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Abstract 

Fog computing plays a pivotal role in the Internet of Things (IoT) ecosystem because of its ability 

to support delay-sensitive tasks, bringing resources from cloud servers closer to the “ground” 

and support IoT devices that are resource-constrained. Although fog computing offers some 

benefits such as quick response to requests, geo-distributed data processing and data 

processing in the proximity of the IoT devices, the exponential increase of IoT devices and large 

volumes of data being generated has led to a new set of challenges.  One such problem is the 

allocation of resources to IoT tasks to match their computational needs and quality of service 

(QoS) requirements, whilst meeting both task deadlines and user expectations.  Most proposed 

solutions in existing works suggest task offloading mechanisms where IoT devices would offload 

their tasks randomly to the fog layer or cloud layer. This helps in minimizing the communication 

delay; however, most tasks would end up missing their deadlines as many delays are 

experienced during offloading. This study proposes and introduces a Resource Allocation 

Scheduler (RAS) at the IoT-Fog gateway, whose goal is to decide where and when a task is to 

be offloaded, either to the fog layer, or the cloud layer based on their priority needs, 

computational needs and QoS requirements. The aim directly places work within the 

communication networks domain, in the transport layer of the Open Systems Interconnection 

(OSI) model. As such, this study follows the four phases of the top-down approach because of 

its reusability characteristics. To validate and test the efficiency and effectiveness of the RAS, 

the fog framework was implemented and evaluated in a simulated smart home setup. The 

essential metrics that were used to check if round-trip time was minimized are the queuing time, 

offloading time and throughput for QoS. The results showed that the RAS helps to reduce the 

round-trip time, increases throughput and leads to improved QoS. Furthermore, the approach 

addressed the starvation problem, a phenomenon that tends to affect low priority tasks. Most 

importantly, the results provides evidence that if resource allocation and assignment are 

appropriately done, round-trip time can be reduced and QoS can be improved in fog computing. 

The significant contribution of this research is the novel framework which minimizes round-trip 

time, addresses the starvation problem and improves QoS. Moreover, a literature reviewed 

paper which was regarded by reviewers as the first, as far as QoS in fog computing is concerned 

was produced. 

Keywords: Internet of Things, Cloud Computing, Fog Computing, Quality of Service, Round-

trip Time, Resource Allocation. 
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1  Chapter One: Introduction 

1.1 Introduction 

This chapter provides an overview of this study and establishes the research niche. The chapter 

is structured as follows: Section 1.2 gives the background of the study, followed by Section 

1.3, which provides the synopsis with an overview of related work. The problem statement is 

then presented in Section 1.4. The research aims and research questions are given in Section 

1.5 and Section 1.7, respectively. Section 1.6 provides the research objectives. The overview 

of the research methodology is presented in Section 1.8. Section 1.9 gives the contribution of 

the study. The limitations of this study are then presented in Section 1.10. The chapter is 

concluded by providing the structure of the whole thesis in Section 1.11.  

1.2 Background of the Study 

With the advent of the Internet of Things (IoT), which is creating a “smart world” and bringing 

about automation in many application areas, many computing elements need various 

modifications to support the IoT devices that are at the center of the automation world. Such 

changes should help the IoT devices, which are resource-constrained, while keeping in mind 

that latency has to be minimized and Quality of Service (QoS) has to be improved. It is important 

to note that for successful adoption of IoT, it should be associated with a wide variety of other 

technologies such as cloud computing and fog computing. 

Cloud computing was introduced to support IoT devices in terms of resources (Chen et al., 

2017).  Although cloud computing as a concept dates back to the 1990s, the term cloud 

computing was first used in 2006, on the 9th of August by Eric Schmidt, Chairman and CEO of 

Google at the Search Engine Strategies Conference (Google Press, 2006). Since then, cloud 

computing has been widely adopted in many businesses for backup, file storage, cost-cutting in 

terms of infrastructure, development and testing as well as investment by cloud providers. Cloud 

computing takes a central role to support emerging IoT technologies which are resource 

constrained. The cloud computing has become vital in supporting the interactions between IoT 

networks. However, the exponential growth of the number of connected sensors is becoming a 

challenge to the cloud architecture. This is because cloud computing is a centralised approach 
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which makes it difficult to service geo-distributed IoT devices. The geographical distance 

between IoT devices and cloud servers seriously affects how the two communicate, leading to 

undesirable latency challenges. Secondly, it becomes costly to send IoT generated tasks to and 

from the cloud servers as more bandwidth is needed during the transmission. 

Due to the above-mentioned challenges, fog computing was introduced by Cisco in 2012, not 

as a substitute for cloud computing, but to complement cloud computing (Bonomi et al., 2012). 

OpenFog Consortium Architecture Working Group defined fog computing as “a system-level 

horizontal architecture that distributes resources and services of computing, storage, control 

and networking anywhere along the continuum from Cloud to Things” (OpenFog Consortium 

Architecture Working Group, 2017). It is made up of both wired and wireless granular collection 

endpoints, which include switching equipment, routers that act as gateways and customer 

premise equipment (CPE). Fog computing has become a preferred choice because of its ability 

to deliver services faster, and its ability to offer location awareness. It is worth to reiterate that 

fog computing technology is not a replacement of cloud computing but complements it by 

bringing the “cloud resources closer to the ground” where IoT devices reside (Chang et al., 

2017). 

As evidenced in the detailed survey done by Vambe et al., (2020), several studies have focused 

on addressing various fog computing issues. One of the topics that is drawing much attention is 

how communication and computing resources can be allocated and assigned based on tasks, 

requirements and priorities. The existing solutions, as informed in literature, indicate that 

resources are assigned/ offloaded based on a first come first serve basis without considering 

task status (whether a task is time-sensitive or not) and in most cases, task deadlines (Vambe 

et al., 2020). Some existing works focus only on the reduction of communication delay. Despite 

many efforts being done to reduce communication delay, this study discovered that in many 

proposed solutions, most time-sensitive tasks fail to meet their deadlines. This situation can 

severely affect automation. The starvation problem is another challenge that is receiving much 

attention from various researchers. Another open challenge in fog computing is to find an 

effective and efficient resource allocation and assignment mechanism that meets the needs of 

both time-sensitive tasks and those that are not time-sensitive while meeting tasks deadlines. 

Hence, the primary goal of this study was to introduce a Resource Allocation Scheduler (RAS) 

which reduces round-trip time for time sensitive tasks and also helps to solve the starvation 
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problem that affects IoT tasks that are not time sensitive. To achieve this goal, this study 

proposes and implementes a Resource Allocation Scheduler (RAS) in the fog computing 

framework. RAS was introduced at the IoT-Fog gateways whose responsibility was to allocate 

and assign tasks generated by IoT devices to either fog layer or cloud layer based on the task’s 

computational needs and priority. 

1.3 Overview of Related Work 

Literature shows that several researchers have used fog computing to minimise latency and 

improve QoS in existing systems. Such work includes the work of Kochovski and Stankovski, 

(2018), who applied Jitsi-meet and building process documentation cloud (BPDOC) applications 

to promote orchestration of services to address the QoS hindrance problem in the smart 

construction domain. Alsaffar et al., (2017) discussed the issue of service placement in a home 

setup domain using a resource allocation algorithm to optimize data distribution and resource 

allocation. A two computational algorithm with low delay and reduced complexity that uses the 

principle of computation offloading in a mobile domain was used by Liu et al., (2017) to address 

service migration mobility. A Follow me Edge (FME) concept was used by Taleb et al., (2017) 

in a smart city domain to achieve efficient resource deployment as a way to address the service 

migration problem. Modified Constrained Optimization particle swarm optimization (MPSO-CO) 

was applied by He et al., (2016) on the Internet of Vehicles (IoV) domain to address load 

balancing challenges. Sampei, (2017) suggested combining network slicing, network 

softwarization, and mobile edge computing (MEC) to address challenges faced when expanding 

cellular service to achieve efficient network flexibility. Power minimization resource algorithms 

MC-RAN was used by Wang and Yang, (2017) in the mobile application domain to assist 

resource hungry and computational limited devices so that they will be able to dynamically 

compute resource allocation. Li et al., (2018) devised a method of resource estimation. It was 

based on QoS in Edge computing, which used multi-attribute QoS resource matching algorithm 

and regression Markov prediction method to forecast available resources, select the suitable 

resource to meet the needs of users. Thus, reducing unnecessary competition for the resource, 

which improves QoS. Souza et al., (2017) argued that QoS is not only affected by data 

transmission factors but also processing delays in fog nodes. To address the end-to-end delay 

in fog computing, Souza et al., (2017) introduced a service-oriented control that would allow 

control as a service (CaaS) in the fog to cloud topology. Fog Resource Reservation (FRR) and 
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Fog Reallocation (FRL) strategies were introduced by Li et al., (2017) in fog computing after the 

realization that fog nodes have limited resources when it comes to processing power. As such, 

they can quickly become overloaded when large amounts of users’ requests arrive during peak 

hours, resulting in processing delays that will in-turn affect QoS.  Xiao and Krunz, (2017), offload 

forwarding strategy was introduced to address service migration challenges in fog computing 

networks. A fog node would either not offload or offload and forward part or its entire load to be 

processed by other local fog nodes that are idle and have better computational power than it 

has. Task distribution algorithm, which was based on initialization, relaxation, rounding, and 

validation, was introduced by Song et al., (2017) to address the service migration problem in fog 

computing that affected QoS. Skarlat et al., (2017) designed a novel Fog Service Placement 

Problem (FSPP) method that would facilitate optimal sharing of resources.  

Although several related works tried to address QoS issues in IoT ecosystems, the challenge 

that still remains is the allocation and offloading of the tasks that are produced by the IoT devices 

to the resources that suit their computational needs and fulfil their QoS requirements. Moreover, 

to the resources that suit their deadline needs while minimizing round-trip time (Vambe et al., 

2020). Some researchers have made efforts to solve this challenge. For example, Ko et al., 

(2017) and Mukherjee et al., (2019) have investigated and suggested ways on how to address 

the problem of task allocation and offloading. The latest research by Yang et al., (2019) and 

Wang et al., (2019) suggested offloading tasks to nearby fog nodes or cloud servers.  

It is worth pointing out that all these works have one thing in common. The decision is made in 

the fog nodes to either process the whole tasks, part of the task or offload to the next fog node. 

This clearly shows that when tasks are sent to the fog layer, deadline requirements of tasks are 

not considered. Deadline requirements play a pivotal role when considering time-sensitive tasks 

as they require to be processed at a specific time frame. Failure to meet deadlines implies that 

if the outcome of the task comes after the stipulated time, it becomes useless. This can be 

detrimental in critical applications like medical health applications. Hence this study proposed a 

solution that would help tasks meet their deadlines by minimizing round-trip delays and 

addressing the starvation problem. The solution of this study introduced a Resource Allocation 

Scheduler (RAS) in the IoT-Fog gateways that is responsible for resource allocation, giving high 

priority to time-sensitive tasks. The RAS considers task deadlines, resource constraints and 

promote minimized latency. This research is of paramount importance as several application 
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areas such as smart health, smart city, smart grids would benefit from the findings of this 

research. 

1.4 Problem Statement 

The exponential increase of IoT devices and large volumes of data generated by IoT devices 

has led to severe challenges in the allocation of resources to IoT tasks in order to match their 

computational needs and achieve QoS requirements while meeting task deadlines, at the same 

time avoiding the starvation problem. Trying to improve quality of service, the use of fog nodes 

has been adopted. However, fog nodes are resource constrained. Overloading them leads to 

negative impact in terms of turnaround time of network packets. This calls for techniques that 

can reduce turn around time of network packets that are sent to fog nodes, thereby improving 

QoS in the internet of things environments. 

1.5 Research Aim  

This study aimed to design and implement a resource allocation scheduler in fog computing 

framework for the Internet of Things (IoT) environment. To pursue this aim, the study used the 

following research objectives and research questions as a guide: 

1.6 Research Objectives  

1. To identify the key challenges of data communication and computer resources allocation 

in an IoT environment. 

2. To determine how data communication and computer resources are assigned and 

allocated based on tasks requirements and their priorities in IoT environments. 

3. To identify a suitable methodology for building a resource allocation scheduler in fog 

computing framework for IoT environments. 

4. To build a resource allocation scheduler framework in fog computing for IoT 

environments. 

5. To test and evaluate the effectiveness of the proposed RAS in allocating resources in fog 

computing framework. 
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1.7 Research Questions 

1. What are the key challenges in communication and computer resources allocation in an 

IoT environment? 

2. How are communication and computing resources allocated and assigned among the 

IoT devices based on tasks, requirements and priorities? 

3. Which approaches can be used to build a resource allocation scheduler in fog computing 

framework for IoT environment? 

4. Can a resource allocation scheduler in fog computing framework which is based on tasks 

requirements and priorities be successfully developed? 

5. What is the performance of the RAS in fog computing framework? 

1.8 Overview of Research Methodology 

The development of the RAS in fog computing framework was informed by systematic scrutiny 

of existing approaches as a way to discover the weakness of the existing frameworks. The aim 

directly put this work within the communication networks domain, in the transport layer of the 

Open Systems Interconnection (OSI) model. As such, this study followed the four phases of the 

top-down approach because of its reusability characteristics. The framework was then 

implemented and evaluated in a simulated smart home setup to validate and test the efficiency 

and effectiveness of the introduced RAS. The essential metrics that were used in the evaluation 

of this research were; a) queuing time, b) offloading time, which are factors of round-trip time 

that affect latency, and c) throughput, which is a parameter of QoS. More discussions on the 

study methodology used are in chapter three. 

1.9 Contributions of the Study 

There are two significant contributions which were made by this current study to the existing 

body of scientific knowledge. A review paper of QoS in fog computing was produced. To our 

understanding with the comments received from the reviewers, this was the first review paper  

which focuses on QoS in fog computing. The paper was published in the “International Journal 

for Fog Computing” (Vambe et al., 2020). The paper provided a good starting point for 

discussion of QoS and how it can be improved in fog computing. Secondly, the novel resource 

allocation scheduler (RAS) brought about reduced queueing time and offloading time which 
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resulted in the minimization of round-trip time. Moreover, throughput was improved, which leads 

to improved QoS. The developed framework proved to be of more significant in smart 

environments such as smart home where it was tested. It showed that it could promote 

automation where time-sensitive applications can be served at real-time. This system can be 

used anywhere were round-trip time is to be minimized and QoS is to be improved. 

In a nutshell, framework contribution serves as a foundation for further research in the field of 

fog computing. Moreover, the framework can be applied and tested for its benefits in application 

areas such as smart health were real-time responses are needed in real-time. 

1.10  Limitations of this Study 

This study focuses only on how to minimize round-trip time while considering queuing time and 

offloading time as an evaluation matrix. However, many other factors affect round-trip time and 

should be investigated in future work. Moreover, our work did consider the security and privacy 

of data when making decisions in the RAS which we strongly believe they should be considered 

in future work. Considering security and privacy of data make users trust the use of loT devices 

and fog layer devices which they will be using every day in a smart home setup. 

1.11 The Structure of the Thesis 

In Chapter Two, contextual knowledge which is the foundation to understand the research 

background is presented. The chapter gives an insight into the Internet of Things, cloud 

computing and fog computing technology. A critical analysis of work explicitly done which 

focused on resource provisioning and QoS in fog computing was presented. It is from this 

literature review where gaps in the existing framework as far as resource provisioning and 

improving QoS were identified. The gaps formed the basis of this thesis where there is a need 

to design and implement a resource allocation scheduler in fog computing framework for the IoT 

environment. 

Within Chapter Three: Research Design Methodology, an overview of the top-down research 

methodology that was adopted and the reason why it was adopted in this research is presented. 

Moreover, a detailed explanation of what was done at each of the four stages of the top-down 

research methodologies to answer the research aim, research questions and objectives is 

presented. 
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Next, the most fundamental design of the whole framework and the implemented RAS in fog 

computing is presented in Chapter Four: System Design and Implementation. This chapter 

is of paramount importance as it defines the most fundamental design and functionalities of the 

framework, which are critical in the designing of the framework.  

Chapter Five: Results and Discussions gives the empirical evaluation findings which are 

centered at queuing time, offloading time which are evaluation matrix for round-trip time. These 

results are presented in the form of graphs, followed by a critical analysis of each figure. A 

discussion of the findings of the developed RAS in fog computing as far as reducing round-trip 

time and improving QoS in relation to other works in literature is presented. 

The thesis is concluded by presenting Chapter Six: Conclusions and Future Work. In this 

chapter, an overall word on the developed and implemented RAS in fog computing framework 

is presented. Acumens into the future work in the area of maintaining the existing standard or 

improving QoS in fog computing are also given.  

1.12 Conclusion 

This chapter started by giving a brief insight into the background of the study. In this background, 

a challenge of resource allocation in fog computing was identified, which was motivated to be 

the problem statement. The problem statement helped in the formulation of the research aim, 

research questions and research objectives. An overview on how the resech aim and questions 

were addressed is also highlighted. The contributions of this thesis to the body of knowledge 

was also presented. The chapter was concluded by giving an overall layout of the whole thesis. 
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2 Chapter Two: Literature Review 

2.1 Introduction 

This chapter answers the first research question, “What are the key challenges in 

communication and computer resources allocation in an IoT environment?”. Moreover, 

it answers the second research question, “How are communication and computing 

resources allocated and assigned among the IoT devices based on tasks, 

requirements and priorities?”. The chapter is structured as follows. The essential 

summary background of the Internet of Things looking at what it is, its characteristics 

and how it changed the existing information systems and applications is presented in 

Section 2.2. In Section 2.3, the synopsis of cloud computing that is its characteristics, 

service and deployment models that make it possible to be the central computational 

backbone of IoT is presented. Cloud computing challenges that make it not suitable to 

fully support IoT devices due to their characteristics are put across to justify why there 

was need of distributed computational paradigm called fog computing. In Section 2.4, 

the background of fog computing is highlighted. Fog computing characteristics that 

fulfil and comply with IoT needs are also presented. In Section 2.5, application areas 

of fog computing are highlighted. Section 2.6 briefly describes the quality of service 

in the context of this research and highlights why it is important in fog computing. 

Section 2.7, presents related work as far as resource provisioning and scheduling in 

a fog computing environment is concerned. The chapter is concluded by giving an 

insight into the research gaps that still exist in the current fog computing resource 

allocation and scheduling strategies in Section 2.8. A summary of the whole chapter 

is given in Section 2.9. 

2.2 Internet of Things 

Presently, the Internet of Things (IoT) technology is trending all over the world in both 

academic and industries. The term IoT can be traced way back to the late 1990s when 

Kelvin Ashton introduced it and the vision being to connect intelligent “things” to the 

internet (Albishi et al., 2017). Internet of Things (IoT) can be defined as “a dynamic 

global information network consisting of internet-connected objects, such as radio-

frequency identifications, sensors, and actuators, as well as other instruments and 

smart appliances that are becoming an integral component of the Internet” (Perera et 
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al., 2014). Essentially, IoT is an interconnection of three “things” namely: a) Human 

beings/ animal to human beings/animal), b) Human beings/ animal to things/machine 

and, c) Things/machine to things/machine, interacting through the internet (Patel et 

al., 2016). These “things” can connect to each other via Near Field Communication 

(NFC)  (Dinh et al., 2013), Radio-Frequency Identification (RFID) (Atzori et al., 2010), 

Wireless Fidelity (Wi-Fi) (Atzori et al., 2010), Bluetooth (Dilworth, 2012) and Wireless 

Sensor Networks (WSN) (Sensor, 2009). Near Field Communication and Radio-

Frequency Identification use the concept of proximity to IoT devices to identify, 

authenticate and track them (Gubbi et al., 2013).  

Over the years, IoT has gained much attention and has become the centre of the fourth 

industrial revolution (4IR). Internet of Things can collect data from the physical 

environment, which upon processing the information generated can be used to 

generate insights for decision making in many application areas. Additionally, the data 

and events generated by IoT devices can be sent to the desired destination through 

the network, and upon further sophisticated analytics, the information created can be 

used to prompt for corresponding suitable actions. In short, IoT is a complex system 

that can create content, communicate, aggregate, analyse and act without explicit 

instructions (Perera et al., 2014).  

2.2.1 IoT Characteristics 

The following are the fundamental characteristics of IoT, as highlighted in (Patel et al., 

2016) and (Vermesan and Friess, 2014), which makes it possible to do the 

aforementioned. 

i. Intelligence 

The fact that IoT is a combination of software and hardware, algorithms and 

computation makes it smart.  Ambient intelligence in IoT improves its capabilities to 

enable the “things” to respond to a particular situation in an intelligent way and to assist 

them in performing specific tasks.  For all the popularity of smart technology, IoT 

intelligence is regarded only as a means of interaction between devices. In contrast, 

the communication between users and devices is accomplished by input methods that 

are the standard and graphical user interface. 
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ii. Heterogeneity 

Heterogeneity is one of the main characteristics of IoT. IoT devices are based on 

various hardware systems and networks and can communicate across different 

networks with other devices or service platforms. IoT architecture will allow direct 

access of heterogeneous networks to the network. Scalabilities, modularity, 

extensibility and interoperability are regarded as the key design requirements for 

heterogeneous things and their IoT environments. 

iii. Interconnectivity 

As far as IoT is concerned, and with the advancement of technology in the existence 

of global information and communication infrastructure, anything can be 

interconnected. Interconnectivity of these “things” is crucial because fundamental 

interactions at “things” level lead to mutual intelligence in the IoT network. In such a 

scenario, network accessibility and compatibility are enabled in the “things”. Through 

this connectivity, smart devices and apps network will be built forming new possibilities 

for the Internet of things. 

iv. Dynamic changes 

One significant role for IoT is to gather data from its surroundings, and this is achieved 

with the complex changes taking place around the devices. Devices state dynamically 

changes and the context of the devices which include temperature, position and 

speed. Aside from device status, the number of devices often dynamically changes 

with a person, location and time. 

v. Sensing 

Without sensors that detect or quantify any changes in the environment, IoT will not 

be possible to produce data that can communicate on their status or even interact with 

the environment. Sensing technologies provide the means to build capabilities that 

represent a true consciousness of the physical world and the people inside it. 

Information gathered from sensors is the physical world's analogue data, but it can 

provide our dynamic world's rich understanding. 

vi. Enormous Scale 

In 2011, Cisco Systems projected that 50 billion devices would be connected by the 

end of 2020 (Ericsson, 2011). This means the number of devices which need to be 

managed and communicate with each other will be much higher than the devices 

connected to the current Internet. Managing the data generated from these devices 

and their analysis is becoming more critical for application purposes.  
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vii. Security 

Like any other technology, IoT devices, of course, they are vulnerable to security 

threats. As such, it will be a big mistake to not think about security issues as we gain 

several benefits from IoT. Internet of Things has a high level of transparency and 

privacy concerns. It is necessary to protect the endpoints, the networks and the data 

that is exchanged. This means there is a need to establish a framework for protection 

(security paradigm). 

The above-highlighted characteristics have significantly contributed to the successful 

adoption and implementation of IoT technologies in existing information systems and 

applications, and have created value and support for human activities (Perera, et al., 

2014).  This research study identified that IoT had been applied in different domains 

which include but not limited to smart cities, smart energy and electric grid, smart 

homes, intelligent buildings and infrastructure, smart health and has resulted in the 

creation of a “smart world” (Botta et al., 2016) (Islam et al., 2015) (Albishi et al., 2017). 

How people live and work by saving time and organizational resources while bringing 

new opportunities for knowledge formation, innovation and development have entirely 

changed since the introduction of the “smart world” powered by IoT devices (Perera 

et al., 2014) (Daj et al., 2012) (Capossele et al., 2016).  

All things considered together with the human being’s desire to live in an automated 

smart world, novel IoT technology has gained, and it will continue to gain much 

attention in many diverse areas. In such an IoT ecosystem where these “things” are 

interconnected through a network, enormous and valid incomplete data is generated 

by IoT devices. The generated data needs to be processed and responded to in a 

short time. The leading cause of concern is the limited computational power, 

processing power and storage capabilities of IoT devices.  Therefore, it is important to 

note that for successful adoption of IoT, it should be associated with a wide variety of 

other technologies.
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2.3 Cloud Computing 

Cloud computing was introduced and integrated into IoT to provide scalable and 

processing services to meet IoT demands since IoT “things” are largely resource 

constrained, exhibiting limited computational power, processing power and storage 

capabilities (Chen et al., 2017). The term cloud computing was first used in 2006, 

precisely on the 9th of August by Eric Schmidt, Chairman and CEO of Google at the 

Search Engine Strategies Conference (Google Press, 2006). In 2011, the National 

Institute of Standards and Technology (NIST) defined cloud computing as “a model 

for enabling ubiquitous, convenient, on-demand network access to a shared pool of 

configurable computing resources that can be rapidly provisioned and released with 

minimal management effort or service provider interaction” (The National Institute of 

Standards and Technology, 2011). The configurable computing resources in this 

definition include networks, servers, storage, applications, and services. The cloud 

model is made up of five vital characteristics, three service models and four 

deployment models, as summarized in Figure 2-1 based on  (The National Institute of 

Standards and Technology, 2011). 

 

Figure 2-1: Cloud Computing Overview 

Source: (The National Institute of Standards and Technology, 2011) 

2.3.1 Cloud Computing Characteristics 

As defined by NIST, there exist five vital characteristics which cover the most important 

aspects of cloud computing (The National Institute of Standards and Technology, 
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2011). The characteristics, as highlighted in Figure 2-1 above, can be described as 

follows: 

i. On-Demand Self-Service 

Computing capabilities are offered to a customer automatically without any human 

interaction with the service provider as long as they are needed. The computing 

capabilities include but not limited to network storage, server time.  

ii. Broad Network Access 

Both thick and thin heterogeneous client platforms such as workstations, mobile 

phones, laptops and tablets which are connected to the internet can access cloud 

computing data centres through a standard mechanism. This is possible because 

cloud data centres are spread and available over the worlds network. Service 

providers such as Airbnb and Netflix already use and benefit from these centralised 

cloud resources.  

iii. Resource Pooling 

To avoid over-provisioning, or under-provisioning of resources such as memory, 

network bandwidth, processing and storage to the customers demand, cloud 

computing offers resource pooling. Resource pooling allows customers to utilise 

resources based on their demand dynamically. This will enable users to access and 

use cloud resources wherever they go. 

iv. Rapid elasticity 

This cloud computing characteristic allows horizontally and vertically scaling of 

resources with minimum management and configuration effort. Horizontal scaling 

allows the simultaneous serving of many clients, whereas the adaption of specific 

capabilities is handled by vertical scaling. This will enable customer demands to be 

dealt with efficiently while overall cost, energy consumption and resource-wasting are 

decreased. 

v. Measured Service 

Cloud providers always automatically measure, monitor and control the resources that 

will be used by customers such as bandwidth, processing and storage. This helps 

customers to know and track how the money they have paid via a pay-per-use basis 

was used. This is important as it provides transparency between customers and 

providers. Moreover, it will help in the measuring of QoS. 



15 
 

2.3.2 Service Models 

The resources that are provisioned by cloud providers include a) software services 

which are used via web browsers, b) developer platforms which are used to create 

and deploy cloud applications and finally, c) complete server infrastructure which 

handles virtual machines (Micrac, 2008) running on cloud resources. As explained by 

Micrac, (2008) and supported by Baun et al., (2011), the cloud resource delivery uses 

three service models, namely: 

a) Software-as-a-service (SaaS) 

SaaS is the first model, and as such, it is most restricted. Customers cannot configure 

or manage physical cloud resources. There are many SaaS service models, but the 

most popular used ones are Google Apps and Microsoft Office 365. All of the SaaS 

service models can be accessed via a programming interface or using a web browser.  

b) Platform-as-a-Service (PaaS)   

When compared to SaaS, PaaS is more flexible and comes with a development 

framework.  PaaS offers a cloud environment that allows developers to develop, test 

and deploy applications. The most popularly used PaaS include Windows Azure and 

Google App Engine 

c) Infrastructure-as-a-Service (IaaS).  

Infrastructure-as-a-Service is the most flexible model; as such, it allows the customer 

to deploy and run the virtual machines on the cloud physical resources. This gives the 

customer the power to control over operating systems, deployed application and 

storage. It should be noted that the customer will not have the ability to manage the 

underlying cloud infrastructure. The most popularly used IaaS is Open Stack and 

Amazon Web Services. 

2.3.3 Deployment Models 

Depending on their characteristics, the service models mentioned above are hosted 

in the following deployment models (Micrac, 2008) (Baun et al., 2011). 

i. Private Cloud: Only a single organization which can be comprised of multiple 

consumers such as business units can have exclusive use for this kind of cloud 

infrastructure. The organization can own, manage and operate it. In some 

instances, a third party can also do the same. It could be on or off the premises. 
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ii. Community Cloud: A community of customers with shared concerns such as 

policy, security requirements and compliance considerations can have 

exclusive use for this kind of cloud infrastructure. In this case, the community 

can be made up of different organizations, and they can operate and manage 

it. It could be on or off the premises. 

iii. Public Cloud: Contrary to the two above, which come with restrictions on who 

use them, the public cloud infrastructure is open to the general public. A 

government, business or academic organization can own, manage and operate 

it. It exists at cloud provider premises. 

iv. Hybrid Cloud: This cloud infrastructure is made up of private, community or 

public cloud infrastructures. Even though they are bound by proprietary 

technologies and standards that facilitate both data and application portability, 

they remain unique entities. 

2.3.4 Virtualization 

Another essential trait of cloud computing which makes it ideal to be used is its ability 

to use the concept of virtualisation. Virtualisation can be defined as “the abstraction of 

the physical hardware resources of a computer system” (Baun et al., 2011). 

Virtualisation allows single physical hardware to be shared and used by multiple 

customers. Each customer will have their processing, storage and memory request 

treated differently in a separate way from the other user even though they will be using 

the same physical hardware. One of the significant advantages of virtualisation is it 

promotes the economical and efficient use of resources. It is important to note that 

there exist many virtualization concepts (Baun et al., 2011); however, in this research, 

full virtualization and container virtualization, also known as Operating System (OS) 

virtualization are considered.  

In full virtualisation, a virtual copy with specified CPU, RAM and other capabilities are 

packed in a virtual machine. The physical resources in one computer will determine 

the number of virtual machines to be created. Since each virtual machine is treated as 

a unique stand-alone machine, separate and different operating systems can be 

installed in each virtual machine on the same physical computer (Baun et al., 2011). 

To isolate, monitor, manage, deploy and uniquely identify each virtual machine from 

the other, a virtual machine monitor middleware is used. The main advantage of full 
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virtualisation is that it allows elasticity of deployment, promotes secure provisioning of 

adaptable resources and offers the ability to compose heterogeneous hardware. One 

major challenge of full virtualization is that it requires a big amount of storage space 

and is also faced by long starting times which can seriously affect time-sensitive 

application (Choice Reviews Online, 2012). VMWare is such an example of an 

enterprise used for developing virtualization solutions. 

Contrariwise to the full virtualization, container virtualization is regarded as very light-

weight virtualisation and is built on top of the existing OS. The containers have 

separate and isolated virtual environment but run on top of the same host OS while 

using the same kernel and general physical hardware. This allows the container to be 

independent, thus allowing its access, use of storage space and processing on the 

general physical hardware. A Docker is one such example of a container technology 

.A Docker helps in distinguishing Docker Containers and Docker Images (Soltesz et 

al., 2007). The Docker Container is made up of lightweight OS (base image), files 

added by the user and meta-data. 

In contrast, Docker image is made up of several layers saving a snapshot of a Docker 

Container. The union file system in the Docker is used to merge several layers to make 

one image which is instantiated by the Docker runtime and results in a deployed 

Docker Container. When compared to VMs, containers take less time to start since 

they are using the same OS for every container. Moreover, containers can be 

deployed, released and updated very fast since they are lightweight (Soltesz et al., 

2007). Another advantage of containers is their ability to be combined with Micro 

Services Architecture (MSA) which are used in the designing of small, independent, 

light-weight and distributed software components. A microservice which is just a 

software component can be deployed quickly in a standalone container. Microservices 

brings a lot of advantages to their combination with containers as they are resilient, 

technology heterogeneity, easy to optimize for replacement, scaling and easy of 

deployment (Newman, 2015). Due to containers advantages as highlighted above, 

they can bring a lot of benefits when implemented in a fog computing framework as 

they are likely to support time-sensitive applications when compared to VMs. 

As a result of the cloud computing characteristics mentioned above for service models, 

deployment models and ability to use the concept of virtualization, it has been widely 
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adopted in many businesses for backup, file storage, cost-cutting in terms of 

infrastructure, development and testing.  

2.3.5 IoT-Cloud Architecture 

Cloud computing characteristics, service models and deployment models made it 

possible for cloud computing to be adopted as the central computational backbone for 

IoT devices and form IoT-Cloud Architecture. Figure 2-2 presents the IoT- Cloud 

architecture. 

 

Figure 2-2: IoT-Cloud Architecture 

Source: (Atlam et al., 2018) 
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In an IoT-Cloud architecture (Figure 2-2), the tasks of different types are generated 

by IoT devices are processed either in devices themselves or are sent to the cloud. All 

the tasks which require more computational power and storage space, which cannot 

be offered by resource-constrained IoT devices are sent to the cloud servers in the 

cloud layer. The cloud servers would process the tasks and send the output back to 

the IoT device. Thus, cloud computing provides scalable storage and processing 

services for IoT demands (Atlam et al., 2018). In such a setup, IoT devices are 

geographically far away from cloud computing servers. Researchers argued that the 

integration of cloud and IoT requires more bandwidth, experience more latency and 

security can be compromised. Sending enormous tasks (data) created by IoT devices 

to and from the cloud requires exceptionally high network bandwidth (Atlam et al., 

2018). Explicitly, the unprecedented amount of data produced by IoT (sensors and 

other devices) burden the network resulting in network transmission delays (Dastjerdi 

and Buyya, 2016). These transmission delays will lead to high latency that can 

compromise QoS (Satria et al., 2017). As a result, communication delays will be 

experienced due to unstable and intermittent network connectivity. Moreover, cloud 

computing does not have location awareness to the geo-distributed IoT devices, which 

also affect how IoT devices communicate with cloud servers.  With the expected 50 

billion deployments of the smart interconnected device such as mobile devices and 

intelligent sensors serving by the end of 2020, different vertical markets will be 

compromised in terms of bandwidth, latency and security of the data.  

In a nutshell, an increase in transmission latency will increase round-trip time which 

affects response time and stress up the user who is depending on the IoT device 

output. On top of that, the processing speed in this environment mostly relies on the 

performance of users IoT device. This will affect IoT services that require low and 

predictable latency. As such, these challenges can only be addressed by an adaptive, 

geo-distributed and decentralized computational paradigms that complement the 

centralized cloud computing model by bringing cloud resource closer to the IoT 

devices.
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2.4 Fog Computing 

Owing to the cloud computing challenges mentioned above, several architectures 

which include geo-distributed cloud computing, physical proximity-based cloud 

computing, edge computing or fog computing, and mobile edge computing (MEC), 

were proposed (Chang et al., 2017). Nevertheless, fog computing has gained much 

attention both in academia and industries. Fog computing was introduced by Cisco in 

2012, not to supersede the cloud but to complement cloud by bringing the cloud 

resources closer to the “ground” (Bonomi et al., 2012) (Vaquero and Rodero-Merino, 

2014). OpenFog Consortium is on IEEE standard that defines fog computing as “a 

horizontal, system-level architecture that distributes computing, storage, control and 

networking functions closer to the users along a cloud-to-thing continuum” (OpenFog 

Consortium Architecture Working Group, 2017). Fog computing architecture consists 

of a fog layer (physical or virtual) residing between smart end-devices and centralized 

(cloud) services, which bring both computational and storage capabilities closer to the 

ground where IoT devices reside (Figure 2-3).  In other words, a fog layer bridge the 

geographical distance between IoT devices and the cloud layer. Fog layer nodes can 

help in filtering and pre-processing of data, processing of tasks and storage. 

Additionally, it provides for end-devices, local computing resources and, when needed, 

network connectivity to centralized services (Lorga et al., 2018). As a result of fog layer 

nodes proximity to the IoT devices, latency is reduced, which helps in the minimization 

of the request-response time from-to supported applications. Moreover, data sent over 

the network will be reduced, which help in saving network bandwidth. It is important to 

note in the fog layer; communication can be done with Bluetooth, Ethernet, Wi-Fi, 

cellular network or any of the other communication mediums, which also helps in 

saving bandwidth. Fog layer nodes are also geographically distributed, which makes 

them location awareness. This is a vital trait that helps fog computing in offering 

reliable service execution and supporting even moving devices such as drones, smart 

cars, mobile phone without compromising QoS. 

2.4.1 Fog Computing Characteristics 

Fog computing can provide the above-highlighted advantages because of the 

following characteristics (Patel et al., 2016) (Bonomi et al., 2014): 

i. Edge location, location-awareness and low latency. 
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Since fog nodes are located at the edge of the network closer to the edge devices (IoT 

devices) which they intend to serve, it is easier to communicate with edge devices and 

be aware of their location. This helps in serving applications such as augmented 

reality, video streaming and real-time monitoring systems that are time-sensitive and 

do not tolerate high latency. Thus, fog offers edge location, location awareness and 

provide low latency between the user (endpoint devices) and fog nodes (Saad, 2018). 

ii. Geographical distribution 

In nature, fog computing nodes are geo-distributed when compared to central cloud 

computing. Their geo-distribution nature allows them to support and offer high-quality 

streaming to moving objects such as drones, vehicles and other mobile devices. This 

trait is fundamental in smart cities, smart industries. 

iii. Mobility Support 

Fog computing is well known for supporting both static and dynamic computation 

because of its ability to restructure the network topology. Geo-distributed fog 

computing nodes support the restructuring of the network topology. This is important 

in application areas like smart cities where cars, trains and other mobile devices 

should move from one point to another without their task executions being 

compromised.  

iv. Large Scale Sensor Networks 

Fog computing is characterized by large-scale sensor networks, especially in 

monitoring applications such as the smart grid. In such a monitoring environment, 

sensor networks always communicate with fog nodes requesting both computing and 

storage resources. This implies that in the fog computing environment, there should 

be a large number of geo-distributed fog nodes to support such sensor networks.  

v. Save bandwidth 

As a result of constant communication highlighted in (iv) above, between sensor 

networks and fog nodes, it means bandwidth is needed. In fog computing, there is a 

predominance of several wireless access such as Bluetooth and NFC, which helps to 

save the bandwidth. 

vi. Real-Time Interactions  

Unlike cloud computing, fog computing is meant to deal with tasks that are not CPU 

intensive as they have limited computational power. As such, fog nodes don’t do batch 

processing but preferably real-time interactions which support time-sensitive tasks. 

vii. Device Heterogeneity 
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Since the devices come from different manufactures, it means there is no standard 

interface, functionality and or deployment. Fog computing can cooperate these 

devices from various providers and enable communication when handling the request 

for processing from such devices. 

2.4.2 IoT-Fog-Cloud Architecture 

With the introduction of fog computing in the IoT-Cloud architecture, IoT-Fog-Cloud 

architecture was formed, as shown in Figure 2-3. 

 

Figure 2-3: IoT-Fog-Cloud Architecture 

Source: (Skarlat et al., 2016) 
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In this IoT-Fog-Cloud architecture, the tasks of different types which are generated by 

IoT devices are processed either in devices themselves or offloaded to other 

computing devices in the fog layer nodes depending on the availability of resources in 

the fog layer. The fog node will process all the task, or part of the tasks and offload 

the other part of the task to the other fog node. If the tasks to be executed requires 

more computational power than the one available and offered in the fog layer, the 

reasoning component in the fog layer will offload the part of the tasks or the whole task 

to the cloud. 

Due to this architecture (Figure 2-3), fog computing can support critical IoT services 

and applications to have improved QoS (Atlam et al., 2018). Fog computing can be 

applied to, and support different application areas such as smart cities, smart homes 

and many other smart environments as highlighted by (Bonomi et al., 2014).  

As summarised by Chang et al., (2016), fog computing is able to complement the cloud 

and help the IoT to exploit its potential because of its ability to offer SCALE (Security, 

Cognition, Agility, Latency, and Efficiency). Researchers Lorga et al., (2018), Saad, 

(2018) and Luan et al., (2015) shared the same sentiments and highlighted that fog 

computing supports low latency and location awareness, wide-spread geographical 

distribution, mobility support and device heterogeneity. 

For the reason that fog computing offers the above-stated advantages, many 

researchers both in academia and industries have implemented fog computing in 

existing systems. The main goal is to benefit from fog computing characteristics, 

thereby improving existing system functions whilst improving QoS. It can be noted in 

the literature that fog computing has been successfully implemented in existing 

systems, and many application areas have benefitted significantly. The focus of many 

researchers now is to come up with strategies, methods and or procedures of 

improving fog computing itself. Such improvements will help in strengthening fog 

computing advantages in minimizing transit delay, improving availability, throughput 

and priority which are all QoS aspects. 
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2.5 Application Area : Smart Home 

Because of fog computing characteristics and advantages, it has been implemented 

in many application areas with the motive to complement cloud computing and offer 

low latency and improved QoS. Recently, connected vehicles, smart cities, smart grid 

and smart home are some of the application areas where fog computing has been 

used (Yi et al., 2016)(Naha et al., 2018). For this research, the application and testing 

area will be smart homes. 

The need for automation and security in homes has necessitated the adoption and 

creation of “smart homes” across the globe. Smartphones are the major driving force 

in the implementation of smart homes as they are used to control most of the 

household gadgets (Nachiket, 2019). Many house appliances can be connected, 

including smart laundry appliances, smart water heaters, water treatment appliances, 

kitchen appliances, intelligent compactors, smart compactors, smart air purifiers and 

filters. Based on technology, connected home appliances can be connected using Wi-

Fi, NFC, Bluetooth technologies. Of the named technologies, Wi-Fi and Bluetooth are 

the most used technologies in the connected home appliances.  

The work of Biljana and Kire, (2016) pointed out some of the challenges that are faced 

in implementing the IoT in a smart home as far as avoiding latency issues is 

concerned. Some of the obstacles hampering the growth of connected home 

appliances, especially in Africa as compared to other continents, include low 

penetration of the internet infrastructure and the affordability issues of bandwidth. Fog 

computing seems like a solution for addressing some of the problems in the adoption 

of smart homes. It is a fact that QoS is vital in a smart home setup because most of 

the gadgets require real-time response. Having enhanced QoS in smart homes will 

make connected homes safe and secure to leave in. 

2.6 Quality of Service 

It is essential to realize that Quality of Service is a crucial service requirement. 

Providing satisfactory QoS is a fundamental goal in general networking, fog 

computing, cloud services or in general information systems. Depending on the 

perspective, QoS can have several definitions. 
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From a networking perspective, QoS is defined as “the network capability to deliver 

enhanced service to designated network traffic over numerous technologies such as 

Asynchronous Transfer Mode (ATM), Frame Relay, SONET, Ethernet, and 802.1 

networks, and IP-routed networks that may use any or all of these underlying 

technologies” (Cisco, 2014). 

In general information systems, QoS can be defined as “the ability to provide different 

priority to different applications, users, or data flows or to guarantee a certain level of 

performance to a data flow”.  

In cloud and fog computing, QoS is “non-functional properties of cloud /fog services, 

which describe how well a service is performed, such as compliance, availability, 

reliability, responsiveness, price, security, latency”  (Zheng et al., 2017).  

In the light of the definitions above, QoS is a significant factor because it ensures 

improved services for the end-user. In the case of fog computing, QoS is a very crucial 

service requirement needed to promote reliability, improve throughput, reduces 

energy consumption, minimize network delays and latency (Naha et al., 2018).  

Correspondingly, studies have been done both in academia and industrial domain on 

how fog computing technologies can be used and implemented in existing systems to 

enhance QoS. It was from the literature review that we identified the different methods 

and strategies which were used in fog computing framework to minimize transit delay 

(TD), improve availability (AV), throughput (TP) and giving priority (PO) which are all 

QoS aspects.  

Failure to maintain or improve QoS in fog computing seriously affects fog computing-

based systems /applications. This will cause fog computing-based systems/ 

applications to encounter end to end communication delays (Souza et al., 2017), 

service migration issues (Song et al., 2017), workload deployment challenges (Taneja 

and Davy, 2017), computation and resource allocation problems (Wang et al., 2017). 

For this reason, it is vital to always maintain high QoS in fog computing systems, 

especially with the incoming of IoT devices whose tasks are mostly time-sensitive. 
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2.7 Related Work 

This section looks at resource provisioning/allocation and scheduling in a fog 

computing environment.   

2.7.1 Resource Provisioning and Scheduling for Fog Computing Environment. 

Resource provisioning is defined as “the procedure to orchestrate, allocate, 

deallocate, reallocate tasks to resources and monitor all available system resources” 

(Kalyvianaki, 2008). It is vital to utilise all fog layer resources effectively and efficiently 

since the fog layer resources have less processing power when compared to the cloud 

(Li et al., 2017). It is crucial to note that when doing resource provisioning, the main 

goal should be to reduce round-trip time (latency) and also improve QoS. If resource 

provisioning is done well, transit delays will be minimized, throughput and performance 

of a system will be enhanced, which leads to improved QoS. Resource provisioning 

can be either reactive or proactive. Proactive resource provisioning allows the system 

to act earlier before an event happens using a predictive strategy. Whereas, a reactive 

resource provisioning waits for something to happen then react to the situation. 

Many resource provisioning researches has been done and implemented successfully 

in cloud computing and mobile cloud computing (MCC) as indicated in the surveys 

done by Zhan et al., (2015), Singh and Chana, (2015) and Dinh et al., (2013), Lu et 

al., (2015) respectively. However, the strategies described in these works cannot be 

adopted directly in fog computing due to the dynamic and heterogeneous nature of fog 

landscape. Moreover, the cloud computing and MCC resource provisioning strategies 

suggested does not put into consideration ways to reduce latency, task execution 

times and allow close-range communication. This affects as it increases the bandwidth 

cost and also the cost of using the cloud. Nonetheless, it was from cloud computing 

and MCC resource provisioning researches where ideas for resource provisioning 

were borrowed, improved and implemented in fog computing. Literature shows that 

several types of research have been done as far as resource provisioning and 

scheduling are concerned. In fog computing literature, resource provision can also be 

placement or resource allocation and is made to minimize latency and improve QoS 

(Keller et al., 2012). 

The work of Ni et al.,(2018) proposed a resource allocation strategy for fog computing 

using Priced Timed Petri Nets (PTPN), which helped to utilize and link both cloud and 
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fog resources. Their approach helped to improve the efficiency of resource utilization, 

satisfy user QoS requirements and maximize the profit of both providers and users, 

which has become a big challenge. Priced Timed Petri Nets technologies allowed the 

user to choose the satisfying resources autonomously from a group of pre-allocated 

resources. Based on the results, the authors concluded that their approach could be 

more efficient when compared to static allocation strategies based on task completion 

time and price.  

Researchers in Yang et al., (2018) introduced a novel dynamic resource allocation 

framework to incur minimum operational charge while satisfying the applications’ 

latency requirements. Their results ensure that the service response was minimized 

while achieving up to 33% operational cost reduction when compared to the fixed-

location practices. Their strategy did not consider the cost in situations where there is 

a need to migrate from user-to MEC assignments. 

Aazam et al.  proposed a dynamic resource provisioning strategy which used fog micro 

datacentres in Aazam and Huh, (2015a) and Aazam and Huh, (2015b). Their setup 

was almost the same as that of Skarlat et al., (2016) which had IoT devices, fog 

landscape and the cloud. The only difference was that in each layer, there were 

different micro datacentres which helped to orchestrate fog cells. On their prediction 

resource management model, which was theoretical, they considered resource 

demands based on the type of accessing device and relinquishing probabilities which 

are informed by historical pricing models, access data and service types. One of the 

weaknesses of this strategy was that it could not react in the dynamic fog landscape 

changes, which calls for improvement (Aazam et al., 2016).  

The work of G. Li et al., (2018) put forward a method of resource estimation that would 

help in choosing available resources, select the suitable resource to meet the needs 

of users. Their approach classified and matched resources according to the weighted 

Euclidean distance similarity. To correct similarity matching function, two strategies, 

namely penalty factor and Grey incidence matrix, were used. A Regression-Markov 

chain prediction method was used to analyze the change of the load state of the 

candidate resources and select a suitable resource. The simulation was used to 

validate the effectiveness of the estimation method. Precision and recall were used as 

benchmarks to test for the performance. Their approach helped in addressing 
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decreased QoS in fog computing due to increased network devices and cloud center 

load, which was causing a delay, thus affecting timely response. Even though they 

manage to come up with a resource allocation method, they did not consider resource 

estimation to balance the satisfaction between the two key player’s which are users 

and service providers. Two factors that were pinpointed to defend their argument was 

that the QoS attributes system are extensible, and the user QoS requirements are 

dynamic. 

With the same motive of addressing the challenge fog service placement, Skarlat et 

al. (2016)(a) proposed a conceptual framework for fog resource leasing and releasing 

(provisioning) (Skarlat et al., 2016). The envisioned architecture was evaluated using 

a customized simulation. It was observed that the approach decreased task request 

delays by 39%. In their research, they did not implement it on a real-world testbed 

which made it difficult to do a systematic evaluation when considering real-world 

network data such as bandwidth and delays. In a bid to address some shortfalls 

highlighted in their work above, in 2017, Skarlat et al. (b)  implemented the system in 

iFogSim testbed as to solve the Fog Service Placement Problem (FSPP) while 

considering the heterogeneity of applications and resources in terms of QoS attributes 

(Skarlat et al., 2017). They introduced a generic algorithm which assisted in reducing 

network communication delays and promoted a better utilization of fog resources. 

Their work created a theoretical and practical foundation for fog resource provisioning 

and service placement, then named the framework FSPP. Simulation results showed 

an improvement in service placement plan produced by the genetic algorithm, greedy 

first-fit heuristic, and an exact optimization method. For future work, they 

recommended testing the FSPP solution in a real-world setup. In a different work titled, 

“Towards QoS-aware Fog Service Placement”, the same author Skarlat et al. (c) 

tested the FSPP in a real-world setup. It helped in determining an optional mapping 

between IoT applications and computational resources to optimize the fog landscape 

utilization while satisfying the QoS requirement of the application (Skarlat et al., 2017). 

Accordingly, if a task is submitted to a control node, the control node will check whether 

it requires a cloud or fog node and that decision will also be made based on the 

execution time required. After that decision is made, if it requires a fog colony, it will 

be given to the nearest fog colony based on the computational resource available. If 

the assigned fog colony does not have enough resources, then the control node would 
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send the task to the accessible neighbour colony or the cloud. The approach prioritized 

those with higher priority to be given first preference. Their experimental results 

showed that the FSPP utilizes the fog landscape for 70% of services, thus reducing 

the execution cost. It should be emphasized that the approach was tested in a real-

world test-bed which manages to obtain realistic data such as communication link 

delay for service placement evaluations in a fog landscape compared to most 

approaches. However, their approach when considering the colony to give a task, they 

looked for the closest neighbor colony but did not put into consideration to find the 

most efficient neighbor colony which might affect QoS. 

In their quest to provide efficient utilization of network resources and minimize 

application latency in the IoT ecosystem,Taneja and Davy, (2017) introduced a 

resource-aware placement for IoT application modules in Fog-Cloud Paradigm. Their 

work was motivated by the fact that fog nodes are not computationally powerful 

enough to host all the modules of an application in the IoT ecosystem context. They 

introduced a module mapping algorithm in a three-tier setup which has different 

computational capacity. Each tier would be assigned to support a specific component 

of the application based on its level of computational capacity. Those who would 

require higher computational power were assigned to the fog nod with the necessary 

resource capacity, thus promoting efficient resource utilization which in turn brings 

quick processing of the application, therefore reduces the completion time of 

processing a request. When compared to other traditional cloud placement approach, 

their approach proved beyond certain doubt that in the future IoT application and even 

future needs, it will address latency-sensitive needs. The authors also reiterated that 

their work made some positive strides towards resource scheduling in fog devices; 

more work still needs to be done as to assist in coming up with scheduling policies. 

Moreover, though the algorithms managed to improve on network usage effectively, 

energy consumption and response time, the researchers put a blind eye on issues of 

network connectivity, failure of nodes. These two play a critical role in attaining better 

QoS. 

To assign tasks to servers according to the latest network and server status in an 

efficient way, Rashidi and Sharifian, (2017) proposed ANFIS (Adaptive Neuro-Fuzzy 

Inference System) algorithm. The approach helped in distributing user request to 
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different cloudlets, which resulted in achieving higher utilization of resources and 

efficiently deal with network dynamics which in return improved user quality of service. 

Researchers Aral and Brandic, (2017) were also of the view that effective resource 

allocation and network utilization alone will not completely address the QoS issue in 

fog computing unless or otherwise we look and address other challenges faced in 

edge data centers. Edge data centers mostly suffer from hardware and or software 

failures due to lack of advanced support systems such as power generators and air 

conditioners which affect them to work effectively and efficiently. As such, these 

failures have a negative impact in terms of response latency and bandwidth traffic 

since failed edge data centers affect the distribution of tasks to other fog nodes or 

cloud data centers. This will compromise everything in the network or other resources 

leading to a delay in response time which is critical for edge applications. As such, the 

researchers reiterated the need to have proactive algorithms/ models which accurately 

predict the availability of a virtual machine before assigning a task to that resource. 

The work of Aral and Brandic, (2017) proposed a Bayesian Network Model of QoS to 

address the above-aforementioned predicament. They aimed to estimate the 

availability level of a VM then channel all QoS related parameters to the one available. 

They compared their model with other machine learning methods such as Naïve 

Bayes and Logistic regression. They discovered that their proposed method obtained 

94% accuracy and 44% of decreased SLO violation compared to the other two. 

The work of Li et al., (2017) is one such which echoed the same sentiments that fog 

nodes have limited resources when it comes to processing power. Hence, they can 

quickly become overloaded when a large amount of user’s request arrives during peak 

hours resulting in processing delays which in-turn will affect QoS. As such, they 

proposed two resource management schemes that are Fog Reservation (FR) and Fog 

Resource Reallocation (FRR). These approaches would reserve some fog nodes so 

that they will be used only by real-time services. Moreover, if there was overload in 

those reserved nodes, fog reserved for low priority services were reallocated to be 

used by high priority vehicular services. Experimental results showed an improved one 

hope access probability for real-time vehicular service. Even if the fog resources were 

under heavy load, it managed to achieve low delay. However, also the approach 

brought out results which were favourable in vehicular context, low priority jobs were 
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sacrificed and as such their QoS was compromised which can be a disadvantage 

because they have to wait much longer for the response. 

The work of Xiao and Krunz, (2017), proposed a novel offload forwarding strategy. 

Where fog nodes would either not offload or offload and forward part or its entire load 

to be processed by other local fog nodes which are idle and have better computational 

power than them. This strategy helped to minimize the average response time which 

included workload transmission time and queuing delay at the fog layer and 

significantly improved the performance of fog computing network, thus improving 

Quality of Experience (QoE) of users. The researchers validated their approach using 

traditional ADMM approach, which proved that it could not be used to solve the offload 

allocation problem for fog computing. However, their work used fewer nodes and 

ignored time-critical events which call for further experimental trials to check how it will 

perform in such a scenario.  

In Song et al., (2017), they applied a QoS-based approach task distribution in edge 

computing networks. Their approach was almost similar to the works of Xiao and 

Krunz, (2017), with the only difference being that their approach was applied in IoT 

applications. Furthermore, it would periodically distribute incoming task in the edge 

computing network. They reasoned that there would be an increase in processed tasks 

in an edge computing network. As supported by their results, the QoS requirements 

of the task completed in the network were satisfied. In their experiments, they applied 

two approaches with a local approach which would execute its task locally on its 

access node. In contrast, the random method would select an eligible node for each 

task as its execution node where all the QoS requirements are satisfied. Song et al., 

(2017) approach did not give high priority to time-critical tasks with different operation 

software to test for Interoperability. The result proved to be sound as they used more 

nodes than (Xiao and Krunz, 2017). 

Inspired by the goal of minimizing resource consumption which reduces energy 

consumption and carbon emission rate through load balancing, Neto et al., (2017) 

introduced a Multi-tenant Load Distribution Algorithm in Fog environments (MtLDF). 

This algorithm was implemented in a fog environment for sharing the load among 

nodes where they considered delay and priority as special individual blocks of multi-

tenancy requirement. Their approach adopted two Tenant Maximum-Able Delay 
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(TMAD), which would address QoS and Tenant Priority (TP) which was responsible 

for selecting and grouping tenants in terms of their computational power importance. 

The approach had a Fog Management Layer (FML) which would send load to an 

eligible fog nod considering load balancing. The experimental results proved that 

MtLDF could improve load distribution better compared to Delay-Driven Load 

Distribution strategy that was once used. Resource utilization also improvised to a 

maximum of 97%. However, this approach needs to be improved if it is to be used in 

IoT time-critical devices which require at least 99% distribution value if we are to 

achieve higher QoS 

The work of Wang et al., (2017) highlighted that resource sharing and prioritization 

plays a pivotal role to obtain high QoS in fog computing. Their results and evaluations 

pinpointed that prioritizing execution can minimize delay for tasks with higher priority. 

Latency can be reduced by sharing operations of lower priority processing, and 

throughput of valid temporary events can be decreased through shedding. These 

conclusions were drawn when they implemented a system in cyber systems which 

require high QoS such as bounded latency which is a critical factor in cyber-physical 

applications. Wang et al., (2017) developed middleware for real-time Cyber-Physical 

Event processing (CPEP). The CPEP was able to configure processing operations, 

processing prioritization and sharing and enforcing of temporal validity and shedding. 

They evaluated its effectiveness in terms of prioritization, sharing and shedding; and 

validated it using Data Distribution Service, which is also another messaging 

middleware. 

Although offloading and resource allocation has made better strides in addressing 

QoS in Edge computing in other application areas as supported by previous 

researchers in above literature, contrary, Zhang and Zhu, (2017) argued that mobile 

data offloading in ECN might impose new QoS guarantee glitches. Their argument 

was based on the upcoming of 5G networks. They pinpointed out the new challenges 

are encountered when users request multimedia services which are sensitive to time 

and demand a lot of bandwidth which might become difficult in supporting the 

statistical delay-bounded QoS. To address the highlighted problems, they proposed a 

statistical delay bounded QoS provisioning schemes. The statistical delay bounded 

QoS provisioning schemes used the effective capacity theory for two types of mobile 



33 
 

offloading that is Wi-Fi and Device-to-Device offloading: where they formulate the Wi-

Fi and D2D offloading as one hop and two hops respectively. When they validated 

their approach through numerical analysis, their system proved that it could be used 

as a benchmark to address the problem mentioned above. 

Based on the piloted literature review, it is clear that many strategies have been 

applied in fog computing to address issues of tasks to resource allocation while 

minimizing latency and improving QoS. Bearing in mind of the 50 billion expected 

devices to be connected by the end of 2020, it is vital to keep finding more strategies 

on improving fog computing as far as resource allocation is concerned (Ericsson, 

2011).  

2.7.2 Scheduling techniques 

Task scheduling plays a critical role as far as reducing latency and improving QoS in 

fog computing is concerned. This was supported by a systematic literature review 

done by Yang and Rahmani, (2020), on checking task scheduling mechanisms in fog 

computing. Task scheduling in fog computing can be defined as the effective and 

efficient assignment of IoT tasks to fog layer resources (Mtshali et al., 2019). Effective 

and efficient task scheduling means not to over-consume the limited available 

resources at the fog layer. If fog nodes are over consumed, this can lead to application 

failure or network breakdown, leading to an increase in latency which has a negative 

impact on real-time applications (Mtshali et al., 2019). Task scheduling can be either 

static or dynamic. In static scheduling, the first step is to know the complete system 

information and resource mapping before tasks are executed (Choudhari et al., 2018). 

Contrarywise, in dynamic scheduling, resource assignment depends on the system 

current state, computer machines and tasks submitted before scheduling decisions 

are made.  

From the reviewed literature, most of the existing solutions used several different 

approaches to do resource provisioning and scheduling procedures. It can be deduced 

from the literature that dynamic programming, in particular, linear programming is the 

most common one being used for the formulation of the resource provisioning and 

scheduling problem. The majority of methods that are used to solve linear 

programming are either utilizing heuristic algorithm or exact mathematical methods 

(Rothlauf, 2011) (Chaisiri et al., 2012) (Beheshti and Shamsuddin, 2013). 
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The reason why heuristics algorithms are mostly used is that they can resolve 

problematic issues in a faster way when compared to meta-heuristic algorithms which 

are considered as too slow in terms of performance. Moreover, heuristic algorithms 

are known to provide optimum solutions, while in most cases, meta-heuristic 

algorithms usually fail to discover optimal or precise solutions (Müller-Merbach, 1981) 

(Müller-Merbach, 1985).  

According to Syed et al., the six most commonly used heuristic algorithms for 

scheduling in cloud computing and which are adopted in most fog computing solutions 

as proved from literature above are: “Minimum Completion Time (MCT), Minimum 

Execution Time (MET), Min-min, Max-min, Sufferage and First Come First Serve” 

(Madni et al., 2017). 

 Minimum Completion Time (MCT): Tasks are assigned to VMs or resources 

based on task completion predictable time in random order. Meaning tasks are 

assigned to a VM or resource with the earliest time of completion. In some 

cases, MCT allocates tasks to VMs with no minimum execution time. 

 Minimum Execution Time (MET): Tasks are assigned to VMs or resources 

based on tasks best predictable time without considering whether a resource is 

available or not. In this case, the algorithm only considers the minimum 

execution time of the tasks. In some cases, this results in load imbalances since 

the VMs or resources to be assigned would not have been considered whether 

they can handle the task or not (Braun et al., 2001). 

 Min-min: The algorithm checks for the minimum completion time of all the tasks 

concerning the available machines, then a task with minimum completion time 

is removed from the group of un-scheduled tasks and is assigned to the 

subsequent machine. The process is repeated up until all the un-scheduled 

tasks are assigned to a machine (Aissi et al., 2005). If tasks with minimum 

completion are many, then those with maximum completion will be faced by 

starvation problem (Braun et al., 2001). 

 Max-min: The algorithm checks for the maximum completion time of all the 

tasks in relation to the available machines, then a task with maximum 

completion time is removed from the group of un-scheduled tasks and is 

assigned to the subsequent machine. The process is repeated up until all the 

un-scheduled tasks with maximum completion are assigned to a machine 
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followed by those with minimum completion time (Aissi et al., 2005). This 

approach is suitable when a few tasks have maximum completion time; 

otherwise, those tasks with minimum completion time will end up facing 

starvation problem (Braun et al., 2001). 

 Sufferage: In this case, tasks values with minimum and second minimum 

completion times are calculated first by the algorithm. Then, in the second 

stage, the difference in the task’s values are considered. Those tasks with 

sufferage (minimum difference) are then allocated to the consistent VM. After 

that, the assigned task is removed from the un-assigned tasks group, and an 

update of resource availability is done.  This is repeated up to the time when all 

tasks are assigned to a resource (Maheswaran et al., 1999). 

 First Come First Serve (FCFS): Processes that are scheduled and managed 

by FCFS algorithms are those that automatically execute tasks or resources in 

the order they arrive. The first task to arrive is the first task to be executed, thus 

following the first in first out (FIFO) concept. One of the advantages of this 

approach is it serves VMs or resources and time as it is regarded as a simple 

process of scheduling which is error-free and efficient (Madni et al., 2017). As 

a result of its advantages, the FCFS algorithm is used by most simulators, such 

as iFog (Gupta et al., 2017), CloudSim (Calheiros et al., 2011) and GridSim 

(Higashino et al., 2016). 

In light of the above evidence, these algorithms perform differently in different 

application areas and depending on what needs to be done. For this study, the FCFS 

scheduling technique was adopted, modified and implemented in RAS to fulfil our 

research goal of doing research allocation and scheduling while minimizing round-trip 

time (latency). 

2.7.3 Round-trip Time (Latency) 

In general, latency can be defined as “a measurement used for measuring delay”. In 

the context of fog computing, latency can be regarded as “round-trip delay/time” and 

is considered as one of the most impact factor (Shukla et al., 2019). Round-trip time 

can be defined as “a measure of the time taken by a task or data to move to its 

destination and back to its original position over the network” (Shukla et al., 2019). 

Reducing round-trip time is vital in time-critical applications like health care, smart 
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homes and smart cities. When there is high round-trip time, the IoT requests are not 

processed and returned quickly, which seriously affect time-critical applications 

(Aazam and Huh, 2015b). Even if the tasks response is returned late, it will be 

rendered meaningless, inadequate, unreliable by the real-time applications and end-

users. Therefore, it is crucial to reduce round-trip time always. Round-trip time can be 

minimized by minimizing communication latency, computation latency, and network 

latency should be reduced (Shukla et al., 2019). Our proposed solution seeks to 

reduce round-trip time by reducing queuing time and offloading time. 

2.7.4 Software Frameworks 

Several approaches have been used in literature when developing fog computing 

frameworks but lacked an extensible programming model as far as resource 

provisioning is concerned. To be able to design an adaptive resource allocation 

scheduler in fog computing framework for the IoT ecosystem, software framework 

approach is the most suitable for this research. 

A software framework is regarded as a base structure for applications and service 

execution in a specific software environment. The reason for choosing the software 

framework approach is that it allows the developer to inherit some concepts from 

existing frameworks and modify them utilizing their application (Riehle, 2000). This is 

possible because of software framework have reusability characteristics. The 

reusability characteristic enables the developer to concentrate more on addressing the 

problem in this case resource provisioning aspect in fog frameworks, instead of 

implementing the environment basics.  

According to Riehle, (2000), software frameworks can be either white-box and or 

black-box frameworks. White-box structures are supposed to be configured by 

extending explicit interfaces so that they can be executed in the chosen environment. 

Contrary, black-box structures are regarded as ready-to-use, and they are no need to 

continue or further development to be executed. Most frameworks are a combination 

of both the white-box and black-box structure. This thesis took a combination of the 

two in an adaptive resource allocation scheduler in fog computing framework for the 

IoT ecosystem. 
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This work borrows the ideas and concepts from the works of Kim and Lee, (2014) and 

Vögler et al., (2016) who used software frameworks for IoT environments. The work 

of Kim and Lee, (2014) acts as a guiding framework that was used to develop, provide 

and execute applications using web-GUIs. In this work, specific aspects were added 

to carter for distributed application provisioning in the IoT landscapes, which were 

lacking in the framework of Kim and Lee, (2014). The work of Vögler et al., (2016) 

introduced a scalable large-scale IoT framework that was implemented in a smart city 

environment. Some aspects were borrowed from the LEONORE framework 

developed by Vögler et al., (2016). The LEONORE framework provided the knowledge 

on how infrastructure and toolset of IoT applications can be deployed at the edge of 

the network. The LEONORE framework set up some essential parameters to save 

bandwidth between the edge and the cloud, and enable a distributed and scalable IoT 

service deployment. This is the reason this research borrowed these concepts. 

2.8 Research Gap in the Current Fog Computing Research 

Provisioning Strategies. 

Even though positive strides have been made in addressing resource provisioning 

challenge while minimizing latency and improving QoS in fog computing, the 

suggested strategies still need improvement. It is important to note that all the 

proposed and implemented resource provisioning and scheduling strategies in 

literature, first consider whether there are available resources in the fog layer before 

sending a task. If there are available fog resources, they then assign and send the 

task to the fog layer.  It is in the fog layer where the decisions are then made to either 

process the whole tasks, part of the task or offload the tasks to the next fog node or to 

the cloud which are idle and have better computational power than them. One 

drawback of this kind of resource provisioning approach is that, it sometimes wastes 

the resource-constrained fog layer resources and time in making decisions, especially 

if the fog layer is not going to process the task.  

Secondly, sending both time-sensitive and non-sensitive tasks to fog layer without 

considering tasks QoS requirements, deadline requirements, and user needs; adds 

more unnecessary load to the fog layer. Especially, if the bulk of the tasks send are 

not time-sensitive tasks but are non-time-sensitive tasks that require more 

computational power which is only available at the cloud layer. This will affect time-
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sensitive tasks as they will be competing for fog layer resources with non-time-

sensitive tasks. This will result in time-sensitive tasks missing deadlines, and their 

output will end up not being of any use to the IoT device and end-users.  

When doing resource provisioning, it is crucial to classify tasks as time-sensitive and 

non-time-sensitive tasks before assigning them to resources. This is because tasks 

have different computational and QoS requirements (Yang et al., 2019) (Zhang et al., 

2019). Time-sensitive tasks should be given higher priority to either network resources 

or fog resources when compared to non-time-sensitive tasks. Prioritizing task will help 

in meeting deadlines for time-sensitive tasks. Time-sensitive tasks should always meet 

their deadline because failure to meet a deadline has a detrimental impact in critical 

applications like medical health applications, smart homes and smart cities where 

responses are needed in real-time.  

Thus, with the current resource provisioning methods used, most time-sensitive tasks 

will end up missing their deadlines. This challenge is escalated with more IoT devices 

that are being connected daily to the network, which are adding additional burden to 

the network and resources. Resulting in high latency problems and resource 

challenges at the fog layer. Consequently, there is a demand to come up with a novel 

resource provisioning strategy and scheduling strategy in the IoT-Fog-Cloud 

architecture, whose responsibility is to flag and categorise tasks from IoT devices as 

either time-sensitive or non-time-sensitive tasks. Then, if the task is time-sensitive, it 

is assigned to the fog layer. If the tasks are not time-sensitive, it is sent directly to the 

cloud layer. This will help in saving fog layer resources and time which was not the 

case with the existing strategies as they use fog resources and time when deciding 

whether to process the whole task, part of the task or to offload it to the cloud layer 

completely. Moreover, the approach should also not starve those tasks that are not 

time-sensitive, as was the case with the strategy proposed by (Alnoman and 

Anpalagan, 2018).  

Therefore, in the context of our proposed Resource Allocation Scheduler, when a task 

is received, it should be first classified as time-sensitive or non-time-sensitive. Then 

using the modified FCFS heuristic algorithm, classified tasks are assigned to either 

the fog layer for time-sensitive task or to the cloud layer for those tasks that are not 

time-sensitive, depending on the task request requirements. Resource Allocation 
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Scheduler is responsible for resource allocation and scheduling, giving high priority of 

fog resources to time-sensitive tasks. The RAS considers task deadlines, resource 

constraints. This research is of paramount importance as several application areas 

such as smart health, smart city, smart grids who require real-time response would 

benefit from the findings of this research.  

2.9 Conclusion 

This chapter gave a comprehensive insight into the IoT technology, cloud computing 

and fog computing which are the enabling technologies and foundation for this 

research. A review of several strategies and methods that have been suggested and 

implemented in fog computing to address resource allocation and scheduling 

challenges are presented. Firstly, the analysis of technologies and researches done 

in fog computing framework helped in giving an overall insight on functional, technical 

and non-functional requirements of fog computing framework in an IoT-Fog-Cloud 

architecture. Secondly, after a critical analysis of the literature, open research 

challenges which still exists in fog computing frameworks as far as reducing round-trip 

time and improving QoS is concerned, were highlighted. Open research gaps helped 

in justifying the importance of this research.  This chapter helped in answering the first 

research question, “What are the key challenges in communication and computer 

resources allocation in an IoT environment?”. Moreover, helped in answering the 

second research question, “How are communication and computing resources 

allocated and assigned among the IoT devices based on tasks, requirements and 

priorities?”. 
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3 Chapter Three: Research Design and 

Methodology  

3.1 Introduction 

This chapter answers this study's third research question: “which approaches can be 

used to build a   resource allocation scheduler framework for IoT environment?” The 

chapter, therefore, presents the procedures and techniques that were used for this 

study. The chapter is structured as follows: Section 3.2 highlights the research 

methodology that was followed.  Sections 3.2.1, 3.2.2, 3.2.3 and 3.2.4 explains the 

four phases of the top-down methodology in the context of this research and what was 

done at each phase.  The chapter conclusion is presented in Section 3.3. 

3.2 Research Process Design 

As stated in chapter one, this study aimed to design and implement an adaptive 

resource allocation scheduler in the fog computing framework for the IoT environment. 

The aim directly put this work within the communication networks domain, in the 

transport layer of the Open Systems Interconnection (OSI) model in particular. The 

communication networks domain has several standard methodologies for 

implementing framework designs. Although several conventional methods are used 

for implementing network design solutions, the most common approaches are the top-

down approach and the bottom-up approach (ORACLE et al., 2014). The top-down 

consists of the four phases: requirement analysis, logical network design, physical 

network design and testing, optimizing and documentation design. The bottom-up has 

similar phases with the top down, the only difference being that the latter's phases are 

the reverse order of the top-down approach. Although the bottom-up approach is 

generally faster as it is usually based on past projects, the methodology is known of 

having a higher probability of failure. It is also known of not taking into consideration 

all necessary service applications, and that may lead to design omissions that would 

necessitate a redesign of the framework. The top-down approach is very much ideal 

for designing and testing network solutions. It starts with a clear understanding of the 

goals of the required solution. It also allows planning for scalability and adaptability, 

which was among the desired milestones of the development of RAS. The top-down 
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methodology is also simple in terms of understanding and troubleshooting; flexible and 

allows the addition of new protocols and technologies at a rapid rate. 

Furthermore, the top-down approach is a streamlined and systematic methodology 

that accommodates the increasing requirements of remote access, bandwidth, 

scalability, security and reliability in the context of IoT-Fog-Cloud architecture. Top-

down network design is a standard methodology recommended by Cisco (Oracle et 

al., 2014) and has been successfully used by many researchers in literature which 

include Mulyawan, (2011), Rasmila and Laksana, (2019) and Giovanni and Surantha, 

(2018). The works of Giovanni and Surantha, (2018) who used top-down network 

design resonates well with our study. Based on the reasoning above, this study, 

therefore, adopted the top-down methodology. Table 3-1 shows the phases of the top-

down approach as applied in this study. 

Table 3-1: Top-Down Research Methodology Phases 

Stage Objective and Process Milestone 

Requirement 
Analysis 
 

Problem Identification and Motivation 

*Systematic Scrutiny of Literature on Fog Computing 
Frameworks as to: 
-Identify Open Research Gaps in Fog Computing 
Frameworks. 
-Justify why it is Important to Address the Open Gaps. 
-Choose One Open Research Problem to Address. 
-Define Aim, Objectives and Research Questions. 
-Define Functional, Non-functional Requirements, 
Technical Specifications  
-Investigate the Tools to Use. 

-Identified Open Research Gaps 
in Fog Computing Frameworks. 
-Defined Why it Is Important to 
Address the Open Gaps 
-Resource Provisioning as the 
Core-Problem to be Addressed. 
-Resource Provisioning to 
Minimize Round-trip Time and 
Improve QoS. 
-Literature Review Paper 
Submitted in International Journal 
for Fog Computing. 

Logical 
Network 
Design 

Designing a Network Topology  
-IoT-Fog-Cloud Network topology with a RAS in the 
IoT-Fog gateways. 
-Designing a Queuing Algorithm in the RAS 
-Identify Workflow between IoT, fog and cloud layers. 
-Identify Limitations. 

-Developed a queueing and 
network model for resource 
allocation. 
-Refined the Architecture  
-Generated Deployment-Scripts. 
- A Scientific Paper Based on the 
Proposed Resource Provisioning 
Strategy RAS. 

Physical 
Network 
Design 

Implementing and Checking the Feasibility of 
Logical Network Design. 

- Proof-of-Concept Testbed Setup in Node-RED 
-Configuring the IoT devices, Fog Nodes and Cloud 
Servers. 
-Configure RAS in IoT-Fog gateway. 
-Implementing the network topology in Node-RED 
hosted at a High-Performance Machine. 

-Queueing and Networking model 
Implemented 
-Criteria Decision Making 
Process. 

Testing, 
Optimizing and 
Documentation 
Design 

Evaluation 
-Investigate Suitability of The Queuing Model in 
reducing Queuing Time and Offloading Time Metrics. 

-Evaluate how RAS reduces Queuing Time and 
Offloading Time in Fog Computing Framework 
-Identify the Limitations of Experiments and Iterate 
Back to Design. 
-Compare to Base. 
-Do 1000 runs and collect results, average the results. 
-Write a thesis.  

-Performed Evaluations of RAS in 
the Fog Computing Framework 
-RAS Reduced Queuing Time, 
Offloading Time and Improved 
Throughput 
-Presented the results on line and 
bar graph 
-A written thesis. 
-A scientific paper based on 
results.  
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The four phases can be categorized as either theoretical (requirement analysis) or 

technical (logical network design, physical network design; and testing, optimizing) as 

illustrated in Figure 3-1. 

 

Figure 3-1: Top-Down Research Methodology phases 

The following section describes the top-down approach phases in the context of this 

study. 

3.2.1 Requirement Analysis 

To first get “the big picture” of our research, systematic scrutiny of literature was done. 

We focused on cloud computing, fog computing and IoT to establish the research 

background for the study. Most of the reviewed literature which was scrutinized for 

IoT, fog computing and cloud computing was confined to between 2010 to 2020, which 

is a ten-year term. The reason for reviewing most of the literature in the ten-year range 

is because reviewing older literature, especially in computers, gives the wrong 

impression as far as identifying research gaps is concerned. It is a fact that in more 

than five years, technology would have changed significantly. The literature used was 

retrieved from electronic academic databases which included publications and 

journals. We mainly used SCOPUS, IEEE, Research Gate, Science Direct, 

International Journal for Fog Computing and Association of Computing Machinery 
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(ACM) digital libraries. These databases were searched using specific search 

keywords such as; “Internet of Things, Fog Computing AND QoS”. 

It was from that scrutiny of the literature that the study identified challenges of fog 

computing in supporting IoT ecosystems as far as latency and QoS is concerned.  We 

then looked at works that implemented fog computing in existing systems to address 

latency challenges and improve QoS. Furthermore, scrutiny on literature that 

microscopically focuses on providing strategies to keep improving latency and QoS in 

fog computing itself was done. In particular, strategy in fog computing that focused on 

improving reliability (service continuity and network quality), performance 

(application/task performance and service performance) and cost (energy efficiency, 

server operation cost and pricing of fog services) in fog computing frameworks.  

It was from the literature review that we identified the different methods and strategies 

which were used in fog computing framework to minimize transit delay, improve 

availability, throughput and giving priority which are all QoS aspects. The main 

strategies used in most scrutinized literature included task offloading, service 

placement, resource provisioning and load balancing.  

As part of the requirements analysis, the study managed to identify open research 

gaps which still exist in fog computing frameworks as far as reducing latency and 

improving QoS are concerned. The identified gaps included fog orchestration problem, 

computing problem and resource management problem. Those gaps still needs both 

the academia and the industry to research for solutions. The deliverable from the 

requirements analysis of this study was a journal paper “A Review of Quality of Service 

in Fog Computing for the Internet of Things” was published in International Journal 

for Fog Computing, 3 (1).. Most of that research paper's contents make up this 

study's chapter two. The full paper is attached in this thesis as Annex 1. 

On the technical requirements and specifications, the analysis of existing frameworks 

on the reviewed scholarly literature helped in identifying the major functional and non-

functional requirements for the fog framework.  
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a) Functional Requirements 

The functional requirements consisted of the general functionality of the overall fog 

computing framework. The requirements included cloud management requirements in 

the cloud layer, fog node management requirements in the fog layer and RAS 

management requirements in the IoT-Fog gateway. Below is a brief explanation of 

each functional requirement and a brief explanation of its functions. 

i. Cloud Management 

Cloud management functions included parent identification, cloud resource 

provisioning, service placement, task request execution and service data storage. 

These were linked as follows: 

 The cloud middleware identified and determined a resource in the cloud 

servers, in this case Front End for Node-RED (FRED), that would offer a 

service to a task request from the RAS and sent back a connection data 

signal.  

 This prompted VMs and containers to be deployed and released in FRED 

to match the task requirements.  

 RAS then sent the task to the deployed containers in FRED.  

 Upon task arrival, the execution of the task by the containers in FRED 

began, and results were sent back to RAS. At the same time, the 

propagated service data was stored for further analysis. 

ii. Fog Node Management 

Fog node functions include device identification and creation of the framework 

topology.  

 Fog nodes were created using Node.js and uniquely identified by an IP 

assigned to each fog node. 

 A digital topology was created, and this allowed fog nodes to communicate with 

each other using cable or wireless technology such as Bluetooth and NFC. 

 Fog nodes were periodically pinged to check if they were connected. 

iii. RAS Management 

RAS was hosted in the IoT-Fog gateways, and it was responsible for handling tasks 

request, deployed the services and managed the network. To be able to do this, a 
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“reasoner, propagation component, watchdog and shared storage” components were 

configured in the RAS. In short RAS “orchestrated, allocated and deallocated” tasks 

to and from fog nodes resources or cloud resources and monitored the resources. All 

the configured components would communicate, register and deploy services. An in-

depth explanation for the functional requirements is found in chapter four of this thesis. 

b) Non-Functional Requirements 

For the proposed framework to execute, in case of device addition/failure, device 

accidence or overload situations, it had to be guided by non-functional requirements. 

In the context of this research, we adhered to the following: 

i. Scalability 

For the framework to adapt to the ever-changing resource demands by the users, the 

CPU utilization for the framework was scaled to stay at less or equal to 80% for 

resource provisioning, and service placement. In comparison, the remaining 20% was 

reserved for the host device. Furthermore, RAS effectively and efficiently helped in the 

utilization of the fog resources by assigning time-sensitive tasks to the fog layer and 

sent non-time-sensitive tasks to the cloud. This helped to cut cloud cost as all time-

sensitive tasks produced by IoT devices were sent to be processed in the fog layer.  

Moreover, this distinction where time-sensitive and non-time-sensitive tasks were to 

be processed assisted in achieving fast service deployment. 

ii. Extensibility 

The framework was designed using open-source software, the Node.js and Front End 

for Node-RED (FRED). The Node.js and FRED were selected because they are easier 

to modify whenever there is a need to do so. Furthermore, the framework was loosely 

coupled, and the APIs were clearly defined between diverse components. Also, a 

modular Node.js component structure was used to specify APIs which helped in 

meeting the precise requirements concerning our framework.  

iii. Portability 

In the development of the fog framework, Node.js was used for creating IoT nodes, 

fog nodes and FRED created the cloud server because they are light and could be 

easily used across diverse system environment. The open-source software used was 

platform-independent and could be quickly deployed and migrated.  
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c) Technical 

The high-performance computer where the framework was hosted had 1100 terabyte 

(TB) storage capacity,135 cluster nodes with 2900 processor cores and 11TB 

memory. Using a high-performance computer was essential to support the cloud CPU 

frequency, which was set at 10 x 109 cycles per second and memory capacity was 64 

Gig. The fog node CPU frequency was set at 5 x 109 cycles per second, and memory 

capacity was 512 Megabytes. The IoT device CPU frequency was set at 6x106 cycles 

per second, and memory capacity was 128 Megabytes. The following were configured 

on this high-performance computer that is: 20 IoT devices, three IoT gateways, 10 IoT 

fog nodes and two cloud data centres. The IoT devices would produce at most 100 

tasks. The network traffic to pass through the network was set and configured. The 

bandwidth was set at 20 Mega Hertz.  

3.2.2 Logical Network Design 

This section gives an overview of how the network topology was designed. 

Since the study's main goal was not to develop a new architecture but to improve the 

architecture by adding RAS, the study adopted Skarlat et al. (2016) network topology. 

Skarlat et al. (2016) network topology is a well-known architecture in this field as it 

supports resource provisioning in both fog computing and cloud computing (Skarlat et 

al., 2016). Figure 3-2 shows the network design topology that was adopted. 
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Figure 3-2: Network Design Topology 

The network topology in Figure 3-2 is made up of cloud layer, fog nodes, IoT-Fog 

gateway and IoT devices. 

The cloud layer is the top level of this network topology. FRED, which was supported 

by OpenStack, was the cloud environment whose responsibility was to process non-

time-sensitive tasks sent by the RAS. It also stored all the data of the topology for 
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future use. 192.168.1.101:8081 was used as the IP address and port for the cloud, 

respectively.  

The fog layer was hosted and deployed on the Raspberry Pis. Three Logitech Media 

Server with IP address and port 192.168.1.102:8080; three Logitech Harmony Hub 

with IP address and port 192.168.1.103:8080; and  four Samsung SyncThru Printers 

with IP address and port 192.168.1.104:8080 were used as the fog nodes and 

connected to the Raspberry Pis. As shown in the diagram, fog nodes were directly 

connected to the cloud layer so that they would be able to send data that needed 

storage for future use. 

The IoT-Fog gateways, in this case, Linksys wireless AP, NETGEAR routers, Belkin 

WeMo Switches, Xiaomi gateway were also hosted and deployed on the Raspberry 

Pis. As shown in Figure 3-2, both the cloud server (FRED) and fog nodes were directly 

connected to IoT-Fog gateways where RAS was hosted.  RAS controlled, orchestrated 

and supervised the cloud server (FRED) and the fog nodes which processed data from 

the connected IoT devices. The queuing algorithm in RAS helped in the assignment 

of resources to IoT task based on their priority. 

In the edge layer, five temperature sensors, four humidity sensors, eight security 

cameras, one telldus live and two Sonos speakers were the IoT devices connected 

via home assistant to the respective Raspberry Pis. A sensor module was used to 

connect temperature sensors and humidity sensors to the Raspberry Pis. 

To connect the cloud server, the fog nodes and every Raspberry Pi to the internet, a 

robust Linksys wireless AP was used to create a wireless LAN network. The reason 

for connecting every component to the internet was to allow the fog servers to 

download Docker Image data which always assisted in creating and deploying 

dynamic services. 

From this phase and the technical requirements and specifications, a paper titled 

“Resource Allocation Scheduler Strategy to Minimize Round-trip Time in Fog 

Computing” was written, submitted and it is under review on the Journal of Computer 

Science. 
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3.2.3 Physical Network Design 

Five temperature sensors, four humidity sensors, eight security cameras, one telldus 

live and two Sonos speakers were used to create a home set up.  These devices were 

simulated as the IoT devices and connected directly to the simulated IoT-Gateways, 

which hosted the RAS. The simulated IoT-Gateways included Linksys wireless AP, 

NETGEAR routers, Belkin WeMo Switches, Xiaomi gateway. These gateways were 

linked and connected to the fog nodes Logitech Media Server with IP address and port 

192.168.1.102:8080; Logitech Harmony Hub with IP address and port 

192.168.1.103:8080; and Samsung SyncThru Printer with IP address and port 

192.168.1.104:8080. The IoT-Fog gateways were also linked and connected to the 

cloud server FRED which was supported by OpenStack (192.168.1.101:8081). 

A Node-RED cross-platform runtime simulation environment was used. The starting 

point was to make sure we created a proof of concept testbed in Node-RED consisting 

of the above mentioned IoT device, IoT-Fog gateways, fog devices and cloud server. 

The runtime environment supported Node.js and Front End for Node-RED (FRED) 

which were the building blocks. Node.js was used to the IoT devices and fog nodes; 

build back end services; the application programming interface (API). The reason why 

Node.js was used is that it is highly-scalable, data-intensive and used for real-time 

apps. Its non-blocking or asynchronous nature allows a single node to handle multiple 

requests. FRED was used as a cloud platform. Most tools in Node-RED were used to 

define and create nodes, sequences, and flows for the simulated smart home. In the 

progression of the design and implementation, several codes in Node.js were tailored 

to achieve a specific goal.  

3.2.4 Testing and Evaluation 

The starting point was to make sure that there was communication between the IoT 

device, RAS, fog nodes and cloud servers by starting the network. Every node was 

pinged periodically to make sure it was up and running before sending the tasks. The 

IoT devices generated tasks, sent them to the RAS to check if the framework was 

functioning according to what it was supposed to be doing. This was done for ten times 

before collecting results as to make sure that all connections and communications 

were perfect. The debug and dashboard in Node-RED showed the connection status, 

any errors and how frequent the data is being sent or received. 
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After making sure that everything was up and running, 1000 independent runs were 

done; results collected and averaged for each parameter which was tested. In 

particular, we were concerned about determining the round-trip time. To determine 

round-trip time, this study focuses on queueing time and offloading time parameters. 

a) Queuing Time 

In order to assess queuing time which is the time a task waits in the queue before it is 

assigned to a fog or cloud resource based on its priority category (high, low and no 

priority tasks); tasks were sent automatically from IoT devices at the same time in 

batches of 5 after every 10ms time-stamp. A maximum of 40 tasks was assigned for 

each of the three categories of the tasks. A total of 1000 independent runs were done; 

results collected and averaged for each parameter which was tested. The results for 

each task category were collected at the dashboard and recorded in milliseconds. The 

test aimed at establishing the effect of having more task and how RAS handles these 

tasks as far as resource allocation is concerned. 

b) Offloading Time 

To evaluate offloading time, which is defined as the time taken to upload, process and 

download a task from IoT devices to RAS to fog or cloud device based on its priority 

category (high, low and no priority tasks); tasks were sent automatically from IoT 

devices at the same time in batches of 5 after every 10ms time-stamp. A maximum of 

40 tasks was sent for each of the three categories of the task. A total of 1000 

independent runs were done; results collected and averaged for each parameter which 

was tested. The results for each task category were shown at the dashboard and 

recorded in seconds. The test aimed at establishing how RAS handles tasks as far as 

resource allocation is concerned. Moreover, to check if the introduction of RAS 

reduces overall offloading time. 

c) Throughput 

If queueing time and offloading time of tasks are reduced based on the set time-stamp 

set for high priority tasks, low priority task, then it is considered that throughput is 

improved throughput. The higher the number of tasks completing their processing, the 

higher the chances of getting improved throughput. In this study, throughput was 

calculated as the number of tasks that complete their process within a time-stamp 
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based on the arrival rate. Therefore, the throughput was determined from the results 

obtained from queueing time and offloading time. The evaluation was done to check 

whether the introduction of RAS brought about any advantages in improving 

throughput or not. 

Based on this phase and other parts of this research, a paper titled  “A Fog Computing 

Framework for Quality of Service Optimisation in the Internet of Things (IoT) 

Ecosystem”  was submitted, accepted for a conference and the paper will be 

published in the IEEE digital library attached as Annex 2. 

3.3 Conclusion 

The main goal of this chapter was to explain, recount and summarise how the aim, 

objective and research question were addressed. The chapter explained how the top-

down research methodology was used in the context of this research. In short, the 

chapter presents:  i) the method adopted, techniques used and how they were used 

for answering the research questions, ii) why the methods are relevant to the study 

aim and objectives iii) an explanation how we used them and finally iv) how data was 

collected and presented. The chapter answered this study's research question:ufh 

“which approaches can be used to build an adaptive resource allocation scheduler in 

fog computing framework for IoT environment?” 
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4 Chapter Four: Framework Design and 

Implementation 

4.1 Introduction 

The chapter serves to answer the fourth research question: “Can an adaptive resource 

allocation scheduler in fog computing framework, which is based on tasks 

requirements and priorities be successfully developed?”. The chapter articulates the 

framework design of this study and how it was implemented. The chapter is structured 

as follows: Section 4.2 presents the framework design and explains how the 

components of the framework work, the aspects expected to be supported with the 

framework and workflows. To check for the feasibility of the framework, Section 4.3 

presents the implementation, which is guided by top-down system design as explained 

in chapter three. More emphasis will be on IoT services, testing and evaluation of the 

effectiveness of RAS considering round-trip time (queuing and offloading time).  

Section 4.4 presents the synopsis of the whole chapter. 

4.2 Framework Design 

As can be seen in Figure 4-1, the framework comprises of the edge layer where IoT 

devices are found, IoT-Fog gateways where Resource Allocation Scheduler is hosted 

, the fog layer and the cloud layer. It is important to note that our main goal for this 

research was not design a new framework but to improve the existing fog computing 

framework by introducing the RAS. As such, the main emphasis is on Resource 

Allocation Scheduler and the fog layer. To get a better understanding, the edge layer, 

the fog and cloud layer functionalities are listed and concisely described. Figure 4-1 

below shows the cross-sectional design of the fog computing framework with a 

resource allocation scheduler.  
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Figure 4-1: Cross-Sectional Design of the Fog Computing Framework 

4.2.1 Components of the Framework 

In this sub-section, the specific functions and behaviour of the resource allocation 

scheduler in fog computing and how it relate to IoT devices, fog layer and cloud layer 

are presented.  Moreover, an indepth explanation of Figure 4-1 is highlighted in the 

following sections.  

4.2.1.1 Edge Layer (IoT devices) 

The edge layer comprises of IoT devices that connect and communicate with other 

devices using NFC, RFID, Bluetooth, Wireless Sensor Networks, Wi-Fi, perform tasks 

or respond to events without explicit instructions. In the case scenario of a smart home 

, the application area under consideration, IoT devices can include laundry appliances, 

water treatment appliances, and water filtration systems, kitchen appliances, smart 

LED lighting, sensors and actuators. For this research, five temperature sensor, four 

humidity sensor, eight security cameras, one telldus live and two Sonos speakers were 

used. The IoT devices in the edge layers generate tasks that need to be processed. 

The IoT devices can compute and process tasks on their own.  Tasks requiring more 

computational power and higher storage capacity, cannot be processed within the IoT 

devices themselves as those devices have low computational power and storage 

capabilities. Therefore, if some tasks demand more computational power, such tasks 
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are sent to the fog layer or cloud layer for processing via the resource allocation 

scheduler (RAS). 

4.2.1.2 IoT-Fog Gateway (Resource Allocation Scheduler) 

The IoT-Fog gateways host the introduced Resource Allocation Scheduler (RAS). For 

this research, the IoT-Fog gateways included Linksys wireless AP, NETGEAR routers, 

Belkin WeMo Switches, Xiaomi gateway. Generally, the RAS responsibility is to 

orchestrate, allocate, deallocate, reallocate and monitor tasks from IoT to fog layer 

and cloud layer. When responses (processed tasks) come back from either the cloud 

or the fog layer to the IoT, they pass through the RAS which would assign the response 

to the correct IoT device that have sent the task. The RAS contains the following 

components; the reasoner, the propagation component, the watchdog and the shared 

storage, which assist in resource allocation. The functionalities of these components 

are explained below. 

a) Reasoner 

When a task is sent from any IoT device to the RAS, the service registry marks the 

task based on which IoT device it came from. It is the responsibility of the reasoner to 

do resource allocation for the entire framework and make decisions to either send a 

task to the fog node or cloud based on the reasoning shown in the flow chart Figure 

4-2.  

 

Figure 4-2: Decision Making Flowchart 
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When a task arrives at the reasoner, the reasoner checks if the task is time-sensitive 

or not. If the task is not time-sensitive, it is sent directly to the cloud. If the task is time-

sensitive, some decisions are made and it is sent to the fog layer. 

The algorithm in the reasoner helps to choose the correct fog node for a specific task 

based on the QoS requirements of that task. Factors such as distance and the 

processing power of the fog nodes are considered as they play a pivotal role in time-

critical tasks, as explained in previous sections. Moreover, watchdog events are 

considered by the reasoner, as they help the reasoner to be more effective when 

making decisions. If there is a fault or errors at the fog node, events are triggered, and 

signals are sent to the reasoner. The reasoner assigns the task that would have been 

processed in the fault node to the next available and capable fog node. The reasoner 

uses a modified first come first serve (FCFS) heuristic approach Figure 4-3 and 

applies the following rules in the queue.  

 

Figure 4-3: First Fit Algorithm in RAS for Resource Provisioning 
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In the reasoner, the algorithm considers fog nodes in the fog layer and IoT device task 

requests as input. A round counter field and the needed assignments are initiated in 

the line 1 and 2, respectively. The IoT device task requests and fog nodes are sorted 

based on their service type in the line 3 and 4. This is done to improve loop 

performance and deployment time. The loop over of fog nodes, followed by fog node’s 

service types and finally the requests are made in the line 5 to 7. Line 8 is responsible 

for making sure that the fog node has assigned tasks that suit its service type. It is vital 

to repeatedly re-evaluate the RAM, storage and CPU utilization and the amount of 

already deployed containers to avoid overloading the fog node, which will compromise 

its performance and affect the quality of service.  

To make sure that the fog node is not overloaded the fog node, in the line 9 and 10 

requests RAM, storage and CPU utilization from the fog nodes. This supports the 

watchdog in the line 11 to monitor that the CPU<80% which are the predefined rules, 

thus avoiding exceeding the maximum number of containers to be deployed. If the fog 

node still hosts another service, it will send a detailed request of the processing space 

it still has to RAS. 

The fog node sends a message if it can no longer accept any task request. It is the 

responsibility of the storage and watchdog in the RAS to keep track and store the 

information of the tasks that have been deployed and where they have been deployed; 

the pending tasks to be deployed, and the information of the fog nodes that are still 

free. At the end the algorithm returns all this information. Tasks requests that have 

successfully been executed are removed in the input section to avoid redeploying the 

same task request many times. 

The above explanation will continue until a fog node is looped through and is finished. 

Line 19 is executed if and only if the last fog node loop is completed, the round counter 

is smaller than the maximum defined rounds and if there still exist unhanded task 

request.
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 Rules of Queuing 

Figure 4-4. below highlights the queuing model for simplicity. 

 

Figure 4-4: Priority queueing model for IoT gateway. 

The reasoner in the RAS, which is in the gateways (G), receives multiple numbers of 

tasks from different IoT devices at the edge layer that needs to be assigned to either 

fog nodes or cloud servers. In the reasoner there will be a time-slotted system denoted 

by ts={1,2,3,………n) and the time slot is denoted by AT. When there is no task to be 

assigned in the reasoner, the queue denoted by Q will be empty, which means when 

Q= Ø then ts<0. The task will be arranged using the First-Come-First-Serve (FCFS)/Q 

concept where Q represents the size of the queue. Using the Poisson process, it is 

considered that the time interval of arrival between successive task is exponentially 

distributed. There are two things to be considered, that is (a) the arrival rate (ar) of the 

task and (b) the service rate (sr) of the computing device that is hosting the RAS. 

These two determine how the queue will move. Above and beyond arrival rate and 

service rate, the moving of the queue is also affected by whether the computing 

devices in the fog layer or cloud layer are free or not at a certain time-stamp. The RAS 

will classify the tasks into three main categories, namely time-sensitive task (high 

priority tasks), low time-sensitive (low priority tasks) and not time-sensitive (no priority 

tasks). 
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As explained in the earlier chapters, no priority tasks are tasks that are not time-

sensitive and they do not have any stipulated time to be processed. Contrariwise, “high 

priority” tasks are time-sensitive tasks which should be processed within a specific 

time. If not processed, the task will no longer be valid for the IoT device. Such tasks 

are time and latency-sensitive task. In almost a similar fashion with “high priority” 

tasks, “low priority” tasks are tasks whose processed output is valid up to a certain 

extent, if that time is not met, some penalties will be applied, but it will wait to be 

processed, and the IoT device will use that output even though the output will have 

failed to meet their corresponding deadlines. All these tasks would be placed in three 

different queues denoted by Q={1,2,3}. Q1 will be for high priority tasks, Q2 for low 

priority tasks and Q3 for no priority tasks. 

Even though the tasks in Q2 are not very time-sensitive, they should not suffer a 

starvation problem. The starvation problem occurs when Q1 tasks keep on coming, 

which will result in Q2 tasks not to be processed. Therefore, to avoid the starvation 

problem, after 10 seconds time-stamp, Q2 tasks that are in the queue for a defined 

time without being assigned to any computing resource will be promoted to Q1 which 

is of a higher priority. Those in Q3 are sent directly to the cloud since they are not time-

sensitive.  

As shown in the diagram Figure 4-4, in the queuing of tasks, three queues are formed, 

as explained above, the tasks would be placed in three different queues denoted by 

Q= {1,2,3}. Q1 would be for high priority tasks, Q2 for low priority tasks and Q3 for no 

priority tasks. The algorithm in the RAS would consider the following rules. 

i. In the event that the queue of high priority tasks is not empty (Q1≠ Ø), then the 

tasks in that queue are scheduled using the first come first serve order in the 

RAS for offloading to the available fog layer. If the first task requirements do not 

match the available resource, the next task in the queue is considered and 

assigned to the available fog resource. This is done not to waste resources and 

waste the time for tasks in the queue that can match and utilise the available 

resources. 

ii. If the queue of high priority task is empty (Q1=Ø) and the queue with low priority 

tasks has some tasks (Q2≠ Ø and Q2>0), then the tasks in that queue are given 

priority and scheduled using the first come first serve order in the RAS for 

offloading to the available fog layer. If the first task requirements do not match 
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the available resource, the next task in the queue is considered and assigned 

to the available fog resource. This is done not to waste resources and waste 

the time for tasks in the queue that can match and utilise the available 

resources. 

iii. Then if the queue of higher priority tasks has tasks (Q1≠ Ø and Q1>0) and the 

queue with lower priority tasks has tasks (Q2≠ Ø and Q2>0), Q1 tasks have to 

be processed first while the first task in the Q2 queue is placed at the end of 

Q1. 

iv. When both queues with high priority and low priority tasks are empty (Q1=Ø 

and Q2=Ø), then the queue with no priority tasks will be given all the priority in 

terms of networking and message routing resources and are scheduled using 

the first come first serve order in the RAS for offloading. 

v. When all the three queues, high priority tasks queue, low priority tasks queue 

and no priority tasks queue denoted by (Q1≠ Ø and Q1>0), (Q2≠ Ø and Q2>0), 

(Q3≠ Ø and Q3>0) respectively, are not empty then RAS will assign tasks 

based on priority. After time-stamping Q1 and Q2 tasks, it will send all Q3 tasks 

to the cloud for scheduling as to create space in the holding memories of the 

RAS. 

vi. When the high priority task queue has tasks (Q1≠ Ø and Q1>0), the low priority 

task queue is empty (Q2=Ø) and the queue with no priority task has tasks (Q3≠ 

Ø and Q3>0), the RAS will time-stamp all the high priority tasks, then send all 

the Q3 tasks to the cloud. 

vii. Finally, when all the queues don’t have anything (Q1=Ø, Q2=Ø, and Q3=Ø), 

then the fog layer and cloud layer have to be put in a sleep mode to save energy 

and the cost of using these two layers as they will be idle. 

Based on the above analysis of queuing rules, the main goal of this research would 

be considered achieved if the round-trip time is reduced, especially for those tasks 

with deadlines. With the priority approach in the RAS, queueing time, task uploading 

and downloading time should be minimized, which leads to an increase in the number 

of tasks meeting their deadline. 

b) Watchdog  

The watchdog persistently monitors the load given to each fog node and also monitors 

performance to avoid overloading fog nodes at the fog layer. Overloading fog nodes 
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can compromise QoS and round-trip time. Furthermore, the watchdog monitors faults 

or errors in the fog layer. If there is fault or errors at the fog node, events are triggered, 

and signals are sent to the reasoner. The reasoner then re-assigns the task that would 

have been processed in the fault node to the next available and capable fog node. 

These watchdog events are also put into considerations by the reasoner, as they help 

the reasoner to be more effective when making decisions. 

c) Propagation Component 

After the reasoner has decided to either send the task to the fog layer or the cloud 

layer based on the task priority, the task is forwarded to the propagating component. 

It is the responsibility of the propagating component in the RAS to propagate task 

request and service data to the fog node or cloud-based on the decision made by the 

reasoner. 

d) Shared Memory 

The purpose of shared memory in RAS is to hold service registry information and all 

the information of fog nodes and IoT devices that are registered in the network. Each 

fog node and IoT device are given unique identities, which would help to assign the 

correct response to the proper IoT devices.  

As can be visualized in Figure 4-1, the RAS has a memory. This memory is shared 

and is made up of Redis FCN and Redis Shared, which are database containers, as 

shown in Figure 4-5 below. Redis FCN's responsibility is to hold data that is local such 

as device utilization which includes RAM, CPU, and storage. Whilst Redis Shared hold 

the Docker images of the services that would have been deployed in the fog layer and 

cloud layer. The two highlighted databases are saved separately as to maintain and 

preserve flexibility and replaceability.   
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Figure 4-5: Reasoner, Redis FCN, Redis Shared Deployed on the Raspberry Pi 

The functions of the Resource Allocation Scheduler (RAS) are summarized below: 

i. Register all fog nodes that are both new and old, the cloud and monitor the 

status. Calculate a new resource provisioning plan according to events that 

would have encountered device failure and device overload. Store all the 

existing fog nodes and cloud processing capabilities, which include 

processor, speed, RAM, storage space. 

ii. Receives task requests from the IoT devices (edge layer) and check for task 

request in the network. Receives task request that needs to be processed, 

label the task request, execute the incoming task request and propagate 

them to the responsible fog nodes in the fog layer or cloud depending on 

the tasks requirements. 

iii. Analyze, monitor data and fire events when the previously specified QoS 

threshold is exceeded. If the limit is exceeded, the allocator has to make a 

call to either migrate that task to another capable fog node. 

4.2.1.3 Fog Layer 

The fog layer is made up of any network resources that include; mobile stations, 

servers, switches, routers, and so on, depending on the area of application. In this 

study, Logitech Media Server, Logitech Harmony Hub, and Samsung SyncThru Printer 

were used as fog layer nodes. These network resources offer their resources to add 

computation capabilities, pre-processing and temporary storage within the network 
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and are named fog nodes. Because of their proximity to the ground and having the 

characteristics as described in the background Section 2.4.1, they provide lower 

latency compared to cloud computing which results in offering improved QoS. Fog 

nodes will receive time-sensitive tasks from RAS and execute them before sending 

the response back to the RAS and or to the cloud for the information that requires 

long-term storage. A fog node has four parts which include fog action control, compute 

unit, monitor and memory. 

i. Fog Action Control-This part controls all the action that happens in the fog 

nodes. It communicates with the propagation component of the reasoner. 

ii. Compute Unit-This is the central processing unit (CPU) responsible for 

computing and processing of tasks. 

iii. Monitor-This part of the fog node monitors the performance of the CPU and 

other components of the fog node. It always communicates with the watchdog 

based on the fog node status. 

iv. Memory-This part stores the fog node details and all the actions or commands 

that need temporary storage during processing. 

 Service Deployed in Fog Layer Nodes 

If the task request is time-sensitive, it is deployed by the propagation component in 

RAS to the the fog layer. The fog layer has different fog nodes where the task request 

is distributed depending on the task request requirement. The fog nodes are presumed 

to be administered on Raspberry Pi, ARM processor architecture and deployed in 

Docker Containers as shown in Figure 4-6. In the Raspberry Pi, where each fog node 

would be running, there would be a software called Hypriot, which acts as an OS. The 

Hypriot’s responsibility is to run a Docker runtime, which enables deployment of 

services in the Docker Containers. A specific Docker hook in the Docker Containers 

host allows applications in the fog node to start and stop containers that exist in the 

same OS using the same Docker Runtime. Moreover, fog nodes also have Redis FC, 

which acts as a database (memory) to persist and read device utilization of the RAM, 

CPU, and storage, which is the local needed data. 
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Figure 4-6: Fog Node Deployment on the Raspberry Pi 

4.2.1.4 Cloud Layer  

If the task request is not time-sensitive, and it is CPU intensive, the Resource 

Allocation Scheduler would deploy task in the cloud layer, which supports CPU 

intensive tasks. It is important to note that there are many kinds of research done for 

resource provisioning in the cloud, as indicated by the surveys (Zhan et al., 2015), 

(Singh and Chana, 2015). As such, it was not our focus. However, for clarity sake, this 

is what happens in cloud service deployment. 

In the cloud, services are deployed in dynamic VMs, which are based on an Intel 

processor architecture (Jim, 2014). According to dynamic cloud resource demand, 

these VMs should always be deployed, managed and stopped. When the Resource 

Allocation Scheduler deploys a task request to the cloud, it passes through the cloud-

fog middleware. This cloud-fog middleware would start a new VM which is based on 

light-weight CoreOS operating system running a Docker environment. The VM would 

continue running until it is filled with Docker Containers. If the VM is now full that it will 

not accommodate another container, this triggers the creation of a new VM again, and 

the process goes on. In case the containers are stopped, which results in VM having 

no containers, the VM would be released to save cloud resources.  

In the event that two task requests are deployed in the cloud-fog middleware by the 

RAS, the cloud-fog middleware would start a new VM and deploy the first requested 

service container. When the first service is deployed successfully, the signal is sent to 
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the RAS and the cloud-fog middleware will then deploy the second request in the same 

VM, provided that it has enough resources, or else a new VM is started. When both 

services are finished, the VM is stopped by the cloud service and the resources are 

released.  

The above can be summarised as follows:  

i. The cloud management determines the closest cloud server to a requesting 

device and sends back appropriate connection data to the RAS. 

ii. It then deploys and releases resources based on the resource demands of 

the tasks send by RAS. 

iii. Incoming task requests are handled by deploying memory on running cloud 

servers. 

iv. The task requests are then executed in the resources provided by the cloud 

servers, send back the task response and store the details in service data 

storages for further analysis. 

4.2.2 Aspects Expected to be Supported with the Framework  

The framework should support communication following the principles adopted from 

(Pautasso et al., 2008): 

i. Statelessness: the communication of components is independent of one 

another, and the components should not store any state. 

ii. Uniform Interface: When executing, the components follow GET, POST, PUT 

and DELETE commands. 

iii. Resource Identification- When commands are being executed, 

specific URIs are mapped to the component's execution methods on the APIs. 

iv. Self-descriptive messages- All messages that are exchanged in form and 

content are separable and should be self-descriptive as such. 

4.2.3 Workflows 

Sequence diagrams are used to explain the essential workflows of the framework. In 

these sequence diagrams, vertical direction envisages time, whereas horizontal 

direction envisages the communication between different components. Three things 

that happen in this framework are: new fog nodes can be registered or deregistered, 

and the task is processed. 
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a) Pairing and Service Deployment 

Figure 4-7 shows the pairing of the device and subsequent service deployment.  

 

Figure 4-7: Pairing of Fog Nodes, RSA, IoT Devices and Service Deployment 

When a new fog device joins the fog layer to avail its resources, it sends a signal to 

the RAS to be registered. The RAS would then register all the details, which include 

the device’s processing power and RAM size. The device is then instantiated as a fog 

node. Once a new fog node is registered, there is no need to register its details again 

because these would have been stored. Assuming that there is pending task 

requesting for a resource and the newly installed fog node does have the required 

resource requirements that match the task, RAS would immediately deploy the task. 

Once the service is deployed, the newly added fog node would be able to read and 

execute the task and return the response to the RAS. The same happens when new 

IoT devices such as sensors, actuators, laptops, smart television, join the network. 

They get registered at the RAS as new IoT device, and the type of data they send is 

also recorded. This is done so that the RAS would keep that information to avoid 

repeating the process of identifying the type of data sent by the device each time it 

sends the data, thus minimizing future delays. 
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b) Resource Allocation Scheduler Assignment of Task  

When a new task is sent from the IoT device, it goes through the RAS where it is 

labelled whether it is of high priority or not, specifying its QoS matrices requirements. 

If the task request is time-sensitive, it is sent to the fog layer, and if it is not time-

sensitive, it is sent to the cloud layer for processing. If the decision by the RAS is to 

send the task request to the fog layer, the RAS will choose the most fitting fog node to 

deploy the task request. After the RAS do the above reasoning, it then deploys the 

task to the fog node. If the service is successfully deployed, the fog node sends a 

signal back to the RAS for monitoring purposes and the fog node starts immediately 

executing the deployed task. After the task has been executed in the fog node, the 

response is sent back to the RAS, which further forwards it to the specific IoT device. 

A copy of the response and other processed details are sent to the cloud for long term 

storage. If the task is not time-sensitive and requires more computational power, the 

RAS would flag it as such and deploy it to the cloud. In the cloud, it is assigned to the 

virtual machines (VMs) which process the request. The component, which would 

handle the task, would send a signal to the RAS as an indication that it was deployed 

successfully and for evaluation purposes too. Figure 4-8 is a diagrammatic 

representation of what takes place at this stage. 
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Figure 4-8: RAS Assignment of Task and Processing 

As explained above, two cases can prompt re-planning, and this is how they are 

implemented.  

Case 1: When a fog node leaves the fog layer, whether it was a fault or the owner 

decided to withdraw the services, the RAS should check whether the fog node had a 

task that it was processing. The reasoner will have to deploy the task to available fog 

nodes if there are any. If there are no available fog nodes, the task has to be put at 

the beginning of the queue, thus giving them the highest priority. 

Case 2: When a new fog node joins the fog layer, the task at the queue that suits in 

the resource would be given priority. This selection is done by considering the first 

task at the queue following the order at whivh the tasks has arrived until the correct 

task is found that matches the CPU and RAM in that new fog node. 

4.2.4 Application Programming Interfaces (APIs) Endpoints  

The most vital APIs endpoints are presented in this section. These include endpoints 

between a task request IoT device and RAS, and between deployed service on fog 
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node and the RAS, RAS and the cloud-fog middleware. These can be seen in Table 

4-1 to Table 4-5. 

Table 4-1: Register Service Endpoint 

 

Table 4-2: Send Task Request Endpoint 
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Table 4-3: Get Resource Utilization Endpoint 

 

Table 4-4: Resource Allocation Scheduler Propagator Endpoint 

 

Table 4-5: Cloud Fog Middleware Propagator Endpoint 
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4.3 Implementation 

This section explains the practical implementation of the RAS in fog computing 

framework for the IoT environment. The execution of the framework is explained, and 

some sampled necessary commands are given. This also allows the execution part to 

be reproduced. Detailed information on how the developed fog computing framework 

for the IoT environment can be executed is given in the following section. This section 

plays a pivotal role in answering the objectives. 

4.3.1 Testing of an IoT Service. 

This section explains how the new service that was developed in the fog landscape 

was registered and executed. To do so, there is no need to have knowledge of the 

infrastructure, communication and service deployment. The developed RAS in fog 

computing framework for the IoT environment enables users to develop services by 

providing: 

 A service key whose function is to identify a Docker image uniquely  

 Docker volumes whose function is to allow the container to utilise the 

resources that are hosted in the host file system. 

 Ports whose function is to expose and flag all containers that require rights 

which help the Docker Container to have the same capabilities with the host. 

 Docker file 

As soon as the Docker image information has been elicitated, the JSON file registers 

the service. The JSON file formed demonstrated below is responsible for registering 

service keys that will pull specific repositories and executes the service.ny file. 
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Code 1: JSON File that Registers a Service 

In the above JSON, which was a sensor that monitors temperature and humidity in a 

room, a volume mapping is listed, and 8105 is the port that was exposed. It should be 

noted that privilege rights are wanted by the service to work correctly. Registration of 

the Docker Image is required in the framework to enable execution and evaluation of 

the service. In a bid to do that, the user sends a POST HTTP request to the Resource 

Allocation Scheduler, which is the control point in the system. The user requires IP 

address information to the RAS running in the gateways landscape. Having the IP 

address and API URL, then the URL http://<IP>:8080/shareddb/register is built. 

Whenever the request is sent, the content type is added as a header, and the created 

JSON file will be the body as demonstrated below with the HTTP data-transferring 

tool. 

 

Code 2: HTTP data transferring tool 

When the URL is correct, and the RAS is up and functioning properly, then the 

response contains the URL and the status flag indicating if the service could be created 

or not. In the event the flag is false, then there is a possibility that either the service-

key is assigned already or there is some other error that occurred. Therefore, they will 

need to check error information in the RAS. In the event that the registration was 

successful, the request execution of the registered service will be requested. A JSON 

application has to be created and send to the RAS to achieve the deployment of the 

registered service. The generated application comprises of total service duration, 

which is used to define when the service has to be stopped and contains a list of tasks 

request which identifies the services to be deployed. The interval field can be set to 



72 
 

infinity by -1, and this field is in minutes. A task request contains service type, service 

key and a flag that indicate whether it is time-sensitive or not. If it is time-sensitive, it 

will be deployed in the fog layer, and if not time-sensitive, it will be deployed to the 

cloud. The URL http://<IP>:8080/reasoner/taskRequests is used to send this request. 

Below are the examples of the command and corresponding JSON file, which is 

required in the execution of the request. 

 

 

Code 3: Command used to Send the Task Requests for Execution 
 
To request a task, the following has to be used. 
 

 
 

Code 4: Task Request Application JSON 

After deployment, there will be a JSON response stating that the service was 

successfully deployed and will be comprised of two things that are i) a URL header 

and ii) a payload marked with deployment time in milliseconds (ms). This will help 

when you want to investigate either the running device or the status of the HTML 

webpage. The status web page contains device-dependent information including IP, 

port, device type, children, parent, registered Docker Images, and running Docker 

Containers. The URL “http://<IP>:<PORT>/” which is comprising of the corresponding 

device IP and device port is used to access the status web page of the device. 

Important nodes used in the Node-RED are the function node, inject node, ( Message 

Queuing Telemetry Transport (MQTT) node, switch node and the debug window which 

shows the status. Below is an example of Node-RED flowchart.  
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Figure 4-9: Node-RED flowchart 

In the home assistant environment, the event state, current state and call service were 

used. Another example was for the automation of a sensor that will send a message, 

picture and highlight which window was opened. New constrained can also be defined 

in Node-RED. 

 

 

Code 5: Open Window Notification 
 

4.3.2 IoT Application Execution  

If there are already registered Docker Images of an IoT application, it will be easier to 

deploy several services for execution. A JSON file for the application was built and 

sent to the same URL. To form an application, the JSON file should fulfil the following 

task request.  
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Code 6: JSON file to form an application. 

For an application to be deemed successful, all the task requests have to be deployed 

without error. In the event that there was an error in one task request, then the whole 

application will not be deployed, resulting in stopping the already deployed services. 

To check for results of deployment, you request the cloud database by typing URL: 

“http://<IP>:8200/db/ “ or check on the debug window on the Node-RED home page. 

4.3.3  Testing of the Resource Allocation Scheduler 

The Resource Allocation Scheduler is at the centre of this research. Resource 

Allocation Scheduler role is to make a decision as to where task request is to be 

assigned either to the fog layer or to the cloud layer depending on the status. In 

previous solutions, the IoT devices would send the task to a fog node and the fog 

nodes will make a decision to either process the whole task, part of the task or offload 

to another fog node or cloud which compromised QoS in fog computing. To modify 

and improve the algorithms used in previous approaches to suite Resource Allocation 

Scheduler, a java class was created which provides the following interface in the newly 

introduced RAS. 

 

Code 7: Resource Provisioning Java Interface 
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4.3.4 Evaluation Round-Trip Time 

After making sure that everything was up and running, 1000 independent runs were 

done; results collected and averaged for each parameter which was tested. In 

particular, we were concerned about determining the round-trip time. To determine 

round-trip time, this study focused on queueing time and offloading time. It is important 

to reiterate that two important codes play a pivotal role in recording the start time at 

each node and calculate the time elapsed in each sequence (iteration).  

 

Code 8: Code that saves the start time of the flow at each node. 

The time elapsed message is generated by the following code. This code considers 
the message that would have passed through a node that saved the start time function. 

 

Code 9: Code that calculates the elapsed time. 

The results always appear on the debug window in the Node-RED as shown below. 

 

Code 10: Debug Window 

It is the benchmarks in Node-RED that report the time taken to run all matching in/out 

action flows for one given iteration. Many debug outputs can be generated and 

displayed at the debug window, stored and presented in the dashboard. 
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4.3.4.1 Queueing Time 

In order to assess queuing time which is the time a task waits in the queue before it is 

assigned to a fog or cloud resource based on its priority category (high, low and no 

priority tasks); tasks were sent automatically and periodically from IoT devices at the 

same time in batches of 5 after every 10 ms time-stamp. A maximum of 40 tasks was 

assigned for each of the three categories of the tasks.  

Based on the set-up parameters, when a task is automatically deployed from an IoT 

node to the RAS, the task is time-stamped with the time it leaves the IoT node (t1) 

which is the start time and the time it arrives in RAS (t2). When that task is deployed 

from the RAS to either fog node or cloud, it is also time-stamped with the time it arrives 

at either fog or cloud (t3). All these times will be recorded and appear at the debug 

window in Node-RED for each task respectively. Therefore, the queuing time (Qt) will 

be calculated and estimated automatically using the formula Qt= (t2-t1) +(t3-t2) which 

is the elapsed time. 

The results for each task category were recorded in milliseconds, collected and 

displayed at the debug window. At first, there was variability in the measured queuing 

time of the same task, but after running the experiment for 1000 runs, a correlation is 

noticed. After queuing time has been automatically calculated, the averaged queueing 

times for each task are stored in files and shown in the dashboard. It is from these 

recorded times where graphs in the results section were plotted. 

4.3.4.2 Offloading Time Evaluation 

To evaluate overall offloading time, which is defined as the time taken to upload a task 

(equal to the queuing time), process a task and download a task response at the IoT 

device; tasks were sent automatically and periodically from IoT devices. They were 

sent at the same time in batches of 5 tasks after every 10ms time-stamp to the RAS 

then fog or cloud and back to the IoT device. A maximum of 40 tasks was sent for 

each of the three categories of the task.  

In this case, the uploading time is equal to the queuing time (Qt). Process time (Pt) is 

time we get from the initial time the task arrives at the fog or cloud (stamped as t3) to 

the time the task or response leave the resource stamped as t4 (the elapsed time). 

Therefore, the processing time is Pt=t4-t3. Downloading time (Dt) is the time the tasks 
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leaves the processing resource to the time it arrives at the IoT device and is stamped 

as t5. Therefore, downloading time is Dt= t5-t4. Offloading time (OT) can be calculated 

as OT=Qt + Pt + Dt which is the overall elapsed time. All these times t1 to t5 will be 

appearing at the debug window in Node-RED for each task respectively. The results 

for each task category were shown at the dashboard and recorded in seconds. After 

offloading time has been automatically calculated and averaged, the queueing times 

for each task are stored in files and shown in the dashboard. It is from these recorded 

times where graphs were plotted to show the impact of RAS in overall offloading time. 

Below is an example of some of the average times obtained for delay per user, 

offloading time and queing time which were used to come up with the graphs in chapter 

five. 

 

 

 

 

 

 

 

 

 

Average delay per user( milliseconds) 

Number 

of Tasks 

High Priority 

Tasks (Hard 
deadline 

tasks) 

Low Priority 

Tasks (Soft 
deadline 

tasks) 

No Priority 

Task (No 
deadline 

task) 

0 0 0 0 

5 5 10 15 

10 10 20 30 

15 15 30 45 

20 20 40 60 

25 25 50 75 

30 30 60 90 

35 35 70 105 

40 40 80 120 

 

It is important to reiterarate that the above times are averaged time after 1000 runs. 

Average delay per user(seconds) 

Packet Arrival 

Rate 

(packets/second) 

Entirely 

processed at 

IoT device 

Fixed 

offload to 

Fog node 

RAS 

approach 

0 0 0 0 

5 0,3 0,4 0,35 

10 0,6 0,7 0,65 

15 0,92 0,92 0,92 

20 1,26 1,18 1,17 

25 1,58 1,42 1,34 

30 1,88 1,65 1,44 

35 2,2 1,68 1,42 

Offloading Time (seconds) 

Number 
of Task  

High Priority 
tasks 

Low priority 
task No priority 

0 0 0 0 

5 1.19 1.25 1.39 

10 1.25 1.37 1.7 

15 1.65 1.85 2.3 

20 2.3 2.6 2.8 

25 2.8 3.3 3.45 

30 3.5 3.7 3.95 

35 4.1 4.3 4.45 

40 4.7 4.75 4.9 
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4.4 Conclusion 

This chapter presented the framework design of this research, in particular, 

components of the framework and their functions, aspects expected to be supported 

by the framework and workflows used in this thesis. The implementation of the whole 

framework was presented emphasizing IoT services, application execution, testing 

RAS and evaluation of round-trip time (queuing and offloading time). In light of the 

evidence provided in this chapter, the chapter managed to prove and answer the 

research question “Can an adaptive resource allocation scheduler in fog computing 

framework which is based on tasks requirements and priorities be successfully 

developed?” 
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5 Chapter Five: Results and Discussions 

5.1 Introduction 

This chapter gives answers to this study's fifth research question “What is the 

performance of the adaptive RAS in fog computing framework?” The chapter begins 

by presenting an overview simulation configuration in Section 5.2. Followed by a 

detailed presentation of the study outcomes obtained through simulation tests in 

Section 5.3. In particular, we were looking at queuing time and offloading time which 

are factors that affect round-trip time. Finally, Section Error! Reference source not 

found. will present a critical discussion relating our findings to the theory and literature 

review. Section 5.4 concludes the chapter by giving a synopsis of the whole chapter.  

5.2 RAS Performance Evaluation Setup 

This section presents the simulated environment description and assumptions. 

5.2.1 Simulated Environment Description 

The study’s simulation was hosted on a high-performance computer with 1100 

terabyte (TB) storage capacity,135 cluster nodes with 2900 processor cores and 11TB 

memory. The simulation parameters of the framework are shown in Table 5-1. As 

highlighted in the table, 20 IoT devices were used for this simulation and generated 

multiple tasks at a specific time interval. The input data size was between 10MB to 

30MB, and for output, data size was 1MB to 30MB. Both input and output data size 

was uniformly distributed. Twenty (20) Mbps was used as maximum transmission 

bandwidth from the IoT device via the RAS to either remote fog or to cloud servers in 

both data uploading or downloading. All these conditions and parameters were 

maintained at constant. For the simulation, 1000 independent runs were done and 

averaged for each parameter to get a better result output for the runs. Table 5-1 shows 

the simulation parameters used in this research. 



80 
 

 Table 5-1: Simulation Parameters 

 

5.3 Performance Evaluation. 

The study focused on addressing resource allocation challenge which affects latency, 

a factor of the round-trip time for packet delivery in the IoT environment. The 

experiment considered the queuing time, offloading time and throughput during 

performance evaluation. Another thing considered was the starvation problem which 

was being experienced by low priority tasks. 

5.3.1 Results 

The results focused mainly on roundtrip time parameter which is queing time and 

offloading time. 

a) Queuing Time 

As defined earlier, queueing time is the time a task waits in the queue before it is 

assigned to a fog or cloud resource. Queueing time plays a pivotal role in determining 

whether a task will be processed early or not based on how long a task would wait 

before it is assigned to a resource. The higher the queueing time, the higher the 

chances of an increased round-trip time, which has a negative impact on latency and 

affects QoS. High latency has a negative impact on time-sensitive tasks. 

Consequently, queueing time should be minimized to reduce round-trip time which in 
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turn reduces latency. In the study’s experiment, we simulated the queuing time for the 

high priority, low priority and no priority tasks. Figure 5-1 presents the result from that 

simulation.  

 

Figure 5-1: Queueing time for high priority tasks, low priority tasks, and no priority 
tasks 

Based on Figure 5-1, it can be noted that for high priority-based tasks (blue line), the 

queuing times are minimal when compared to low priority-based tasks (orange line) 

and no priority-based tasks (grey line). Similarly, low priority-based queuing time is 

also minimal when compared to no priority-based tasks. This is because high priority 

tasks are given high preference by RAS during the assignment to both message 

routing and the fog layer resources to be processed first as compared to the later. For 

this reason, high priority tasks are assigned and processed earlier than the other two, 

which gives them less queuing time. Correspondingly, the low priority tasks are given 

a better priority compared to those with no priority.  

Queueing time for the next higher priority task is affected by the time taken by the RAS 

to decide whereas for low priority task, queueing time is directly affected by the number 

of high priority tasks on the queue and the time taken by the RAS to make a decision. 
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The more the number of high priority tasks in the queue, the more the queuing time 

for low priority task. However, with the queueing model introduced at the RAS as 

explained in framework design chapter, the queueing time of low priority tasks was 

reduced due to the fact that after sometime stamp, if there are still high priority tasks 

on the queue, low priority task in the low priority task queue was promoted to the high 

priority queue. This was done to address the starvation problem that was being faced 

by low priority queues when there are more high priority tasks which keep coming from 

the IoT devices. 

When considering no priority task, the queuing time is affected by the time it arrives at 

the RAS to be assigned to the cloud, the size and offloading speed of the first task in 

the queue to be offloaded to the cloud. As a result of this, the bigger the task to be 

offloaded to the cloud and the time it arrives at RAS, the greater the queuing time for 

those tasks that should be offloaded to the cloud. 

b) Offloading Time  

Offloading time is another factor that affects round-trip time. Offloading time is the time 

taken to upload, process and download a task from IoT device to RAS then either fog 

node or cloud depending on the task status. The more the offloading time, the greater 

the overall round-trip time. Moreover, offloading time is directly affected by queuing 

time. If the queuing time is minimized, the overall offloading time is also reduced. 

Figure 5-2 presents the simulation result of offloading time.  
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Figure 5-2:Offloading time for High priority tasks, Low priority tasks, and No priority 
tasks 

As can be noted, Figure 5-2 shows that the average offloading time of task to a 

resource increases as the number of tasks increases. From the graph, it is noted that 

offloading started happening after one second (1s). This was because some delays 

were experienced when tasks were sent from the IoT devices to the RAS. Another 

point to note is when high priority tasks and low priority tasks are less than 5, they can 

be processed in the IoT device itself, hence no need to offload them to the RAS. 

As shown in Figure 5-2, for 10 tasks the offloading time for high priority tasks (blue 

line) and low priority tasks (orange line)  is less than 1.5 seconds whilst no priority 

tasks (grey line) has over 1.5 seconds. As the tasks are increased with a factor of 10 

to 20 tasks, high priority tasks have an offloading time of approximately 2.3 seconds 

whereas low priority tasks and no priority tasks are above 2.5 seconds but below 3 

seconds. For 30 tasks, the offloading time for high priority tasks is approximately 3.5 

seconds, whereas low priority tasks and no priority tasks are at approximately 3.8 

seconds and 4 seconds, respectively. At 40 tasks, the offloading time of high priority 

tasks, low priority tasks and no priority tasks is at approximately 4.7 seconds, 4.8 
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seconds and 4.9 seconds respectively. From the graph, it can be noted that the 

increase of offloading time in seconds was directly proportional to the rise in several 

tasks by a factor of  approximately 10 from 10 tasks to 40 tasks. This was not the case 

for low priority tasks and no priority tasks. In a nutshell, the offloading time of all the 

tasks would increase as the number of tasks increased. High priority tasks have lower 

offloading time when compared to the other two because they were given first 

preference to fog layer resources. Even though the no priority tasks were not being 

offloaded to the fog layer, they took more time to be offloaded to the cloud. The reason 

behind this is because of their size, which requires more time in offloading to the cloud. 

The bigger the task, the more the time it took to offload it.    

c) RAS Strategy Versus Other Resource Allocation Strategies. 

i) Comparison of processing in the IoT device, fixed offloading to fog node and 

the use of RAS strategy 

For comparison, we compared the average delay per user against packet arrival rate 

using the fixed strategy method, RAS strategy and entirely processing the tasks on 

the IoT device. A fixed strategy is when tasks are sent directly to the fog nodes from 

IoT devices, and the fog nodes would decide to either process the whole task, part of 

it or to send to the cloud. This strategy is the one being used by many researchers in 

literature. Figure 5-3 presents an illustration of task data arrival, task execution and 

task offloading. 
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Figure 5-3: Illustration of task data arrival, task execution and task offloading 

In Figure 5-3, it can be noted that if few tasks are time-sensitive, processing them in 

the IoT device is much better than transferring them to the fog node, as this increases 

the round-trip time. Another thing that Figure 5-3 reveals is that, at a packet arrival 

rate of between 0 and 14, the average delay per user is less when the task is entirely 

processed in the IoT device itself than when it is sent to either the RAS or fixed 

offloading to the fog node. RAS strategy is better when compared to fixed offloading. 

This is because RAS can then assign a task directly to where it is supposed to be 

processed when compared to the later. 

At 15 packets/sec arrival rate, the average delay per user is the same for all the three 

strategies. This convergence point can be referred to as a point of equilibrium. This is 

so because, at 15 packets arrival rate, the summation of the delays and the resources 

available at both the fixed offload strategy and the RAS strategy would be equal to the 

one processed entirely at the IoT device. Since IoT devices have limited computational 

power, the more the tasks produced, the more the time needed to process those tasks. 

This is also the case with the fixed offload. The delays increase if decisions are made 

in the fog node. This point is referred to as the saturation point where the tasks 

produced is equal to the resources. In this case, any other tasks being deployed has 
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to wait on the queue.  

After 15 packets/sec arrival rate, using other resources that is fog node resources will 

be of greater benefit as can be noted in the diagram. After 15 packets/sec arrival rate, 

the average delay per user of those tasks that are processed entirely in the IoT, keep 

on increasing when compared to the other two options. This is because IoT devices 

would no longer have the capability to process the tasks, as some of the tasks on the 

queue in IoT devices might be CPU intensive. An increase in task production and 

packet arrival rate has a greater effect when the task is processed entirely at the IoT 

device level. The more the packets in the queue to be processed, the more the time 

needed to process them, especially when they are processed in the IoT device itself. 

The packet arrival rate is directly proportional to the average delay per user if the task 

is processed in the IoT device. The demand for computing resources by the tasks can 

even cause the IoT device to end up being slow and not working properly. This can 

also have a negative impact on the IoT device battery lifespan, as the device will be 

strained, which results in the device using more battery power.  

It is also worth mentioning that when the tasks are sent from the IoT device to be 

processed on the fog node, which is randomly chosen, at first the round-trip time is 

increased even though there would be a lower processing time in the fog layer. The 

round-trip time is increased because some delays are encountered during 

transmission time as a result of the offloading part from the IoT to the fog node. In 

some cases, the task that is sent to the fog node e.g. fog node A, will not meet the 

processing requirement of that node, as such it has to be offloaded entirely to the other 

fog node B, or part of the task is processed in fog node A and the other offloaded to 

fog node B. Although at a low packet arrival rate, the average delay in the fixed offload 

strategy is higher than the processing at the IoT device, the value remains below 1s. 

This is because as soon as the packets arrive, they will be processed quickly since 

fog nodes have more processing power as compared to the IoT device. When the 

packet arrival rate increases, the fixed offload reduces the average delay by offloading 

to the fog nodes. After 15 packets per second, the fixed offload offers some 

advantages compared to those that are entirely processed at the IoT device.  

Again, referring to Figure 5-3, it can be noted that between 15 to 20 packets per 

second arrival rate the performance of the fixed offloading and the RAS strategy are 
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almost the same. The impact can only be noted after 20 packets per second arrival 

rate when the RAS becomes better than the fixed offloading. The reason might be that 

the RAS chooses the best fog node for time-critical tasks when compared to the fixed 

offloading strategy. When tasks are using the RAS, it can be noticed that at first, using 

the RAS strategy will only be better if compared to fixed offloading but worst when 

compared to those that are processed at the IoT devices. The delay experienced in 

time is because some time is used when transferring a task from the IoT device to the 

RAS before the actual processing of the tasks starts.  The difference is noticed when 

there is an increase in the packet arrival rate where it can be observed that the RAS 

outclass both strategies highlighted earlier. The reason being that the RAS chooses 

appropriate fog node to process the tasks when compared to the fixed offload strategy, 

which sometimes offloads tasks to a fog node that does not satisfy the requirements 

of the tasks which leads to some delays. As such, choosing the correct fog node that 

suits the requirement of the task first before assigning those tasks helps in the sense 

that when tasks are then finally deployed, it is guaranteed that they will be processed. 

In light of the above findings, the study discovered that when time-sensitive task are 

less than 15 packets, it is of benefit to process them in the IoT device. When tasks are 

more than 15 packets and are both time-sensitive and non-time-sensitive tasks, it is 

better to forward to RAS for resource allocation part. By so doing, round-trip time would 

be reduced significantly. 

ii) RAS strategy compared to other strategies 

For comparison purposes, three strategies which are proposed and used in literature 

are considered and compared with RAS: 

 Strategy 1: IoT devices would randomly choose a computing device either in 

the fog layer or cloud layer. Let us denote this scenario as S1. 

 Strategy 2: IoT devices would choose a computing device with minimum 

uploading time. Let us denote this scenario as S2. 

 Strategy 3: IoT devices would choose a computing device with sufficient CPU 

frequency for processing the tasks. Let us denote this scenario as S3. 

 Strategy 4: Using the proposed Resource Allocation Scheduler strategy 

denoted with RAS.  
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 Performance-based on average queueing time 

In this comparison, the tasks that are processed locally in the IoT devices are 

excluded. In most instances, IoT devices are known for producing time-sensitive tasks. 

It should be noted that RAS immediately schedules tasks with deadlines for offloading 

in the fog layer whilst no priority tasks are offloaded to the cloud. In most instances, 

IoT devices are known for producing high priority tasks or low priority tasks. Because 

of that reason, RAS was introduced, and simulations were done to check if it will 

minimize overall queueing time and offloading time for each task which leads to the 

minimization of the overall round-trip time. Figure 5-4 presents a performance based 

on average queuing time. 

 

Figure 5-4: Performance-based on average queueing time 

Based on Figure 5-4, which compares performance based on queuing time, our RAS 

improved performance when compared to the other three strategies as far as average 

queuing time is concerned. The average queuing time of high priority and low priority 

was minimized. This was as a result of them being given more priority if compared to 

those tasks with no deadline. It can be noted from Figure 5-4 that even in the case of 

more tasks, the average queuing time of the RAS is less when compared to the other 

three strategies. These results proved that even if you are using first come first serve 

basis in different strategies if high priority tasks are not given high priority, that will 
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affect the queuing time and has a negative impact on the time-sensitive tasks as QoS 

is compromised. 

 Performance-based on average offloading time 

Even if S2 strategy allowed IoT devices to choose a computing device with minimum 

uploading time and S3 allowed IoT devices to select a computing device with sufficient 

CPU frequency for processing the tasks, it could be observed from Figure 5-5 that 

these strategies did not minimize offloading time as expected by IoT devices. Contrary 

to S1, S2, and S3, considering performance based on the average offloading time as 

shown in Figure 5-5, RAS managed to deploy tasks to computing devices that met 

the requirements of the task. Moreover, RAS offered a minimum communication 

overhead, which minimized round-trip time since offloading time was reduced when 

compared to other S1, S2, and S3 strategies. This was attributed to the fact that RAS 

would choose either fog node or cloud that satisfies the requirements of the task based 

on the task’s status. Basing our argument on the simulation results, if the round-trip 

time is minimized, latency will also be reduced, and this will lead to improved QoS and 

improved performance. 

 

Figure 5-5: Performance-based on average offloading time 
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 Performance-based on average percentage number of tasks satisfying delay 

deadlines. 

From the analysis given above in Figure 5-4 and Figure 5-5, it can be noted that the 

number of tasks that meet their deadlines especially the high priority task and low 

priority task improved when using RAS compared to the other three strategies. When 

considering four scenarios, based on the number of tasks at a given time, it can be 

noted in Figure 5-6 that when the tasks are few, and the RAS is used, high priority 

task can meet their deadlines by 100 percent. Whereas with the same number of tasks, 

other strategies’ percentage is less than 90. Figure 5-6 shows that RAS increased the 

number of tasks meeting the deadline by allocating high priority tasks to the fog 

resources followed by low priority. No priority tasks were assigned to cloud resources. 

This helped in improving network performance, as unnecessary congestion is 

reduced. Improvement of network performance has a direct positive impact on how 

tasks also transverses over the network. If tasks traverse easily in the networks, the 

round-trip time is also reduced. 

 

Figure 5-6: Performance-based on average percentage number of tasks satisfying 

delay deadlines. 
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 Performance-based on average throughput 

In order to check if the RAS improved the QoS, throughput which is one of the QoS 

parameters was tested. In this work, throughput was calculated as the number of tasks 

that complete their process within a time-stamp based on the arrival rate. As indicated 

in Figure 5-7, RAS had high throughput when compared to other strategies. This is 

because different strategies failed to process more tasks within a given time-stamp.  

The RAS strategy managed to achieve improved throughput because it was able to 

deploy time-sensitive tasks to fog devices that met the resource requirements with 

minimum offloading time, which was also a factor of queueing time.  

 

Figure 5-7: Performance-based on average throughput 

5.3.2 Findings 

The results above show that even though many factors play a pivotal role in 

determining the total round-trip time, queueing time and offloading time are very 

important too. Minimizing the two would help in reducing round-trip time which would 

result in the minimization of latency. In addition, if queueing time and offloading times 

are decreased, the overall throughput of the framework is significantly improved.  

Another important finding from the study was that; choosing a computing device with 

sufficient CPU frequency for processing the tasks without considering other factors 
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such as the type of the tasks; would not minimize average queuing time and average 

offloading time in the case that more tasks are added. This kind of strategy would work 

well when there are few tasks that need to be processed. However, it might suffer 

when more tasks need to be processed.  

Another point to note is that when choosing a device for processing, it is not wise to 

only consider the one with the minimum uploading time and ignore other factors like 

CPU frequency. As noted from the results, the strategy which only considers uploading 

time suffers a lot in minimizing queuing time and offloading time which are major 

factors in determining the reduction of total round-trip time. 

CPU frequency of a device, uploading time of a device and the type of tasks to be 

uploaded in any device plays a critical role as far as queuing time and offloading time 

is concerned. It is also important to note that making a decision of which tasks is to be 

assigned to which resources; where the tasks are to be processed, at what time the 

task is to be uploaded and processed depending on their status whether they are time-

sensitive or not; is very crucial in any framework.  

From the results above, RAS was able to minimize queuing time and offloading time. 

Moreover, deadlines were met for both time-sensitive tasks and non-time-sensitive 

tasks. A starvation problem encountered by the low priority tasks was significantly 

reduced, and the throughput of both tasks was increased. 

It is important to note that the queuing time and offloading time are not only the factors 

that affect round-trip time, but there exist some factors like device failure, connectivity, 

among other factors. Based on our findings while holding other factors at constant, 

RAS proved that it could help in reducing both queuing time and offloading time which 

are parameters that affect overall round-trip time. 

 Throughput 

As explained in Chapter Two, throughput is one such aspect that plays a pivotal role 

in the attainment of good QoS. Improved throughput leads to improved QoS. 

Throughput hinges on how many tasks will be processed entirely within a given time-

stamp. It can be noted from the results above that high priority tasks were able to 

complete their operation and meet deadlines. However, that was not always the case 

for low priority tasks and no priority tasks. This was ascribed to the fact that the RAS 
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would deploy first the tasks that fall under the high priority category to be processed 

in the fog nodes with minimum communication overhead, which in turn improved the 

throughput of the high priority tasks. These results were a testimony to the fact that 

the introduced RAS improved the efficiency of the framework as far as the throughput 

of the time-sensitive tasks is concerned. Since RAS deployed high priority and low 

priority tasks in the fog nodes with minimum queueing and offloading time, this resulted 

in the minimization of the total round-trip time of time-sensitive task and increased the 

throughput. 

5.3.3 Result Findings Analysis 

Our results proved that when resource allocation is done properly, round-trip time can 

be minimized, and QoS in particular throughput can be improved as shown and 

explained above. The research managed to bring a positive contribution to what 

should be done to minimize queuing time and offloading time in an IoT-Fog-Cloud 

setup.  

i) Queuing Time 

It is evident from our findings that the queuing time for high priority tasks followed by 

the low priority tasks was significantly reduced when compared to other strategies 

suggested in the literature. This is attributed to the fact that RAS was able to decide 

first where (fog layer or cloud layer) and which resources to assign the tasks based on 

their priority, deadlines and resource needs. The assignment of resources based on 

priority helped in reducing network traffic which led to quick communication and 

reduced latency. In light of the above evidence from the results, RAS strategy in fog 

computing framework helped in minimizing queuing time. 

It is also important to note that queuing time for both high priority tasks and low priority 

tasks can be further minimized when more fog nodes join the fog layer. The more the 

fog nodes at the fog layer, the less the queuing time to be experienced for high priority 

tasks and low priority tasks. The reason being that there will be more options and 

resources to assign the tasks. Therefore, queueing time for higher priority tasks and 

low priority tasks can be deduced to be directly affected by the number of fog nodes 

available at the fog layer. Apart from the factors highlighted above, undoubtedly, other 

factors might affect the queuing time as explained in the literature. These include the 

connectivity of devices, fog node failure, the CPU processing power of both the fog 
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nodes and the IoT-Fog gateways where the RAS is hosted among other software and 

or hardware challenges. 

ii) Offloading time 

Since offloading time is the time taken to upload, process and download a task from 

IoT device to RAS then either to fog node or cloud depending on the task status, 

minimizing queuing time plays a pivotal role in the minimization of overall offloading 

time. Since RAS strategy assigns tasks to a suitable resource in terms of processing 

power, it means the tasks will be processed faster, which will result in reduced 

processing time. It is a fact that reducing processing time will have a positive impact 

on the minimization of offloading time. Additionally, the fact that RAS gives high priority 

to network resources for time-sensitive tasks helps in reducing upload and download 

time of tasks which are all factors of offloading time. 

As evidenced by the findings, offloading time for high priority tasks followed by low 

priority task was significantly reduced when using RAS compared with other 

strategies. This was because RAS would save time and fog node resources which 

were being wasted in deciding whether they can process the whole task, part of it or 

completely offload it to cloud as was the case in other strategies proposed in literature.  

Grounding our reasoning from the findings and explanations above, it can be deduced 

that queuing time and offloading time plays a pivotal role in determining whether a task 

will meet its deadline or not. It was observed that high priority tasks always met their 

deadlines. Contrary, it is not always the case for low priority tasks as some tasks in 

this category missed their deadlines with few milliseconds. The delay is attributed to 

the fact that high priority tasks were given higher priority in the limited resources 

available in the fog layer as compared to low priority tasks. However, the impact of 

failing to meet the deadline for low priority tasks is not of greater importance, especially 

if the period is less than ten (10) milliseconds which is insignificant. It can be noted 

that in most cases, the requirements of most of the tasks generated by IoT devices, 

which are time-sensitive, are always satisfied because of the introduction of RAS in 

the gateways. 

As a matter of fact, based on the results, it is true that introduction of RAS in the fog 

framework improved the throughput since throughput is the number of tasks that 
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complete their process within a time-stamp based on the arrival rate. Many of the tasks 

met their deadline, which shows it is a sign of improved throughput.  

5.3.4 Discussion of Results Findings 

In our simulation experiments, we reached a conclusion which was also supported by 

Souza et al., (2017) who argued that QoS is not only affected by data transmission 

factors but also processing delays in fog nodes. We strongly agree with Souza et al., 

(2017) findings that to reduce end-to-end delay in fog computing, fog nodes in the fog 

layer should be efficient and effective during processing. Otherwise, without doing that, 

even if you provide good data transmission factors on your network, an end-to-end 

delay which is overall round-trip time will still be high.  

Our proposed RAS helped in reducing overall queuing time, offloading time and 

offered an improved throughput when compared to the strategies proposed by Wang 

et al., (2019) and Mukherjee et al.,( 2018). The two never considered the queuing time 

factor at the fog node, which also adds delay to the overall round-trip time. The present 

findings confirm the notion by Adhikari et al., (2019) that queuing time and offloading 

time has an impact on the overall round-trip time. Therefore, this research agrees to 

the claims by Liu et al., (2019), who stated that reducing queuing time and offloading 

time increases throughput and bring about improved QoS in fog computing. 

Moreover, our results are a better true reflection of what overall round-trip time is 

because we also considered uploading and downloading time when measuring 

transmission delay, which plays a role in overall round-trip time. Contrariwise to the 

findings of Ko et al., (2017), Tran et al., (2017) and Mukherjee et al., (2020) who 

ignored the downloading time and inter-fog transmission when they measured their 

transmission delay. Even though the abovementioned researchers’ line of thinking of 

ignoring downloading time and inter-fog transmission was based on the reasoning that 

the delays are minor; our results proved otherwise that the slight delays when added, 

they contribute a lot in affecting round-trip time. In light of the above observation, we 

strongly argue based on our results that downloading time and inter-fog transmission 

should always be considered no matter how minor the delays may look like. Our 

findings conclude that those minor delays have a negative impact on the overall round-

trip time, which in turn affect latency. 



96 
 

Furthermore, our simulation findings are in line and agreement with the findings of 

Alnoman and Anpalagan, (2018) who found out that prioritized queues minimize the 

delay for time-sensitive tasks as compared to non-prioritised queues. It can be 

observed from the results and conclusions of Alnoman and Anpalagan, (2018) that 

many low priority tasks were faced by the starvation problem. This was a result of low 

priority task missing their deadlines since only time-sensitive tasks were prioritised. To 

avoid the starvation problem which was faced in Alnoman and Anpalagan, (2018), we 

introduced a queuing model in RAS which would increase the priority of low priority 

task by one after a specific timestamp, thus promoting the low priority to be treated as 

a high priority task. As evidenced by our results, this played a critical role in addressing 

the starvation problem, which was experienced by low priority tasks.  

Using RAS in the fog framework, we managed to process time-sensitive tasks and 

non-time sensitive at once without compromising time-sensitive deadlines. This was 

achieved with the IoT-Fog-Cloud architecture, which provided platforms suitable for 

the processing of CPU intensive tasks in the cloud and non-CPU intensive tasks in fog 

layer at once. This discovery goes in line with the ascertains of Chekired and Khoukhi, 

(2018).  Chekired and Khoukhi, (2018) noted and concluded that using IoT-Fog-Cloud 

hierarchical structure will help in promoting a delay-tolerant network, which supports 

IoT data processing while meeting various QoS objective of both time-sensitive and 

non-time-sensitive requirements. 

From the research findings, we can conclude that providing an excellent resource 

allocation; a method for QoS-aware fog networking and message routing plays a 

significant role as far as reducing round-trip time and improving throughput is 

concerned. Important points to note from our findings are: i) A proper resource 

allocation strategy in fog computing framework like RAS will help in minimizing round-

trip time; ii) reducing queuing time and offloading time helps in reducing overall round-

trip time which in turn reduces latency; iii) reducing queuing time and offloading time 

improves overall throughput and lastly iv) an adequately designed queuing model can 

help high priority tasks and low priority tasks to meet deadlines. Moreover, the 

starvation problem of low priority tasks will be minimised.  
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5.4 Conclusion 

This chapter evaluated the benefits of using RAS strategy in fog computing framework, 

microscopically looking at queuing time and offloading time which are factors of round-

trip time. The results show that introducing RAS in the fog computing framework helps 

in minimizing queuing time, offloading time which led to improved throughput. 

Furthermore, the queuing model introduced in the RAS helped to address the 

starvation problem, which was faced by low priority task. All these accrued benefits 

clearly proved that if resource provisioning is done well in fog computing, round-trip 

time can be minimized and QoS in particular throughput will be improved. This chapter 

managed to provide answers to the fifth research question “What is the performance 

of the adaptive RAS in fog computing framework?” 
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6 Chapter Six: Conclusion and Future Work 

6.1 Introduction 

This chapter reflects by articulating a review synthesis of the whole research’s key 

points and how the research problem, objectives and research questions were 

answered. It further outlines the significance and shortcomings of the research 

findings. Scientific contributions brought by the research are emphasized. In 

conclusion, avenues for future research are suggested. 

The chapter begins with a summary of the whole thesis by outlining the major points 

of each chapter in Section 6.2. In Section 6.3, a recap of research questions, 

research objectives and how they were answered is presented. The contributions of 

this research, the findings and their impact in the IoT-Fog-Cloud scientific space are 

presented in Section 6.4.  The chapter is concluded with the future work in Section 

6.5, which look at what should be done to improve our findings and future 

recommendations. 

6.2 Summary of the Study 

Without any doubt, as supported in literature Section 2.4, fog computing has played 

a pivotal role in addressing many cloud computing challenges in supporting IoT 

technology. However, the ever increase of IoT devices is a cause of concern to the 

fog computing technology. As such, many methods, approaches and strategies need 

to be designed and implemented in fog computing itself; if we want to continue 

harnessing from its advantages of offering minimized  round-trip time, improved QoS 

and man other fog computing advantages.  

In the current IoT-Fog-Cloud architecture, the tasks of different types are generated 

by IoT devices. These tasks are processed either in IoT devices themselves or 

offloaded to other computing devices in the fog or cloud layer depending on where the 

resources are available. These tasks are of different computational and QoS 

requirement. Thus, there is an apparent demand for novel resource allocation and 

offloading strategy that aim at minimizing the round-trip time under varying network 

traffic without compromising the QoS and expectations from the end-user. 
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In this regard, this thesis proposed and introduced a resource allocation scheduler in 

fog computing framework for the IoT environment. Below is how the study was done 

to end up having this thesis. 

In Chapter One: Introduction, the research niche was established, a synopsis 

description of research aim and what motivated the study was highlighted. In order to 

address the research aim, research questions and research objectives were 

formulated which guided this study. The chapter was concluded by giving intended 

contributions and limitations of the study. 

Chapter Two: Background and Related Work gave contextual knowledge, which 

acted as the foundation of the research. The chapter gave an insight into the IoT 

technology, cloud computing, fog computing and a clear view of how these three are 

intertwined. A point to be taken from the technologies is that cloud computing provides 

computational and storage power to IoT devices which are resource-constrained; 

whereas fog computing complements the cloud by bringing the cloud resources closer 

to the “ground” where the IoT devices are. Consequently, fog computing brings and 

offers security, cognition, agility, low latency, and efficiency [3]. Microscopically, a 

critical analysis of work done specifically in relation to QoS in fog computing was 

presented. This helped in identifying open challenges concerning QoS in fog 

computing which are research gaps. More precisely, the identified gaps represent the 

opportunities for further research in specific areas of fog computing systems and 

structures to enable IoT system executions. These research gaps acted as the basis 

of why there was a need to do this research and its importance in the scientific space. 

The open research gap, which was addressed in this chapter, was then highlighted. 

This chapter helped in identifying the functional, technical and non-functional 

requirements of the general IoT-Fog-Cloud architecture from existing works that were 

implemented. This chapter helped in answering the following research questions: 

1. What are the key challenges in communication and computer resources 

allocation in an IoT environment? 

2. How are communication and computing resources allocated and assigned 

among the IoT devices based on tasks, requirements and priorities? 

Within Chapter Three: Research Design and Methodology, the procedures and 

techniques that were used for this whole thesis were presented. The chapter indicated 
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that the top-down research methodology was adopted for this work. The chapter also 

highlighted what was done at each of the four phases of the top-down methodology. 

This chapter answered the third research question of this study: 

3. Which approaches can be used to build an adaptive resource allocation 

scheduler framework for IoT environment? 

Chapter Four: Framework Design and Implementation presented the high-level 

design of the whole fog computing framework with more emphasis given to the 

Resource Allocation Scheduler (RAS), which was our contribution. The functional, 

technical and non-functional components of the whole framework and in particular the 

RAS were presented. Furthermore, the implementation of the framework which details 

the feasibility of the proposed framework was presented. This chapter gave a synopsis 

of how the service was deployed, the environment setup and the development, testing 

and execution of the framework. The chapter helped in answering the fourth research 

question: 

4. Can an adaptive resource allocation scheduler in fog computing framework 

which is based on tasks requirements and priorities be successfully developed? 

Chapter Five: Results and Discussions presented the evaluation of the 

implemented framework. This was done to illustrate and verify if the introduction of 

resource allocation scheduler in fog computing framework was of any benefit in 

reducing round-trip time. A critical discussion relating to the findings back to the theory 

and literature review was also done. This chapter was the answer to this study's fifth 

research question: 

5. What is the performance of the adaptive RAS in fog computing framework? 

All the above chapters gave an understanding of how the data gathered from literature 

was used to design, develop, implement and evaluate the framework. Thus, precisely 

helping in answering the research questions, research objectives while fulfilling the 

aim and showing our contribution to the scientific board of knowledge. 

6.3 Research Objectives, and Where Addressed 

Research objectives underpin this study, and as such, they should be alluded to, and 

how they were answered according to the full scope of this study. 
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In this work, five specific objectives were which were derived from our research 

questions were set: 

1. To identify the key challenges of data communication and computer resources 

allocation in an IoT environment. 

2. To determine how data communication and computer resources are assigned 

and allocated based on tasks requirements and their priorities in IoT 

environments. 

3. To identify a suitable methodology for building a resource allocation scheduler 

in fog computing framework for IoT environments. 

4. To build a resource allocation scheduler framework in fog computing for IoT 

environments. 

5. To test and evaluate the proposed RAS in fog computing framework. 

As can be seen above, the five objectives are interconnected and depend on one 

another. The above research objectives were formed from the alluded research 

questions. Below is a summary of tables which pinpoint in which chapter the research 

questions were answered. 

Table 6-1: Research Objectives and Where they were Addressed 

Research Objective Chapter it was Answered 

1. To identify the key challenges of data 
communication and computer 
resources allocation in an IoT 
environment. 

2. To determine how data communication 
and computer resources are assigned 
and allocated based on tasks 
requirements and their priorities in IoT 
environments. 

 
Chapter One: Introduction 
Chapter Two: Background and 
Related Work 

3. To identify a suitable methodology for 
building a resource allocation 
scheduler in fog computing framework 
for IoT environments. 

 
Chapter Three: Research 
Design and Methodology 

4. To build a resource allocation 
scheduler framework in fog computing 
for IoT environments. 

 
Chapter Four: Framework 
Design and Implementation 

5. To test and evaluate the proposed RAS 
in fog computing framework. 

 
Chapter Five: Results and 
Discussions 
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6.4 Contributions of this Thesis 

Two significant contributions made by this thesis can be categorized in theoretical 

terms and practical or experimental terms.  

Firstly, Chapter Two of this research pinpointed the role played by fog computing by 

providing QoS in the existing systems. A review paper of Quality of Service in fog 

computing for the IoT was produced. To our knowledge with the comments received 

from the reviewers, this was the first review paper looking at QoS in fog computing. 

The paper was published in the “International Journal for Fog Computing” (Vambe et 

al., 2020). The paper provided open challenges that are still faced in fog computing as 

far as improving QoS is concerned.  

Still, in theoretical terms, another paper was submitted and accepted as a conference 

proceeding “https://www.spu.ac.za/index.php/ieee-imitec-2020/” and will be published 

in IEEE. The paper was based on the results of this study.  

These papers act as a good starting point for other researchers in industry and 

academia in finding methods, procedures and strategies that can be implemented in 

fog computing. This is of paramount importance as it will help in improving fog 

computing as far as reducing round-trip time (latency) and improve QoS is concerned. 

In a nutshell, these two papers add to the board of knowledge as far as IoT-Fog-Cloud 

information is concerned. 

As evidenced by our practical findings that RAS minimize round trip time, improve 

throughput, which leads to reduced latency and improved performance of the whole 

IoT-Fog-Cloud architecture, it can be implemented to existing systems. Having a 

system with a reduced round-trip time, improved QoS, meet the end-user 

expectations, promote faster communication and task execution plays a pivotal role in 

supporting smart environments. The introduced RAS will be able to support the 

emergence of the fourth industrial revolution, which is all about “smart world”. The RAS 

can also be implemented in smart homes, smart cities, smart health, smart industries 

and many smart IoT application areas. In smart homes, it would help in security issues 

as updates and alerts will be given in real-time on cases such as fire, theft, among 

other things that might cause a threat to the safety of humans.  

https://www.spu.ac.za/index.php/ieee-imitec-2020/
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In smart hospitals (health), patience will be monitored, their data analysed, and their 

databases updated in real-time, which will reduce problems usually caused by human 

errors. Situations that require real-time applications in smart health include monitoring 

of dialysis, heart problems, life support machines and many more. Human life will be 

lost if there is compromised round-trip time. 

Cars and any faulty robots will be monitored in smart cities in real-time which will 

reduce accidents. Industries were artificial intelligence is taking a center stage through 

the use of robots which are used and controlled in doing jobs in real-time will also 

benefit from the benefits offered by RAS in fog computing.  

This research is of paramount importance to South Africa as a country, Africa as a 

continent and the world in general as they are about to adopt the fourth industrial 

revolution to help our communities. In the South African context and Africa where there 

is low penetration of the internet infrastructure and the affordability issues of 

bandwidth, RAS will help in efficiently and effectively use the available bandwidth while 

minimizing latency in automated machines. 

6.5 Future Work 

Importantly, our results provide evidence that if resource allocation is done properly, 

round-trip time can be reduced and QoS can be improved in fog computing. However, 

future investigations are necessary where the approach will be tested in a real-world 

IoT environment to validate the conclusions that have been drawn from this study 

which are based on the simulation environment. To fully authenticate our findings, 

future research should consider the potential effects on queuing time, offloading time 

and throughput more carefully, for example when the RAS is implemented in a 

different setup where the IoT devices are mobile. Regardless of our findings, future 

research should continue to explore how roundtripe time can be minimized and QoS 

be improved in fog computing since many IoT devices are coming into play to fulfil the 

dream of living in a smart world where everything will be automated. As can be noticed, 

our research focused mainly on the IoT and fog layer. In other studies, the focus should 

also be given to the interaction between fog and cloud to continuously benefit from the 

finite computation, which can be harnessed on the cloud layer without compromising 

QoS. 
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In conclusion, as far as this research is concerned, it will be necessary that future 

researchers should also center their research based on the open research areas as 

highlighted in our literature review paper which includes: (a) Orchestration (Cloud-Fog) 

Challenge, (b) Computing Challenge and, (c) Management Challenges. These open 

research areas can also affect round-trip time and QoS. As such, there is a need to 

call for joint effort for further studies in fog computing and IoT-Fog-Cloud architecture. 

6.6 Conclusions 

This chapter articulated the summary of the whole thesis and highlighted how the 

research answered the aims, objectives and research questions. Of significant 

importance, the chapter explained the significance of this work and the contributions 

to the body of scientific knowledge of IoT, fog computing and cloud computing as far 

as round-trip time which affects latency and QoS is concerned. In conclusion, 

shortcomings and future research avenues have alluded.
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ABSTRACT 

With the advent of the paradigm of the Internet of Things, many computing elements 
need many modifications to promote Quality of Service (QoS). Quality of Service is a 
pillar that promotes real-time reaction to time-critical tasks. Any impediments to QoS 
should be resolved and handled. In 2012, fog computing was implemented to enhance 
QoS in current systems in a bid to tackle QoS problems encountered by using cloud 
computing alone. Currently, the primary focus in fog computing is now on enhancing 
QoS. The primary goal of this study is, therefore, to critically review and evaluate the 
literature on the work done to improve elements of QoS in fog computing. This study 
begins by examining the roots of history, characteristics, and advantages of fog 
computing. Secondly, it discusses the important elements of QoS parameters. Finally, 
open problems that still affect fog computing are identified and discussed in order to 
achieve enhanced QoS. 

INTRODUCTION 

 
The Internet of Things (IoT) is defined as a vibrant worldwide data network composed 
of internet-connected objects such as radio-frequency identifiers, sensors, and 
actuators, as well as other devices and smart devices that are becoming an essential 
part of the Internet (Perera, Liu, Jayawardena, & Chen, 2014). The word IoT can be 
traced back to the early 1990s when Kelvin Ashton introduced it (S. Albishi, Soh, Ullah, 
& Algarni, 2017). Over the years, IoT has received considerable attention due to the 
capacity to interact and execute some tasks together or react to incidents without 
specific instructions (Perera, Zaslavsky, Christen, & Georgakopoulos, 2014).  
Intelligence, Connectivity, Dynamic Scale, Enormous Nature, Sensing, Heterogeneity, 
and Security are the key fundamental characteristics which drive IoT (Ericsson, 2011). 
The above-mentioned features have contributed considerably to the successful 
adoption plus the use of IoT in current information systems and applications, creating 
value and support for human operations (Perera, Liu, et al., 2014). Collected works 
demonstrate that IoT has been implemented in various fields, leading to the 
development of smart cities, intelligent energy, and electrical grids, intelligent homes, 
smart buildings and infrastructure, intelligent health just to mention a few (Saad et al., 
2017).  
DOI: 10.4018/IJFC.2020010102 
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This “smart world” has changed the manner in which people live and work by saving time and 
organizational resources whilst bringing new opportunities for knowledge formation, innovation, 
and development (Capossele, Cervo, Petrioli, & Spenza, 2016). 

After the realization that the “things” that make up the IoT ecosystem have limited 
processing power and storage, cloud computing was introduced and integrated into IoT to 
provide scalable storage and processing services to meet IoT demands (Atlam, Walters, & Wills, 
2018). In spite of cloud computing advantages in terms of storage and processing services, it 
still suffers mostly in providing low latency (Satria, Park, & Jo, 2017). This is because of its 
geographical location to the devices it wants to offer services. High latency compromise QoS 
which cause communication delays due to unstable and intermittent network connectivity. 
Explicitly, the unprecedented amount of data produced by IoT devices (Dastjerdi & Buyya, 2016) 
burden the network resulting in network transmission delays. Additionally, sending such huge 
data to and from the cloud requires exceptionally high network bandwidth (Atlam et al., 2018).  
With the anticipated 50 billion intelligent interconnected device deployments serving various 
vertical markets by 2020, QoS is probable to be compromised which in turn affect time-sensitive 
functions which have been backed by cloud computing. As such, this has triggered a concerted 
effort to come with adaptive and decentralized computational paradigms that complement the 
centralized cloud computing model serving IoT networks. To fill this technological gap, new 
concepts and technologies have been developed to manage this growing fleet of IoT devices. 
Specifically, fog computing which was introduced by Cisco has gained much attention (Bonomi, 
Milito, Zhu, & Addepalli, 2012). OpenFog Consortium ( the IEEE standard) defined fog 
computing as “a horizontal, system-level architecture that distributes computing, storage, 
control, and networking functions closer to the users along a cloud-to-thing continuum” 
(OpenFog Consortium Architecture Working Group, 2017). Fog computing architecture consists 
of fog (physical or virtual), residing between smart end-devices and centralized (cloud) services 
which facilitates minimization of the request-response time from-to supported applications, and 
provides, for the end-devices, local computing resources and, when needed, network 
connectivity to centralized services (Iorga, Martin, & Feldman, 2018). These are achieved 
through fog computing  ability to support: i) Low latency and location awareness; ii) Extensive 
geographical dispersal; iii) Mobility; iv) Very large number of nodes, v) Predominant role of 
wireless access, vi) Strong presence of streaming and real-time applications, vii) Heterogeneity, 
thus supporting critical IoT services and applications to have improved QoS (Atlam et al., 2018). 
 Since its inception in 2012, fog computing has gained much attention in both academic 
and industrial space because of its advantages in supporting the Internet of Things technologies 
and providing improved QoS. Several surveys whose main topics cover fog computing key 
features(Vaquero & Rodero-Merino, 2014), platform and paradigm(Xu & Helal, 2014), 
architecture design (Simonet, Lebre, & Orgerie, 2016), security, and privacy (Osanaiye et al., 
2017) has been done and in-depth. However, to the best of our knowledge, there are no existing 
related survey papers of fog computing whose main perspective is on QoS. The primary 
purpose of this study is, therefore, to review and critically evaluate current literature on the work 
that has been done to tackle difficulties and enhance QoS elements in fog computing. 
Conclusively, open researches areas and future re-scopes for QoS of fog computing will be 
underscored. 

BACKGROUND 

Providing satisfactory QoS is a fundamental goal in networking, cloud services or in general 
information systems. Depending on the perspective, QoS can have several definitions. From a 
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networking perspective, QoS refers to any technology that manages data traffic to reduce packet 
loss, latency and jitter on the network (Cisco, 2014). In general information systems, Quality of 
Service is the capacity to prioritize distinct applications, customers or information flows or to 
ensure a certain level of information stream efficiency. In cloud computing, QoS is “non-
functional properties of cloud services, which describe how well a service is performed, such as 
compliance, availability, reliability, responsiveness, price, security, latency, etc.” (Zheng, Xu, & 
Chai, 2017). The major parameters that define QoS include throughput, transit delay, 
availability, priority, jitter, etc. In the light of the definitions above, QoS is very important because 
it promotes improved services.  

Correspondingly, studies have been done both in academia and industrial domain on 
how fog computing technologies can be used and implemented in existing systems to enhance 
QoS. Failure to maintain high QoS in fog computing have a negative impact on fog computing-
based systems and or applications. This will cause fog computing-based systems and 
applications to encounter end-to-end communication delays(Souza et al., 2017), service 
migration issues (Song et al., 2017), workload deployment challenges (Taneja & Davy, 2017), 
computation and resource allocation problems (Chao et al., 2017), etc. For this reason, it is wise 
to continuously devise ways and strategies to maintain high QoS in fog computing as to avoid 
the above-mentioned problems if we are to successfully meet and support demands of the 
dynamic IoT ecosystem. 

As affirmed from prior existing research, work which covers fog computing key features, 
paradigm, design, security, and privacy has been done as main topics and in-depth. In contrast, 
none has looked at QoS in fog computing as the main topic and in detail. The work that exists, 
for example (Yi, Li, & Li, 2015) focused on identifying problem domains of fog computing. In a 
synopsis, Yi et al (2015) looked at the QoS and summarized four aspects of fog service which 
help to achieve QoS namely connectivity, reliability, capacity, and delay. Researchers Li et al. 
did a survey which looked at architecture design and system management. The work described 
major optimization solutions and heuristic approaches to deal with time transmission, execution 
time, round-trip time, real-time support to address delay and execution time(C. Li et al., 2018). 
Researchers, Nath et al (2018) did a survey whose focus was on fog computing system 
architectures, fog enabling technologies and features, privacy and security of fog, the QoS 
parameters, and application of fog (Nath et al., 2018). Even though these survey papers have 
mentioned QoS, they did not specifically go in deepness. Since QoS is an important factor in 
fog computing for IoT especially for time-critical application, this paper serves as a complement 
survey paper to the research field of fog computing. 

The survey is structured as follows. In the next section, the authors start by describing 
and defining the meanings of the aspects of QoS and the problems or challenges they cause in 
fulfilling QoS requirements in fog computing. Furthermore, a look in the literature on how 
researchers addressed the problems and how they have improved QoS aspects in fog 
computing. In conclusion, open research areas are highlighted, discussed as areas that need 
attention and further research. 

QUALITY OF SERVICE IN FOG COMPUTING 

 
In order to get enhanced QoS, fog computing technology has been developed and implemented. 
Without any doubt, as supported by the literature, fog computing has managed to offer improved 
QoS among other advantages. Several systems and applications have adopted the use of fog 
technology over the years to improve QoS in the existing systems. Quality of Service can be 
classified into the following aspects (see Figure 8: QoS aspect taxonomy tree below). Much 
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attention has been paid to enhancing QoS in fog computing recently. Several approaches have 
been suggested and implemented to address QoS aspects challenges and positive strides have 
been made in that regard.  
 

 
Figure 8: QoS aspect taxonomy tree 
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Reliability 

 

Reliability of fog computing is centered on the two pillars that are service continuity and network 
quality. 
 
Service Continuity  
 

It should be noted that to achieve reliability in fog computing, service continuity plays a pivotal 
role. To achieve service continuity handover and service migration are at the center of it. 

Handover 

Handover is one such aspect which promotes service continuity and should be done with care. 
Handover in fog computing is the ability of the fog to continuously provide the services to the 
client whether they are stationary or moving from one point to another with continuous 
communication without service interruption (S. Wang et al., 2018). In order to continue providing 
the fog to the client, the service provider needs to figure out how the client can seamlessly 
access the machines that host the fog. The main objective behind the handover mechanism is 
to keep the connection between sensor nodes and a gateway with low latency (Gia et al., 2018). 
It becomes a greater challenge in handover when the size of the signal messages and state 
data to be transferred by fog terminals and fog stations becomes very large. This will cause an 
increase in the transmission overhead which is the cost of transmitting handover messages 
between two nodes. Moreover, processing overhead which is the cost of processing messages 
at each node in the network is also increased.   In a nutshell, increasing the sum of handover 
signaling overhead delays the performance of handovers which result in compromising the 
reliability aspect of fog computing. Moreover, handover can also cause huge energy 
consumption (S. Wang et al., 2018).  In order to address the above challenges of handover Gia 
et al., discussed and analyzed the metrics for handover mechanisms based on Wi-Fi (Gia et al., 
2018). They proposed a handover mechanism that would support mobility in remote real-time 
streaming IoT systems. The mechanism promoted the connection of sensor nodes and the 
system whilst offering low latency. Authors in (Satria et al., 2017)  suggested two Mobile Edge 
Computing (MEC) recovery schemes as to avoid degrading Quality of Experience (QoE) which 
is stared as a quality that is experienced by the users and is an extension of the QoS in the 
event that there is overload and or broken MEC. They applied optimal algorithms for allocation 
of ad-hoc relay nodes. Even though their simulation results demonstrated the mitigation of the 
problem of overloaded MEC, they did not look on how to improve performance by reducing the 
execution time if the system is implemented in different MEC environment in the event that 
mobile devices increase dramatically. To achieve low delay performance and service continuity 
in connected vehicles even when the resource is under heavy load (J. Li et al., 2017)  proposed 
two resource management schemes, in fog enhanced radio access networks (FeRANs)  which 
would prioritize real-time handover for moving vehicular services so that vehicular users can 
access the services with only one hop. Simulation results proved that their proposed solution 
would offer improved one-hope access achieving low delay performance. 

Service migration/relocation 

Service migration/relocation is also an important aspect of achieving service continuity. Service 
migration is similar to handover as it focuses on the mobility of users from one area to another. 
The difference is that in-service migration; the provider has to move the corresponding software 
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service from one machine to another machine in order to ensure the client to continue accessing 
the service while the client is moving. This implies that when transferring data, you need to 
consider time cost as it causes a greater challenge for seamless service migration. Another 
problem that can be experienced in-service migration is delays because of the existence of 
different network topologies between the start fog node and the destination fog server which 
has different transferring latency and process cost (S. Wang et al., 2018). Follow Me Edge 
(FME) concept was introduced by (Taleb et al., 2017) as to allow any time anywhere data access 
as to ensure high QoE and reduced latency. The research discovered that to achieve efficient 
migration of service, selecting the right combination of techniques is important. The researchers 
pinpointed out that for future work, there is a need to find out which combinations will achieve 
migration of services.  In a bid to improve QoE in future wireless access networks, the authors 
(Iotti et al., 2017) used an internet access network approach based on fog computing where 
they dynamically moved content from cloud/web to nodes located at the edge of the access 
network. Their work played a pivotal role in optimizing bandwidth usage, reducing latency and 
enhancing QoE as validated by experimental analysis of the data collected from public Wi-Fi 
hotspots.  
 
Network Quality 
Network quality is another aspect which supports reliability and it can be achieved when we 
have good connectivity, low end-to-end latency, and less traffic overload. 

Connectivity 

Network connectivity can be defined as the average number of nodes connecting to other sets 
of nodes over a certain time duration under the link condition (Chuanmeizhi et al., 2016).  This 
implies that when the connectivity of the network is so strong, there will be a decrease in the 
probability of reconnection which is as a result of the increase of the distance. In simpler terms, 
connectivity is the condition when a valid communication route between two or more nodes 
exists in order to exchange data packets (Artimy, Robertson, & Phillips, 2004). If there is 
connectivity failure due to several factors for example increase in distance between nodes, 
decrease in density of nodes, velocity in mobility situation, etc. will result in data being lost during 
those connectivity outage periods and cause some data to be delivered out of order. Due to 
these connectivity outage periods, severe delays can also be experienced which compromise 
time-critical application thus affecting QoS (Pérez et al., 2018). In the of vehicular networks, 
(Chuanmeizhi et al., 2016) concluded that the decrease of stability of connectivity leads to a 
smaller probability of reconnection of nodes especially when the communication range and 
average distance becomes larger. To solve this challenge, they propose that the density of 
nodes be increased in an area where there are many IoT devices as to avoid congesting the 
network thus creating strong connectivity between nodes which makes a network to behave as 
wired. In order to satisfy connection conditions in 5G systems, (Sampei, 2017)  proposed that a 
controller functionality is shifted to an edge controller which will be located close to the controlled 
machine. To further enhance the flexibility of networking, network slicing and softwarization 
using the software-defined network (SDN) are the other two pillars which were suggested in this 
work to be included in the network. It was concluded that, it is best to make a flexible wireless 
access system to support the deviation of the number of simultaneously connected devices in 
enormous connections. 
 



126 
 

End-to-end latency 

End-to-end latency which can also be called service delay is the response time (the time 
required to serve a request) that is the time interval between the moment when an IoT node 
sends a service request and when it receives the response for that request (Yousefpour, 
Ishigaki, Gour, & Jue, 2018) is another aspect of network quality which needs attention. One of 
the major causes of an end-to-end latency can be attributed to server compute time, network 
flexibility in terms of transfer speeds (Chen et al., 2017), a distance of the controller (server 
node) to the controlled machine (client node) (Sampei, 2017), etc. End-to-end latency is a 
challenge because of different wireless network communication systems coming into play (Wi-
Fi,3G, 4G,5G, LTE-U) which does have different flexibilities. To reduce end-to-end latency and 
satisfy latency conditions in the new coming 5G, Sampei (2017) proposed that the location of 
controllers be near the controlled machine (Sampei, 2017). Moreover, Sampei (2017)  further 
suggested that network functionality in wireless access ought to be made flexible as to fulfill 
end-to-end QoS requirement. Additionally, Souza et al. highlighted that another key point to note 
on controllers is, they should be a reduced number of involved control elements and average 
delay provided by each one of them if we are to enable low latency end-to-end communication 
(Souza et al., 2017). Authors Chen et al. provided some insights on how to reduce end-to-end 
latency by 60%-70% without sacrificing accuracy by introducing a novel black-box multi-
algorithm which leverages temporal locality approach (Chen et al., 2017). The two parameters 
they used to measure their algorithm for an end-to-end latency was the processing and 
networking time (when the frame is captured to when the corresponding response is received). 
Researchers in (Yousefpour et al., 2018) introduced a general framework for IoT-fog-cloud 
applications and offloading police for fog-capable devices that aims to reduce and minimize 
service delay for IoT applications. In their work, Chao Wang et al. introduced CPEP middleware 
for real-time cyber-physical event processing to reduce processing delay and enhance reduced 
end-to-end latency(Chao et al., 2017). The works of Aral and Brandic proposed a Bayesian 
Network model of QoS related parameters to predict the availability of virtual machine in edge 
infrastructure (Aral & Brandic, 2017). Their work wanted to limit deteriorating response time 
which is a critical factor in edge applications. Experimental results showed that the proposed 
method can identify virtual machines that satisfy user-defined availability objectives with up to 
94% accuracy 

Traffic Overload 

A traffic overload challenge happens when a communications network exceeds the maximum 
finite volume of traffic it is supposed to carry. As a result, a degradation in performance will occur 
which will cause latency and some delays. It has become a challenge because of the IoT 
ecosystem which is generating a tremendous amount of data.  As a result of that tremendous 
amount of data, it becomes difficult to transverse data over the network. This is a serious issue 
which affects network quality. A novel deep learning-based traffic flow prediction method was 
proposed by (Lv et al., 2015) which predicted the traffic flow and helped to prevent traffic 
overload which affected network and  QoS. Fan and Ansari proposed a LoAd Balancing(LAB) 
scheme which allowed load balancing among the base stations in the event that the traffic load 
of the network is heavier than the computing load of the network (Fan & Ansari, 2018). Their 
findings demonstrated that LAB can perform better compared to the ά-distributed algorithm and 
best Signal Interference Noise Ratio (SINR) algorithm. 
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The above work can be summarized in Table 2 which highlights the QoS parameters being 
addressed in each paper 
 
 
Table 2: Summary of QoS parameters addressed under reliability 
 

 Service continuity Network quality 

 Handover Service 
migration 

Connectivity End-to-
end 
latency 

Traffic 
overload 

(Satria et al., 2017) TD     

(Gia et al., 2018) TD; AB     

(J. Li et al., 2017) TD; AB     

(Taleb et al., 2017)  TD; AB    

(Iotti et al., 2017)  AB; TP    

(Artimy et al., 2004)   AB; TD; TP   

(C. Wang et al., 2016)   TD   

(Sampei, 2017)   AB TD  

(Pérez et al., 2018)   TP   

(Aral & Brandic, 2017)   AB,TD,TP   

(Souza et al., 2017)    TD; TP  

(Chen et al., 2017)    TD  

(Yousefpour et al., 2018)    TD  

(Lv et al., 2015)     PO 

(Fan & Ansari, 2018)     PO 

TD = Transit delay AB = Availability  TP = Throughput PO = Priority 
 

 

Performance 

 
In order to have the best application and or task performance and service performance in fog 
computing, there is a need to handle the following in a cautious way. 
 
Application/Task performance 
The three pillars to achieve effective and efficient application/task performance are lowering 
task/application execution latency, improve task/application allocation and improve 
task/application scheduling. 

Task/Application execution latency 

Task execution latency is the total duration of transmission of a task from the IoT devices to the 
fog/edge servers, queuing and processing at the fog servers and its return with a successful 
reception at the IoT devices (Dao et al., 2018). The greater the task execution latency, the poorer 
the performance of that system. Reducing task execution latency is the key to achieve good 
performance.  QoS and QoE are seriously affected by execution latency as it generally lowers 
the performance which affects task response time. Therefore, when you want to reduce task 
execution delay in the mobile edge network, it is wise to consider user mobility, task properties, 
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and network constraint. Wang et al proposed a light weight heuristic algorithm solution which 
provided accurate delay estimation (fast scheduling) to support accurate offloading decisions 
on mobile devices(Z. Wang et al., 2018). In their findings through simulation experiments to test 
for performance, it was noted that end-to-end delay for MEC can be reduced significantly 
through task execution delay which leads to an increase in resource utilization. Researchers in 
(Chowdhury et al., 2018) improved the task execution latency when they implemented the 
context-aware task migration scheme for HART-centric task execution in fiber-wireless (FiWi) 
based Tactile Internet infrastructures. Apart from selecting suitable cobot and collaborative node 
for HART-centric task execution, their approach would also migrate a task from one 
collaborative node to another. Based on their findings, the proposed task migration scheme 
proved without reasonable doubt that it is suited to provide low-latency performance for 
emerging Tactile Internet applications. A pattern-identified online scheduling task (PIOTS)  
mechanism was introduced by (Dao et al., 2018)  to help assign task as a way to address task 
processing latency and service capabilities challenges as to satisfy industrial IoT applications. 
To achieve its goal, PIOTS scheme uses SOM technology to identify a task, then assigns the 
task to appropriate ECE by using Hungarian method. Thus deliberating on real-time task 
assignment. 

Task/Application allocation 

Task or application allocation is whereby a task or application is assigned to a fog server/node 
and the cloud server depending on the task requirement. Assigning a task to a server/node that 
meets its requirements helps in processing the task without delays. This helps in meeting user 
QoS requirements, reduces latency and facilitates quick response time. In such an environment 
where there are heterogeneous and autonomous devices, there is a need to have low 
complexity algorithms that help for efficient task allocation among nearby device. However, to 
come up with such low complexity algorithm is inherently a challenging problem which requires 
serious attention so as to fulfill user QoS requirements on task allocation (Dana Jošilo & Dán, 
2018). 

Task/Application scheduling 

Task scheduling is the ability to schedule a task to fog nodes that will execute a task at the 
shortest time. This is achieved when a task is scheduled to a node with high computational 
power. The objective is to satisfy the user QoS requirements and to improve the fog computing 
throughput. Failing to select appropriate resources for the application task is referred to as task 
scheduling problem in fog environment. (L. Liu et al., 2018). Neil et al proposed a resource 
allocation strategy for fog computing using Priced Timed Petri Nets (PTPN) which helped to 
utilize and link both cloud and fog resources. Their approach helped to improve efficiency of 
resource utilization, satisfy user QoS requirements and maximize the profit of both providers 
and users which has become a big challenge. Priced Timed Petri Nets technologies allowed the 
user to choose the satisfying resources autonomously from a group of pre-allocated resources. 
Based on the results, the authors concluded that their approach can achieve more efficiency 
when compared to static allocation strategies based on task completion time and price. The 
work of (Xiao & Krunz, 2017) proposed a novel offload forwarding strategy where fog nodes 
would either not offload; offload and forward part or its entire load so that it will be processed by 
other local fog nodes which are idle and have better computational power than them. This 
strategy helped to minimize the average response time which included workload transmission 
time and queuing delay at the fog layer and significantly improved the performance of fog 
computing network, thus improving Quality of Experience (QoE) of users. The researchers 
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validated their approach using traditional Alternating Direction Method of Multipliers (ADMM) 
approach which proved that it cannot be used to solve the offload allocation problem for fog 
computing. However, their work used fewer nodes and did not pay attention to time-critical 
events which call for further experimental trials to check how it will perform in such a scenario.  
 
Service Performance 
Service means the fog service. Not the physical machine, neither the application that runs on 
the fog server. A fog service can be a Virtual Machine service or a Docker container service that 
allows the client to deploy application/task on it. Service performance can be achieved by 
physical fog node placement, load balancing, service/resource scheduling, and service 
allocation/placement. 

Physical fog node placement 

Where to place the physical equipment/machine that provides the fog is an important factor in-
service performance. The greater the distance of fog nodes to the machines/ devices it wants 
to serve, the lesser the service performance and this will have a negative effect on QoS. If fog 
node placement problem is not handled carefully, it means service performance will be affected 
causing more task processing delays. The work of (Yao et al., 2017) acknowledges the 
importance of fog computing which pushes the network resources closer to the user in 
addressing QoS. The authors proposed that the cloudlet servers should be deployed on a given 
set of access points where users randomly roam among them with known statistics. However, 
they reasoned that fog computing cannot be used alone in supporting mobile computing task 
considering the fact that cloudlet servers are heterogeneous (have different resource 
capacities). To support the physical placement of access points and computational complexities, 
they further propose and devised a low-complexity heuristic greedy in principle algorithm with 
polynomial-time complexity and applied the Barabasi-Albert Model to generate random 
networks. Experimental results proved the efficiency of their algorithm as it addresses the 
heterogeneous problem of cloudlets in fulfilling predetermined QoS. 

Load balancing 

Load balancing goal is to distribute efficiently and fairly the dynamic workload across multiple 
nodes to ensure that no single node is overwhelmed. It is very important to do load balancing 
as it helps in optimal utilization of resources, reduces energy consumption, enabling scalability, 
avoiding bottleneck and over-provisioning and reducing response time. Additionally, in case of 
service fail, load balancing helps in continuation of the service by provisioning and de-
provisioning of instances of the application without fail thus implementing fail-over (Jain Kansal 
& Chana, 2012). It can be noted that the above-highlighted advantages of load balancing 
enhance the performance of the system. According to (Neto, Callou, & Aires, 2017) load 
balancing comes with many issues related to QoS, security, and networking which are a cause 
of concern in fog computing and if not handled carefully, they negate the advantages of 
implementing fog computing. After the realization that fog computing face challenges such as 
multi-tenacy optimization and load balancing, (Neto et al., 2017) introduced a Multi-tenant Load 
Distribution Algorithm for Fog environments (MtLDF). This helped to optimize the load balancing 
in fogs environments considering specific multi-tenancy requirements (delay and priority). 
Authors in (X. He, Ren, Shi, & Fang, 2016) developed novel SDN-based modified constrained 
optimization particle swarm optimization (MPSO-CO) centralized load balancing algorithm 
which helped to balance workload between cloud/fog devices. This approach helped in reducing 
task processing latency challenges which affect latency-sensitive services on the Internet of 
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Vehicle (IoV). Their simulation results showed a decrease in latency and enhanced QoS which 
assisted in the latency-sensitive task. In their future work, they reiterated the need to do research 
in other load balancing algorithm and also look at other aspects of QoS such as security, 
capacity, etc. 

Service/resource scheduling 

Resource scheduling is one major issue of fog computing, the scheduling policy and algorithms 
affect the performance of fog computing directly. Resource scheduling is to provide an optical 
mapping that assigns a required task or virtual resources onto available fog (or physical) 
resources at a specific time (Zhan et al., 2015). Resource scheduling should involve managing 
and scheduling fog resources and the taxonomy should consist of basically three categories 
that are scheduling in the application layer, scheduling in the virtualization layer, and scheduling 
in the edge layer. Most scheduling problems consist of four basic elements that are resources, 
task, objective (things that need to be fulfilled) and constraints. It is very important to address 
resource scheduling problem because there are cases where two tasks may have to share one 
resource. In doing resource scheduling in fog computing, the main objective will be to minimize 
service latency. However, it is noted that resource scheduling in fog computing is affected by 
other delay components such as transmission delay, queuing/networking delay, processing 
time, dependency constraints and resource queues which is a problem which requires serious 
attention as to minimize service latency in fog computing and promote improved QoS. Two-
stage Stackelberg game approach and two computation offloading algorithm which assisted in 
offloading computation from cloud to local fog servers which are available at the edge was 
introduced by (Y. Liu et al., 2017).In their work, the fog servers would join the network and leave 
dynamically. This approach helped to offer low delay and reduced complexity thus providing 
satisfied QoS. Critically analyzing their base which they used to draw a conclusion, it can be 
noted that the authors validated their results using theoretical analysis which cannot be a 
standing measure. As such, there is a need to test this approach using other experimental 
means. 
 

Service allocation/ placement 

Service placement objective is to place each service either on a fog cell/ virtualized fog resource 
while taking into consideration factors like QoS guided by limitations like deadlines on the 
execution time of applications. It is important to allocate service to a resource that suits user 
QoS requirements to minimize execution delays which affect response time. The key principle 
guiding service placement in fog computing is to maximize the utilization of fog landscape and 
adhere to the QoS expectations of the application (Skarlat et al., 2017b). Failing to do service 
placement will affect execution time resulting in some delays which affect the QoS requirement. 
With the same motive of addressing the challenge of fog service placement, (Skarlat et al., 
2016a) proposed a conceptual framework for fog resource leasing and releasing (provisioning). 
The envisioned architecture was evaluated using a customized simulation. It was observed that 
the approach decreased task request delays by 39%. In a bid to address some shortfalls 
highlighted above, authors (Skarlat et al, 2017b)  implemented the system in iFogSim testbed 
as to solve the fog Service Placement Problem (FSPP) whilst considering the heterogeneity of 
applications and resources in terms of QoS attributes. They introduced a generic algorithm 
which assisted in reducing network communication delays and promoted a better utilization of 
fog resources. Simulation results showed an improvement in service placement plan produced 
by the genetic algorithm, greedy first-fit heuristic, and an exact optimization method. Being 
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motivated to investigate the optimal placement of cloudlets and with the motive to combat highly 
dynamic traffic loads of mobile IoT device which cause access delays (affecting QoS) and in 
addition addressing the challenge caused by heterogeneous infrastructure among IoT networks 
(Zhao et al., 2018) applied a ranking-based near-optical placement algorithm (RNOPA) which 
is an improved version of EOPA which was able to dynamically adapt to mobile IoT and their 
traffic loads. Their experimental and extensive simulation results showed improvement both in 
average cloudlet access delay and reliability when using RNOPA compared to Kmedians 
Clustering algorithm. However, in their work, they did not look at latency and stability when 
offloading tasks from the overloaded access point to a remote cloud. 
 
The above work can be summarized in Table 3 which highlights the QoS parameters being 
addressed in each paper 
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Table 3: Summary of QoS parameters addressed under performance 
 

 Task Performance Service Performance 

 Task 
Execution 
latency 

Task 
allocation 

Task 
Scheduling 

Physical 
fog node 
placement 

Load 
balancing 

Resource 
Scheduling 

Service 
Allocation 

(C. Wang et al., 2016a,)  TD; PO       

(Z. Wang et al., 2018b) TP; TD  AB     

(Chowdhury et al., 2018) TD;TP AB; PO      

(Dao et al., 2018) TD  AB; PO; TD     

(Song et al., 2017)  TD; TP      

(Ni, Zhang, & Yu, 2018)  AB; TD; TP      

(Xiao & Krunz, 2017)   AB; TP      

(Rashidi & Sharifian, 2017)   AB;TD,TP      

(Shen et al., 2015)   AB; TD; TP      

(K. Wang & Yang, 2017)   TP      

(Alsaffar et al., 2017)  TD; TP      

(Pham et al., 2017)   TD; TP     

(G. Li et al., 2018)    AB; TD     

(Mahmud et al., 2016)   TD; TP; PR     

(Yao et al., 2017)    TD    

(Neto et al., 2017)      TD; PO   

(X. He et al., 2016)     TD; TP   

(Y. Liu et al., 2017)      AB;TD;TP  

(Skarlat et al., 2016)      AB; TD;TP TP 

(Taneja & Davy, 2017)        PO; TD 

(Skarlat et al., 2017a)       PO; TD 

(Skarlat et al., 2017b)       TP 

(Zhao et al., 2018)        TD 

(Y. He et al., 2018)       TD; TP 

(Yang et al., 2018)  AV; PO      

(Kiani & Ansari, 2018)      TD,TP  

 
TD = Transit delay  AB = Availability  TP = Throughput  PO = Priority 
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Cost 

 
The main reason for implementing fog computing to support cloud computing is to 
reduce the total cost because using cloud servers was now becoming expensive. To 
achieve that there is need to deal with energy efficiency, server operational cost, and 
pricing of using fog services.  
 
Energy efficiency 
Power efficiency is a measure of the amount of power spend by a node when doing 
specific tasks like processing, execution, offloading, etc. Because power utilization is 
a critical aspect of fog computing, it is vital that fog nodes maximize power efficiency 
by reducing the power consumed when processing the workload. It should be noted it 
is not only hardware efficiency that determines energy consumption, but factors such 
as resource management system that are deployed on the infrastructure play a role 
not forgetting the efficiency of the applications running in the systems. The total 
amount of power consumed by a node determines its effectiveness. the users’ QoE 
and fog nodes’ power efficiency are closely related to each other. The ability of a fog 
node to use less energy (power) even if it is given more workload to process plays a 
great role in achieving QoE as most IoT and fog nodes do not have bigger power 
reserves. Performance growth is also limited when there is higher energy consumption 
in fog computing systems as a result of carbon dioxide footprints and huge electricity 
bills. Therefore, it is a mandate to see to it that there is minimized power and energy 
consumption to minimize cost so as to improve the profits of using fog computing. End 
users are affected when there is no energy efficiency because more total cost will be 
incurred as a result of resource usage cost which is incurred by the resource provider 
(Beloglazov et al., 2011). The works of (Chowdhury et al., 2018) (Xiao & Krunz, 2017) 
(Shen et al., 2015) (K. Wang & Yang, 2017) implemented several strategies in 
addressing the energy efficiency challenge whilst addressing other QoS aspect as 
highlighted above. The works of (Kiani & Ansari, 2018) who introduced Non-
Orthogonal Multiple Access (NOMA) optimized framework which is an edge-aware 
technique directly dealt with energy efficiency as its main objective as to reduce MEC 
users’ uplink energy consumption. The NOMA minimized energy consumption by 
optimizing the user transmit powers, clustering and computing and communication 
resource allocation. Additionally, an efficient heuristic algorithm for user clustering was 
introduced for power control to be solved independently per NOMA cluster. Their 
results proved that the NOMA scheme can lower energy consumption. 
 
Server operation cost 
It is important to always minimize the server operational cost without compromising 
service performance. However, in a bid to reduce server operational cost by reducing 
e.g the number of fog layer nodes still faces challenges in dynamically supporting low 
latency services. Subsequently, the reduction of fog servers within the vicinity of the 
IoT devices to provide more computational resources in a bid to lower server 
operational cost will also lead to users’ tasks accumulating resulting in the violation of 
the required service response time(Yang et al., 2018). It is still a problem to reduce 
server operational cost without compromising user QoS requirements. Researchers in  
(Yang et al., 2018) introduced a novel dynamic resource allocation framework in an 
effort to incur minimum operational cost whilst satisfying the applications’ latency 
requirements. Their results ensure that the MEC service response was minimized 
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while achieving up to 33% operational cost reduction when compared to the fixed-
location practices. Their approach did not consider the cost when there is a need to 
migrate from user-to MEC assignments 
 
Pricing of using fog services 
Customers who want to use computing resources from fog services are charged based 
on the number of virtual machines and hours of usage (Pham et al., 2017). It is also 
important to reduce the use cost if the fog has been in a long-term idle state or when 
it is assigned less task as to enable the user to be assigned to the resource that meets 
the requirement (Ni et al., 2018). The higher the pricing of using the fog service the 
less the task that is assigned to the resource and as a result the resource become 
long-term idle resulting in wasting resources. 
 
The above work can be summarized in Table 4 which highlights the QoS parameters 
being addressed in each paper 
 
Table 4 Summary of QoS parameters addressed under cost 

 Cost 

 Energy efficient Server 
operation 

cost 

Pricing of 
using fog 
services 

(Shen et al., 2015) AB; TD; TP;   

(Xiao & Krunz, 2017) AB; TP   

(Alsaffar et al., 2017) TD; TP   

(K. Wang & Yang, 2017) TP   

(Chowdhury et al., 2018) AB; PO; TD;TP;   

(Neto et al., 2017)  TD; PO  

(Pham et al., 2017)   TD; TP 

(Ni et al., 2018)   AB; TD; TP 

TD = Transit delay AB = Availability  TP = Throughput PO = Priority 
 

Open Challenges 

 

As a recap and as supported by (Nath et al., 2018), QoS is achieved when there is 
reliability, low energy consumption, no or very minimum acceptable delay insensitive 
services, quality of experience for end-users and good network caching. Given these 
points, fog computing has played a pivotal role since its existence as evidenced in the 
above literature. Be that as it may, the ever increase in numerous dispersed devices 
which generate a huge amount of data that requires efficient processing opens another 
plethora and paused several open challenges. These challenges should be addressed 
through the designing of a deployable system over fog computing if we are to 
unceasingly benefit from fog computing advantages of offering in particular low 
latency, improved QoS among other benefits. Some of the open related challenges 
that affect QoS can be categorized as computing-related, management related, 
network and device-related challenges not to mention other general open challenges 
which include security-related challenges. In this section, our main focus will be to 
highlight open challenges that affect the QoS of fog computing as highlighted in the 
reviewed literature above. 
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Orchestration (Cloud-Fog) Challenge 
It must be remembered that fog computing was not introduced to replace cloud 
computing but to assist in bringing some computational power to the ground. This will 
lead to transmission and processing of data to be done in close proximity with the 
devices. This assisted in addressing latency and QoS among other challenges faced 
when transmitting and processing data to the cloud. With this in mind, there is a need 
to continuously maintain and or developing effective and efficient orchestration 
mechanisms between cloud and fog. As highlighted in the literature, cloud-fog 
orchestration can cause other various open research challenges and if not handled 
carefully they can cause more delays hence affecting QoS. 

Service or Tasks Partitioning  

One such open research in this regard is to come up with an efficient and effective 
alternative for services or tasks partitioning between cloud and fog nodes. The solution 
should be centered on the idea of resources estimation, partitioning of task established 
on the availability of the resource at fog nodes in relation to the expected task 
completion and task response time. Moreover, optimal placement of sub-tasks should 
be done at various fog nodes and to the cloud. The works that have been done to 
address this challenge are application-specific and does not fully address fog 
computing challenges. As such, there is need to come up with a generalized solution 
that addresses the task partitioning problem in fog computing. The task migration 
solution to be developed should promote offloading from cloud to fog and fog to cloud 
with better response time and a high degree of accuracy without compromising QoS. 
Coming up with such a fog computing framework which supports the above-
highlighted points especially requires deep and thorough research. Equally important, 
multi-domain orchestration should receive attention because failure to do so will 
become difficult to maintain resource allocation in multi-domain systems which are 
guided by heterogeneous policies. This is so because of the distributed nature of the 
fog nodes. 

Enforcing Semantics in Fog Computing 

In the context of the IoT environment, fog computing ecosystem is made up of several 
edge devices, actuators, heterogeneous sensors, cloud servers. In such a setup, it 
becomes a challenge to offer meaningful actions to perform the application. Without 
defining the action to be taken on an application, a device, sensor, actuator or servers 
can have a different service action to the same application which results in conflict and 
in-turn affect QoS. Therefore, enforcing semantics in fog computing by ensuring 
correct service in the workflow of the application is of paramount importance to achieve 
the end goal and avoid conflicting actions. Even though in literature there exist works 
that enforce semantics, unfortunately, they cannot be applied in fog computing due to 
the dynamic resource availability at each fog node and the role of clouds needs to be 
defined since fog is a partially distributed system. All these aspects need to be looked 
at as they affect QoS with respect to fog computing scenarios. Additionally, interaction 
among fog devices should be taken care of so that these interactions do not affect the 
overall system in generating the response in a short space of time as to avoid 
promoting response delays, especially in time-critical applications. This is because fog 
nodes always depend on one another when they are doing the task 
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Computing Challenge 
Albeit, virtualization concept has played a pivotal role in fog computing in promoting 
effective resource allocation as to support orchestration of application services, there 
are several challenges that have arisen which need to be addressed so as to support 
virtualization architecture at the fog layer. Even though there are works which were 
done, most of them are not meeting the container resource allocation or VM 
characteristics for fog devices as highlighted in (Nath et al., 2018). Thus creating a 
research gap in container resource allocation or VM, which prompt for efforts of 
coming up with a solution that will properly execute some tasks in a manner that 
support time-synchronization. Furthermore, container migration or VM has opened 
other research gap as it should make the system fault-tolerant and fail-safe. Even 
though (Bittencourt et al., 2016) tried to address that, the proposed architecture did 
not cogitate service dependability as it initiates the migration which is an important 
factor to consider. Since fog computing is resource-constrained, virtualization should 
be lightweight. Because of that, several research challenges have risen which 
advocate for optimization frameworks that support the optimal placement, fog devices 
resource availability, the response time for a specific placement, container initialization 
delay and result aggregation 
 
Management Challenges 
 
As pinpointed in previous sections that fog devices are resource-constrained, it is of 
paramount importance that the resources are properly distributed or else QoS will not 
be met. This opens other research directions in this regard. 

Resource Estimation and Allocation in Fog Nodes 

Comparatively, to ensure fairness and QoS when doing resource allocation has 
become another research challenge in resource management at fog devices. Fairness 
in resource allocation will help in meeting the end-users QoS requirements. As such 
other application that requires real-time response has to be given high priority in 
assessing bandwidth as compared to those that are not time-critical. Even though 
there are some works done, in their future work they recommended the need to come 
up with a universal framework that is not domain-specific. It is a mammoth task to 
come up with a general framework that ensures fairness with service differentiation 
and QoS. As such, for fog based systems especially with the incoming of IoT becomes 
a challenging problem. 

Management of Network Resources in Fog 

Equally important is the management of network resources in fog especially in 
ensuring the correct network connectivity among the resources. Failure to provide an 
effective and efficient network resource management middleware will result in network 
congestion which in turn delay in response time hence affecting QoS. Even though 
Software Defined Networking (SDN) technologies have been implemented as to 
control resource in the fog based systems, there is still need for more work to be done 
since management of network resources is still a challenging task in a fog computing 
context. 
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CONCLUSION 

 

With the dream of living in a “smart” world where IoT becomes the driving force of that 
world, many aspects in computing need many changes as to get a real-time response 
from every gadget as to provide quality of experience and quality of service for end-
users. In such an ecosystem, minimizing response delays and providing a high quality 
of service plays a pivotal role. Fog computing technology has offered handshaking for 
the QoS for cloud, minimized latency thus supporting time-critical events and ushered 
better QoS for users. This survey explored works in the literature which implemented 
fog computing in existing systems to offer QoS, then further went on to look at works 
done with the intention of improving QoS in fog computing. All things considered and 
grounding our conclusion based on this current survey, it can be noted that fog 
computing can be the pillar in offering better QoS in geographical distributed IoT 
devices. Without any reasonable doubt, more work still needs to be done with the main 
intention of improving QoS in fog computing if we are to continuously benefit from fog 
computing as highlighted on the open challenges. 
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Abstract—Fog computing plays a pivotal role in the Internet 

of Things (IoT) ecosystem because of its ability to support delay-

sensitive tasks, bringing resources from cloud servers closer to 

the “ground” to support IoT devices that are resource-

constrained. Although fog computing offers a lot of benefits such 

as quick response to requests, geo-distributed data processing 

and data processing in the proximity of the IoT devices, the 

exponential increase of IoT devices and large volumes of data 

being generated has led to a new set of challenges.  One such 

challenge is the allocation of resources to IoT tasks to match 

their computational needs and QoS requirements whilst 

meeting task deadlines.  Most proposed solutions in existing 

works suggest task offloading mechanisms where IoT devices 

would offload their tasks randomly to the fog layer. Of course, 

this helps in minimizing the communication delay, however, 

most tasks would end up missing their deadlines as many delays 

are experienced when fog node is deciding to process part of the 

task or offloading it to the next fog node. In this paper, we 

propose and introduce a Resource Allocation Scheduler (RAS) 

at the IoT-Fog gateway whose goal is to decide where and when 

a task is to be offloaded either to the fog layer or the cloud layer 

based on their priority needs, computational needs and QoS 

requirements and minimize round-trip time. The study followed 

the four phases of the top-down methodology. To test the 

efficiency and effectiveness of the RAS, a model was evaluated 

in a simulated smart home setup. The important metrics that 

were used are the queuing time, offloading time and throughput. 

The results showed that RAS helps in minimizing the round-trip 

time, increase throughput and improve QoS. Furthermore, the 

approach addressed the starvation problem, which was 

affecting low priority tasks. Most importantly, the results 

provide evidence that if resource allocation and assignment are 

done properly, round-trip time ( queuing time and offloading 

time) can be reduced and QoS can be improved in fog 

computing. 

Keywords—Internet of Things, Fog Computing, Quality of 

Service, Resource Allocation 

INTRODUCTION 

With the advent of the Internet of Things (IoT), which is 

creating a “smart world” and bringing about automation in 

many application areas, many computing elements need 

various modifications to support the IoT devices that are at 

the center of the automation world. Such modifications 

should support the IoT devices which are resource-

constrained while keeping in mind that latency has to be 

minimized and Quality of Service (QoS) has to be improved.  

As such, cloud computing was introduced to support IoT 

devices in terms of resources [1].  Although cloud computing 

concept dates back to the 1990s, this study found out the term 

cloud computing was first used in 2006, precisely on the 9th 

of August by Eric Schmidt, Chairman and CEO of Google at 

the Search Engine Strategies Conference [2]. Since then, 

cloud computing has been widely adopted in many businesses 

for backup, file storage, cost-cutting in terms of 

infrastructure, development and testing as well as investment 

by cloud providers. Cloud computing has also been seen 

taking a central role to support the emerging IoT technologies 

in the interactions between IoT networks. However, the 

exponential growth of the number of connected sensors is 

becoming a challenge to cloud architecture. This is because 

cloud computing is a centralized approach which makes it not 

to be fully more appropriate to service geo-distributed IoT 

devices. The geographical distance seriously affects how the 

cloud servers and IoT devices communicate, leading to 

undesirable latency challenge. Secondly, it becomes costly to 

send the IoT generated tasks to and from the cloud servers as 

more bandwidth is needed during the transmission. This also 

negatively impacts on the latency of the requests.   

Due to the above-mentioned challenges, fog computing 

was introduced by Cisco in 2012, not as a substitute for cloud 

computing, but to complement cloud computing [3]. Open 

Fog Consortium Architecture Working Group (2017), 

defined fog computing as “a system-level horizontal 

architecture that distributes resources and services of 

computing, storage, control and networking anywhere along 

the continuum from Cloud to Things” [4]. It is made up of 

both wired and wireless granular collection endpoints which 

include switching equipment, routers which act as gateways 

and customer premise equipment (CPE). Fog computing has 

become a preferred choice because of its ability to deliver 

services faster and also its ability to offer location awareness. 

It is worth to reiterate that fog computing technology is not a 

replacement of cloud computing but complements it by 

bringing the “cloud resources closer to the ground” where IoT 

devices reside [5]. As evidenced in the detailed survey done 

by [6], several studies have focused on various fog computing 

issues. One of the issues that is drawing much attention is 

how communication and computing resources can be 

allocated and assigned based on tasks requirements and 

priorities. The existing solutions, as informed in literature, 

indicate that resources are assigned/ offloaded based on a first 

come first serve basis without considering task status 

(whether a task is time-sensitive or not) and resource 

requirements [6]. Some existing works focus only on the 

reduction of communication delay. Despite many efforts 

being done to reduce communication delay, this study found 
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out that in many proposed solutions, most time-sensitive 

tasks fail to meet their deadlines. This situation can severely 

affect automation. The starvation problem is another 

challenge that is receiving much attention from various 

researchers. Another open challenge in fog computing is to 

find an effective and efficient resource allocation and 

assignment mechanism that meets the needs of both time-

sensitive tasks and those that are not time-sensitive.  

To address the above challenge and achieve this goal, this 

study proposed and implemented a Resource Allocation 

Scheduler (RAS) in the fog computing framework. RAS was 

introduced at the IoT-Fog gateways and its responsibility is 

to allocate and assign tasks generated by IoT devices to either 

fog layer or cloud layer based on the task’s computational 

needs and priority. 

The remainder of this paper is organized as follows:  

Section II is the related works; Section III is the description 

of the proposed framework. In Section IV, the RAS 

framework’s component interactions are highlighted. Section 

V presents the evaluation setup. Section VI presents results 

and discussion. Section VII concludes the paper.  

RELATED WORK 

Literature shows that several researchers have used fog 

computing to minimise latency and improve QoS in existing 

systems. Such work includes the work of [7], who applied 

jitsi-meet and building process documentation cloud 

(BPDOC) applications to promote orchestration of services 

to address the QoS hindrance problem in the smart 

construction domain. The work of [8] discussed the issue of 

service placement in a home setup domain using a resource 

allocation algorithm to optimize data distribution and 

resource allocation. A two computational algorithm with low 

delay and reduced complexity that uses the principle of 

computation offloading in a mobile domain was used by [9] 

to address service migration mobility. A Follow me Edge 

(FME) concept was used by [10] in a smart city domain to 

achieve efficient resource deployment as a way to address the 

service migration problem. Modified Constrained 

Optimization particle swarm optimization (MPSO-CO) was 

applied by [11] on the Internet of Vehicles (IoV) domain to 

address load balancing challenges. Author [12] suggested 

combining network slicing, network softwarization, and 

MEC to address challenges faced when expanding cellular 

service to achieve efficient network flexibility. Power 

minimization resource algorithms MC-RAN was used by 

[13] in the mobile application domain to assist resource 

hungry and computational limited devices so that they will be 

able to dynamically compute resource allocation. The work 

of [14] devised a method of resource estimation. It was based 

on QoS in Edge computing, which used multi-attribute QoS 

resource matching algorithm and regression Markov 

prediction method to forecast available resources, select the 

suitable resource to meet the needs of users. Thus, reducing 

unnecessary competition for the resource, which improves 

QoS. The researchers in [15] argued that QoS is not only 

affected by data transmission factors but also processing 

delays in fog nodes. To address the end-to-end delay in fog 

computing, [15] introduced a service-oriented control that 

would allow control as a service (CaaS) in the fog to cloud 

topology. Fog Resource Reservation (FRR) and Fog 

Reallocation (FRL) strategies were introduced by [16] in fog 

computing after the realization that fog nodes have limited 

resources when it comes to processing power. As such, they 

can quickly become overloaded when large amounts of users’ 

requests arrive during peak hours, resulting in processing 

delays that will in-turn affect QoS. In [17], offload 

forwarding strategy was introduced to address service 

migration challenges in fog computing networks. A fog node 

would either not offload or offload and forward part or its 

entire load to be processed by other local fog nodes that are 

idle and have better computational power than it has. Task 

distribution algorithm, which was based on initialization, 

relaxation, rounding, and validation, was introduced by [18] 

to address the service migration problem in fog computing 

that affected QoS. [19] designed a novel Fog Service 

Placement Problem (FSPP) method that would facilitate 

optimal sharing of resources.  

Although several related works tried to address QoS 

issues in IoT ecosystems, the challenge that remains is to be 

able to allocate and offload tasks to the resources that suit 

their computational needs and fulfil their QoS requirements. 

Moreover, to the resources that suit their deadline needs while 

minimizing roundtrip time [6]. Some researchers have made 

efforts to solve this challenge. For example, [20] and [21] 

have investigated and suggested ways on how to address the 

problem of task allocation and offloading. The latest research 

by [22] and [23] suggested offloading tasks to nearby fog 

nodes or cloud servers.  

 It is worth pointing out that all these works have one thing 

in common, the decision is made in the fog nodes to either 

process the whole tasks, part of the task or offload to the next 

fog node. This clearly shows that when tasks are sent to the 

fog layer, deadline requirements of tasks would not have been 

considered. Deadline requirements play a pivotal role when 

considering time-sensitive tasks as they require to be 

processed at a specific time frame. Failure to meet deadlines 

implies that if the outcome of the task comes after the 

stipulated time, it becomes useless. This can be detrimental 

in critical applications like medical health applications. 

Hence this study proposed a solution that would help tasks 

meet their deadlines by minimizing round-trip delays and 

addressing the starvation problem. The solution of this study 

introduced a Resource Allocation Scheduler (RAS) in the 

IoT-Fog gateways that is responsible for resource allocation 

giving high priority to time-sensitive tasks. The RAS 

considers task deadlines, resource constraints and promote 

minimized latency. This research is of paramount importance 

as several application areas such as smart health, smart city, 

smart grids would benefit from the findings of this research. 

 In the following section, we present our proposed 

framework and give a brief explanation of its components and 

interactions. 



145 
 

PROPOSED RESOURCE ALLOCATION STRATEGY IN FOG 

COMPUTING FRAMEWORK 

The framework is made up of the edge layer, IoT-Fog 

gateway where the Resource Allocation Scheduler (RAS) is 

hosted, fog layer and cloud layer as shown in Figure 1.  

Edge Layer 

In general, the edge layer comprises any IoT device that 

can connect using NFC [24], RFID [25], Bluetooth [26], 

Wireless Sensor Networks [27], Wi-Fi [27] and communicate 

together to perform some tasks or respond to events 

accordingly without explicit instructions. It should be 

reiterated that these devices have low computational power 

and storage capabilities. 

IoT-Fog Gateways 

IoT-Fog gateways are device in-between IoT devices and 
fog layer such as routers. It is in these gateways where RAS 
was introduced. The introduced RAS has a service registry, 
reasoner, watchdog, propagation component and shared 
storage, which are additional capabilities to address resource 
allocation challenges in fog computing.  

When a task is sent from IoT to RAS, the service registry 
marks the task based on which IoT device it came from. It is 
the responsibility of the reasoner to do resource provisioning 
for the entire framework and make decisions to either send a 
task to the fog node or cloud.  

The reasoner receives multiple numbers of tasks from 
different IoT devices that need to be assigned to either fog 
nodes or cloud servers. In the reasoner there will be a time-
slotted system denoted by ts={1,2,3,………n) and the time 
slot is denoted by AT. When there is no task to be assigned in 
the RAS, the queue denoted by Q will be empty, which means 
when Q= Ø then ts<0. The task will be arranged using the 
First-Come-First-Serve (FCFS)/Q concept where Q represents 
the size of the queue. Using the Poisson process, it is 
considered that the time interval of arrival between successive 
task is exponentially distributed. There are two things to be 

considered, that is (a) the arrival rate (ar) of the task and (b) 
the service rate (sr) of the computing device that is hosting the 
RAS. These two determine how the queue will move. Above 

and beyond arrival rate and service rate, the moving of the 
queue is also affected by whether the computing devices in the 
fog layer or cloud layer are free or not at a certain time-stamp. 
The algorithm in the reasoner will classify the tasks into three 
main categories, namely time-sensitive task (high priority 
tasks), low time-sensitive (low priority tasks) and not time-
sensitive (no priority tasks). 

No-priority tasks are tasks that are not time-sensitive and 
do not have any stipulated time to be processed. Contrariwise, 
“high priority” tasks are time-sensitive and latency-sensitive 
tasks which should be processed within a specific time. If not 
processed, the task will no longer be valid for the IoT device. 
In almost a similar fashion with “high priority” tasks, “low 
priority” tasks are tasks whose processed output is valid up to 
a certain extent, if that time is not met, some penalties will be 
applied, but it will wait to be processed, and the IoT device 
will use that output even though the output will have failed to 
meet their corresponding deadlines.  

These tasks would be placed in three different queues 
denoted by Q={1,2,3}. Q1 will be for high priority tasks, Q2 
for low priority tasks and Q3 for no priority tasks.  Q1 and Q2 
tasks are sent to the fog node as they are time-sensitive 
whereas Q3 tasks are sent directly to the cloud since they are 
not time-sensitive.  

Q1 tasks are given higher priority when compared to Q2 
tasks. Even though the tasks in Q2 are not very time-sensitive 
when compared to Q1 tasks, they should not suffer a starvation 
problem. The starvation problem occurs when Q1 tasks keep 
on coming, which will result in Q2 tasks not to be processed. 
Therefore, to avoid the starvation problem, after 10 seconds 
time-stamp, Q2 tasks that are in the queue for a defined time 
without being assigned to any computing resource will be 
promoted by 1 to a higher priority queue.  

Another point to note on the assignment of Q1 tasks in the 
fog layer is that the tasks assigned to resources use a modified 
first-come-first-serve basis approach. That is, the first tasks to 
come is considered and assigned in the first available resource 

 

Figure 23: Cross-Sectional Design of the Fog Computing Framework 

. 
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if and only if the resource meets the tasks QoS requirements, 
computational requirements and user needs. If the first task 
requirements needs do not fit the available resource, the next 
task in the queue is considered and assigned to the available 
fog resource. This is done not to waste resources and waste the 
time of tasks in the queue that can fit and utilise the available 
resources. Thus, the modified first come first serve heuristic 
algorithm in the reasoner also helps in choosing the correct 
fog node for a specific task based on the QoS requirements of 
that task. Factors like distance, processing power of the fog 
nodes are considered as they play a pivotal role in time-critical 
tasks, as explained in previous sections.  

The watchdog role is to monitor the status of the fog layer 
and cloud layer. If there is fault or errors at the fog node, 
events are triggered, and signals are sent to the reasoner. The 
reasoner then re-assigns the task that would have been 
processed in the fault node to the next available and capable 
fog node. These watchdog events are also put into 
considerations by the reasoner, as they help the reasoner to be 
more effective when making decisions. 

The propagation component responsibility is to send the 
tasks to fog layer or cloud layer based on the decision which 
would have been made in the reasoner. 

The purpose of shared memory in RAS is to hold a service 
registry and all the information of fog nodes and IoT devices 
that are registered in the network. Each fog node and IoT 
device are given unique identities, which would help to assign 
the correct response to the proper IoT devices.    

Fog Layer 

The fog layer is made up of any network resources, 

including mobile stations, servers, switches and routers 

depending on the area of application. These network 

resources offer their services to aid computation capabilities, 

pre-processing and temporary storage within the network and 

are named fog nodes [28]. Because of their proximity to the 

ground, they provide lower latencies compared to cloud 

computing which results in offering improved QoS. Fog layer 

receives Q1 and Q2 tasks from RAS and executes them 

before sending the response back to the RAS and to the cloud 

for the information that requires long-term storage. 

Cloud Layer 

LTE Communication Links are a middleware in the 

cloud. Their main function is to provide resource 

provisioning, task request placement and task execution in a 

specific cloud environment. The cloud is made up of servers 

whose resources are located in centralized data centers,  

whose responsibility is to process CPU intensive tasks and 

has bigger storage [29]. Since the cloud has virtually infinite 

resources, the tasks that require more computational power, 

more resources and are not time-sensitive, are sent by the 

RAS to be processed in the cloud. In this case, Q3 tasks are 

sent to the cloud layer 

THE FRAMEWORK’S COMPONENT INTERACTIONS 

Two things happen in this framework; new fog nodes can 

be registered, fog nodes can also be deregistered, and the task 

is processed. 

 Pairing and Service Deployment 

When a new fog device wants to join the fog layer to give 

fog resources, it sends a signal to the RAS to be registered. 

The RAS will register all the details, which include its 

processing power, RAM size, etc. of the new device, and it is 

instantiated as a fog node. Once the newly fog node is 

registered, there is no need to always take its details again 

because they will be stored. 

Assuming that there is pending task requesting for a 

resource and the newly installed fog node does have the 

required QoS matrices requirements and resources for the 

task, RAS will immediately deploy the task. Once the service 

is deployed, the newly added fog node will be able to read 

and execute the task and return the response to the RSA. The 

same happens when a new IoT device such as sensors, 

actuators, laptops, smart television joins the network. It is 

registered at the RAS as a new IoT device and the type of data 

it sends is also recorded. This is done so that the RAS will 

keep that information to avoid repeating the process of 

identifying the type of data sent by the device each time it 

sends the data thus minimizing future delays.  

Resource Allocation and Scheduling of Tasks 

When a new task is sent from the IoT device, it goes 

through the RAS where it is labelled whether it is of high 

priority or not, specifying its QoS matrices requirements. If 

the task request is time-sensitive it is sent to the fog layer and 

if it is not time-sensitive, it is sent to the cloud layer for 

processing. If the decision by the RAS is to send the task 

request to the fog layer, the RAS will choose the most fitting 

fog node to deploy the task request. After the above reasoning 

is done by the RAS, it then deploys the task to the fog node. 

If the service is successfully deployed, the fog node sends a 

signal back to the RAS for evaluation purposes and the fog 

node starts immediately executing the intended 

functionalities on the deployed task. After the task has been 

executed in the fog node, the response is sent back to the 

RAS, which further forwards it to the specific IoT device. A 

copy of the response and other processed details are sent to 

the cloud for long term storage. If the task is not time-

sensitive and requires more computational power, the RAS 

will flag it as such and deploy it to the cloud. In the cloud, it 

is assigned to the virtual machines (VMs) which process the 

request. The component, which will handle the task, will send 

a signal to the RAS as an indication that it was deployed 

successfully and for evaluation purposes too.  

EVALUATION SETUP 

To assess the proposed model, it is of paramount 

importance to define an assessment configuration with define 

limits, metrics and devices included. The assessment 

configuration in this project is based on an OSI model 

network topology. The network topology is made up of the 

edge layer (IoT devices), IoT-Fog gateways (hosting the 

RAS), fog layer (for processing time-sensitive task) and the 

cloud layer (for processing computer-intensive task).   

In this network topology, each device should have a 

device name, the list of service types the device can send and 

or process, IP address and port, device location and location 

range. This information is important to avoid conflicts which 

might cause delays. Furthermore, it helps in identifying the 

location of the devices, whether they are at the edge, fog or 

cloud layer.  
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Simulation Description 

In this research, the simulation was hosted on a high-

performance computer with 1100 terabyte (TB) storage 

capacity,135 cluster nodes with 2900 processor cores and 

11TB memory. Twenty (20) IoT devices were used and the 

input data size was from 10MB to 30MB, while the output 

data size was 1MB to 30MB. Both input and output data sizes 

were uniformly distributed. Twenty (20) Mbps was used as a 

maximum transmission bandwidth. To evaluate and validate 

the results, 1000 independent runs were done and averaged 

for each parameter to get a better result output for the runs. 

Table 1 below presents the simulation parameters. 

SIMULATION PARAMETERS 

Parameters Value 

Number of IoT device 20 

Number of IoT-Fog Gateways 3 

Number of fog nodes 10 

Number of cloud data centers 2 

Number of tasks 100 

IoT device CPU frequency 600x106 cycles per second 

IoT device memory capacity 128 Megabytes 

Fog nodes CPU frequency 5 x 109 cycles per second 

Fog nodes memory capacity 512 Megabytes 

Cloud server’s CPU frequency 10 x 109 cycles per second 

Cloud server’s memory capacity 64 Gigabytes 

Maximum Bandwidth 20Mega Hertz 

RESULTS AND DISCUSSIONS 

Since our proposed solution was to reduce overall round-

trip time, this study evaluated queueing time and offloading 

time which are round-trip time factors. 

Queuing Time 

Queueing time is the time a task waits in the queue before 

it is assigned to a fog or cloud resource. Queueing time plays 

a pivotal role in determining whether a task will be processed 

early or not based on how long a task would wait before it is 

assigned to a resource. The higher the queueing time, the 

higher the chances of an increased round-trip time, which has 

a negative impact on latency and affects QoS. Consequently, 

queueing time should be minimized to reduce round-trip time 

which is the motive behind this research. Figure 2 presents 

the queuing time of tasks. 

From Figure 2, it can be noted that for high priority-based 

tasks (blue line), the queuing times are minimal when 

compared to low priority-based tasks (orange line) and no 

priority-based tasks (grey). Similarly, low priority-based 

queuing time is also minimal when compared to no priority-

based tasks.  

This is because high priority tasks are given preference 

during the assignment to both message routing and to the fog 

layer resources to be processed first as compared to the later. 

For this reason, high priority tasks are assigned and processed 

earlier than the other two, which gives them less queuing 

time. Correspondingly, the low priority tasks are given a 

better priority compared to those with no priority. No priority 

tasks take more time as they require more time in uploading. 

It is also important to note that queuing time for both high 

priority tasks and low priority tasks can be further minimized 

if there are more fog nodes at the fog layer. The more the fog 

nodes at the fog layer, the less the queuing time experienced 

for high priority tasks and low priority tasks as there will be 

more options and resources to assign the tasks. Therefore, 

queueing time is directly affected by the number of fog nodes 

available at the fog layer. 

Offloading  Time 

Offloading time is another factor that affects round-trip 

time. Offloading time is the time taken to upload, process and 

download a task from IoT device to RAS then either fog node 

or cloud depending on the task status and back to the IoT 

device. The more the offloading time, the greater the overall 

round-trip time. Moreover, offloading time is directly 

affected by queuing time. If the queuing time is minimized, 

the overall offloading time is also reduced. Figure 3 presents 

the simulation result of offloading time. 

From the graph, it is noted that offloading starts 

happening after 1ms. This is because some delays are 

experienced when tasks are generated and sent. The 

offloading time of all the tasks will increase as the number of 

tasks increases. This is because fog layer cannot handle many 

tasks at once especially when IoT devices generate a greater 

number of tasks that are time-sensitive and require fog layer 

resources. Another factor is, the more the traffic that wants to 

traverse the internet the higher the demand for bandwidth and 

also the higher the demand to resources which affect 

queueing time and offloading. Generally, high priority tasks 

have lower offloading time when compared to the other two 

because they are given first preference to resources and 

usually they are small in size. Low priority tasks have also 

lower offloading time when compared to no priority tasks. 

 
Figure 24: Queueing Time of Tasks 

 

 
Figure 25: Offloading Time of Tasks 
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Even though the no priority tasks were not being offloaded to 

the fog layer, they took more time to be offloaded to the 

cloud. The reason behind this is because of their size which 

requires more time to offload, process and download. The 

bigger the task, the more the time it took to be processed and 

traversed over the network. Moreover, it consumes more 

bandwidth. 

Comparison of Processing in the IoT Device, Fixed 

Offloading to Fog Node and the use of RAS 

In any scientific research, to be able to quantify how 

effective a proposed solution is, there is always a need to do 

a comparison of the proposed strategy with other existing 

strategies. 

For comparison, we compared the average delay per user 

against the packet arrival rate of the fixed strategy method, 

RAS strategy and entirely processing the tasks on the IoT 

device strategy. A fixed strategy is when tasks are sent 

directly to the fog nodes from IoT devices, and the fog nodes 

would decide to either process the whole task, part of it or to 

send to the cloud. This strategy is the one being used by many 

researchers in literature.  

In Figure 4, at a packet arrival rate of between 0 and 14, 

the average delay per user is less when the task is entirely 

processed in the IoT device itself than when it is sent to the 

RAS or fixed offloaded to the fog node. Wholly, if there are 

few tasks that are time-sensitive and are not CPU intensive, 

processing them in the IoT device is much better than 

transferring them to the fog node, as this increases the 

average delay per user.  

It can be noted in Figure 4 that at 15 packets/sec arrival 

rate the average delay per user is the same for all the three 

strategies. This convergence point can be referred to as a 

point of equilibrium. At 15 packets arrival rate, the 

summation of the delays and the resources available at both 

the fixed offload to fog node approach and the RAS approach 

will be equal to the one processed entirely at the IoT device. 

At this point, it means using either of the approaches will give 

the same output. 

After 15 packets/sec arrival rate, using other fog layer 

resources will be of greater benefit than to process the task at 

the IoT device as can be noted in the diagram that after 15 

packets/sec arrival rate, the average delay per user of those 

tasks that are processed at IoT entirely keep on increasing 

when compared to the other two options. An increase in task 

production and packet arrival rate has a greater effect when 

the task is processed entirely at the IoT device level. The 

more the packets in the queue to be processed, the more the 

time needed to process them especially when they are 

processed in the IoT device itself. The packet arrival rate is 

directly proportional to the average delay per user if the task 

is processed in the IoT device. The demand for computing 

resources by the tasks can even cause the IoT device to end 

up being slow and not working properly. This is due to 

overloading as the IoT devices do not have much 

computational power, as such it cannot handle more tasks at 

once. Overloading IoT devices have a negative impact on the 

IoT device battery lifespan, as the device will be strained 

which results in using more battery power.  

Again, referring to figure 4, it can be noted that between 

15 to 20 packets per second arrival rate the performance of 

the fixed offloading and the RAS approach are almost the 

same. The difference can only be noted after 20 packets per 

second arrival rate when the RAS approach becomes better 

than the fixed offloading. The reason might be that the RAS 

approach chooses the best fog node for time-critical tasks 

when compared to the fixed offloading approach. 

When tasks are using the RAS approach, it can be noticed 

that at first, using the RAS approach will only be better if 

compared to fixed offloading but worst when compared to 

those that are processed at the IoT devices. The delay 

experienced in time is because some time is used when 

transferring a task from the IoT device to the RAS before the 

actual processing of the tasks starts.  The difference is noticed 

when there is an increase in the packet arrival rate where it 

can be observed that the RAS outclass both approaches 

highlighted earlier that are the one that allows tasks to be 

processed locally and that which uses a fixed offload 

approach. The reason being that the RAS chooses appropriate 

fog node to process the tasks when compared to the fixed 

offload approach, which sometimes offloads tasks to a fog 

node that does not satisfy the requirements of the tasks. As 

such, choosing the correct fog node that suits the requirement 

of the task first before assigning those tasks helps in the sense 

that when tasks are then finally deployed, it is guaranteed that 

they will be processed. 

As evidenced and shown on the above figure and analysis, 

it can be deduced that when tasks are few, it is wise to process 

them in the IoT device. When there is a need to process more 

tasks, then processing them in the IoT device will no longer 

have benefits. The use of the RAS approach will be of greater 

advantage. We can conclude that the introduction of the RAS 

in the gateways, which makes decisions and give high priority 

to high priority tasks, proves to have more benefits compared 

to the two approaches mentioned above. The RAS approach 

minimizes round-trip time, improves throughput and as such, 

it improves QoS as compared to the later approaches. It is 

also important to note that the roundtrip time and throughput 

can be further minimized when more fog nodes join the fog 

layer, as the RAS will be able to deploy more tasks to 

different fog nodes resulting in the reduction of the queueing 

time for tasks. 

 
Figure 26:Task arrival, task execution and task 

offloading of different approaches 

 

Figure 27: Illustration of task data arrival, 
task execution and task offloading 
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RAS Strategy versus Other Resource Allocation Strategies 

For comparison purposes, three strategies proposed and 

used in literature are considered and compared with RAS: 

 Strategy 1: IoT devices would randomly choose a 

computing device either in the fog layer or cloud 

layer. Let us denote this scenario as S1. 

 Strategy 2: IoT devices would choose a computing 

device with minimum uploading time. Let us denote 

this scenario as S2. 

 Strategy 3: IoT devices would choose a computing 

device with sufficient CPU frequency for processing 

the tasks. Let us denote this scenario as S3. 

 Strategy 4: Using the proposed Resource 

Allocation Scheduler strategy denoted with RAS.  

 Performance-based on average queueing time 

Based on Figure 5, which compares performance based 

on queuing time, our RAS improved performance when 

compared to the other three strategies as far as average 

queuing time is concerned. The average queuing time of high 

priority and low priority was minimized. This was as a result 

of them being given more priority if compared to those tasks 

with no deadline. It can be noted from Figure 5 that even in 

the case of more tasks, the average queuing time of the RAS 

is less when compared to the other three strategies. These 

results proved that even if you are using first come first serve 

basis in different strategies if high priority tasks are not given 

high priority, that will affect the queuing time and has a 

negative impact on the time-sensitive tasks as QoS is 

compromised. 

 Performance-based on average offloading time 

Even if S2 strategy allowed IoT devices to choose a 

computing device with minimum uploading time and S3 

allowed IoT devices to select a computing device with 

sufficient CPU frequency for processing the tasks, it could be 

observed from Figure 6 that these strategies did not minimize 

offloading time as expected by IoT devices. Contrary to S1, 

S2, and S3, considering performance based on the average 

offloading time as shown in Figure 6, RAS managed to 

deploy tasks to computing devices that met the requirements 

of the task. Moreover, RAS offered a minimum 

communication overhead, which minimized round-trip time 

since offloading time was reduced when compared to other 

S1, S2, and S3 strategies.  

This was attributed to the fact that RAS would choose 

either fog node or cloud that satisfies the requirements of the 

task based on the task’s status. Basing our argument on the 

simulation results, if the round-trip time is minimized, latency 

will also be reduced, and this will lead to improved QoS and 

improved performance. 

 Performance-based on average throughput 

To check if the RAS improved the QoS, throughput, 

which is one of the QoS parameters, was tested. In this work, 

throughput was calculated as the number of tasks that 

complete their process within a time-stamp based on the 

arrival rate. As indicated in Figure 7, RAS had high 

throughput when compared to other strategies. This is 

because different strategies failed to process more tasks 

within a given time-stamp.  The RAS strategy managed to 

achieve improved throughput because it was able to deploy 

time-sensitive tasks to fog devices that met the resource 

requirements with minimum offloading time, which was also 

a factor of queueing time.  

CONCLUSIONS 

The results above show that even though many factors 

play a pivotal role in determining the total round-trip time, 

queueing time and offloading time are very important too. 

Minimizing the two will help in reducing round-trip time and 

subsequently leading to the minimization of latency. Also, if 

queueing time and offloading time are minimized, the overall 

throughput of the framework is significantly improved.  

      Another important finding from these results is that 

choosing a computing device with sufficient CPU frequency 

 

Figure 6: Performance-based on average offloading time 

 

 

Figure 7: Performance-based on average throughput 

 

 

Figure 5:Performance-based on average queueing 

time 
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for processing the tasks without considering other factors 

such as the type of the tasks, will not minimize average 

waiting time and average offloading time when more tasks 

are added. This kind of approach works well when there are 

small numbers of tasks that need to be processed. However, 

it suffers when many tasks need to be processed 
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