reported

95th-percentile mean error is 2.545 m in Minneapolis, Minnesota, which is relatively

near Houghton, Michigan, from January 1st to March 31st, 2021 [59], and the GPS

was recorded in a relatively open area. Therefore, the ViT appears to have reached

the maximum achievable accuracy of our experimental truth data. That is, our truth

data are not accurate enough to verify errors significantly better than 2.9 m. These

significant results are further discussed in Section 3.4. Almost all of the test data are

similar to Figures 3.11 and 3.12, shown in Appendix A Figures A.1—A.7.

Although most test data are similar, there exists a section of the test data where

a snowmobile idles (does not move) for 25 s, and the networks perform relatively

poorly with these data. Figure 3.13 shows the predicted locations from each network

at the time where the snowmobile is idling (not moving) in a bird’s eye view. The

Transformer, CNN, and LSTM networks all struggle to notice when the snowmobile

is idle. Those three neural networks were not able to notice the stationary source
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Figure 3.11: Time-series split predicted results for the four different (a)
large regression algorithms and (b) small regression algorithms.
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Figure 3.12: Bird’s eye view of results for the four different (a) large
regression algorithms and (b) small regression algorithms. The same data
and predictions from Figure 3.11 are shown.

and continued to predict movement. Note that the LSTM seems to follow a circular

pattern, which indicates the network is anticipating the snowmobile to drive in this

pattern.
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Figure 3.13: Bird’s eye view of results for the four different (a) large
regression algorithms and (b) small regression algorithms when the acoustic
source is stationary for 25 s.

3.4 Discussion

The core structure behind the network architectures described in Section 3.2.2–3.2.5 is

indicative of the results shown in Sections 3.3. Similar to our results, ViTs have shown

excellent results in image classification [46]. What may be surprising or not intuitive

is the magnitude by which the ViT performance surpassed all other models, most

surprisingly the similarly structured Transformer. Each neural network tracks the

general trend of the snowmobile position, while the ViT tracks the positions almost

perfectly. To explain this, the Transformer determines attention for each input sample

individually, and the ViT attends to subsections of the input data. The input data

have 512 samples of dimension 512, and the Transformer attends each time step to all

the other time steps. This produces a significant amount of attention solely within the
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Transformer block. On the other hand, the ViT positionally embeds the 512 samples

so that attention is made in a temporal and frequency connection. The embeddings

also reduce the attention matrix with the size of patches per Transformer network.

These reduced attention matrices allow for a “deeper” model with the ViT network.

The original Transformer well describes Natural Language Processing (NLP) [48] with

its connection between word embeddings, but this does not transfer well to spectrum

analysis. The Transformer network does not allow for attention along the time and

frequency domain, which is addressed in modified Transformer papers [64]. Specifi-

cally, the ViT is a type of modified Transformer, which, in our example, embeds the

512 attention parameters into 64 smaller regions of interest. These areas are trainable,

and the embedded positions allow the ViT to attend to time and frequency patterns

rather than solely time. Additionally, the embedded positions yield a smaller number

of positions to which the ViT attends. This embedding helps scale the ViT to attend

to higher-dimensional data with the lower amount of attention values. Even with this

explanation, the significant increase in accuracy exhibited by the ViT is remarkable.

Similar behavior in results is summarized in surveys of ViTs [50, 65]; notably, the

results in [66] show major improvements in image classification accuracy using the

ViT.

The ordinal classification approach for localization is not a panacea for every local-

ization problem. The ordinal classification approach shows improved results in our
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experiments and gives way for soft-labeled truth data when the truth data are not ab-

solutely accurate. The network is capable of predicting with low confidence, although

our training data do not facilitate the networks utilizing this yet. An important ques-

tion arises: Why are some networks better than others with different loss functions?

We believe that the LSTM and Transformer networks are most suited for regression,

as LSTMs were constructed for time-series data [37] and Transformers were devel-

oped for NLP [48]. The opposite is true for the CNNs and ViTs. The CNN and

ViT architectures are suited for classifying images; hence, it is understandable why

the CNN and ViT performs better for the classification approaches we propose for

localization.

The results for the large neural networks are impressive, but it may be unacceptable

or impractical to use such large networks in real-world scenarios. For example, in

an remote embedded system, using an 85 million parameter network such as the

large ViT would be wasteful with power consumption to calculate all the operations.

Additionally, the number of data points required to train such large neural networks

costs an extraordinary amount of time and effort to produce, as well as using an

expensive GPU to train the network. In contrast, the small neural network results

are a more practical view for the number of parameters to be used in a real-world

scenario. Therefore, it is important to look at the loss in accuracy as a friendlier,

real-world use case with smaller networks.
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3.5 Conclusions

In this paper, we developed different neural networks for processing data from a

pair of underwater AVSs. The sensors recorded a moving anthropogenic acoustic

source, and the data were analyzed using different neural networks to estimate the

location of the target. Each network—the CNN, LSTM, Transformer, and ViT—all

tracked the position relatively well, but when comparing the networks, we found that

the ViT predicted source location with excellent accuracy, an order of magnitude

more accuracy. The ViT was able to analyze our highly dimensional data and track

the acoustic source well. Additionally, the networks were reduced to have a smaller

number of parameters in order to compare the loss in accuracy.

Finally, we studied three approaches to localizing a moving target. A regression loss

function was the baseline method to compare with our non-conventional methods:

a categorical classification and ordinal classification approach for localization. We

showed that the ordinal classification approaches performed better for networks bet-

ter suited for classification, being the CNN and ViT. The regression loss function

performed better for the networks better suited for time-series data, being the LSTM

and Transformer.
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Chapter 4

Using Vision Transformers for

classification of through-ice

acoustic sources

This chapter is a reprint of the proceedings of meetings in acoustics (POMA). The

permission for reprint has been given in Appendix B.2. Reproduced from “Using

Vision Transformers for classification of through-ice acoustic sources.” Proceedings of

Meetings on Acoustics, Denver, CO, June 2022, with the permission of AIP Publishing

[15]. Copyright 2022, Acoustic Society of America.
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4.1 Introduction

Classifying an acoustic source is important in Arctic underwater environments for

situational awareness. Whether classifying an on-ice anthropogenic source, such as

a snowmobile or an ice pick, or an under-ice biologic source, such as a seal or a

whale, the algorithms are useful in academic, civilian, and military applications. In

water and ice environments, acoustic signatures propagate at high distances and, thus,

acoustics is the main method for detecting and classifying foreign sources [67]. Passive

sonar is a method where no active ping is transmitted and so background noise is a

very concerning matter when handling source classification [68]. Recently, machine

learning has been employed to classify sources in high noise environments, described

further in a survey by Domingos et al. [69] Analysis has been previously been done

with underwater acoustics classification and machine learning [14, 68, 70, 71, 72].

Choi et al. and Cinelli et al. analyzed different machine learning techniques, two of

which used a fully connected neural network (FCNN) architecture and a convolutional

neural network (CNN) architecture to classify different vessels [70, 71]. Our research

extends these analyses to a new architecture, the Vision Transformer (ViT) [46]. The

ViT claims to outperform the LSTM and CNN in speed and performance, and in this

paper, we validate this claim in this new field of through-ice acoustics.

Our research looks into analyzing different experiments on the ice of the Keweenaw
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Waterway in Houghton, Michigan. These experiments generated a multitude of an-

thropogenic sources and we classified these real-world acoustic signals using machine

learning. The experiments were conducted with varying types of classes: snowmo-

bile noise, ice augers, ice saws, hammers, and an underwater speaker playing a chirp

signal. The acoustic signatures of each class were passively recorded with a pa-type

(pressure-acceleration) acoustic vector sensor (AVS). The pa-type AVS recorded both

acoustic pressure and acceleration simultaneously with a piezoelectric transducer and

a triaxial accelerometer respectively [53]. Using both of these sensors inside a single

AVS, we could estimate acoustic intensity with post-processing [52]. We have pre-

viously found success in post-processing the AVS data to acoustic intensity before

analyzing the data with machine learning (ML) [12, 14].

After labeling our data for a classification data set, we adopted supervised ML to map

a transform from AVS spectrogram data to a predicted class. The supervised ML

method used was a neural network, and the core of the neural network architecture

used was a ViT [46], a modification of the Transformer architecture [48]. To our

knowledge, ViTs have not been used in underwater acoustic classification, let alone

through-ice acoustic classification. In this paper, we compare different neural network

architectures in through-ice acoustic classification, namely the CNN architecture and

the long short-term memory (LSTM) network architecture. Our analysis in Section

4.4 has shown that the ViT architecture outperforms the CNN architecture and the

LSTM network architecture. Before analyzing the results, we will describe the analysis
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and experiments conducted.

4.2 Algorithmic Methods

There are two processes implemented within this analysis. The first step is to process

the acoustic data into a spectrogram. A spectrogram initially extracts frequency-

specific features, which are present in our data [73]. The second step is to input the

processed acoustic data into the neural network architecture, producing a prediction

of the source location.

4.2.1 Acoustic processing

The data from our experiments were recorded using an underwater pa-type AVS—

the Meggitt VS-209. The AVS records four time-series data streams: x−, y−, z−axis

particle acceleration data streams, denoted as ax(t), ay(t), az(t); and a particle pres-

sure data stream, p(t). The data are transformed into the frequency domain using a
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short-time Fourier transform (STFT);

Ax(f) = F (ax(t)) , (4.1a)

Ay(f) = F (ay(t)) , (4.1b)

Az(f) = F (az(t)) , (4.1c)

P (f) = F (p(t)) , (4.1d)

where F(·) is the Fourier operator. Acoustic intensity is calculated using the combi-

nation of both the particle acceleration and pressure, where

Ix(f) = P (f)A∗x(f)/(2πf), (4.2a)

Iy(f) = P (f)A∗y(f)/(2πf), (4.2b)

Iz(f) = P (f)A∗z(f)/(2πf), (4.2c)

and (·)∗ is the complex conjugate. The acoustic intensity is then transformed into

polar coordinates by

|I(f)| =
√
I2x(f) + I2y (f) + I2z (f), (4.3a)

Θ(f) = arctan
Ix(f)

Iy(f)
, (4.3b)

Φ(f) = arctan
Ix(f)√

I2y (f) + I2z (f)
, (4.3c)
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where |I(f)|, Θ(f), and Φ(f) are the magnitude, azimuth, and elevation, respectively,

of the acoustic intensity. For classification, |I(f)| is processed by the neural networks.

Because we use |I(f)| as the input to our neural network, we denote |I(f)| = X for

the remainder of this paper.

4.2.2 Neural network processing

A neural network requires a consistently sized input, X, and many of our events

do not occur at the same time duration. For example, the hammer strike class is a

transient that ends in under a second, and the snowmobile class is a signal that lasts

for 30 minutes. The difference between these scales can cause issues when directly

passing the data into the neural networks. In our case, we set X to be a constant size

of N time steps, where N is 200 time steps—1 second—for the experiments presented

in Section 4.4. If the event occurs in fewer than N time steps, then the signal is

zero-padded. If the event occurs in more than N time steps, we first trim the signal

to equal N time steps, then we use the remaining signal as another event, repeating

for very long signals. To make the neural network more robust, when zero-padding is

used, the zero-padding is added randomly both before and after the signal clip, placing

the short clip somewhere in the middle of the N time steps. The randomized offset

prevents the neural network from failing to predict only when the class only occurs

at the beginning of X. This allows the neural network to generalize any position of
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the transient in X.

Suppose there exists an event C ∈ RF×T where F is the number of frequency bins, T

is the number of time steps, and T < N , then

X =

[
0F×Nl C 0F×Nr

]
, (4.4)

where X ∈ RF×N , 0F×M is a matrix of zeros of size F × M , and Nl and Nr are

randomly drawn such that N = T +Nl +Nr.

Now, suppose there exists an event C ∈ RF×T with T > N , then

X1 =

[
CF×N

1

]
(4.5a)

X2 =

[
CF×N

2

]
(4.5b)

...

XM =

[
0F×Nl CF×K

M 0F×Nr

]
(4.5c)

where Ci spans the columns of C from (i−1)N to iN ; X1, X2, ...XM are the “trimmed”

events; K = T −N(M − 1); M = T/N is rounded up to the nearest integer; and Nl

and Nr are randomly drawn such that N = K +Nl +Nr. If the final trimmed event

does not perfectly match the size N—i.e., T/N is not an integer—then the final event

is also zero-padded, as described in Equation (4.5c).
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Finally, suppose there exists an event C ∈ RF×T with T = N , then X = C.

We describe X to be a full input when there is no zero-padding and we describe X

to be a padded input when there is zero-padding added to X.

4.2.3 Class Processing

After this processing we were presented with a significantly unbalanced class distri-

bution within our experiments, which has shown to degrade performance in machine

learning [74, 75]; this will also be shown with our data in Section 4.4. In our exper-

iments, the hammer strike class contained 180 seconds of data and the snowmobile

contained 4,618 seconds. If these were the only two classes, the network could deter-

mine that snowmobiles were the only class present, label everything as snowmobile,

and it would be 96.2% accurate. As such, we reduce the disparity between classes

by removing much of the snowmobile data, as seen in Figure 4.1. This reasoning is

supported in Section 4.4, where the algorithm overpredicts snowmobile events when

no class normalization is done. With the data mapped into a usable form for the

neural network architecture, we now describe the different architectures we will be

comparing.
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Figure 4.1: Normalization of class distribution to remove excess sample
training with snowmobile data. View (a) shows the class distributions with-
out reduction and (b) shows the class distributions after reduction.

4.2.4 Convolutional neural network

The CNN is a network that computes the convolution operation on input data,

yf,t =
F∑
i=0

N∑
j=0

wi,jxf−i,n−j + bi,j (4.6)

where w is a trainable weight that is convolved along the input data, x; b is a bias

term at each kernel position; and y is the convolved output. The CNN has its power

in finding spatially close relations in the data [57]. It is also computationally fast,

but it is challenging for the CNN to find long-term relations since Eq. (4.6) convolves

only spatially close positions within x. To handle long-term relations, we now look

to the LSTM.
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4.2.5 Long short-term memory network

The LSTM network handles long-term relations within the data using recurrence [37].

Recurrence has been known to have a problem with its vanishing gradient in during

back propagation using an unconstrained recurrent neural network [76]. Because of

this, the LSTM constrains the data with “gates” to handle the input data,

it = σ(Wi

[
hT
t−1 xT

t

]T
+ bi), (4.7a)

ft = σ(Wf

[
hT
t−1 xT

t

]T
+ bf ), (4.7b)

ot = σ(Wo

[
hT
t−1 xT

t

]T
+ bo), (4.7c)

ct = ft ◦ ct−1 + it ◦ tanh
([

hT
t−1 xT

t

]T)
, (4.7d)

ht = ot ◦ tanh(ct), (4.7e)

where W and b are trainable parameters for the three gates, the “input” gate, the

“forget” gate, and the “output” gate; h is the output of the LSTM; c is the state of

the LSTM that is adjusted with new input data; σ is the sigmoid activation func-

tion, 1/(1 + e−x); [·] concatenates the two values within the brackets; and ◦ is the

Hadamard product, or element-wise multiplication of the two values. An LSTM cell

is all operations in Eq. 4.7.

The gates within the LSTM attempt to reduce the effects of the vanishing gradient by
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constraining the gradients through backpropagation [34]. The LSTM handles long-

term relations with the states c and h, but these two states also depend upon the

previous state, which means that there is little parallelization that can be computed

within the LSTM. Because of this, a GPU cannot be used at its fullest potential to

parallelize computations. We now look to the ViT, which allows parallel computation

while still maintaining long-term relations.

4.2.6 Vision Transformer

The ViT is a modified version of the originally proposed Transformer [46, 48]. In a

ViT, the input data are positionally embedded before the data are transformed by

the Transformer encoder. This means that the samples of the input data—i.e., the

spectrogram—are split into rectangular chunks along both time and frequency.

The ViT calculates attention by

attention(X) = softmax

(
(WQX)(WKX)T√

d

)
WVX, (4.8)

where the input is X after being positionally embedded and the trainable weight

matrices are WQ, WK , and WV . The scaling parameter
√
d used is as proposed by
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Vaswani et al. [48], and softmax(·) is defined as

softmax(x) =
ex∑K

k=1 e
xk

, (4.9)

which is a normalizing factor on the product WVX.

Attention is used to determine the importance of various elements of the data. Since

the data in Equation (4.8) contain the same X data for the three weight matrices,

this equation is defined as self-attention and features are determined within the data

itself using attention.

Multi-headed attention (MHA) is a method in which Equation (4.8) is computed

multiple times for more trainable parameters [48]. MHA allows multiple attention

connections to be computed for the same data which gives an opportunity for the

ML algorithm to learn multiple attentions. We compare the number of MHAs as a

hyperparameter within our ViT architecture in an effort to yield better performance

on the test data.

The Transformer encoder is computed as

Z = W (X + attention(X)) +X + attention(X), (4.10)
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where W is an FCNN, and attention(·) is defined at Equation (4.8). With the math-

ematics of the networks explained, we now look into the architectures themselves.

4.2.7 Neural network architectures

The CNN architecture consists of a series of alternating CNN layers and batch nor-

malization (BN) layers[77]. After the BN layer, we use the ReLU activation function,

ReLU(x) =


x if x ≥ 0

0 otherwise,

(4.11)

to add more non-linearities to the network. Each CNN had a kernel size of (3, 5), a

convolution step size of (2, 2), and there are 64 filters at each CNN layer. The last

part of the CNN architecture has an FCNN with a softmax function for predicting

each acoustic class. The number of CNN layers was varied in hyperparameter tuning,

described in Section 4.3.

The LSTM architecture consists of a series of LSTM layers with 64 cells per layer.

Each LSTM layer predicts at each timestep—i.e., the output of each LSTM layer

contains 64 samples. The end of the LSTM architecture contains an FCNN with a

softmax function for predicting each acoustic class. The number of LSTM layers was

varied in hyperparameter tuning, described in Section 4.3.
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Figure 4.2: Vision Transformer neural network architecture for classifier
acoustic vector sensor data

The ViT architecture consists of a series of Transformer encoders—i.e., a series of

Equation (4.10)—followed by an FCNN with a softmax activation function for clas-

sification. Figure 4.2 illustrates the full neural network model. The depth of the

neural network is not very deep in comparison to those in the original Transformer

papers [46, 48], but the data in this experiment is not as extensive as in those papers;

therefore, such a deep network would go beyond the limited data and overfit quickly,

essentially learning the noise in the data.
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4.3 Experimental Methods

The experiments were conducted at the Keweenaw waterway next to Michigan Tech-

nological University [12, 13, 14]. The Keweenaw waterway is a narrow and shallow

water channel where first-year ice forms typically from January to March. Our ex-

periments were conducted from January to March, 2021.

A single Meggitt VS-209 AVS passively recorded the signature of each acoustic source

in an uncooperative manner; i.e., there is no active sonar. The AVS was recorded at

a sample rate of 17,076 Hz. This sample rate was chosen because the Meggitt VS-209

3-dB frequency bandwidth is around 8,000 Hz and the closest discrete sampling rate

for the National Instruments NI-9234 analog-digital converter (ADC) is 17,067 Hz,

which was used for the experiment.

Each class was recorded individually such that no class would overlap one another.

There exists classes where ice cracks and background noise—sources of sound not

corresponding to one of our classes—occurred, generating transients and disturbances,

but these are a realistic view of the ice environment and were thus not removed. The

data were labeled and classified at the individual sample-level within a tenth of a

second. The tally of classes and their sample count are shown in Table 4.1 along with

the normalized class count, i.e., where some snowmobile events were removed.
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Class name Class count Reduced class count

Snowmobile 4618 397
Hammer 180 180

Electric auger 176 176
Underwater speaker 397 397

Gas auger 268 268
Ice Saw 262 262

Table 4.1
A comparison of data counts in all classes lasting 1 second for each count

The data were post-processed using an STFT hanning window, 50% overlap, 0.01

second bin length (171 samples), and zero-padded to 256 samples. The small bin

length is necessary to facilitate the small hammer strike duration, else the duration of

each hammer transient would be contained within a single bin length. A single class

count is considered to be a spectrogram consisting of 200 time steps, or 1 second.

The spectrum data, |I(f)| ∈ R128×200, is globally normalized from 0 to 1, where

XdB = 10 log10 |I(f)|, (4.12a)

X =
XdB −min(XdB)

max(XdB)−min(XdB)
(4.12b)

describes the normalized input data, X, which is then analyzed by the neural network

architecture.

Once the neural network parameters were trained on the training data, predictions

were made on the test data. The neural network was trained using the Adam
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Patches
8 16 32

Heads Heads Heads
2 4 8 2 4 8 2 4 8

learning
rate

0.005 0.51 0.42 0.45 0.89 0.48 0.45 0.45 0.46 0.49
0.002 0.43 0.45 0.51 0.45 0.48 0.41 0.56 0.5 0.56
0.001 0.4 0.44 0.48 0.47 0.39 0.44 0.7 0.53 0.95

Table 4.2
Validation loss with varying hyperparameters for the ViT architecture

optimizer[61] with parameters β1 = 0.9 and β2 = 0.999 and the learning rate ad-

justed via hyperparameter tuning for each network. The test data set was split to

contain 20% of the data, while the training data set contained 80% of the data. The

training data were further split into two sets: 90% used for training and 10% used

for validation. The validation data were used to tune the hyperparameters of the

architecture, meaning that the validation data were used as a surrogate test data set

by which parameters that cannot be learned by ML were adjusted. Hyperparameters

were determined with a grid search.

For the ViT architecture, the hyperparameters we studied were the learning rate, the

number of heads in the MHA in the ViT, and the size of the positional embedding

patches in the ViT. Table 4.2 shows the validation losses for sets of hyperparameter

combinations for the ViT architecture.

With the results in Table 4.2, we have found the network hyperparameters that

resulted in the best validation loss were a learning rate of 0.001, 16 ViT patches, and

4 Transformer heads in MHA.
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CNN+BN+ReLU count LSTM layer count
2 3 4 5 2 3 4 5

learning
rate

0.005 0.38 0.55 0.42 0.39 0.43 0.47 0.45 0.46
0.002 0.49 0.61 0.46 0.32 0.44 0.45 0.50 0.48
0.001 0.65 0.45 0.36 0.42 0.43 0.39 0.58 0.78

Table 4.3
Validation loss with varying hyperparameters for the CNN architecture

and LSTM architecture

For the CNN and LSTM network architectures, the number of layers for the network

was determined using hyperparameter tuning. The best hyperparameters found for

the CNN was a learning rate of 0.002 for the Adam optimizer and a network containing

a CNN layer and a BN layer followed by a ReLU activation 5 times. The best

hyperparameters found for the LSTM was a learning rate of 0.001 and 3 LSTM

layers. These analyses are shown in Table 4.3.

The hyperparameters that resulted in the lowest loss in the validation data, along

with the trainable parameters of the network, were used to test each neural network.

With the neural network trained and hyperparameters determined, we can now test

the network with the held-out test data and analyze the results.

4.4 Experimental Results

The experimental data contains 5,901 events of 1 second in length in the non-

normalized data set. The normalized data set, with removed snowmobile events,
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contains 1,680 events of 1 second in length. The distribution of total events is shown

in Figure 4.1. The test data contained 1180 events in the non-normalized data set

and 336 events when a portion of the snowmobile events were removed. One should

note that the test data were processed in the same manner of the training data from

Eqns. 4.4—4.5c, which zero-padded the test data. This removes the exact scenario of

the real world environment; i.e., we are not testing on a stream of input data, but it

helps describe the results by having direct sample sizes along each event.

Sample spectrogram data are shown in Figure 4.3 as a visual representation of all

the classes on which the neural network was trained. These spectrogram data are

examples of the exact inputs to the neural network. Note in Figure 4.3(c) that the

transients are the ice cracking, which is typical of heavy, on-ice moving sources in a

first-year ice environment.

When the number of snowmobile events were not reduced, the classification perfor-

mance of the neural network was degraded. When the class distribution was more

balanced, each neural network was able to classify without bias towards the snow-

mobile. This bias is shown in Figure 4.4 with the ViT architecture. One can see

the overconfidence of the snowmobile class in Figure 4.4(a), where the snowmobile

class was incorrectly predicted more often on other data. One should also note that

the accuracies for the snowmobile and underwater speaker are exceptional, but those

two classes were very distinct, as seen in Figures 4.3(a) and 4.3(c). The underwater
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Acoustic intensity spectrogram plots for (a) an underwater
speaker event, (b) a gas auger event, (c) a snowmobile event, (d) a hammer
strike event, (e) an ice saw event, and (f) an electric auger event.

speaker had a very unnatural and distinct pattern, and the snowmobile source was

constantly moving; therefore, the frequency response was constantly changing due to

the destructive and constructive interference patterns in the shallow ice environment

[12].

To compare a single value between each architecture, we look to the F1-score. The

F1-scores was calculated individually for each class,

F1 =
2 · precision · recall

precision + recall
, (4.13)

and then the mean of each F1-score along each class was found to determine a single,
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Reduced Non-reduced
ViT 0.853 0.794

LSTM 0.809 0.808
CNN 0.735 0.773

Table 4.4
F1-scores for the reduced-snowmobile and non-reduced data sets for each

neural network

(a) (b)

Figure 4.4: Classification accuracy for the ViT architecture for (a) non-
reduced (5,901 events) and (b) reduced-snowmobile class distributions (1,680
events).

composite F1-score. The purpose for a balanced class F1-score was to evenly compare

the neural network classifier for each class. A comparison of the F1-scores in both

types of data sets is shown in Table 4.4.

One behavior we observed was that the neural network performed poorly for the

data produced by Equation (4.5c), i.e., the data at the end of a long event. When

analyzing the results, we found a significant decrease in accuracy on the zero-padded

events. Of all 37 non-hammer zero-padded events in the normalized data set, 30 were
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incorrectly classified with the ViT architecture, an accuracy of 19%. The training

data only contained 103 events—7.6% of the training data—with non-hammer zero-

padded events. We hypothesize that the neural network learned the patterns within a

full event, which was prevalent in the long signals, but failed to discover the patterns

zero-padded events because there were not enough events for the neural network to

consider properly.

4.5 Conclusion

In this paper, we have demonstrated a method to classify on-ice acoustic sources

with an AVS using machine learning. Once the acoustic data were transformed into

a spectrogram, the ViT was capable of classifying acoustic sources with a relatively

high F1-score for ice acoustic classification. The ViT showed excellent performance

in benchmark data [46]; we demonstrated that the ViT also has good promise for

acoustic classification in real-world data in a complex scattering environment.

These results show the strength of the ViT for this application. Further fine-tuning

and optimization with deep learning techniques can be employed, but the accuracies

presented here are encouraging for the use of the ViT in practical scenarios. We

anticipate further improvements within the intersection of acoustics and machine

learning.
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Chapter 5

Conclusion and future work

This dissertation researched two main topics: how to analyze underwater and on-ice

acoustic data using a neural network to calculate multiple SONAR-related results,

and how to conduct experiments to facilitate the training data required for such

networks.

We showed in Chapter 2 that with a single AVS, a network with an LSTM-backbone

could track the DOA of a moving source with moderate accuracy, increasing the

accuracy of DOA estimation by 14.6o when comparing a weighted average of the

acoustic intensity azimuthal DOA at each frequency bin.

This accuracy was then greatly improved upon in Chapter 3 using two AVSs and

a ViT neural network architecture in a more complex environment: localizing an
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on-ice source, rather than estimating the DOA of a surface-water source.Using the

ViT architeture, we localized the source with 3 meter accuracy from the source GPS

coordinates. We also proposed a novel approach to localizing a target in a constrained

environment and described the results in the complex environment. This localization

approach processes the data to predict a grid of locations as a classification problem,

where individual classes are removed to constrain the locations the source could be

localized.

Finally, we showed in Chapter 4 that the ViT was also capable of classifying six on-ice

acoustic classes with relatively good accuracy with an F1-score of 0.85.

Initially, experiments were conducted in the summer of 2020 at the Keweenaw Wa-

terway to track a boat using a single AVS. Using a single AVS, only DOA estimation

was possible, but the analysis showed promising accuracy using RNNs.

Many experiments were conducted in the following winter of 2020-2021 at the Ke-

weenaw Waterway, where two AVSs were separated by 30 m. The snowmobile exper-

iments had its acoustic signatures localized using both an LSTM network and ViT

network with the ViT performing better accuracy. Other experiments were conducted

to generate various on-ice acoustic transients: an electric auger, a gas auger, an ice

saw, and a hammer.

In the next winter of 2021-2022, the remaining experiments focused on reducing noise
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and expanding the capability of the experiments. These experiments introduced

future work and analysis. Experiments have been conducted to generalize the relative

position of the two sensors, which was possible once the sensor suite became portable.

From these experiments, a large data set has been generated from three years of ice

experiments and passive recordings, totalling beyond 2 TB of raw data.

This research has shown that there is promise with utilizing machine learning in the

field of ice acoustics. Machine learning is relatively new in ice acoustics, so this

research hopes to encourage other researchers to continue studying different machine

learning techniques in this field.

5.1 Future Work

With this extensive amount of data, first-year ice characteristics can be further stud-

ied. Going forward, many new types of experiments can be conducted with research

to conduct networks for a more generalized approach to the analyses described in this

dissertation.
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5.1.1 Generalized sensor positions

Every experiment in this dissertation analyzed results with the one or two sensors

in the same position, but the machine learning algorithm can perform very poorly

if the positions of these sensors are changed. Experiments can be conducted with

varying relative position to find a more generalized algorithm. It is a hope that the

relative position between each sensor can be parameterized and adjusted for within

the neural network architecture. With the positions parameterized, an underwater or

on-ice network of sensors can work together to localize targets at far distances.

5.1.2 Generalized environment

Every experiment in this dissertation was conducted at the Keweenaw Waterway,

which may cause our specific networks to not generalize to other areas. Experiments

can be conducted at different locations: shallow and wide (a small lake), deep and

narrow (large river), or deep and wide (a large lake), or in saltwater environments

(the ocean). These different environments will hopefully find a manner in which

to parameterize the acoustic environment. With the combination of both sensor

positions and the water environment being parameterized, a highly generalized neural

network may possibly be found.
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5.1.3 Sources with varying elevation

Every experiment in this dissertation studied moving or non-moving sources at the

surface of the water or the top of the ice. The elevation angles did not change much

and because of this, the dissertation disregarded elevation angle because they were

very similar. Experiments can be conducted to have varying elevation angles, such

as submerged sources like an underwater ROV or a scuba diver.

5.1.4 Multiple target source localization

Every experiment in this dissertation studied a single moving or non-moving source.

If there were two events that occur at the same time in experiments conducted dur-

ing this dissertation, these data were removed to reduce the complexity of an already

complex environment. Experiments can be conducted with multiple sources at the

same time: two moving broadband sources, one broadband and another with tran-

sients, or three or more sources at once. If multiple sources at once are properly

analyzed, this can transform the analyses into a largely real-world environment.
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5.1.5 On-ice acoustic data sets

There is still a lack of labeled data in the underwater acoustics and on-ice acoustics

field. This is a tedious and time-consuming task that has not yet been done for a

large data set. Further efforts can be done to contribute to an on-ice acoustic data

set to be used in machine learning experimentation.
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Appendix A

Figures

Figures A.1–A.7 show a single snowmobile experiment conducted on February 17th,

2021. These figures show the totality of the truth data in Chapter 3 [13]. The purpose

of these figures is to show that the data in Section 3.3 are not hand-picked, but rather

they are typical of all the other test data.
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Figure A.1: Seconds 0 to 283 of test data using large regression networks
where the star indicates the start of the each time.

Figure A.2: Seconds 283 to 566 of test data using large regression networks
where the star indicates the start of the each time.
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Figure A.3: Seconds 566 to 849 of test data using large regression networks
where the star indicates the start of the each time.

Figure A.4: Seconds 849 to 1132 of test data using large regression net-
works where the star indicates the start of the each time.
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Figure A.5: Seconds 1132 to 1415 of test data using large regression net-
works where the star indicates the start of the each time.

Figure A.6: Seconds 1415 to 1698 of test data using large regression net-
works where the star indicates the start of the each time.
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Figure A.7: Seconds 1698 to 1981 of test data using large regression net-
works where the star indicates the start of the each time.
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