

Resource Allocation Framework in Fog Computing for the Internet of

Things Environments

A Thesis Submitted in Fulfilment of the

Requirements for the Degree

of

 Doctor of Philosophy in Computer Science

Submitted by

William Tichaona Vambe

Student Number: 201515191

Supervised by

Prof Khulumani Sibanda

 [January 2020]

i

Abstract

Fog computing plays a pivotal role in the Internet of Things (IoT) ecosystem because of its ability

to support delay-sensitive tasks, bringing resources from cloud servers closer to the “ground”

and support IoT devices that are resource-constrained. Although fog computing offers some

benefits such as quick response to requests, geo-distributed data processing and data

processing in the proximity of the IoT devices, the exponential increase of IoT devices and large

volumes of data being generated has led to a new set of challenges. One such problem is the

allocation of resources to IoT tasks to match their computational needs and quality of service

(QoS) requirements, whilst meeting both task deadlines and user expectations. Most proposed

solutions in existing works suggest task offloading mechanisms where IoT devices would offload

their tasks randomly to the fog layer or cloud layer. This helps in minimizing the communication

delay; however, most tasks would end up missing their deadlines as many delays are

experienced during offloading. This study proposes and introduces a Resource Allocation

Scheduler (RAS) at the IoT-Fog gateway, whose goal is to decide where and when a task is to

be offloaded, either to the fog layer, or the cloud layer based on their priority needs,

computational needs and QoS requirements. The aim directly places work within the

communication networks domain, in the transport layer of the Open Systems Interconnection

(OSI) model. As such, this study follows the four phases of the top-down approach because of

its reusability characteristics. To validate and test the efficiency and effectiveness of the RAS,

the fog framework was implemented and evaluated in a simulated smart home setup. The

essential metrics that were used to check if round-trip time was minimized are the queuing time,

offloading time and throughput for QoS. The results showed that the RAS helps to reduce the

round-trip time, increases throughput and leads to improved QoS. Furthermore, the approach

addressed the starvation problem, a phenomenon that tends to affect low priority tasks. Most

importantly, the results provides evidence that if resource allocation and assignment are

appropriately done, round-trip time can be reduced and QoS can be improved in fog computing.

The significant contribution of this research is the novel framework which minimizes round-trip

time, addresses the starvation problem and improves QoS. Moreover, a literature reviewed

paper which was regarded by reviewers as the first, as far as QoS in fog computing is concerned

was produced.

Keywords: Internet of Things, Cloud Computing, Fog Computing, Quality of Service, Round-

trip Time, Resource Allocation.

ii

Publications from this Thesis

Published

2019. “A Review of Quality of Service in Fog Computing for the Internet of Things”. International

Journal for Fog Computing, 3 (1). https://www.igi-global.com/article/a-review-of-quality-of-

service-in-fog-computing-for-the-internet-of-things/245708, DOI: 10.4018/IJFC.2020010102

(Based on Chapter Two)

Accepted for publication

2020. “A Fog Computing Framework for Quality of Service Optimisation in the Internet of Things

(IoT) Ecosystem” submitted for a conference https://www.spu.ac.za/index.php/ieee-imitec-

2020/ and paper will be published in the IEEE digital library.

https://www.igi-global.com/article/a-review-of-quality-of-service-in-fog-computing-for-the-internet-of-things/245708
https://www.igi-global.com/article/a-review-of-quality-of-service-in-fog-computing-for-the-internet-of-things/245708
https://www.spu.ac.za/index.php/ieee-imitec-2020/
https://www.spu.ac.za/index.php/ieee-imitec-2020/

iii

Declaration

I William Tichaona Vambe the undersigned, student number 201515191, do hereby declare

that the thesis titled “Resource allocation framework in fog computing for the Internet of

Things environments” for Doctor of Philosophy in Computer Science is my original work in

design and execution. The work has not been submitted or presented at any other University

for a similar or any other degree award. All reference materials used have been duly

acknowledged.

I hereby further declare that I am fully aware of the University of Fort Hare’s policy on plagiarism

and research ethics, and I have taken every necessary measure to comply with the regulations.

 Signature: Date: 31/01/2020

 William Tichaona Vambe

iv

Acknowledgments

I would like to thank my supervisors, Prof. Khulumani Sibanda, from the Department of

Computer Science at the University Fort Hare, Dr Chii Chang from the University of Melbourne

in Australia for the guidance and feedback throughout the study. Further, I would also want to

thank Prof Satish Srirama (head of mobile and cloud laboratories) and the University of Tartu

(Estonia), for giving me the Dora Plus grant. The grant helped me a lot in my research when I

spent time at their university as a visiting PhD student.

I am profoundly indebted to Christine Munemo, Victor Vambe, Elphigio P. Vambe, Washington

Vambe, Berrelyn Rosina (Mabuku) Vambe and Sarudzai (Chipfumbu) Vambe for the

unconditional love and unwavering support during this study. Thank you. Also, I would like to

thank Patricia Vambe, Clarity (Hutete) Vambe, my brothers Byron, Leeroy, Simbarashe and

Wilfred, my sister Evangelista Vambe, uncles, aunties and my friends Tineyi Herbert Pindura,

Dr Tafadzwa Maramura and Dr E.Chindenga. Through thick and thin, you have always been

supportive of my life and education.

The Head of Department Mr S. Dyakalashe and Mr M.S Scott of the Computer Science

Department at the University of Fort Hare and the Institute of Computer Science at the University

of Tartu is also hereby acknowledged. Lastly, I would like to acknowledge the financial

assistance from the University of Fort Hare Govan Mbeki Research & Development Centre

(GMRDC).

The opinions and views expressed are of the author and do not reflect those of the University

of Fort Hare.

v

Dedication

In memory of:

My first teachers who happen to be my grandfather and grandmother (Mr.

and Mrs.) Patricio Muvirimi Makhosa and Esnarth (Muza)

Makhosa.

My hero, my advisor, pillar of strength, my grandfather Mr William

M’baiwa Vambe, who believed in me, sacrificed a lot and encouraged me in

this academic journey and life in general.

My three children (2 boys and a girl) I lost as stillbirths from 2018 to 2020

(My PhD years)

Although you are far away now, I forever thank you, and I am grateful for all

the love you gave me. We meet to part and part to meet. May all your souls. I

dedicate this to you.

 Rest in Peace as I continue being your ambassador.

vi

Table of Contents

Abstract ... i

Publications from this Thesis ... ii

Declaration ... iii

Acknowledgments... iv

Dedication .. v

List of Tables ... x

List of Figures ... xi

Acronyms ... xii

1 Chapter One: Introduction .. 1

1.1 Introduction ... 1

1.2 Background of the Study .. 1

1.3 Overview of Related Work .. 3

1.4 Problem Statement ... 5

1.5 Research Aim ... 5

1.6 Research Objectives .. 5

1.7 Research Questions ... 6

1.8 Overview of Research Methodology ... 6

1.9 Contributions of the Study .. 6

1.10 Limitations of this Study .. 7

1.11 The Structure of the Thesis .. 7

1.12 Conclusion .. 8

2 Chapter Two: Literature Review ... 9

2.1 Introduction ... 9

2.2 Internet of Things .. 9

2.2.1 IoT Characteristics ... 10

2.3 Cloud Computing .. 13

vii

2.3.1 Cloud Computing Characteristics ... 13

2.3.2 Service Models .. 15

2.3.3 Deployment Models ... 15

2.3.4 Virtualization .. 16

2.3.5 IoT-Cloud Architecture ... 18

2.4 Fog Computing ... 20

2.4.1 Fog Computing Characteristics .. 20

2.4.2 IoT-Fog-Cloud Architecture .. 22

2.5 Application Area : Smart Home .. 24

2.6 Quality of Service ... 24

2.7 Related Work .. 26

2.7.1 Resource Provisioning and Scheduling for Fog Computing Environment. 26

2.7.2 Scheduling techniques ... 33

2.7.3 Round-trip Time (Latency) ... 35

2.7.4 Software Frameworks .. 36

2.8 Research Gap in the Current Fog Computing Research Provisioning Strategies....... 37

2.9 Conclusion .. 39

3 Chapter Three: Research Design and Methodology ... 40

3.1 Introduction ... 40

3.2 Research Process Design .. 40

3.2.1 Requirement Analysis .. 42

3.2.2 Logical Network Design ... 46

3.2.3 Physical Network Design ... 49

3.2.4 Testing and Evaluation ... 49

3.3 Conclusion .. 51

4 Chapter Four: Framework Design and Implementation .. 52

4.1 Introduction ... 52

4.2 Framework Design ... 52

4.2.1 Components of the Framework .. 53

4.2.1.1 Edge Layer (IoT devices) .. 53

viii

4.2.1.2 IoT-Fog Gateway (Resource Allocation Scheduler)....................................... 54

4.2.1.3 Fog Layer .. 61

4.2.1.4 Cloud Layer ... 63

4.2.2 Aspects Expected to be Supported with the Framework 64

4.2.3 Workflows .. 64

4.2.4 Application Programming Interfaces (APIs) Endpoints... 67

4.3 Implementation ... 70

4.3.1 Testing of an IoT Service. .. 70

4.3.2 IoT Application Execution ... 73

4.3.3 Testing of the Resource Allocation Scheduler ... 74

4.3.4 Evaluation Round-Trip Time .. 75

4.3.4.1 Queueing Time .. 76

4.3.4.2 Offloading Time Evaluation ... 76

4.4 Conclusion .. 78

5 Chapter Five: Results and Discussions .. 79

5.1 Introduction ... 79

5.2 RAS Performance Evaluation Setup ... 79

5.2.1 Simulated Environment Description ... 79

5.3 Performance Evaluation. .. 80

5.3.1 Results ... 80

5.3.2 Findings ... 91

5.3.3 Result Findings Analysis .. 93

5.3.4 Discussion of Results Findings .. 95

5.4 Conclusion .. 97

6 Chapter Six: Conclusion and Future Work ... 98

6.1 Introduction ... 98

6.2 Summary of the Study .. 98

6.3 Research Objectives, and Where Addressed ... 100

6.4 Contributions of this Thesis .. 102

6.5 Future Work .. 103

ix

6.6 Conclusions .. 104

References .. 105

x

List of Tables

Table 3-1: Top-Down Research Methodology Phases .. 41

Table 4-1: Register Service Endpoint .. 68

Table 4-2: Send Task Request Endpoint ... 68

Table 4-3: Get Resource Utilization Endpoint ... 69

Table 4-4: Resource Allocation Scheduler Propagator Endpoint .. 69

Table 4-5: Cloud Fog Middleware Propagator Endpoint ... 69

Table 5-1: Simulation Parameters ... 80

Table 6-1: Research Objectives and Where they were Addressed 101

xi

List of Figures

Figure 2-1: Cloud Computing Overview .. 13

Figure 2-2: IoT-Cloud Architecture .. 18

Figure 2-3: IoT-Fog-Cloud Architecture .. 22

Figure 3-1: Top-Down Research Methodology phases ... 42

Figure 3-2: Network Design Topology ... 47

Figure 4-1: Cross-Sectional Design of the Fog Computing Framework 53

Figure 4-2: Decision Making Flowchart ... 54

Figure 4-3: First Fit Algorithm in RAS for Resource Provisioning ... 55

Figure 4-4: Priority queueing model for IoT gateway. ... 57

Figure 4-5: Reasoner, Redis FCN, Redis Shared Deployed on the Raspberry Pi 61

Figure 4-6: Fog Node Deployment on the Raspberry Pi ... 63

Figure 4-7: Pairing of Fog Nodes, RSA, IoT Devices and Service Deployment 65

Figure 4-8: RAS Assignment of Task and Processing .. 67

Figure 4-9: Node-RED flowchart ... 73

Figure 5-1: Queueing time for high priority tasks, low priority tasks, and no priority tasks 81

Figure 5-2:Offloading time for High priority tasks, Low priority tasks, and No priority tasks 83

Figure 5-3: Illustration of task data arrival, task execution and task offloading 85

Figure 5-4: Performance-based on average queueing time .. 88

Figure 5-5: Performance-based on average offloading time ... 89

Figure 5-6: Performance-based on average percentage number of tasks satisfying delay

deadlines. .. 90

Figure 5-7: Performance-based on average throughput ... 91

xii

Acronyms

API Application Programming Interface
AV Availability
BPDOC Building Process Documentation Cloud
CaaS Control as a Service
4IR Fourth Industrial Revolution
FiWi Fiber-Wireless
FRED Front End for Node-RED
FRL Fog Reallocation
FRR Fog Resource Reservation
FME Follow me Edge
FSPP Fog Service Placement Problem
HTTP Hypertext Transfer Protocol
GUI Graphic User Interface
IaaS Infrastructure-as-a-Service
IoT Internet of Things
IP Internet Protocol
IoV Internet of Vehicles
MEC mobile edge computing
MPSO-CO Modified Constrained Optimization Particle Swarm Optimization
MSA Micro Services Architecture
NFC Near Field Communication
NIST National Institute of Standards and Technology
OS Operating System
PaaS Platform-as-a-Service
PIOTS Pattern-Identified Online Scheduling Task
PO Priority
PTPN Priced Timed Petri Nets
QoS Quality of Service
QoE Quality of Experience
RAS Resource Allocation Scheduler
RFI Radio-Frequency Identification.
VM Virtual Machine.
Wi-Fi Wireless Fidelity
WSN Wireless Sensor Networks
SaaS Software-as-a-Service
TD Transit Delay
TP Throughput

1

1 Chapter One: Introduction

1.1 Introduction

This chapter provides an overview of this study and establishes the research niche. The chapter

is structured as follows: Section 1.2 gives the background of the study, followed by Section

1.3, which provides the synopsis with an overview of related work. The problem statement is

then presented in Section 1.4. The research aims and research questions are given in Section

1.5 and Section 1.7, respectively. Section 1.6 provides the research objectives. The overview

of the research methodology is presented in Section 1.8. Section 1.9 gives the contribution of

the study. The limitations of this study are then presented in Section 1.10. The chapter is

concluded by providing the structure of the whole thesis in Section 1.11.

1.2 Background of the Study

With the advent of the Internet of Things (IoT), which is creating a “smart world” and bringing

about automation in many application areas, many computing elements need various

modifications to support the IoT devices that are at the center of the automation world. Such

changes should help the IoT devices, which are resource-constrained, while keeping in mind

that latency has to be minimized and Quality of Service (QoS) has to be improved. It is important

to note that for successful adoption of IoT, it should be associated with a wide variety of other

technologies such as cloud computing and fog computing.

Cloud computing was introduced to support IoT devices in terms of resources (Chen et al.,

2017). Although cloud computing as a concept dates back to the 1990s, the term cloud

computing was first used in 2006, on the 9th of August by Eric Schmidt, Chairman and CEO of

Google at the Search Engine Strategies Conference (Google Press, 2006). Since then, cloud

computing has been widely adopted in many businesses for backup, file storage, cost-cutting in

terms of infrastructure, development and testing as well as investment by cloud providers. Cloud

computing takes a central role to support emerging IoT technologies which are resource

constrained. The cloud computing has become vital in supporting the interactions between IoT

networks. However, the exponential growth of the number of connected sensors is becoming a

challenge to the cloud architecture. This is because cloud computing is a centralised approach

2

which makes it difficult to service geo-distributed IoT devices. The geographical distance

between IoT devices and cloud servers seriously affects how the two communicate, leading to

undesirable latency challenges. Secondly, it becomes costly to send IoT generated tasks to and

from the cloud servers as more bandwidth is needed during the transmission.

Due to the above-mentioned challenges, fog computing was introduced by Cisco in 2012, not

as a substitute for cloud computing, but to complement cloud computing (Bonomi et al., 2012).

OpenFog Consortium Architecture Working Group defined fog computing as “a system-level

horizontal architecture that distributes resources and services of computing, storage, control

and networking anywhere along the continuum from Cloud to Things” (OpenFog Consortium

Architecture Working Group, 2017). It is made up of both wired and wireless granular collection

endpoints, which include switching equipment, routers that act as gateways and customer

premise equipment (CPE). Fog computing has become a preferred choice because of its ability

to deliver services faster, and its ability to offer location awareness. It is worth to reiterate that

fog computing technology is not a replacement of cloud computing but complements it by

bringing the “cloud resources closer to the ground” where IoT devices reside (Chang et al.,

2017).

As evidenced in the detailed survey done by Vambe et al., (2020), several studies have focused

on addressing various fog computing issues. One of the topics that is drawing much attention is

how communication and computing resources can be allocated and assigned based on tasks,

requirements and priorities. The existing solutions, as informed in literature, indicate that

resources are assigned/ offloaded based on a first come first serve basis without considering

task status (whether a task is time-sensitive or not) and in most cases, task deadlines (Vambe

et al., 2020). Some existing works focus only on the reduction of communication delay. Despite

many efforts being done to reduce communication delay, this study discovered that in many

proposed solutions, most time-sensitive tasks fail to meet their deadlines. This situation can

severely affect automation. The starvation problem is another challenge that is receiving much

attention from various researchers. Another open challenge in fog computing is to find an

effective and efficient resource allocation and assignment mechanism that meets the needs of

both time-sensitive tasks and those that are not time-sensitive while meeting tasks deadlines.

Hence, the primary goal of this study was to introduce a Resource Allocation Scheduler (RAS)

which reduces round-trip time for time sensitive tasks and also helps to solve the starvation

3

problem that affects IoT tasks that are not time sensitive. To achieve this goal, this study

proposes and implementes a Resource Allocation Scheduler (RAS) in the fog computing

framework. RAS was introduced at the IoT-Fog gateways whose responsibility was to allocate

and assign tasks generated by IoT devices to either fog layer or cloud layer based on the task’s

computational needs and priority.

1.3 Overview of Related Work

Literature shows that several researchers have used fog computing to minimise latency and

improve QoS in existing systems. Such work includes the work of Kochovski and Stankovski,

(2018), who applied Jitsi-meet and building process documentation cloud (BPDOC) applications

to promote orchestration of services to address the QoS hindrance problem in the smart

construction domain. Alsaffar et al., (2017) discussed the issue of service placement in a home

setup domain using a resource allocation algorithm to optimize data distribution and resource

allocation. A two computational algorithm with low delay and reduced complexity that uses the

principle of computation offloading in a mobile domain was used by Liu et al., (2017) to address

service migration mobility. A Follow me Edge (FME) concept was used by Taleb et al., (2017)

in a smart city domain to achieve efficient resource deployment as a way to address the service

migration problem. Modified Constrained Optimization particle swarm optimization (MPSO-CO)

was applied by He et al., (2016) on the Internet of Vehicles (IoV) domain to address load

balancing challenges. Sampei, (2017) suggested combining network slicing, network

softwarization, and mobile edge computing (MEC) to address challenges faced when expanding

cellular service to achieve efficient network flexibility. Power minimization resource algorithms

MC-RAN was used by Wang and Yang, (2017) in the mobile application domain to assist

resource hungry and computational limited devices so that they will be able to dynamically

compute resource allocation. Li et al., (2018) devised a method of resource estimation. It was

based on QoS in Edge computing, which used multi-attribute QoS resource matching algorithm

and regression Markov prediction method to forecast available resources, select the suitable

resource to meet the needs of users. Thus, reducing unnecessary competition for the resource,

which improves QoS. Souza et al., (2017) argued that QoS is not only affected by data

transmission factors but also processing delays in fog nodes. To address the end-to-end delay

in fog computing, Souza et al., (2017) introduced a service-oriented control that would allow

control as a service (CaaS) in the fog to cloud topology. Fog Resource Reservation (FRR) and

4

Fog Reallocation (FRL) strategies were introduced by Li et al., (2017) in fog computing after the

realization that fog nodes have limited resources when it comes to processing power. As such,

they can quickly become overloaded when large amounts of users’ requests arrive during peak

hours, resulting in processing delays that will in-turn affect QoS. Xiao and Krunz, (2017), offload

forwarding strategy was introduced to address service migration challenges in fog computing

networks. A fog node would either not offload or offload and forward part or its entire load to be

processed by other local fog nodes that are idle and have better computational power than it

has. Task distribution algorithm, which was based on initialization, relaxation, rounding, and

validation, was introduced by Song et al., (2017) to address the service migration problem in fog

computing that affected QoS. Skarlat et al., (2017) designed a novel Fog Service Placement

Problem (FSPP) method that would facilitate optimal sharing of resources.

Although several related works tried to address QoS issues in IoT ecosystems, the challenge

that still remains is the allocation and offloading of the tasks that are produced by the IoT devices

to the resources that suit their computational needs and fulfil their QoS requirements. Moreover,

to the resources that suit their deadline needs while minimizing round-trip time (Vambe et al.,

2020). Some researchers have made efforts to solve this challenge. For example, Ko et al.,

(2017) and Mukherjee et al., (2019) have investigated and suggested ways on how to address

the problem of task allocation and offloading. The latest research by Yang et al., (2019) and

Wang et al., (2019) suggested offloading tasks to nearby fog nodes or cloud servers.

It is worth pointing out that all these works have one thing in common. The decision is made in

the fog nodes to either process the whole tasks, part of the task or offload to the next fog node.

This clearly shows that when tasks are sent to the fog layer, deadline requirements of tasks are

not considered. Deadline requirements play a pivotal role when considering time-sensitive tasks

as they require to be processed at a specific time frame. Failure to meet deadlines implies that

if the outcome of the task comes after the stipulated time, it becomes useless. This can be

detrimental in critical applications like medical health applications. Hence this study proposed a

solution that would help tasks meet their deadlines by minimizing round-trip delays and

addressing the starvation problem. The solution of this study introduced a Resource Allocation

Scheduler (RAS) in the IoT-Fog gateways that is responsible for resource allocation, giving high

priority to time-sensitive tasks. The RAS considers task deadlines, resource constraints and

promote minimized latency. This research is of paramount importance as several application

5

areas such as smart health, smart city, smart grids would benefit from the findings of this

research.

1.4 Problem Statement

The exponential increase of IoT devices and large volumes of data generated by IoT devices

has led to severe challenges in the allocation of resources to IoT tasks in order to match their

computational needs and achieve QoS requirements while meeting task deadlines, at the same

time avoiding the starvation problem. Trying to improve quality of service, the use of fog nodes

has been adopted. However, fog nodes are resource constrained. Overloading them leads to

negative impact in terms of turnaround time of network packets. This calls for techniques that

can reduce turn around time of network packets that are sent to fog nodes, thereby improving

QoS in the internet of things environments.

1.5 Research Aim

This study aimed to design and implement a resource allocation scheduler in fog computing

framework for the Internet of Things (IoT) environment. To pursue this aim, the study used the

following research objectives and research questions as a guide:

1.6 Research Objectives

1. To identify the key challenges of data communication and computer resources allocation

in an IoT environment.

2. To determine how data communication and computer resources are assigned and

allocated based on tasks requirements and their priorities in IoT environments.

3. To identify a suitable methodology for building a resource allocation scheduler in fog

computing framework for IoT environments.

4. To build a resource allocation scheduler framework in fog computing for IoT

environments.

5. To test and evaluate the effectiveness of the proposed RAS in allocating resources in fog

computing framework.

6

1.7 Research Questions

1. What are the key challenges in communication and computer resources allocation in an

IoT environment?

2. How are communication and computing resources allocated and assigned among the

IoT devices based on tasks, requirements and priorities?

3. Which approaches can be used to build a resource allocation scheduler in fog computing

framework for IoT environment?

4. Can a resource allocation scheduler in fog computing framework which is based on tasks

requirements and priorities be successfully developed?

5. What is the performance of the RAS in fog computing framework?

1.8 Overview of Research Methodology

The development of the RAS in fog computing framework was informed by systematic scrutiny

of existing approaches as a way to discover the weakness of the existing frameworks. The aim

directly put this work within the communication networks domain, in the transport layer of the

Open Systems Interconnection (OSI) model. As such, this study followed the four phases of the

top-down approach because of its reusability characteristics. The framework was then

implemented and evaluated in a simulated smart home setup to validate and test the efficiency

and effectiveness of the introduced RAS. The essential metrics that were used in the evaluation

of this research were; a) queuing time, b) offloading time, which are factors of round-trip time

that affect latency, and c) throughput, which is a parameter of QoS. More discussions on the

study methodology used are in chapter three.

1.9 Contributions of the Study

There are two significant contributions which were made by this current study to the existing

body of scientific knowledge. A review paper of QoS in fog computing was produced. To our

understanding with the comments received from the reviewers, this was the first review paper

which focuses on QoS in fog computing. The paper was published in the “International Journal

for Fog Computing” (Vambe et al., 2020). The paper provided a good starting point for

discussion of QoS and how it can be improved in fog computing. Secondly, the novel resource

allocation scheduler (RAS) brought about reduced queueing time and offloading time which

7

resulted in the minimization of round-trip time. Moreover, throughput was improved, which leads

to improved QoS. The developed framework proved to be of more significant in smart

environments such as smart home where it was tested. It showed that it could promote

automation where time-sensitive applications can be served at real-time. This system can be

used anywhere were round-trip time is to be minimized and QoS is to be improved.

In a nutshell, framework contribution serves as a foundation for further research in the field of

fog computing. Moreover, the framework can be applied and tested for its benefits in application

areas such as smart health were real-time responses are needed in real-time.

1.10 Limitations of this Study

This study focuses only on how to minimize round-trip time while considering queuing time and

offloading time as an evaluation matrix. However, many other factors affect round-trip time and

should be investigated in future work. Moreover, our work did consider the security and privacy

of data when making decisions in the RAS which we strongly believe they should be considered

in future work. Considering security and privacy of data make users trust the use of loT devices

and fog layer devices which they will be using every day in a smart home setup.

1.11 The Structure of the Thesis

In Chapter Two, contextual knowledge which is the foundation to understand the research

background is presented. The chapter gives an insight into the Internet of Things, cloud

computing and fog computing technology. A critical analysis of work explicitly done which

focused on resource provisioning and QoS in fog computing was presented. It is from this

literature review where gaps in the existing framework as far as resource provisioning and

improving QoS were identified. The gaps formed the basis of this thesis where there is a need

to design and implement a resource allocation scheduler in fog computing framework for the IoT

environment.

Within Chapter Three: Research Design Methodology, an overview of the top-down research

methodology that was adopted and the reason why it was adopted in this research is presented.

Moreover, a detailed explanation of what was done at each of the four stages of the top-down

research methodologies to answer the research aim, research questions and objectives is

presented.

8

Next, the most fundamental design of the whole framework and the implemented RAS in fog

computing is presented in Chapter Four: System Design and Implementation. This chapter

is of paramount importance as it defines the most fundamental design and functionalities of the

framework, which are critical in the designing of the framework.

Chapter Five: Results and Discussions gives the empirical evaluation findings which are

centered at queuing time, offloading time which are evaluation matrix for round-trip time. These

results are presented in the form of graphs, followed by a critical analysis of each figure. A

discussion of the findings of the developed RAS in fog computing as far as reducing round-trip

time and improving QoS in relation to other works in literature is presented.

The thesis is concluded by presenting Chapter Six: Conclusions and Future Work. In this

chapter, an overall word on the developed and implemented RAS in fog computing framework

is presented. Acumens into the future work in the area of maintaining the existing standard or

improving QoS in fog computing are also given.

1.12 Conclusion

This chapter started by giving a brief insight into the background of the study. In this background,

a challenge of resource allocation in fog computing was identified, which was motivated to be

the problem statement. The problem statement helped in the formulation of the research aim,

research questions and research objectives. An overview on how the resech aim and questions

were addressed is also highlighted. The contributions of this thesis to the body of knowledge

was also presented. The chapter was concluded by giving an overall layout of the whole thesis.

9

2 Chapter Two: Literature Review

2.1 Introduction

This chapter answers the first research question, “What are the key challenges in

communication and computer resources allocation in an IoT environment?”. Moreover,

it answers the second research question, “How are communication and computing

resources allocated and assigned among the IoT devices based on tasks,

requirements and priorities?”. The chapter is structured as follows. The essential

summary background of the Internet of Things looking at what it is, its characteristics

and how it changed the existing information systems and applications is presented in

Section 2.2. In Section 2.3, the synopsis of cloud computing that is its characteristics,

service and deployment models that make it possible to be the central computational

backbone of IoT is presented. Cloud computing challenges that make it not suitable to

fully support IoT devices due to their characteristics are put across to justify why there

was need of distributed computational paradigm called fog computing. In Section 2.4,

the background of fog computing is highlighted. Fog computing characteristics that

fulfil and comply with IoT needs are also presented. In Section 2.5, application areas

of fog computing are highlighted. Section 2.6 briefly describes the quality of service

in the context of this research and highlights why it is important in fog computing.

Section 2.7, presents related work as far as resource provisioning and scheduling in

a fog computing environment is concerned. The chapter is concluded by giving an

insight into the research gaps that still exist in the current fog computing resource

allocation and scheduling strategies in Section 2.8. A summary of the whole chapter

is given in Section 2.9.

2.2 Internet of Things

Presently, the Internet of Things (IoT) technology is trending all over the world in both

academic and industries. The term IoT can be traced way back to the late 1990s when

Kelvin Ashton introduced it and the vision being to connect intelligent “things” to the

internet (Albishi et al., 2017). Internet of Things (IoT) can be defined as “a dynamic

global information network consisting of internet-connected objects, such as radio-

frequency identifications, sensors, and actuators, as well as other instruments and

smart appliances that are becoming an integral component of the Internet” (Perera et

10

al., 2014). Essentially, IoT is an interconnection of three “things” namely: a) Human

beings/ animal to human beings/animal), b) Human beings/ animal to things/machine

and, c) Things/machine to things/machine, interacting through the internet (Patel et

al., 2016). These “things” can connect to each other via Near Field Communication

(NFC) (Dinh et al., 2013), Radio-Frequency Identification (RFID) (Atzori et al., 2010),

Wireless Fidelity (Wi-Fi) (Atzori et al., 2010), Bluetooth (Dilworth, 2012) and Wireless

Sensor Networks (WSN) (Sensor, 2009). Near Field Communication and Radio-

Frequency Identification use the concept of proximity to IoT devices to identify,

authenticate and track them (Gubbi et al., 2013).

Over the years, IoT has gained much attention and has become the centre of the fourth

industrial revolution (4IR). Internet of Things can collect data from the physical

environment, which upon processing the information generated can be used to

generate insights for decision making in many application areas. Additionally, the data

and events generated by IoT devices can be sent to the desired destination through

the network, and upon further sophisticated analytics, the information created can be

used to prompt for corresponding suitable actions. In short, IoT is a complex system

that can create content, communicate, aggregate, analyse and act without explicit

instructions (Perera et al., 2014).

2.2.1 IoT Characteristics

The following are the fundamental characteristics of IoT, as highlighted in (Patel et al.,

2016) and (Vermesan and Friess, 2014), which makes it possible to do the

aforementioned.

i. Intelligence

The fact that IoT is a combination of software and hardware, algorithms and

computation makes it smart. Ambient intelligence in IoT improves its capabilities to

enable the “things” to respond to a particular situation in an intelligent way and to assist

them in performing specific tasks. For all the popularity of smart technology, IoT

intelligence is regarded only as a means of interaction between devices. In contrast,

the communication between users and devices is accomplished by input methods that

are the standard and graphical user interface.

11

ii. Heterogeneity

Heterogeneity is one of the main characteristics of IoT. IoT devices are based on

various hardware systems and networks and can communicate across different

networks with other devices or service platforms. IoT architecture will allow direct

access of heterogeneous networks to the network. Scalabilities, modularity,

extensibility and interoperability are regarded as the key design requirements for

heterogeneous things and their IoT environments.

iii. Interconnectivity

As far as IoT is concerned, and with the advancement of technology in the existence

of global information and communication infrastructure, anything can be

interconnected. Interconnectivity of these “things” is crucial because fundamental

interactions at “things” level lead to mutual intelligence in the IoT network. In such a

scenario, network accessibility and compatibility are enabled in the “things”. Through

this connectivity, smart devices and apps network will be built forming new possibilities

for the Internet of things.

iv. Dynamic changes

One significant role for IoT is to gather data from its surroundings, and this is achieved

with the complex changes taking place around the devices. Devices state dynamically

changes and the context of the devices which include temperature, position and

speed. Aside from device status, the number of devices often dynamically changes

with a person, location and time.

v. Sensing

Without sensors that detect or quantify any changes in the environment, IoT will not

be possible to produce data that can communicate on their status or even interact with

the environment. Sensing technologies provide the means to build capabilities that

represent a true consciousness of the physical world and the people inside it.

Information gathered from sensors is the physical world's analogue data, but it can

provide our dynamic world's rich understanding.

vi. Enormous Scale

In 2011, Cisco Systems projected that 50 billion devices would be connected by the

end of 2020 (Ericsson, 2011). This means the number of devices which need to be

managed and communicate with each other will be much higher than the devices

connected to the current Internet. Managing the data generated from these devices

and their analysis is becoming more critical for application purposes.

12

vii. Security

Like any other technology, IoT devices, of course, they are vulnerable to security

threats. As such, it will be a big mistake to not think about security issues as we gain

several benefits from IoT. Internet of Things has a high level of transparency and

privacy concerns. It is necessary to protect the endpoints, the networks and the data

that is exchanged. This means there is a need to establish a framework for protection

(security paradigm).

The above-highlighted characteristics have significantly contributed to the successful

adoption and implementation of IoT technologies in existing information systems and

applications, and have created value and support for human activities (Perera, et al.,

2014). This research study identified that IoT had been applied in different domains

which include but not limited to smart cities, smart energy and electric grid, smart

homes, intelligent buildings and infrastructure, smart health and has resulted in the

creation of a “smart world” (Botta et al., 2016) (Islam et al., 2015) (Albishi et al., 2017).

How people live and work by saving time and organizational resources while bringing

new opportunities for knowledge formation, innovation and development have entirely

changed since the introduction of the “smart world” powered by IoT devices (Perera

et al., 2014) (Daj et al., 2012) (Capossele et al., 2016).

All things considered together with the human being’s desire to live in an automated

smart world, novel IoT technology has gained, and it will continue to gain much

attention in many diverse areas. In such an IoT ecosystem where these “things” are

interconnected through a network, enormous and valid incomplete data is generated

by IoT devices. The generated data needs to be processed and responded to in a

short time. The leading cause of concern is the limited computational power,

processing power and storage capabilities of IoT devices. Therefore, it is important to

note that for successful adoption of IoT, it should be associated with a wide variety of

other technologies.

13

2.3 Cloud Computing

Cloud computing was introduced and integrated into IoT to provide scalable and

processing services to meet IoT demands since IoT “things” are largely resource

constrained, exhibiting limited computational power, processing power and storage

capabilities (Chen et al., 2017). The term cloud computing was first used in 2006,

precisely on the 9th of August by Eric Schmidt, Chairman and CEO of Google at the

Search Engine Strategies Conference (Google Press, 2006). In 2011, the National

Institute of Standards and Technology (NIST) defined cloud computing as “a model

for enabling ubiquitous, convenient, on-demand network access to a shared pool of

configurable computing resources that can be rapidly provisioned and released with

minimal management effort or service provider interaction” (The National Institute of

Standards and Technology, 2011). The configurable computing resources in this

definition include networks, servers, storage, applications, and services. The cloud

model is made up of five vital characteristics, three service models and four

deployment models, as summarized in Figure 2-1 based on (The National Institute of

Standards and Technology, 2011).

Figure 2-1: Cloud Computing Overview

Source: (The National Institute of Standards and Technology, 2011)

2.3.1 Cloud Computing Characteristics

As defined by NIST, there exist five vital characteristics which cover the most important

aspects of cloud computing (The National Institute of Standards and Technology,

14

2011). The characteristics, as highlighted in Figure 2-1 above, can be described as

follows:

i. On-Demand Self-Service

Computing capabilities are offered to a customer automatically without any human

interaction with the service provider as long as they are needed. The computing

capabilities include but not limited to network storage, server time.

ii. Broad Network Access

Both thick and thin heterogeneous client platforms such as workstations, mobile

phones, laptops and tablets which are connected to the internet can access cloud

computing data centres through a standard mechanism. This is possible because

cloud data centres are spread and available over the worlds network. Service

providers such as Airbnb and Netflix already use and benefit from these centralised

cloud resources.

iii. Resource Pooling

To avoid over-provisioning, or under-provisioning of resources such as memory,

network bandwidth, processing and storage to the customers demand, cloud

computing offers resource pooling. Resource pooling allows customers to utilise

resources based on their demand dynamically. This will enable users to access and

use cloud resources wherever they go.

iv. Rapid elasticity

This cloud computing characteristic allows horizontally and vertically scaling of

resources with minimum management and configuration effort. Horizontal scaling

allows the simultaneous serving of many clients, whereas the adaption of specific

capabilities is handled by vertical scaling. This will enable customer demands to be

dealt with efficiently while overall cost, energy consumption and resource-wasting are

decreased.

v. Measured Service

Cloud providers always automatically measure, monitor and control the resources that

will be used by customers such as bandwidth, processing and storage. This helps

customers to know and track how the money they have paid via a pay-per-use basis

was used. This is important as it provides transparency between customers and

providers. Moreover, it will help in the measuring of QoS.

15

2.3.2 Service Models

The resources that are provisioned by cloud providers include a) software services

which are used via web browsers, b) developer platforms which are used to create

and deploy cloud applications and finally, c) complete server infrastructure which

handles virtual machines (Micrac, 2008) running on cloud resources. As explained by

Micrac, (2008) and supported by Baun et al., (2011), the cloud resource delivery uses

three service models, namely:

a) Software-as-a-service (SaaS)

SaaS is the first model, and as such, it is most restricted. Customers cannot configure

or manage physical cloud resources. There are many SaaS service models, but the

most popular used ones are Google Apps and Microsoft Office 365. All of the SaaS

service models can be accessed via a programming interface or using a web browser.

b) Platform-as-a-Service (PaaS)

When compared to SaaS, PaaS is more flexible and comes with a development

framework. PaaS offers a cloud environment that allows developers to develop, test

and deploy applications. The most popularly used PaaS include Windows Azure and

Google App Engine

c) Infrastructure-as-a-Service (IaaS).

Infrastructure-as-a-Service is the most flexible model; as such, it allows the customer

to deploy and run the virtual machines on the cloud physical resources. This gives the

customer the power to control over operating systems, deployed application and

storage. It should be noted that the customer will not have the ability to manage the

underlying cloud infrastructure. The most popularly used IaaS is Open Stack and

Amazon Web Services.

2.3.3 Deployment Models

Depending on their characteristics, the service models mentioned above are hosted

in the following deployment models (Micrac, 2008) (Baun et al., 2011).

i. Private Cloud: Only a single organization which can be comprised of multiple

consumers such as business units can have exclusive use for this kind of cloud

infrastructure. The organization can own, manage and operate it. In some

instances, a third party can also do the same. It could be on or off the premises.

16

ii. Community Cloud: A community of customers with shared concerns such as

policy, security requirements and compliance considerations can have

exclusive use for this kind of cloud infrastructure. In this case, the community

can be made up of different organizations, and they can operate and manage

it. It could be on or off the premises.

iii. Public Cloud: Contrary to the two above, which come with restrictions on who

use them, the public cloud infrastructure is open to the general public. A

government, business or academic organization can own, manage and operate

it. It exists at cloud provider premises.

iv. Hybrid Cloud: This cloud infrastructure is made up of private, community or

public cloud infrastructures. Even though they are bound by proprietary

technologies and standards that facilitate both data and application portability,

they remain unique entities.

2.3.4 Virtualization

Another essential trait of cloud computing which makes it ideal to be used is its ability

to use the concept of virtualisation. Virtualisation can be defined as “the abstraction of

the physical hardware resources of a computer system” (Baun et al., 2011).

Virtualisation allows single physical hardware to be shared and used by multiple

customers. Each customer will have their processing, storage and memory request

treated differently in a separate way from the other user even though they will be using

the same physical hardware. One of the significant advantages of virtualisation is it

promotes the economical and efficient use of resources. It is important to note that

there exist many virtualization concepts (Baun et al., 2011); however, in this research,

full virtualization and container virtualization, also known as Operating System (OS)

virtualization are considered.

In full virtualisation, a virtual copy with specified CPU, RAM and other capabilities are

packed in a virtual machine. The physical resources in one computer will determine

the number of virtual machines to be created. Since each virtual machine is treated as

a unique stand-alone machine, separate and different operating systems can be

installed in each virtual machine on the same physical computer (Baun et al., 2011).

To isolate, monitor, manage, deploy and uniquely identify each virtual machine from

the other, a virtual machine monitor middleware is used. The main advantage of full

17

virtualisation is that it allows elasticity of deployment, promotes secure provisioning of

adaptable resources and offers the ability to compose heterogeneous hardware. One

major challenge of full virtualization is that it requires a big amount of storage space

and is also faced by long starting times which can seriously affect time-sensitive

application (Choice Reviews Online, 2012). VMWare is such an example of an

enterprise used for developing virtualization solutions.

Contrariwise to the full virtualization, container virtualization is regarded as very light-

weight virtualisation and is built on top of the existing OS. The containers have

separate and isolated virtual environment but run on top of the same host OS while

using the same kernel and general physical hardware. This allows the container to be

independent, thus allowing its access, use of storage space and processing on the

general physical hardware. A Docker is one such example of a container technology

.A Docker helps in distinguishing Docker Containers and Docker Images (Soltesz et

al., 2007). The Docker Container is made up of lightweight OS (base image), files

added by the user and meta-data.

In contrast, Docker image is made up of several layers saving a snapshot of a Docker

Container. The union file system in the Docker is used to merge several layers to make

one image which is instantiated by the Docker runtime and results in a deployed

Docker Container. When compared to VMs, containers take less time to start since

they are using the same OS for every container. Moreover, containers can be

deployed, released and updated very fast since they are lightweight (Soltesz et al.,

2007). Another advantage of containers is their ability to be combined with Micro

Services Architecture (MSA) which are used in the designing of small, independent,

light-weight and distributed software components. A microservice which is just a

software component can be deployed quickly in a standalone container. Microservices

brings a lot of advantages to their combination with containers as they are resilient,

technology heterogeneity, easy to optimize for replacement, scaling and easy of

deployment (Newman, 2015). Due to containers advantages as highlighted above,

they can bring a lot of benefits when implemented in a fog computing framework as

they are likely to support time-sensitive applications when compared to VMs.

As a result of the cloud computing characteristics mentioned above for service models,

deployment models and ability to use the concept of virtualization, it has been widely

18

adopted in many businesses for backup, file storage, cost-cutting in terms of

infrastructure, development and testing.

2.3.5 IoT-Cloud Architecture

Cloud computing characteristics, service models and deployment models made it

possible for cloud computing to be adopted as the central computational backbone for

IoT devices and form IoT-Cloud Architecture. Figure 2-2 presents the IoT- Cloud

architecture.

Figure 2-2: IoT-Cloud Architecture

Source: (Atlam et al., 2018)

19

In an IoT-Cloud architecture (Figure 2-2), the tasks of different types are generated

by IoT devices are processed either in devices themselves or are sent to the cloud. All

the tasks which require more computational power and storage space, which cannot

be offered by resource-constrained IoT devices are sent to the cloud servers in the

cloud layer. The cloud servers would process the tasks and send the output back to

the IoT device. Thus, cloud computing provides scalable storage and processing

services for IoT demands (Atlam et al., 2018). In such a setup, IoT devices are

geographically far away from cloud computing servers. Researchers argued that the

integration of cloud and IoT requires more bandwidth, experience more latency and

security can be compromised. Sending enormous tasks (data) created by IoT devices

to and from the cloud requires exceptionally high network bandwidth (Atlam et al.,

2018). Explicitly, the unprecedented amount of data produced by IoT (sensors and

other devices) burden the network resulting in network transmission delays (Dastjerdi

and Buyya, 2016). These transmission delays will lead to high latency that can

compromise QoS (Satria et al., 2017). As a result, communication delays will be

experienced due to unstable and intermittent network connectivity. Moreover, cloud

computing does not have location awareness to the geo-distributed IoT devices, which

also affect how IoT devices communicate with cloud servers. With the expected 50

billion deployments of the smart interconnected device such as mobile devices and

intelligent sensors serving by the end of 2020, different vertical markets will be

compromised in terms of bandwidth, latency and security of the data.

In a nutshell, an increase in transmission latency will increase round-trip time which

affects response time and stress up the user who is depending on the IoT device

output. On top of that, the processing speed in this environment mostly relies on the

performance of users IoT device. This will affect IoT services that require low and

predictable latency. As such, these challenges can only be addressed by an adaptive,

geo-distributed and decentralized computational paradigms that complement the

centralized cloud computing model by bringing cloud resource closer to the IoT

devices.

20

2.4 Fog Computing

Owing to the cloud computing challenges mentioned above, several architectures

which include geo-distributed cloud computing, physical proximity-based cloud

computing, edge computing or fog computing, and mobile edge computing (MEC),

were proposed (Chang et al., 2017). Nevertheless, fog computing has gained much

attention both in academia and industries. Fog computing was introduced by Cisco in

2012, not to supersede the cloud but to complement cloud by bringing the cloud

resources closer to the “ground” (Bonomi et al., 2012) (Vaquero and Rodero-Merino,

2014). OpenFog Consortium is on IEEE standard that defines fog computing as “a

horizontal, system-level architecture that distributes computing, storage, control and

networking functions closer to the users along a cloud-to-thing continuum” (OpenFog

Consortium Architecture Working Group, 2017). Fog computing architecture consists

of a fog layer (physical or virtual) residing between smart end-devices and centralized

(cloud) services, which bring both computational and storage capabilities closer to the

ground where IoT devices reside (Figure 2-3). In other words, a fog layer bridge the

geographical distance between IoT devices and the cloud layer. Fog layer nodes can

help in filtering and pre-processing of data, processing of tasks and storage.

Additionally, it provides for end-devices, local computing resources and, when needed,

network connectivity to centralized services (Lorga et al., 2018). As a result of fog layer

nodes proximity to the IoT devices, latency is reduced, which helps in the minimization

of the request-response time from-to supported applications. Moreover, data sent over

the network will be reduced, which help in saving network bandwidth. It is important to

note in the fog layer; communication can be done with Bluetooth, Ethernet, Wi-Fi,

cellular network or any of the other communication mediums, which also helps in

saving bandwidth. Fog layer nodes are also geographically distributed, which makes

them location awareness. This is a vital trait that helps fog computing in offering

reliable service execution and supporting even moving devices such as drones, smart

cars, mobile phone without compromising QoS.

2.4.1 Fog Computing Characteristics

Fog computing can provide the above-highlighted advantages because of the

following characteristics (Patel et al., 2016) (Bonomi et al., 2014):

i. Edge location, location-awareness and low latency.

21

Since fog nodes are located at the edge of the network closer to the edge devices (IoT

devices) which they intend to serve, it is easier to communicate with edge devices and

be aware of their location. This helps in serving applications such as augmented

reality, video streaming and real-time monitoring systems that are time-sensitive and

do not tolerate high latency. Thus, fog offers edge location, location awareness and

provide low latency between the user (endpoint devices) and fog nodes (Saad, 2018).

ii. Geographical distribution

In nature, fog computing nodes are geo-distributed when compared to central cloud

computing. Their geo-distribution nature allows them to support and offer high-quality

streaming to moving objects such as drones, vehicles and other mobile devices. This

trait is fundamental in smart cities, smart industries.

iii. Mobility Support

Fog computing is well known for supporting both static and dynamic computation

because of its ability to restructure the network topology. Geo-distributed fog

computing nodes support the restructuring of the network topology. This is important

in application areas like smart cities where cars, trains and other mobile devices

should move from one point to another without their task executions being

compromised.

iv. Large Scale Sensor Networks

Fog computing is characterized by large-scale sensor networks, especially in

monitoring applications such as the smart grid. In such a monitoring environment,

sensor networks always communicate with fog nodes requesting both computing and

storage resources. This implies that in the fog computing environment, there should

be a large number of geo-distributed fog nodes to support such sensor networks.

v. Save bandwidth

As a result of constant communication highlighted in (iv) above, between sensor

networks and fog nodes, it means bandwidth is needed. In fog computing, there is a

predominance of several wireless access such as Bluetooth and NFC, which helps to

save the bandwidth.

vi. Real-Time Interactions

Unlike cloud computing, fog computing is meant to deal with tasks that are not CPU

intensive as they have limited computational power. As such, fog nodes don’t do batch

processing but preferably real-time interactions which support time-sensitive tasks.

vii. Device Heterogeneity

22

Since the devices come from different manufactures, it means there is no standard

interface, functionality and or deployment. Fog computing can cooperate these

devices from various providers and enable communication when handling the request

for processing from such devices.

2.4.2 IoT-Fog-Cloud Architecture

With the introduction of fog computing in the IoT-Cloud architecture, IoT-Fog-Cloud

architecture was formed, as shown in Figure 2-3.

Figure 2-3: IoT-Fog-Cloud Architecture

Source: (Skarlat et al., 2016)

23

In this IoT-Fog-Cloud architecture, the tasks of different types which are generated by

IoT devices are processed either in devices themselves or offloaded to other

computing devices in the fog layer nodes depending on the availability of resources in

the fog layer. The fog node will process all the task, or part of the tasks and offload

the other part of the task to the other fog node. If the tasks to be executed requires

more computational power than the one available and offered in the fog layer, the

reasoning component in the fog layer will offload the part of the tasks or the whole task

to the cloud.

Due to this architecture (Figure 2-3), fog computing can support critical IoT services

and applications to have improved QoS (Atlam et al., 2018). Fog computing can be

applied to, and support different application areas such as smart cities, smart homes

and many other smart environments as highlighted by (Bonomi et al., 2014).

As summarised by Chang et al., (2016), fog computing is able to complement the cloud

and help the IoT to exploit its potential because of its ability to offer SCALE (Security,

Cognition, Agility, Latency, and Efficiency). Researchers Lorga et al., (2018), Saad,

(2018) and Luan et al., (2015) shared the same sentiments and highlighted that fog

computing supports low latency and location awareness, wide-spread geographical

distribution, mobility support and device heterogeneity.

For the reason that fog computing offers the above-stated advantages, many

researchers both in academia and industries have implemented fog computing in

existing systems. The main goal is to benefit from fog computing characteristics,

thereby improving existing system functions whilst improving QoS. It can be noted in

the literature that fog computing has been successfully implemented in existing

systems, and many application areas have benefitted significantly. The focus of many

researchers now is to come up with strategies, methods and or procedures of

improving fog computing itself. Such improvements will help in strengthening fog

computing advantages in minimizing transit delay, improving availability, throughput

and priority which are all QoS aspects.

24

2.5 Application Area : Smart Home

Because of fog computing characteristics and advantages, it has been implemented

in many application areas with the motive to complement cloud computing and offer

low latency and improved QoS. Recently, connected vehicles, smart cities, smart grid

and smart home are some of the application areas where fog computing has been

used (Yi et al., 2016)(Naha et al., 2018). For this research, the application and testing

area will be smart homes.

The need for automation and security in homes has necessitated the adoption and

creation of “smart homes” across the globe. Smartphones are the major driving force

in the implementation of smart homes as they are used to control most of the

household gadgets (Nachiket, 2019). Many house appliances can be connected,

including smart laundry appliances, smart water heaters, water treatment appliances,

kitchen appliances, intelligent compactors, smart compactors, smart air purifiers and

filters. Based on technology, connected home appliances can be connected using Wi-

Fi, NFC, Bluetooth technologies. Of the named technologies, Wi-Fi and Bluetooth are

the most used technologies in the connected home appliances.

The work of Biljana and Kire, (2016) pointed out some of the challenges that are faced

in implementing the IoT in a smart home as far as avoiding latency issues is

concerned. Some of the obstacles hampering the growth of connected home

appliances, especially in Africa as compared to other continents, include low

penetration of the internet infrastructure and the affordability issues of bandwidth. Fog

computing seems like a solution for addressing some of the problems in the adoption

of smart homes. It is a fact that QoS is vital in a smart home setup because most of

the gadgets require real-time response. Having enhanced QoS in smart homes will

make connected homes safe and secure to leave in.

2.6 Quality of Service

It is essential to realize that Quality of Service is a crucial service requirement.

Providing satisfactory QoS is a fundamental goal in general networking, fog

computing, cloud services or in general information systems. Depending on the

perspective, QoS can have several definitions.

25

From a networking perspective, QoS is defined as “the network capability to deliver

enhanced service to designated network traffic over numerous technologies such as

Asynchronous Transfer Mode (ATM), Frame Relay, SONET, Ethernet, and 802.1

networks, and IP-routed networks that may use any or all of these underlying

technologies” (Cisco, 2014).

In general information systems, QoS can be defined as “the ability to provide different

priority to different applications, users, or data flows or to guarantee a certain level of

performance to a data flow”.

In cloud and fog computing, QoS is “non-functional properties of cloud /fog services,

which describe how well a service is performed, such as compliance, availability,

reliability, responsiveness, price, security, latency” (Zheng et al., 2017).

In the light of the definitions above, QoS is a significant factor because it ensures

improved services for the end-user. In the case of fog computing, QoS is a very crucial

service requirement needed to promote reliability, improve throughput, reduces

energy consumption, minimize network delays and latency (Naha et al., 2018).

Correspondingly, studies have been done both in academia and industrial domain on

how fog computing technologies can be used and implemented in existing systems to

enhance QoS. It was from the literature review that we identified the different methods

and strategies which were used in fog computing framework to minimize transit delay

(TD), improve availability (AV), throughput (TP) and giving priority (PO) which are all

QoS aspects.

Failure to maintain or improve QoS in fog computing seriously affects fog computing-

based systems /applications. This will cause fog computing-based systems/

applications to encounter end to end communication delays (Souza et al., 2017),

service migration issues (Song et al., 2017), workload deployment challenges (Taneja

and Davy, 2017), computation and resource allocation problems (Wang et al., 2017).

For this reason, it is vital to always maintain high QoS in fog computing systems,

especially with the incoming of IoT devices whose tasks are mostly time-sensitive.

26

2.7 Related Work

This section looks at resource provisioning/allocation and scheduling in a fog

computing environment.

2.7.1 Resource Provisioning and Scheduling for Fog Computing Environment.

Resource provisioning is defined as “the procedure to orchestrate, allocate,

deallocate, reallocate tasks to resources and monitor all available system resources”

(Kalyvianaki, 2008). It is vital to utilise all fog layer resources effectively and efficiently

since the fog layer resources have less processing power when compared to the cloud

(Li et al., 2017). It is crucial to note that when doing resource provisioning, the main

goal should be to reduce round-trip time (latency) and also improve QoS. If resource

provisioning is done well, transit delays will be minimized, throughput and performance

of a system will be enhanced, which leads to improved QoS. Resource provisioning

can be either reactive or proactive. Proactive resource provisioning allows the system

to act earlier before an event happens using a predictive strategy. Whereas, a reactive

resource provisioning waits for something to happen then react to the situation.

Many resource provisioning researches has been done and implemented successfully

in cloud computing and mobile cloud computing (MCC) as indicated in the surveys

done by Zhan et al., (2015), Singh and Chana, (2015) and Dinh et al., (2013), Lu et

al., (2015) respectively. However, the strategies described in these works cannot be

adopted directly in fog computing due to the dynamic and heterogeneous nature of fog

landscape. Moreover, the cloud computing and MCC resource provisioning strategies

suggested does not put into consideration ways to reduce latency, task execution

times and allow close-range communication. This affects as it increases the bandwidth

cost and also the cost of using the cloud. Nonetheless, it was from cloud computing

and MCC resource provisioning researches where ideas for resource provisioning

were borrowed, improved and implemented in fog computing. Literature shows that

several types of research have been done as far as resource provisioning and

scheduling are concerned. In fog computing literature, resource provision can also be

placement or resource allocation and is made to minimize latency and improve QoS

(Keller et al., 2012).

The work of Ni et al.,(2018) proposed a resource allocation strategy for fog computing

using Priced Timed Petri Nets (PTPN), which helped to utilize and link both cloud and

27

fog resources. Their approach helped to improve the efficiency of resource utilization,

satisfy user QoS requirements and maximize the profit of both providers and users,

which has become a big challenge. Priced Timed Petri Nets technologies allowed the

user to choose the satisfying resources autonomously from a group of pre-allocated

resources. Based on the results, the authors concluded that their approach could be

more efficient when compared to static allocation strategies based on task completion

time and price.

Researchers in Yang et al., (2018) introduced a novel dynamic resource allocation

framework to incur minimum operational charge while satisfying the applications’

latency requirements. Their results ensure that the service response was minimized

while achieving up to 33% operational cost reduction when compared to the fixed-

location practices. Their strategy did not consider the cost in situations where there is

a need to migrate from user-to MEC assignments.

Aazam et al. proposed a dynamic resource provisioning strategy which used fog micro

datacentres in Aazam and Huh, (2015a) and Aazam and Huh, (2015b). Their setup

was almost the same as that of Skarlat et al., (2016) which had IoT devices, fog

landscape and the cloud. The only difference was that in each layer, there were

different micro datacentres which helped to orchestrate fog cells. On their prediction

resource management model, which was theoretical, they considered resource

demands based on the type of accessing device and relinquishing probabilities which

are informed by historical pricing models, access data and service types. One of the

weaknesses of this strategy was that it could not react in the dynamic fog landscape

changes, which calls for improvement (Aazam et al., 2016).

The work of G. Li et al., (2018) put forward a method of resource estimation that would

help in choosing available resources, select the suitable resource to meet the needs

of users. Their approach classified and matched resources according to the weighted

Euclidean distance similarity. To correct similarity matching function, two strategies,

namely penalty factor and Grey incidence matrix, were used. A Regression-Markov

chain prediction method was used to analyze the change of the load state of the

candidate resources and select a suitable resource. The simulation was used to

validate the effectiveness of the estimation method. Precision and recall were used as

benchmarks to test for the performance. Their approach helped in addressing

28

decreased QoS in fog computing due to increased network devices and cloud center

load, which was causing a delay, thus affecting timely response. Even though they

manage to come up with a resource allocation method, they did not consider resource

estimation to balance the satisfaction between the two key player’s which are users

and service providers. Two factors that were pinpointed to defend their argument was

that the QoS attributes system are extensible, and the user QoS requirements are

dynamic.

With the same motive of addressing the challenge fog service placement, Skarlat et

al. (2016)(a) proposed a conceptual framework for fog resource leasing and releasing

(provisioning) (Skarlat et al., 2016). The envisioned architecture was evaluated using

a customized simulation. It was observed that the approach decreased task request

delays by 39%. In their research, they did not implement it on a real-world testbed

which made it difficult to do a systematic evaluation when considering real-world

network data such as bandwidth and delays. In a bid to address some shortfalls

highlighted in their work above, in 2017, Skarlat et al. (b) implemented the system in

iFogSim testbed as to solve the Fog Service Placement Problem (FSPP) while

considering the heterogeneity of applications and resources in terms of QoS attributes

(Skarlat et al., 2017). They introduced a generic algorithm which assisted in reducing

network communication delays and promoted a better utilization of fog resources.

Their work created a theoretical and practical foundation for fog resource provisioning

and service placement, then named the framework FSPP. Simulation results showed

an improvement in service placement plan produced by the genetic algorithm, greedy

first-fit heuristic, and an exact optimization method. For future work, they

recommended testing the FSPP solution in a real-world setup. In a different work titled,

“Towards QoS-aware Fog Service Placement”, the same author Skarlat et al. (c)

tested the FSPP in a real-world setup. It helped in determining an optional mapping

between IoT applications and computational resources to optimize the fog landscape

utilization while satisfying the QoS requirement of the application (Skarlat et al., 2017).

Accordingly, if a task is submitted to a control node, the control node will check whether

it requires a cloud or fog node and that decision will also be made based on the

execution time required. After that decision is made, if it requires a fog colony, it will

be given to the nearest fog colony based on the computational resource available. If

the assigned fog colony does not have enough resources, then the control node would

29

send the task to the accessible neighbour colony or the cloud. The approach prioritized

those with higher priority to be given first preference. Their experimental results

showed that the FSPP utilizes the fog landscape for 70% of services, thus reducing

the execution cost. It should be emphasized that the approach was tested in a real-

world test-bed which manages to obtain realistic data such as communication link

delay for service placement evaluations in a fog landscape compared to most

approaches. However, their approach when considering the colony to give a task, they

looked for the closest neighbor colony but did not put into consideration to find the

most efficient neighbor colony which might affect QoS.

In their quest to provide efficient utilization of network resources and minimize

application latency in the IoT ecosystem,Taneja and Davy, (2017) introduced a

resource-aware placement for IoT application modules in Fog-Cloud Paradigm. Their

work was motivated by the fact that fog nodes are not computationally powerful

enough to host all the modules of an application in the IoT ecosystem context. They

introduced a module mapping algorithm in a three-tier setup which has different

computational capacity. Each tier would be assigned to support a specific component

of the application based on its level of computational capacity. Those who would

require higher computational power were assigned to the fog nod with the necessary

resource capacity, thus promoting efficient resource utilization which in turn brings

quick processing of the application, therefore reduces the completion time of

processing a request. When compared to other traditional cloud placement approach,

their approach proved beyond certain doubt that in the future IoT application and even

future needs, it will address latency-sensitive needs. The authors also reiterated that

their work made some positive strides towards resource scheduling in fog devices;

more work still needs to be done as to assist in coming up with scheduling policies.

Moreover, though the algorithms managed to improve on network usage effectively,

energy consumption and response time, the researchers put a blind eye on issues of

network connectivity, failure of nodes. These two play a critical role in attaining better

QoS.

To assign tasks to servers according to the latest network and server status in an

efficient way, Rashidi and Sharifian, (2017) proposed ANFIS (Adaptive Neuro-Fuzzy

Inference System) algorithm. The approach helped in distributing user request to

30

different cloudlets, which resulted in achieving higher utilization of resources and

efficiently deal with network dynamics which in return improved user quality of service.

Researchers Aral and Brandic, (2017) were also of the view that effective resource

allocation and network utilization alone will not completely address the QoS issue in

fog computing unless or otherwise we look and address other challenges faced in

edge data centers. Edge data centers mostly suffer from hardware and or software

failures due to lack of advanced support systems such as power generators and air

conditioners which affect them to work effectively and efficiently. As such, these

failures have a negative impact in terms of response latency and bandwidth traffic

since failed edge data centers affect the distribution of tasks to other fog nodes or

cloud data centers. This will compromise everything in the network or other resources

leading to a delay in response time which is critical for edge applications. As such, the

researchers reiterated the need to have proactive algorithms/ models which accurately

predict the availability of a virtual machine before assigning a task to that resource.

The work of Aral and Brandic, (2017) proposed a Bayesian Network Model of QoS to

address the above-aforementioned predicament. They aimed to estimate the

availability level of a VM then channel all QoS related parameters to the one available.

They compared their model with other machine learning methods such as Naïve

Bayes and Logistic regression. They discovered that their proposed method obtained

94% accuracy and 44% of decreased SLO violation compared to the other two.

The work of Li et al., (2017) is one such which echoed the same sentiments that fog

nodes have limited resources when it comes to processing power. Hence, they can

quickly become overloaded when a large amount of user’s request arrives during peak

hours resulting in processing delays which in-turn will affect QoS. As such, they

proposed two resource management schemes that are Fog Reservation (FR) and Fog

Resource Reallocation (FRR). These approaches would reserve some fog nodes so

that they will be used only by real-time services. Moreover, if there was overload in

those reserved nodes, fog reserved for low priority services were reallocated to be

used by high priority vehicular services. Experimental results showed an improved one

hope access probability for real-time vehicular service. Even if the fog resources were

under heavy load, it managed to achieve low delay. However, also the approach

brought out results which were favourable in vehicular context, low priority jobs were

31

sacrificed and as such their QoS was compromised which can be a disadvantage

because they have to wait much longer for the response.

The work of Xiao and Krunz, (2017), proposed a novel offload forwarding strategy.

Where fog nodes would either not offload or offload and forward part or its entire load

to be processed by other local fog nodes which are idle and have better computational

power than them. This strategy helped to minimize the average response time which

included workload transmission time and queuing delay at the fog layer and

significantly improved the performance of fog computing network, thus improving

Quality of Experience (QoE) of users. The researchers validated their approach using

traditional ADMM approach, which proved that it could not be used to solve the offload

allocation problem for fog computing. However, their work used fewer nodes and

ignored time-critical events which call for further experimental trials to check how it will

perform in such a scenario.

In Song et al., (2017), they applied a QoS-based approach task distribution in edge

computing networks. Their approach was almost similar to the works of Xiao and

Krunz, (2017), with the only difference being that their approach was applied in IoT

applications. Furthermore, it would periodically distribute incoming task in the edge

computing network. They reasoned that there would be an increase in processed tasks

in an edge computing network. As supported by their results, the QoS requirements

of the task completed in the network were satisfied. In their experiments, they applied

two approaches with a local approach which would execute its task locally on its

access node. In contrast, the random method would select an eligible node for each

task as its execution node where all the QoS requirements are satisfied. Song et al.,

(2017) approach did not give high priority to time-critical tasks with different operation

software to test for Interoperability. The result proved to be sound as they used more

nodes than (Xiao and Krunz, 2017).

Inspired by the goal of minimizing resource consumption which reduces energy

consumption and carbon emission rate through load balancing, Neto et al., (2017)

introduced a Multi-tenant Load Distribution Algorithm in Fog environments (MtLDF).

This algorithm was implemented in a fog environment for sharing the load among

nodes where they considered delay and priority as special individual blocks of multi-

tenancy requirement. Their approach adopted two Tenant Maximum-Able Delay

32

(TMAD), which would address QoS and Tenant Priority (TP) which was responsible

for selecting and grouping tenants in terms of their computational power importance.

The approach had a Fog Management Layer (FML) which would send load to an

eligible fog nod considering load balancing. The experimental results proved that

MtLDF could improve load distribution better compared to Delay-Driven Load

Distribution strategy that was once used. Resource utilization also improvised to a

maximum of 97%. However, this approach needs to be improved if it is to be used in

IoT time-critical devices which require at least 99% distribution value if we are to

achieve higher QoS

The work of Wang et al., (2017) highlighted that resource sharing and prioritization

plays a pivotal role to obtain high QoS in fog computing. Their results and evaluations

pinpointed that prioritizing execution can minimize delay for tasks with higher priority.

Latency can be reduced by sharing operations of lower priority processing, and

throughput of valid temporary events can be decreased through shedding. These

conclusions were drawn when they implemented a system in cyber systems which

require high QoS such as bounded latency which is a critical factor in cyber-physical

applications. Wang et al., (2017) developed middleware for real-time Cyber-Physical

Event processing (CPEP). The CPEP was able to configure processing operations,

processing prioritization and sharing and enforcing of temporal validity and shedding.

They evaluated its effectiveness in terms of prioritization, sharing and shedding; and

validated it using Data Distribution Service, which is also another messaging

middleware.

Although offloading and resource allocation has made better strides in addressing

QoS in Edge computing in other application areas as supported by previous

researchers in above literature, contrary, Zhang and Zhu, (2017) argued that mobile

data offloading in ECN might impose new QoS guarantee glitches. Their argument

was based on the upcoming of 5G networks. They pinpointed out the new challenges

are encountered when users request multimedia services which are sensitive to time

and demand a lot of bandwidth which might become difficult in supporting the

statistical delay-bounded QoS. To address the highlighted problems, they proposed a

statistical delay bounded QoS provisioning schemes. The statistical delay bounded

QoS provisioning schemes used the effective capacity theory for two types of mobile

33

offloading that is Wi-Fi and Device-to-Device offloading: where they formulate the Wi-

Fi and D2D offloading as one hop and two hops respectively. When they validated

their approach through numerical analysis, their system proved that it could be used

as a benchmark to address the problem mentioned above.

Based on the piloted literature review, it is clear that many strategies have been

applied in fog computing to address issues of tasks to resource allocation while

minimizing latency and improving QoS. Bearing in mind of the 50 billion expected

devices to be connected by the end of 2020, it is vital to keep finding more strategies

on improving fog computing as far as resource allocation is concerned (Ericsson,

2011).

2.7.2 Scheduling techniques

Task scheduling plays a critical role as far as reducing latency and improving QoS in

fog computing is concerned. This was supported by a systematic literature review

done by Yang and Rahmani, (2020), on checking task scheduling mechanisms in fog

computing. Task scheduling in fog computing can be defined as the effective and

efficient assignment of IoT tasks to fog layer resources (Mtshali et al., 2019). Effective

and efficient task scheduling means not to over-consume the limited available

resources at the fog layer. If fog nodes are over consumed, this can lead to application

failure or network breakdown, leading to an increase in latency which has a negative

impact on real-time applications (Mtshali et al., 2019). Task scheduling can be either

static or dynamic. In static scheduling, the first step is to know the complete system

information and resource mapping before tasks are executed (Choudhari et al., 2018).

Contrarywise, in dynamic scheduling, resource assignment depends on the system

current state, computer machines and tasks submitted before scheduling decisions

are made.

From the reviewed literature, most of the existing solutions used several different

approaches to do resource provisioning and scheduling procedures. It can be deduced

from the literature that dynamic programming, in particular, linear programming is the

most common one being used for the formulation of the resource provisioning and

scheduling problem. The majority of methods that are used to solve linear

programming are either utilizing heuristic algorithm or exact mathematical methods

(Rothlauf, 2011) (Chaisiri et al., 2012) (Beheshti and Shamsuddin, 2013).

34

The reason why heuristics algorithms are mostly used is that they can resolve

problematic issues in a faster way when compared to meta-heuristic algorithms which

are considered as too slow in terms of performance. Moreover, heuristic algorithms

are known to provide optimum solutions, while in most cases, meta-heuristic

algorithms usually fail to discover optimal or precise solutions (Müller-Merbach, 1981)

(Müller-Merbach, 1985).

According to Syed et al., the six most commonly used heuristic algorithms for

scheduling in cloud computing and which are adopted in most fog computing solutions

as proved from literature above are: “Minimum Completion Time (MCT), Minimum

Execution Time (MET), Min-min, Max-min, Sufferage and First Come First Serve”

(Madni et al., 2017).

 Minimum Completion Time (MCT): Tasks are assigned to VMs or resources

based on task completion predictable time in random order. Meaning tasks are

assigned to a VM or resource with the earliest time of completion. In some

cases, MCT allocates tasks to VMs with no minimum execution time.

 Minimum Execution Time (MET): Tasks are assigned to VMs or resources

based on tasks best predictable time without considering whether a resource is

available or not. In this case, the algorithm only considers the minimum

execution time of the tasks. In some cases, this results in load imbalances since

the VMs or resources to be assigned would not have been considered whether

they can handle the task or not (Braun et al., 2001).

 Min-min: The algorithm checks for the minimum completion time of all the tasks

concerning the available machines, then a task with minimum completion time

is removed from the group of un-scheduled tasks and is assigned to the

subsequent machine. The process is repeated up until all the un-scheduled

tasks are assigned to a machine (Aissi et al., 2005). If tasks with minimum

completion are many, then those with maximum completion will be faced by

starvation problem (Braun et al., 2001).

 Max-min: The algorithm checks for the maximum completion time of all the

tasks in relation to the available machines, then a task with maximum

completion time is removed from the group of un-scheduled tasks and is

assigned to the subsequent machine. The process is repeated up until all the

un-scheduled tasks with maximum completion are assigned to a machine

35

followed by those with minimum completion time (Aissi et al., 2005). This

approach is suitable when a few tasks have maximum completion time;

otherwise, those tasks with minimum completion time will end up facing

starvation problem (Braun et al., 2001).

 Sufferage: In this case, tasks values with minimum and second minimum

completion times are calculated first by the algorithm. Then, in the second

stage, the difference in the task’s values are considered. Those tasks with

sufferage (minimum difference) are then allocated to the consistent VM. After

that, the assigned task is removed from the un-assigned tasks group, and an

update of resource availability is done. This is repeated up to the time when all

tasks are assigned to a resource (Maheswaran et al., 1999).

 First Come First Serve (FCFS): Processes that are scheduled and managed

by FCFS algorithms are those that automatically execute tasks or resources in

the order they arrive. The first task to arrive is the first task to be executed, thus

following the first in first out (FIFO) concept. One of the advantages of this

approach is it serves VMs or resources and time as it is regarded as a simple

process of scheduling which is error-free and efficient (Madni et al., 2017). As

a result of its advantages, the FCFS algorithm is used by most simulators, such

as iFog (Gupta et al., 2017), CloudSim (Calheiros et al., 2011) and GridSim

(Higashino et al., 2016).

In light of the above evidence, these algorithms perform differently in different

application areas and depending on what needs to be done. For this study, the FCFS

scheduling technique was adopted, modified and implemented in RAS to fulfil our

research goal of doing research allocation and scheduling while minimizing round-trip

time (latency).

2.7.3 Round-trip Time (Latency)

In general, latency can be defined as “a measurement used for measuring delay”. In

the context of fog computing, latency can be regarded as “round-trip delay/time” and

is considered as one of the most impact factor (Shukla et al., 2019). Round-trip time

can be defined as “a measure of the time taken by a task or data to move to its

destination and back to its original position over the network” (Shukla et al., 2019).

Reducing round-trip time is vital in time-critical applications like health care, smart

36

homes and smart cities. When there is high round-trip time, the IoT requests are not

processed and returned quickly, which seriously affect time-critical applications

(Aazam and Huh, 2015b). Even if the tasks response is returned late, it will be

rendered meaningless, inadequate, unreliable by the real-time applications and end-

users. Therefore, it is crucial to reduce round-trip time always. Round-trip time can be

minimized by minimizing communication latency, computation latency, and network

latency should be reduced (Shukla et al., 2019). Our proposed solution seeks to

reduce round-trip time by reducing queuing time and offloading time.

2.7.4 Software Frameworks

Several approaches have been used in literature when developing fog computing

frameworks but lacked an extensible programming model as far as resource

provisioning is concerned. To be able to design an adaptive resource allocation

scheduler in fog computing framework for the IoT ecosystem, software framework

approach is the most suitable for this research.

A software framework is regarded as a base structure for applications and service

execution in a specific software environment. The reason for choosing the software

framework approach is that it allows the developer to inherit some concepts from

existing frameworks and modify them utilizing their application (Riehle, 2000). This is

possible because of software framework have reusability characteristics. The

reusability characteristic enables the developer to concentrate more on addressing the

problem in this case resource provisioning aspect in fog frameworks, instead of

implementing the environment basics.

According to Riehle, (2000), software frameworks can be either white-box and or

black-box frameworks. White-box structures are supposed to be configured by

extending explicit interfaces so that they can be executed in the chosen environment.

Contrary, black-box structures are regarded as ready-to-use, and they are no need to

continue or further development to be executed. Most frameworks are a combination

of both the white-box and black-box structure. This thesis took a combination of the

two in an adaptive resource allocation scheduler in fog computing framework for the

IoT ecosystem.

37

This work borrows the ideas and concepts from the works of Kim and Lee, (2014) and

Vögler et al., (2016) who used software frameworks for IoT environments. The work

of Kim and Lee, (2014) acts as a guiding framework that was used to develop, provide

and execute applications using web-GUIs. In this work, specific aspects were added

to carter for distributed application provisioning in the IoT landscapes, which were

lacking in the framework of Kim and Lee, (2014). The work of Vögler et al., (2016)

introduced a scalable large-scale IoT framework that was implemented in a smart city

environment. Some aspects were borrowed from the LEONORE framework

developed by Vögler et al., (2016). The LEONORE framework provided the knowledge

on how infrastructure and toolset of IoT applications can be deployed at the edge of

the network. The LEONORE framework set up some essential parameters to save

bandwidth between the edge and the cloud, and enable a distributed and scalable IoT

service deployment. This is the reason this research borrowed these concepts.

2.8 Research Gap in the Current Fog Computing Research

Provisioning Strategies.

Even though positive strides have been made in addressing resource provisioning

challenge while minimizing latency and improving QoS in fog computing, the

suggested strategies still need improvement. It is important to note that all the

proposed and implemented resource provisioning and scheduling strategies in

literature, first consider whether there are available resources in the fog layer before

sending a task. If there are available fog resources, they then assign and send the

task to the fog layer. It is in the fog layer where the decisions are then made to either

process the whole tasks, part of the task or offload the tasks to the next fog node or to

the cloud which are idle and have better computational power than them. One

drawback of this kind of resource provisioning approach is that, it sometimes wastes

the resource-constrained fog layer resources and time in making decisions, especially

if the fog layer is not going to process the task.

Secondly, sending both time-sensitive and non-sensitive tasks to fog layer without

considering tasks QoS requirements, deadline requirements, and user needs; adds

more unnecessary load to the fog layer. Especially, if the bulk of the tasks send are

not time-sensitive tasks but are non-time-sensitive tasks that require more

computational power which is only available at the cloud layer. This will affect time-

38

sensitive tasks as they will be competing for fog layer resources with non-time-

sensitive tasks. This will result in time-sensitive tasks missing deadlines, and their

output will end up not being of any use to the IoT device and end-users.

When doing resource provisioning, it is crucial to classify tasks as time-sensitive and

non-time-sensitive tasks before assigning them to resources. This is because tasks

have different computational and QoS requirements (Yang et al., 2019) (Zhang et al.,

2019). Time-sensitive tasks should be given higher priority to either network resources

or fog resources when compared to non-time-sensitive tasks. Prioritizing task will help

in meeting deadlines for time-sensitive tasks. Time-sensitive tasks should always meet

their deadline because failure to meet a deadline has a detrimental impact in critical

applications like medical health applications, smart homes and smart cities where

responses are needed in real-time.

Thus, with the current resource provisioning methods used, most time-sensitive tasks

will end up missing their deadlines. This challenge is escalated with more IoT devices

that are being connected daily to the network, which are adding additional burden to

the network and resources. Resulting in high latency problems and resource

challenges at the fog layer. Consequently, there is a demand to come up with a novel

resource provisioning strategy and scheduling strategy in the IoT-Fog-Cloud

architecture, whose responsibility is to flag and categorise tasks from IoT devices as

either time-sensitive or non-time-sensitive tasks. Then, if the task is time-sensitive, it

is assigned to the fog layer. If the tasks are not time-sensitive, it is sent directly to the

cloud layer. This will help in saving fog layer resources and time which was not the

case with the existing strategies as they use fog resources and time when deciding

whether to process the whole task, part of the task or to offload it to the cloud layer

completely. Moreover, the approach should also not starve those tasks that are not

time-sensitive, as was the case with the strategy proposed by (Alnoman and

Anpalagan, 2018).

Therefore, in the context of our proposed Resource Allocation Scheduler, when a task

is received, it should be first classified as time-sensitive or non-time-sensitive. Then

using the modified FCFS heuristic algorithm, classified tasks are assigned to either

the fog layer for time-sensitive task or to the cloud layer for those tasks that are not

time-sensitive, depending on the task request requirements. Resource Allocation

39

Scheduler is responsible for resource allocation and scheduling, giving high priority of

fog resources to time-sensitive tasks. The RAS considers task deadlines, resource

constraints. This research is of paramount importance as several application areas

such as smart health, smart city, smart grids who require real-time response would

benefit from the findings of this research.

2.9 Conclusion

This chapter gave a comprehensive insight into the IoT technology, cloud computing

and fog computing which are the enabling technologies and foundation for this

research. A review of several strategies and methods that have been suggested and

implemented in fog computing to address resource allocation and scheduling

challenges are presented. Firstly, the analysis of technologies and researches done

in fog computing framework helped in giving an overall insight on functional, technical

and non-functional requirements of fog computing framework in an IoT-Fog-Cloud

architecture. Secondly, after a critical analysis of the literature, open research

challenges which still exists in fog computing frameworks as far as reducing round-trip

time and improving QoS is concerned, were highlighted. Open research gaps helped

in justifying the importance of this research. This chapter helped in answering the first

research question, “What are the key challenges in communication and computer

resources allocation in an IoT environment?”. Moreover, helped in answering the

second research question, “How are communication and computing resources

allocated and assigned among the IoT devices based on tasks, requirements and

priorities?”.

40

3 Chapter Three: Research Design and

Methodology

3.1 Introduction

This chapter answers this study's third research question: “which approaches can be

used to build a resource allocation scheduler framework for IoT environment?” The

chapter, therefore, presents the procedures and techniques that were used for this

study. The chapter is structured as follows: Section 3.2 highlights the research

methodology that was followed. Sections 3.2.1, 3.2.2, 3.2.3 and 3.2.4 explains the

four phases of the top-down methodology in the context of this research and what was

done at each phase. The chapter conclusion is presented in Section 3.3.

3.2 Research Process Design

As stated in chapter one, this study aimed to design and implement an adaptive

resource allocation scheduler in the fog computing framework for the IoT environment.

The aim directly put this work within the communication networks domain, in the

transport layer of the Open Systems Interconnection (OSI) model in particular. The

communication networks domain has several standard methodologies for

implementing framework designs. Although several conventional methods are used

for implementing network design solutions, the most common approaches are the top-

down approach and the bottom-up approach (ORACLE et al., 2014). The top-down

consists of the four phases: requirement analysis, logical network design, physical

network design and testing, optimizing and documentation design. The bottom-up has

similar phases with the top down, the only difference being that the latter's phases are

the reverse order of the top-down approach. Although the bottom-up approach is

generally faster as it is usually based on past projects, the methodology is known of

having a higher probability of failure. It is also known of not taking into consideration

all necessary service applications, and that may lead to design omissions that would

necessitate a redesign of the framework. The top-down approach is very much ideal

for designing and testing network solutions. It starts with a clear understanding of the

goals of the required solution. It also allows planning for scalability and adaptability,

which was among the desired milestones of the development of RAS. The top-down

41

methodology is also simple in terms of understanding and troubleshooting; flexible and

allows the addition of new protocols and technologies at a rapid rate.

Furthermore, the top-down approach is a streamlined and systematic methodology

that accommodates the increasing requirements of remote access, bandwidth,

scalability, security and reliability in the context of IoT-Fog-Cloud architecture. Top-

down network design is a standard methodology recommended by Cisco (Oracle et

al., 2014) and has been successfully used by many researchers in literature which

include Mulyawan, (2011), Rasmila and Laksana, (2019) and Giovanni and Surantha,

(2018). The works of Giovanni and Surantha, (2018) who used top-down network

design resonates well with our study. Based on the reasoning above, this study,

therefore, adopted the top-down methodology. Table 3-1 shows the phases of the top-

down approach as applied in this study.

Table 3-1: Top-Down Research Methodology Phases

Stage Objective and Process Milestone

Requirement
Analysis

Problem Identification and Motivation

*Systematic Scrutiny of Literature on Fog Computing
Frameworks as to:
-Identify Open Research Gaps in Fog Computing
Frameworks.
-Justify why it is Important to Address the Open Gaps.
-Choose One Open Research Problem to Address.
-Define Aim, Objectives and Research Questions.
-Define Functional, Non-functional Requirements,
Technical Specifications
-Investigate the Tools to Use.

-Identified Open Research Gaps
in Fog Computing Frameworks.
-Defined Why it Is Important to
Address the Open Gaps
-Resource Provisioning as the
Core-Problem to be Addressed.
-Resource Provisioning to
Minimize Round-trip Time and
Improve QoS.
-Literature Review Paper
Submitted in International Journal
for Fog Computing.

Logical
Network
Design

Designing a Network Topology
-IoT-Fog-Cloud Network topology with a RAS in the
IoT-Fog gateways.
-Designing a Queuing Algorithm in the RAS
-Identify Workflow between IoT, fog and cloud layers.
-Identify Limitations.

-Developed a queueing and
network model for resource
allocation.
-Refined the Architecture
-Generated Deployment-Scripts.
- A Scientific Paper Based on the
Proposed Resource Provisioning
Strategy RAS.

Physical
Network
Design

Implementing and Checking the Feasibility of
Logical Network Design.

- Proof-of-Concept Testbed Setup in Node-RED
-Configuring the IoT devices, Fog Nodes and Cloud
Servers.
-Configure RAS in IoT-Fog gateway.
-Implementing the network topology in Node-RED
hosted at a High-Performance Machine.

-Queueing and Networking model
Implemented
-Criteria Decision Making
Process.

Testing,
Optimizing and
Documentation
Design

Evaluation
-Investigate Suitability of The Queuing Model in
reducing Queuing Time and Offloading Time Metrics.

-Evaluate how RAS reduces Queuing Time and
Offloading Time in Fog Computing Framework
-Identify the Limitations of Experiments and Iterate
Back to Design.
-Compare to Base.
-Do 1000 runs and collect results, average the results.
-Write a thesis.

-Performed Evaluations of RAS in
the Fog Computing Framework
-RAS Reduced Queuing Time,
Offloading Time and Improved
Throughput
-Presented the results on line and
bar graph
-A written thesis.
-A scientific paper based on
results.

42

The four phases can be categorized as either theoretical (requirement analysis) or

technical (logical network design, physical network design; and testing, optimizing) as

illustrated in Figure 3-1.

Figure 3-1: Top-Down Research Methodology phases

The following section describes the top-down approach phases in the context of this

study.

3.2.1 Requirement Analysis

To first get “the big picture” of our research, systematic scrutiny of literature was done.

We focused on cloud computing, fog computing and IoT to establish the research

background for the study. Most of the reviewed literature which was scrutinized for

IoT, fog computing and cloud computing was confined to between 2010 to 2020, which

is a ten-year term. The reason for reviewing most of the literature in the ten-year range

is because reviewing older literature, especially in computers, gives the wrong

impression as far as identifying research gaps is concerned. It is a fact that in more

than five years, technology would have changed significantly. The literature used was

retrieved from electronic academic databases which included publications and

journals. We mainly used SCOPUS, IEEE, Research Gate, Science Direct,

International Journal for Fog Computing and Association of Computing Machinery

43

(ACM) digital libraries. These databases were searched using specific search

keywords such as; “Internet of Things, Fog Computing AND QoS”.

It was from that scrutiny of the literature that the study identified challenges of fog

computing in supporting IoT ecosystems as far as latency and QoS is concerned. We

then looked at works that implemented fog computing in existing systems to address

latency challenges and improve QoS. Furthermore, scrutiny on literature that

microscopically focuses on providing strategies to keep improving latency and QoS in

fog computing itself was done. In particular, strategy in fog computing that focused on

improving reliability (service continuity and network quality), performance

(application/task performance and service performance) and cost (energy efficiency,

server operation cost and pricing of fog services) in fog computing frameworks.

It was from the literature review that we identified the different methods and strategies

which were used in fog computing framework to minimize transit delay, improve

availability, throughput and giving priority which are all QoS aspects. The main

strategies used in most scrutinized literature included task offloading, service

placement, resource provisioning and load balancing.

As part of the requirements analysis, the study managed to identify open research

gaps which still exist in fog computing frameworks as far as reducing latency and

improving QoS are concerned. The identified gaps included fog orchestration problem,

computing problem and resource management problem. Those gaps still needs both

the academia and the industry to research for solutions. The deliverable from the

requirements analysis of this study was a journal paper “A Review of Quality of Service

in Fog Computing for the Internet of Things” was published in International Journal

for Fog Computing, 3 (1).. Most of that research paper's contents make up this

study's chapter two. The full paper is attached in this thesis as Annex 1.

On the technical requirements and specifications, the analysis of existing frameworks

on the reviewed scholarly literature helped in identifying the major functional and non-

functional requirements for the fog framework.

44

a) Functional Requirements

The functional requirements consisted of the general functionality of the overall fog

computing framework. The requirements included cloud management requirements in

the cloud layer, fog node management requirements in the fog layer and RAS

management requirements in the IoT-Fog gateway. Below is a brief explanation of

each functional requirement and a brief explanation of its functions.

i. Cloud Management

Cloud management functions included parent identification, cloud resource

provisioning, service placement, task request execution and service data storage.

These were linked as follows:

 The cloud middleware identified and determined a resource in the cloud

servers, in this case Front End for Node-RED (FRED), that would offer a

service to a task request from the RAS and sent back a connection data

signal.

 This prompted VMs and containers to be deployed and released in FRED

to match the task requirements.

 RAS then sent the task to the deployed containers in FRED.

 Upon task arrival, the execution of the task by the containers in FRED

began, and results were sent back to RAS. At the same time, the

propagated service data was stored for further analysis.

ii. Fog Node Management

Fog node functions include device identification and creation of the framework

topology.

 Fog nodes were created using Node.js and uniquely identified by an IP

assigned to each fog node.

 A digital topology was created, and this allowed fog nodes to communicate with

each other using cable or wireless technology such as Bluetooth and NFC.

 Fog nodes were periodically pinged to check if they were connected.

iii. RAS Management

RAS was hosted in the IoT-Fog gateways, and it was responsible for handling tasks

request, deployed the services and managed the network. To be able to do this, a

45

“reasoner, propagation component, watchdog and shared storage” components were

configured in the RAS. In short RAS “orchestrated, allocated and deallocated” tasks

to and from fog nodes resources or cloud resources and monitored the resources. All

the configured components would communicate, register and deploy services. An in-

depth explanation for the functional requirements is found in chapter four of this thesis.

b) Non-Functional Requirements

For the proposed framework to execute, in case of device addition/failure, device

accidence or overload situations, it had to be guided by non-functional requirements.

In the context of this research, we adhered to the following:

i. Scalability

For the framework to adapt to the ever-changing resource demands by the users, the

CPU utilization for the framework was scaled to stay at less or equal to 80% for

resource provisioning, and service placement. In comparison, the remaining 20% was

reserved for the host device. Furthermore, RAS effectively and efficiently helped in the

utilization of the fog resources by assigning time-sensitive tasks to the fog layer and

sent non-time-sensitive tasks to the cloud. This helped to cut cloud cost as all time-

sensitive tasks produced by IoT devices were sent to be processed in the fog layer.

Moreover, this distinction where time-sensitive and non-time-sensitive tasks were to

be processed assisted in achieving fast service deployment.

ii. Extensibility

The framework was designed using open-source software, the Node.js and Front End

for Node-RED (FRED). The Node.js and FRED were selected because they are easier

to modify whenever there is a need to do so. Furthermore, the framework was loosely

coupled, and the APIs were clearly defined between diverse components. Also, a

modular Node.js component structure was used to specify APIs which helped in

meeting the precise requirements concerning our framework.

iii. Portability

In the development of the fog framework, Node.js was used for creating IoT nodes,

fog nodes and FRED created the cloud server because they are light and could be

easily used across diverse system environment. The open-source software used was

platform-independent and could be quickly deployed and migrated.

46

c) Technical

The high-performance computer where the framework was hosted had 1100 terabyte

(TB) storage capacity,135 cluster nodes with 2900 processor cores and 11TB

memory. Using a high-performance computer was essential to support the cloud CPU

frequency, which was set at 10 x 109 cycles per second and memory capacity was 64

Gig. The fog node CPU frequency was set at 5 x 109 cycles per second, and memory

capacity was 512 Megabytes. The IoT device CPU frequency was set at 6x106 cycles

per second, and memory capacity was 128 Megabytes. The following were configured

on this high-performance computer that is: 20 IoT devices, three IoT gateways, 10 IoT

fog nodes and two cloud data centres. The IoT devices would produce at most 100

tasks. The network traffic to pass through the network was set and configured. The

bandwidth was set at 20 Mega Hertz.

3.2.2 Logical Network Design

This section gives an overview of how the network topology was designed.

Since the study's main goal was not to develop a new architecture but to improve the

architecture by adding RAS, the study adopted Skarlat et al. (2016) network topology.

Skarlat et al. (2016) network topology is a well-known architecture in this field as it

supports resource provisioning in both fog computing and cloud computing (Skarlat et

al., 2016). Figure 3-2 shows the network design topology that was adopted.

47

Figure 3-2: Network Design Topology

The network topology in Figure 3-2 is made up of cloud layer, fog nodes, IoT-Fog

gateway and IoT devices.

The cloud layer is the top level of this network topology. FRED, which was supported

by OpenStack, was the cloud environment whose responsibility was to process non-

time-sensitive tasks sent by the RAS. It also stored all the data of the topology for

48

future use. 192.168.1.101:8081 was used as the IP address and port for the cloud,

respectively.

The fog layer was hosted and deployed on the Raspberry Pis. Three Logitech Media

Server with IP address and port 192.168.1.102:8080; three Logitech Harmony Hub

with IP address and port 192.168.1.103:8080; and four Samsung SyncThru Printers

with IP address and port 192.168.1.104:8080 were used as the fog nodes and

connected to the Raspberry Pis. As shown in the diagram, fog nodes were directly

connected to the cloud layer so that they would be able to send data that needed

storage for future use.

The IoT-Fog gateways, in this case, Linksys wireless AP, NETGEAR routers, Belkin

WeMo Switches, Xiaomi gateway were also hosted and deployed on the Raspberry

Pis. As shown in Figure 3-2, both the cloud server (FRED) and fog nodes were directly

connected to IoT-Fog gateways where RAS was hosted. RAS controlled, orchestrated

and supervised the cloud server (FRED) and the fog nodes which processed data from

the connected IoT devices. The queuing algorithm in RAS helped in the assignment

of resources to IoT task based on their priority.

In the edge layer, five temperature sensors, four humidity sensors, eight security

cameras, one telldus live and two Sonos speakers were the IoT devices connected

via home assistant to the respective Raspberry Pis. A sensor module was used to

connect temperature sensors and humidity sensors to the Raspberry Pis.

To connect the cloud server, the fog nodes and every Raspberry Pi to the internet, a

robust Linksys wireless AP was used to create a wireless LAN network. The reason

for connecting every component to the internet was to allow the fog servers to

download Docker Image data which always assisted in creating and deploying

dynamic services.

From this phase and the technical requirements and specifications, a paper titled

“Resource Allocation Scheduler Strategy to Minimize Round-trip Time in Fog

Computing” was written, submitted and it is under review on the Journal of Computer

Science.

49

3.2.3 Physical Network Design

Five temperature sensors, four humidity sensors, eight security cameras, one telldus

live and two Sonos speakers were used to create a home set up. These devices were

simulated as the IoT devices and connected directly to the simulated IoT-Gateways,

which hosted the RAS. The simulated IoT-Gateways included Linksys wireless AP,

NETGEAR routers, Belkin WeMo Switches, Xiaomi gateway. These gateways were

linked and connected to the fog nodes Logitech Media Server with IP address and port

192.168.1.102:8080; Logitech Harmony Hub with IP address and port

192.168.1.103:8080; and Samsung SyncThru Printer with IP address and port

192.168.1.104:8080. The IoT-Fog gateways were also linked and connected to the

cloud server FRED which was supported by OpenStack (192.168.1.101:8081).

A Node-RED cross-platform runtime simulation environment was used. The starting

point was to make sure we created a proof of concept testbed in Node-RED consisting

of the above mentioned IoT device, IoT-Fog gateways, fog devices and cloud server.

The runtime environment supported Node.js and Front End for Node-RED (FRED)

which were the building blocks. Node.js was used to the IoT devices and fog nodes;

build back end services; the application programming interface (API). The reason why

Node.js was used is that it is highly-scalable, data-intensive and used for real-time

apps. Its non-blocking or asynchronous nature allows a single node to handle multiple

requests. FRED was used as a cloud platform. Most tools in Node-RED were used to

define and create nodes, sequences, and flows for the simulated smart home. In the

progression of the design and implementation, several codes in Node.js were tailored

to achieve a specific goal.

3.2.4 Testing and Evaluation

The starting point was to make sure that there was communication between the IoT

device, RAS, fog nodes and cloud servers by starting the network. Every node was

pinged periodically to make sure it was up and running before sending the tasks. The

IoT devices generated tasks, sent them to the RAS to check if the framework was

functioning according to what it was supposed to be doing. This was done for ten times

before collecting results as to make sure that all connections and communications

were perfect. The debug and dashboard in Node-RED showed the connection status,

any errors and how frequent the data is being sent or received.

50

After making sure that everything was up and running, 1000 independent runs were

done; results collected and averaged for each parameter which was tested. In

particular, we were concerned about determining the round-trip time. To determine

round-trip time, this study focuses on queueing time and offloading time parameters.

a) Queuing Time

In order to assess queuing time which is the time a task waits in the queue before it is

assigned to a fog or cloud resource based on its priority category (high, low and no

priority tasks); tasks were sent automatically from IoT devices at the same time in

batches of 5 after every 10ms time-stamp. A maximum of 40 tasks was assigned for

each of the three categories of the tasks. A total of 1000 independent runs were done;

results collected and averaged for each parameter which was tested. The results for

each task category were collected at the dashboard and recorded in milliseconds. The

test aimed at establishing the effect of having more task and how RAS handles these

tasks as far as resource allocation is concerned.

b) Offloading Time

To evaluate offloading time, which is defined as the time taken to upload, process and

download a task from IoT devices to RAS to fog or cloud device based on its priority

category (high, low and no priority tasks); tasks were sent automatically from IoT

devices at the same time in batches of 5 after every 10ms time-stamp. A maximum of

40 tasks was sent for each of the three categories of the task. A total of 1000

independent runs were done; results collected and averaged for each parameter which

was tested. The results for each task category were shown at the dashboard and

recorded in seconds. The test aimed at establishing how RAS handles tasks as far as

resource allocation is concerned. Moreover, to check if the introduction of RAS

reduces overall offloading time.

c) Throughput

If queueing time and offloading time of tasks are reduced based on the set time-stamp

set for high priority tasks, low priority task, then it is considered that throughput is

improved throughput. The higher the number of tasks completing their processing, the

higher the chances of getting improved throughput. In this study, throughput was

calculated as the number of tasks that complete their process within a time-stamp

51

based on the arrival rate. Therefore, the throughput was determined from the results

obtained from queueing time and offloading time. The evaluation was done to check

whether the introduction of RAS brought about any advantages in improving

throughput or not.

Based on this phase and other parts of this research, a paper titled “A Fog Computing

Framework for Quality of Service Optimisation in the Internet of Things (IoT)

Ecosystem” was submitted, accepted for a conference and the paper will be

published in the IEEE digital library attached as Annex 2.

3.3 Conclusion

The main goal of this chapter was to explain, recount and summarise how the aim,

objective and research question were addressed. The chapter explained how the top-

down research methodology was used in the context of this research. In short, the

chapter presents: i) the method adopted, techniques used and how they were used

for answering the research questions, ii) why the methods are relevant to the study

aim and objectives iii) an explanation how we used them and finally iv) how data was

collected and presented. The chapter answered this study's research question:ufh

“which approaches can be used to build an adaptive resource allocation scheduler in

fog computing framework for IoT environment?”

52

4 Chapter Four: Framework Design and

Implementation

4.1 Introduction

The chapter serves to answer the fourth research question: “Can an adaptive resource

allocation scheduler in fog computing framework, which is based on tasks

requirements and priorities be successfully developed?”. The chapter articulates the

framework design of this study and how it was implemented. The chapter is structured

as follows: Section 4.2 presents the framework design and explains how the

components of the framework work, the aspects expected to be supported with the

framework and workflows. To check for the feasibility of the framework, Section 4.3

presents the implementation, which is guided by top-down system design as explained

in chapter three. More emphasis will be on IoT services, testing and evaluation of the

effectiveness of RAS considering round-trip time (queuing and offloading time).

Section 4.4 presents the synopsis of the whole chapter.

4.2 Framework Design

As can be seen in Figure 4-1, the framework comprises of the edge layer where IoT

devices are found, IoT-Fog gateways where Resource Allocation Scheduler is hosted

, the fog layer and the cloud layer. It is important to note that our main goal for this

research was not design a new framework but to improve the existing fog computing

framework by introducing the RAS. As such, the main emphasis is on Resource

Allocation Scheduler and the fog layer. To get a better understanding, the edge layer,

the fog and cloud layer functionalities are listed and concisely described. Figure 4-1

below shows the cross-sectional design of the fog computing framework with a

resource allocation scheduler.

53

Figure 4-1: Cross-Sectional Design of the Fog Computing Framework

4.2.1 Components of the Framework

In this sub-section, the specific functions and behaviour of the resource allocation

scheduler in fog computing and how it relate to IoT devices, fog layer and cloud layer

are presented. Moreover, an indepth explanation of Figure 4-1 is highlighted in the

following sections.

4.2.1.1 Edge Layer (IoT devices)

The edge layer comprises of IoT devices that connect and communicate with other

devices using NFC, RFID, Bluetooth, Wireless Sensor Networks, Wi-Fi, perform tasks

or respond to events without explicit instructions. In the case scenario of a smart home

, the application area under consideration, IoT devices can include laundry appliances,

water treatment appliances, and water filtration systems, kitchen appliances, smart

LED lighting, sensors and actuators. For this research, five temperature sensor, four

humidity sensor, eight security cameras, one telldus live and two Sonos speakers were

used. The IoT devices in the edge layers generate tasks that need to be processed.

The IoT devices can compute and process tasks on their own. Tasks requiring more

computational power and higher storage capacity, cannot be processed within the IoT

devices themselves as those devices have low computational power and storage

capabilities. Therefore, if some tasks demand more computational power, such tasks

54

are sent to the fog layer or cloud layer for processing via the resource allocation

scheduler (RAS).

4.2.1.2 IoT-Fog Gateway (Resource Allocation Scheduler)

The IoT-Fog gateways host the introduced Resource Allocation Scheduler (RAS). For

this research, the IoT-Fog gateways included Linksys wireless AP, NETGEAR routers,

Belkin WeMo Switches, Xiaomi gateway. Generally, the RAS responsibility is to

orchestrate, allocate, deallocate, reallocate and monitor tasks from IoT to fog layer

and cloud layer. When responses (processed tasks) come back from either the cloud

or the fog layer to the IoT, they pass through the RAS which would assign the response

to the correct IoT device that have sent the task. The RAS contains the following

components; the reasoner, the propagation component, the watchdog and the shared

storage, which assist in resource allocation. The functionalities of these components

are explained below.

a) Reasoner

When a task is sent from any IoT device to the RAS, the service registry marks the

task based on which IoT device it came from. It is the responsibility of the reasoner to

do resource allocation for the entire framework and make decisions to either send a

task to the fog node or cloud based on the reasoning shown in the flow chart Figure

4-2.

Figure 4-2: Decision Making Flowchart

55

When a task arrives at the reasoner, the reasoner checks if the task is time-sensitive

or not. If the task is not time-sensitive, it is sent directly to the cloud. If the task is time-

sensitive, some decisions are made and it is sent to the fog layer.

The algorithm in the reasoner helps to choose the correct fog node for a specific task

based on the QoS requirements of that task. Factors such as distance and the

processing power of the fog nodes are considered as they play a pivotal role in time-

critical tasks, as explained in previous sections. Moreover, watchdog events are

considered by the reasoner, as they help the reasoner to be more effective when

making decisions. If there is a fault or errors at the fog node, events are triggered, and

signals are sent to the reasoner. The reasoner assigns the task that would have been

processed in the fault node to the next available and capable fog node. The reasoner

uses a modified first come first serve (FCFS) heuristic approach Figure 4-3 and

applies the following rules in the queue.

Figure 4-3: First Fit Algorithm in RAS for Resource Provisioning

56

In the reasoner, the algorithm considers fog nodes in the fog layer and IoT device task

requests as input. A round counter field and the needed assignments are initiated in

the line 1 and 2, respectively. The IoT device task requests and fog nodes are sorted

based on their service type in the line 3 and 4. This is done to improve loop

performance and deployment time. The loop over of fog nodes, followed by fog node’s

service types and finally the requests are made in the line 5 to 7. Line 8 is responsible

for making sure that the fog node has assigned tasks that suit its service type. It is vital

to repeatedly re-evaluate the RAM, storage and CPU utilization and the amount of

already deployed containers to avoid overloading the fog node, which will compromise

its performance and affect the quality of service.

To make sure that the fog node is not overloaded the fog node, in the line 9 and 10

requests RAM, storage and CPU utilization from the fog nodes. This supports the

watchdog in the line 11 to monitor that the CPU<80% which are the predefined rules,

thus avoiding exceeding the maximum number of containers to be deployed. If the fog

node still hosts another service, it will send a detailed request of the processing space

it still has to RAS.

The fog node sends a message if it can no longer accept any task request. It is the

responsibility of the storage and watchdog in the RAS to keep track and store the

information of the tasks that have been deployed and where they have been deployed;

the pending tasks to be deployed, and the information of the fog nodes that are still

free. At the end the algorithm returns all this information. Tasks requests that have

successfully been executed are removed in the input section to avoid redeploying the

same task request many times.

The above explanation will continue until a fog node is looped through and is finished.

Line 19 is executed if and only if the last fog node loop is completed, the round counter

is smaller than the maximum defined rounds and if there still exist unhanded task

request.

57

 Rules of Queuing

Figure 4-4. below highlights the queuing model for simplicity.

Figure 4-4: Priority queueing model for IoT gateway.

The reasoner in the RAS, which is in the gateways (G), receives multiple numbers of

tasks from different IoT devices at the edge layer that needs to be assigned to either

fog nodes or cloud servers. In the reasoner there will be a time-slotted system denoted

by ts={1,2,3,………n) and the time slot is denoted by AT. When there is no task to be

assigned in the reasoner, the queue denoted by Q will be empty, which means when

Q= Ø then ts<0. The task will be arranged using the First-Come-First-Serve (FCFS)/Q

concept where Q represents the size of the queue. Using the Poisson process, it is

considered that the time interval of arrival between successive task is exponentially

distributed. There are two things to be considered, that is (a) the arrival rate (ar) of the

task and (b) the service rate (sr) of the computing device that is hosting the RAS.

These two determine how the queue will move. Above and beyond arrival rate and

service rate, the moving of the queue is also affected by whether the computing

devices in the fog layer or cloud layer are free or not at a certain time-stamp. The RAS

will classify the tasks into three main categories, namely time-sensitive task (high

priority tasks), low time-sensitive (low priority tasks) and not time-sensitive (no priority

tasks).

58

As explained in the earlier chapters, no priority tasks are tasks that are not time-

sensitive and they do not have any stipulated time to be processed. Contrariwise, “high

priority” tasks are time-sensitive tasks which should be processed within a specific

time. If not processed, the task will no longer be valid for the IoT device. Such tasks

are time and latency-sensitive task. In almost a similar fashion with “high priority”

tasks, “low priority” tasks are tasks whose processed output is valid up to a certain

extent, if that time is not met, some penalties will be applied, but it will wait to be

processed, and the IoT device will use that output even though the output will have

failed to meet their corresponding deadlines. All these tasks would be placed in three

different queues denoted by Q={1,2,3}. Q1 will be for high priority tasks, Q2 for low

priority tasks and Q3 for no priority tasks.

Even though the tasks in Q2 are not very time-sensitive, they should not suffer a

starvation problem. The starvation problem occurs when Q1 tasks keep on coming,

which will result in Q2 tasks not to be processed. Therefore, to avoid the starvation

problem, after 10 seconds time-stamp, Q2 tasks that are in the queue for a defined

time without being assigned to any computing resource will be promoted to Q1 which

is of a higher priority. Those in Q3 are sent directly to the cloud since they are not time-

sensitive.

As shown in the diagram Figure 4-4, in the queuing of tasks, three queues are formed,

as explained above, the tasks would be placed in three different queues denoted by

Q= {1,2,3}. Q1 would be for high priority tasks, Q2 for low priority tasks and Q3 for no

priority tasks. The algorithm in the RAS would consider the following rules.

i. In the event that the queue of high priority tasks is not empty (Q1≠ Ø), then the

tasks in that queue are scheduled using the first come first serve order in the

RAS for offloading to the available fog layer. If the first task requirements do not

match the available resource, the next task in the queue is considered and

assigned to the available fog resource. This is done not to waste resources and

waste the time for tasks in the queue that can match and utilise the available

resources.

ii. If the queue of high priority task is empty (Q1=Ø) and the queue with low priority

tasks has some tasks (Q2≠ Ø and Q2>0), then the tasks in that queue are given

priority and scheduled using the first come first serve order in the RAS for

offloading to the available fog layer. If the first task requirements do not match

59

the available resource, the next task in the queue is considered and assigned

to the available fog resource. This is done not to waste resources and waste

the time for tasks in the queue that can match and utilise the available

resources.

iii. Then if the queue of higher priority tasks has tasks (Q1≠ Ø and Q1>0) and the

queue with lower priority tasks has tasks (Q2≠ Ø and Q2>0), Q1 tasks have to

be processed first while the first task in the Q2 queue is placed at the end of

Q1.

iv. When both queues with high priority and low priority tasks are empty (Q1=Ø

and Q2=Ø), then the queue with no priority tasks will be given all the priority in

terms of networking and message routing resources and are scheduled using

the first come first serve order in the RAS for offloading.

v. When all the three queues, high priority tasks queue, low priority tasks queue

and no priority tasks queue denoted by (Q1≠ Ø and Q1>0), (Q2≠ Ø and Q2>0),

(Q3≠ Ø and Q3>0) respectively, are not empty then RAS will assign tasks

based on priority. After time-stamping Q1 and Q2 tasks, it will send all Q3 tasks

to the cloud for scheduling as to create space in the holding memories of the

RAS.

vi. When the high priority task queue has tasks (Q1≠ Ø and Q1>0), the low priority

task queue is empty (Q2=Ø) and the queue with no priority task has tasks (Q3≠

Ø and Q3>0), the RAS will time-stamp all the high priority tasks, then send all

the Q3 tasks to the cloud.

vii. Finally, when all the queues don’t have anything (Q1=Ø, Q2=Ø, and Q3=Ø),

then the fog layer and cloud layer have to be put in a sleep mode to save energy

and the cost of using these two layers as they will be idle.

Based on the above analysis of queuing rules, the main goal of this research would

be considered achieved if the round-trip time is reduced, especially for those tasks

with deadlines. With the priority approach in the RAS, queueing time, task uploading

and downloading time should be minimized, which leads to an increase in the number

of tasks meeting their deadline.

b) Watchdog

The watchdog persistently monitors the load given to each fog node and also monitors

performance to avoid overloading fog nodes at the fog layer. Overloading fog nodes

60

can compromise QoS and round-trip time. Furthermore, the watchdog monitors faults

or errors in the fog layer. If there is fault or errors at the fog node, events are triggered,

and signals are sent to the reasoner. The reasoner then re-assigns the task that would

have been processed in the fault node to the next available and capable fog node.

These watchdog events are also put into considerations by the reasoner, as they help

the reasoner to be more effective when making decisions.

c) Propagation Component

After the reasoner has decided to either send the task to the fog layer or the cloud

layer based on the task priority, the task is forwarded to the propagating component.

It is the responsibility of the propagating component in the RAS to propagate task

request and service data to the fog node or cloud-based on the decision made by the

reasoner.

d) Shared Memory

The purpose of shared memory in RAS is to hold service registry information and all

the information of fog nodes and IoT devices that are registered in the network. Each

fog node and IoT device are given unique identities, which would help to assign the

correct response to the proper IoT devices.

As can be visualized in Figure 4-1, the RAS has a memory. This memory is shared

and is made up of Redis FCN and Redis Shared, which are database containers, as

shown in Figure 4-5 below. Redis FCN's responsibility is to hold data that is local such

as device utilization which includes RAM, CPU, and storage. Whilst Redis Shared hold

the Docker images of the services that would have been deployed in the fog layer and

cloud layer. The two highlighted databases are saved separately as to maintain and

preserve flexibility and replaceability.

61

Figure 4-5: Reasoner, Redis FCN, Redis Shared Deployed on the Raspberry Pi

The functions of the Resource Allocation Scheduler (RAS) are summarized below:

i. Register all fog nodes that are both new and old, the cloud and monitor the

status. Calculate a new resource provisioning plan according to events that

would have encountered device failure and device overload. Store all the

existing fog nodes and cloud processing capabilities, which include

processor, speed, RAM, storage space.

ii. Receives task requests from the IoT devices (edge layer) and check for task

request in the network. Receives task request that needs to be processed,

label the task request, execute the incoming task request and propagate

them to the responsible fog nodes in the fog layer or cloud depending on

the tasks requirements.

iii. Analyze, monitor data and fire events when the previously specified QoS

threshold is exceeded. If the limit is exceeded, the allocator has to make a

call to either migrate that task to another capable fog node.

4.2.1.3 Fog Layer

The fog layer is made up of any network resources that include; mobile stations,

servers, switches, routers, and so on, depending on the area of application. In this

study, Logitech Media Server, Logitech Harmony Hub, and Samsung SyncThru Printer

were used as fog layer nodes. These network resources offer their resources to add

computation capabilities, pre-processing and temporary storage within the network

62

and are named fog nodes. Because of their proximity to the ground and having the

characteristics as described in the background Section 2.4.1, they provide lower

latency compared to cloud computing which results in offering improved QoS. Fog

nodes will receive time-sensitive tasks from RAS and execute them before sending

the response back to the RAS and or to the cloud for the information that requires

long-term storage. A fog node has four parts which include fog action control, compute

unit, monitor and memory.

i. Fog Action Control-This part controls all the action that happens in the fog

nodes. It communicates with the propagation component of the reasoner.

ii. Compute Unit-This is the central processing unit (CPU) responsible for

computing and processing of tasks.

iii. Monitor-This part of the fog node monitors the performance of the CPU and

other components of the fog node. It always communicates with the watchdog

based on the fog node status.

iv. Memory-This part stores the fog node details and all the actions or commands

that need temporary storage during processing.

 Service Deployed in Fog Layer Nodes

If the task request is time-sensitive, it is deployed by the propagation component in

RAS to the the fog layer. The fog layer has different fog nodes where the task request

is distributed depending on the task request requirement. The fog nodes are presumed

to be administered on Raspberry Pi, ARM processor architecture and deployed in

Docker Containers as shown in Figure 4-6. In the Raspberry Pi, where each fog node

would be running, there would be a software called Hypriot, which acts as an OS. The

Hypriot’s responsibility is to run a Docker runtime, which enables deployment of

services in the Docker Containers. A specific Docker hook in the Docker Containers

host allows applications in the fog node to start and stop containers that exist in the

same OS using the same Docker Runtime. Moreover, fog nodes also have Redis FC,

which acts as a database (memory) to persist and read device utilization of the RAM,

CPU, and storage, which is the local needed data.

63

Figure 4-6: Fog Node Deployment on the Raspberry Pi

4.2.1.4 Cloud Layer

If the task request is not time-sensitive, and it is CPU intensive, the Resource

Allocation Scheduler would deploy task in the cloud layer, which supports CPU

intensive tasks. It is important to note that there are many kinds of research done for

resource provisioning in the cloud, as indicated by the surveys (Zhan et al., 2015),

(Singh and Chana, 2015). As such, it was not our focus. However, for clarity sake, this

is what happens in cloud service deployment.

In the cloud, services are deployed in dynamic VMs, which are based on an Intel

processor architecture (Jim, 2014). According to dynamic cloud resource demand,

these VMs should always be deployed, managed and stopped. When the Resource

Allocation Scheduler deploys a task request to the cloud, it passes through the cloud-

fog middleware. This cloud-fog middleware would start a new VM which is based on

light-weight CoreOS operating system running a Docker environment. The VM would

continue running until it is filled with Docker Containers. If the VM is now full that it will

not accommodate another container, this triggers the creation of a new VM again, and

the process goes on. In case the containers are stopped, which results in VM having

no containers, the VM would be released to save cloud resources.

In the event that two task requests are deployed in the cloud-fog middleware by the

RAS, the cloud-fog middleware would start a new VM and deploy the first requested

service container. When the first service is deployed successfully, the signal is sent to

64

the RAS and the cloud-fog middleware will then deploy the second request in the same

VM, provided that it has enough resources, or else a new VM is started. When both

services are finished, the VM is stopped by the cloud service and the resources are

released.

The above can be summarised as follows:

i. The cloud management determines the closest cloud server to a requesting

device and sends back appropriate connection data to the RAS.

ii. It then deploys and releases resources based on the resource demands of

the tasks send by RAS.

iii. Incoming task requests are handled by deploying memory on running cloud

servers.

iv. The task requests are then executed in the resources provided by the cloud

servers, send back the task response and store the details in service data

storages for further analysis.

4.2.2 Aspects Expected to be Supported with the Framework

The framework should support communication following the principles adopted from

(Pautasso et al., 2008):

i. Statelessness: the communication of components is independent of one

another, and the components should not store any state.

ii. Uniform Interface: When executing, the components follow GET, POST, PUT

and DELETE commands.

iii. Resource Identification- When commands are being executed,

specific URIs are mapped to the component's execution methods on the APIs.

iv. Self-descriptive messages- All messages that are exchanged in form and

content are separable and should be self-descriptive as such.

4.2.3 Workflows

Sequence diagrams are used to explain the essential workflows of the framework. In

these sequence diagrams, vertical direction envisages time, whereas horizontal

direction envisages the communication between different components. Three things

that happen in this framework are: new fog nodes can be registered or deregistered,

and the task is processed.

65

a) Pairing and Service Deployment

Figure 4-7 shows the pairing of the device and subsequent service deployment.

Figure 4-7: Pairing of Fog Nodes, RSA, IoT Devices and Service Deployment

When a new fog device joins the fog layer to avail its resources, it sends a signal to

the RAS to be registered. The RAS would then register all the details, which include

the device’s processing power and RAM size. The device is then instantiated as a fog

node. Once a new fog node is registered, there is no need to register its details again

because these would have been stored. Assuming that there is pending task

requesting for a resource and the newly installed fog node does have the required

resource requirements that match the task, RAS would immediately deploy the task.

Once the service is deployed, the newly added fog node would be able to read and

execute the task and return the response to the RAS. The same happens when new

IoT devices such as sensors, actuators, laptops, smart television, join the network.

They get registered at the RAS as new IoT device, and the type of data they send is

also recorded. This is done so that the RAS would keep that information to avoid

repeating the process of identifying the type of data sent by the device each time it

sends the data, thus minimizing future delays.

66

b) Resource Allocation Scheduler Assignment of Task

When a new task is sent from the IoT device, it goes through the RAS where it is

labelled whether it is of high priority or not, specifying its QoS matrices requirements.

If the task request is time-sensitive, it is sent to the fog layer, and if it is not time-

sensitive, it is sent to the cloud layer for processing. If the decision by the RAS is to

send the task request to the fog layer, the RAS will choose the most fitting fog node to

deploy the task request. After the RAS do the above reasoning, it then deploys the

task to the fog node. If the service is successfully deployed, the fog node sends a

signal back to the RAS for monitoring purposes and the fog node starts immediately

executing the deployed task. After the task has been executed in the fog node, the

response is sent back to the RAS, which further forwards it to the specific IoT device.

A copy of the response and other processed details are sent to the cloud for long term

storage. If the task is not time-sensitive and requires more computational power, the

RAS would flag it as such and deploy it to the cloud. In the cloud, it is assigned to the

virtual machines (VMs) which process the request. The component, which would

handle the task, would send a signal to the RAS as an indication that it was deployed

successfully and for evaluation purposes too. Figure 4-8 is a diagrammatic

representation of what takes place at this stage.

67

Figure 4-8: RAS Assignment of Task and Processing

As explained above, two cases can prompt re-planning, and this is how they are

implemented.

Case 1: When a fog node leaves the fog layer, whether it was a fault or the owner

decided to withdraw the services, the RAS should check whether the fog node had a

task that it was processing. The reasoner will have to deploy the task to available fog

nodes if there are any. If there are no available fog nodes, the task has to be put at

the beginning of the queue, thus giving them the highest priority.

Case 2: When a new fog node joins the fog layer, the task at the queue that suits in

the resource would be given priority. This selection is done by considering the first

task at the queue following the order at whivh the tasks has arrived until the correct

task is found that matches the CPU and RAM in that new fog node.

4.2.4 Application Programming Interfaces (APIs) Endpoints

The most vital APIs endpoints are presented in this section. These include endpoints

between a task request IoT device and RAS, and between deployed service on fog

68

node and the RAS, RAS and the cloud-fog middleware. These can be seen in Table

4-1 to Table 4-5.

Table 4-1: Register Service Endpoint

Table 4-2: Send Task Request Endpoint

69

Table 4-3: Get Resource Utilization Endpoint

Table 4-4: Resource Allocation Scheduler Propagator Endpoint

Table 4-5: Cloud Fog Middleware Propagator Endpoint

70

4.3 Implementation

This section explains the practical implementation of the RAS in fog computing

framework for the IoT environment. The execution of the framework is explained, and

some sampled necessary commands are given. This also allows the execution part to

be reproduced. Detailed information on how the developed fog computing framework

for the IoT environment can be executed is given in the following section. This section

plays a pivotal role in answering the objectives.

4.3.1 Testing of an IoT Service.

This section explains how the new service that was developed in the fog landscape

was registered and executed. To do so, there is no need to have knowledge of the

infrastructure, communication and service deployment. The developed RAS in fog

computing framework for the IoT environment enables users to develop services by

providing:

 A service key whose function is to identify a Docker image uniquely

 Docker volumes whose function is to allow the container to utilise the

resources that are hosted in the host file system.

 Ports whose function is to expose and flag all containers that require rights

which help the Docker Container to have the same capabilities with the host.

 Docker file

As soon as the Docker image information has been elicitated, the JSON file registers

the service. The JSON file formed demonstrated below is responsible for registering

service keys that will pull specific repositories and executes the service.ny file.

71

Code 1: JSON File that Registers a Service

In the above JSON, which was a sensor that monitors temperature and humidity in a

room, a volume mapping is listed, and 8105 is the port that was exposed. It should be

noted that privilege rights are wanted by the service to work correctly. Registration of

the Docker Image is required in the framework to enable execution and evaluation of

the service. In a bid to do that, the user sends a POST HTTP request to the Resource

Allocation Scheduler, which is the control point in the system. The user requires IP

address information to the RAS running in the gateways landscape. Having the IP

address and API URL, then the URL http://<IP>:8080/shareddb/register is built.

Whenever the request is sent, the content type is added as a header, and the created

JSON file will be the body as demonstrated below with the HTTP data-transferring

tool.

Code 2: HTTP data transferring tool

When the URL is correct, and the RAS is up and functioning properly, then the

response contains the URL and the status flag indicating if the service could be created

or not. In the event the flag is false, then there is a possibility that either the service-

key is assigned already or there is some other error that occurred. Therefore, they will

need to check error information in the RAS. In the event that the registration was

successful, the request execution of the registered service will be requested. A JSON

application has to be created and send to the RAS to achieve the deployment of the

registered service. The generated application comprises of total service duration,

which is used to define when the service has to be stopped and contains a list of tasks

request which identifies the services to be deployed. The interval field can be set to

72

infinity by -1, and this field is in minutes. A task request contains service type, service

key and a flag that indicate whether it is time-sensitive or not. If it is time-sensitive, it

will be deployed in the fog layer, and if not time-sensitive, it will be deployed to the

cloud. The URL http://<IP>:8080/reasoner/taskRequests is used to send this request.

Below are the examples of the command and corresponding JSON file, which is

required in the execution of the request.

Code 3: Command used to Send the Task Requests for Execution

To request a task, the following has to be used.

Code 4: Task Request Application JSON

After deployment, there will be a JSON response stating that the service was

successfully deployed and will be comprised of two things that are i) a URL header

and ii) a payload marked with deployment time in milliseconds (ms). This will help

when you want to investigate either the running device or the status of the HTML

webpage. The status web page contains device-dependent information including IP,

port, device type, children, parent, registered Docker Images, and running Docker

Containers. The URL “http://<IP>:<PORT>/” which is comprising of the corresponding

device IP and device port is used to access the status web page of the device.

Important nodes used in the Node-RED are the function node, inject node, (Message

Queuing Telemetry Transport (MQTT) node, switch node and the debug window which

shows the status. Below is an example of Node-RED flowchart.

73

Figure 4-9: Node-RED flowchart

In the home assistant environment, the event state, current state and call service were

used. Another example was for the automation of a sensor that will send a message,

picture and highlight which window was opened. New constrained can also be defined

in Node-RED.

Code 5: Open Window Notification

4.3.2 IoT Application Execution

If there are already registered Docker Images of an IoT application, it will be easier to

deploy several services for execution. A JSON file for the application was built and

sent to the same URL. To form an application, the JSON file should fulfil the following

task request.

74

Code 6: JSON file to form an application.

For an application to be deemed successful, all the task requests have to be deployed

without error. In the event that there was an error in one task request, then the whole

application will not be deployed, resulting in stopping the already deployed services.

To check for results of deployment, you request the cloud database by typing URL:

“http://<IP>:8200/db/ “ or check on the debug window on the Node-RED home page.

4.3.3 Testing of the Resource Allocation Scheduler

The Resource Allocation Scheduler is at the centre of this research. Resource

Allocation Scheduler role is to make a decision as to where task request is to be

assigned either to the fog layer or to the cloud layer depending on the status. In

previous solutions, the IoT devices would send the task to a fog node and the fog

nodes will make a decision to either process the whole task, part of the task or offload

to another fog node or cloud which compromised QoS in fog computing. To modify

and improve the algorithms used in previous approaches to suite Resource Allocation

Scheduler, a java class was created which provides the following interface in the newly

introduced RAS.

Code 7: Resource Provisioning Java Interface

75

4.3.4 Evaluation Round-Trip Time

After making sure that everything was up and running, 1000 independent runs were

done; results collected and averaged for each parameter which was tested. In

particular, we were concerned about determining the round-trip time. To determine

round-trip time, this study focused on queueing time and offloading time. It is important

to reiterate that two important codes play a pivotal role in recording the start time at

each node and calculate the time elapsed in each sequence (iteration).

Code 8: Code that saves the start time of the flow at each node.

The time elapsed message is generated by the following code. This code considers
the message that would have passed through a node that saved the start time function.

Code 9: Code that calculates the elapsed time.

The results always appear on the debug window in the Node-RED as shown below.

Code 10: Debug Window

It is the benchmarks in Node-RED that report the time taken to run all matching in/out

action flows for one given iteration. Many debug outputs can be generated and

displayed at the debug window, stored and presented in the dashboard.

76

4.3.4.1 Queueing Time

In order to assess queuing time which is the time a task waits in the queue before it is

assigned to a fog or cloud resource based on its priority category (high, low and no

priority tasks); tasks were sent automatically and periodically from IoT devices at the

same time in batches of 5 after every 10 ms time-stamp. A maximum of 40 tasks was

assigned for each of the three categories of the tasks.

Based on the set-up parameters, when a task is automatically deployed from an IoT

node to the RAS, the task is time-stamped with the time it leaves the IoT node (t1)

which is the start time and the time it arrives in RAS (t2). When that task is deployed

from the RAS to either fog node or cloud, it is also time-stamped with the time it arrives

at either fog or cloud (t3). All these times will be recorded and appear at the debug

window in Node-RED for each task respectively. Therefore, the queuing time (Qt) will

be calculated and estimated automatically using the formula Qt= (t2-t1) +(t3-t2) which

is the elapsed time.

The results for each task category were recorded in milliseconds, collected and

displayed at the debug window. At first, there was variability in the measured queuing

time of the same task, but after running the experiment for 1000 runs, a correlation is

noticed. After queuing time has been automatically calculated, the averaged queueing

times for each task are stored in files and shown in the dashboard. It is from these

recorded times where graphs in the results section were plotted.

4.3.4.2 Offloading Time Evaluation

To evaluate overall offloading time, which is defined as the time taken to upload a task

(equal to the queuing time), process a task and download a task response at the IoT

device; tasks were sent automatically and periodically from IoT devices. They were

sent at the same time in batches of 5 tasks after every 10ms time-stamp to the RAS

then fog or cloud and back to the IoT device. A maximum of 40 tasks was sent for

each of the three categories of the task.

In this case, the uploading time is equal to the queuing time (Qt). Process time (Pt) is

time we get from the initial time the task arrives at the fog or cloud (stamped as t3) to

the time the task or response leave the resource stamped as t4 (the elapsed time).

Therefore, the processing time is Pt=t4-t3. Downloading time (Dt) is the time the tasks

77

leaves the processing resource to the time it arrives at the IoT device and is stamped

as t5. Therefore, downloading time is Dt= t5-t4. Offloading time (OT) can be calculated

as OT=Qt + Pt + Dt which is the overall elapsed time. All these times t1 to t5 will be

appearing at the debug window in Node-RED for each task respectively. The results

for each task category were shown at the dashboard and recorded in seconds. After

offloading time has been automatically calculated and averaged, the queueing times

for each task are stored in files and shown in the dashboard. It is from these recorded

times where graphs were plotted to show the impact of RAS in overall offloading time.

Below is an example of some of the average times obtained for delay per user,

offloading time and queing time which were used to come up with the graphs in chapter

five.

Average delay per user(milliseconds)

Number

of Tasks

High Priority

Tasks (Hard
deadline

tasks)

Low Priority

Tasks (Soft
deadline

tasks)

No Priority

Task (No
deadline

task)

0 0 0 0

5 5 10 15

10 10 20 30

15 15 30 45

20 20 40 60

25 25 50 75

30 30 60 90

35 35 70 105

40 40 80 120

It is important to reiterarate that the above times are averaged time after 1000 runs.

Average delay per user(seconds)

Packet Arrival

Rate

(packets/second)

Entirely

processed at

IoT device

Fixed

offload to

Fog node

RAS

approach

0 0 0 0

5 0,3 0,4 0,35

10 0,6 0,7 0,65

15 0,92 0,92 0,92

20 1,26 1,18 1,17

25 1,58 1,42 1,34

30 1,88 1,65 1,44

35 2,2 1,68 1,42

Offloading Time (seconds)

Number
of Task

High Priority
tasks

Low priority
task No priority

0 0 0 0

5 1.19 1.25 1.39

10 1.25 1.37 1.7

15 1.65 1.85 2.3

20 2.3 2.6 2.8

25 2.8 3.3 3.45

30 3.5 3.7 3.95

35 4.1 4.3 4.45

40 4.7 4.75 4.9

78

4.4 Conclusion

This chapter presented the framework design of this research, in particular,

components of the framework and their functions, aspects expected to be supported

by the framework and workflows used in this thesis. The implementation of the whole

framework was presented emphasizing IoT services, application execution, testing

RAS and evaluation of round-trip time (queuing and offloading time). In light of the

evidence provided in this chapter, the chapter managed to prove and answer the

research question “Can an adaptive resource allocation scheduler in fog computing

framework which is based on tasks requirements and priorities be successfully

developed?”

79

5 Chapter Five: Results and Discussions

5.1 Introduction

This chapter gives answers to this study's fifth research question “What is the

performance of the adaptive RAS in fog computing framework?” The chapter begins

by presenting an overview simulation configuration in Section 5.2. Followed by a

detailed presentation of the study outcomes obtained through simulation tests in

Section 5.3. In particular, we were looking at queuing time and offloading time which

are factors that affect round-trip time. Finally, Section Error! Reference source not

found. will present a critical discussion relating our findings to the theory and literature

review. Section 5.4 concludes the chapter by giving a synopsis of the whole chapter.

5.2 RAS Performance Evaluation Setup

This section presents the simulated environment description and assumptions.

5.2.1 Simulated Environment Description

The study’s simulation was hosted on a high-performance computer with 1100

terabyte (TB) storage capacity,135 cluster nodes with 2900 processor cores and 11TB

memory. The simulation parameters of the framework are shown in Table 5-1. As

highlighted in the table, 20 IoT devices were used for this simulation and generated

multiple tasks at a specific time interval. The input data size was between 10MB to

30MB, and for output, data size was 1MB to 30MB. Both input and output data size

was uniformly distributed. Twenty (20) Mbps was used as maximum transmission

bandwidth from the IoT device via the RAS to either remote fog or to cloud servers in

both data uploading or downloading. All these conditions and parameters were

maintained at constant. For the simulation, 1000 independent runs were done and

averaged for each parameter to get a better result output for the runs. Table 5-1 shows

the simulation parameters used in this research.

80

 Table 5-1: Simulation Parameters

5.3 Performance Evaluation.

The study focused on addressing resource allocation challenge which affects latency,

a factor of the round-trip time for packet delivery in the IoT environment. The

experiment considered the queuing time, offloading time and throughput during

performance evaluation. Another thing considered was the starvation problem which

was being experienced by low priority tasks.

5.3.1 Results

The results focused mainly on roundtrip time parameter which is queing time and

offloading time.

a) Queuing Time

As defined earlier, queueing time is the time a task waits in the queue before it is

assigned to a fog or cloud resource. Queueing time plays a pivotal role in determining

whether a task will be processed early or not based on how long a task would wait

before it is assigned to a resource. The higher the queueing time, the higher the

chances of an increased round-trip time, which has a negative impact on latency and

affects QoS. High latency has a negative impact on time-sensitive tasks.

Consequently, queueing time should be minimized to reduce round-trip time which in

81

turn reduces latency. In the study’s experiment, we simulated the queuing time for the

high priority, low priority and no priority tasks. Figure 5-1 presents the result from that

simulation.

Figure 5-1: Queueing time for high priority tasks, low priority tasks, and no priority
tasks

Based on Figure 5-1, it can be noted that for high priority-based tasks (blue line), the

queuing times are minimal when compared to low priority-based tasks (orange line)

and no priority-based tasks (grey line). Similarly, low priority-based queuing time is

also minimal when compared to no priority-based tasks. This is because high priority

tasks are given high preference by RAS during the assignment to both message

routing and the fog layer resources to be processed first as compared to the later. For

this reason, high priority tasks are assigned and processed earlier than the other two,

which gives them less queuing time. Correspondingly, the low priority tasks are given

a better priority compared to those with no priority.

Queueing time for the next higher priority task is affected by the time taken by the RAS

to decide whereas for low priority task, queueing time is directly affected by the number

of high priority tasks on the queue and the time taken by the RAS to make a decision.

82

The more the number of high priority tasks in the queue, the more the queuing time

for low priority task. However, with the queueing model introduced at the RAS as

explained in framework design chapter, the queueing time of low priority tasks was

reduced due to the fact that after sometime stamp, if there are still high priority tasks

on the queue, low priority task in the low priority task queue was promoted to the high

priority queue. This was done to address the starvation problem that was being faced

by low priority queues when there are more high priority tasks which keep coming from

the IoT devices.

When considering no priority task, the queuing time is affected by the time it arrives at

the RAS to be assigned to the cloud, the size and offloading speed of the first task in

the queue to be offloaded to the cloud. As a result of this, the bigger the task to be

offloaded to the cloud and the time it arrives at RAS, the greater the queuing time for

those tasks that should be offloaded to the cloud.

b) Offloading Time

Offloading time is another factor that affects round-trip time. Offloading time is the time

taken to upload, process and download a task from IoT device to RAS then either fog

node or cloud depending on the task status. The more the offloading time, the greater

the overall round-trip time. Moreover, offloading time is directly affected by queuing

time. If the queuing time is minimized, the overall offloading time is also reduced.

Figure 5-2 presents the simulation result of offloading time.

83

Figure 5-2:Offloading time for High priority tasks, Low priority tasks, and No priority
tasks

As can be noted, Figure 5-2 shows that the average offloading time of task to a

resource increases as the number of tasks increases. From the graph, it is noted that

offloading started happening after one second (1s). This was because some delays

were experienced when tasks were sent from the IoT devices to the RAS. Another

point to note is when high priority tasks and low priority tasks are less than 5, they can

be processed in the IoT device itself, hence no need to offload them to the RAS.

As shown in Figure 5-2, for 10 tasks the offloading time for high priority tasks (blue

line) and low priority tasks (orange line) is less than 1.5 seconds whilst no priority

tasks (grey line) has over 1.5 seconds. As the tasks are increased with a factor of 10

to 20 tasks, high priority tasks have an offloading time of approximately 2.3 seconds

whereas low priority tasks and no priority tasks are above 2.5 seconds but below 3

seconds. For 30 tasks, the offloading time for high priority tasks is approximately 3.5

seconds, whereas low priority tasks and no priority tasks are at approximately 3.8

seconds and 4 seconds, respectively. At 40 tasks, the offloading time of high priority

tasks, low priority tasks and no priority tasks is at approximately 4.7 seconds, 4.8

84

seconds and 4.9 seconds respectively. From the graph, it can be noted that the

increase of offloading time in seconds was directly proportional to the rise in several

tasks by a factor of approximately 10 from 10 tasks to 40 tasks. This was not the case

for low priority tasks and no priority tasks. In a nutshell, the offloading time of all the

tasks would increase as the number of tasks increased. High priority tasks have lower

offloading time when compared to the other two because they were given first

preference to fog layer resources. Even though the no priority tasks were not being

offloaded to the fog layer, they took more time to be offloaded to the cloud. The reason

behind this is because of their size, which requires more time in offloading to the cloud.

The bigger the task, the more the time it took to offload it.

c) RAS Strategy Versus Other Resource Allocation Strategies.

i) Comparison of processing in the IoT device, fixed offloading to fog node and

the use of RAS strategy

For comparison, we compared the average delay per user against packet arrival rate

using the fixed strategy method, RAS strategy and entirely processing the tasks on

the IoT device. A fixed strategy is when tasks are sent directly to the fog nodes from

IoT devices, and the fog nodes would decide to either process the whole task, part of

it or to send to the cloud. This strategy is the one being used by many researchers in

literature. Figure 5-3 presents an illustration of task data arrival, task execution and

task offloading.

85

Figure 5-3: Illustration of task data arrival, task execution and task offloading

In Figure 5-3, it can be noted that if few tasks are time-sensitive, processing them in

the IoT device is much better than transferring them to the fog node, as this increases

the round-trip time. Another thing that Figure 5-3 reveals is that, at a packet arrival

rate of between 0 and 14, the average delay per user is less when the task is entirely

processed in the IoT device itself than when it is sent to either the RAS or fixed

offloading to the fog node. RAS strategy is better when compared to fixed offloading.

This is because RAS can then assign a task directly to where it is supposed to be

processed when compared to the later.

At 15 packets/sec arrival rate, the average delay per user is the same for all the three

strategies. This convergence point can be referred to as a point of equilibrium. This is

so because, at 15 packets arrival rate, the summation of the delays and the resources

available at both the fixed offload strategy and the RAS strategy would be equal to the

one processed entirely at the IoT device. Since IoT devices have limited computational

power, the more the tasks produced, the more the time needed to process those tasks.

This is also the case with the fixed offload. The delays increase if decisions are made

in the fog node. This point is referred to as the saturation point where the tasks

produced is equal to the resources. In this case, any other tasks being deployed has

86

to wait on the queue.

After 15 packets/sec arrival rate, using other resources that is fog node resources will

be of greater benefit as can be noted in the diagram. After 15 packets/sec arrival rate,

the average delay per user of those tasks that are processed entirely in the IoT, keep

on increasing when compared to the other two options. This is because IoT devices

would no longer have the capability to process the tasks, as some of the tasks on the

queue in IoT devices might be CPU intensive. An increase in task production and

packet arrival rate has a greater effect when the task is processed entirely at the IoT

device level. The more the packets in the queue to be processed, the more the time

needed to process them, especially when they are processed in the IoT device itself.

The packet arrival rate is directly proportional to the average delay per user if the task

is processed in the IoT device. The demand for computing resources by the tasks can

even cause the IoT device to end up being slow and not working properly. This can

also have a negative impact on the IoT device battery lifespan, as the device will be

strained, which results in the device using more battery power.

It is also worth mentioning that when the tasks are sent from the IoT device to be

processed on the fog node, which is randomly chosen, at first the round-trip time is

increased even though there would be a lower processing time in the fog layer. The

round-trip time is increased because some delays are encountered during

transmission time as a result of the offloading part from the IoT to the fog node. In

some cases, the task that is sent to the fog node e.g. fog node A, will not meet the

processing requirement of that node, as such it has to be offloaded entirely to the other

fog node B, or part of the task is processed in fog node A and the other offloaded to

fog node B. Although at a low packet arrival rate, the average delay in the fixed offload

strategy is higher than the processing at the IoT device, the value remains below 1s.

This is because as soon as the packets arrive, they will be processed quickly since

fog nodes have more processing power as compared to the IoT device. When the

packet arrival rate increases, the fixed offload reduces the average delay by offloading

to the fog nodes. After 15 packets per second, the fixed offload offers some

advantages compared to those that are entirely processed at the IoT device.

Again, referring to Figure 5-3, it can be noted that between 15 to 20 packets per

second arrival rate the performance of the fixed offloading and the RAS strategy are

87

almost the same. The impact can only be noted after 20 packets per second arrival

rate when the RAS becomes better than the fixed offloading. The reason might be that

the RAS chooses the best fog node for time-critical tasks when compared to the fixed

offloading strategy. When tasks are using the RAS, it can be noticed that at first, using

the RAS strategy will only be better if compared to fixed offloading but worst when

compared to those that are processed at the IoT devices. The delay experienced in

time is because some time is used when transferring a task from the IoT device to the

RAS before the actual processing of the tasks starts. The difference is noticed when

there is an increase in the packet arrival rate where it can be observed that the RAS

outclass both strategies highlighted earlier. The reason being that the RAS chooses

appropriate fog node to process the tasks when compared to the fixed offload strategy,

which sometimes offloads tasks to a fog node that does not satisfy the requirements

of the tasks which leads to some delays. As such, choosing the correct fog node that

suits the requirement of the task first before assigning those tasks helps in the sense

that when tasks are then finally deployed, it is guaranteed that they will be processed.

In light of the above findings, the study discovered that when time-sensitive task are

less than 15 packets, it is of benefit to process them in the IoT device. When tasks are

more than 15 packets and are both time-sensitive and non-time-sensitive tasks, it is

better to forward to RAS for resource allocation part. By so doing, round-trip time would

be reduced significantly.

ii) RAS strategy compared to other strategies

For comparison purposes, three strategies which are proposed and used in literature

are considered and compared with RAS:

 Strategy 1: IoT devices would randomly choose a computing device either in

the fog layer or cloud layer. Let us denote this scenario as S1.

 Strategy 2: IoT devices would choose a computing device with minimum

uploading time. Let us denote this scenario as S2.

 Strategy 3: IoT devices would choose a computing device with sufficient CPU

frequency for processing the tasks. Let us denote this scenario as S3.

 Strategy 4: Using the proposed Resource Allocation Scheduler strategy

denoted with RAS.

88

 Performance-based on average queueing time

In this comparison, the tasks that are processed locally in the IoT devices are

excluded. In most instances, IoT devices are known for producing time-sensitive tasks.

It should be noted that RAS immediately schedules tasks with deadlines for offloading

in the fog layer whilst no priority tasks are offloaded to the cloud. In most instances,

IoT devices are known for producing high priority tasks or low priority tasks. Because

of that reason, RAS was introduced, and simulations were done to check if it will

minimize overall queueing time and offloading time for each task which leads to the

minimization of the overall round-trip time. Figure 5-4 presents a performance based

on average queuing time.

Figure 5-4: Performance-based on average queueing time

Based on Figure 5-4, which compares performance based on queuing time, our RAS

improved performance when compared to the other three strategies as far as average

queuing time is concerned. The average queuing time of high priority and low priority

was minimized. This was as a result of them being given more priority if compared to

those tasks with no deadline. It can be noted from Figure 5-4 that even in the case of

more tasks, the average queuing time of the RAS is less when compared to the other

three strategies. These results proved that even if you are using first come first serve

basis in different strategies if high priority tasks are not given high priority, that will

89

affect the queuing time and has a negative impact on the time-sensitive tasks as QoS

is compromised.

 Performance-based on average offloading time

Even if S2 strategy allowed IoT devices to choose a computing device with minimum

uploading time and S3 allowed IoT devices to select a computing device with sufficient

CPU frequency for processing the tasks, it could be observed from Figure 5-5 that

these strategies did not minimize offloading time as expected by IoT devices. Contrary

to S1, S2, and S3, considering performance based on the average offloading time as

shown in Figure 5-5, RAS managed to deploy tasks to computing devices that met

the requirements of the task. Moreover, RAS offered a minimum communication

overhead, which minimized round-trip time since offloading time was reduced when

compared to other S1, S2, and S3 strategies. This was attributed to the fact that RAS

would choose either fog node or cloud that satisfies the requirements of the task based

on the task’s status. Basing our argument on the simulation results, if the round-trip

time is minimized, latency will also be reduced, and this will lead to improved QoS and

improved performance.

Figure 5-5: Performance-based on average offloading time

90

 Performance-based on average percentage number of tasks satisfying delay

deadlines.

From the analysis given above in Figure 5-4 and Figure 5-5, it can be noted that the

number of tasks that meet their deadlines especially the high priority task and low

priority task improved when using RAS compared to the other three strategies. When

considering four scenarios, based on the number of tasks at a given time, it can be

noted in Figure 5-6 that when the tasks are few, and the RAS is used, high priority

task can meet their deadlines by 100 percent. Whereas with the same number of tasks,

other strategies’ percentage is less than 90. Figure 5-6 shows that RAS increased the

number of tasks meeting the deadline by allocating high priority tasks to the fog

resources followed by low priority. No priority tasks were assigned to cloud resources.

This helped in improving network performance, as unnecessary congestion is

reduced. Improvement of network performance has a direct positive impact on how

tasks also transverses over the network. If tasks traverse easily in the networks, the

round-trip time is also reduced.

Figure 5-6: Performance-based on average percentage number of tasks satisfying

delay deadlines.

91

 Performance-based on average throughput

In order to check if the RAS improved the QoS, throughput which is one of the QoS

parameters was tested. In this work, throughput was calculated as the number of tasks

that complete their process within a time-stamp based on the arrival rate. As indicated

in Figure 5-7, RAS had high throughput when compared to other strategies. This is

because different strategies failed to process more tasks within a given time-stamp.

The RAS strategy managed to achieve improved throughput because it was able to

deploy time-sensitive tasks to fog devices that met the resource requirements with

minimum offloading time, which was also a factor of queueing time.

Figure 5-7: Performance-based on average throughput

5.3.2 Findings

The results above show that even though many factors play a pivotal role in

determining the total round-trip time, queueing time and offloading time are very

important too. Minimizing the two would help in reducing round-trip time which would

result in the minimization of latency. In addition, if queueing time and offloading times

are decreased, the overall throughput of the framework is significantly improved.

Another important finding from the study was that; choosing a computing device with

sufficient CPU frequency for processing the tasks without considering other factors

92

such as the type of the tasks; would not minimize average queuing time and average

offloading time in the case that more tasks are added. This kind of strategy would work

well when there are few tasks that need to be processed. However, it might suffer

when more tasks need to be processed.

Another point to note is that when choosing a device for processing, it is not wise to

only consider the one with the minimum uploading time and ignore other factors like

CPU frequency. As noted from the results, the strategy which only considers uploading

time suffers a lot in minimizing queuing time and offloading time which are major

factors in determining the reduction of total round-trip time.

CPU frequency of a device, uploading time of a device and the type of tasks to be

uploaded in any device plays a critical role as far as queuing time and offloading time

is concerned. It is also important to note that making a decision of which tasks is to be

assigned to which resources; where the tasks are to be processed, at what time the

task is to be uploaded and processed depending on their status whether they are time-

sensitive or not; is very crucial in any framework.

From the results above, RAS was able to minimize queuing time and offloading time.

Moreover, deadlines were met for both time-sensitive tasks and non-time-sensitive

tasks. A starvation problem encountered by the low priority tasks was significantly

reduced, and the throughput of both tasks was increased.

It is important to note that the queuing time and offloading time are not only the factors

that affect round-trip time, but there exist some factors like device failure, connectivity,

among other factors. Based on our findings while holding other factors at constant,

RAS proved that it could help in reducing both queuing time and offloading time which

are parameters that affect overall round-trip time.

 Throughput

As explained in Chapter Two, throughput is one such aspect that plays a pivotal role

in the attainment of good QoS. Improved throughput leads to improved QoS.

Throughput hinges on how many tasks will be processed entirely within a given time-

stamp. It can be noted from the results above that high priority tasks were able to

complete their operation and meet deadlines. However, that was not always the case

for low priority tasks and no priority tasks. This was ascribed to the fact that the RAS

93

would deploy first the tasks that fall under the high priority category to be processed

in the fog nodes with minimum communication overhead, which in turn improved the

throughput of the high priority tasks. These results were a testimony to the fact that

the introduced RAS improved the efficiency of the framework as far as the throughput

of the time-sensitive tasks is concerned. Since RAS deployed high priority and low

priority tasks in the fog nodes with minimum queueing and offloading time, this resulted

in the minimization of the total round-trip time of time-sensitive task and increased the

throughput.

5.3.3 Result Findings Analysis

Our results proved that when resource allocation is done properly, round-trip time can

be minimized, and QoS in particular throughput can be improved as shown and

explained above. The research managed to bring a positive contribution to what

should be done to minimize queuing time and offloading time in an IoT-Fog-Cloud

setup.

i) Queuing Time

It is evident from our findings that the queuing time for high priority tasks followed by

the low priority tasks was significantly reduced when compared to other strategies

suggested in the literature. This is attributed to the fact that RAS was able to decide

first where (fog layer or cloud layer) and which resources to assign the tasks based on

their priority, deadlines and resource needs. The assignment of resources based on

priority helped in reducing network traffic which led to quick communication and

reduced latency. In light of the above evidence from the results, RAS strategy in fog

computing framework helped in minimizing queuing time.

It is also important to note that queuing time for both high priority tasks and low priority

tasks can be further minimized when more fog nodes join the fog layer. The more the

fog nodes at the fog layer, the less the queuing time to be experienced for high priority

tasks and low priority tasks. The reason being that there will be more options and

resources to assign the tasks. Therefore, queueing time for higher priority tasks and

low priority tasks can be deduced to be directly affected by the number of fog nodes

available at the fog layer. Apart from the factors highlighted above, undoubtedly, other

factors might affect the queuing time as explained in the literature. These include the

connectivity of devices, fog node failure, the CPU processing power of both the fog

94

nodes and the IoT-Fog gateways where the RAS is hosted among other software and

or hardware challenges.

ii) Offloading time

Since offloading time is the time taken to upload, process and download a task from

IoT device to RAS then either to fog node or cloud depending on the task status,

minimizing queuing time plays a pivotal role in the minimization of overall offloading

time. Since RAS strategy assigns tasks to a suitable resource in terms of processing

power, it means the tasks will be processed faster, which will result in reduced

processing time. It is a fact that reducing processing time will have a positive impact

on the minimization of offloading time. Additionally, the fact that RAS gives high priority

to network resources for time-sensitive tasks helps in reducing upload and download

time of tasks which are all factors of offloading time.

As evidenced by the findings, offloading time for high priority tasks followed by low

priority task was significantly reduced when using RAS compared with other

strategies. This was because RAS would save time and fog node resources which

were being wasted in deciding whether they can process the whole task, part of it or

completely offload it to cloud as was the case in other strategies proposed in literature.

Grounding our reasoning from the findings and explanations above, it can be deduced

that queuing time and offloading time plays a pivotal role in determining whether a task

will meet its deadline or not. It was observed that high priority tasks always met their

deadlines. Contrary, it is not always the case for low priority tasks as some tasks in

this category missed their deadlines with few milliseconds. The delay is attributed to

the fact that high priority tasks were given higher priority in the limited resources

available in the fog layer as compared to low priority tasks. However, the impact of

failing to meet the deadline for low priority tasks is not of greater importance, especially

if the period is less than ten (10) milliseconds which is insignificant. It can be noted

that in most cases, the requirements of most of the tasks generated by IoT devices,

which are time-sensitive, are always satisfied because of the introduction of RAS in

the gateways.

As a matter of fact, based on the results, it is true that introduction of RAS in the fog

framework improved the throughput since throughput is the number of tasks that

95

complete their process within a time-stamp based on the arrival rate. Many of the tasks

met their deadline, which shows it is a sign of improved throughput.

5.3.4 Discussion of Results Findings

In our simulation experiments, we reached a conclusion which was also supported by

Souza et al., (2017) who argued that QoS is not only affected by data transmission

factors but also processing delays in fog nodes. We strongly agree with Souza et al.,

(2017) findings that to reduce end-to-end delay in fog computing, fog nodes in the fog

layer should be efficient and effective during processing. Otherwise, without doing that,

even if you provide good data transmission factors on your network, an end-to-end

delay which is overall round-trip time will still be high.

Our proposed RAS helped in reducing overall queuing time, offloading time and

offered an improved throughput when compared to the strategies proposed by Wang

et al., (2019) and Mukherjee et al.,(2018). The two never considered the queuing time

factor at the fog node, which also adds delay to the overall round-trip time. The present

findings confirm the notion by Adhikari et al., (2019) that queuing time and offloading

time has an impact on the overall round-trip time. Therefore, this research agrees to

the claims by Liu et al., (2019), who stated that reducing queuing time and offloading

time increases throughput and bring about improved QoS in fog computing.

Moreover, our results are a better true reflection of what overall round-trip time is

because we also considered uploading and downloading time when measuring

transmission delay, which plays a role in overall round-trip time. Contrariwise to the

findings of Ko et al., (2017), Tran et al., (2017) and Mukherjee et al., (2020) who

ignored the downloading time and inter-fog transmission when they measured their

transmission delay. Even though the abovementioned researchers’ line of thinking of

ignoring downloading time and inter-fog transmission was based on the reasoning that

the delays are minor; our results proved otherwise that the slight delays when added,

they contribute a lot in affecting round-trip time. In light of the above observation, we

strongly argue based on our results that downloading time and inter-fog transmission

should always be considered no matter how minor the delays may look like. Our

findings conclude that those minor delays have a negative impact on the overall round-

trip time, which in turn affect latency.

96

Furthermore, our simulation findings are in line and agreement with the findings of

Alnoman and Anpalagan, (2018) who found out that prioritized queues minimize the

delay for time-sensitive tasks as compared to non-prioritised queues. It can be

observed from the results and conclusions of Alnoman and Anpalagan, (2018) that

many low priority tasks were faced by the starvation problem. This was a result of low

priority task missing their deadlines since only time-sensitive tasks were prioritised. To

avoid the starvation problem which was faced in Alnoman and Anpalagan, (2018), we

introduced a queuing model in RAS which would increase the priority of low priority

task by one after a specific timestamp, thus promoting the low priority to be treated as

a high priority task. As evidenced by our results, this played a critical role in addressing

the starvation problem, which was experienced by low priority tasks.

Using RAS in the fog framework, we managed to process time-sensitive tasks and

non-time sensitive at once without compromising time-sensitive deadlines. This was

achieved with the IoT-Fog-Cloud architecture, which provided platforms suitable for

the processing of CPU intensive tasks in the cloud and non-CPU intensive tasks in fog

layer at once. This discovery goes in line with the ascertains of Chekired and Khoukhi,

(2018). Chekired and Khoukhi, (2018) noted and concluded that using IoT-Fog-Cloud

hierarchical structure will help in promoting a delay-tolerant network, which supports

IoT data processing while meeting various QoS objective of both time-sensitive and

non-time-sensitive requirements.

From the research findings, we can conclude that providing an excellent resource

allocation; a method for QoS-aware fog networking and message routing plays a

significant role as far as reducing round-trip time and improving throughput is

concerned. Important points to note from our findings are: i) A proper resource

allocation strategy in fog computing framework like RAS will help in minimizing round-

trip time; ii) reducing queuing time and offloading time helps in reducing overall round-

trip time which in turn reduces latency; iii) reducing queuing time and offloading time

improves overall throughput and lastly iv) an adequately designed queuing model can

help high priority tasks and low priority tasks to meet deadlines. Moreover, the

starvation problem of low priority tasks will be minimised.

97

5.4 Conclusion

This chapter evaluated the benefits of using RAS strategy in fog computing framework,

microscopically looking at queuing time and offloading time which are factors of round-

trip time. The results show that introducing RAS in the fog computing framework helps

in minimizing queuing time, offloading time which led to improved throughput.

Furthermore, the queuing model introduced in the RAS helped to address the

starvation problem, which was faced by low priority task. All these accrued benefits

clearly proved that if resource provisioning is done well in fog computing, round-trip

time can be minimized and QoS in particular throughput will be improved. This chapter

managed to provide answers to the fifth research question “What is the performance

of the adaptive RAS in fog computing framework?”

98

6 Chapter Six: Conclusion and Future Work

6.1 Introduction

This chapter reflects by articulating a review synthesis of the whole research’s key

points and how the research problem, objectives and research questions were

answered. It further outlines the significance and shortcomings of the research

findings. Scientific contributions brought by the research are emphasized. In

conclusion, avenues for future research are suggested.

The chapter begins with a summary of the whole thesis by outlining the major points

of each chapter in Section 6.2. In Section 6.3, a recap of research questions,

research objectives and how they were answered is presented. The contributions of

this research, the findings and their impact in the IoT-Fog-Cloud scientific space are

presented in Section 6.4. The chapter is concluded with the future work in Section

6.5, which look at what should be done to improve our findings and future

recommendations.

6.2 Summary of the Study

Without any doubt, as supported in literature Section 2.4, fog computing has played

a pivotal role in addressing many cloud computing challenges in supporting IoT

technology. However, the ever increase of IoT devices is a cause of concern to the

fog computing technology. As such, many methods, approaches and strategies need

to be designed and implemented in fog computing itself; if we want to continue

harnessing from its advantages of offering minimized round-trip time, improved QoS

and man other fog computing advantages.

In the current IoT-Fog-Cloud architecture, the tasks of different types are generated

by IoT devices. These tasks are processed either in IoT devices themselves or

offloaded to other computing devices in the fog or cloud layer depending on where the

resources are available. These tasks are of different computational and QoS

requirement. Thus, there is an apparent demand for novel resource allocation and

offloading strategy that aim at minimizing the round-trip time under varying network

traffic without compromising the QoS and expectations from the end-user.

99

In this regard, this thesis proposed and introduced a resource allocation scheduler in

fog computing framework for the IoT environment. Below is how the study was done

to end up having this thesis.

In Chapter One: Introduction, the research niche was established, a synopsis

description of research aim and what motivated the study was highlighted. In order to

address the research aim, research questions and research objectives were

formulated which guided this study. The chapter was concluded by giving intended

contributions and limitations of the study.

Chapter Two: Background and Related Work gave contextual knowledge, which

acted as the foundation of the research. The chapter gave an insight into the IoT

technology, cloud computing, fog computing and a clear view of how these three are

intertwined. A point to be taken from the technologies is that cloud computing provides

computational and storage power to IoT devices which are resource-constrained;

whereas fog computing complements the cloud by bringing the cloud resources closer

to the “ground” where the IoT devices are. Consequently, fog computing brings and

offers security, cognition, agility, low latency, and efficiency [3]. Microscopically, a

critical analysis of work done specifically in relation to QoS in fog computing was

presented. This helped in identifying open challenges concerning QoS in fog

computing which are research gaps. More precisely, the identified gaps represent the

opportunities for further research in specific areas of fog computing systems and

structures to enable IoT system executions. These research gaps acted as the basis

of why there was a need to do this research and its importance in the scientific space.

The open research gap, which was addressed in this chapter, was then highlighted.

This chapter helped in identifying the functional, technical and non-functional

requirements of the general IoT-Fog-Cloud architecture from existing works that were

implemented. This chapter helped in answering the following research questions:

1. What are the key challenges in communication and computer resources

allocation in an IoT environment?

2. How are communication and computing resources allocated and assigned

among the IoT devices based on tasks, requirements and priorities?

Within Chapter Three: Research Design and Methodology, the procedures and

techniques that were used for this whole thesis were presented. The chapter indicated

100

that the top-down research methodology was adopted for this work. The chapter also

highlighted what was done at each of the four phases of the top-down methodology.

This chapter answered the third research question of this study:

3. Which approaches can be used to build an adaptive resource allocation

scheduler framework for IoT environment?

Chapter Four: Framework Design and Implementation presented the high-level

design of the whole fog computing framework with more emphasis given to the

Resource Allocation Scheduler (RAS), which was our contribution. The functional,

technical and non-functional components of the whole framework and in particular the

RAS were presented. Furthermore, the implementation of the framework which details

the feasibility of the proposed framework was presented. This chapter gave a synopsis

of how the service was deployed, the environment setup and the development, testing

and execution of the framework. The chapter helped in answering the fourth research

question:

4. Can an adaptive resource allocation scheduler in fog computing framework

which is based on tasks requirements and priorities be successfully developed?

Chapter Five: Results and Discussions presented the evaluation of the

implemented framework. This was done to illustrate and verify if the introduction of

resource allocation scheduler in fog computing framework was of any benefit in

reducing round-trip time. A critical discussion relating to the findings back to the theory

and literature review was also done. This chapter was the answer to this study's fifth

research question:

5. What is the performance of the adaptive RAS in fog computing framework?

All the above chapters gave an understanding of how the data gathered from literature

was used to design, develop, implement and evaluate the framework. Thus, precisely

helping in answering the research questions, research objectives while fulfilling the

aim and showing our contribution to the scientific board of knowledge.

6.3 Research Objectives, and Where Addressed

Research objectives underpin this study, and as such, they should be alluded to, and

how they were answered according to the full scope of this study.

101

In this work, five specific objectives were which were derived from our research

questions were set:

1. To identify the key challenges of data communication and computer resources

allocation in an IoT environment.

2. To determine how data communication and computer resources are assigned

and allocated based on tasks requirements and their priorities in IoT

environments.

3. To identify a suitable methodology for building a resource allocation scheduler

in fog computing framework for IoT environments.

4. To build a resource allocation scheduler framework in fog computing for IoT

environments.

5. To test and evaluate the proposed RAS in fog computing framework.

As can be seen above, the five objectives are interconnected and depend on one

another. The above research objectives were formed from the alluded research

questions. Below is a summary of tables which pinpoint in which chapter the research

questions were answered.

Table 6-1: Research Objectives and Where they were Addressed

Research Objective Chapter it was Answered

1. To identify the key challenges of data
communication and computer
resources allocation in an IoT
environment.

2. To determine how data communication
and computer resources are assigned
and allocated based on tasks
requirements and their priorities in IoT
environments.

Chapter One: Introduction
Chapter Two: Background and
Related Work

3. To identify a suitable methodology for
building a resource allocation
scheduler in fog computing framework
for IoT environments.

Chapter Three: Research
Design and Methodology

4. To build a resource allocation
scheduler framework in fog computing
for IoT environments.

Chapter Four: Framework
Design and Implementation

5. To test and evaluate the proposed RAS
in fog computing framework.

Chapter Five: Results and
Discussions

102

6.4 Contributions of this Thesis

Two significant contributions made by this thesis can be categorized in theoretical

terms and practical or experimental terms.

Firstly, Chapter Two of this research pinpointed the role played by fog computing by

providing QoS in the existing systems. A review paper of Quality of Service in fog

computing for the IoT was produced. To our knowledge with the comments received

from the reviewers, this was the first review paper looking at QoS in fog computing.

The paper was published in the “International Journal for Fog Computing” (Vambe et

al., 2020). The paper provided open challenges that are still faced in fog computing as

far as improving QoS is concerned.

Still, in theoretical terms, another paper was submitted and accepted as a conference

proceeding “https://www.spu.ac.za/index.php/ieee-imitec-2020/” and will be published

in IEEE. The paper was based on the results of this study.

These papers act as a good starting point for other researchers in industry and

academia in finding methods, procedures and strategies that can be implemented in

fog computing. This is of paramount importance as it will help in improving fog

computing as far as reducing round-trip time (latency) and improve QoS is concerned.

In a nutshell, these two papers add to the board of knowledge as far as IoT-Fog-Cloud

information is concerned.

As evidenced by our practical findings that RAS minimize round trip time, improve

throughput, which leads to reduced latency and improved performance of the whole

IoT-Fog-Cloud architecture, it can be implemented to existing systems. Having a

system with a reduced round-trip time, improved QoS, meet the end-user

expectations, promote faster communication and task execution plays a pivotal role in

supporting smart environments. The introduced RAS will be able to support the

emergence of the fourth industrial revolution, which is all about “smart world”. The RAS

can also be implemented in smart homes, smart cities, smart health, smart industries

and many smart IoT application areas. In smart homes, it would help in security issues

as updates and alerts will be given in real-time on cases such as fire, theft, among

other things that might cause a threat to the safety of humans.

https://www.spu.ac.za/index.php/ieee-imitec-2020/

103

In smart hospitals (health), patience will be monitored, their data analysed, and their

databases updated in real-time, which will reduce problems usually caused by human

errors. Situations that require real-time applications in smart health include monitoring

of dialysis, heart problems, life support machines and many more. Human life will be

lost if there is compromised round-trip time.

Cars and any faulty robots will be monitored in smart cities in real-time which will

reduce accidents. Industries were artificial intelligence is taking a center stage through

the use of robots which are used and controlled in doing jobs in real-time will also

benefit from the benefits offered by RAS in fog computing.

This research is of paramount importance to South Africa as a country, Africa as a

continent and the world in general as they are about to adopt the fourth industrial

revolution to help our communities. In the South African context and Africa where there

is low penetration of the internet infrastructure and the affordability issues of

bandwidth, RAS will help in efficiently and effectively use the available bandwidth while

minimizing latency in automated machines.

6.5 Future Work

Importantly, our results provide evidence that if resource allocation is done properly,

round-trip time can be reduced and QoS can be improved in fog computing. However,

future investigations are necessary where the approach will be tested in a real-world

IoT environment to validate the conclusions that have been drawn from this study

which are based on the simulation environment. To fully authenticate our findings,

future research should consider the potential effects on queuing time, offloading time

and throughput more carefully, for example when the RAS is implemented in a

different setup where the IoT devices are mobile. Regardless of our findings, future

research should continue to explore how roundtripe time can be minimized and QoS

be improved in fog computing since many IoT devices are coming into play to fulfil the

dream of living in a smart world where everything will be automated. As can be noticed,

our research focused mainly on the IoT and fog layer. In other studies, the focus should

also be given to the interaction between fog and cloud to continuously benefit from the

finite computation, which can be harnessed on the cloud layer without compromising

QoS.

104

In conclusion, as far as this research is concerned, it will be necessary that future

researchers should also center their research based on the open research areas as

highlighted in our literature review paper which includes: (a) Orchestration (Cloud-Fog)

Challenge, (b) Computing Challenge and, (c) Management Challenges. These open

research areas can also affect round-trip time and QoS. As such, there is a need to

call for joint effort for further studies in fog computing and IoT-Fog-Cloud architecture.

6.6 Conclusions

This chapter articulated the summary of the whole thesis and highlighted how the

research answered the aims, objectives and research questions. Of significant

importance, the chapter explained the significance of this work and the contributions

to the body of scientific knowledge of IoT, fog computing and cloud computing as far

as round-trip time which affects latency and QoS is concerned. In conclusion,

shortcomings and future research avenues have alluded.

105

References

Aazam, M. et al. (2016) ‘MeFoRE: QoE based resource estimation at Fog to

enhance QoS in IoT’, in 2016 23rd International Conference on Telecommunications,

ICT 2016. doi: 10.1109/ICT.2016.7500362.

Aazam, M. and Huh, E. N. (2015a) ‘Dynamic resource provisioning through Fog

micro datacenter’, in 2015 IEEE International Conference on Pervasive Computing

and Communication Workshops, PerCom Workshops 2015. doi:

10.1109/PERCOMW.2015.7134002.

Aazam, M. and Huh, E. N. (2015b) ‘Fog computing micro datacenter based dynamic

resource estimation and pricing model for IoT’, in Proceedings - International

Conference on Advanced Information Networking and Applications, AINA. doi:

10.1109/AINA.2015.254.

Adhikari, M., Mukherjee, M. and Srirama, S. N. (2019) ‘DPTO: A Deadline and

Priority-aware Task Offloading in Fog Computing Framework Leveraging Multi-level

Feedback Queueing’, IEEE Internet of Things Journal. doi:

10.1109/jiot.2019.2946426.

Aissi, H., Bazgan, C. and Vanderpooten, D. (2005) ‘Complexity of the min-max and

min-max regret assignment problems’, Operations Research Letters. doi:

10.1016/j.orl.2004.12.002.

Albishi, S. et al. (2017) ‘Challenges and Solutions for Applications and Technologies

in the Internet of Things’, in Procedia Computer Science, pp. 608–614. doi:

10.1016/j.procs.2017.12.196.

Albishi, Saad et al. (2017) ‘Challenges and Solutions for Applications and

Technologies in the Internet of Things’, in Procedia Computer Science, pp. 608–614.

doi: 10.1016/j.procs.2017.12.196.

Alnoman, A. and Anpalagan, A. (2018) ‘A Dynamic Priority Service Provision

Scheme for Delay-Sensitive Applications in Fog Computing’, 29th Biennial

Symposium on Communications, BSC 2018, (Bsc), pp. 1–5. doi:

10.1109/BSC.2018.8494691.

106

Alsaffar, A. A. et al. (2017) ‘An Architecture of Thin Client-Edge Computing

Collaboration for Data Distribution and Resource Allocation in Cloud’, (November).

Aral, A. and Brandic, I. (2017) ‘Quality of Service Channelling for Latency Sensitive

Edge Applications’, Proceedings - 2017 IEEE 1st International Conference on Edge

Computing, EDGE 2017, (11 September), pp. 166–173. doi:

10.1109/IEEE.EDGE.2017.30.

Artimy, M. M., Robertson, W. and Phillips, W. J. (2004) ‘Connectivity in Inter-Vehicle

Ad Hoc Networks’, Ccece 2004, May. doi: 10.1109/CCECE.2004.1345014.

Atlam, H. F., Walters, R. J. and Wills, G. B. (2018) ‘Fog Computing and the Internet

of Things: A Review’, Big Data and Cognitive Computing, 10(April 2018). doi:

10.3390/bdcc2020010.

Atzori, L., Iera, A. and Morabito, G. (2010) ‘The Internet of Things: A survey’,

Computer Networks. doi: 10.1016/j.comnet.2010.05.010.

Baun, C., Kunze, M., Nimis, J., Tai, S., et al. (2011) ‘Cloud Basics’, in Cloud

Computing. doi: 10.1007/978-3-642-20917-8_2.

Baun, C., Kunze, M., Nimis, J. and Tai, S. (2011) Cloud Computing Web-basierte

dynmaische IT-Services, Web-basierte dynamische IT-Services. doi: 10.1007/978-3-

642-18436-9.

Beheshti, Z. and Shamsuddin, S. M. H. (2013) ‘A review of population-based meta-

heuristic algorithm’, International Journal of Advances in Soft Computing and its

Applications.

Beloglazov, A. et al. (2011) A Taxonomy and Survey of Energy-Efficient Data

Centers and Cloud Computing Systems, Advances in Computers. doi:

10.1016/B978-0-12-385512-1.00003-7.

Biljana, L. R. S. and Kire, V. T. (2016) ‘A review of Internet of Things for smart home:

Challenges and solutions’, Journal of Cleaner Production.

Bittencourt, L. F. et al. (2016) ‘Towards Virtual Machine Migration in Fog Computing’,

Proceedings - 2015 10th International Conference on P2P, Parallel, Grid, Cloud and

Internet Computing, 3PGCIC 2015, (03 March), pp. 1–8. doi:

10.1109/3PGCIC.2015.85.

107

Bonomi, F. et al. (2012) ‘Fog Computing and Its Role in the Internet of Things’,

Proceedings of the first edition of the MCC workshop on Mobile cloud computing,

(August 17, 2012), pp. 13–16. doi: 10.1145/2342509.2342513.

Bonomi, F. et al. (2014) ‘Fog computing: A platform for internet of things and

analytics’, Studies in Computational Intelligence. doi: 10.1007/978-3-319-05029-4_7.

Botta, A. et al. (2016) ‘Integration of Cloud computing and Internet of Things: A

survey’, Future Generation Computer Systems, 56(October 2015), pp. 684–700. doi:

10.1016/j.future.2015.09.021.

Braun, T. D. et al. (2001) ‘A Comparison of Eleven Static Heuristics for Mapping a

Class of Independent Tasks onto Heterogeneous Distributed Computing Systems’,

Journal of Parallel and Distributed Computing. doi: 10.1006/jpdc.2000.1714.

Calheiros, R. N. et al. (2011) ‘CloudSim: A toolkit for modeling and simulation of

cloud computing environments and evaluation of resource provisioning algorithms’,

Software - Practice and Experience. doi: 10.1002/spe.995.

Capossele, A. T. et al. (2016) ‘Counteracting denial-of-sleep attacks in wake-up-

radio-based sensing systems’, in 2016 13th Annual IEEE International Conference

on Sensing, Communication, and Networking, SECON 2016, p. 03 November 2016.

doi: 10.1109/SAHCN.2016.7732978.

Chaisiri, S., Lee, B. B. S. and Niyato, D. (2012) ‘Optimization of resource

provisioning cost in cloud computing’, Services Computing, IEEE …. doi:

10.1109/TSC.2011.7.

Chang, C., Srirama, S. N. and Buyya, R. (2016) ‘Mobile Cloud Business Process

Management System for the internet of things: A survey’, ACM Computing Surveys,

49(4). doi: 10.1145/3012000.

Chang, C., Srirama, S. N. and Buyya, R. (2017) ‘Internet of Things (IoT) and New

Computing Paradigms’, in Fog and Edge Computing: Principles and Paradigms, pp.

1–23. Available at: www.buyya.com/papers/C01_Introduction_FEC.pdf%0A.

Chekired, D. A. and Khoukhi, L. (2018) ‘Multi-tier fog architecture: A new delay-

tolerant network for iot data processing’, in IEEE International Conference on

Communications. doi: 10.1109/ICC.2018.8422170.

108

Chen, Z. et al. (2017) ‘An empirical study of latency in an emerging class of edge

computing applications for wearable cognitive assistance’, Proceedings of the

Second ACM/IEEE Symposium on Edge Computing - SEC ’17, October, pp. 1–14.

doi: 10.1145/3132211.3134458.

Choudhari, T., Moh, M. and Moh, T. S. (2018) ‘Prioritized task scheduling in fog

computing’, in Proceedings of the ACMSE 2018 Conference. doi:

10.1145/3190645.3190699.

Chowdhury, M., … E. S.-I. T. on and 2018, U. (2018) ‘Context-Aware Task Migration

for HART-Centric Collaboration over FiWi Based Tactile Internet Infrastructures’,

Ieeexplore.Ieee.Org, 29, June(6), pp. 1231–1246. Available at:

https://ieeexplore.ieee.org/iel7/71/4359390/08252736.pdf.

Cisco (2014) ‘Quality of Service Overview’, Cisco IOS Quality of Service Solutions

Configuration Guide, (January 30), p. 18. Available at:

https://www.cisco.com/c/en/us/td/docs/ios/12_2/qos/configuration/guide/fqos_c/qcfint

ro.pdf.

‘Cloud computing: Web-based dynamic IT services’ (2012) Choice Reviews Online.

doi: 10.5860/choice.49-2712.

Coutinho, A. A. T. R. ., Greve, F. and Prazeres, C. (2017) ‘An Architecture for Fog

Computing Emulation’, Wcga - Sbrc, 15(1/2017). Available at:

http://ojs.sbc.org.br/index.php/wcga/article/view/2552.

Daj, A., Samoilǎ, C. and Ursuţiu, D. (2012) ‘Digital marketing and regulatory

challenges of Machine-to-Machine (M2M) communications’, in 2012 9th International

Conference on Remote Engineering and Virtual Instrumentation, REV 2012, p. 05

September 2012. doi: 10.1109/REV.2012.6293118.

Dana Jošilo, S. ¯ and Dán, G. (2018) ‘Decentralized Algorithm for Randomized Task

Allocation in Fog Computing Systems’, 18 May. Available at: http://www.diva-

portal.org/smash/record.jsf?pid=diva2%3A1206706&dswid=-5375.

Dao, N.-N. et al. (2018) ‘Pattern-Identified Online Task Scheduling in Multitier Edge

Computing for Industrial IoT Services’, Mobile Information Systems, 2018, 04 A. doi:

10.1155/2018/2101206.

109

Dastjerdi, A. V. and Buyya, R. (2016) ‘Fog Computing: Helping the Internet of Things

Realize Its Potential’, Computer, 49(8, August), pp. 112–116. doi:

10.1109/MC.2016.245.

Dilworth, I. J. (2012) ‘Bluetooth’, in The Cable and Telecommunications

Professionals’ Reference: PSTN, IP and Cellular Networks, and Mathematical

Techniques. doi: 10.4324/9780080475189-23.

Dinh, H. T. et al. (2013) ‘A survey of mobile cloud computing: Architecture,

applications, and approaches’, Wireless Communications and Mobile Computing.

doi: 10.1002/wcm.1203.

Ericsson (2011) ‘More Than 50 Billion Connected Devices’, White Paper, (February),

pp. 1–12. doi: 284 23-3149 Uen.

Fan, Q. and Ansari, N. (2018) ‘Towards Workload Balancing in Fog Computing

Empowered IoT’, IEEE Transactions on Network Science and Engineering. doi:

10.1109/TNSE.2018.2852762.

Gia, T. N. et al. (2018) ‘Fog computing approach for mobility support in internet-of-

things systems’, IEEE Access, 6(June), pp. 36064–36082. doi:

10.1109/ACCESS.2018.2848119.

Giovanni and Surantha, N. (2018) ‘Design and Evaluation of Enterprise Network with

Converged Services’, in Procedia Computer Science. doi:

10.1016/j.procs.2018.08.205.

Google Press (2006) ‘Conversation with Eric Schmidt hosted by Danny Sullivan’, in

Danny, S. (ed.). Google Press Centre. Available at:

https://www.google.com/press/podium/ses2006.html.

Gubbi, J. et al. (2013) ‘Internet of Things (IoT): A vision, architectural elements, and

future directions’, Future Generation Computer Systems. doi:

10.1016/j.future.2013.01.010.

Gupta, H. et al. (2017) ‘iFogSim: A toolkit for modeling and simulation of resource

management techniques in the Internet of Things, Edge and Fog computing

environments’, in Software - Practice and Experience. doi: 10.1002/spe.2509.

He, X. et al. (2016) ‘A novel load balancing strategy of software-defined cloud/fog

110

networking in the Internet of Vehicles’, China Communications, 13, pp. 140–149. doi:

10.1109/CC.2016.7833468.

He, Y., Zhao, N. and Yin, H. (2018) ‘Integrated networking, caching, and computing

for connected vehicles: A deep reinforcement learning approach’, IEEE Transactions

on Vehicular Technology, 67-January(1), pp. 44–55. doi:

10.1109/TVT.2017.2760281.

Higashino, W. A., Capretz, M. A. M. and Bittencourt, L. F. (2016) ‘CEPSim:

Modelling and simulation of Complex Event Processing systems in cloud

environments’, Future Generation Computer Systems. doi:

10.1016/j.future.2015.10.023.

Iorga, M., Martin, M. J. and Feldman, L. (2018) ‘Fog Computing Conceptual Model

NIST Special Publication 500-325’, (14 March). Available at:

https://www.nist.gov/publications/fog-computing-conceptual-model.

Iotti, N. et al. (2017) ‘Improving Quality of Experience in Future Wireless Access

Networks through Fog Computing’, IEEE Internet Computing, 21-March/(2), pp. 26–

33. doi: 10.1109/MIC.2017.38.

Islam, S. M. R. et al. (2015) ‘The Internet of Things for Health Care : A

Comprehensive Survey’, Access, IEEE, 3(01 June 2015), pp. 678–708. doi:

10.1109/ACCESS.2015.2437951.

Jain Kansal, N. and Chana, I. (2012) ‘Cloud Load Balancing Techniques : A Step

Towards Green Computing’, IJCSI International Journal of Computer Science

Issues, Vol. 9, Ja(Issue 1), pp. 238–246. doi: 10.1145/2382756.2382784.

Jim Turley (2014) ‘Introduction to Intel R Architecture - The Basics.’, (White

Paper,Introduction to Intel), p. 10. Available at: http://ark.intel.com.

Kalyvianaki, E. (2008) Resource provisioning for virtualized server applications,

Pediatrics.

Keller, G. et al. (2012) ‘An analysis of first fit heuristics for the virtual machine

relocation problem’, in Proceedings of the 2012 8th International Conference on

Network and Service Management, CNSM 2012.

Kiani, A. and Ansari, N. (2018) ‘Edge Computing Aware NOMA for 5G Networks’,

111

IEEE Internet of Things Journal, 5-April(2), pp. 1299–1306. doi:

10.1109/JIOT.2018.2796542.

Kim, J. and Lee, J. W. (2014) ‘OpenIoT: An open service framework for the Internet

of Things’, in 2014 IEEE World Forum on Internet of Things, WF-IoT 2014. doi:

10.1109/WF-IoT.2014.6803126.

Ko, S. W. et al. (2017) ‘Live Prefetching for Mobile Computation Offloading’, IEEE

Transactions on Wireless Communications. doi: 10.1109/TWC.2017.2674665.

Kochovski, P. and Stankovski, V. (2018) ‘Supporting smart construction with

dependable edge computing infrastructures and applications’, Automation in

Construction, 85(May 2017), pp. 182–192. doi: 10.1016/j.autcon.2017.10.008.

Li, C. et al. (2018) ‘Edge-Oriented Computing Paradigms : A Survey on Architecture

Design and System Management’, 51(2, June 02 2018).

Li, G. et al. (2018) ‘Method of Resource Estimation Based on QoS in Edge

Computing’, 2018(December 31).

Li, J. et al. (2017) ‘Resource Management in Fog-Enhanced Radio Access Network

to Support Real-Time Vehicular Services’, in Proceedings - 2017 IEEE 1st

International Conference on Fog and Edge Computing, ICFEC 2017, pp. 68–74. doi:

10.1109/ICFEC.2017.17.

Liu, C. F. et al. (2019) ‘Dynamic Task Offloading and Resource Allocation for Ultra-

Reliable Low-Latency Edge Computing’, in IEEE Transactions on Communications.

doi: 10.1109/TCOMM.2019.2898573.

Liu, L. et al. (2018) ‘A Task Scheduling Algorithm Based on Classification Mining in

Fog Computing Environment’, Wireless Communications and Mobile Computing,

2018, Augu. doi: 10.1155/2018/2102348.

Liu, Y. et al. (2017) ‘Incentive mechanism for computation offloading using edge

computing: A Stackelberg game approach’, Computer Networks, 129(December 24),

pp. 399–409. doi: 10.1016/j.comnet.2017.03.015.

Lu, Z. et al. (2015) ‘Task allocation for mobile cloud computing in heterogeneous

wireless networks’, in Proceedings - International Conference on Computer

Communications and Networks, ICCCN. doi: 10.1109/ICCCN.2015.7288473.

112

Luan, T. H. et al. (2015) ‘Fog Computing: Focusing on Mobile Users at the Edge’,

(argearXiv: 1502.01815v1 [cs.NI] 6 February). doi: 10.1016/j.jnca.2015.02.002.

Lv, Y. et al. (2015) ‘Traffic Flow Prediction with Big Data: A Deep Learning

Approach’, IEEE Transactions on Intelligent Transportation Systems, 16(April 2015).

doi: 10.1109/TITS.2014.2345663.

Madni, S. H. H. et al. (2017) ‘Performance comparison of heuristic algorithms for

task scheduling in IaaS cloud computing environment’, PLoS ONE. doi:

10.1371/journal.pone.0176321.

Maheswaran, M. et al. (1999) ‘Dynamic matching and scheduling of a class of

independent tasks onto heterogeneous computing systems’, Proceedings of the

Heterogeneous Computing Workshop, HCW. doi: 10.1109/hcw.1999.765094.

Mahmud, M. R. et al. (2016) ‘Maximizing quality of experience through context-

aware mobile application scheduling in cloudlet infrastructure’, Software - Practice

and Experience, 46(11, 29 December), pp. 1525–1545. doi: 10.1002/spe.2392.

Micrac, I. (2008) Internet of Things in 2020, Roadmap for future, European

Commission, Information Society and Media.

Mtshali, M. et al. (2019) ‘Multi-objective optimization approach for task scheduling in

fog computing’, in icABCD 2019 - 2nd International Conference on Advances in Big

Data, Computing and Data Communication Systems. doi:

10.1109/ICABCD.2019.8851038.

Mukherjee, M. et al. (2018) ‘Transmission and Latency-Aware Load Balancing for

Fog Radio Access Networks’, in 2018 IEEE Global Communications Conference,

GLOBECOM 2018 - Proceedings. doi: 10.1109/GLOCOM.2018.8647580.

Mukherjee, M. et al. (2019) ‘Joint Task Offloading and Resource Allocation for Delay-

Sensitive Fog Networks’, in IEEE International Conference on Communications. doi:

10.1109/ICC.2019.8761239.

Mukherjee, M. et al. (2020) ‘Latency-Driven Parallel Task Data Offloading in Fog

Computing Networks for Industrial Applications’, IEEE Transactions on Industrial

Informatics. doi: 10.1109/TII.2019.2957129.

Müller-Merbach, H. (1981) ‘Heuristics and their design: a survey’, European Journal

113

of Operational Research. doi: 10.1016/0377-2217(81)90024-2.

Müller-Merbach, H. (1985) ‘Heuristics: Intelligent search strategies for computer

problem solving’, European Journal of Operational Research. doi: 10.1016/0377-

2217(85)90047-5.

Mulyawan, B. (2011) ‘Campus Network Design And Implementation Using Top Down

Approach : A Case Study Tarumanagara University’, International Conference on

Information Systems For Business Competitiveness.

Nachiket (2019) Smart Home Devices Market Scope by Trends and Opportunities to

Expand Significantly by 2028, Market Industry Reports. Available at:

https://aindustryreports.com/2019/05/21/smart-home-devices-market-scope-by-

trends-and-opportunities-to-expand-significantly-by-2028/ (Accessed: 21 May 2019).

Naha, R. K. et al. (2018) ‘Fog computing: Survey of trends, architectures,

requirements, and research directions’, IEEE Access. doi:

10.1109/ACCESS.2018.2866491.

Nath, S. B. et al. (2018) ‘A Survey of Fog Computing and Communication: Current

Researches and Future Directions’, (arXiv:1804.04365v1 [cs.NI] 12 Apr 2018), pp.

1–47. Available at: http://arxiv.org/abs/1804.04365.

Neto, E. C. P., Callou, G. and Aires, F. (2017) ‘An algorithm to optimise the load

distribution of fog environments’, 2017 IEEE International Conference on Systems,

Man, and Cybernetics (SMC), (01 December), pp. 1292–1297. doi:

10.1109/SMC.2017.8122791.

Newman, S. (2015) Building Microservices, O’Reilly.

Ni, L., Zhang, J. and Yu, J. (2018) ‘Priced timed petri nets based resource allocation

strategy for fog computing’, in Proceedings - 2016 International Conference on

Identification, Information and Knowledge in the Internet of Things, IIKI 2016, pp. 39–

44. doi: 10.1109/IIKI.2016.87.

OpenFog Consortium Architecture Working Group (2017) ‘12 - OpenFog Reference

Architecture for Fog Computing’, OpenFogConsortium, (February), pp. 1–162. doi:

OPFRA001.020817.

ORACLE et al. (2014) Capa de aplicación (Guía de administración del sistema:

114

servicios IP), Revista Tecnura. Available at:

https://www.academia.edu/8893403/METODOLOGIAS_PARA_EL_DISEÑO_DE_R

EDES_Contenido?auto=download%5Cnhttp://revistas.udistrital.edu.co/ojs/index.php/

Tecnura/article/view/6901/8509%5Cnhttp://www.valleytalk.org/wp-

content/uploads/2013/01/top-down-network-design.

Osanaiye, O. et al. (2017) ‘From Cloud to Fog Computing: A Review and a

Conceptual Live VM Migration Framework’, IEEE Access, 5(11 April 2017), pp.

8284–8300. doi: 10.1109/ACCESS.2017.2692960.

Patel, K. K., Patel, S. M. and Scholar, P. G. (2016) ‘Internet of Things-IOT:

Definition, Characteristics, Architecture, Enabling Technologies, Application &

Future Challenges’, International Journal of Engineering Science and Computing,

6(5), pp. 1–10. doi: 10.4010/2016.1482.

Pautasso, C., Zimmermann, O. and Leymann, F. (2008) ‘RESTfulWeb Services vs.

“Big”Web Services: Making the Right Architectural Decision’, in Proceedings of the

17th World Wide Web Conference,. doi: 10.1145/1367497.1367606.

Perera, C., Liu, C. H. I. H., et al. (2014) ‘A Survey on Internet of Things From

Industrial Market Perspective’, IEEE Access, 2(January 26,), pp. 1660–1679. doi:

10.1109/ACCESS.2015.2389854.

Perera, C., Zaslavsky, A., et al. (2014) ‘Context aware computing for the internet of

things: A survey’, IEEE Communications Surveys and Tutorials, 16(1, 03 May), pp.

414–454. doi: 10.1109/SURV.2013.042313.00197.

Pérez, J. L. et al. (2018) ‘A resilient and distributed near real-time traffic forecasting

application for Fog computing environments’, Future Generation Computer Systems,

87, Octobe. doi: 10.1016/j.future.2018.05.013.

Pham, X. Q. et al. (2017) ‘A cost- and performance-effective approach for task

scheduling based on collaboration between cloud and fog computing’, International

Journal of Distributed Sensor Networks, 13–11 Oct(11). doi:

10.1177/1550147717742073.

Rashidi, S. and Sharifian, S. (2017) ‘Cloudlet dynamic server selection policy for

mobile task off-loading in mobile cloud computing using soft computing techniques’,

115

Journal of Supercomputing, 73(9, February), pp. 3796–3820. doi: 10.1007/s11227-

017-1983-0.

Rasmila, R. and Laksana, T. G. (2019) ‘The Implementation of Top Down Approach

Method on Redesign of LAN Harvani Hotel Palembang’, JURNAL INFOTEL. doi:

10.20895/infotel.v11i1.410.

Riehle, D. (2000) Framework Design: A Role Modeling Approach, Design. doi:

10.3929/ethz-a-003867001.

Rothlauf, F. (2011) Design of Modern Heuristics: principles and Application, Design

of Modern Heuristics: Principles and Application.

Saad, M. (2018) ‘Fog Computing and Its Role in the Internet of Things : Concept ,

Security and Privacy Issues’, International Journal of Computer Applications, 180(32,

April 2018), pp. 7–9.

Sampei, S. (2017) ‘Development of wireless access and flexible networking

technologies for 5G cellular systems’, IEICE Transactions on Communications,

E100B(8, August 8), pp. 1174–1180. doi: 10.1587/transcom.2016FGI0001.

Satria, D., Park, D. and Jo, M. (2017) ‘Recovery for overloaded mobile edge

computing’, Future Generation Computer Systems, 70(14 July 2016), pp. 138–147.

doi: 10.1016/j.future.2016.06.024.

Sensor, W. (2009) WIRELESS SENSOR NETWORKS A Networking, Zywienie

Czlowieka I Metabolizm. doi: 10.1109/IEMBS.2008.4650376.

Shen, H. et al. (2015) ‘C2EM: cloud-assisted complex event monitoring in wireless

multimedia sensor networks’, Eurasip Journal on Wireless Communications and

Networking, 2015(1, April). doi: 10.1186/s13638-015-0347-9.

Shukla, S. et al. (2019) ‘An analytical model to minimize the latency in healthcare

internet-of-things in fog computing environment’, PLoS ONE. doi:

10.1371/journal.pone.0224934.

Simonet, A., Lebre, A. and Orgerie, A. C. (2016) ‘Deploying distributed cloud

infrastructures: Who and at what cost?’, in Proceedings - 2016 IEEE International

Conference on Cloud Engineering Workshops, IC2EW 2016, pp. 178-183,04 August

2016. doi: 10.1109/IC2EW.2016.48.

116

Singh, S. and Chana, I. (2015) ‘QoS-aware autonomic resource management in

cloud computing: A systematic review’, ACM Computing Surveys. doi:

10.1145/2843889.

Skarlat, O. et al. (2016) ‘Resource provisioning for IoT services in the fog’,

Proceedings - 2016 IEEE 9th International Conference on Service-Oriented

Computing and Applications, SOCA 2016, (26 December 2016), pp. 32–39. doi:

10.1109/SOCA.2016.10.

Skarlat, O., Nardelli, M., Schulte, S., Borkowski, M., et al. (2017) ‘Optimized IoT

service placement in the fog’, Service Oriented Computing and Applications, 11(4,

October 04), pp. 427–443. doi: 10.1007/s11761-017-0219-8.

Skarlat, O., Nardelli, M., Schulte, S. and Dustdar, S. (2017) ‘Towards QoS-Aware

Fog Service Placement’, Proceedings - 2017 IEEE 1st International Conference on

Fog and Edge Computing, ICFEC 2017, (24 August), pp. 89–96. doi:

10.1109/ICFEC.2017.12.

Soltesz, S. et al. (2007) ‘Container-based operating system virtualization: A scalable,

high-performance alternative to hypervisors’, in Operating Systems Review (ACM).

doi: 10.1145/1272996.1273025.

Song, Y. et al. (2017) ‘An Approach to QoS-based Task Distribution in Edge

Computing Networks for IoT Applications’, Proceedings - 2017 IEEE 1st International

Conference on Edge Computing, EDGE 2017, (11 September), pp. 32–39. doi:

10.1109/IEEE.EDGE.2017.50.

Souza, V. B. et al. (2017) ‘Towards a Fog-to-Cloud control topology for QoS-aware

end-to-end communication’, in 2017 IEEE/ACM 25th International Symposium on

Quality of Service, IWQoS 2017. doi: 10.1109/IWQoS.2017.7969140.

Taleb, T. et al. (2017) ‘Mobile edge computing potential in making cities smarter’,

IEEE Communications Magazine, 55(3, March 13), pp. 38–43. doi:

10.1109/MCOM.2017.1600249CM.

Taneja, M. and Davy, A. (2017) ‘Resource aware placement of IoT application

modules in Fog-Cloud Computing Paradigm’, Proceedings of the IM 2017 - 2017

IFIP/IEEE International Symposium on Integrated Network and Service

117

Management, (24 July), pp. 1222–1228. doi: 10.23919/INM.2017.7987464.

The National Institute of Standards and Technology (2011) ‘The NIST Definition of

Cloud Computing Recommendations of the National Institute of Standards and

Technology’, NIST Special Publication. doi: 10.1136/emj.2010.096966.

Tran, T. X. et al. (2017) ‘Collaborative mobile edge computing in 5G networks: New

paradigms, scenarios, and challenges’, IEEE Communications Magazine. doi:

10.1109/MCOM.2017.1600863.

Vambe, W. T., Chang, C. and Sibanda, K. (2020) ‘A Review of Quality of Service in

Fog Computing for the Internet of Things’, 3(1), pp. 22–40. doi:

10.4018/IJFC.2020010102.

Vaquero, L. M. and Rodero-Merino, L. (2014) ‘Finding your Way in the Fog: Towards

a Comprehensive Definition of Fog Computing’, ACM SIGCOMM Computer

Communication Review, 44(5, 10 October), pp. 27–32. doi:

10.1145/2677046.2677052.

Vermesan, O. and Friess, P. (2014) Internet of things applications: From research

and innovation to market deployment, Internet of Things Applications: From

Research and Innovation to Market Deployment.

Vögler, M. et al. (2016) ‘A Scalable Framework for Provisioning Large-Scale IoT

Deployments’, ACM Transactions on Internet Technology. doi: 10.1145/2850416.

Wang, C. et al. (2016) ‘On the Serviceability of Mobile Vehicular Cloudlets in a

Large-Scale Urban Environment’, IEEE Transactions on Intelligent Transportation

Systems, 17, Octobe(10), pp. 2960–2970. doi: 10.1109/TITS.2016.2561293.

Wang, C., Gill, C. and Lu, C. (2017) ‘Real-time middleware for cyber-physical event

processing’, 2017 IEEE/ACM 25th International Symposium on Quality of Service,

IWQoS 2017, (07 July). doi: 10.1109/IWQoS.2017.7969159.

Wang, K. and Yang, K. (2017) ‘Power-minimization computing resource allocation in

mobile cloud-radio access network’, Proceedings - 2016 16th IEEE International

Conference on Computer and Information Technology, CIT 2016, 2016 6th

International Symposium on Cloud and Service Computing, IEEE SC2 2016 and

2016 International Symposium on Security and Privacy in Social Netwo, (13 March),

118

pp. 667–672. doi: 10.1109/CIT.2016.64.

Wang, S. et al. (2018) ‘A Survey on Service Migration in Mobile Edge Computing’,

IEEE Access, 6, pp. 23511–23528. doi: 10.1109/ACCESS.2018.2828102.

Wang, Y. et al. (2019) ‘Cooperative Task Offloading in Three-Tier Mobile Computing

Networks: An ADMM Framework’, IEEE Transactions on Vehicular Technology. doi:

10.1109/TVT.2019.2892176.

Wang, Z. et al. (2018) ‘User mobility aware task assignment for Mobile Edge

Computing’, Future Generation Computer Systems, 85, March, pp. 1–8. doi:

10.1016/j.future.2018.02.014.

Xiao, Y. and Krunz, M. (2017) ‘QoE and power efficiency tradeoff for fog computing

networks with fog node cooperation’, Proceedings - IEEE INFOCOM, (May). doi:

10.1109/INFOCOM.2017.8057196.

Xu, Y. and Helal, S. (2014) ‘Application caching for cloud-sensor systems’, in

Proceedings of the 17th ACM international conference on Modeling, analysis and

simulation of wireless and mobile systems - MSWiM ’14, pp. 303–306, Septemeber

21. doi: 10.1145/2641798.2641814.

Yang, B. et al. (2018) ‘Cost-Efficient NFV-Enabled Mobile Edge-Cloud for Low

Latency Mobile Applications’, IEEE Transactions on Network and Service

Management, 15(1), pp. 475–488. doi: 10.1109/TNSM.2018.2790081.

Yang, X. and Rahmani, N. (2020) ‘Task scheduling mechanisms in fog computing:

review, trends, and perspectives’, Kybernetes. doi: 10.1108/K-10-2019-0666.

Yang, Y. et al. (2019) ‘POMT: Paired Offloading of Multiple Tasks in Heterogeneous

Fog Networks’, IEEE Internet of Things Journal. doi: 10.1109/JIOT.2019.2922324.

Yao, H. et al. (2017) ‘Heterogeneous cloudlet deployment and user-cloudlet

association toward cost effective fog computing’, in Concurrency Computation. doi:

10.1002/cpe.3975.

Yi, S. et al. (2016) ‘Fog computing: Platform and applications’, Proceedings - 3rd

Workshop on Hot Topics in Web Systems and Technologies, HotWeb 2015, pp. 73–

78. doi: 10.1109/HotWeb.2015.22.

119

Yi, S., Li, C. and Li, Q. (2015) ‘A Survey of Fog Computing: Concepts, Applications

and Issues’, Proceedings of the 2015 Workshop on Mobile Big Data - Mobidata ’15,

(15, June 21,), pp. 37–42. doi: 10.1145/2757384.2757397.

Yousefpour, A. et al. (2018) ‘On Reducing IoT Service Delay via Fog Offloading’,

IEEE Internet of Things Journal, 5, April(2), pp. 998–1010. doi:

10.1109/JIOT.2017.2788802.

Zhan, Z.-H. et al. (2015) ‘Cloud Computing Resource Scheduling and a Survey of Its

Evolutionary Approaches’, ACM Computing Surveys, 47, July(4), pp. 1–33. doi:

10.1145/2788397.

Zhang, G. et al. (2019) ‘FEMTO: Fair and energy-minimized task offloading for fog-

enabled IoT networks’, IEEE Internet of Things Journal. doi:

10.1109/JIOT.2018.2887229.

Zhang, X. and Zhu, Q. (2017) ‘Statistical Quality of Service Provisioning Over Edge

Computing Mobile Wireless Networks’, (1,11 December), pp. 412–417.

Zhao, L. et al. (2018) ‘Optimal Placement of Cloudlets for Access Delay Minimization

in SDN-based Internet of Things Networks’, IEEE Internet of Things Journal, 5(2,

April), pp. 1–12. doi: 10.1109/JIOT.2018.2811808.

Zheng, X., Xu, L. Da and Chai, S. (2017) ‘QoS Recommendation in Cloud Services’,

IEEE Access, 5(19 April), pp. 5171–5177. doi: 10.1109/ACCESS.2017.2695657.

120

ANNEX 1

International Journal of Fog Computing
Volume 3 • Issue 1 • January-June 2020

A Review of Quality of Service in Fog Computing
for the Internet of Things
William Tichaona Vambe, University of Fort Hare, Alice, South Africa

 https://orcid.org/0000-0003-0516-1260

Chii Chang, University of Melbourne, Melbourne, Australia
Khulumani Sibanda, University of Fort Hare, Alice, South Africa

ABSTRACT

With the advent of the paradigm of the Internet of Things, many computing elements
need many modifications to promote Quality of Service (QoS). Quality of Service is a
pillar that promotes real-time reaction to time-critical tasks. Any impediments to QoS
should be resolved and handled. In 2012, fog computing was implemented to enhance
QoS in current systems in a bid to tackle QoS problems encountered by using cloud
computing alone. Currently, the primary focus in fog computing is now on enhancing
QoS. The primary goal of this study is, therefore, to critically review and evaluate the
literature on the work done to improve elements of QoS in fog computing. This study
begins by examining the roots of history, characteristics, and advantages of fog
computing. Secondly, it discusses the important elements of QoS parameters. Finally,
open problems that still affect fog computing are identified and discussed in order to
achieve enhanced QoS.

INTRODUCTION

The Internet of Things (IoT) is defined as a vibrant worldwide data network composed
of internet-connected objects such as radio-frequency identifiers, sensors, and
actuators, as well as other devices and smart devices that are becoming an essential
part of the Internet (Perera, Liu, Jayawardena, & Chen, 2014). The word IoT can be
traced back to the early 1990s when Kelvin Ashton introduced it (S. Albishi, Soh, Ullah,
& Algarni, 2017). Over the years, IoT has received considerable attention due to the
capacity to interact and execute some tasks together or react to incidents without
specific instructions (Perera, Zaslavsky, Christen, & Georgakopoulos, 2014).
Intelligence, Connectivity, Dynamic Scale, Enormous Nature, Sensing, Heterogeneity,
and Security are the key fundamental characteristics which drive IoT (Ericsson, 2011).
The above-mentioned features have contributed considerably to the successful
adoption plus the use of IoT in current information systems and applications, creating
value and support for human operations (Perera, Liu, et al., 2014). Collected works
demonstrate that IoT has been implemented in various fields, leading to the
development of smart cities, intelligent energy, and electrical grids, intelligent homes,
smart buildings and infrastructure, intelligent health just to mention a few (Saad et al.,
2017).
DOI: 10.4018/IJFC.2020010102
Copyright©2020,IGIGlobal.Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

https://orcid.org/0000-0003-0516-1260

121

This “smart world” has changed the manner in which people live and work by saving time and
organizational resources whilst bringing new opportunities for knowledge formation, innovation,
and development (Capossele, Cervo, Petrioli, & Spenza, 2016).

After the realization that the “things” that make up the IoT ecosystem have limited
processing power and storage, cloud computing was introduced and integrated into IoT to
provide scalable storage and processing services to meet IoT demands (Atlam, Walters, & Wills,
2018). In spite of cloud computing advantages in terms of storage and processing services, it
still suffers mostly in providing low latency (Satria, Park, & Jo, 2017). This is because of its
geographical location to the devices it wants to offer services. High latency compromise QoS
which cause communication delays due to unstable and intermittent network connectivity.
Explicitly, the unprecedented amount of data produced by IoT devices (Dastjerdi & Buyya, 2016)
burden the network resulting in network transmission delays. Additionally, sending such huge
data to and from the cloud requires exceptionally high network bandwidth (Atlam et al., 2018).
With the anticipated 50 billion intelligent interconnected device deployments serving various
vertical markets by 2020, QoS is probable to be compromised which in turn affect time-sensitive
functions which have been backed by cloud computing. As such, this has triggered a concerted
effort to come with adaptive and decentralized computational paradigms that complement the
centralized cloud computing model serving IoT networks. To fill this technological gap, new
concepts and technologies have been developed to manage this growing fleet of IoT devices.
Specifically, fog computing which was introduced by Cisco has gained much attention (Bonomi,
Milito, Zhu, & Addepalli, 2012). OpenFog Consortium (the IEEE standard) defined fog
computing as “a horizontal, system-level architecture that distributes computing, storage,
control, and networking functions closer to the users along a cloud-to-thing continuum”
(OpenFog Consortium Architecture Working Group, 2017). Fog computing architecture consists
of fog (physical or virtual), residing between smart end-devices and centralized (cloud) services
which facilitates minimization of the request-response time from-to supported applications, and
provides, for the end-devices, local computing resources and, when needed, network
connectivity to centralized services (Iorga, Martin, & Feldman, 2018). These are achieved
through fog computing ability to support: i) Low latency and location awareness; ii) Extensive
geographical dispersal; iii) Mobility; iv) Very large number of nodes, v) Predominant role of
wireless access, vi) Strong presence of streaming and real-time applications, vii) Heterogeneity,
thus supporting critical IoT services and applications to have improved QoS (Atlam et al., 2018).
 Since its inception in 2012, fog computing has gained much attention in both academic
and industrial space because of its advantages in supporting the Internet of Things technologies
and providing improved QoS. Several surveys whose main topics cover fog computing key
features(Vaquero & Rodero-Merino, 2014), platform and paradigm(Xu & Helal, 2014),
architecture design (Simonet, Lebre, & Orgerie, 2016), security, and privacy (Osanaiye et al.,
2017) has been done and in-depth. However, to the best of our knowledge, there are no existing
related survey papers of fog computing whose main perspective is on QoS. The primary
purpose of this study is, therefore, to review and critically evaluate current literature on the work
that has been done to tackle difficulties and enhance QoS elements in fog computing.
Conclusively, open researches areas and future re-scopes for QoS of fog computing will be
underscored.

BACKGROUND

Providing satisfactory QoS is a fundamental goal in networking, cloud services or in general
information systems. Depending on the perspective, QoS can have several definitions. From a

122

networking perspective, QoS refers to any technology that manages data traffic to reduce packet
loss, latency and jitter on the network (Cisco, 2014). In general information systems, Quality of
Service is the capacity to prioritize distinct applications, customers or information flows or to
ensure a certain level of information stream efficiency. In cloud computing, QoS is “non-
functional properties of cloud services, which describe how well a service is performed, such as
compliance, availability, reliability, responsiveness, price, security, latency, etc.” (Zheng, Xu, &
Chai, 2017). The major parameters that define QoS include throughput, transit delay,
availability, priority, jitter, etc. In the light of the definitions above, QoS is very important because
it promotes improved services.

Correspondingly, studies have been done both in academia and industrial domain on
how fog computing technologies can be used and implemented in existing systems to enhance
QoS. Failure to maintain high QoS in fog computing have a negative impact on fog computing-
based systems and or applications. This will cause fog computing-based systems and
applications to encounter end-to-end communication delays(Souza et al., 2017), service
migration issues (Song et al., 2017), workload deployment challenges (Taneja & Davy, 2017),
computation and resource allocation problems (Chao et al., 2017), etc. For this reason, it is wise
to continuously devise ways and strategies to maintain high QoS in fog computing as to avoid
the above-mentioned problems if we are to successfully meet and support demands of the
dynamic IoT ecosystem.

As affirmed from prior existing research, work which covers fog computing key features,
paradigm, design, security, and privacy has been done as main topics and in-depth. In contrast,
none has looked at QoS in fog computing as the main topic and in detail. The work that exists,
for example (Yi, Li, & Li, 2015) focused on identifying problem domains of fog computing. In a
synopsis, Yi et al (2015) looked at the QoS and summarized four aspects of fog service which
help to achieve QoS namely connectivity, reliability, capacity, and delay. Researchers Li et al.
did a survey which looked at architecture design and system management. The work described
major optimization solutions and heuristic approaches to deal with time transmission, execution
time, round-trip time, real-time support to address delay and execution time(C. Li et al., 2018).
Researchers, Nath et al (2018) did a survey whose focus was on fog computing system
architectures, fog enabling technologies and features, privacy and security of fog, the QoS
parameters, and application of fog (Nath et al., 2018). Even though these survey papers have
mentioned QoS, they did not specifically go in deepness. Since QoS is an important factor in
fog computing for IoT especially for time-critical application, this paper serves as a complement
survey paper to the research field of fog computing.

The survey is structured as follows. In the next section, the authors start by describing
and defining the meanings of the aspects of QoS and the problems or challenges they cause in
fulfilling QoS requirements in fog computing. Furthermore, a look in the literature on how
researchers addressed the problems and how they have improved QoS aspects in fog
computing. In conclusion, open research areas are highlighted, discussed as areas that need
attention and further research.

QUALITY OF SERVICE IN FOG COMPUTING

In order to get enhanced QoS, fog computing technology has been developed and implemented.
Without any doubt, as supported by the literature, fog computing has managed to offer improved
QoS among other advantages. Several systems and applications have adopted the use of fog
technology over the years to improve QoS in the existing systems. Quality of Service can be
classified into the following aspects (see Figure 8: QoS aspect taxonomy tree below). Much

123

attention has been paid to enhancing QoS in fog computing recently. Several approaches have
been suggested and implemented to address QoS aspects challenges and positive strides have
been made in that regard.

Figure 8: QoS aspect taxonomy tree

Q
o

S

A
s

p
e

c
t

Reliability

Service continuity

Handover

Service
migration

Network quality

Connectivity

End-to-end
latency

Traffic
overload

Performance

Application / Task
performance

Task / Application
execution latency

Task / Application
allocation

Task / Application
scheduling

Service
performance

Physical fog node
placement

Load balancing

Service/resource
scheduling

Service allocation /
placementCost

Energy efficiency

Server operation
cost

Pricing of using
fog services

124

Reliability

Reliability of fog computing is centered on the two pillars that are service continuity and network
quality.

Service Continuity

It should be noted that to achieve reliability in fog computing, service continuity plays a pivotal
role. To achieve service continuity handover and service migration are at the center of it.

Handover

Handover is one such aspect which promotes service continuity and should be done with care.
Handover in fog computing is the ability of the fog to continuously provide the services to the
client whether they are stationary or moving from one point to another with continuous
communication without service interruption (S. Wang et al., 2018). In order to continue providing
the fog to the client, the service provider needs to figure out how the client can seamlessly
access the machines that host the fog. The main objective behind the handover mechanism is
to keep the connection between sensor nodes and a gateway with low latency (Gia et al., 2018).
It becomes a greater challenge in handover when the size of the signal messages and state
data to be transferred by fog terminals and fog stations becomes very large. This will cause an
increase in the transmission overhead which is the cost of transmitting handover messages
between two nodes. Moreover, processing overhead which is the cost of processing messages
at each node in the network is also increased. In a nutshell, increasing the sum of handover
signaling overhead delays the performance of handovers which result in compromising the
reliability aspect of fog computing. Moreover, handover can also cause huge energy
consumption (S. Wang et al., 2018). In order to address the above challenges of handover Gia
et al., discussed and analyzed the metrics for handover mechanisms based on Wi-Fi (Gia et al.,
2018). They proposed a handover mechanism that would support mobility in remote real-time
streaming IoT systems. The mechanism promoted the connection of sensor nodes and the
system whilst offering low latency. Authors in (Satria et al., 2017) suggested two Mobile Edge
Computing (MEC) recovery schemes as to avoid degrading Quality of Experience (QoE) which
is stared as a quality that is experienced by the users and is an extension of the QoS in the
event that there is overload and or broken MEC. They applied optimal algorithms for allocation
of ad-hoc relay nodes. Even though their simulation results demonstrated the mitigation of the
problem of overloaded MEC, they did not look on how to improve performance by reducing the
execution time if the system is implemented in different MEC environment in the event that
mobile devices increase dramatically. To achieve low delay performance and service continuity
in connected vehicles even when the resource is under heavy load (J. Li et al., 2017) proposed
two resource management schemes, in fog enhanced radio access networks (FeRANs) which
would prioritize real-time handover for moving vehicular services so that vehicular users can
access the services with only one hop. Simulation results proved that their proposed solution
would offer improved one-hope access achieving low delay performance.

Service migration/relocation

Service migration/relocation is also an important aspect of achieving service continuity. Service
migration is similar to handover as it focuses on the mobility of users from one area to another.
The difference is that in-service migration; the provider has to move the corresponding software

125

service from one machine to another machine in order to ensure the client to continue accessing
the service while the client is moving. This implies that when transferring data, you need to
consider time cost as it causes a greater challenge for seamless service migration. Another
problem that can be experienced in-service migration is delays because of the existence of
different network topologies between the start fog node and the destination fog server which
has different transferring latency and process cost (S. Wang et al., 2018). Follow Me Edge
(FME) concept was introduced by (Taleb et al., 2017) as to allow any time anywhere data access
as to ensure high QoE and reduced latency. The research discovered that to achieve efficient
migration of service, selecting the right combination of techniques is important. The researchers
pinpointed out that for future work, there is a need to find out which combinations will achieve
migration of services. In a bid to improve QoE in future wireless access networks, the authors
(Iotti et al., 2017) used an internet access network approach based on fog computing where
they dynamically moved content from cloud/web to nodes located at the edge of the access
network. Their work played a pivotal role in optimizing bandwidth usage, reducing latency and
enhancing QoE as validated by experimental analysis of the data collected from public Wi-Fi
hotspots.

Network Quality
Network quality is another aspect which supports reliability and it can be achieved when we
have good connectivity, low end-to-end latency, and less traffic overload.

Connectivity

Network connectivity can be defined as the average number of nodes connecting to other sets
of nodes over a certain time duration under the link condition (Chuanmeizhi et al., 2016). This
implies that when the connectivity of the network is so strong, there will be a decrease in the
probability of reconnection which is as a result of the increase of the distance. In simpler terms,
connectivity is the condition when a valid communication route between two or more nodes
exists in order to exchange data packets (Artimy, Robertson, & Phillips, 2004). If there is
connectivity failure due to several factors for example increase in distance between nodes,
decrease in density of nodes, velocity in mobility situation, etc. will result in data being lost during
those connectivity outage periods and cause some data to be delivered out of order. Due to
these connectivity outage periods, severe delays can also be experienced which compromise
time-critical application thus affecting QoS (Pérez et al., 2018). In the of vehicular networks,
(Chuanmeizhi et al., 2016) concluded that the decrease of stability of connectivity leads to a
smaller probability of reconnection of nodes especially when the communication range and
average distance becomes larger. To solve this challenge, they propose that the density of
nodes be increased in an area where there are many IoT devices as to avoid congesting the
network thus creating strong connectivity between nodes which makes a network to behave as
wired. In order to satisfy connection conditions in 5G systems, (Sampei, 2017) proposed that a
controller functionality is shifted to an edge controller which will be located close to the controlled
machine. To further enhance the flexibility of networking, network slicing and softwarization
using the software-defined network (SDN) are the other two pillars which were suggested in this
work to be included in the network. It was concluded that, it is best to make a flexible wireless
access system to support the deviation of the number of simultaneously connected devices in
enormous connections.

126

End-to-end latency

End-to-end latency which can also be called service delay is the response time (the time
required to serve a request) that is the time interval between the moment when an IoT node
sends a service request and when it receives the response for that request (Yousefpour,
Ishigaki, Gour, & Jue, 2018) is another aspect of network quality which needs attention. One of
the major causes of an end-to-end latency can be attributed to server compute time, network
flexibility in terms of transfer speeds (Chen et al., 2017), a distance of the controller (server
node) to the controlled machine (client node) (Sampei, 2017), etc. End-to-end latency is a
challenge because of different wireless network communication systems coming into play (Wi-
Fi,3G, 4G,5G, LTE-U) which does have different flexibilities. To reduce end-to-end latency and
satisfy latency conditions in the new coming 5G, Sampei (2017) proposed that the location of
controllers be near the controlled machine (Sampei, 2017). Moreover, Sampei (2017) further
suggested that network functionality in wireless access ought to be made flexible as to fulfill
end-to-end QoS requirement. Additionally, Souza et al. highlighted that another key point to note
on controllers is, they should be a reduced number of involved control elements and average
delay provided by each one of them if we are to enable low latency end-to-end communication
(Souza et al., 2017). Authors Chen et al. provided some insights on how to reduce end-to-end
latency by 60%-70% without sacrificing accuracy by introducing a novel black-box multi-
algorithm which leverages temporal locality approach (Chen et al., 2017). The two parameters
they used to measure their algorithm for an end-to-end latency was the processing and
networking time (when the frame is captured to when the corresponding response is received).
Researchers in (Yousefpour et al., 2018) introduced a general framework for IoT-fog-cloud
applications and offloading police for fog-capable devices that aims to reduce and minimize
service delay for IoT applications. In their work, Chao Wang et al. introduced CPEP middleware
for real-time cyber-physical event processing to reduce processing delay and enhance reduced
end-to-end latency(Chao et al., 2017). The works of Aral and Brandic proposed a Bayesian
Network model of QoS related parameters to predict the availability of virtual machine in edge
infrastructure (Aral & Brandic, 2017). Their work wanted to limit deteriorating response time
which is a critical factor in edge applications. Experimental results showed that the proposed
method can identify virtual machines that satisfy user-defined availability objectives with up to
94% accuracy

Traffic Overload

A traffic overload challenge happens when a communications network exceeds the maximum
finite volume of traffic it is supposed to carry. As a result, a degradation in performance will occur
which will cause latency and some delays. It has become a challenge because of the IoT
ecosystem which is generating a tremendous amount of data. As a result of that tremendous
amount of data, it becomes difficult to transverse data over the network. This is a serious issue
which affects network quality. A novel deep learning-based traffic flow prediction method was
proposed by (Lv et al., 2015) which predicted the traffic flow and helped to prevent traffic
overload which affected network and QoS. Fan and Ansari proposed a LoAd Balancing(LAB)
scheme which allowed load balancing among the base stations in the event that the traffic load
of the network is heavier than the computing load of the network (Fan & Ansari, 2018). Their
findings demonstrated that LAB can perform better compared to the ά-distributed algorithm and
best Signal Interference Noise Ratio (SINR) algorithm.

127

The above work can be summarized in Table 2 which highlights the QoS parameters being
addressed in each paper

Table 2: Summary of QoS parameters addressed under reliability

 Service continuity Network quality

 Handover Service
migration

Connectivity End-to-
end
latency

Traffic
overload

(Satria et al., 2017) TD

(Gia et al., 2018) TD; AB

(J. Li et al., 2017) TD; AB

(Taleb et al., 2017) TD; AB

(Iotti et al., 2017) AB; TP

(Artimy et al., 2004) AB; TD; TP

(C. Wang et al., 2016) TD

(Sampei, 2017) AB TD

(Pérez et al., 2018) TP

(Aral & Brandic, 2017) AB,TD,TP

(Souza et al., 2017) TD; TP

(Chen et al., 2017) TD

(Yousefpour et al., 2018) TD

(Lv et al., 2015) PO

(Fan & Ansari, 2018) PO

TD = Transit delay AB = Availability TP = Throughput PO = Priority

Performance

In order to have the best application and or task performance and service performance in fog
computing, there is a need to handle the following in a cautious way.

Application/Task performance
The three pillars to achieve effective and efficient application/task performance are lowering
task/application execution latency, improve task/application allocation and improve
task/application scheduling.

Task/Application execution latency

Task execution latency is the total duration of transmission of a task from the IoT devices to the
fog/edge servers, queuing and processing at the fog servers and its return with a successful
reception at the IoT devices (Dao et al., 2018). The greater the task execution latency, the poorer
the performance of that system. Reducing task execution latency is the key to achieve good
performance. QoS and QoE are seriously affected by execution latency as it generally lowers
the performance which affects task response time. Therefore, when you want to reduce task
execution delay in the mobile edge network, it is wise to consider user mobility, task properties,

128

and network constraint. Wang et al proposed a light weight heuristic algorithm solution which
provided accurate delay estimation (fast scheduling) to support accurate offloading decisions
on mobile devices(Z. Wang et al., 2018). In their findings through simulation experiments to test
for performance, it was noted that end-to-end delay for MEC can be reduced significantly
through task execution delay which leads to an increase in resource utilization. Researchers in
(Chowdhury et al., 2018) improved the task execution latency when they implemented the
context-aware task migration scheme for HART-centric task execution in fiber-wireless (FiWi)
based Tactile Internet infrastructures. Apart from selecting suitable cobot and collaborative node
for HART-centric task execution, their approach would also migrate a task from one
collaborative node to another. Based on their findings, the proposed task migration scheme
proved without reasonable doubt that it is suited to provide low-latency performance for
emerging Tactile Internet applications. A pattern-identified online scheduling task (PIOTS)
mechanism was introduced by (Dao et al., 2018) to help assign task as a way to address task
processing latency and service capabilities challenges as to satisfy industrial IoT applications.
To achieve its goal, PIOTS scheme uses SOM technology to identify a task, then assigns the
task to appropriate ECE by using Hungarian method. Thus deliberating on real-time task
assignment.

Task/Application allocation

Task or application allocation is whereby a task or application is assigned to a fog server/node
and the cloud server depending on the task requirement. Assigning a task to a server/node that
meets its requirements helps in processing the task without delays. This helps in meeting user
QoS requirements, reduces latency and facilitates quick response time. In such an environment
where there are heterogeneous and autonomous devices, there is a need to have low
complexity algorithms that help for efficient task allocation among nearby device. However, to
come up with such low complexity algorithm is inherently a challenging problem which requires
serious attention so as to fulfill user QoS requirements on task allocation (Dana Jošilo & Dán,
2018).

Task/Application scheduling

Task scheduling is the ability to schedule a task to fog nodes that will execute a task at the
shortest time. This is achieved when a task is scheduled to a node with high computational
power. The objective is to satisfy the user QoS requirements and to improve the fog computing
throughput. Failing to select appropriate resources for the application task is referred to as task
scheduling problem in fog environment. (L. Liu et al., 2018). Neil et al proposed a resource
allocation strategy for fog computing using Priced Timed Petri Nets (PTPN) which helped to
utilize and link both cloud and fog resources. Their approach helped to improve efficiency of
resource utilization, satisfy user QoS requirements and maximize the profit of both providers
and users which has become a big challenge. Priced Timed Petri Nets technologies allowed the
user to choose the satisfying resources autonomously from a group of pre-allocated resources.
Based on the results, the authors concluded that their approach can achieve more efficiency
when compared to static allocation strategies based on task completion time and price. The
work of (Xiao & Krunz, 2017) proposed a novel offload forwarding strategy where fog nodes
would either not offload; offload and forward part or its entire load so that it will be processed by
other local fog nodes which are idle and have better computational power than them. This
strategy helped to minimize the average response time which included workload transmission
time and queuing delay at the fog layer and significantly improved the performance of fog
computing network, thus improving Quality of Experience (QoE) of users. The researchers

129

validated their approach using traditional Alternating Direction Method of Multipliers (ADMM)
approach which proved that it cannot be used to solve the offload allocation problem for fog
computing. However, their work used fewer nodes and did not pay attention to time-critical
events which call for further experimental trials to check how it will perform in such a scenario.

Service Performance
Service means the fog service. Not the physical machine, neither the application that runs on
the fog server. A fog service can be a Virtual Machine service or a Docker container service that
allows the client to deploy application/task on it. Service performance can be achieved by
physical fog node placement, load balancing, service/resource scheduling, and service
allocation/placement.

Physical fog node placement

Where to place the physical equipment/machine that provides the fog is an important factor in-
service performance. The greater the distance of fog nodes to the machines/ devices it wants
to serve, the lesser the service performance and this will have a negative effect on QoS. If fog
node placement problem is not handled carefully, it means service performance will be affected
causing more task processing delays. The work of (Yao et al., 2017) acknowledges the
importance of fog computing which pushes the network resources closer to the user in
addressing QoS. The authors proposed that the cloudlet servers should be deployed on a given
set of access points where users randomly roam among them with known statistics. However,
they reasoned that fog computing cannot be used alone in supporting mobile computing task
considering the fact that cloudlet servers are heterogeneous (have different resource
capacities). To support the physical placement of access points and computational complexities,
they further propose and devised a low-complexity heuristic greedy in principle algorithm with
polynomial-time complexity and applied the Barabasi-Albert Model to generate random
networks. Experimental results proved the efficiency of their algorithm as it addresses the
heterogeneous problem of cloudlets in fulfilling predetermined QoS.

Load balancing

Load balancing goal is to distribute efficiently and fairly the dynamic workload across multiple
nodes to ensure that no single node is overwhelmed. It is very important to do load balancing
as it helps in optimal utilization of resources, reduces energy consumption, enabling scalability,
avoiding bottleneck and over-provisioning and reducing response time. Additionally, in case of
service fail, load balancing helps in continuation of the service by provisioning and de-
provisioning of instances of the application without fail thus implementing fail-over (Jain Kansal
& Chana, 2012). It can be noted that the above-highlighted advantages of load balancing
enhance the performance of the system. According to (Neto, Callou, & Aires, 2017) load
balancing comes with many issues related to QoS, security, and networking which are a cause
of concern in fog computing and if not handled carefully, they negate the advantages of
implementing fog computing. After the realization that fog computing face challenges such as
multi-tenacy optimization and load balancing, (Neto et al., 2017) introduced a Multi-tenant Load
Distribution Algorithm for Fog environments (MtLDF). This helped to optimize the load balancing
in fogs environments considering specific multi-tenancy requirements (delay and priority).
Authors in (X. He, Ren, Shi, & Fang, 2016) developed novel SDN-based modified constrained
optimization particle swarm optimization (MPSO-CO) centralized load balancing algorithm
which helped to balance workload between cloud/fog devices. This approach helped in reducing
task processing latency challenges which affect latency-sensitive services on the Internet of

130

Vehicle (IoV). Their simulation results showed a decrease in latency and enhanced QoS which
assisted in the latency-sensitive task. In their future work, they reiterated the need to do research
in other load balancing algorithm and also look at other aspects of QoS such as security,
capacity, etc.

Service/resource scheduling

Resource scheduling is one major issue of fog computing, the scheduling policy and algorithms
affect the performance of fog computing directly. Resource scheduling is to provide an optical
mapping that assigns a required task or virtual resources onto available fog (or physical)
resources at a specific time (Zhan et al., 2015). Resource scheduling should involve managing
and scheduling fog resources and the taxonomy should consist of basically three categories
that are scheduling in the application layer, scheduling in the virtualization layer, and scheduling
in the edge layer. Most scheduling problems consist of four basic elements that are resources,
task, objective (things that need to be fulfilled) and constraints. It is very important to address
resource scheduling problem because there are cases where two tasks may have to share one
resource. In doing resource scheduling in fog computing, the main objective will be to minimize
service latency. However, it is noted that resource scheduling in fog computing is affected by
other delay components such as transmission delay, queuing/networking delay, processing
time, dependency constraints and resource queues which is a problem which requires serious
attention as to minimize service latency in fog computing and promote improved QoS. Two-
stage Stackelberg game approach and two computation offloading algorithm which assisted in
offloading computation from cloud to local fog servers which are available at the edge was
introduced by (Y. Liu et al., 2017).In their work, the fog servers would join the network and leave
dynamically. This approach helped to offer low delay and reduced complexity thus providing
satisfied QoS. Critically analyzing their base which they used to draw a conclusion, it can be
noted that the authors validated their results using theoretical analysis which cannot be a
standing measure. As such, there is a need to test this approach using other experimental
means.

Service allocation/ placement

Service placement objective is to place each service either on a fog cell/ virtualized fog resource
while taking into consideration factors like QoS guided by limitations like deadlines on the
execution time of applications. It is important to allocate service to a resource that suits user
QoS requirements to minimize execution delays which affect response time. The key principle
guiding service placement in fog computing is to maximize the utilization of fog landscape and
adhere to the QoS expectations of the application (Skarlat et al., 2017b). Failing to do service
placement will affect execution time resulting in some delays which affect the QoS requirement.
With the same motive of addressing the challenge of fog service placement, (Skarlat et al.,
2016a) proposed a conceptual framework for fog resource leasing and releasing (provisioning).
The envisioned architecture was evaluated using a customized simulation. It was observed that
the approach decreased task request delays by 39%. In a bid to address some shortfalls
highlighted above, authors (Skarlat et al, 2017b) implemented the system in iFogSim testbed
as to solve the fog Service Placement Problem (FSPP) whilst considering the heterogeneity of
applications and resources in terms of QoS attributes. They introduced a generic algorithm
which assisted in reducing network communication delays and promoted a better utilization of
fog resources. Simulation results showed an improvement in service placement plan produced
by the genetic algorithm, greedy first-fit heuristic, and an exact optimization method. Being

131

motivated to investigate the optimal placement of cloudlets and with the motive to combat highly
dynamic traffic loads of mobile IoT device which cause access delays (affecting QoS) and in
addition addressing the challenge caused by heterogeneous infrastructure among IoT networks
(Zhao et al., 2018) applied a ranking-based near-optical placement algorithm (RNOPA) which
is an improved version of EOPA which was able to dynamically adapt to mobile IoT and their
traffic loads. Their experimental and extensive simulation results showed improvement both in
average cloudlet access delay and reliability when using RNOPA compared to Kmedians
Clustering algorithm. However, in their work, they did not look at latency and stability when
offloading tasks from the overloaded access point to a remote cloud.

The above work can be summarized in Table 3 which highlights the QoS parameters being
addressed in each paper

132

Table 3: Summary of QoS parameters addressed under performance

 Task Performance Service Performance

 Task
Execution
latency

Task
allocation

Task
Scheduling

Physical
fog node
placement

Load
balancing

Resource
Scheduling

Service
Allocation

(C. Wang et al., 2016a,) TD; PO

(Z. Wang et al., 2018b) TP; TD AB

(Chowdhury et al., 2018) TD;TP AB; PO

(Dao et al., 2018) TD AB; PO; TD

(Song et al., 2017) TD; TP

(Ni, Zhang, & Yu, 2018) AB; TD; TP

(Xiao & Krunz, 2017) AB; TP

(Rashidi & Sharifian, 2017) AB;TD,TP

(Shen et al., 2015) AB; TD; TP

(K. Wang & Yang, 2017) TP

(Alsaffar et al., 2017) TD; TP

(Pham et al., 2017) TD; TP

(G. Li et al., 2018) AB; TD

(Mahmud et al., 2016) TD; TP; PR

(Yao et al., 2017) TD

(Neto et al., 2017) TD; PO

(X. He et al., 2016) TD; TP

(Y. Liu et al., 2017) AB;TD;TP

(Skarlat et al., 2016) AB; TD;TP TP

(Taneja & Davy, 2017) PO; TD

(Skarlat et al., 2017a) PO; TD

(Skarlat et al., 2017b) TP

(Zhao et al., 2018) TD

(Y. He et al., 2018) TD; TP

(Yang et al., 2018) AV; PO

(Kiani & Ansari, 2018) TD,TP

TD = Transit delay AB = Availability TP = Throughput PO = Priority

133

Cost

The main reason for implementing fog computing to support cloud computing is to
reduce the total cost because using cloud servers was now becoming expensive. To
achieve that there is need to deal with energy efficiency, server operational cost, and
pricing of using fog services.

Energy efficiency
Power efficiency is a measure of the amount of power spend by a node when doing
specific tasks like processing, execution, offloading, etc. Because power utilization is
a critical aspect of fog computing, it is vital that fog nodes maximize power efficiency
by reducing the power consumed when processing the workload. It should be noted it
is not only hardware efficiency that determines energy consumption, but factors such
as resource management system that are deployed on the infrastructure play a role
not forgetting the efficiency of the applications running in the systems. The total
amount of power consumed by a node determines its effectiveness. the users’ QoE
and fog nodes’ power efficiency are closely related to each other. The ability of a fog
node to use less energy (power) even if it is given more workload to process plays a
great role in achieving QoE as most IoT and fog nodes do not have bigger power
reserves. Performance growth is also limited when there is higher energy consumption
in fog computing systems as a result of carbon dioxide footprints and huge electricity
bills. Therefore, it is a mandate to see to it that there is minimized power and energy
consumption to minimize cost so as to improve the profits of using fog computing. End
users are affected when there is no energy efficiency because more total cost will be
incurred as a result of resource usage cost which is incurred by the resource provider
(Beloglazov et al., 2011). The works of (Chowdhury et al., 2018) (Xiao & Krunz, 2017)
(Shen et al., 2015) (K. Wang & Yang, 2017) implemented several strategies in
addressing the energy efficiency challenge whilst addressing other QoS aspect as
highlighted above. The works of (Kiani & Ansari, 2018) who introduced Non-
Orthogonal Multiple Access (NOMA) optimized framework which is an edge-aware
technique directly dealt with energy efficiency as its main objective as to reduce MEC
users’ uplink energy consumption. The NOMA minimized energy consumption by
optimizing the user transmit powers, clustering and computing and communication
resource allocation. Additionally, an efficient heuristic algorithm for user clustering was
introduced for power control to be solved independently per NOMA cluster. Their
results proved that the NOMA scheme can lower energy consumption.

Server operation cost
It is important to always minimize the server operational cost without compromising
service performance. However, in a bid to reduce server operational cost by reducing
e.g the number of fog layer nodes still faces challenges in dynamically supporting low
latency services. Subsequently, the reduction of fog servers within the vicinity of the
IoT devices to provide more computational resources in a bid to lower server
operational cost will also lead to users’ tasks accumulating resulting in the violation of
the required service response time(Yang et al., 2018). It is still a problem to reduce
server operational cost without compromising user QoS requirements. Researchers in
(Yang et al., 2018) introduced a novel dynamic resource allocation framework in an
effort to incur minimum operational cost whilst satisfying the applications’ latency
requirements. Their results ensure that the MEC service response was minimized

134

while achieving up to 33% operational cost reduction when compared to the fixed-
location practices. Their approach did not consider the cost when there is a need to
migrate from user-to MEC assignments

Pricing of using fog services
Customers who want to use computing resources from fog services are charged based
on the number of virtual machines and hours of usage (Pham et al., 2017). It is also
important to reduce the use cost if the fog has been in a long-term idle state or when
it is assigned less task as to enable the user to be assigned to the resource that meets
the requirement (Ni et al., 2018). The higher the pricing of using the fog service the
less the task that is assigned to the resource and as a result the resource become
long-term idle resulting in wasting resources.

The above work can be summarized in Table 4 which highlights the QoS parameters
being addressed in each paper

Table 4 Summary of QoS parameters addressed under cost

 Cost

 Energy efficient Server
operation

cost

Pricing of
using fog
services

(Shen et al., 2015) AB; TD; TP;

(Xiao & Krunz, 2017) AB; TP

(Alsaffar et al., 2017) TD; TP

(K. Wang & Yang, 2017) TP

(Chowdhury et al., 2018) AB; PO; TD;TP;

(Neto et al., 2017) TD; PO

(Pham et al., 2017) TD; TP

(Ni et al., 2018) AB; TD; TP

TD = Transit delay AB = Availability TP = Throughput PO = Priority

Open Challenges

As a recap and as supported by (Nath et al., 2018), QoS is achieved when there is
reliability, low energy consumption, no or very minimum acceptable delay insensitive
services, quality of experience for end-users and good network caching. Given these
points, fog computing has played a pivotal role since its existence as evidenced in the
above literature. Be that as it may, the ever increase in numerous dispersed devices
which generate a huge amount of data that requires efficient processing opens another
plethora and paused several open challenges. These challenges should be addressed
through the designing of a deployable system over fog computing if we are to
unceasingly benefit from fog computing advantages of offering in particular low
latency, improved QoS among other benefits. Some of the open related challenges
that affect QoS can be categorized as computing-related, management related,
network and device-related challenges not to mention other general open challenges
which include security-related challenges. In this section, our main focus will be to
highlight open challenges that affect the QoS of fog computing as highlighted in the
reviewed literature above.

135

Orchestration (Cloud-Fog) Challenge
It must be remembered that fog computing was not introduced to replace cloud
computing but to assist in bringing some computational power to the ground. This will
lead to transmission and processing of data to be done in close proximity with the
devices. This assisted in addressing latency and QoS among other challenges faced
when transmitting and processing data to the cloud. With this in mind, there is a need
to continuously maintain and or developing effective and efficient orchestration
mechanisms between cloud and fog. As highlighted in the literature, cloud-fog
orchestration can cause other various open research challenges and if not handled
carefully they can cause more delays hence affecting QoS.

Service or Tasks Partitioning

One such open research in this regard is to come up with an efficient and effective
alternative for services or tasks partitioning between cloud and fog nodes. The solution
should be centered on the idea of resources estimation, partitioning of task established
on the availability of the resource at fog nodes in relation to the expected task
completion and task response time. Moreover, optimal placement of sub-tasks should
be done at various fog nodes and to the cloud. The works that have been done to
address this challenge are application-specific and does not fully address fog
computing challenges. As such, there is need to come up with a generalized solution
that addresses the task partitioning problem in fog computing. The task migration
solution to be developed should promote offloading from cloud to fog and fog to cloud
with better response time and a high degree of accuracy without compromising QoS.
Coming up with such a fog computing framework which supports the above-
highlighted points especially requires deep and thorough research. Equally important,
multi-domain orchestration should receive attention because failure to do so will
become difficult to maintain resource allocation in multi-domain systems which are
guided by heterogeneous policies. This is so because of the distributed nature of the
fog nodes.

Enforcing Semantics in Fog Computing

In the context of the IoT environment, fog computing ecosystem is made up of several
edge devices, actuators, heterogeneous sensors, cloud servers. In such a setup, it
becomes a challenge to offer meaningful actions to perform the application. Without
defining the action to be taken on an application, a device, sensor, actuator or servers
can have a different service action to the same application which results in conflict and
in-turn affect QoS. Therefore, enforcing semantics in fog computing by ensuring
correct service in the workflow of the application is of paramount importance to achieve
the end goal and avoid conflicting actions. Even though in literature there exist works
that enforce semantics, unfortunately, they cannot be applied in fog computing due to
the dynamic resource availability at each fog node and the role of clouds needs to be
defined since fog is a partially distributed system. All these aspects need to be looked
at as they affect QoS with respect to fog computing scenarios. Additionally, interaction
among fog devices should be taken care of so that these interactions do not affect the
overall system in generating the response in a short space of time as to avoid
promoting response delays, especially in time-critical applications. This is because fog
nodes always depend on one another when they are doing the task

136

Computing Challenge
Albeit, virtualization concept has played a pivotal role in fog computing in promoting
effective resource allocation as to support orchestration of application services, there
are several challenges that have arisen which need to be addressed so as to support
virtualization architecture at the fog layer. Even though there are works which were
done, most of them are not meeting the container resource allocation or VM
characteristics for fog devices as highlighted in (Nath et al., 2018). Thus creating a
research gap in container resource allocation or VM, which prompt for efforts of
coming up with a solution that will properly execute some tasks in a manner that
support time-synchronization. Furthermore, container migration or VM has opened
other research gap as it should make the system fault-tolerant and fail-safe. Even
though (Bittencourt et al., 2016) tried to address that, the proposed architecture did
not cogitate service dependability as it initiates the migration which is an important
factor to consider. Since fog computing is resource-constrained, virtualization should
be lightweight. Because of that, several research challenges have risen which
advocate for optimization frameworks that support the optimal placement, fog devices
resource availability, the response time for a specific placement, container initialization
delay and result aggregation

Management Challenges

As pinpointed in previous sections that fog devices are resource-constrained, it is of
paramount importance that the resources are properly distributed or else QoS will not
be met. This opens other research directions in this regard.

Resource Estimation and Allocation in Fog Nodes

Comparatively, to ensure fairness and QoS when doing resource allocation has
become another research challenge in resource management at fog devices. Fairness
in resource allocation will help in meeting the end-users QoS requirements. As such
other application that requires real-time response has to be given high priority in
assessing bandwidth as compared to those that are not time-critical. Even though
there are some works done, in their future work they recommended the need to come
up with a universal framework that is not domain-specific. It is a mammoth task to
come up with a general framework that ensures fairness with service differentiation
and QoS. As such, for fog based systems especially with the incoming of IoT becomes
a challenging problem.

Management of Network Resources in Fog

Equally important is the management of network resources in fog especially in
ensuring the correct network connectivity among the resources. Failure to provide an
effective and efficient network resource management middleware will result in network
congestion which in turn delay in response time hence affecting QoS. Even though
Software Defined Networking (SDN) technologies have been implemented as to
control resource in the fog based systems, there is still need for more work to be done
since management of network resources is still a challenging task in a fog computing
context.

137

CONCLUSION

With the dream of living in a “smart” world where IoT becomes the driving force of that
world, many aspects in computing need many changes as to get a real-time response
from every gadget as to provide quality of experience and quality of service for end-
users. In such an ecosystem, minimizing response delays and providing a high quality
of service plays a pivotal role. Fog computing technology has offered handshaking for
the QoS for cloud, minimized latency thus supporting time-critical events and ushered
better QoS for users. This survey explored works in the literature which implemented
fog computing in existing systems to offer QoS, then further went on to look at works
done with the intention of improving QoS in fog computing. All things considered and
grounding our conclusion based on this current survey, it can be noted that fog
computing can be the pillar in offering better QoS in geographical distributed IoT
devices. Without any reasonable doubt, more work still needs to be done with the main
intention of improving QoS in fog computing if we are to continuously benefit from fog
computing as highlighted on the open challenges.

138

REFERENCES

Albishi, S., Soh, B., Ullah, A., & Algarni, F. (2017). Challenges and Solutions for
Applications and Technologies in the Internet of Things. In Procedia Computer
Science (Vol. 124, Dec, pp. 608–614).

Albishi, Saad, Soh, B., Ullah, A., & Algarni, F. (2017). Challenges and Solutions for
Applications and Technologies in the Internet of Things. In Procedia Computer
Science (Vol. 124,Dec, pp. 608–614).

Alsaffar, A. A., Hung, P. P., Huh, E., & Korea, S. (2017). An Architecture of Thin
Client-Edge Computing Collaboration for Data Distribution and Resource
Allocation in Cloud, (November).

Aral, A., & Brandic, I. (2017). Quality of Service Channelling for Latency Sensitive
Edge Applications. Proceedings - 2017 IEEE 1st International Conference on
Edge Computing, EDGE 2017, (11 September), 166–173.
https://doi.org/10.1109/IEEE.EDGE.2017.30

Artimy, M. M., Robertson, W., & Phillips, W. J. (2004). Connectivity in Inter-Vehicle
Ad Hoc Networks. Ccece 2004, May.
https://doi.org/10.1109/CCECE.2004.1345014

Atlam, H. F., Walters, R. J., & Wills, G. B. (2018). Fog Computing and the Internet of
Things: A Review. Big Data and Cognitive Computing, 10(April 2018).

Beloglazov, A., Buyya, R., Lee, Y. C., & Zomaya, A. (2011). A Taxonomy and Survey
of Energy-Efficient Data Centers and Cloud Computing Systems. Advances in
Computers (Vol. 82).

Bittencourt, L. F., Lopes, M. M., Petri, I., & Rana, O. F. (2016). Towards Virtual
Machine Migration in Fog Computing. Proceedings - 2015 10th International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 3PGCIC
2015, (03 March), 1–8.

Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog Computing and Its Role in
the Internet of Things. Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, (August 17, 2012), 13–16.

Capossele, A. T., Cervo, V., Petrioli, C., & Spenza, D. (2016). Counteracting denial-
of-sleep attacks in wake-up-radio-based sensing systems. In 2016 13th Annual
IEEE International Conference on Sensing, Communication, and Networking,
SECON 2016 (p. 03 November 2016).

Chen, Z., Klatzky, R., Siewiorek, D., Satyanarayanan, M., Hu, W., Wang, J., … Pillai,
P. (2017). An empirical study of latency in an emerging class of edge computing
applications for wearable cognitive assistance. Proceedings of the Second
ACM/IEEE Symposium on Edge Computing - SEC ’17, October, 1–14.

Chowdhury, M., … E. S.-I. T. on, & 2018, U. (2018). Context-Aware Task Migration
for HART-Centric Collaboration over FiWi Based Tactile Internet Infrastructures.
Ieeexplore.Ieee.Org, 29, June(6), 1231–1246. Retrieved from

Cisco. (2014). Quality of Service Overview. Cisco IOS Quality of Service Solutions
Configuration Guide, (January 30), 18.

Dana Jošilo, S. ¯, & Dán, G. (2018). Decentralized Algorithm for Randomized Task
Allocation in Fog Computing Systems, 18 May.

Dao, N.-N., Vu, D.-N., Lee, Y., Cho, S., Cho, C., & Kim, H. (2018). Pattern-Identified
Online Task Scheduling in Multitier Edge Computing for Industrial IoT Services.
Mobile Information Systems, 2018, 04 A.

Dastjerdi, A. V., & Buyya, R. (2016). Fog Computing: Helping the Internet of Things
Realize Its Potential. Computer, 49(8, August), 112–116.

Ericsson. (2011). More Than 50 Billion Connected Devices. White Paper, (February),

139

1–12.
Fan, Q., & Ansari, N. (2018). Towards Workload Balancing in Fog Computing

Empowered IoT. IEEE Transactions on Network Science and Engineering.
Gia, T. N., Rahmani, A. M., Westerlund, T., Liljeberg, P., & Tenhunen, H. (2018).

Fog computing approach for mobility support in internet-of-things systems. IEEE
Access, 6(June), 36064–36082.

He, X., Ren, Z., Shi, C., & Fang, J. (2016). A novel load balancing strategy of
software-defined cloud/fog networking in the Internet of Vehicles. China
Communications, 13, 140–149.

He, Y., Zhao, N., & Yin, H. (2018). Integrated networking, caching, and computing for
connected vehicles: A deep reinforcement learning approach. IEEE
Transactions on Vehicular Technology, 67-January(1), 44–55.
https://doi.org/10.1109/TVT.2017.2760281

Iorga, M., Martin, M. J., & Feldman, L. (2018). Fog Computing Conceptual Model
NIST Special Publication 500-325, (14 March).

Iotti, N., Picone, M., Cirani, S., & Ferrari, G. (2017). Improving Quality of Experience
in Future Wireless Access Networks through Fog Computing. IEEE Internet
Computing, 21-March/(2), 26–33.

Jain Kansal, N., & Chana, I. (2012). Cloud Load Balancing Techniques : A Step
Towards Green Computing. IJCSI International Journal of Computer Science
Issues, Vol. 9, Ja(Issue 1), 238–246.

Kiani, A., & Ansari, N. (2018). Edge Computing Aware NOMA for 5G Networks. IEEE
Internet of Things Journal, 5-April(2), 1299–1306.
https://doi.org/10.1109/JIOT.2018.2796542

Li, C., Xue, Y., Wang, J., Zhang, W., & Li, T. A. O. (2018). Edge-Oriented Computing
Paradigms : A Survey on Architecture Design and System Management, 51(2,
June 02 2018).

Li, G., Song, J., Wu, J., & Wang, J. (2018). Method of Resource Estimation Based
on QoS in Edge Computing, 2018(December 31).

Li, J., Natalino, C., Van Dung, P., Wosinska, L., & Chen, J. (2017). Resource
Management in Fog-Enhanced Radio Access Network to Support Real-Time
Vehicular Services. In Proceedings - 2017 IEEE 1st International Conference on
Fog and Edge Computing, ICFEC 2017 (pp. 68–74).

Liu, L., Qi, D., Zhou, N., & Wu, Y. (2018). A Task Scheduling Algorithm Based on
Classification Mining in Fog Computing Environment. Wireless Communications
and Mobile Computing, 2018august.

Liu, Y., Xu, C., Zhan, Y., Liu, Z., Guan, J., & Zhang, H. (2017). Incentive mechanism
for computation offloading using edge computing: A Stackelberg game
approach. Computer Networks, 129(December 24), 399–409.

Lv, Y., Duan, Y., Kang, W., Li, Z., & Wang, F. Y. (2015). Traffic Flow Prediction with
Big Data: A Deep Learning Approach. IEEE Transactions on Intelligent
Transportation Systems, 16(April 2015).

Mahmud, M. R., Afrin, M., Razzaque, M. A., Hassan, M. M., Alelaiwi, A., & Alrubaian,
M. (2016). Maximizing quality of experience through context-aware mobile
application scheduling in cloudlet infrastructure. Software - Practice and
Experience, 46(11, 29 December), 1525–1545.

Nath, S. B., Gupta, H., Chakraborty, S., & Ghosh, S. K. (2018). A Survey of Fog
Computing and Communication: Current Researches and Future Directions,
(arXiv:1804.04365v1 [cs.NI] 12 Apr 2018), 1–47.

Neto, E. C. P., Callou, G., & Aires, F. (2017). An algorithm to optimise the load

140

distribution of fog environments. 2017 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), (01 December), 1292–1297.
https://doi.org/10.1109/SMC.2017.8122791

Ni, L., Zhang, J., & Yu, J. (2018). Priced timed petri nets based resource allocation
strategy for fog computing. In Proceedings - 2016 International Conference on
Identification, Information and Knowledge in the Internet of Things, IIKI 2016
(Vol. 2018-Janua, pp. 39–44).

OpenFog Consortium Architecture Working Group. (2017). 12 - OpenFog Reference
Architecture for Fog Computing. OpenFogConsortium, (February), 1–162.

Osanaiye, O., Chen, S., Yan, Z., Lu, R., Choo, K. K. R., & Dlodlo, M. (2017). From
Cloud to Fog Computing: A Review and a Conceptual Live VM Migration
Framework. IEEE Access, 5(11 April 2017), 8284–8300.

Perera, C., Liu, C. H. I. H., Jayawardena, S., & Chen, M. (2014). A Survey on
Internet of Things From Industrial Market Perspective. IEEE Access, 2(January
26,), 1660–1679.

Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Context aware
computing for the internet of things: A survey. IEEE Communications Surveys
and Tutorials, 16(1, 03 May), 414–454.

Pérez, J. L., Gutierrez-Torre, A., Berral, J. L., & Carrera, D. (2018). A resilient and
distributed near real-time traffic forecasting application for Fog computing
environments. Future Generation Computer Systems, 87, Octobe.

Pham, X. Q., Man, N. D., Tri, N. D. T., Thai, N. Q., & Huh, E. N. (2017). A cost- and
performance-effective approach for task scheduling based on collaboration
between cloud and fog computing. International Journal of Distributed Sensor
Networks, 13-11 Oct(11).

Rashidi, S., & Sharifian, S. (2017). Cloudlet dynamic server selection policy for
mobile task off-loading in mobile cloud computing using soft computing
techniques. Journal of Supercomputing, 73(9, February), 3796–3820.
https://doi.org/10.1007/s11227-017-1983-0

Sampei, S. (2017). Development of wireless access and flexible networking
technologies for 5G cellular systems. IEICE Transactions on Communications,
E100B(8, August 8), 1174–1180.

Satria, D., Park, D., & Jo, M. (2017). Recovery for overloaded mobile edge
computing. Future Generation Computer Systems, 70(14 July 2016), 138–147.

Shen, H., Bai, G., Ma, D., Zhao, L., & Tang, Z. (2015). C2EM: cloud-assisted
complex event monitoring in wireless multimedia sensor networks. Eurasip
Journal on Wireless Communications and Networking, 2015(1, April).

Simonet, A., Lebre, A., & Orgerie, A. C. (2016). Deploying distributed cloud
infrastructures: Who and at what cost? In Proceedings - 2016 IEEE International
Conference on Cloud Engineering Workshops, IC2EW 2016 (pp. 178-183,04
August 2016).

Skarlat, O., Nardelli, M., Schulte, S., Borkowski, M., & Leitner, P. (2017). Optimized
IoT service placement in the fog. Service Oriented Computing and Applications,
11(4, October 04), 427–443.

Skarlat, O., Nardelli, M., Schulte, S., & Dustdar, S. (2017). Towards QoS-Aware Fog
Service Placement. Proceedings - 2017 IEEE 1st International Conference on
Fog and Edge Computing, ICFEC 2017, (24 August), 89–96.
https://doi.org/10.1109/ICFEC.2017.12

Skarlat, O., Schulte, S., Borkowski, M., & Leitner, P. (2016). Resource provisioning
for IoT services in the fog. Proceedings - 2016 IEEE 9th International

141

Conference on Service-Oriented Computing and Applications, SOCA 2016, (26
December 2016), 32–39.

Song, Y., Yau, S. S., Yu, R., Zhang, X., & Xue, G. (2017). An Approach to QoS-
based Task Distribution in Edge Computing Networks for IoT Applications.
Proceedings - 2017 IEEE 1st International Conference on Edge Computing,
EDGE 2017, (11 September), 32–39.

Souza, V. B., Gomez, A., Masip-Bruin, X., Marin-Tordera, E., & Garcia, J. (2017).
Towards a Fog-to-Cloud control topology for QoS-aware end-to-end
communication. In 2017 IEEE/ACM 25th International Symposium on Quality of
Service, IWQoS 2017.

Taleb, T., Dutta, S., Ksentini, A., Iqbal, M., & Flinck, H. (2017). Mobile edge
computing potential in making cities smarter. IEEE Communications Magazine,
55(3, March 13), 38–43.

Taneja, M., & Davy, A. (2017). Resource aware placement of IoT application
modules in Fog-Cloud Computing Paradigm. Proceedings of the IM 2017 - 2017
IFIP/IEEE International Symposium on Integrated Network and Service
Management, (24 July), 1222–1228.

Vaquero, L. M., & Rodero-Merino, L. (2014). Finding your Way in the Fog: Towards a
Comprehensive Definition of Fog Computing. ACM SIGCOMM Computer
Communication Review, 44(5, 10 October), 27–32.

Wang, Chao, Gill, C., & Lu, C. (2017). Real-time middleware for cyber-physical event
processing. 2017 IEEE/ACM 25th International Symposium on Quality of
Service, IWQoS 2017, (07 July).

Wang, Chuanmeizhi, Li, Y., Jin, D., & Chen, S. (2016). On the Serviceability of
Mobile Vehicular Cloudlets in a Large-Scale Urban Environment. IEEE
Transactions on Intelligent Transportation Systems, 17, Octobe(10), 2960–2970.

Wang, K., & Yang, K. (2017). Power-minimization computing resource allocation in
mobile cloud-radio access network. Proceedings - 2016 16th IEEE International
Conference on Computer and Information Technology, CIT 2016, 2016 6th
International Symposium on Cloud and Service Computing, IEEE SC2 2016 and
2016 International Symposium on Security and Privacy in Social Netwo, (13
March), 667–672.

Wang, S., Xu, J., Zhang, N., & Liu, Y. (2018). A Survey on Service Migration in
Mobile Edge Computing. IEEE Access, 6, 23511–23528.

Wang, Z., Zhao, Z., Min, G., Huang, X., Ni, Q., & Wang, R. (2018). User mobility
aware task assignment for Mobile Edge Computing. Future Generation
Computer Systems, 85, March, 1–8.

Xiao, Y., & Krunz, M. (2017). QoE and power efficiency tradeoff for fog computing
networks with fog node cooperation. Proceedings - IEEE INFOCOM, (May).

Xu, Y., & Helal, S. (2014). Application caching for cloud-sensor systems. In
Proceedings of the 17th ACM international conference on Modeling, analysis
and simulation of wireless and mobile systems - MSWiM ’14 (pp. 303–306,
Septemeber 21).

Yang, B., Chai, W. K., Xu, Z., Katsaros, K. V., & Pavlou, G. (2018). Cost-Efficient
NFV-Enabled Mobile Edge-Cloud for Low Latency Mobile Applications. IEEE
Transactions on Network and Service Management, 15(1), 475–488.

Yao, H., Bai, C., Xiong, M., Zeng, D., & Fu, Z. (2017). Heterogeneous cloudlet
deployment and user-cloudlet association toward cost effective fog computing.
In Concurrency Computation (Vol. 29).

Yi, S., Li, C., & Li, Q. (2015). A Survey of Fog Computing: Concepts, Applications

142

and Issues. Proceedings of the 2015 Workshop on Mobile Big Data - Mobidata
’15, (15, June 21,), 37–42.

Yousefpour, A., Ishigaki, G., Gour, R., & Jue, J. P. (2018). On Reducing IoT Service
Delay via Fog Offloading. IEEE Internet of Things Journal, 5, April(2), 998–1010.

Zhan, Z.-H., Liu, X.-F., Gong, Y.-J., Zhang, J., Chung, H. S.-H., & Li, Y. (2015).
Cloud Computing Resource Scheduling and a Survey of Its Evolutionary
Approaches. ACM Computing Surveys, 47, July(4), 1–33.

Zhao, L., Sun, W., Shi, Y., & Liu, J. (2018). Optimal Placement of Cloudlets for
Access Delay Minimization in SDN-based Internet of Things Networks. IEEE
Internet of Things Journal, 5(2, April), 1–12.

Zheng, X., Xu, L. Da, & Chai, S. (2017). QoS Recommendation in Cloud Services.
IEEE Access, 5(19 April), 5171–5177.

143

ANNEX 2

A Fog Computing Framework for Quality of Service

Optimisation in the Internet of Things (IoT)

Ecosystem

 William Tichaona Vambe

 Computer Science Department

University of Fort Hare

Alice, South Africa
wvambe@ufh.ac.za

l

Prof Khulumani Sibanda

Computer Science Department

 University of Fort Hare

Alice, South Africa
ksibanda@ufh.ac.za

Abstract—Fog computing plays a pivotal role in the Internet

of Things (IoT) ecosystem because of its ability to support delay-

sensitive tasks, bringing resources from cloud servers closer to

the “ground” to support IoT devices that are resource-

constrained. Although fog computing offers a lot of benefits such

as quick response to requests, geo-distributed data processing

and data processing in the proximity of the IoT devices, the

exponential increase of IoT devices and large volumes of data

being generated has led to a new set of challenges. One such

challenge is the allocation of resources to IoT tasks to match

their computational needs and QoS requirements whilst

meeting task deadlines. Most proposed solutions in existing

works suggest task offloading mechanisms where IoT devices

would offload their tasks randomly to the fog layer. Of course,

this helps in minimizing the communication delay, however,

most tasks would end up missing their deadlines as many delays

are experienced when fog node is deciding to process part of the

task or offloading it to the next fog node. In this paper, we

propose and introduce a Resource Allocation Scheduler (RAS)

at the IoT-Fog gateway whose goal is to decide where and when

a task is to be offloaded either to the fog layer or the cloud layer

based on their priority needs, computational needs and QoS

requirements and minimize round-trip time. The study followed

the four phases of the top-down methodology. To test the

efficiency and effectiveness of the RAS, a model was evaluated

in a simulated smart home setup. The important metrics that

were used are the queuing time, offloading time and throughput.

The results showed that RAS helps in minimizing the round-trip

time, increase throughput and improve QoS. Furthermore, the

approach addressed the starvation problem, which was

affecting low priority tasks. Most importantly, the results

provide evidence that if resource allocation and assignment are

done properly, round-trip time (queuing time and offloading

time) can be reduced and QoS can be improved in fog

computing.

Keywords—Internet of Things, Fog Computing, Quality of

Service, Resource Allocation

INTRODUCTION

With the advent of the Internet of Things (IoT), which is

creating a “smart world” and bringing about automation in

many application areas, many computing elements need

various modifications to support the IoT devices that are at

the center of the automation world. Such modifications

should support the IoT devices which are resource-

constrained while keeping in mind that latency has to be

minimized and Quality of Service (QoS) has to be improved.

As such, cloud computing was introduced to support IoT

devices in terms of resources [1]. Although cloud computing

concept dates back to the 1990s, this study found out the term

cloud computing was first used in 2006, precisely on the 9th

of August by Eric Schmidt, Chairman and CEO of Google at

the Search Engine Strategies Conference [2]. Since then,

cloud computing has been widely adopted in many businesses

for backup, file storage, cost-cutting in terms of

infrastructure, development and testing as well as investment

by cloud providers. Cloud computing has also been seen

taking a central role to support the emerging IoT technologies

in the interactions between IoT networks. However, the

exponential growth of the number of connected sensors is

becoming a challenge to cloud architecture. This is because

cloud computing is a centralized approach which makes it not

to be fully more appropriate to service geo-distributed IoT

devices. The geographical distance seriously affects how the

cloud servers and IoT devices communicate, leading to

undesirable latency challenge. Secondly, it becomes costly to

send the IoT generated tasks to and from the cloud servers as

more bandwidth is needed during the transmission. This also

negatively impacts on the latency of the requests.

Due to the above-mentioned challenges, fog computing

was introduced by Cisco in 2012, not as a substitute for cloud

computing, but to complement cloud computing [3]. Open

Fog Consortium Architecture Working Group (2017),

defined fog computing as “a system-level horizontal

architecture that distributes resources and services of

computing, storage, control and networking anywhere along

the continuum from Cloud to Things” [4]. It is made up of

both wired and wireless granular collection endpoints which

include switching equipment, routers which act as gateways

and customer premise equipment (CPE). Fog computing has

become a preferred choice because of its ability to deliver

services faster and also its ability to offer location awareness.

It is worth to reiterate that fog computing technology is not a

replacement of cloud computing but complements it by

bringing the “cloud resources closer to the ground” where IoT

devices reside [5]. As evidenced in the detailed survey done

by [6], several studies have focused on various fog computing

issues. One of the issues that is drawing much attention is

how communication and computing resources can be

allocated and assigned based on tasks requirements and

priorities. The existing solutions, as informed in literature,

indicate that resources are assigned/ offloaded based on a first

come first serve basis without considering task status

(whether a task is time-sensitive or not) and resource

requirements [6]. Some existing works focus only on the

reduction of communication delay. Despite many efforts

being done to reduce communication delay, this study found

144

out that in many proposed solutions, most time-sensitive

tasks fail to meet their deadlines. This situation can severely

affect automation. The starvation problem is another

challenge that is receiving much attention from various

researchers. Another open challenge in fog computing is to

find an effective and efficient resource allocation and

assignment mechanism that meets the needs of both time-

sensitive tasks and those that are not time-sensitive.

To address the above challenge and achieve this goal, this

study proposed and implemented a Resource Allocation

Scheduler (RAS) in the fog computing framework. RAS was

introduced at the IoT-Fog gateways and its responsibility is

to allocate and assign tasks generated by IoT devices to either

fog layer or cloud layer based on the task’s computational

needs and priority.

The remainder of this paper is organized as follows:

Section II is the related works; Section III is the description

of the proposed framework. In Section IV, the RAS

framework’s component interactions are highlighted. Section

V presents the evaluation setup. Section VI presents results

and discussion. Section VII concludes the paper.

RELATED WORK

Literature shows that several researchers have used fog

computing to minimise latency and improve QoS in existing

systems. Such work includes the work of [7], who applied

jitsi-meet and building process documentation cloud

(BPDOC) applications to promote orchestration of services

to address the QoS hindrance problem in the smart

construction domain. The work of [8] discussed the issue of

service placement in a home setup domain using a resource

allocation algorithm to optimize data distribution and

resource allocation. A two computational algorithm with low

delay and reduced complexity that uses the principle of

computation offloading in a mobile domain was used by [9]

to address service migration mobility. A Follow me Edge

(FME) concept was used by [10] in a smart city domain to

achieve efficient resource deployment as a way to address the

service migration problem. Modified Constrained

Optimization particle swarm optimization (MPSO-CO) was

applied by [11] on the Internet of Vehicles (IoV) domain to

address load balancing challenges. Author [12] suggested

combining network slicing, network softwarization, and

MEC to address challenges faced when expanding cellular

service to achieve efficient network flexibility. Power

minimization resource algorithms MC-RAN was used by

[13] in the mobile application domain to assist resource

hungry and computational limited devices so that they will be

able to dynamically compute resource allocation. The work

of [14] devised a method of resource estimation. It was based

on QoS in Edge computing, which used multi-attribute QoS

resource matching algorithm and regression Markov

prediction method to forecast available resources, select the

suitable resource to meet the needs of users. Thus, reducing

unnecessary competition for the resource, which improves

QoS. The researchers in [15] argued that QoS is not only

affected by data transmission factors but also processing

delays in fog nodes. To address the end-to-end delay in fog

computing, [15] introduced a service-oriented control that

would allow control as a service (CaaS) in the fog to cloud

topology. Fog Resource Reservation (FRR) and Fog

Reallocation (FRL) strategies were introduced by [16] in fog

computing after the realization that fog nodes have limited

resources when it comes to processing power. As such, they

can quickly become overloaded when large amounts of users’

requests arrive during peak hours, resulting in processing

delays that will in-turn affect QoS. In [17], offload

forwarding strategy was introduced to address service

migration challenges in fog computing networks. A fog node

would either not offload or offload and forward part or its

entire load to be processed by other local fog nodes that are

idle and have better computational power than it has. Task

distribution algorithm, which was based on initialization,

relaxation, rounding, and validation, was introduced by [18]

to address the service migration problem in fog computing

that affected QoS. [19] designed a novel Fog Service

Placement Problem (FSPP) method that would facilitate

optimal sharing of resources.

Although several related works tried to address QoS

issues in IoT ecosystems, the challenge that remains is to be

able to allocate and offload tasks to the resources that suit

their computational needs and fulfil their QoS requirements.

Moreover, to the resources that suit their deadline needs while

minimizing roundtrip time [6]. Some researchers have made

efforts to solve this challenge. For example, [20] and [21]

have investigated and suggested ways on how to address the

problem of task allocation and offloading. The latest research

by [22] and [23] suggested offloading tasks to nearby fog

nodes or cloud servers.

 It is worth pointing out that all these works have one thing

in common, the decision is made in the fog nodes to either

process the whole tasks, part of the task or offload to the next

fog node. This clearly shows that when tasks are sent to the

fog layer, deadline requirements of tasks would not have been

considered. Deadline requirements play a pivotal role when

considering time-sensitive tasks as they require to be

processed at a specific time frame. Failure to meet deadlines

implies that if the outcome of the task comes after the

stipulated time, it becomes useless. This can be detrimental

in critical applications like medical health applications.

Hence this study proposed a solution that would help tasks

meet their deadlines by minimizing round-trip delays and

addressing the starvation problem. The solution of this study

introduced a Resource Allocation Scheduler (RAS) in the

IoT-Fog gateways that is responsible for resource allocation

giving high priority to time-sensitive tasks. The RAS

considers task deadlines, resource constraints and promote

minimized latency. This research is of paramount importance

as several application areas such as smart health, smart city,

smart grids would benefit from the findings of this research.

 In the following section, we present our proposed

framework and give a brief explanation of its components and

interactions.

145

PROPOSED RESOURCE ALLOCATION STRATEGY IN FOG

COMPUTING FRAMEWORK

The framework is made up of the edge layer, IoT-Fog

gateway where the Resource Allocation Scheduler (RAS) is

hosted, fog layer and cloud layer as shown in Figure 1.

Edge Layer

In general, the edge layer comprises any IoT device that

can connect using NFC [24], RFID [25], Bluetooth [26],

Wireless Sensor Networks [27], Wi-Fi [27] and communicate

together to perform some tasks or respond to events

accordingly without explicit instructions. It should be

reiterated that these devices have low computational power

and storage capabilities.

IoT-Fog Gateways

IoT-Fog gateways are device in-between IoT devices and
fog layer such as routers. It is in these gateways where RAS
was introduced. The introduced RAS has a service registry,
reasoner, watchdog, propagation component and shared
storage, which are additional capabilities to address resource
allocation challenges in fog computing.

When a task is sent from IoT to RAS, the service registry
marks the task based on which IoT device it came from. It is
the responsibility of the reasoner to do resource provisioning
for the entire framework and make decisions to either send a
task to the fog node or cloud.

The reasoner receives multiple numbers of tasks from
different IoT devices that need to be assigned to either fog
nodes or cloud servers. In the reasoner there will be a time-
slotted system denoted by ts={1,2,3,………n) and the time
slot is denoted by AT. When there is no task to be assigned in
the RAS, the queue denoted by Q will be empty, which means
when Q= Ø then ts<0. The task will be arranged using the
First-Come-First-Serve (FCFS)/Q concept where Q represents
the size of the queue. Using the Poisson process, it is
considered that the time interval of arrival between successive
task is exponentially distributed. There are two things to be

considered, that is (a) the arrival rate (ar) of the task and (b)
the service rate (sr) of the computing device that is hosting the
RAS. These two determine how the queue will move. Above

and beyond arrival rate and service rate, the moving of the
queue is also affected by whether the computing devices in the
fog layer or cloud layer are free or not at a certain time-stamp.
The algorithm in the reasoner will classify the tasks into three
main categories, namely time-sensitive task (high priority
tasks), low time-sensitive (low priority tasks) and not time-
sensitive (no priority tasks).

No-priority tasks are tasks that are not time-sensitive and
do not have any stipulated time to be processed. Contrariwise,
“high priority” tasks are time-sensitive and latency-sensitive
tasks which should be processed within a specific time. If not
processed, the task will no longer be valid for the IoT device.
In almost a similar fashion with “high priority” tasks, “low
priority” tasks are tasks whose processed output is valid up to
a certain extent, if that time is not met, some penalties will be
applied, but it will wait to be processed, and the IoT device
will use that output even though the output will have failed to
meet their corresponding deadlines.

These tasks would be placed in three different queues
denoted by Q={1,2,3}. Q1 will be for high priority tasks, Q2
for low priority tasks and Q3 for no priority tasks. Q1 and Q2
tasks are sent to the fog node as they are time-sensitive
whereas Q3 tasks are sent directly to the cloud since they are
not time-sensitive.

Q1 tasks are given higher priority when compared to Q2
tasks. Even though the tasks in Q2 are not very time-sensitive
when compared to Q1 tasks, they should not suffer a starvation
problem. The starvation problem occurs when Q1 tasks keep
on coming, which will result in Q2 tasks not to be processed.
Therefore, to avoid the starvation problem, after 10 seconds
time-stamp, Q2 tasks that are in the queue for a defined time
without being assigned to any computing resource will be
promoted by 1 to a higher priority queue.

Another point to note on the assignment of Q1 tasks in the
fog layer is that the tasks assigned to resources use a modified
first-come-first-serve basis approach. That is, the first tasks to
come is considered and assigned in the first available resource

Figure 23: Cross-Sectional Design of the Fog Computing Framework

.

146

if and only if the resource meets the tasks QoS requirements,
computational requirements and user needs. If the first task
requirements needs do not fit the available resource, the next
task in the queue is considered and assigned to the available
fog resource. This is done not to waste resources and waste the
time of tasks in the queue that can fit and utilise the available
resources. Thus, the modified first come first serve heuristic
algorithm in the reasoner also helps in choosing the correct
fog node for a specific task based on the QoS requirements of
that task. Factors like distance, processing power of the fog
nodes are considered as they play a pivotal role in time-critical
tasks, as explained in previous sections.

The watchdog role is to monitor the status of the fog layer
and cloud layer. If there is fault or errors at the fog node,
events are triggered, and signals are sent to the reasoner. The
reasoner then re-assigns the task that would have been
processed in the fault node to the next available and capable
fog node. These watchdog events are also put into
considerations by the reasoner, as they help the reasoner to be
more effective when making decisions.

The propagation component responsibility is to send the
tasks to fog layer or cloud layer based on the decision which
would have been made in the reasoner.

The purpose of shared memory in RAS is to hold a service
registry and all the information of fog nodes and IoT devices
that are registered in the network. Each fog node and IoT
device are given unique identities, which would help to assign
the correct response to the proper IoT devices.

Fog Layer

The fog layer is made up of any network resources,

including mobile stations, servers, switches and routers

depending on the area of application. These network

resources offer their services to aid computation capabilities,

pre-processing and temporary storage within the network and

are named fog nodes [28]. Because of their proximity to the

ground, they provide lower latencies compared to cloud

computing which results in offering improved QoS. Fog layer

receives Q1 and Q2 tasks from RAS and executes them

before sending the response back to the RAS and to the cloud

for the information that requires long-term storage.

Cloud Layer

LTE Communication Links are a middleware in the

cloud. Their main function is to provide resource

provisioning, task request placement and task execution in a

specific cloud environment. The cloud is made up of servers

whose resources are located in centralized data centers,

whose responsibility is to process CPU intensive tasks and

has bigger storage [29]. Since the cloud has virtually infinite

resources, the tasks that require more computational power,

more resources and are not time-sensitive, are sent by the

RAS to be processed in the cloud. In this case, Q3 tasks are

sent to the cloud layer

THE FRAMEWORK’S COMPONENT INTERACTIONS

Two things happen in this framework; new fog nodes can

be registered, fog nodes can also be deregistered, and the task

is processed.

 Pairing and Service Deployment

When a new fog device wants to join the fog layer to give

fog resources, it sends a signal to the RAS to be registered.

The RAS will register all the details, which include its

processing power, RAM size, etc. of the new device, and it is

instantiated as a fog node. Once the newly fog node is

registered, there is no need to always take its details again

because they will be stored.

Assuming that there is pending task requesting for a

resource and the newly installed fog node does have the

required QoS matrices requirements and resources for the

task, RAS will immediately deploy the task. Once the service

is deployed, the newly added fog node will be able to read

and execute the task and return the response to the RSA. The

same happens when a new IoT device such as sensors,

actuators, laptops, smart television joins the network. It is

registered at the RAS as a new IoT device and the type of data

it sends is also recorded. This is done so that the RAS will

keep that information to avoid repeating the process of

identifying the type of data sent by the device each time it

sends the data thus minimizing future delays.

Resource Allocation and Scheduling of Tasks

When a new task is sent from the IoT device, it goes

through the RAS where it is labelled whether it is of high

priority or not, specifying its QoS matrices requirements. If

the task request is time-sensitive it is sent to the fog layer and

if it is not time-sensitive, it is sent to the cloud layer for

processing. If the decision by the RAS is to send the task

request to the fog layer, the RAS will choose the most fitting

fog node to deploy the task request. After the above reasoning

is done by the RAS, it then deploys the task to the fog node.

If the service is successfully deployed, the fog node sends a

signal back to the RAS for evaluation purposes and the fog

node starts immediately executing the intended

functionalities on the deployed task. After the task has been

executed in the fog node, the response is sent back to the

RAS, which further forwards it to the specific IoT device. A

copy of the response and other processed details are sent to

the cloud for long term storage. If the task is not time-

sensitive and requires more computational power, the RAS

will flag it as such and deploy it to the cloud. In the cloud, it

is assigned to the virtual machines (VMs) which process the

request. The component, which will handle the task, will send

a signal to the RAS as an indication that it was deployed

successfully and for evaluation purposes too.

EVALUATION SETUP

To assess the proposed model, it is of paramount

importance to define an assessment configuration with define

limits, metrics and devices included. The assessment

configuration in this project is based on an OSI model

network topology. The network topology is made up of the

edge layer (IoT devices), IoT-Fog gateways (hosting the

RAS), fog layer (for processing time-sensitive task) and the

cloud layer (for processing computer-intensive task).

In this network topology, each device should have a

device name, the list of service types the device can send and

or process, IP address and port, device location and location

range. This information is important to avoid conflicts which

might cause delays. Furthermore, it helps in identifying the

location of the devices, whether they are at the edge, fog or

cloud layer.

147

Simulation Description

In this research, the simulation was hosted on a high-

performance computer with 1100 terabyte (TB) storage

capacity,135 cluster nodes with 2900 processor cores and

11TB memory. Twenty (20) IoT devices were used and the

input data size was from 10MB to 30MB, while the output

data size was 1MB to 30MB. Both input and output data sizes

were uniformly distributed. Twenty (20) Mbps was used as a

maximum transmission bandwidth. To evaluate and validate

the results, 1000 independent runs were done and averaged

for each parameter to get a better result output for the runs.

Table 1 below presents the simulation parameters.

SIMULATION PARAMETERS

Parameters Value

Number of IoT device 20

Number of IoT-Fog Gateways 3

Number of fog nodes 10

Number of cloud data centers 2

Number of tasks 100

IoT device CPU frequency 600x106 cycles per second

IoT device memory capacity 128 Megabytes

Fog nodes CPU frequency 5 x 109 cycles per second

Fog nodes memory capacity 512 Megabytes

Cloud server’s CPU frequency 10 x 109 cycles per second

Cloud server’s memory capacity 64 Gigabytes

Maximum Bandwidth 20Mega Hertz

RESULTS AND DISCUSSIONS

Since our proposed solution was to reduce overall round-

trip time, this study evaluated queueing time and offloading

time which are round-trip time factors.

Queuing Time

Queueing time is the time a task waits in the queue before

it is assigned to a fog or cloud resource. Queueing time plays

a pivotal role in determining whether a task will be processed

early or not based on how long a task would wait before it is

assigned to a resource. The higher the queueing time, the

higher the chances of an increased round-trip time, which has

a negative impact on latency and affects QoS. Consequently,

queueing time should be minimized to reduce round-trip time

which is the motive behind this research. Figure 2 presents

the queuing time of tasks.

From Figure 2, it can be noted that for high priority-based

tasks (blue line), the queuing times are minimal when

compared to low priority-based tasks (orange line) and no

priority-based tasks (grey). Similarly, low priority-based

queuing time is also minimal when compared to no priority-

based tasks.

This is because high priority tasks are given preference

during the assignment to both message routing and to the fog

layer resources to be processed first as compared to the later.

For this reason, high priority tasks are assigned and processed

earlier than the other two, which gives them less queuing

time. Correspondingly, the low priority tasks are given a

better priority compared to those with no priority. No priority

tasks take more time as they require more time in uploading.

It is also important to note that queuing time for both high

priority tasks and low priority tasks can be further minimized

if there are more fog nodes at the fog layer. The more the fog

nodes at the fog layer, the less the queuing time experienced

for high priority tasks and low priority tasks as there will be

more options and resources to assign the tasks. Therefore,

queueing time is directly affected by the number of fog nodes

available at the fog layer.

Offloading Time

Offloading time is another factor that affects round-trip

time. Offloading time is the time taken to upload, process and

download a task from IoT device to RAS then either fog node

or cloud depending on the task status and back to the IoT

device. The more the offloading time, the greater the overall

round-trip time. Moreover, offloading time is directly

affected by queuing time. If the queuing time is minimized,

the overall offloading time is also reduced. Figure 3 presents

the simulation result of offloading time.

From the graph, it is noted that offloading starts

happening after 1ms. This is because some delays are

experienced when tasks are generated and sent. The

offloading time of all the tasks will increase as the number of

tasks increases. This is because fog layer cannot handle many

tasks at once especially when IoT devices generate a greater

number of tasks that are time-sensitive and require fog layer

resources. Another factor is, the more the traffic that wants to

traverse the internet the higher the demand for bandwidth and

also the higher the demand to resources which affect

queueing time and offloading. Generally, high priority tasks

have lower offloading time when compared to the other two

because they are given first preference to resources and

usually they are small in size. Low priority tasks have also

lower offloading time when compared to no priority tasks.

Figure 24: Queueing Time of Tasks

Figure 25: Offloading Time of Tasks

148

Even though the no priority tasks were not being offloaded to

the fog layer, they took more time to be offloaded to the

cloud. The reason behind this is because of their size which

requires more time to offload, process and download. The

bigger the task, the more the time it took to be processed and

traversed over the network. Moreover, it consumes more

bandwidth.

Comparison of Processing in the IoT Device, Fixed

Offloading to Fog Node and the use of RAS

In any scientific research, to be able to quantify how

effective a proposed solution is, there is always a need to do

a comparison of the proposed strategy with other existing

strategies.

For comparison, we compared the average delay per user

against the packet arrival rate of the fixed strategy method,

RAS strategy and entirely processing the tasks on the IoT

device strategy. A fixed strategy is when tasks are sent

directly to the fog nodes from IoT devices, and the fog nodes

would decide to either process the whole task, part of it or to

send to the cloud. This strategy is the one being used by many

researchers in literature.

In Figure 4, at a packet arrival rate of between 0 and 14,

the average delay per user is less when the task is entirely

processed in the IoT device itself than when it is sent to the

RAS or fixed offloaded to the fog node. Wholly, if there are

few tasks that are time-sensitive and are not CPU intensive,

processing them in the IoT device is much better than

transferring them to the fog node, as this increases the

average delay per user.

It can be noted in Figure 4 that at 15 packets/sec arrival

rate the average delay per user is the same for all the three

strategies. This convergence point can be referred to as a

point of equilibrium. At 15 packets arrival rate, the

summation of the delays and the resources available at both

the fixed offload to fog node approach and the RAS approach

will be equal to the one processed entirely at the IoT device.

At this point, it means using either of the approaches will give

the same output.

After 15 packets/sec arrival rate, using other fog layer

resources will be of greater benefit than to process the task at

the IoT device as can be noted in the diagram that after 15

packets/sec arrival rate, the average delay per user of those

tasks that are processed at IoT entirely keep on increasing

when compared to the other two options. An increase in task

production and packet arrival rate has a greater effect when

the task is processed entirely at the IoT device level. The

more the packets in the queue to be processed, the more the

time needed to process them especially when they are

processed in the IoT device itself. The packet arrival rate is

directly proportional to the average delay per user if the task

is processed in the IoT device. The demand for computing

resources by the tasks can even cause the IoT device to end

up being slow and not working properly. This is due to

overloading as the IoT devices do not have much

computational power, as such it cannot handle more tasks at

once. Overloading IoT devices have a negative impact on the

IoT device battery lifespan, as the device will be strained

which results in using more battery power.

Again, referring to figure 4, it can be noted that between

15 to 20 packets per second arrival rate the performance of

the fixed offloading and the RAS approach are almost the

same. The difference can only be noted after 20 packets per

second arrival rate when the RAS approach becomes better

than the fixed offloading. The reason might be that the RAS

approach chooses the best fog node for time-critical tasks

when compared to the fixed offloading approach.

When tasks are using the RAS approach, it can be noticed

that at first, using the RAS approach will only be better if

compared to fixed offloading but worst when compared to

those that are processed at the IoT devices. The delay

experienced in time is because some time is used when

transferring a task from the IoT device to the RAS before the

actual processing of the tasks starts. The difference is noticed

when there is an increase in the packet arrival rate where it

can be observed that the RAS outclass both approaches

highlighted earlier that are the one that allows tasks to be

processed locally and that which uses a fixed offload

approach. The reason being that the RAS chooses appropriate

fog node to process the tasks when compared to the fixed

offload approach, which sometimes offloads tasks to a fog

node that does not satisfy the requirements of the tasks. As

such, choosing the correct fog node that suits the requirement

of the task first before assigning those tasks helps in the sense

that when tasks are then finally deployed, it is guaranteed that

they will be processed.

As evidenced and shown on the above figure and analysis,

it can be deduced that when tasks are few, it is wise to process

them in the IoT device. When there is a need to process more

tasks, then processing them in the IoT device will no longer

have benefits. The use of the RAS approach will be of greater

advantage. We can conclude that the introduction of the RAS

in the gateways, which makes decisions and give high priority

to high priority tasks, proves to have more benefits compared

to the two approaches mentioned above. The RAS approach

minimizes round-trip time, improves throughput and as such,

it improves QoS as compared to the later approaches. It is

also important to note that the roundtrip time and throughput

can be further minimized when more fog nodes join the fog

layer, as the RAS will be able to deploy more tasks to

different fog nodes resulting in the reduction of the queueing

time for tasks.

Figure 26:Task arrival, task execution and task

offloading of different approaches

Figure 27: Illustration of task data arrival,
task execution and task offloading

149

RAS Strategy versus Other Resource Allocation Strategies

For comparison purposes, three strategies proposed and

used in literature are considered and compared with RAS:

 Strategy 1: IoT devices would randomly choose a

computing device either in the fog layer or cloud

layer. Let us denote this scenario as S1.

 Strategy 2: IoT devices would choose a computing

device with minimum uploading time. Let us denote

this scenario as S2.

 Strategy 3: IoT devices would choose a computing

device with sufficient CPU frequency for processing

the tasks. Let us denote this scenario as S3.

 Strategy 4: Using the proposed Resource

Allocation Scheduler strategy denoted with RAS.

 Performance-based on average queueing time

Based on Figure 5, which compares performance based

on queuing time, our RAS improved performance when

compared to the other three strategies as far as average

queuing time is concerned. The average queuing time of high

priority and low priority was minimized. This was as a result

of them being given more priority if compared to those tasks

with no deadline. It can be noted from Figure 5 that even in

the case of more tasks, the average queuing time of the RAS

is less when compared to the other three strategies. These

results proved that even if you are using first come first serve

basis in different strategies if high priority tasks are not given

high priority, that will affect the queuing time and has a

negative impact on the time-sensitive tasks as QoS is

compromised.

 Performance-based on average offloading time

Even if S2 strategy allowed IoT devices to choose a

computing device with minimum uploading time and S3

allowed IoT devices to select a computing device with

sufficient CPU frequency for processing the tasks, it could be

observed from Figure 6 that these strategies did not minimize

offloading time as expected by IoT devices. Contrary to S1,

S2, and S3, considering performance based on the average

offloading time as shown in Figure 6, RAS managed to

deploy tasks to computing devices that met the requirements

of the task. Moreover, RAS offered a minimum

communication overhead, which minimized round-trip time

since offloading time was reduced when compared to other

S1, S2, and S3 strategies.

This was attributed to the fact that RAS would choose

either fog node or cloud that satisfies the requirements of the

task based on the task’s status. Basing our argument on the

simulation results, if the round-trip time is minimized, latency

will also be reduced, and this will lead to improved QoS and

improved performance.

 Performance-based on average throughput

To check if the RAS improved the QoS, throughput,

which is one of the QoS parameters, was tested. In this work,

throughput was calculated as the number of tasks that

complete their process within a time-stamp based on the

arrival rate. As indicated in Figure 7, RAS had high

throughput when compared to other strategies. This is

because different strategies failed to process more tasks

within a given time-stamp. The RAS strategy managed to

achieve improved throughput because it was able to deploy

time-sensitive tasks to fog devices that met the resource

requirements with minimum offloading time, which was also

a factor of queueing time.

CONCLUSIONS

The results above show that even though many factors

play a pivotal role in determining the total round-trip time,

queueing time and offloading time are very important too.

Minimizing the two will help in reducing round-trip time and

subsequently leading to the minimization of latency. Also, if

queueing time and offloading time are minimized, the overall

throughput of the framework is significantly improved.

 Another important finding from these results is that

choosing a computing device with sufficient CPU frequency

Figure 6: Performance-based on average offloading time

Figure 7: Performance-based on average throughput

Figure 5:Performance-based on average queueing

time

150

for processing the tasks without considering other factors

such as the type of the tasks, will not minimize average

waiting time and average offloading time when more tasks

are added. This kind of approach works well when there are

small numbers of tasks that need to be processed. However,

it suffers when many tasks need to be processed

ACKNOWLEDGEMENT

I would like to acknowledge the Govan Mbeki Research

and Development Centre (GMRDC) and Centre of

Excellence (CoE) for funding this research.

REFERENCES

[1] Z. Chen et al., “An empirical study of latency in an emerging class

of edge computing applications for wearable cognitive assistance,”
Proc. Second ACM/IEEE Symp. Edge Comput. - SEC ’17, vol.

October, pp. 1–14, 2017.

[2] Google Press, “Conversation with Eric Schmidt hosted by Danny

Sullivan,” 2006.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing

and Its Role in the Internet of Things,” Proc. first Ed. MCC Work.

Mob. cloud Comput., no. August 17, 2012, pp. 13–16, 2012.

[4] OpenFog Consortium Architecture Working Group, “12 -

OpenFog Reference Architecture for Fog Computing,”
OpenFogConsortium, no. February, pp. 1–162, 2017.

[5] C. Chang, S. N. Srirama, and R. Buyya, “Internet of Things (IoT
) and New Computing Paradigms,” in Fog and Edge Computing:

Principles and Paradigms, 2017, pp. 1–23.

[6] W. T. Vambe, C. Chang, and K. Sibanda, “A Review of Quality of

Service in Fog Computing for the Internet of Things,” vol. 3, no.

1, pp. 22–40, 2020.

[7] P. Kochovski and V. Stankovski, “Supporting smart construction

with dependable edge computing infrastructures and applications,”
Autom. Constr., vol. 85, no. May 2017, pp. 182–192, 2018.

[8] A. A. Alsaffar, P. P. Hung, E. Huh, and S. Korea, “An Architecture
of Thin Client-Edge Computing Collaboration for Data

Distribution and Resource Allocation in Cloud,” no. November

2017.

[9] Y. Liu, C. Xu, Y. Zhan, Z. Liu, J. Guan, and H. Zhang, “Incentive

mechanism for computation offloading using edge computing: A
Stackelberg game approach,” Comput. Networks, vol. 129, no.

December 24, pp. 399–409, 2017.

[10] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck, “Mobile

edge computing potential in making cities smarter,” IEEE

Commun. Mag., vol. 55, no. 3, March 13, pp. 38–43, 2017.

[11] X. He, Z. Ren, C. Shi, and J. Fang, “A novel load balancing

strategy of software-defined cloud/fog networking on the Internet
of Vehicles,” China Commun., vol. 13, pp. 140–149, 2016.

[12] S. Sampei, “Development of wireless access and flexible
networking technologies for 5G cellular systems,” IEICE Trans.

Commun., vol. E100B, no. 8, August 8, pp. 1174–1180, 2017.

[13] K. Wang and K. Yang, “Power-minimization computing resource

allocation in mobile cloud-radio access network,” Proc. - 2016
16th IEEE Int. Conf. Comput. Inf. Technol. CIT 2016, 2016 6th Int.

Symp. Cloud Serv. Comput. IEEE SC2 2016 2016 Int. Symp. Secur.

Priv. Soc. Netwo, no. 13 March, pp. 667–672, 2017.

[14] G. Li, J. Song, J. Wu, and J. Wang, “Method of Resource

Estimation Based on QoS in Edge Computing,” vol. 2018, no.
December 31, 2018.

[15] V. B. Souza, A. Gomez, X. Masip-Bruin, E. Marin-Tordera, and J.
Garcia, “Towards a Fog-to-Cloud control topology for QoS-aware

end-to-end communication,” in 2017 IEEE/ACM 25th

International Symposium on Quality of Service, IWQoS 2017,
2017, no. 07 July.

[16] J. Li, C. Natalino, P. Van Dung, L. Wosinska, and J. Chen,
“Resource Management in Fog-Enhanced Radio Access Network

to Support Real-Time Vehicular Services,” in Proceedings - 2017

IEEE 1st International Conference on Fog and Edge Computing,
ICFEC 2017, 2017, no. 24 August, pp. 68–74.

[17] Y. Xiao and M. Krunz, “QoE and power efficiency tradeoff for fog

computing networks with fog node cooperation,” Proc. - IEEE

INFOCOM, no. May 2017.

[18] Y. Song, S. S. Yau, R. Yu, X. Zhang, and G. Xue, “An Approach

to QoS-based Task Distribution in Edge Computing Networks for
IoT Applications,” Proc. - 2017 IEEE 1st Int. Conf. Edge Comput.

EDGE 2017, no. 11 September, pp. 32–39, 2017.

[19] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards QoS-

Aware Fog Service Placement,” Proc. - 2017 IEEE 1st Int. Conf.

Fog Edge Comput. ICFEC 2017, no. 24 August, pp. 89–96, 2017.

[20] S. W. Ko, K. Huang, S. L. Kim, and H. Chae, “Live Prefetching

for Mobile Computation Offloading,” IEEE Trans. Wirel.
Commun., 2017.

[21] M. Mukherjee, S. Kumar, M. Shojafar, Q. Zhang, and C. X.
Mavromoustakis, “Joint Task Offloading and Resource Allocation

for Delay-Sensitive Fog Networks,” in IEEE International

Conference on Communications, 2019.

[22] Y. Yang, Z. Liu, X. Yang, K. Wang, X. Hong, and X. Ge, “POMT:

Paired Offloading of Multiple Tasks in Heterogeneous Fog
Networks,” IEEE Internet Things J., 2019.

[23] Y. Wang, X. Tao, X. Zhang, P. Zhang, and Y. T. Hou,
“Cooperative Task Offloading in Three-Tier Mobile Computing

Networks: An ADMM Framework,” IEEE Trans. Veh. Technol.,

2019.

[24] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile

cloud computing: Architecture, applications, and approaches,”
Wirel. Commun. Mob. Comput., 2013.

[25] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A

survey,” Comput. Networks, 2010.

[26] I. J. Dilworth, “Bluetooth,” in The Cable and Telecommunications

Professionals’ Reference: PSTN, IP and Cellular Networks, and

Mathematical Techniques, 2012.

[27] W. Sensor, WIRELESS SENSOR NETWORKS A Networking.

2009.

[28] A. A. T. R. Coutinho, F. Greve, and C. Prazeres, “An Architecture

for Fog Computing Emulation,” Wcga - Sbrc, vol. 15, no. 1/2017,
2017.

[29] The National Institute of Standards and Technology, “The NIST
Definition of Cloud Computing Recommendations of the National

Institute of Standards and Technology,” NIST Spec. Publ., 2011.

151

152

