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a b s t r a c t

The ever-increasing recovery rate of natural resources from terrestrial impact craters over the last few
decades across the globe offers new avenues for further exploration of mineral and hydrocarbon re-
sources in such settings. As of today, 60 of the 208 terrestrial craters have been identified to host diverse
resources such as hydrocarbons, metals and construction materials. The potential of craters as plausible
resource contributors to the energy sector is therefore, worthy of consideration, as 42 (70%) of the 60
craters host energy resources such as oil, gas, coal, uranium, mercury, critical and major minerals as well
as hydropower resources. Among others, 19 craters are of well-developed hydrocarbon reserves. Mineral
deposits associated with craters are also classified similar to other mineral resources such as progenetic,
syngenetic and epigenetic sources. Of these, the progenetic and syngenetic mineralization are confined
to the early and late excavation stage of impact crater evolution, respectively, whereas epigenetic de-
posits are formed during and after the modification stage of crater formation. Thus, progenetic and
syngenetic mineral deposits (like Fe, Ni, Pb, Zn and Cu) associated with craters are formed as a direct
result of the impact event, whereas epigenetic deposits (e.g. hydrocarbon) are hosted by the impact
structure and result from post-impact processes. In the progenetic and syngenetic deposits, the shock-
wave induced fracturing and melting aid the formation of deposits, whereas in the epigenetic de-
posits, the highly fractured lithostratigraphic units of higher porosity and permeability, like the central
elevated area (CEA) or the rim, act as traps. In this review, we provide a holistic view of the mineral and
energy resources associated with impact craters, and use some of the remote sensing techniques to
identify the mineral deposits as supplemented by a schematic model of the types of deposits formed
during cratering process.
© 2021 Sinopec Petroleum Exploration and Production Research Institute. Publishing services by Elsevier
B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The 208 meteorite impact craters discovered on Earth
(Kenkmann, 2021) (Fig. 1) have provided insights into some of the
fundamental geological processes of the Solar System (Shoemaker,
1983; French, 1998; Osinski and Pierazzo, 2013; Osinski et al.,
2013; Li et al., 2018; Keerthy et al., 2019; Gottwald et al., 2020;
Chandran et al., 2021; Indu et al., 2021) including the origin of the
Moon (Canup and Asphaug, 2001; Daly, 1946), and the Cretaceous-
Paleogene (K-Pg) mass extinction (Alvarez et al., 1980; Smit and
Hertogen, 1980; Schulte et al., 2010; Barnosky et al., 2011).
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Terrestrial impact craters are generally classified based on
morphology as either simple or complex craters (Fig. 2) (French,
1998). A simple crater (Fig. 2a) is circular bowl-shaped depression
with a rim (smooth/raised), in diameter less than 2 km (Hargitai and
Watters; 2014). A typical complex crater (Fig. 2b) contains a central
elevated area (CEA), surrounded by a relatively flat floor. A terraced
rim circumscribes the flat region (Dence, 1968; Grieve et al., 1977,
1981; Grieve, 1991; French, 1998). Relative to a simple crater, a
complex crater is of greater morphological complexity as attributed
to the increasing size of the craters (Hargitai and Ohman, 2014).
Within the complex craters, as the diameter increases, the
complexity of the central uplift is also enhanced. The complex craters
have been classified into three distinct types based on the
morphology of the CEA, including central peak structure, central-
peak-basin structure, and peak-ring basin structure (French, 1998,
Grieve et al., 1981; Melosh, 1989; Spudis, 2005). The transition from
simple to complex craters on Earth occurs within a diameter range of
2e3 km in sedimentary rocks and of 4e5 km in crystalline rocks
(Grieve 1987, 2006).

Crater formation can be divided into three stages: (1) contact/
compression stage, (2) excavation stage, and (3) modification stage

(Melosh, 1989; French, 1998). In the contact stage, the projectile's
kinetic energy is converted into shockwaves to impact and pene-
trate the target. In the excavation stage, the shockwaves initiate
crater formation, while propagating and expanding rapidly into the
target. The vertically and horizontally moving shockwaves fracture
and eventually hurl parts of the target rock and sub-surface ma-
terial outwards at high velocities (French, 1998). In the middle
excavation stage, a prominent melt lining is developed in the
transient cavity. This stage terminates when the transient crater
reaches its maximum extent (French, 1998). The final crater results
from the modification stage when the transient crater is modified
by forces of gravity and rockmechanics. Themodification processes
in this stage slowly and progressively coalesce into an array of
natural geological modification processes over time (French, 1998).

Similar to other terrestrial planets, the early Earth was also
bombarded with numerous impacts, but most of themwere erased
owing to plate tectonics processes (Santosh et al., 2017; James et al.,
2021) and/or denudation (Indu et al., 2021). For example, the Yar-
rabubba impact structure (2229 ± 5 Ma) is the oldest crater on
Earth, with no physical signatures left today (Kring and Cohen;
2002; Johnson and Melosh, 2012; Erickson et al., 2020;

Fig. 1. Global inventory of meteorite impact craters. Craters with reported mineralization are annotated with numbers (1e60). Craters 1 to 60 are listed in Table 1.

Fig. 2. Schematic sketch of meteorite impact craters: simple (a) and complex (b) (Modified after Indu et al. (2021)).
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Schmieder and Kring, 2020). However, recent studies on meteorite
impacts have unravelled the possibilities for existence of more
impact craters (Kenkmann, 2021). One of the prime interests in
identifying impact craters is its potential for hosting mineral de-
posits. This is exemplified by the giant nickel deposits associated
with the Sudbury crater, Canada, which makes it an unparalleled
economically-relevant crater (Grieve, 2005; Reimold et al., 2005).

The world population is projected to reach 8 billion by 2024
according to the UN (Roser et al., 2013). The unsustainable exploi-
tation of mineral and natural resources in thewake of the industrial
revolution has put unprecedented stress on the supply chain to
meet the demands of the humongous global population. In such a
scenario, major attempts are being made to identify new mineral
deposits while charting out ways to ensure a sustainable and equity
centric mode of resource distribution. Since impact craters are now
recognized as potential hosts for valuablemineral deposits, they are
becoming hot targets for mineral exploration. Kenkmann (2021)
summarized that 53 impact craters are being harnessed for natu-
ral resources, although the count is not absolute. The scope of
craters as potential loci of ore deposits is going to attain increased
attention in the future due to the following factors: (1) detailed
exploration at known crater locations, (2) discovery of the 100þ
missing craters (Kenkmann, 2021), (3) confirmation of suspected
craters such as Shiva (Chatterjee et al., 2006), Bedout (Becker et al.,
2004) and several others, and (4) identification of submerged cra-
ters. Mineral exploration is an endeavour that often extend for
decades, given the array of processes involved in the identification,
delineation and estimation of the mineral resources. Irrespective of
this, certain practices can accelerate exploration and thereby,
extraction. Remote sensing and geophysical investigations are two
such tools that can contribute to easier identification of craters with
potential mineral resources. Therefore, in this study we focus on
selecting craters under mineralization, while highlighting minerals
used for energy resources and depicting a few mineral-hosting
craters through remotely sensed images to narrate how these
techniques can be useful in mineral exploration at craters.

2. Ore deposits in relation to impact craters

A total of 60 craters contain natural resources (Fig. 1). The re-
sources range fromminor to precious materials like gold, diamond,
amber, to minerals with elements such as Co, Cu, Ni, Pb, Pt, U and
Zn, and to ilmenite, agate, bauxite, gypsum, pyrite, mercury, iron,
limestone, phosphorite, coal, hydrocarbons, salt, silica, trona and
groundwater (Table 1).

2.1. Impact events as mineralization trigger

Several terrestrial craters contain/host natural resources, of
which some are quantitatively and qualitatively viable enough to be
economically exploited such as the nickel deposits at Sudbury
(Mory et al., 2000; Grieve, 2005; Kenkmann, 2021). Ore deposits
associated with terrestrial craters fall in one of the following three
categories defined by Grieve and Masaitis (1994), and Grieve
(2005): (1) progenetic, (2) syngenetic, and (3) epigenetic deposit/
mineralization (terms used interchangeably). Though this classifi-
cation is valid for all the terrestrial craters, only 39 craters
mentioned by Grieve (2005) are classified accordingly while the
rest are termed ‘unclassified’ in this review, to conform with the
original classification due to varied interpretation of the classes by
different workers (cf. Grieve and Masaitis, 1994; Grieve, 2005;
Reimold et al., 2005). Among the crater deposit classes of Grieve
(2005), three deposits are progenetic, four are progenetic/synge-
netic, nine are syngenetic, two are syngenetic/epigenetic and 19 are
epigenetic (Fig. 3).

2.1.1. Progenetic mineralization
In several instances, the target lithologies have hosted notable

mineral deposits before the initiation of the impact event itself. The
impact event simply exposes the deposits onto the surface where
they can be recovered or converts them into recoverable forms
(Reimold and Koeberl, 2014). The shockwave-initiated crustal and
structural deformation can easily uplift the buried deposits to near-
surface levels, which makes both the discovery and excavation of
the deposits easier, or slumping the same further into the crust
(Grieve, 2005). Progenetic deposits are best concentrated in the
CEA and annular regions in a complex crater (Grieve, 2005). Gold
and uranium ores at Vredefort (South Africa) and its vicinity, iron
ores at Ternovka (Ukraine), and uraniummineralization at Carswell
(Canada) are three of the major examples of progenetic minerali-
zation (Grieve, 2005; Reimold et al., 2005).

The occurrence of exclusively progenetic mineralization is less
common than the other two types of deposits. This trend can be
directly related to the fewer pre-existing ore deposits at the craters.
Additionally, considering the immense scale of impact events, it can
actually obliterate the earlier mineral deposits through vapor-
ization ormelting. In such cases, the past deposits may become part
of the melt itself, which in turn drives mineral enrichment, though
an example of such obliterated deposits cannot be identified easily.
In such cases, a combination of deposits corresponding to both
progenetic and syngenetic mineralization can occur as shown by all
the craters containing uranium resources (e.g., Carswell, Ternovka
and Vredefort). For the formation of uranium deposits, a stable
uranium source is needed. In impact events, it is difficult to
determine whether the uranium present is a deposit prior to the
impact or originally enriched in target rocks. Such scenarios can
also lead to a doubtful or even dual-genetic type for a crater's
resources.

2.1.2. Syngenetic mineralization
Ore deposits that are formed on mineralization from impact

melt points to syngenetic mineralization (Grieve and Masaitis,
1994; Grieve, 2005; Reimold et al., 2005). As the name suggests,
the mineralization is coeval with the crater formation process. The
impact melt drives the mineralization at an accelerated and
elevated scale, owing to the extremely high impact energies,
overseeing metamorphic transformations or geochemical enrich-
ment within the melt (Grieve, 2005; Reimold and Koeberl, 2014;
Kenkmann, 2021). Syngenetic deposits are mainly found associated
with the impact melt and suevitic units of a crater (Grieve, 2005).
Grieve (2005) distinguished syngenetic mineralization as an
energy-induced process since impact energies also establish a hy-
drothermal heat source at craters. Therefore, Grieve (2005) classi-
fied impact-derived hydrothermal deposits as syngenetic; while
Grieve and Masaitis (1994), Naumov (2002, 2005) and Reimold
et al. (2005) classified it as epigenetic.

A potential mineral system is formed due to the presence of a
combination of factors like a source rock, driving energy, fluid
pathways and a depositional gradient/trap (Wyborn et al., 1994;
Knox-Robinson and Wyborn, 1997). Mineral deposits will form in
impact structures if all these conditions are present. Terrestrial
impact events can create many of these conditions, except the
presence of a source rock, which solely depends on the presence of
ore minerals in the target rocks. If the target rocks can provide the
source for ore minerals, then the impact process is quite efficient in
redistribution, remobilization, and enrichment of ore minerals
during the progressing impact, which can in turn form a mineral
deposit. Additionally, meteorites contribute significant amounts of
siderophile elements to the melts, which then can drive minerali-
zation at the craters. While extra-terrestrial contributions in melt
are typically less than 1%, which can progress to higher
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concentrations of 5% (Morokweng). This can lead to significant
increase in siderophile element content despite the fact that
smaller projectiles favour homogenous melt production due to the
lower chance of target variations across smaller distances, whereas
larger projectiles enhance the chances of non-homogenousmelting
as target lithology varies across greater distances (Maier et al.,
2006; Koeberl, 2014; Lightfoot, 2017). Variation also arises from
the type of projectile/meteorite class since chondrites have higher
siderophile concentrations than achondrites; yet for the most part
siderophile concentrations across meteorite classes are highly

variable (Koeberl, 2014). Though the siderophile concentration in
melt results from cumulative contributions of projectile properties,
target lithologies and shock modifications, the mineral deposits
need not reflect the same due to potential dominance of one
contributor over the other (Koeberl, 2014). So, most of the major
mineral deposits are syngenetic in nature.

As many as 10 craters contain major minerals like Cu, Fe, Ni, Pb
and Zn. Deposits containing Ni, Cu and platinum-group elements
(PGE) in the Sudbury crater (Canada) are prime examples of syn-
genetic deposits (Lightfoot, 2017; Kawohl et al., 2020) while Pb-Zn

Table 1
Inventory of meteorite impact craters hosting mineral deposits with genetic types specified (after Grieve (2005), Reimold et al. (2005), and Kenkmann (2021)).

Sl.No Crater Latitude Longitude Diameter Age (Ma) Resources Deposit Type

1 Ames 36�150 N 98�120 W 15 470 Oil, Gas Epigenetic
2 Avak 71�150 N 156�300 W 12 90e94 Gas Epigenetic
3 Beyenchime-Salaatin 71�0302900 N 121�4102300 E 8 <66 Pyrite (minor) Epigenetic
4 Boltysh 48�5703000 N 32�1402300 E 24 65.17 ± 0.64 Oil Shale, Phosphorite Epigenetic
5 Bosumtwi 06�3000900 N 01�2402700 W 10.5 1.07 Water Reservoir Unclassified
6 Calvin 41�490 4800 N 85�5700000 W 8.5 450 Oil Epigenetic
7 Carswell 58�250 N 109�310 W 39 481.5 ± 0.8 U Progenetic/Syngenetic
8 Charlevoix 47�320 N 70�210 W 55 450 ± 20 Ilmenite Progenetic
9 Chesapeake Bay 37�140 N 76�010 W 85 35.2 ± 0.3 Groundwater Unclassified
10 Chicxulub 21�200 N 89�300 W 180 66 Hydrocarbons Epigenetic
11 Cloud Creek 43�1003600 N 106�4203000 W 7 190 ± 20 Oil Unclassified
12 Crooked Creek 37�5000500 N 91�2304400 W 7 323e348 Pb, Zn, Ba, Fe Syngenetic
13 Decaturville 37�5303300 N 92�4301100 W 6 <300 Pb, Zn Syngenetic
14 Dellen 61�5004900N 16�4003800 E 20 140.82 ± 0.51 Hydropower Reservoir Unclassified
15 Dhala 25�1705500 N 78�0803300 E 12 2240e2440 U Unclassified
16 Eagle Butte 49�420 N 110�300 W 1 <66 Oil Unclassified
17 Elbow 50�580 N 106�450 W 8 201e358 Oil Unclassified
18 Glasford 40�3600600 N 89�4700600 W 10 455 ± 2 Gas Storage Unclassified
19 Glover Bluff 43�5801200 N 89�3201800 W 10 455e459 Gravel, Mortar Unclassified
20 Gusev 48�290 N 40�320 E 3 50.36 ± 0.33 Coal Unclassified
21 Ilyinets 49�070 N 29�060 E 8.5 445 ± 10 Agate Epigenetic
22 Kaluga 54�300 N 36�120 E 15 395 ± 4 Water Epigenetic
23 Kamensk 48�210 N 40�300 E 25 50.36 ± 0.33 Coal Unclassified
24 Kara 69�050 N 64�200 E 65 70.3 ± 2.2 Diamond, Zn, Pyrite (minor) Syngenetic
25 K€ardla 58�5802600 N 22�4605100 E 4 455 Oil, Ore Unclassified
26 Karla 54�5702300 N 47�5700400 E 10 <5 Mercury Unclassified
27 Kentland 40�450 N 87�240 W 12.5 <107 Limestone, Gravel, Pb-Zn Unclassified
28 Lawn Hill 18�4101900 S 138�3900600 E 20 472 ± 8 Zn, Pb, Ag Unclassified
29 Logoisk 54�1504600 N 27�4701000 E 17 29.71 ± 0.48 Amber, Phosphate Epigenetic
30 Lonar 19�5803600 N 76�3003200 E 1.88 0.570 ± 0.047 Salt Epigenetic
31 Manicouagan 51�230 N 68�410 W 100 214 Water and Hydropower Unclassified
32 Manson 42�350 N 94�330 W 35 74.1 ± 0.1 Groundwater Unclassified
33 Marquez 31�1700000 N 96�1703000 W 15 58.3 ± 3.1 Gas Epigenetic
34 Meteor Crater 35�0103900 N 111�0102000 W 1.2 0.049 Silica Progenetic
35 Montagnais 42�530 N 64�130 W 45 50.5 ± 0.8 Oil Unclassified
36 Morokweng 26�280 S 23�320 E 70 145 ± 2 Ni Syngenetic
37 Newporte 48�580 N 101�580 W 3 500 Oil Sand Unclassified
38 Obolon 49�3504800 N 32�540300 E 18 169 Oil Shale Epigenetic
39 Popigai 71�380 N 111�110 E 100 35.7 ± 0.2 Diamond Syngenetic
40 Puchezh-Katunki 56�580 N 43�430 E 40 192e196 Diamond, Mercury, Zeolite Syngenetic
41 Ragozinka 58�4201700 N 61�4705000 E 9 50 Diatomite Epigenetic
42 Red Wing 47�360 N 103�330 W 9 200e220 Oil, Gas Epigenetic
43 Ries 48�5200900 N 10�3404100 E 26 14.8 Cement, Gravel Syngenetic/Epigenetic
44 Rotmistrovka 49�0800000 N 31�4405200 E 2.7 95e145 Oil Shale Epigenetic
45 S€a€aksj€arvi 61�2404000N 22�2204500 E 6 <520-600 Agate (traces) Unclassified
46 Saint Martin 51�470 N 98�320 W 40 227.4 ± 0.8 Gypsum, Anhydrite Epigenetic
47 Serpent Mound 39�0105600 N 83�24001000 W 8 256e290 Pb, Zn Syngenetic
48 Sierra Madera 30�3504400 N 102�5404200 W 12 <100 Gas Epigenetic
49 Siljan 61�010 N 14�560 E 65 380.9 ± 4.6 Cement, Oil, Pb, Zn Syngenetic/Epigenetic
50 Slate Islands 48�390 N 87�010 W 30 436 ± 3 Au Progenetic
51 Steen River 59�300 N 117�380 W 22 108 Oil, Gas Epigenetic
52 Suavj€arvi 63�0702100 N 33�2202400 E 16 2090e2700 Ore Unclassified
53 Sudbury 46�360 N 81�110 W 200 1849.3 ± 0.3 Cu, Ni, Co, Pt Syngenetic
54 Ternovka 48�0704800 N 33�3101200 E 11 280 ± 10 Iron Ore, U Progenetic/Syngenetic
55 Tookoonooka 27�070 S 142�500 E 66 128 ± 5 Oil Epigenetic
56 Tswaing 25�240 3100 S 28�040 5700 E 1.13 0.220 ± 0.052 Trona, Salt Unclassified
57 Viewfield 49�350 N 103�040 W 2.5 190 Oil, Gas Epigenetic
58 Vredefort 27�000 S 27�300 E 275 2023 ± 4 Au, U Progenetic/Syngenetic
59 Zapadnaya 49�4400000 N 29�0301500 E 3.2 165 ± 5 Diamond Syngenetic
60 Zhamanshin 48�2103800 N 60�5601200 E 14 0.75e1.10 Bauxite, Glass Progenetic/Syngenetic
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mineralization at Crooked Creek and Decaturville (USA) are hy-
drothermal syngenetic deposits (Grieve, 2005; Reimold et al., 2005;
Kenkmann, 2021). Except for LawnHill and Kentland, Grieve (2005)
classified seven of the remaining eight deposits as syngenetic, with
Siljan being the sole syngenetic/epigenetic deposit.

2.1.3. Epigenetic mineralization
The epigenetic mineralization largely occurs along the

morphological and structural units of a crater (Grieve, 2005), that
is, in crater basin or subsurface through fluid circulation along the
different units of the crater (Grieve, 2005; Kenkmann, 2021). Hy-
drocarbon deposits linked to craters are epigenetic in nature like
the one at Ames and Avak craters in the USA (Reimold et al., 2005;
Curtiss andWavrek, 1998) and coal deposits in Gusev and Kamensk
craters. A total of 21 craters have oil/gas/hydrocarbon/coal re-
sources, of which 19 host oil and/or gas. The structural modifica-
tions from cratering events are necessary to put in place
hydrocarbon-supporting trap systems. As the structural deforma-
tion, components and arrangements stabilize much later than the
actual impact event, it is essentially a post-impact process. There-
fore, deposits formed with the aid of the structural units are clas-
sified as epigenetic. Craters with water/groundwater resources
such as Bosumtwi, Chesapeake Bay, Dellen, Manicouagan and
Manson also host epigenetic deposits, since the drainage networks
are established post-impact over several millions of years.

There are several craters that host fossil fuels, with the sub-
marine Chicxulub impact crater being a case in point (Urrutia-
Fucugauchi et al., 2013). The deformation due to the impact has
been directly linked to the formation of carbonate breccias in the
Gulf of Mexico, which host hydrocarbons. The typical bowl-shaped
topography and raised rim acts as a potential target for entrapment
of hydrocarbons (Donofrio, 1981). From a structural viewpoint, the
elevated rim at the crater basin can contain hydrocarbon in the
presence of a hydrocarbon-rich lithological seal like at Ames (USA)
or the fractured rocks of CEA can itself act as a trap like at RedWing
(USA) (Grieve, 2005; Reimold et al., 2005). Red Wing crater is
characterized by three oilfields, of which the Red Wing Creek field
occupies the CEAwhereas the Bowline and Little Tank fields occupy
the rims of the crater (Fig. 4). As per Reimold et al. (2005), the crater
acts only as a structural trap for the hydrocarbons, especially the
central uplift where the Red Wing Creek field is centred. The
cratering-induced structural traps have efficiently established an
isolated high-potential hydrocarbon reservoir at the crater centre.

The Jebel Hadid structure in the Al Kufrah Basin (SE Libya) has
been postulated to be an impact structure with potential hydro-
carbon trap, since the basin is located in an area with high hydro-
carbon potential, and the impact could have provided routes and
traps for hydrocarbon migration and accumulation in the Nubian
Sandstone Series (Schmieder et al., 2009). In the Canadian Alberta
Basin, impact structures with hydrocarbon production include

Steen River (Robertson, 1997; Mazur et al., 1999), Eagle Butte
(Sawatzky, 1976; Hanova et al., 2005), and Bow City (Glombick
et al., 2014). The latter structure is postulated to represent a com-
plex impact structure in a mature hydrocarbon-producing basin.
The sequence of events leading up to hydrocarbon generation
through entrapment following meteorite impact has been estab-
lished for the Ames structure by Curtiss and Wavrek (1998). This
sequence could be taken as the general path in the formation of
hydrocarbons, in the event of meteorite impact, especially in ma-
rine or other water bodies or even in terrestrial locations (Fig. 5).
Crater excavation through fracturing and brecciation of the car-
bonates and granites was followed by flooding, leading to a con-
tained body of anoxic waters. Algae and other organic debris
generated the potential hydrocarbon source rock, which was sub-
sequently buried by thick sequences of sediments. Kerogen to pe-
troleum transformation occurred millions of years later and at the
‘critical moment’ in this transformation, hydrocarbon generation
occurred (Curtiss and Wavrek, 1998; Grieve, 2005).

Nineteen craters that host oil and/or gas resources of varying
potential are shown in Fig. 5. None of the craters is older than
500 Ma and therefore fits well into the Petroleum System Events
timelines. In craters such as Ames (470 Ma) and Red Wing (220-
200 Ma), the trap formation deviates from the Ordovician age,
probably due to dominance of the shock-induced structural trap
formation during the impact event that occurred in different
geologic ages, and essentially deviates from the conventional trap
formation events. In a similar manner, potential deviations can

Fig. 3. Pie chart showing the percentage of craters with mineralization (a), types of deposits (b), and energy fuels (c) (Source: Collated from various references cited within this
paper).

Fig. 4. Oil fields in the Red Wing Crater. Both CEA and the raised rim host oil. (Source:
Background image-Google Earth; Shapefile of oilfields, https://www.eia.gov/maps/
maps.htm).
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occur in different craters, which require additional scientific studies
to ascertain the events.

Impact crater hydrocarbon has been likened to unconventional
sources like shale gas, tight gas and coal bed methane by Gryga
et al. (2016), who also established that the oil and gas potential of
the Rotmistrovka impact structure in Ukraine is associated with the
hydrocarbon accumulation at the crater rims. Impact cratering
events have high potential to establish hydrocarbon reservoirs and
trap systems, though the events do not favour formation of source
rocks since impacts increase rock permeability, which decreases
the chances of hydrocarbon maturation. Impact-induced fracturing
and brecciation can enhance the porosity and permeability of the
rocks in and around the crater, which can further promote hydro-
carbon migration and formation of promising hydrocarbon reser-
voirs (Grieve, 2005; Reimold et al., 2005). Evans et al. (2005)
summarized that the target rock porosity, fault systems, crater
burial and ensuing upward migration of hydrocarbons are de-
terminants in establishing a hydrocarbon deposit. There are many
more case-specific instances depicting the trapping mechanisms at
craters (Grieve, 2005; Reimold et al., 2005). Barton et al. (2009)
cautioned that impacts could destroy hydrocarbon reservoirs, as
has happened at the Mjølnir marine impact crater in the Barents
Sea following which porosity increased immediately after impact
by 6.3% on the periphery of the brecciated crater, whereas porosity
decreased by 1% in the CEA (Tsikalas et al., 2002). The lithology at
the site of impact is often decisive in the development of subse-
quent economic mineralization. This is especially evident at the

Siljan impact structure of the Late Devonian, where the impact
triggered the mobilization of the hydrocarbons residing in mature
shales and further to microbial metabolism, methanogenesis and
gas accumulation under sedimentary cap rock within the crater
(Drake et al., 2019). Siljan crater was the site of drilling for hydro-
carbons, subsequent to the current discredited theory of Gold and
Soter (1980, 1982) on impact fractures facilitating the buoyant
movement of mantle-derived methane to the surface, to form hy-
drocarbons and petroleum. Thus, impact craters have emerged as a
topic of potential interest in the hydrocarbon and energy literature.

2.1.4. Multiple modes of mineralization
Impact cratering is almost an instantaneous event, occurring

within a fraction of a second (French,1998). As a result, the different
stages of crater formation can either occur simultaneously or even
overlap. In this regard, the three mineralization modes can either
occur in isolation or act together. Thus, the natural resources as we
see at a crater might be a progenetic-syngenetic or syngenetic-
epigenetic deposit. Vredefort deposits are dominantly progenetic
with notable syngenetic contributions (Grieve, 2005; Reimold et al.,
2005), while Siljan Pb-Zn and oil resources are syngenetic-
epigenetic deposits (Grieve, 2005). Additionally, the genetic type
of crater deposits can vary with the classification adopted, as
Sudbury is a syngenetic deposit for Grieve (2005) whereas it is a
syngenetic-epigenetic deposit as per Reimold et al. (2005). The
difference results from varied views on hydrothermal events as a
syn- or post-impact process, and the extremely fast sequence of

Fig. 5. A petroleum system events chart (Source: Curtiss and Wavrek, 1998) with the impact crater hosting hydrocarbon (Source: ALOS PALSAR elevation data). Montagnais is a
marine impact crater and hence not shown. Notes: Ord-Ordovician; Sil-Silurian; Dev-Devonian; Mis-Mississippian; Pen-Pennsylvanian; Per-Permian; Tri-Triassic; Jur-Jurassic; Cret-
Cretaceous; Pal-Paleocene; Eoc-Eocene; Oli-Oligocene; Mio-Miocene; Pli-Pliocene; Qua-Quaternary; Epi-Epigenetic; Syn-Syngenetic; Unc-Unclassified; O-Oil; G-Gas; OS-Oil sand;
OSh-Oil shale.
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cratering events do not help resolve it either. While this review
follows Grieve (2005), the other ore deposit classifications for
impact craters are equally valid.

3. Discussion and conclusion

Though impact craters are potential sites for mineral deposits,
identification of minerals that are confined to the structural-
morphological features of a crater can help in identifying a crater.
Thus, studying mineralization associated with impact craters has
an equally-matched function: mineral deposits can aid the recog-
nition of impact craters and craters in turn can also help identify
more deposits.

3.1. Crater identification as aided by mineral deposits

Mineral deposits in associationwith terrestrial craters show two
characteristics corresponding to: (1) deposit distribution and
orientation and (2) deposit associations. The deposit distribution
and orientation have strong links to morphology of a potential
crater. The spatial distribution of deposits can either manifest in a
circular or near-circular form (aerially) or in a hemispherical/basin
form (in 3D), which can taper identically in all directions with
depth. Such deposits can be used to identify impact craters. The
Cuddapah Basin in India has vast mineral resources and is crescent-
shaped. Krishna Brahmam and Dutt (1985), and Krishna Brahmam
(1992) suggested an impact origin for this basin , though un-
equivocal impact origin has not been established. Thus, when
mineral deposits are distributed in a radial, circular or crescent
shape, the possibility of impact origin is high. Such mineral oc-
currences showing these patterns need to be investigated, even in
the absence of a clear-cut basin structure with or without the CEA.
Similarly, mineral deposits oriented either along a concentric fault
system or along the length of listric faults also aid in crater iden-
tification. For example, confirmation of the Chicxulub crater was
made possible through the identification of slump faulting and
fracturing near the rim, giving way to a circular cenote (water-filled
sinkholes) ring in karst topography (Hildebrand et al., 1995). Yet,
the deposit orientations can be misleading at times as the above
stated physical signatures can also be reflective of mineral deposits
formed by other geological features such as intra-cratonic basins
(e.g., Vindhyan Basin in India), wherein the resultant listric and
concentric faults can also accommodate mineralization. Such a
scenario can result in misinterpretation of the field observation, but
it has to be noted that a standalonemineralization along fault is not
indicative of a crater's presence because to establish the presence of
a crater, multiple evidences from field, geophysical and remote
sensing surveys are required. Hence, the deposit distributions and
orientations only provide a very preliminary or rather indirect ev-
idence of a crater's presence.

The association of the mineral deposits with direct and spall-
ation components of the impact event is detrimental in crater
identification. The direct components occur as physical units but
with chemical changes. If mineral deposits occur in the vicinity of a
melting layer and/or brecciated rock or shattered cones, then the
probability of a crater is conceivable. Unlike the direct physical
manifestation of impact shock near the crater, the metamorphic
effects from it can continue till the shockwave is attenuated.
Therefore, target rocks imbibe the shock metamorphic signatures,
which decrease with distance from the centre of the crater. So,
observing mineral deposits adjacent to lithology that shows sys-
tematic decrease in shock metamorphic effects can be a potential
indicator of a crater, but might be less robust than the physical
derivatives. The spallation components include proximal ejecta,
near which themineral deposits can indicate crater presence. Distal

ejecta, however, is not reliable in crater identification, since with
distance, the physical influence of craters dies out, precluding the
possibility of mineralization. The Chicxulub impact crater has
global ejecta but its oil production is limited to the fields of Cam-
peche marine platform, 350e600 km away from the crater centre
(Grajales-Nishimura et al., 2000; Schmieder and Kring, 2020).
Additionally, it is difficult to identify the source crater of distal
ejecta, which makes it unreliable. The above-stated standalone
observations will not indicate crater presence; instead a combina-
tion of the observations with each other can serve to discover
craters at times at/near mineral deposits.

3.2. Mineral deposits accommodated in impact craters

Craters play an important role in the three processes related to
economic mineralization namely formation, preservation and
exposure. The cratering process catalyses the mineralization pro-
cess both physically and chemically. The structural deformation at
the crater and target produces physical drivers for mineralization.
The formation of new concentric and listric faults, brecciation and
reactivation of faults from pre-impact mineralization, generate
pathways for fluid mobility (e.g., Carswell) (Baudemont and
Fedorowich, 1996; Grieve, 2005). The brecciation and fracturing
at the target elevate its porosity and permeability, which becomes
quite detrimental to hydrocarbon entrapment (e.g., Ames) (Grieve,
2005; Reimold et al., 2005). The huge volume of impact melt can
enrich minerals through processes such as magmatic differentia-
tion, which leads to mineralization (e.g., Sudbury) (Grieve, 2005;
Reimold and Koeberl, 2014). Shock metamorphism induces mineral
transformation, which in turn aids mineralization. The maturation
of hydrocarbons is the best example of chemical transformation
assisted by structural and morphological elements of craters.

While all these summarize the individual events facilitating
mineralization, it is to be noted that the events fall into one of the
three crater formation stages, namely contact/compression, exca-
vation andmodification (French,1998) (Fig. 6a). Firstly, the contact/
compression stage marks the projectile destruction and initiation
of shockwave expansion (French, 1998). The excavation stage
showing visible effects of the progressing shockwaves, can be
divided into early-, mid-, and late-excavation sub-stages (French,
1998). The released waves provide enough kinetic energy to eject
large fragments of the brecciated and fractured target rocks at high
velocities, in addition to uplifting and deforming the target region;
which in turn deforms, displaces and exposes the near-surface
mineral deposits onto the visible ground levels (Fig. 6b). Hence,
progenetic deposits form in the early-excavation sub-stage, with
new orientations relative to the ones prior to the impact event. As
cratering progresses, so does the melt formation due to greater
material interaction, aided by high temperatures released by
shockwave energies. By the mid-excavation sub-stage, the crater
has a significant quantity of melt, which increase with further
material interaction and flow. The elements of greater concentra-
tion in the target rock before impact, undergo enrichment in the
newly formed melt as the melt ensures greater energy for fluid and
elemental mobility, along with activation of enrichment processes
such as fractionation, assimilation, secondary alteration or
magmatic differentiation (Koeberl, 2014; Reimold et al., 2014;
Latypov et al., 2019). The brecciated rocks and fracture systems
provide the required permeability for diverse material interaction
and create melt flow pathways. Eventually, the melt is enriched
with ore forming minerals (Fig. 6c). The melt ensures mineraliza-
tion within itself and along all its flow paths. As the melt is the
prime mineralization agent, deposits forming in the mid-late
excavation sub-stages are syngenetic in nature. As the melt
forms, the brecciation and structural damage at the target continue,
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which in turn facilitates remobilization and enrichment of ore
minerals with the aid of circulating fluids, which results in the
formation of the hydrothermal deposits. Hence, hydrothermal de-
posits are also initiated at the mid-excavation sub-stage and the
process continues through the late-excavation sub-stage. But net-
works ensuring hydrothermal mineralization can later change due
to events of the crater modification stage. Lastly, the crater attains
its final form in the modification stage. As crater morphology is the
dominant factor influencing mineralization (Grieve, 2005), it is
right to say that epigenetic deposits form in the modification stage
and sustain into the post-modification stages of the impact crater.

The preservation of mineral deposits is another major function
of craters. Ames crater is an example of terrestrial craters favouring
the formation of hydrocarbon system, wherein the Middle Ordo-
vician Oil Creek shale acts both as the source and cap rock for the
hydrocarbons, though hydrocarbons get accumulated in the brec-
ciated units (Curtiss andWavrek,1998; Grieve, 2005).While impact
events might be quite weak in facilitating source rock formation,
the formation of reservoir rocks/units, migration pathways (frac-
tures, breccia) and structural traps can be greatly attributed to
impact events. Impact craters preserve resources especially hy-
drocarbon, while the morphological units act as hydrocarbon res-
ervoirs. The reservoirs in terrestrial craters occur along CEA, crater
rim and floor, and brecciated units (Mazur et al., 1999). Fig. 7a
shows the formation stages of a complex crater and its associated
CEA. Fig. 6b depicts the fracture and brecciated zones generating
both vertical and lateral hydrocarbonmigration pathways, owing to
elevated porosity and permeability of the target; which in turn
facilitates significant hydrocarbon accumulation in and along
different parts of the crater. This establishes the hydrocarbon
reservoir, when impact-induced fault alignments favour the for-
mation of structural traps for hydrocarbons. The combination of
different morphological and structural units generates structural
traps for hydrocarbons (e.g., Red Wing) (Grieve, 2005; Reimold
et al., 2005) (Fig. 7b), along with stratigraphic traps such as Too-
koonooka and slump block traps (Mazur et al., 1999), which restrict
the flow of hydrocarbon within the reservoir units. Additional
impact-induced structural modifications such as concentric anti-
clines and synclines can preserve mineral deposits (e.g., Vredefort)
(McCarthy et al., 1986, 1990; Grieve, 2005). Lastly, the terrestrial
impact events force the exposure of otherwise buried mineral

deposits to surface or near surface levels where extraction of the
deposits can be easier (e.g., Ternovka). The impact event displaces
andmodifies a large extent of rocks and sediments to accomplish it.

3.3. Remote sensing-fostered mineral identification

Remote sensing is an essential tool aidingmineral exploration as
it allows investigation of inaccessible regions, reduces the time,
resources and investments required for initial investigation to a
great extent and lastly, provides an array of sophisticated tech-
niques to aid resource identification. Multispectral, hyperspectral
and multi-temporal coverages help delineate metallogenic prov-
inces by utilizing different material properties (Rajesh, 2004).
Following this, a combination of image interpretation and analysis
techniques is also used to decipher mineral deposits.

Sudbury is quite relevant as an impact crater site of ore deposits
of high Ni-Cu concentration. The Frood-Stobie mine is one of the
most prominentmines in Sudbury. The deposits of the Frood-Stobie
mine are still being mined, which leaves a near arcuate and
seemingly clawed-out structure (Fig. 8a). The False Colour Com-
posite (FCC) image derived using high resolution (3 m) Planet Lab
images (Fig. 8a) shows the mines in Sudbury. The hyperspectral
analysis, using EO-1 Hyperion images containing 242 bands,
downloaded from USGS Earth Explorer (https://earthexplorer.usgs.
gov/), shows the presence of chalcopyrite from the absorption band
around 400 nm (Fig. 8b), bornite around 600 nm and pyrrhotite
from the presence of absorption bands around 2100 nm.

Manicouagan reservoir is an ideal example of epigenetic de-
posits, since the reservoir system mostly results from post-impact
drainage modification over several years. The Manicouagan reser-
voir and its sub-basins extend outside the crater rim and depict the
extensive spatial reach of the post-impact modification. The Google
Earth image (Fig. 9) shows the water-covered Manicouagan reser-
voir near the Daniel-Johnson Dam and the Manic-5 Generating
Station. The sprawling vegetation indicates the fertility of soil due
to the Manicouagan reservoir's influence. The surrounding water
bodies can also be linked to the reservoir. The dam channels the
water to power plants and different other locations. This shows that
the uninterrupted flowof theManicouagan reservoir/river provides
favourable conditions for establishing large-scale hydropower
plants such as the Manic-5 generating station.

Fig. 6. Schematic sketch showing different stages of simple crater formation (a) (i- Contact and Compression; ii-Excavation; iii-Modification stages), stage of progenetic mineral
deposit formation (b) (i-Initial; ii-Final) and syngenetic mineral deposit formation (c) (i-Initial; ii-Final) (Modified from French, 1998).
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3.4. Constraints on crater and deposit discovery

Several factors reduce the potential of crater and ore deposit
discovery. The absence of a complete crater dataset with the
impending discovery of 100þ craters (Kenkmann, 2021) has put
mineral exploration on hold. Exploration is not to be undertaken at
craters at higher latitudes (poles) in permafrost regions, or in
submerged craters (James et al., 2021). In known craters, the

deformation events can add further complexity to mineral extrac-
tion or destroy the deposits to varying degrees, like the loss of past
hydrocarbon accumulations due to impact, as at the Avak crater
(Grieve, 2005). The presence of human settlements on unidentified
craters and deposits can complicate economic utilization of the
same due to issues pertaining to displacement of people and cities
altogether. On a similar note, even if one of the mentioned char-
acteristics does imply a crater or deposit, the confirmation and
economic exploration take years, which can delay the reach of the
resource to the supply chains. Hence, remote sensing techniques,
which will help augment global exploration efforts to satisfy the
energy demand on the planet, need to be applied extensively to
identify terrestrial craters and mineral deposits.
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Fig. 7. Schematic sketch showing different stages of complex crater formation (a) (i-Contact and Compression; ii-Excavation; iii-Modification stages; iv-Final structure) (Modified
from French, 1998), and epigenetic mineral deposit (hydrocarbon) formation (b) (Source: Modified from Schmieder et al., 2009). (Note: Hydrocarbon deposits can be syngenetic or
epigenetic, and we have illustrated only epigenetic)

Fig. 8. False Colour Composite image, derived from 3 m resolution Planet Lab images, of Frood and Stobie mines of Sudbury crater (a), and spectra from Hyperion hyperspectral
images (b). Spectra has matching peaks with pyrrhotite, bornite and chalcopyrite.

Fig. 9. High-resolution Google Earth image of Manicouagan Crater showing the Daniel
Johnson Dam and its reservoir. The dam has an installed capacity, totalling 2660 MW.
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