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A Few-shot Learning Model based on a Triplet Network for the Prediction of
Energy Coincident Peak Days

Jinxiang Liu and Laura E. Brown
Michigan Technological University

1400 Townsend Drive
Houghton, MI 49931 USA

Abstract
In an electricity system, a coincident peak (CP) is defined as
the highest daily power demand in a year, which plays an
important role in keeping the balance between power sup-
ply and its demand. Advanced information about the time of
coincident peaks would be helpful for both utility companies
and their customers. This work addresses the prediction of the
five coincident peak days (5CP) in a year. We present a few-
shot learning model to classify a day as a 5CP day or a non-
5CP day 24-hours ahead. A triplet network is implemented
for the 2-way-5-shot classifications on six different historical
datasets. The prediction results have an average (across the
six datasets) mean recall of 0.933, mean precision of 0.603,
and mean F1 score of 0.733.

Introduction
Keeping an electricity system stable requires that the sup-
ply of power is always sufficient to cover the demands. To
stimulate customers to lower the electricity usage at peak
times, many regional transmission organizations or indepen-
dent system operators implement pricing programs that re-
quire large customers to pay surcharges during the time of
coincident peaks (days of highest power demands). For ex-
ample, in Ontario, Canada, the Independent Electricity Sys-
tem Operator (IESO) charges their customers a higher price
on five coincident peaks (5CP), which are the top five daily
maximum power demands in a year. The system operators
send out notifications of predictions on future demands, but
the timing of whether a day is a CP is not confirmed until
after the fact (end of the fiscal year for IESO). Therefore,
accurate predictions of coincident peaks may be beneficial
to both system operators and consumers.

Our work is for the day-ahead prediction of the five co-
incident peaks (5CP days). Because there are only five CP
days in a year (∼1.4%), the prediction of 5CP days is an im-
balanced classification problem. In order to obtain accurate
results, most learning models need to be trained on sufficient
data, in some problems the available data is limited. Under
such circumstances, few-shot learning may be a solution, as
it is capable of learning from a small amount of data. Un-
like other classification methods, few-shot learning models
learn how to learn. It gains experience from a set of prob-
lems rather than some particular problem.
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Because of the insufficient positive cases (5CP days), few-
shot learning models may help in predicting the five coinci-
dent peak days. Therefore, a few-shot learning model based
on a triplet network is developed to predict whether the next
day is a 5CP day or not. Actual historical data from six dif-
ferent areas is used to train and test the model. Note, since a
model in practice would have forecasted data also available
for its use, the true data is also used as forecasted data from
an oracle; thus, the results are optimistic but can be used
to understand the feasibility of the approach. Through the
leave-one-out cross-validation scheme by year, the predic-
tion results indicate this model performs well on this prob-
lem with the average (across six datasets) mean recall of
0.933, mean precision of 0.603, and mean F1 score of 0.733.

Related Work and Background
There is a tremendous amount of literature on forecast-
ing electricity demands (Kandil, El-Debeiky, and Hasanien
2002; Li and Li 2017). Many different approaches have
been applied to this problem from naive methods, e.g., au-
tocorrelation with weather data (McSharry, Bouwman, and
Bloemhof 2005), autoregressive integrated moving aver-
age (Li and Li 2017), to machine learning models, such as
K-nearest neighbors (El-Attar, Goulermas, and Wu 2009),
fuzzy models (Ying and Pan 2008), and artificial neural net-
works (Saini 2008). However, the prediction of the day of
five coincident peaks (5CP) is not like the prediction of
power demands (a regression problem). The prediction of
5CP days needs to locate the date of the 5CP in a year. Be-
cause of the imbalanced classes, it could be hard to predict
5CP days accurately through traditional prediction models.

In Jiang et al., a heuristic algorithm is proposed to predict
whether the next day will be the day with one of highest five
power demands in a fiscal year in IESO (Jiang et al. 2014).
Relying on the fact that residuals of power demand fore-
casts from 2006 to 2013 are normally distributed and the
presumption that power demand forecasts are independent
for different days, they used the 14-day short-term power de-
mand forecasts and weather forecasts for the next day to cal-
culate the probability that one of 5CP occurs tomorrow, and
then set the probability threshold derived from the estimates
of previous years to classify 5CP days. The forecast data is
no longer available therefore, our analysis does not take it
into account. The work from Ryu et al. is about forecasting



the time of five coincident peaks in IESO (Ryu et al. 2016).
Naı̈ve Bayes was used to predict daily peak, 3-hour peak
and 1-hour peak for 5CP. Their model has been trained and
tested on IESO hourly data over 21 years. Different from the
the work from Jiang et al., the probability threshold was set
as 0.5, a fixed number, instead of a heuristic one. In addition,
their analysis over expanded years 1995-2015 had 5CPs oc-
curring during both the summer and winter.

Background
Unlike most learning models, which require abundant data
to train the model, few-shot learning can gain experience
from few examples (Wang et al. 2020). Because it is learning
how to learn from a set of tasks, few-shot learning can be
characterized as an example of meta-learning.

Generally, few-shot learning can be considered as a M -
way-N -shot classification, where M indicates the number
of classes, and N means the number of examples per class.
The training and testing for the few-shot learning model con-
sist of a sequence of tasks. Each task has a support set and
a query set. The support set teaches the model how to solve
the task, while the query set assesses the model performance
on the task. The support set contains M ×N labeled exam-
ples with M classes and N examples per class. The classes
in the support set could be different in different tasks. The
query examples should be different from the support exam-
ples, but they have the same classes. After learning from the
different training tasks, the model should have the ability
to discriminate classes. During the training, the cost on the
query set of the task assesses the model performance.

Testing tasks are for model testing and should have differ-
ent examples from the training tasks. The testing task also
has a support set and a query set. For the testing task, the
support examples have the same classes with the query ex-
ample. According to the given support set in the testing task,
the model classifies the examples in the query set, and their
classification results indicate the performance of the model.

Triplet network We implement few-shot learning by us-
ing a triplet network, but many other few-shot learning mod-
els could be chosen, for example, prototypical networks
or matching networks (Snell, Swersky, and Zemel 2017).
Triplet networks (Hoffer and Ailon 2015) learn similarity
and dissimilarity among the samples. It takes triplets as in-
puts, consisting of three examples: anchor, positive and neg-
ative examples (Ach., Pos. and Neg.). The anchor example
is selected to describe some class, and it could be any arbi-
trary sample in the dataset. The positive example should be
any other sample from the class of anchor example, while
any sample from a different class can be the negative exam-
ple. During the training, three examples in the triplet will
be passed through three identical, base neural networks. The
base networks share weights with each other. Through the
base networks, three embeddings (EA, EP , and EN ) would
be generated and then will be used to calculate the distances
in the embedding space between the anchor and positive
examples (D+), and between the anchor and negative ex-
amples (D−). Triplet network uses triplet loss as the learn-
ing criterion, which pushes the anchor example to be distant

from the negative example, but close to the positive example.
After training, the positive example should have a shorter
distance to the anchor example than the negative example.

In the testing phase, the model takes two examples. One
example (Tag.) is the testing case, and its class is un-
known, while the class of the other example (Sup.) is al-
ready known. These two examples will be passed through
the trained base networks to generate embeddings (ET and
ES). The distance between these two embeddings (D) de-
termines whether the testing case has the same class as the
other example or not.

To implement the few-shot learning technique, the triplet
network needs to be mapped to the few-shot learning frame-
work. For the model training, the anchor example is selected
from the query set of the training task, while the positive and
negative examples are from the support set but they have dif-
ferent classes. For the model testing, the class of the example
in the query set is determined by the distance to the exam-
ples in the support set.

Triplet loss Triplet loss (Schroff, Kalenichenko, and
Philbin 2015) is a loss function that takes the embedding
for the anchor, positive and negative examples. Triplet loss
is defined as:
Loss(EP ,EA,EN )=max(0,α+d(EA,EP )−d(EA,EN )),

where α represents the margin of the positive examples and
negative examples in the embedding space, EA is the em-
bedding for anchor example, EP is the embedding for pos-
itive example, and EN is the embedding for negative ex-
ample. Function d(A,B) calculates A’s distance from B.
In our work, the distance between the two embeddings are
measured by squared Euclidean distance.

According to the location of the negative example in the
embedding space, relatively to the positive and anchor ex-
amples, there are three kinds of triplets:
• Easy triplets, where d(EA, EP ) + α < d(EA, EN ): The

triplet loss has a value of 0. In the embedding space, the
negative example is far enough away from the anchor ex-
ample concerning the positive example.

• Semi-hard triplets, where d(EA, EP ) < d(EA, EN ) <
d(EA, EP ) + α. The triplet loss has a positive value
smaller than the margin α. In the embedding space, the
negative example has a larger distance to the anchor ex-
ample than the positive example, however, the distance
difference is less than α.

• Hard triplets, where d(EA, EN ) < d(EA, EP ): Triplet
loss has a positive value greater than the margin α. The
negative example has a shorter distance to the anchor ex-
ample than the positive example in the embedding space.

Approach to Predict Coincident Peak Days
This work looks to predict whether tomorrow is a five
coincident-peak day. Like the approach presented by (Ryu et
al. 2016), we used classification models to predict 5CP days.
Attributes include historical power demands and weather,
dates, as well as power demand and weather forecasts. We
developed a few-shot learning model to classify the next day
into 5CP days or non-5CP days.



Table 1: Data set information
ISO/ Weather Date
RTO Area Station Range
IESO Ontario CYKZ 21 yrs; 5/1/94-4/30/15
PJM DPL ILG 24 yrs; 1/1/94-12/31/17
PJM PS EWR 24 yrs; 1/1/94-12/31/17
MISO LRZ1 MSP 3 yrs; 6/1/15-5/31/18
MISO LRZ2-7 MKE 3 yrs; 6/1/15-5/31/18
MISO LRZ4 SPI 3 yrs; 6/1/15-5/31/18

Data
The hourly data used in our work includes power demands
and weather from six different areas. The power demand
data is provided by Independent Electricity System Oper-
ator, IESO (IESO 2022), PJM a regional transmission oper-
ator in 13 states (PJM 2022), and Midcontinent Independent
System Operator, MISO (MISO 2022). The corresponding
weather data comes from the Canadian government climate
website1 (for IESO) and NOAA’s National Centers for En-
vironmental Information2 (for the other five areas).

Information on the datasets is summarized in Table 1. Two
zones for PJM are studied in our work, Public Service Elec-
tric & Gas zone (PS) and Delmarva Power & Light zone
(DPL). In addition, we examined three local resource zones
(LRZs) from MISO, which are LRZ1, LRZ4, and LRZ2-7
(it combines LRZ2 with LRZ7 together).

For each weather station (airport code in Table 1), the air
temperature, relative humidity, humidex and windchill are
taken into consideration. Humidex and windchill are calcu-
lated by using air temperature, dew point temperature and
wind speed. Humidex is not displayed when the air temper-
ature is less than 20◦C or the value of humidex is more than
1◦C less than the air temperature, and windchill does not ex-
ist when the wind speed is 0 km/h or the air temperature is
over 0◦C. For such cases, the value of humidex and wind-
chill has been set as -1 and 1 respectively. Any missing val-
ues in the datasets were replaced using linear interpolation.

In our few-shot learning model, the historical power de-
mands, calendar information, and the next day forecasts of
power demands and weather factors have been considered.
Note, daily forecast data is not available, therefore the actual
data is used (forecasts from an oracle). Thus, our results are
optimistic, yet important in establishing the promise of this
approach. Table 2 lists the discrete and continuous attributes.
We used the technique of binary encoding to convert discrete
attributes to binary codes.

Implementation of triplet network
A triplet network has been selected to identify whether a
day is a 5CP day or a non-5CP day. The model takes three
examples as the input, which are anchor, positive and nega-
tive examples. We used a random number generator to deter-
mine the class of the anchor example. If the number gener-
ated by the generator is 1, the anchor example should come

1Canada: Historical Climate Data, http://climate.weather.gc.ca/
2NOAA, https://www.ncdc.noaa.gov/cdo-web/

Table 2: Attributes for modeling. The subscript ph indicates
values reported at the peak power demand hour.

Discrete Attributes Description
Month (Jan. to Dec.) M1, . . . ,M12

Day of week (Mon. to Sun.) W1, . . . ,W7

Holiday indicator (working
day vs. holiday/weekend)

H = {0, 1}

Continuous Attributes Description
Humidex at peak hour (ph) Hph0

Temperature at ph Tph0

Windchill at ph WCph0

Relative humidity at ph RHph0

Power demand at ph Pph0

Historical power demand
peaks, prior two weeks

Pph−14
, Pph−13

, . . . , Pph0

Forecasts of hourly power
demand

FP1, FP2, . . . , FP24

from the class of 5CP days, otherwise, non-5CP days. Then
two different cases are randomly chosen from the decided
anchor example class as the anchor and positive examples,
whereas the negative sample is a day randomly selected from
the other class.

Figure 1: Architecture of the base network

Figure 1 exhibits the architecture of the base network we
used within the triplet network. It is a convolutional neu-
ral network with five one-dimensional convolutional layers
in a sequence. Each convolutional layer has 6 filters with a
size of 2 and a stride with the value of 1. After that, there
is a fully connected layer, which takes the outputs of convo-
lutional layers (after they are concatenated and flattened) as
the inputs. This layer has 512 units and no activation. To nor-
malize the representations, a normalization layer has been
added after the fully connected layer. The output of the base
network is called the embedding.

During the triplet network training, the base network



maps three selected examples (or a triplet) to the embed-
ding space. Then in the embedding space, we calculated the
squared Euclidean distances between the anchor and pos-
itive examples (D+), as well as between the anchor and
negative examples (D−). As the learning criterion, a triplet
loss function with the margin α of 0.5 was used to train the
model. Since triplet loss encourages the value of D+ to be
smaller than the value of D−, then after the training, the
negative example should be farther from the anchor exam-
ple than the positive example.

Because the triplet loss for easy triplets equals 0, we have
to avoid using easy triplets to train the triplet network. To
achieve that, only 60-CP days for each fiscal year are kept
in the training dataset (60-CP days are the 60 days with the
highest daily load peak in a fiscal year).

During the testing of the triplet network, two examples
are passed through the base network to map them to the em-
bedding space. The class of one example is already known,
while the other example is one of the testing cases with
an unknown class. The squared Euclidean distance between
these two examples in the embedding space (D) is calcu-
lated, which will be used to determine whether they are from
the same class or not.

Few-shot learning model based on a triplet network
A 2-way-5-shot learning model based on a triplet network is
implemented to address our problem. The few-shot learning
models are trained and tested on a series of tasks. We first
need to form the tasks from the training and testing data.

There are a support set and a query set for each task (a
training task or a testing task). The model is learned from
the support set while it is evaluated on the query set. The
support set should contain 10 examples with 5 different ex-
amples per class, namely, five 5CP days and five non-5CP
days. In our work, the query set has five examples for model
training, but only one example for model validation or test-
ing. The query example could be either a 5CP day or a non-
5CP day. Suppose the five 5CP days in the support set are
Dp1, . . . , Dp5, the five non-5CP days in the support set are
Dn1, . . . , Dn5, and Dt (for testing) or Dt1, . . . , Dt5 (for
training) represent the days in the query set.

For every training task, the class of the example in the
query set is determined by the random number generator.
Then, the support and query examples are randomly selected
from the training data (ensuring they are separate examples).

To train the triplet network, the input triplets are created
by using the examples in the training task. The example in
the query set is set as the anchor example of the input triplet,
while the positive and negative examples come from the sup-
port set. For example, if the example in the query set, Dt1,
has the class of 5CP days, one input triplet could be Dt1 as
the anchor example, Dp1 as the positive example, and Dn1
as the negative example. In our work, five different triplets
are generated from one training task, which are {Dt1, Dp1,
Dn1}, . . . , {Dt5, Dp5, Dn5}. Figure 2 illustrates the pro-
cess that converts the training task to the input triplets for
model training.

During model training, new training tasks with only one
query example are used to validate the model performance.

Figure 2: Training task to the input of triplet network

Figure 3: Testing task to the input of triplet network

The input to the triplet network consists of two examples
with one query example and one support example. The query
example works as the example with the class unknown while
the support example is the example with the class labeled.
To make sure that the model can classify actual 5CP days
effectively during the model validation, the example in the
query set is always selected from the class of 5CP days. The
following four steps are for model validation or testing, and
Figure 4 exhibits such an example.

Step 1. Pair every support example with the query exam-
ple to form the input to the triplet network. In total, it
should have 10 input pairs, since there are 10 examples in
the support set, see Fig. 2 and Fig. 3.

Step 2. Pass the input pairs through the triplet network to
obtain the distance between two examples in the embed-
ding space. Let Op1, . . . , Op5 represent the outputs for
the input pairs with the support example being a 5CP day,
and On1, . . . , On5 be the outputs for input pairs with the
support example being a non-5CP day.

Step 3. Calculate the averages, Ap and An of {Op1, . . . ,
Op5} and {On1, . . . , On5} respectively.

Step 4. Decide the class of the example in the query set.
If Ap < An, then the example is believed to be a 5CP
day. If Ap > An, then this example is classified as a non-
5CP day. If Ap = An, the validation will be repeated on
the task with different support set but same query set (this
case happens with a very small probability).

In our work, we validated the performance of the model
after it has been trained on 300 different training tasks. Be-
cause the classification results highly depend on the selected



Figure 4: An example for model validation or testing

support examples, to reduce the variance caused by the se-
lection, 200 different training tasks are used for the model
validation. After the accuracy of the prediction reached
100%, or the model has been trained on 42,000 training
tasks, we stopped the training of the model.

For each testing task, the support examples are also ran-
domly chosen from the training data. However, the example
in the query set is from the testing data. This example could
be either a 5CP or non-5CP day, and its class is unknown.
Like how the model is validated during the training, the same
steps are used for model testing on testing tasks. The class of
the query example is also decided by the class with a smaller
average of distance. To reduce the variance of the classifica-
tion results, we choose to use 51 testing tasks with different
support sets but the same query set to predict whether the
query example is a 5CP day or not (another number of test-
ing tasks also work, but the number has to be odd and large
enough to reduce the variance). If more than 25 tasks indi-
cate this example is from a given class, we can believe that
day is the same class.

Results
Metrics including precision, recall, F1 score and LRank have
been used to evaluate the model performance. The number
of true positives (TP), false positives (FP), and false neg-
atives (FN), are used to calculate precision, precision =

#TP
#TP+#FP , and recall, recall = #TP

#TP+#FN . F1 score is
calculated as the harmonic mean of recall and precision.

We define a new evaluation metric, LRank, which mea-
sures the largest actual demand ranking of predicted 5CP
days. At the end of every fiscal year, each day in the year is
sorted and ranked with descending order based on the high-
est power demand for that day. LRank reports the maximum
ranking of the days that are predicted as 5CP days.

The experiment has been run five times for every dataset,
with the average of these five runs reported. We also im-
plemented the scheme of leave-one-out cross-validation by
years (e.g., if the dataset contains 21-year data, then the
training dataset consists of the data for 20 years, and the
remaining 1-year data is for the testing dataset).

Due to the lack of the historical datasets of hourly fore-
casts for power demands and weather condition, the actual
values (oracle data) for the next day have been used to test
the model. In addition, considering the limited size of posi-
tive data, the data has been min-max normalized by year dur-
ing the data preprocessing to reduce the yearly variance, then
the data for each year could be more independent with less
temporal impact on trends from other years. Usually, it is im-
possible to know the actual minimum and maximum values
for each attribute over a fiscal year at the beginning of the
year. The minimum and maximum values for each attribute
could be predicted accurately by studying its changes and
distributions over the years, and it will be a part of our fu-
ture work. Therefore our prediction results are an optimistic
view of the problem.

Figure 5: Recall results over six datasets

Figure 6: Precision results over six datasets

Figure 5 exhibits the result of recall for each dataset based
on the averages over five experiments. Overall, the few-shot
learning model is able to identify the 5CP days. For IESO-
Ontario, there are only 2 years the value is less than 0.80.
Similarly, only 2 years for PJM-DPL and 3 years for PJM-
PS is the recall less than 0.80. Figure 6 displays the distri-
bution of precision on testing cases. The precision shows
a much larger range of values for all data sets except for
MISO-LRZ1.

Table 3 lists the average values of the number of true posi-
tives (# TP), the number of false positives (# FP), recall, pre-
cision (Prec.), F1 score (F1) and LRank for each dataset over
the years. The recall averaged across all six datasets is 0.903,
and the average of recall for MISO-LRZ2-7 is 0.99. The
precision averaged across all six datasets is 0.603. MISO-



LRZ2-7 has the highest average precision with a value of
0.71. The F1 score averaged across all six datasets is 0.733.
The average F1 scores range from 0.62 to 0.83. The LRank
metric averaged across all six datasets is 33.5, with a median
of 15. For five of the datasets, the LRank metric is between 9
and 21. Meaning of the days predicted to be 5CP days by the
model, the maximal actual lowest rank of these days is in this
range. The false positives predicted by the model are not too
far away from the actual 5CP day (ranks 1-5). MISO-LRZ2-
7 shows a much worse result, which bears further scrutiny.
In summary, this few-shot learning model exhibits promis-
ing prediction results.

Table 3: Average performance over years for each metric
Area # TP # FP Recall Prec. F1 LRank

IESO-Ontario 4.54 5.28 0.91 0.58 0.71 16.8
PJM-DPL 4.73 4.58 0.95 0.59 0.73 12.9
PJM-PS 4.76 4.22 0.95 0.61 0.74 21.0

MISO-LRZ1 4.53 5.00 0.91 0.47 0.62 13.1
MISO-LRZ4 4.67 3.53 0.93 0.66 0.77 9.7

MISO-LRZ2-7 4.93 2.33 0.99 0.71 0.83 127.5
Average 4.69 4.16 0.93 0.60 0.73 33.5

Conclusion
This work focuses on the prediction of 5CP days. A few-shot
learning model based on a triplet network has been devel-
oped for this prediction problem. As the base network in the
triplet network, a convolutional neural network maps the in-
put examples to embedding space. A triplet loss with a mar-
gin of 0.5 has been used as the learning criterion to train the
model. To prevent the model being trained on easy triplets,
only the 60 days with the highest daily power peak in ev-
ery fiscal year are kept to make the training tasks. A leave-
one-out cross-validation scheme by year has been applied to
train and test the model on six different sets of actual his-
torical data. Examining the evaluation metrics on prediction
results, this few-shot learning model performed well with
the mean recall of 0.933, mean precision of 0.603, mean F1
score of 0.733, and mean LRank of 33.5 averaged over the
six historical datasets.

Several directions could be considered for future work.
First, feature selection technique could be incorporated into
the model. It is possible to improve the model performance
through using the best combination of the attributes indi-
cated by the feature selection method. Second, techniques
like generative adversarial network (GAN), meta-learning,
and deep reinforcement learning would be implemented to
address the prediction of 5CP days. Similar to few-shot
learning, such approaches learn from a small amount of data
actively. Finally, the model could be extended to predict the
hour that five coincident peaks occur. As the prediction of
5CP hours works on more imbalanced dataset, it would be
more challenging to address.
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