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Emotion-Aware Music Recommendation

Abstract

People often listen to songs that match their mood. Thus, an Al music
recommendation system that is aware of the user’s emotions is likely to provide a
superior user experience to one that is unaware. In this work, we present an
emotion-aware music recommendation system. Multiple models are discussed and
evaluated for affect identification from a live image of the user. We propose two
models: DRViT, which applies dynamic routing to vision transformers, and InvNet50,
which uses involution. All considered models are trained and evaluated on the
AffectNet dataset. Each model outputs the user’s estimated valence and arousal
under the circumplex model of affect. These values are compared to the valence
and arousal values for songs in a Spotify dataset, and the top-five closest-matching
songs are presented to the user. Experimental results of the models and user testing
are presented.

System Overview

Image Acquisition and Processing
In the web application, the user provides a picture of their face using the
front-facing camera of their device.

Affect Identification

e The system runs the image through an affect identification model to predict the
valence and arousal values, two continuous ranges representing human emotion:
o Valence: level of positivity or negativity
o Arousal: level of energy

e QOur system randomly chooses one of the two following models trained on the
AffectNet dataset (Mollahosseini, Hasani, and Mahoor 2017):
o Dynamic Routing for Vision Transformers (DRViT)
o Involution Residual Network with 50 layers (InvNet50)

e AffectNet provides targets for valence, arousal, and 8 affect classes:

Neutral
Happy
Sad
Surprise
Fear
Disgust
Anger
Contempt

Valence

Arousal

e After generating the valence-arousal values, the system passes them to a decision
tree classifier to interpret the values as English words.

Music Recommendation

e The system then uses a 600k-song Spotify dataset to match the songs’ normalized
valence and arousal values with the pairs generated from the model.

e The top-five songs (according to nearest neighbor on the valence-arousal plane)
are recommended to the user. Users may listen to 30-second clips or follow a link
to the song on Spotify.

Affect Identification Architecture #1: InvNet50
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o Spatial-specific: aware of
spatial relationships.
o Channel-agnostic: ignorant
of channel-specific features. Downsample block no.2
e InvNet50 also adopts Tnv block n0.3 (N = 6)
skip-connection, dropout, layer, Hownsample block no.3
and batch normalization to Inv block no.4 (N = 2)
reduce overfitting.

Inv block no.1 (N = 3)
Downsample block no.1
Inv block no.2 (N = 4)

Affect Identification Architecture #2: DRVIT
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We replace the feed-forward neural network layers in each encoder block of Vision
Transformers of Dosovitskiy et al. (2020) with Dynamic Routing proposed by Sabour,
Frosst, and Hinton (2017).

Capsule layer output:

e =3 encoder blocks
e Number of heads: 8 u;|; = wa X U
e Dimension of embedding layers: 256
e Last layer: feed-forward perceptron. S; = Z cijl;);
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Experimental Setup

Augmentation

e Both plans:
o 20,000 images selected per class (or fewer if class size < 20,000)
o Random application of: no augmentation, Gaussian blur, horizon flip, color
jitter, random erasing
o Performed online (during training)
e Plan A:
o Image randomly selected from among the dataset up to 20,000 per class.
o Augmentation (or no augmentation) is applied as above.
o Result: 160,000 images with perfect balance between classes
e Plan B:
o Considers each previously selected image once.
o Augmentation (or no augmentation) is applied as above.
o Result: 108,021 images with imbalance between classes

Models x outputs

e 2 x 1: two models with the same architecture and one output, one trained on
valence, one on arousal

e 1 x 2: one model with two outputs trained on valence and arousal

Experiment Results and Analysis

Params Valence Arousal
ID Arch M x O M) Aug | RMSE (<) CORR(>) CCC(>) SAGR(>) | RMSE (<) CORR(>) CCC(>) SAGR(>»)
1 | AlexNet 2% 1 2x58.2 | No 0.37 0.66 0.60 0.74 0.41 0.54 0.34 0.65
2 | ResNet50 | 2x1 2x25.0 | No 0.41 0.58 0.53 0.68 0.43 0.46 0.47 0.65
3 | ResNet50 | 2x1 | 2x 25.0 A 0.39 0.59 0.53 0.67 0.40 0.48 0.41 0.66
4 ViT 2% 1 2x85.0 | No 0.40 0.58 0.55 0.66 0.42 0.50 0.46 0.62
5 ViT 2% 1 2 x 85.0 A 0.39 0.57 0.56 0.65 0.39 0.52 0.41 0.68
6 | InvNet50 2% 1 2x10.5 | No 0.43 0.57 0.53 0.72 0.36 0.50 0.43 0.75
7 | InvNet50 2%x1 | 2x10.5 B 0.37 0.63 0.61 0.76 0.34 0.53 0.49 0.78
8 | InvNet50 1% 2 10.5 No 0.42 0.59 0.535 0.73 0.36 0.51 0.45 0.74
9 | InvNet50 1 2 10.5 A 0.36 0.62 0.57 0.77 0.33 031 0.42 0.79
10 | InvNet50 1x2 10.5 B 0.37 0.65 0.63 0.77 0.33 0.55 0.52 0.80
11 DRVIT 1% 2 13.0 No 0.36 0.68 0.66 0.78 0.36 0.67 0.53 0.75
12 DRVIT 1X2 13.0 A 0.37 0.66 0.63 0.79 0.35 0.65 0.48 0.77
13 DRViIT 1% 2 13.0 B 0.39 0.61 0.57 0.72 0.37 0.56 0.48 0.63
e ResNetb0 and ViT fail to significantly improve upon AlexNet.
e 1x2 versus 2x1 shows little difference in performance, but 1x2 is more efficient.
e DRViT and InvNet50 give better results than AlexNet, ResNet50 and ViT.
e DRVIT prefers no augmentation, while InvNet50 prefers augmentation plan B.

o Due to a full attention mechanism and dynamic routing, DRViT may require
more data than InvNet50, hence the preference for no augmentation over
random selection and augmentation plans.

Best InvNet50: 1x2 with augmentation B (row 10).
Best overall: DRViT 1x2 with no augmentation (row 11).

Application Overview
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