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1.  Introduction
Clouds play a crucial role in the Earth's energy balance by reflecting solar radiation and absorbing terrestrial 
radiation. They are also important to the hydrological cycle through precipitation and water redistribution in 
the atmosphere. A better representation of clouds in atmospheric models can improve weather forecasts and 
climate projections. One challenge of cloud simulation is to accurately represent cloud properties and processes 
under various conditions. The challenge arises from limited understanding of complicated cloud microphysical 
processes at the fundamental level, as well as from imperfect translation of this understanding to the numer-
ical algorithms used to resolve or parameterize microphysical processes (e.g., Khain et  al.,  2015; Morrison 
et al., 2020).

In general, there are three approaches to simulate microphysical properties of hydrometeors and related processes 
in atmospheric models: bulk representation of particle properties, bin microphysical schemes, and Lagrangian 
particle methods. Bulk microphysics schemes use one or more attributes (e.g., moments of the hydrometeor size 

Abstract  Bin microphysics schemes are useful tools for cloud simulations and are often considered 
to provide a benchmark for model intercomparison. However, they may experience issues with numerical 
diffusion, which are not well quantified, and the transport of hydrometeors depends on the choice of advection 
scheme, which can also change cloud simulation results. Here, an atmospheric large-eddy simulation 
model is adapted to simulate a statistically steady-state cloud in a convection cloud chamber under well-
constrained conditions. Two bin microphysics schemes, a spectral bin method and the method of moments, 
as well as several advection methods for the transport of the microphysical variables are employed for model 
intercomparison. Results show that different combinations of microphysics and advection schemes can lead to 
considerable differences in simulated cloud properties, such as cloud droplet number concentration. We find 
that simulations using the advection scheme that suffers more from numerical diffusion tends to have a smaller 
droplet number concentration and liquid water content, while simulation with the microphysics scheme that 
suffers more from numerical diffusion tends to have a broader size distribution and thus larger mean droplet 
sizes. Sensitivities of simulations to bin resolution, spatial resolution, and temporal resolution are also tested. 
We find that refining the microphysical bin resolution leads to a broader cloud droplet size distribution due 
to the advection of hydrometeors. Our results provide insight for using different advection and microphysics 
schemes in cloud chamber simulations, which might also help understand the uncertainties of the schemes used 
in atmospheric cloud simulations.

Plain Language Summary  We investigate the dependence of high-resolution cloud simulations on 
the algorithms used to represent the cloud microphysics and advective transport. The model setup is constrained 
and guided by observed steady-state clouds in a convection cloud chamber. Two bin microphysics algorithms 
along with several advection methods are used to simulate the clouds with the same initial and boundary 
conditions. All simulations reach a steady state, and considerable intermodel variations in simulated cloud 
properties are found when using different advection and microphysics schemes. The case-by-case variations 
show some correlations with the estimated degree of numerical diffusion suffered by different schemes. Results 
from model intercomparisons help better understand uncertainties in simulations of clouds in the chamber and 
in the real atmosphere.
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distribution) to represent the volume-average properties of each type of hydrometeor (e.g., cloud droplets, rain 
drops, and ice particles). Bin microphysical schemes partition the particle size distribution into typically a few 
tens of discretized sections (or bins) to cover a wide range of hydrometeor sizes, from cloud droplets of a few 
micrometers to rain drops of several millimeters. Hydrometeors in each bin are quantified by one or more attrib-
utes (e.g., number and/or mass mixing ratio per bin). Lagrangian particle-based methods have been extensively 
developed in the past decade (e.g., Hoffmann et al., 2015; Grabowski et al., 2019, Shima et al., 2009, and refer-
ences therein). This method tracks hundreds of thousands of “superdroplets”, with each superdroplet representing 
an ensemble of hydrometeors with the same properties (e.g., size, mass, phase).

Various bulk and bin microphysics schemes have been developed and used for cloud simulations. For exam-
ple, Khain et al. (2015) summarize the main characteristics of over 40 previous studies using bulk microphys-
ics schemes (Table 2 in their paper) and over 20 previous studies using bin microphysics schemes (Table 3 in 
their paper). One way to understand the spread and uncertainties of different microphysics schemes is through 
model intercomparison studies in which different models simulate a cloud using the same initial and boundary 
conditions. Significant intermodel variations have been found in the simulations of different types of clouds, for 
example, shallow cumulus cloud (e.g., VanZanten et al., 2011), stratocumulus cloud (e.g., Stevens et al., 2005), 
mixed-phase clouds (e.g., Ovchinnikov et al., 2014), and deep convective clouds (e.g., Xue et al., 2017).

Generally speaking, by allowing the droplet size distribution to evolve freely under various processes, the bin 
microphysical schemes have the ability to represent cloud microphysical properties and processes more accurately 
compared with bulk microphysics schemes, which usually assume a specific shape of droplet size distribution. 
Consequently, high-resolution bin schemes are often used as the standard for evaluation of the more approximate 
bulk schemes. However, often intermodel variations also exist when using different bin microphysics schemes, 
and it is important to determine how much of these differences are due to different bin microphysics schemes 
rather than other factors, such as different dynamic frameworks, advection schemes, and subgrid-scale parameter-
izations. In this regard, kinematic models that remove certain dynamics and dynamical feedbacks to simplify such 
intercomparisons have been developed (e.g., Hill et al., 2015; Shipway & Hill, 2012). In a dynamic system, simu-
lated cloud properties can be affected by the choice of cloud microphysics scheme as well as the interactions and 
feedbacks among microphysics, thermodynamics, and dynamics. For example, Morrison et al. (2018) found that 
the vertical advection of hydrometeors can be affected by numerical diffusion resulting in an artificially enhanced 
broadening of the cloud droplet size distribution. Recently, Pardo et al. (2020) explored the broadening of droplet 
size distribution in an idealized cumulus cloud and they found that physical broadening mechanisms (e.g., activa-
tion, collision, entrainment, and mixing) are more important than the artificial broadening mechanism.

The complex dynamic system presents a challenge to isolate and quantify the role of the microphysics scheme, 
especially when various microphysical and dynamical numerical schemes are used in different models. While 
free-running simulations with different microphysics schemes produce different results, the interpretation is 
complicated and effects may be hidden or amplified by numerous feedbacks during cloud evolution. Using the 
same dynamics with different microphysics schemes or the same microphysics in different dynamical frame-
works can expose some glaring issues, but reasons for more subtle differences are difficult to diagnose (Ovchin-
nikov & Ghan, 2005). Constraining dynamics further, by using either a kinematic framework or “piggybacking” 
(offline microphysics) (Grabowski, 2019), prevents microphysics-dynamics feedbacks, which expose differences 
in microphysics more clearly. One of the potential downsides or limitations of this decoupling is that one may not 
end up in a relevant area of the parameter space because of inconsistencies between dynamics, which provide the 
forcing, and the microphysics itself.

Clouds have been generated in chamber facilities to investigate their fundamental physical and chemical proper-
ties and processes under well-constrained laboratory conditions. Steady-state clouds generated under well-char-
acterized boundary conditions hardly exist in the atmospheric context, thereby making atmospheric cloud 
simulation results tricky to interpret. A convection-cloud chamber, in which turbulence is constantly forced and 
well characterized, provides a unique opportunity to explore aerosol-cloud-turbulence interactions. For example, 
the convection-cloud chamber at Michigan Technological University (called the Pi Chamber), which generates 
turbulence through Rayleigh-Bènard convection by maintaining a warm lower surface and cold upper surface, 
can form and maintain a turbulent cloud in a steady state for many hours (e.g., Chandrakar et al., 2016; Chang 
et al., 2016). The Leipzig Aerosol Cloud Interaction Simulator (LACIS-T) is another cloud chamber in which 
turbulent cloud is generated by mixing two airflows in a wind tunnel (Niedermeier et al., 2020).
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The cloud microphysics schemes used for atmospheric cloud simulations should also be applicable to the simu-
lation of clouds in the chamber because the fundamental physics that controls the microphysical processes, such 
as droplet activation and condensational growth, is the same. Simulations of clouds at laboratory scale were rare, 
especially in a turbulent environment, until recently when turbulent chambers became operational. For exam-
ple, a computational fluid dynamics software OpenFOAM with Lagrangian particles has been used to simulate 
clouds in LACIS-T (Niedermeier et al., 2020), and the System for Atmospheric Modeling (SAM, Khairoutdinov 
& Randall, 2003) with a spectral bin microphysics scheme based on Khain et al. (2004) (a scheme developed at 
Hebrew University of Jerusalem, Israel, hereafter referred to as the HUJI scheme) has been modified to simulate 
clouds in the Pi chamber (Thomas et al., 2019). One conclusion from the “Workshop to Explore Science Oppor-
tunities and Concepts for a Large-Scale Aerosol–Cloud–Turbulence Research Facility”, held in November 2019 
at Boulder, is that a laboratory facility can provide a well-constrained and observationally guided state for model 
simulation and intercomparison (Shaw et al., 2020). Laboratory-constrained and evaluated cloud models can help 
to reduce the uncertainties in aerosol-cloud-turbulence interactions in large-scale models.

Here, we perform a comparison of large-eddy simulations of cloud in the Pi chamber using two bin microphysics 
schemes and multiple advection schemes for hydrometeor transport. A unique aspect of this intercomparison 
is that the model setup allows us to produce a steady-state cloud in a well-constrained dynamic system, which 
removes time evolution from consideration and yet allows all feedbacks between the dynamics and microphys-
ics to operate. We note that bin microphysics spectral broadening related to vertical advection, which may be 
an important concern for modeling “real clouds” (Morrison et al., 2018), does not manifest itself in our setup 
because the condensation in a convection chamber is driven by supersaturation generated by isobaric mixing and 
not by adiabatic expansion tied to the vertical advection (Grabowski, 2020). The idealized simulation framework 
enables comparison of the relative contributions to the simulations of the microphysics and advection schemes 
and can also help with the design of laboratory experiments to evaluate and constrain numerical methods in the 
future. We will show that both the microphysics and advection schemes can alter the statistical properties (e.g., 
mean droplet number concentration) of simulated clouds in the Pi Chamber. Similar cloud properties can result 
from using different combinations of microphysics and advection schemes. We also find that refining the micro-
physical bin widths leads to a broader cloud droplet size distribution due to the transport of hydrometeors. This 
broadening effect might also exist in atmospheric cloud simulations. The model description and setup are detailed 
in Section 2. Results are discussed in Section 3, followed by the conclusions.

2.  Model Description and Setup
The dynamical model we use is the SAM (Khairoutdinov & Randall, 2003) modified for large-eddy simulation 
of cloud in the Pi Chamber. The model setup including initial and boundary conditions are described in detail 
by Thomas et al. (2019) and is briefly summarized here. The domain size is 2 m × 2 m × 1 m (height) with a 
resolution of 3.125 × 3.125 × 3.125 cm (a total of 64 × 64 × 32 grid boxes). The floor temperature is set as 
299 K, the ceiling temperature is 280 K, and the wall temperature is 285 K. The floor and ceiling surfaces are 
water saturated, and the sensible and latent heat fluxes are calculated based on the Monin-Obukhov similarity 
theory. Side-wall sensible and latent heat fluxes are calculated using the same parameterization. The wall surface 
wetness is set to be 0.78 (0.78 times its saturated value), such that the domain-averaged supersaturation in steady 
state without cloud droplets is about 2.5%, which is close to in situ measurements in the Pi Chamber (Chandrakar 
et al., 2016). Note that our calculation of side-wall fluxes is the only way to adjust the domain-averaged supersat-
uration to match the in situ observations. More advanced models, such as wall-modeled LES and direct numerical 
simulation, are needed to calculate the surface fluxes at the process level. The total simulation is 1 hr with a time 
step of 0.02 s. Domain-averaged variables (e.g., temperature, water vapor mixing ratio) are output every 1 s for 
time series plots. Instantaneous 3D microphysics fields are output after the first half an hour at 5 min intervals. 
Therefore, a total of seven instantaneous 3D fields are used to calculate the spatial- and domain-averaged droplet 
size distribution.

2.1.  Cloud Microphysics Schemes

Two bin microphysics schemes are used in this study: the HUJI scheme based on Khain and Sednev (1996), and 
the scheme based on microphysical method of moments developed by Chen and Lamb (1994), hereafter referred 
to as the CL scheme. In the HUJI scheme, aerosol and different types of hydrometeors are each represented by 
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33 doubling-mass bins. In each bin, the mass mixing ratio of cloud droplet is the prognostic variable, while the 
number mixing ratio is diagnosed from the mean size which is fixed. The HUJI scheme is also called a spectral 
bin microphysics scheme (Khain et  al.,  2015). The HUJI scheme has been modified and applied in different 
dynamical models to simulate atmospheric clouds, such as the Hebrew University Cloud Model (e.g., Khain 
et al., 2004), the NCAR Mesoscale Model (e.g., Lynn et al., 2005), the SAM (e.g., Fan et al., 2009), and the 
Weather Research and Forecasting Model (e.g., Khain et al., 2010).

The CL bin microphysics scheme is based on the microphysical method of moments in which both mass mixing 
ratio and number mixing ratio in each bin are prognostic variables. It has been recently used in a cloud parcel 
model to simulate optically thin clouds (Kuan-Ting et al., 2018). In this study, we also use 33 bins to represent 
cloud droplets as in the HUJI scheme. The bin boundaries are organized in a doubling-mass coordinate starting 
from 1 μm. In each bin, the droplet size distribution is represented by a linear mass-dependent function, and the 
mean size (mass) of cloud droplets can vary between its left and right bin boundaries. Similarly, newly activated 
cloud droplets are added to the smallest cloud droplet bin. For condensational growth and evaporation, the linear 
distribution in each mass bin will shift to the larger size (growth) or smaller size (evaporation), and then remap 
back to the original grid coordinate. Details of the bin shift and remapping methods can be found in Chen and 
Lamb (1994).

Monodisperse aerosol particles are injected uniformly in every grid box at every time step as in Thomas 
et al. (2019). For the basic setup, the aerosol injection rate is 0.25 cm 3 s −1. Aerosol particles are composed of 
sodium chloride with a dry diameter of 125 nm. Volume aerosol injection (i.e., injection at every grid box) is 
chosen for this study to minimize the influence of aerosol transport on cloud activation when using different 
scalar advection schemes. A similar strategy of volume aerosol injection has been used in Grabowski (2020). An 
aerosol particle is activated into a cloud droplet if the supersaturation in the grid box is higher than its critical 
supersaturation (∼0.054%). After newly activated cloud droplets are added to the smallest cloud droplet bin, 
cloud droplets then grow by condensation under supersaturated conditions and evaporate under subsaturated 
conditions. There are two ways to remove droplets from the simulation domain: evaporation, when the droplet 
radius is smaller than 1 μm, and sedimentation, at the bottom surface. Sedimentation is controlled by the droplet 
terminal velocity and, in this study, terminal velocity of the mean droplet size in each bin is calculated based 
on Beard (1976). For simplification, droplets are not removed by the side-wall surfaces; this is accomplished by 
forcing the hydrometeor fluxes at the side-wall surfaces to be zero. A dynamic steady state is reached when the 
source of cloud droplets due to activation is balanced by the sink due to sedimentation. Collision-coalescence is 
ignored because the estimated collision time scale (∼1 hr or larger) is much longer than the droplet residence time 
(a few minutes) in the Pi Chamber due to the limited vertical extent (1 m) (Chandrakar et al., 2016). Aerosol reac-
tivation and scavenging processes are also ignored for simplification. It should be mentioned that, although there 
are some similarities in microphysics treatment between this study and Grabowski (2020), it is difficult to make 
quantitative comparisons between the simulations, because the side-wall conditions and surface flux calculation 
are handled quite differently and can have a significant impact on cloud properties. For a better comparison, the 
same or similar initial and boundary conditions are needed for the model setup. In a recent international cloud 
modeling workshop, different models were brought together to simulate the Pi chamber with specific guidance 
of the model setup (Xue et al., 2022). These comparisons of the Pi chamber simulations among different models 
are expected to be published in the future.

2.2.  Advection Schemes for Hydrometeors

Besides the cloud microphysics scheme itself, another factor that can influence the accuracy of a cloud simula-
tion is the advection scheme which controls the transport of hydrometeors in space (Olesik et al., 2021). Various 
numerical advection algorithms have been developed and used in atmospheric models (Rood, 1987). Although 
suffering from numerical diffusion, first-order linear advection schemes are efficient and can preserve the corre-
lations among sets of advected scalars, which are important in transporting aerosol mixtures and chemical tracers 
(McGraw,  2007). Higher-order advection schemes can reduce the numerical diffusion but might cause other 
issues, such as unrealistic negative values and oscillations in the advected variable values, especially close to a 
sharp boundary. Various nonlinear terms and corrections have been developed and applied to high-order advec-
tion schemes to enforce nonoscillation and monotonic properties; however, they increase the computational cost 
and cannot maintain the interrelationship among advected variables (Ovchinnikov & Easter, 2009).
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The advection scheme used in our previous Pi Chamber simulation (Thomas et al., 2019) is the multidimensional 
positive definite advection transport algorithm (MPDATA) with the nonoscillatory option (Smolarkiewicz & 
Grabowski,  1990). The default MPDATA scheme is suitable for the advection of hydrometeors in the HUJI 
scheme but is not suitable for the CL scheme. To explain this point, we use Mi and Ni to represent the mass and 
number mixing ratio in bin i. In the HUJI scheme, Mi is a prognostic variable, while Ni is a diagnostic variable 
calculated from the ratio of Mi and bin i's drop size, which is a constant. For the CL scheme, both Mi and Ni are 
prognostic variables, and the mean drop size varies within bin i. The problem is that, after advection, the mean 
size of the droplet in bin i, given by the ratio of Mi and Ni, might be smaller than at the left boundary or larger than 
at the right boundary of bin i. This is because a nonlinear, high-order advection scheme, like MPDATA, cannot 
preserve the interrelationship of advected variables, as discussed in Ovchinnikov and Easter (2009). Therefore, 
number or mass adjustments might be needed when using a moment-based bin microphysics scheme together 
with a high-order, nonlinear advection scheme. For example, Yamaguchi et al. (2019) simulated shallow convec-
tion clouds using a monotonic, fifth-order advection scheme (Yamaguchi et al., 2011) and the Tel Aviv University 
(TAU) bin microphysics scheme, which is similar to the CL scheme in that both Mi and Ni are prognostic variables 
as detailed in Tzivion et al. (1987). In the simulations, the cloud droplet number concentration is adjusted before 
computing the microphysics when the number concentration is negative, caused by the nonlinear nature of their 
high-order scalar advection scheme. Below, we provide three different advection methods for the CL scheme to 
maintain the interrelationship between Mi and Ni after advection.

2.2.1.  MPDATA With Mass Adjustment

In this method, both Mi and Ni are advected using MPDATA. If Mi/Ni does not fall into bin i after advection, we 
keep Ni the same but do the following adjustments: (a) if Mi/Ni is smaller than the value at the bin i's left boundary, 
we modify Mi to 𝐴𝐴 𝐴𝐴

∗

𝑖𝑖
 such that 𝐴𝐴 𝐴𝐴

∗

𝑖𝑖
∕𝑁𝑁𝑖𝑖 is equal to the value at the bin i's left boundary plus 0.01 of bin i's width; 

(b) if Mi/Ni is larger than the value at the bin i's right boundary, we modify Mi to 𝐴𝐴 𝐴𝐴
∗

𝑖𝑖
 such that 𝐴𝐴 𝐴𝐴

∗

𝑖𝑖
∕𝑁𝑁𝑖𝑖 is equal to 

the value at the bin i's right boundary minus 0.01 of bin i's width. This mass-adjustment strategy is  inspired by 
the TAU bin microphysics scheme developed by Tzivion et al. (1987) (e.g., Equations 15a, 15b in their paper). 
However, we note that the correction in Tzivion et al. (1987) is made for cases when the mean size is not well 
defined due to very tiny mass and number concentration in a bin, not for advection corrections. It should be 
mentioned that the total condensed water in the simulation domain is not conserved after advection if mass is 
adjusted. To explore the impact of mass adjustment, we develop a mass-conserved adjustment method that is 
detailed in the following subsection.

2.2.2.  MPDATA With Number Adjustment

In this method, only Mi is advected using MPDATA while Ni is adjusted as discussed below. After advection, 
some grid boxes lose number and mass in bin i, while the other grid boxes gain number and mass in bin i. We use 
δMi (+) and δNi(+) (δMi (−) and δNi(−)) to represent the gain (loss) of mass and number mixing ratios in bin i. 
If one grid box loses mass concentration in bin i (δMi (−)), the loss of the number concentration in that bin can 
be calculated as

𝛿𝛿𝛿𝛿𝑖𝑖(−) =

𝛿𝛿𝛿𝛿𝑖𝑖(−)

𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

� (1)

where mi,old is the mean droplet size in bin i in that grid box in the previous time step. For grid boxes gaining 
number and mass, we define m* as the characteristic droplet mass in bin i during advection,

𝑚𝑚
∗

=

∑

𝛿𝛿𝛿𝛿𝑖𝑖(−)

∑

𝛿𝛿𝛿𝛿𝑖𝑖(−)

,� (2)

and the increase of number concentration in a mass-gaining grid box can be calculated as

𝛿𝛿𝛿𝛿𝑖𝑖(+) =

𝛿𝛿𝛿𝛿𝑖𝑖(+)

𝑚𝑚∗

� (3)

the assumptions we made here are given as follows: (a) for grid boxes losing number and mass, they lose drop-
lets with the droplet mass of the previous time step; and (b) for grid boxes gaining mass, they gain droplets with 
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characteristic mass calculated based on Equation 2. One advantage of this 
adjustment is that the total droplet number in bin i within the whole domain 
is conserved after advection, because ∑δNi(+) = |∑δNi(−)|.

2.2.3.  Semi-Lagrangian Advection Scheme

Recently, an efficient semi-Lagrangian advection (SLA) scheme has been 
developed to transport cloud microphysical variables for cloud simulation 
in a 2-D kinematic field (Gavze et al., 2020) and a 3-D dynamic field (Lynn 
et al., 2021). Efficiency is one of the main advantages of the SLA scheme, 
especially in regard to computationally expensive cloud simulations using 
bin microphysics schemes. Results show that SLA can preserve the interrela-
tionship between advected scalars, while SLA with a hybrid option also has 
a better agreement with other high-order advection schemes. In this study, 
we use the hybrid SLA scheme to transport Mi and Ni in the CL scheme. The 

hybrid SLA scheme is a combination of the first-order, semi-Lagrangian bilinear scheme and the second-or-
der, semi-Lagrangian biquadratic scheme. We choose a weighting factor of 0.5, which has shown good agree-
ment with other high-order, nonlinear advection schemes (Gavze et  al.,  2020). We also apply the first-order 
SLA scheme and the hybrid SLA scheme to transport Mi in the HUJI scheme. We note that Gavze et al. (2020) 
and Lynn et al. (2021) recommend against using the first-order SLA because of its large numerical diffusion. 
However, because the purpose of this study is to explore a range of variations in chamber simulations due to 
different schemes, we still employ the first-order SLA scheme with the HUJI for comparison.

2.3.  Overview of Cases

All cases analyzed in this study are listed in Table 1. The first capital letter in the case name corresponds to the 
microphysics scheme: “H” is for the HUJI scheme, and “C” is the CL scheme. The second capital letter in the 
case name represents which advection scheme is used: “M” is for the MPDATA scheme and “S” is the semi-La-
grangian scheme. Specifically, “Sf” and “Sh” represents SLA with the first-order and hybrid options. Special 
treatment for CL cases are “Mm” and “Mn”, in which either mass or number mixing ratio is adjusted as discussed 
in Sections 2.2.1 and 2.2.2.

Some schemes are more diffusive than others. For example, in the droplet size space, the HUJI scheme is more 
diffusive than the CL scheme, and in the position space, the first-order SLA scheme is more diffusive than the 
hybrid SLA scheme and the MPDATA scheme. However, it is difficult to predict the outcome of different combi-
nations of microphysics and advection schemes due to complex interactions and nonlinear feedbacks among 
dynamics, thermodynamics, and microphysics. An objective of this study is to quantitatively show the case-by-
case variations when using different combinations of schemes. One advantage of the SLA scheme, which is not 
the main focus of this study but is worth a mention, is its low computation cost compared with other advection 
schemes, as detailed in Gavze et al. (2020) and Lynn et al. (2021). Indeed, we find that the total simulation time 
when using the SLA scheme is about 60% of that using the MPDATA scheme. A surprising finding is that the 
total simulation time when using the CL scheme is about 35% of that when using the HUJI scheme. This finding 
contradicts our expectation, because the prognostic microphysical variables in CL (mass mixing ratio and number 
mixing ratio) are twice that in HUJI (mass mixing ratio only).

3.  Results and Discussion
All simulations are conducted with the same initial and boundary conditions detailed in Section 2. For base-
line intercomparisons, the aerosol injection rate is 0.25 cm −3 s −1. We first evaluate the time evolution of the 
domain-averaged thermodynamic and microphysical variables, and then compare spatially and temporally aver-
aged droplet size distributions in steady state for the various cases (Results in 3.1). Two larger aerosol injection 
rates (2.5 cm −3 s −1 and 25 cm −3 s −1) are used to investigate variations in relatively polluted conditions (Results 
in 3.2). As this is the first time the CL scheme has been implemented in SAM, we conducted additional simula-
tions to explore the sensitivity to parameters used in the CL scheme (Results in 3.3). Finally, H-M and C-Mm are 
chosen to run at different spatial and temporal resolutions to check whether results depend on grid spacing and 
time step (Results in 3.4).

Case Name Microphysics Advection

H-M HUJI MPDATA

H-Sh HUJI Semi-Lagrangian (hybrid)

H-Sf HUJI Semi-Lagrangian (first-order)

C-Mm CL MPDATA (mass adjustment)

C-Mn CL MPDATA (number adjustment)

C-Sh CL Semi-Lagrangian (hybrid)

Table 1 
A Summary of Cases With Various Combinations of Microphysics and 
Advection Schemes
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3.1.  Comparisons Among Various Schemes at a Constant Aerosol Injection Rate

Figure  1 shows the time series of domain-averaged temperature (T), water vapor mixing ratio (Qv), relative 
humidity (RH), and liquid water content (LWC) inside the chamber for an aerosol injection rate of 0.25 cm −3 s −1. 
Results show that all variables reach a steady state after about 5 min. The H-M case uses the same microphysics 
and advection schemes as in Thomas et al. (2019). The energy dissipation rate is about 0.0014 m 2 s −3, which is 
similar to that in stratocumulus clouds, and the turbulent kinetic energy is about 0.0011 m 2 s −2. Details about the 
turbulence and flow properties for the Pi chamber simulation with a similar model setup can be found in Thomas 
et al. (2019). In this study, we mainly focus on the thermodynamic and microphysical properties as the advection 
and microphysics schemes are changed, because turbulence is not sensitive to those changes. The spatial resolu-
tion has a considerable impact on the turbulence, which will be discussed in Section 3.4.

Results in Figure  1 are plotted in order of the estimated degree of numerical diffusion (from low to high): 
H-M ≤ H-Sh ≤ H-Sf; C-Mm ∼C-Mn ≤ C-Sh. It is interesting to see that, when using the same microphysics 
scheme, simulation using an advection scheme that suffers more from numerical diffusion tends to have a lower 
T, higher RH, and smaller LWC. Qv is not sensitive to the change in advection scheme. It should be mentioned that 
liquid water static energy and total water mixing ratio are the two prognostic variables in SAM. For all the cases, 
we use MPDATA to advect these two variables, and only hydrometeors are advected differently for comparison 
(e.g., MPDATA vs. SLA). The same strategy has been used in Lynn et al. (2021) to investigate the transport of 

Figure 1.  Time series of domain-averaged (a),(e) temperature (b),(f) water vapor mixing ratio (c),(g) relative humidity, and (d),(h) liquid water content in a simulated 
convection cloud chamber. Results in the left column use the HUJI microphysics scheme, and results in the right column use the CL microphysics scheme. The colors 
indicate different combinations of microphysics and advection schemes, as detailed in Table 1 and the main text. The aerosol injection rate is 0.25 cm −3 s −1.
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microphysical quantities using different advection schemes. Therefore, the differences we see here are mainly due 
to different ways the advection of hydrometeors is treated (when using the same microphysics scheme). For cross 
comparison, domain-averaged T is slightly lower and Qv is slightly higher when using the CL scheme compared 
with the HUJI scheme (see Table S1 in Supporting Information S1); this leads to systematic differences in RH 
(the CL cases is higher than the HUJI cases) as shown in Figures 1c and 1g, except for H-Sf which is similar 
to the CL cases. The mean and variations in LWC are similar between HUJI and CL cases, suggesting that both 
microphysics schemes agree on the amount of water that should condense for this injection rate. The differences 
in T, RH, and LWC are self-consistent, which is closely related to the cloud microphysical properties and droplet 
size distribution, as discussed next.

Figure 2 shows the time series of domain-averaged cloud microphysical properties, including droplet number 
concentration (Nd), mean droplet radius (rd), effective radius (reff), and standard deviation of droplet size distri-
bution (σr). It is interesting to see that droplet number concentration is sensitive to different advection schemes, 
and simulation with the advection scheme that suffers more from numerical diffusion tends to have a lower drop-
let number concentration. rd, reff, and σr are not sensitive to the advection schemes. Results are consistent with 
the thermodynamics, because more cloud droplets of the same side (i.e., larger Nd and same rd) suggests more 
condensed water (higher LWC), which can release more latent heat, and thus leads to a higher T and lower RH 
as shown in Figure 1. For cross comparison, rd, reff, and σr in the CL-based cases are all smaller than those in the 
HUJI-based cases. This systematic difference in mean droplet size reflects differences in droplet size distributions 

Figure 2.  Time series of domain-averaged (a),(e) droplet number concentration (b),(f) mean droplet radius (c),(g) effective radius, and (d),(h) standard deviation of 
droplet size distribution in a simulated convection cloud chamber. Results in the left and right columns use the HUJI and CL microphysics schemes, respectively. The 
colors indicate different combinations of microphysics and advection schemes, as detailed in Table 1 and the main text. The aerosol injection rate is 0.25 cm −3 s −1.
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as shown in Figure 3: droplet size distributions in the CL-based cases are narrower due to the fact that the CL 
scheme is less computationally diffusive compared with the HUJI scheme. Note that distributions in Figure 3 are 
mean steady-state distributions, averaged spatially (over the whole domain) and temporally (between 0.5 and 1 hr 
every 5 min). It is also interesting to see that results from C-Mm, in which the total condensed water in the simu-
lation domain is not conserved during advection, are statistically similar to those from C-Mn, in which the total 
mass is conserved, suggesting that the mass adjustment with MPDATA has negligible impacts on the simulation 
while maintaining conservation of mass.

3.2.  Sensitivity to Aerosol Injection Rates

Three aerosol injection rates—0.25 cm −3 s −1 used above, 2.5 cm −3 s −1, and 25 cm −3 s −1, labeled as “clean”, 
“normal”, and “polluted”—are employed to explore the sensitivity to aerosol amount. For each case, variables 
(e.g., T) fluctuate in time and space while in steady state. We generate box and whisker plots of variables to show 
their statistical properties at steady state (between 0.5 and 1 hr) as shown in Figures 4 and 5. Each box covers data 
between 25% and 75% with the median value indicated by the white horizontal line at the center, and whiskers 
indicating data between the 5th and 95th percentiles. We first check the trend of each variable by changing the 
aerosol injection rate (e.g., H-M for the clean case vs. H-M for the normal case vs. H-M for the polluted case). 
Results show that T increases with increasing aerosol injection rate (Figures  4a and  4e) while Qv is largely 
insensitive to aerosol injection rate (Figures 4b and 4f). A larger aerosol injection rate results in a higher LWC 
(Figures 4d and 4h), more cloud droplets (Figures 5a and 5e), smaller droplet sizes (Figures 5b, 5c, 5f, 5g), and 
a narrower size distribution (Figures 5d and 5h), which are all consistent with the chamber observations (Chan-
drakar et al., 2016). We then compare the differences that result from changing the advection schemes while 
using the same microphysics scheme and aerosol injection rates (e.g., H-M vs. H-Sh vs. H-Sf for the polluted 
case). Results show that the general trends are similar to those in Section 3.1: cases using advection schemes that 
have stronger numerical diffusion tend to predict lower T, higher RH, smaller LWC, and lower Nd. At the same 
time, rd, reff, and σr are slightly larger when using advection schemes that have stronger numerical diffusion for 
the polluted condition case, while they are not sensitive to the advection scheme in the clean case as shown in 
Section 3.1. This phenomenon is due to the enhanced differences in Nd among cases for the polluted condition 
(Figures 5a and 5e). Note that Nd is plotted on a log scale and the absolute difference in Nd between cases (e.g., 
H-M vs. H-Sf) is much larger for the polluted case than in the clean case. Larger differences in Nd make the differ-
ences in rd, reff, and σr distinguishable for the polluted case. In addition, we compare the sensitivity to changing the 
advection schemes and aerosol injection rate (e.g., simulations for the clean case vs. simulations for the normal 
case vs. simulations for the polluted case). Results show that all variables except RH become more sensitive to the 
changes in the advection scheme as the aerosol injection rate increases. RH is less sensitive in the polluted case 
because it is buffered to about 100% under polluted conditions. For cross comparison (e.g., the HUJI cases vs. the 

Figure 3.  Spatially and temporally averaged droplet size distribution based on the (a) HUJI and (b) CL microphysics schemes with the different advection schemes 
indicated in the legend (see Table 1).
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Figure 4.  Box plots of domain-averaged T, Qv, RH, and LWC between 0.5 and 1.0 hr for three different aerosol injection 
rates: 0.25 cm −3 s −1 (clean), 2.5 cm −3 s −1 (normal), and 25 cm −3 s −1 (polluted).
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Figure 5.  Box plots of domain-averaged Nd, rd, reff, and σr between 0.5 and 1.0 hr for three different aerosol injection rates: 
0.25 cm −3 s −1 (clean), 2.5 cm −3 s −1 (normal), and 25 cm −3 s −1 (polluted).
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CL cases), we note that the systematic differences between the HUJI-based 
cases and the CL-based cases hold for RH, LWC, and Nd in the polluted case, 
but diminish for rd, reff, and σr.

Significant differences in Nd for different combinations of microphysics and 
advection schemes are noticeable in Figures 5a and 5e. For the smallest aero-
sol injection rate (0.25 cm −3 s −1), Nd for the HUJI-based and CL-based cases 
can vary by a factor of over 1.5. Because all injected aerosols are activated as 
cloud droplets in clean conditions, the difference in Nd is due to the different 
microphysics and advection schemes; however, for the greatest aerosol injec-
tion rate (25 cm −3 s −1), newly injected aerosol at low supersaturation might 
not activate into cloud droplets and thus accumulate in the chamber. Note 
that aerosols might not all activate into cloud droplets—even when turbulent 
fluctuations cause supersaturations greater than the aerosol's critical super-
saturation—if there is insufficient extra water vapor available to activate all 
aerosols. Otherwise, high-frequency oscillations in cloud droplet number 
concentration could occur the following way: (a) a temporary high supersatu-

ration activates all monodisperse aerosols into cloud droplets; (b) the large amount of newly formed cloud drop-
lets lead to subsaturation in the next time step, which evaporates cloud droplets; (c) evaporation of cloud droplets 
releases water vapor causing a high supersaturation that can serve to try activating all aerosol particles again. 
Such oscillation is analogue to the oscillation found in aerosol nucleation and growth processes (McGraw & 
Saunders, 1984). Therefore, the different ways of handling activation in the HUJI-based cases and the CL-based 
cases can also lead to differences in Nd. In the HUJI-based cases, partial activation is not considered, meaning 
that all dry aerosols can be activated as cloud droplets based on the Köhler theory if the environmental supersat-
uration is larger than its critical supersaturation. In the CL-based cases, all dry aerosols can be activated as cloud 
droplets in relatively clean conditions. If the activation of all aerosols leads to a subsaturation, partial activation 
is on, meaning that only 20% of the dry aerosols can be activated as cloud droplets such that the supersaturation 
is still positive after activation. It can explain why the domain averaged RH is lower (Figure 4c) and Nd is larger 
(Figure 5a) under polluted conditions in the HUJI-based cases compared with the CL-based cases. Note that 
although the domain-averaged supersaturation in the polluted condition is smaller (even below 100% in the HUJI-
based cases due to subsaturated side walls) than the critical supersaturation of monodisperse aerosol in polluted 
conditions, droplets can still be activated close to bottom or top surfaces where high supersaturation exists (Chan-
drakar et al., 2020), or through supersaturation fluctuations in a turbulent environment (Prabhakaran et al., 2020).

3.3.  Sensitivity to Parameters in the Bin Microphysics Scheme

Chamber simulation results might depend on several parameters in the microphysics scheme. For example, for 
the mass adjustment method discussed in 2.2.1, the mass mixing ratio in a bin is adjusted if the mean droplet size 
is outside of the bin boundary, by setting the slope of the linear distribution such that the intersection is about 
0.01 (defined as adjustment factor here) of the bin width. In addition, for all the CL-based schemes, the initial 
droplet radius is set to 1 μm, while the minimal droplet radius for the HUJI-based schemes is 2 μm as was also 
used in our previous study (Thomas et al., 2019). Lastly, mass-doubling bins (a total of 33 bins) are used in the 
above model intercomparisons. So, does the chamber simulation depend on the adjustment factor? Does the 
change of the minimal droplet radius affect the chamber simulation? Are results sensitive to the bin resolution? To 
address those questions, we choose C-Mm as the control case and employ several sensitivity tests. Specifically, 
we change  the adjustment factor to 0.1 (C-Mm-0.1a), the minimal droplet radius to 2 μm (C-Mm-2 μm), the mass 
ratio to 2 0.5 yielding 66 bins (C-Mm-66b) and to 2 0.25 yielding 132 bins (C-Mm-132b). Table 2 summarizes the 
case names and key parameters. Results show that volume-average thermodynamic variables, that is, T and Qv, as 
well as RH and LWC, are insensitive to those changes as shown in Figure 6. In contrast, volume-average micro-
physical properties show larger case-by-case variations, as shown in Figure 7. For example, Nd becomes smaller 
when we increase the minimal droplet radius from 1 μm to 2 μm.

It is interesting to note that droplet sizes and spectral widths increase with the increase in bin resolution (Figure 7). 
Spatially and temporally averaged droplet size distribution also confirm that the distribution becomes broader 
with the increase in bin resolution as shown in Figure 8. This observation contradicts our initial expectation that 

Case Name
Adjustment 

Factor
Minimal Droplet 

Radius (μm)
Bin 

Number

(legend in Figures 6–8) (mass ratio)

C-Mm (control) 0.01 1 33 (2)

C-Mm-0.1a (0.1 adj) 0.1 1 33 (2)

C-Mm-2 μm (2 μm) 0.01 2 33 (2)

C-Mm-66b (66 bins) 0.01 1 66 (2 0.5)

C-Mm-132b (132 bins) 0.01 1 132 (2 0.25)

Note. Case setups are detailed in the main text.

Table 2 
Summary of Sensitivity Tests to Mass Adjustment, Minimal Droplet Size, and 
Bin Resolution
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droplet size distribution should become narrower with increasing bin resolu-
tion, due to less numerical diffusion in the droplet radius space. To explore 
this counterintuitive result, we conduct three sets of simulations using the CL 
scheme with three different resolutions as before (33 bins, 66 bins, and 132 
bins). We will show below that the broadening of the droplet size distribution 
when refining microphysical bins is due to advection of hydrometeors.

First, we perform an idealized simulation for which all droplets grow by 
condensation in a still environment without advection and sedimentation. 
The environmental temperature and water vapor mixing ratio are set as 
constants with values of T = 293 K and qv = 0.18 g kg −1, corresponding to a 
supersaturation of 22.3%. Droplet number concentration is 100 cm −3 and all 
droplets are initially located in the smallest bin. Note that aerosols are only 
added at the beginning of the simulation in this case, so there is no contin-
uous injection of aerosols. This is a way to check whether our algorithm for 
calculating droplet condensational growth is correct because the analytical 
solution for the droplet growth is known for a constant supersaturation envi-
ronment. The total simulation time is 20 s with a time step of 0.02 s. Figure 
S1 in Supporting Information S1 shows that the droplet size distribution is 
indeed narrower for a higher bin resolution, consistent with our initial expec-
tation, and the time evolution of the mode of the distribution agrees well with 
the analytical value.

We then conduct a box model simulation for which the liquid water static 
energy and total water mixing ratio are 293.4 K and 17 g kg −1, both held 
constant, resulting an initial supersaturation of 12.7%. Monodisperse aero-
sols with a dry radius of 62.5 nm are injected into the box at a constant rate 
of 0.25 cm −3s −1. Dry aerosols are activated into cloud droplets and experi-
ence condensational growth under supersaturated conditions. Droplets are 
removed in a simple way based on their terminal velocity

𝑁𝑁𝑑𝑑 = 𝑁𝑁𝑑𝑑

(

1 −
𝑑𝑑𝑑𝑑

𝜏𝜏

)

� (4)

where Nd is the droplet number concentration in one bin, dt is the time step, 
and τ is the characteristic time for droplet sedimentation τ = H/vt. H can be 
considered to be the chamber height (1 m here) and vt is the terminal velocity 
of droplets in that bin. Basically, this is a simple zero-dimensional model 
to mimic the steady state in the convection cloud chamber. The droplet size 
distribution reaches steady state after a few minutes when the injection rate 
equals to the removal rate due to sedimentation. Figure S2 in Supporting 

Information S1 shows that the droplet size distributions are similar with different bin resolutions, and refining the 
bins does not lead to a broader distribution.

Finally, we conduct chamber simulations as before (i.e., Figure 8) except that we change the subsaturated wall 
condition to an adiabatic wall condition. We create an adiabatic wall condition by turning off the scalar fluxes 
(e.g., temperature and water vapor mixing ratio) at the side walls. Because both bottom and top surfaces are 
saturated with respect to water at two different temperatures, through turbulent mixing, the whole chamber is 
supersaturated with a domain-averaged saturation ratio that is much higher than that for the subsaturated wall 
condition. For comparison, when side walls are subsaturated, air close to the side wall is likely to be subsaturated 
due to the sink of water vapor near the wall and the domain-averaged supersaturation is much lower. Note that 
subsaturated wall condition is chosen for all other simulations in this study so the domain-averaged supersatura-
tion without cloud droplets is close to the in situ measurements in Pi chamber (Chandrakar et al., 2016). Changing 
to an adiabatic wall condition forces the whole chamber to be supersaturated, and thus evaporation of droplets 
is negligible. Figure S3 in Supporting Information S1 shows that all three resolutions agree for smaller droplets 
much better than in Figure 8 but still differ for larger droplets, with a broader distribution for higher resolutions, 

Figure 6.  Time series of domain-averaged (a) temperature, (b) water vapor 
mixing ratio, (c) relative humidity, and (d) liquid water content in a simulated 
convection cloud chamber. Results from the control case are the same as 
C-Mm in Figure 1. The other cases are sensitivity tests for the adjustment 
factor, minimal droplet radius, and bin resolution. Case setups are detailed in 
the main text and Table 2.
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suggesting that the spectra broadening is not due to evaporation or side-wall 
effects.

In short, we only see the broadening of the distribution when refining bin 
widths for the 3D chamber simulations, suggesting that the broadening with 
bin refinement is due to the transport of the hydrometeors. Transport of 
hydrometeors in the simulation can be affected by advection, diffusion, and 
sedimentation. Superficially, the broadening found in this study is similar to 
the broadening found in Morrison et al. (2018). More research is needed to 
explore the broadening at a fundamental level; however, this series of tests 
clearly points to transport as being the cause.

3.4.  Sensitivity to Spatial and Temporal Resolutions

All above simulations, as well as simulations in Thomas et al. (2019), use a 
spatial resolution of dx = dy = dz = 3.125 cm and a time step of 0.02 s. We 
test the sensitivity of Pi chamber simulations to different spatial and temporal 
resolutions, which has not been done before. Two cases (H-M and C-Mm) are 
chosen to simulate the Pi chamber at three other spatial resolutions (6.25 cm, 
12.5 cm, and 25 cm) and two temporal resolutions (0.01 and 0.04 s) with 
the same initial and boundary conditions. Note that spatial resolutions are 
changed in all three directions. Results are shown in Figures S4 (H-M) and 
S5 (C-Mm) in Supporting Information S1. The behaviors of H-M and C-Mm 
are similar at different resolutions. Specifically, results are not sensitive to 
temporal resolution but refining the grid spacing up to 3.125 cm has a consid-
erable impact on dynamical, thermodynamical, and microphysical properties. 
The increase of the turbulence strength (energy dissipation rate and turbulent 
kinetic energy) is mainly due to the increase in surface fluxes. The change in 
surface heat fluxes with the change in grid spacing is because of the simpli-
fied parameterization of surface fluxes in large-eddy simulations based on 
Monin-Obukhov similarity theory. A smaller grid spacing leads to a larger 
gradient in temperature and water vapor mixing ratio between surface and 
the adjacent air, leading to larger calculated sensible and latent heat fluxes. 
Direct numerical simulations are needed to fully resolve the surface layer and 
test the convergence with respect to spatial grid spacing in future studies.

The decrease in temperature, water vapor mixing ratio, droplet number 
concentration, and mean droplet size with increased spatial resolution are not 
mainly due to the change of the turbulence strength but, instead, arise from 
having subsaturated side walls. To show the impact, we conduct simulations 

with adiabatic side walls at different spatial resolutions and the results are shown in Figures S6 (H-M) and S7 
(C-Mm in Supporting Information S1). It can be seen that changes in energy dissipation rate and turbulent kinetic 
energy with spatial resolution are similar to those with subsaturated walls (Figures S4 and S5 in Supporting 
Information  S1), but the thermodynamic and microphysical properties are not sensitive to spatial resolution. 
Our results suggest that, at least when using our current model setup to simulate the Pi chamber, a courser reso-
lution (up to about 10 cm) is sufficient to obtain convergence for thermodynamic and microphysical properties 
under adiabatic wall conditions. It should be mentioned that sensitivities found in this section do not change our 
conclusion in previous sections, in which we used the same initial and boundary conditions as well as temporal 
and spatial resolutions.

4.  Conclusions and Implications
An atmospheric large-eddy simulation model with the HUJI scheme has been modified to simulate a convec-
tion cloud chamber (Thomas et al., 2019). In this study, we presented results from intercomparison studies of 
large-eddy simulations of steady-state clouds in the Pi chamber using two microphysics schemes and different 

Figure 7.  Time series of domain-averaged (a) droplet number concentration, 
(b) mean droplet radius, (c) effective radius, and (d) standard deviation of 
droplet size distribution in a simulated convection cloud chamber. Results from 
the control case are the same as C-Mm in Figure 2. Other cases are sensitivity 
tests for the adjustment factor, minimal droplet radius, and bin resolution. Case 
setups are detailed in the main text and Table 2.
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advection methods. Pi chamber simulation with the setup of observationally 
guided initial and boundary conditions provides a unique framework to test 
the sensitivity of simulations to the different schemes at the laboratory scale. 
Specifically, the CL scheme, based on the method of moments, has also been 
implemented for chamber simulations. However, it is not straightforward to 
implement the CL scheme in a 3-D model because the MPDATA advection 
scheme currently used in the model does not preserve the interrelationship 
of the two prognostic variables (number and mass mixing ratio) after advec-
tion. To properly transport hydrometeors in the CL scheme, several advection 
methods were tested, including the MPDATA scheme with mass and number 
adjustments, and the Lagrangian advection scheme with a hybrid option. For 
comparison, we applied the same advection methods to the HUJI scheme, and 
also included the Lagrangian advection scheme with first-order linear advec-
tion. Note  that all simulations were done using the same dynamic model with 
identical initial and boundary conditions. In this way, our simulations can 
help to diagnose the roles of the microphysics and advection schemes by 
ruling out other factors, such as subgrid and surface flux parameterizations.

Results show that spectral bin microphysics schemes and the treatment of 
advection can alter the statistical properties of simulated clouds. By sorting 
the cases by the estimated degree of numerical diffusion, we find that, when 

using the same microphysics scheme, simulation with the advection scheme that suffers more from numerical 
diffusion along the size coordinate tends to have a lower temperature, higher relative humidity, smaller liquid 
water content, and more droplet number concentration. Results are self-consistent, because more cloud droplets 
in the convection chamber are related to more condensed water, which releases more latent heat, and thus leads 
to a higher temperature and lower relative humidity. In addition, simulation with the microphysics scheme that 
suffers more from numerical diffusion tends to have a broader distribution and thus larger mean droplet sizes. 
We also find that refining microphysical bin widths leads to a broader droplet size distribution. The broaden-
ing effect arises from hydrometeor transport, which shows some similarity to the broadening effect reported in 
Morrison et al. (2018) for atmospheric cloud simulations. For a constant aerosol injection rate of 0.25 cm −3 s −1, 
Nd can differ by about a factor of 1.5 between the largest and smallest values when using different advection 
schemes. Simulated clouds can have similar Nd by choosing different combinations of microphysics and advec-
tion schemes. A larger aerosol injection rate leads to a higher T due to latent heat release from more condensed 
water (LWC), more cloud droplets (Nd), smaller droplet sizes (rd), and narrower size distributions (σr). Results 
show that all variables expect one (RH) are more sensitive to the changes of the advection scheme as the increase 
of aerosol injection rate. RH is less sensitive in the polluted condition because it is buffered to about 100% under 
polluted conditions. Aerosols are monodisperse in our simulation (all dry aerosols in one bin), and the simple 
Boolean treatment of activation based on the Köhler theory (i.e., all dry aerosols in that bin are activated or not 
contingent on the environmental supersaturation) would lead to unrealistic oscillations in simulated clouds under 
polluted conditions. Such oscillation can be avoided by considering partial activation, in which only a fraction 
of the dry aerosol can be activated as cloud droplets. The way to handle partial activation in the model can also 
affect the simulated cloud properties, especially for Nd.

Our conclusion that changes in advection schemes can produce similar variability in simulated cloud properties as 
changes in microphysics schemes for chamber simulations contradicts to some recent studies (Gavze et al., 2020; 
Lynn et  al., 2021). For example, Lynn et  al.  (2021) compared simulations of a supercell storm using several 
microphysics and advection schemes at different scales, and they found that results agree well when using the 
same spectral bin microphysics schemes and different advection schemes, but huge differences are found when 
using the same advection scheme and different bulk microphysics schemes. Their results show that cloud and 
precipitation show much higher sensitivity to microphysical schemes than to advection schemes. Several reasons 
might contribute to this inconsistency. First, two bin microphysics schemes are used in this study, while one bin 
microphysics scheme and several bulk microphysics schemes are used in Lynn et al. (2021). It is expected that 
the two bin microphysics schemes are more similar when compared with bulk microphysics schemes. Second, 
hydrometeors and microphysical processes occurring in a cloud convection chamber are much simpler compared 
with those in a supercell storm. For example, drizzle, rain, ice crystals, hail, and snow do not exist in the chamber 

Figure 8.  Spatially and temporally averaged droplet size distribution. The 
distribution from the control case is the same as C-Mm in Figure 3. The other 
cases are sensitivity tests for the adjustment factor, minimal droplet radius, and 
bin resolution. Case setups are detailed in the main text and Table 2.
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and those hydrometeors and associated processes are treated quite differently in different microphysics schemes. 
Lastly, spatial and temporal resolutions for chamber simulations are much finer compared with simulations in the 
atmosphere, and therefore, the comparative effect of advection on microphysical variables may be larger. In short, 
we consider this study as complementary to, rather than contradictory to other model intercomparison studies; 
aside from the fact that all those studies talk about different microphysics and advection schemes, there is not 
much else in common among them in terms of model setups and simulated conditions. Results from this study 
can help us better understand the variations in chamber simulations when using different schemes, which is of 
interest to the cloud physics community in general, as well as to facilitate the design of future large-scale cloud 
chambers (Shaw et al., 2020). One should be cautious, however, when extending the conclusions of this study to 
simulations of natural cloud systems due to the additional complexities involved there.

Domain-averaged RH and Nd in the steady state show an anticorrelation using various advection methods with the 
same microphysics scheme (Figures 1c and 1g and Figures 2a and 2e). Chandrakar et al. (2018) derived an analyt-
ical expression of mean supersaturation in a convection cloud chamber at the steady state: 𝐴𝐴 𝑠𝑠 = 𝑠𝑠0𝜏𝜏𝑠𝑠∕𝜏𝜏𝑡𝑡 (Equation 
12 in that paper). Here, s0 is the supersaturation without cloud droplets, and τs is the global system time scale 
τs = τcτt/(τc + τt). τt is the turbulent mixing time scale, which can be considered as a constant for Rayleigh-Bénard 
convection (e.g., same temperature difference between top and bottom surfaces). τc is the phase relaxation time, 
which is inversely proportional to the first moment of droplet size distribution, 𝐴𝐴 𝐴𝐴𝑐𝑐 ∝

(

𝑟𝑟𝑟𝑟𝑑𝑑

)

−1 . Because 𝐴𝐴 𝑟𝑟𝑑𝑑  shows 
much less variation for different advection schemes, a larger Nd leads to a smaller τc, resulting in a smaller τs, and 
thus a smaller 𝐴𝐴 𝑠𝑠 (note that 𝐴𝐴 𝑅𝑅𝑅𝑅   = 𝐴𝐴 𝑠𝑠  + 1).

Do we know which combination of microphysics and advection scheme is the best for cloud chamber simulation? 
Unfortunately, we cannot answer this question at this moment because of a lack of observational data for compar-
ison. Although our model setup is based on the chamber setup and observations in Chandrakar et al. (2016), some 
assumptions and simplifications are made for our simulations. For example,: (a) aerosols are injected in all grid 
boxes in the model, but they are injected at one point in the real chamber; (b) assumptions are made for the surface 
and wall conditions to calculate heat and water vapor fluxes, but there is no direct measurement to evaluate those 
fluxes; and (c) droplets are removed from the simulated domain if they totally evaporate or sediment out but, in 
the real chamber, droplets may also be lost at the wall surface and, when droplets totally evaporate, they deacti-
vate as haze particles and can be reactivated again if the environmental supersaturation is larger than its critical 
supersaturation. Even so, the model intercomparisons in this study provide some new aspects to design future 
experiments to constrain the modeling results in the future. For example, for the low aerosol injection rate, only 
Nd shows considerable case-by-case variation, suggesting that rigorous experiments and precise observations are 
needed for model evaluation for relatively clean conditions. For the high aerosol injection rate, LWC also differs 
considerably, which might be a good variable for model evaluation.

Our next step is to evaluate model simulations with improved in situ measurements. A convection cloud cham-
ber provides an ideal environment for model intercomparisons and evaluation because it has well-characterized 
boundary conditions, it creates statistically steady-state conditions, and the flow does not respond significantly 
to changes in the microphysics. We also look forward to seeing more Pi Chamber simulations, in which more 
numerical and theoretical models are applied to simulate the convection cloud chamber with the same initial and 
boundary conditions. Comparisons of simulations with various microphysics and advection schemes can help us 
better understand uncertainties in simulations of clouds in the chamber and the real atmosphere.

Data Availability Statement
The SAM model is available from Dr. Marat Khairoutdinov of Stony Brook University (http://rossby.msrc.sunysb.
edu/marat/SAM.html). The model setup, input files, and outputs are available upon request to the first author.
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