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ABSTRACT 

Electric vehicles (EVs) have emerged as a viable option to advance sustainable mobility, but 

adoption is still relatively low. This has been largely due to the limited range one can travel on 

a single charge, leading to range anxiety, longer charge cycles and long wait times at charging 

stations. One solution to range anxiety is to erect charging stations on major roads and urban 

centres. There is also a lack of real-time information regarding the state of charging stations 

and charging ports in existing charging infrastructure.   To increase the benefit of using EVs, 

using renewable energy sources, such as photovoltaics (PV) to power EVs, can further increase 

the benefit of reduced carbon footprint. 

The main research objective  was to design a Charge Scheduling Model for charging EVs using 

a PV-powered smart microgrid (SMG). The model addresses the lack of an integrated platform 

where EV drivers can schedule when and where to charge their EVs. The model also reduces 

the negative effects of the adoption of EVs, including range anxiety.  

The Charge Scheduling Model was developed using the Design Science Research (DSR) 

methodology and was the main artefact of the study. A literature study was conducted of 

research related to SMGs, renewable energy, EVs and scheduling,  to identify shortcomings 

that currently exist in EV charge scheduling (EVCS), and to identify the requirements of a 

potential solution. The literature study also identified the hard and soft constraints that are 

unique to EVCS, and the available energy in the SMG was identified as one of the hard 

constraints. Therefore, an Energy Forecasting Model for forecasting energy generated in PV-

powered SMGs was required before the Charge Scheduling Model could be designed. 

During the first iteration of the design and development activities of DSR, four models were 

designed and implemented to evaluate their effectiveness in forecasting the energy generated 

in PV-powered SMGs. The models were Support Vector Regression (SVR), K-Nearest 

Neighbour (KNN), Decision Trees, and Multilayer Perceptron. In the second iteration, the 

Charge Scheduling Model was designed, consisting of a Four Layered Architecture and the 

Three-Phase Data Flow Process. The Charge Scheduling Model was then used to design the 

EVCS prototype. The implementation of the EVCS prototype followed the incremental 

prototyping approach, which was used to verify the effectiveness of the model. 
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An artificial-summative evaluation was used to evaluate the design of the Charge Scheduling 

Model, whereas iterative formative evaluations were conducted during the development of the 

EVCS prototype. The theoretical contribution of this study is the Charge Scheduling Model, 

and the EVCS prototype is the practical contribution. The results from both evaluations, i.e. 

the Energy Forecasting Model and the Charge Scheduling Model, also make a contribution to 

the body of knowledge of EVs. 

Keywords: 

Electric vehicles, Smart microgrids, Scheduling, Photovoltaic, Energy forecasting, Design 

Science Research 
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND 

Sustainable resource management has become a pivotal topic of discussion due to the finite 

amount of resources that are available, and can be addressed by smarter utilities (Peoples, Parr, 

McClean, Scotney & Morrow, 2013). The availability of new and inexpensive micro 

technologies, such as sensors that continuously monitor the environments around them, has 

contributed to improved resource management. Sensors have made it possible to monitor the 

performance and use of limited resources. Examples of resources that can be monitored using 

these micro technologies are energy, water and waste. Smart meters and appliances are being 

used to monitor electricity usage in businesses and homes.  Micro technologies that can monitor 

and communicate information about the environments around them are part of the Internet of 

Things (IoT). The IoT has had far-reaching consequences in, amongst others, the energy sector, 

giving rise to the concept of smart grids, and smart utilities (Gubbi, Buyya, Marusic & 

Palaniswami, 2013; Peoples et al., 2013; Vlacheas et al., 2013). A smart grid is defined as an 

electricity supply network that uses digital communications to detect any changes in the 

network and react to changes appropriately (Braun, Altan & Beck, 2014).  Another important 

aspect of sustainable resource management is sustainable mobility, specifically the use of 

energy during mobility processes. One key issue that has dominated research conversation 

recently is the adoption of electric vehicles (EVs) as a means of sustainable mobility. EVs use 

an electric motor instead of an internal combustion engine to power the vehicle (Larminie & 

Lowry, 2003). This means that the use of EVs can reduce the carbon footprint, specifically 

when using renewable energy to charge the EVs. 

Smart grids integrate information and communication technologies (ICT) into existing 

electricity networks to allow for bidirectional communication between generators and 

consumers of electricity (Niesten & Alkemade, 2016; Speidel & Bräunl, 2016). The 

implementation of smart grids requires a large investment in terms of cost and time (Xenias et 

al., 2015). An alternative to one large implementation of a smart grid, which is costly and time-

consuming, is to implement smaller grid units, which are called smart microgrids (SMGs). 

SMGs are a key basic “building block” in the implementation of the next generation smart grid 

infrastructure. SMGs are an excellent example of how you apply a smart grid to the existing 
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grid system, and include multiple loads and distributed energy resources that can be operated 

in coordination with the main power grid, or run independently. SMGs function similarly to 

the traditional grid by supplying distributed generation and managing localised grid operations. 

But they provide a more efficient, reliable, and sustainable approach to supplying power by 

constantly balancing generation with load demands (Farhangi, 2010). SMGs can also be 

integrated with renewable energy sources, such as solar photovoltaic (PV) panels and wind 

power1. The use of renewable energy introduces the need for energy storage and/or off-peak 

energy source integration, which is something modern SMGs are designed to manage. Security 

and independence from potential grid interruptions, such as blackouts, are also considered 

benefits of SMG (Hafez & Bhattacharya, 2012). 

In an ideal world, the components of a smart grid, and subsequently SMGs, include (Höök & 

Tang, 2013): 

• Renewable energy generators such as PV power and wind power; 

•  Energy storage technologies; and  

• Applications to manage the generation, distribution and storage of energy. 

Currently, most energy systems use energy from fossil fuels, but these energy sources are not 

sustainable in the long run. Fossil fuels that we currently rely on are coal, gas and oil. These 

fossil fuels are not sustainable for the following reasons (Höök & Tang, 2013): 

• The fossil deposits are finite; 

• The fossils have to be transported over long distances; and 

• The combustion of the fossil to generate energy produces gasses which contribute to 

global warming. 

Figure 1-1 illustrates the rate at which the fossil-based fuels, such as oil, coal and gas, are 

becoming depleted. This shows the urgency with which alternative energy sources are 

becoming important. 

 
1 In this thesis, solar PV panels from here on will be referred to as PV panels. 
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Figure 1-1 Fossil fuel depletion (Ecotrocity, 2015) 

Therefore, alternative energy sources are required, which are referred to as renewable energy 

sources. A renewable energy source is defined as an energy source that can be replenished 

naturally. Examples include solar energy, wind energy, hydropower, geothermal and biomass 

energy (Twidell & Weir, 2015). Each of these energy sources exist naturally, and can be used 

repeatedly without running out.  

The use of sensors for data collection produces larger quantities of data during the energy 

generation process, and analysing this data is key to adding value to both electricity generators 

and their consumers (Speidel & Bräunl, 2016). However, this data needs to be collected and 

aggregated first, before any analysis can be performed on the data. The first challenge that must 

be addressed is collecting the data from the disparate sources in the SMG. The second challenge 

is analysing the large amounts of data collected  to gain any new insights that can add value to 

power utility companies, or the customers (Balac et al., 2013). 

EVs are attractive to the environmentally conscious. EVs are still relatively more expensive as 

compared to internal combustion engines, they take a long time to charge, and the driving range 

before the vehicle needs another charge is limited. A solution is therefore required to eliminate 

or reduce the effects of some of the disadvantages of EVs. One such solution is to strategically 

erect EV charging stations along major routes and to use fast chargers. This solution is not 

without its own challenges; chief among them is the fact that there is no effective way to 

schedule when the drivers will want to use a particular charge station,  or  how long it will take 
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to charge the EV (Rauh, Franke, & Krems, 2015; Ashique, Salam, Bin Abdul Aziz, & Bhatti, 

2016). Scheduling is described as the process of managing a finite amount of resources in the 

best manner possible (Fera, Fruggiero, Lambiase, Martino & Nenni, 2015). 

1.2 PROBLEM STATEMENT 

The main research problem for this research study is: 

There is currently no means of effectively scheduling the charging of EVs in PV-powered 

SMGs. As a result, there are often long wait times for charging EVs and insufficient energy to 

meet the demand. 

1.3 THESIS STATEMENT 

The proposed thesis statement for this research project is that: 

A Charge Scheduling Model can be designed to effectively schedule the charging of EVs using 

a PV-powered SMG. 

By applying different algorithms used in predictive analytics to test data, such as ambient 

temperature, humidity, and expected energy output data, we can forecast the amount of energy 

generated, and then compare it to the expected energy output (Wu & Coggeshall, 2012). Based 

on the results of this comparison, we can determine which algorithms forecast the energy 

generated most accurately. This algorithm will then be recommended as the appropriate one 

for energy forecasting. 

1.4 AIM OF RESEARCH  

The main aim of this research project is to design a Charge Scheduling Model for the effective 

scheduling of EV charging in PV-powered SMGs. The proposed model must consider 

constraints such as the energy capacity in the SMG, the number of charging points, the different 

types of chargers available, and the time taken to bring the EV to full charge. Energy in an 

SMG is stochastic in nature, since it is dependent on weather variables (Kelly & Gibson, 2011). 

Therefore, for the Charge Scheduling Model to be effective in scheduling, a model that 

forecasts the energy generated by the SMG is required. Figure 1-2 illustrates the interaction 

between the Energy Forecasting Model (EFM) and the Charge Scheduling Model.  
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Figure 1-2 Energy Forecasting and Scheduling (Author’s contribution). 

The EFM uses data collected during the energy generation process, such as environmental 

factors that influence the amount of energy generated, as input to predict the energy generating 

capacity of the SMG. The predicted energy is then used as a constraint in the Charge 

Scheduling Model. 

1.5 RELEVANCE AND ENVISAGED CONTRIBUTIONS 

Range anxiety and long wait times at charging stations are some of the barriers to the adoption 

of EVs in sustainable mobility. The long wait times at charging stations can be attributed to 

limited charging infrastructure (Yang, Yao, Yang & Zhang, 2016). Another contributing factor 

to long wait times is the lack of real-time information regarding charging stations (O’Kane, 

2016). This information includes, but is not limited to, the status of charging points at a 

charging station. The unavailability of such information often leads to EV drivers having to 

drive about until they find a free charging point, and they run the risk of depleting the remaining 

charge whilst they are looking for a place to charge. There is a lack of access to integrated 

information regarding charging stations, despite that the advent of IoT is making it possible to 

collect such information. IoT has the potential to address the lack of information by collecting 

information and storing it in a centralised repository, thereby providing a more detailed view 

of real-time information for charging stations in a city or town. Current systems also don’t 

provide EV drivers with the ability to reserve a charging port if they know what time they want 

to charge the EV. 
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Limited research has been found regarding the provision of real-time information regarding the 

status of charging stations and reservation of charging points, which can be useful to EV 

drivers. Tran, Dogru and Ozen (2013) proposed a network of charging stations with centralised 

data using energy from the main grid (O’Kane, 2016). Section 1.1 motivated for the use of 

renewable energy in distributed energy systems that power SMGs. Using renewable energy 

sources further compounds the benefits of a reduced carbon footprint when using EVs. 

Therefore, there is a need to provide access to accurate information regarding charging stations, 

which ultimately can improve planning for EV drivers and potentially save time. 

 The envisaged contributions of this research is the design, development and evaluation of a 

Charge Scheduling Model in a PV-powered SMG, and the identification of constraints that are 

unique to EV Charge Scheduling (EVCS). The deliverables from this research are: 

• A Charge Scheduling Model for PV-powered SMGs; and 

• An EVCS prototype for PV-powered SMGs. 

1.6 RESEARCH QUESTIONS 

The main research question for this study is: 

RQM: How can a Charge Scheduling Model be designed to effectively schedule the 

charging of EVs in PV-powered SMGs? 

The following research questions are necessary to address the main research question: 

RQ1: What factors influence energy generation in PV-powered SMGs? 

RQ2: What models can be used to forecast energy generated in PV-powered SMGs? 

RQ3: How effective is the proposed model for forecasting energy generation? 

RQ4: What constraints influence the charge scheduling of EVs in PV-powered SMGs? 

RQ5: How can an EVCS prototype be designed for the charging of EVs in PV-powered 

SMGs? 

RQ6: How effective is the proposed Charge Scheduling Model in scheduling the 

charging of EVs? 
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1.7 SCOPE AND LIMITATIONS 

The project used the SMG at the Nelson Mandela University as a case study because of its 

convenient location and access. This SMG was designed by uYilo2, and consists of PV panels, 

lithium ion batteries, EVs and Eskom power. Some of the environmental factors considered to 

predict energy generation were ambient temperature, solar radiation sunlight, wind speeds, and 

humidity.  

1.8 RESEARCH METHODOLOGY AND CHAPTER OUTLINE 

The Design Science Research (DSR) methodology was adopted for this research to answer the 

research questions in Section 1.6. A mapping of the research questions to chapters can be seen 

in Figure 1-3. 

 

Figure 1-3 Mapping of Research Questions to Chapters 

 
2 uYilo is a research centre at the Nelson Mandela University established in 2013, which aims 

to enable, facilitate and mobilise electric mobility in South Africa (http://uyilo.org.za/) 

 

http://uyilo.org.za/
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Chapter 1 will contain an introductory outline of the topic for research and the motivation 

behind it. The chapter will outline the background, the problem statement, and the thesis 

statement. 

Chapter 2 will discuss and motivate the choice of the research methodology to be applied in 

the study. The chapter provides motivation for the research design, methodology and strategies 

that will be used during the research.  

Chapter 3 will report on a review of the literature on SMGs, and how SMGs are implemented. 

The chapter will then go on to contextualise the implementation of SMGs in South Africa. 

Chapter 3 will also investigate the different types of renewable energy sources appropriate for 

SMGs.  Chapter 3 will also investigate and review the literature on how best to leverage 

predictive analytics to forecast the energy generation in South Africa. Chapter 3 will also 

investigate the literature on the available predictive analytics models and algorithms for 

forecasting energy generated in a SMG, and thus addressing RQ1. 

Chapter 4 will focus on the design and implementation of a predictive analytics model that 

will forecast the amount energy generated in a PV-powered SMG. This chapter will address 

RQ3. Chapter 4 will also evaluate the accuracy of the predictive analytics model designed and 

implemented in Chapter 4. The results of the evaluation will be discussed thereafter. 

Chapter 5 will investigate and review existing literature on scheduling algorithms and how 

these algorithms can be applied to the charging of EVs. In this chapter, we will also review the 

different types of constraints that exist in charging EVs and how these constraints influence the 

scheduling. Chapter 5 will also review literature on IoT models and architectures, which will 

allow data to be collected using sensors in this study. Chapter 5 addresses RQ4.  

Chapter 6 will discuss the design and implementation of a Charge Scheduling Model and 

algorithm for the charging of EVs. The goal of the chapter is to address RQ5. 

Chapter 7 will discuss the experimentation done to determine whether the proposed Charge 

Scheduling Model meets the requirements gathered. This chapter will address RQ6. 

Chapter 8 will present conclusions based on the findings of the various evaluations and 

experiments. The conclusions will be followed by recommendations on how to accurately 

forecast energy generated in a PV-powered SMG and schedule charging of EVs. 
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CHAPTER TWO 

RESEARCH DESIGN 

2.1 INTRODUCTION  

The previous chapter introduced the aim, the research questions of this research study, and 

provided an overview of  the research.  This chapter describes the research methodology that 

informed the research process followed during this research study. The focus of this research 

was to design a scheduling model for the charging of EVs in PV-powered SMGs. This research 

also proposed a model for forecasting the amount of energy that will be generated in a PV-

powered SMG. The proposed Charge Scheduling Model was implemented as a proof of 

concept, and thereafter the Charge Scheduling Model was evaluated to determine its 

effectiveness. The Design Science Research (DSR) methodology was used to guide this 

research, since the outcome  was an artefact, which was designed iteratively (Hevner, March, 

Park, & Ram, 2004). 

The proceeding section introduced the research paradigm that informed this research process 

(Section 2.2). The motivation as to why DSR paradigm was chosen is presented in Section 2.3. 

Section 2.4 focuses on the research cycles followed by the DSR methodology and the activities 

that facilitate the DSR cycles. The application of DSR methodology in this research is 

presented in Section 2.5. Ethical considerations of this research study are summarised in 

Section 2.6, and the chapter is then concluded by a summary (Section 2.7). 

2.2 DESIGN SCIENCE RESEARCH 

DSR makes use of both the positivist and interpretivist research philosophies. DSR is widely 

used in information systems-based research, as this research produces artefacts that must be 

evaluated to determine to what extent the artefact solves the initial problem (Johannesson & 

Perjons, 2012). Johannesson and Perjons (2012) define DSR as “the scientific study and 

creation of artefacts as they are developed and used by people with the goal of solving practical 

problems of general interest”. Artefacts are generally defined as item(s) created to solve a 

practical problem. In the field of information systems (IS), the artefacts would include the 

algorithms, application programs, models and frameworks produced from the research. This 

research produced two artefacts, namely the predictive analytics model for forecasting energy 

generation in SMGs, and a scheduling algorithm for the charging of EVs. 
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There are different types of artefacts in DSR, which differentiate DSR from other types of 

research paradigms. March and Smith (1995) proposed that there are four types of artefacts, 

namely, constructs, models, methods and instantiations. Table 2-1 contains a summary of the 

four type of artefacts according to Johannesson and Perjons (2012). 

Table 2-1 DSR Artefact Types (March & Smith, 1995) 

Artefact  Description 

Constructs • Provides definitional knowledge for a problem in terms of 

notations, terms, definitions and concepts  for it to be understood 

and addressed. 

Model  • Descriptive – describes and defines the current problem and 

provides reasons why the problem is challenging 

• Prescriptive – Provides solutions to an existing problem. 

• Predictive – Provides forecast behaviour of systems 

Methods • Provides knowledge that can be used as guidelines on the process 

of how to solve an existing problem 

Instantiations • Working systems used in practice. 

Constructs are defined by Johannesson and Perjons (2012) as terms, notations, definitions and 

concepts that are necessary to define problems in practice and provide solutions. Constructs 

are useful in breaking down practical problems into their constituent elements and this makes 

the practical problem easier to understand and approach. 

A model can be described as a theoretical description of processes or systems that can help one 

understand how it works, or might work (Collins Dictionary, 2018). Models can be classified 

into three classes, namely descriptive, prescriptive and predictive (Johannesson & Perjons, 

2012). A descriptive model describes the current practical problem, and also provides an 

explanation of why the problem is challenging. A prescriptive model provides a solution to a 

practical problem providing guidelines to the solution. A predictive model provides a forecast 

of how a system will behave. 

Methods provide knowledge that can be used to guide how to solve practical problems. 

Methods can be formal or informal.  For instance, best practices are an informal method, and 

an algorithm is an example of a formal method (Johannesson & Perjons, 2012). 
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Instantiations are working systems that can be used in practice, and these instantiations use 

knowledge from other artefact types (Johannesson & Perjons, 2012). Instantiations are often 

used to evaluate the feasibility of their constructs. An example is an implemented software in 

a research paper (Sangupamba Mwilu, Comyn-Wattiau & Prat, 2016). 

The artefacts in this research study are prescriptive models for EVCS. The artefacts include 

definitions, descriptions and elements involved in creating a model for the scheduling of EV 

charging in PV-powered SMGs. This research study followed the three-step process of creating 

prescriptive models, namely (Thwink, 2011): 

1. Use of formal processes that drives all modelling; 

2. Determine why problem is occurring at the fundamental level before solution 

proposition begins; and 

3. Creation of the model with the results obtained from diagnosis in step 2. 

2.3 MOTIVATION FOR USING DSR IN THIS STUDY 

De Villiers (2005) argues that in Information Technology (IT) research, DSR is used as a 

problem solving and a performance improving activity that involves the creation and evaluation 

of artefacts, and the artefact’s resultant impact on the overall system. DSR was ideal for this 

research project because two artefacts were designed, namely the Charge Scheduling Model 

and the EVCS prototype. These artefacts can be used to solve a real-world problem of 

scheduling where and when EV drivers can charge their EVs. The scheduling model includes 

the EFM, which forecasts energy generated in PV-powered SMGs. These models constitute 

the theoretical contribution for this research. 

2.4 THREE CYCLES IN DESIGN SCIENCE RESEARCH 

The main goal of the DSR methodology is to extend the existing knowledge base (Johannesson 

& Perjons, 2012). Data collected from each DSR activity is collated and put into an existing 

knowledge base. In the case of this research project, the knowledge contributed to the research 

domain of EVs, SMGs, and energy forecasting.  Three cycles are involved in the DSR 

methodology (Figure 2-1), namely the Relevance cycle, the Design cycle and the Rigor cycle. 

The Relevance Cycle describes the environment associated with the DSR activities. The 

problems and potential opportunities must be determined in the environment in which the 
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explicated problem is experienced.  The context of the artefact is described by identifying the 

problem, the requirements, as well as the conditions under which the success of the research is 

measured (Hevner, 2007). The problems identified in this research were: 

• Accurately forecasting the amount of energy generated in a PV-powered SMG that uses 

PV panels is difficult (Kelly & Gibson, 2011); and 

•  Effectively scheduling the charging of EVs (Rauh et al., 2015; Ashique et al., 2016). 

Results from evaluations of the designed artefact were used to determine whether the 

scheduling algorithms and the predictive model for forecasting energy generation are effective, 

or not.  

Peffers, Tuunanen, Rothenberger and Chatterjee (2007) argue that problems identified in the 

relevance cycle do not always translate into direct objectives, as the design process is one that 

provides partial and incremental solutions. 

The Rigor Cycle requires the research to provide a sufficient review of the existing literature 

within the application domain and knowledge base, to ensure that the research sufficiently 

contributes to the body of knowledge (Hevner, 2007). A literature review of SMGs, renewable 

energy, energy forecasting and scheduling algorithms contributed to the rigor cycle. The 

literature study also contributed towards the design of the artefact. The results from the 

evaluation of the artefact added to the existing body of knowledge of SMGs and predictive 

analytics.  

 

Figure 2-1 Design Science Research Cycles (Hevner et al., 2004; Hevner, 2007) 
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The Design Cycle is where most of the work in DSR is conducted. The iteration is between 

design and evaluation, and the main aim of the iteration is to improve the artefact as much as 

possible. The construction and evaluation activities must be balanced as sufficient focus needs 

to be on these activities, whilst focusing on the Relevance and Rigor cycles (Hevner, 2007). 

The Charge Scheduling Model and the forecasting model were designed and built in this cycle.  

After implementation of both models, they were evaluated using the EVCS prototype and 

refined  to improve the accuracy of the forecasting model and effectiveness of the scheduling 

model. 

Peffers et al. (2007), outlined three main objectives of DSR to: 

• Create a methodology that is grounded in DSR literature, in IS, and other related 

disciplines; 

• Provide a nominal process and guidelines for researchers working on the DSR; and  

• Provide researchers with a template for presenting DSR outputs. 

 

Figure 2-2 DSR Activities (Peffers, Tuunanen, Rothenberger & Chatterjee, 2007) 

The DSR, according to Peffers et al. (2007), has six activities (Figure 2-2), namely: problem 

identification, objectives definition, design and development of artefact, demonstration of 

artefact, evaluation of the artefact and communication (Peffers et al., 2007). On the other hand, 

Johannesson and Perjons (2012) identify five activities (Table 2-2) in their extension of the 
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work done by Peffers et al. (2007). The activities by Peffers et al. (2007) and Johannesson et 

al. (2012), were used to guide this research study. 

Table 2-2 DSR Activities (Johannesson & Perjons, 2012). 

# Activity Description 

1.  Explicate Problem • Involves examining and analysing a problem. 

• The problem needs to be clearly defined. 

• Reasons for the problem can also be investigated.  

2.  Outline Artefact and 

Define Requirements 
• Involves explaining the solution to the explicated 

problem. 

• Also involves identifying requirements for the 

proposed artefact. 

• Proposed requirements are identified for the primary 

purpose of deriving functionality for the artefact, but 

construction and environment can also be included. 

3.  Design and Develop 

Artefact 
• Involves producing an artefact supporting the 

identified requirements and addressing the explicated 

problem. 

• Primary purpose of this activity involves identifying 

functionality and construction. 

4.  Demonstrate Artefact • Involves presenting the artefact to determine its 

feasibility, e.g. using a proof-of-concept. 

• Used to determine if the artefact can potentiality 

address the explicated problem in any way. 

5.  Evaluate Artefact • Involves showing to what extent the artefact supports 

the identified requirements and addresses the 

explicated problem. 

The first activity in the DSR is, identify problem and motivate or explicate problem, define  the 

research problem and the justification of the value of a solution. The problem definition is used 

to develop the artefact that can effectively provide a solution by atomising the problem 

theoretically  for the solution to address its complexity. The motivation of the problem provides 

justification to the researcher and the audience as to why the research is being conducted to 

address the identified problem. Motivating the value of the solution also aids the researcher in 

presenting his/her understanding of the problem. The resources required for the first activity 

include the knowledge of the state of the problem, and the importance of its solution (Peffers 
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et al., 2007). During this research, the identification of the problem and motivation of the 

solution were explored by way of literature studies as discussed in Chapter 3 and 4.  

The second activity, define the objectives of a solution or artefact outline and requirements 

definition, defines the requirements that the solution needs to meet. Upon identifying the 

problems, it is necessary to determine the performance objectives of the solution. The 

objectives are inferred from the problem definition and knowledge of what is possible and 

feasible (Peffers et al., 2007). The objectives of the artefact can be either quantitative or 

qualitative. The quantitative objectives identify a desirable solution that would be better than 

the current one, whilst the qualitative objectives provide a description of how a new artefact is 

expected to support solutions to problems not previously addressed. The resources required for 

the second activity include knowledge of the state of the problems and the current solutions, if 

any, and their efficacy (Johannesson & Perjons, 2012). A literature study and exploration of 

existing systems assisted in defining the objectives of the proposed Charge Scheduling Model, 

and defining the requirements of both the Charge Scheduling Model and the EVCS prototype. 

In the third activity of DSR, Design and development, the artefact of the study is designed and 

developed. The type of artefact includes constructs, models, methods or instantiations or new 

properties of technical, social, and/or information resources. According to Peffers et al. (2007), 

a DSR artefact can be any designed object in which a research contribution is embedded in the 

design. The design activity includes determining the artefact’s desired functionality and the 

architecture, and then the creation of the actual artefact. The resources required to move from 

the objectives to the design and development, include knowledge of the theory that can be 

brought to bear in a solution (Johannesson & Perjons, 2012). The objectives of the proposed 

Charge Scheduling Model and the requirements of both the Charge Scheduling Model and 

EVCS prototype, as defined in the previous activity, provided a starting point for the design 

and develop activity. An EVCS prototype was developed to provide a proof of concept of the 

proposed Charge Scheduling Model. 

The fourth activity, Demonstration of the artefact, entails the demonstration of the developed 

artefact. The demonstration is performed to demonstrate the use of the artefact to solve one or 

more instances of the problem. This demonstration could involve using the artefact in 

experimentation, simulation, case study, proof or other appropriate activity (Peffers et al., 

2007). The resources required for the demonstration include effective knowledge of how to use 

the artefact to solve the problem (Johannesson & Perjons, 2012). The developed artefact will 
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be put through different scenarios that mimic real world situations, to demonstrate how the 

proposed solution will work. This process will represent the demonstrate activity in this study.  

The fifth activity is Evaluation of the artefact and involves the assessment of how well the 

artefact addresses the problem. This involves observing and measuring how well the artefact 

supports a solution to the problem. It also involves comparing the objectives of a solution to 

actual observed results from use of the artefact in the demonstration. It requires knowledge of 

relevant metrics and analysis techniques. Evaluation of the problem takes different forms 

depending on the nature of the problem and the artefact (Peffers et al., 2007; Johannesson & 

Perjons, 2012). An experimental evaluation was conducted to demonstrate the effectiveness of 

the proposed Charge Scheduling Model, using the EVCS prototype. This evaluation is 

discussed in detail in Chapter 7. 

The sixth and final activity, Communication, communicates the importance of the problem, 

the artefact, its utility and novelty, rigor of its design, and its effectiveness to relevant audiences 

such as practising professionals, when appropriate. The researcher may use the structure of this 

activity to publish research publications of the research process undertaken to complete the 

research (Peffers et al., 2007). Communication requires knowledge of the disciplinary culture. 

The outcomes and conclusions of this research study are communicated in Chapter 8. 

The activities identified in Table 2-2 were used to address the RQs identified previously 

(Section 1.6). 

2.5 DSR APPLICATION 

Table 2-3 maps research questions to the activities in which the research questions will be 

addressed, and the deliverable resulting from the DSR activity. 
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Table 2-3 Application of DSR to this research 

Research Question Chapter Activities Deliverables 

RQ1:  What factors 

influence energy 

generation in PV-

powered SMGs? 

Chapter 3: SMGs 

and Forecasting 
• Explicate Problem. 

• Outline Artefact 

and Define 

Requirements. 

• Factors influencing 

energy generation. 

RQ2: What models can be 

used to forecast energy 

generation in SMGs? 

Chapter 3: Smart 

Microgrids and 

Forecasting 

• Explicate Problem. 

• Outline Artefact 

and Define 

Requirements. 

• Requirements of the 

energy EFM. 

• List of potential 

forecasting models. 

RQ3: How accurate and 

efficient is the proposed 

model for forecasting 

energy generation? 

Chapter 4: 

Energy 

Forecasting 

• Design and 

Develop Artefact. 

• Demonstrate 

Artefact. 

• Evaluate Artefact. 

 

• EFM. 

RQ4:  What constraints 

influence the charge 

scheduling of EVs in PV-

powered SMGs? 

Chapter 5: 

Charge 

Scheduling of 

Electric Vehicles 

• Explicate Problem. 

• Outline Artefact 

and 

Define 

Requirements. 

• Requirements for 

Charge Scheduling 

Model. 

• Criteria for 

selecting. a 

scheduling 

algorithm. 

• Constraints for EV 

charge scheduling. 

• IoT Model. 

• Factors influencing 

charging behaviour. 

RQ5:  How can a model 

be designed and 

developed for the 

charging of EVs in PV-

powered SMGs? 

Chapter 6: 

Charge 

Scheduling 

Model 

• Design and 

Develop Artefact. 

 

• EVCS prototype. 

• Scheduling 

algorithm. 

• Charge Scheduling 

Model. 

RQ6:  How effective is 

the proposed Charge 

Scheduling Model in 

scheduling the charging 

of EVs? 

 

Chapter 7: 

Evaluation 
• Demonstrate 

Artefact. 

• Evaluate Artefact. 

• Recommended 

Improvements. 

• Qualitative feedback 

on Charge 

Scheduling Model. 

• Qualitative feedback 

on EVCS prototype. 
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The DSR is used to solve practical problems by developing artefacts that aid in addressing such 

problems in the IS field (Johannesson & Perjons, 2012). This research utilised the activities 

proposed by Peffers et al. (2007), and Johannesson and Perjons (2012). The mapping of the 

activities and the three-cycle view is illustrated in Figure 2-3. 

 

Figure 2-3 Mapping of the three-cycle view and DSR activities (Hevner & Chatterjee, 

2010) 

The identification of the problem and the motivation is analysed in Chapter 3 and 5. Chapter 3 

reports on a review of the literature on SMGs and energy forecasting, whilst Chapter 5 reviews 

literature on scheduling in the application domain of EVs. Chapters 3 and 5 also define the 

objectives of the proposed solution (second activity). The literature review in Chapters 3 and 5 

investigates existing SMGs and scheduling models (technical systems) and identifies 

shortcomings of current systems and how these shortcomings can be converted into 

opportunities. The shortcomings of current systems are used to identify the problem, and the 

opportunities form part of the motivation. This activity yields a clearly defined problem and 

motivation. The identification of a clear problem allows for objectives to be set for any 

proposed solution (second activity), in this case, the lack of Charge Scheduling Models for 

charging EVs in PV-powered SMGs. The objective of the solution is: To allow EV charging 

to be scheduled with minimal wait time. 

The third activity, design and development, is discussed in Chapters 4 and 6. The demonstration 

activity is discussed in Chapters 4 and 7.  The requirements identified in Chapters 3 and 5 are 

then used in the evaluation of the artefacts. The evaluation of the artefact is then discussed in 
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Chapter 7. The results of the research are then communicated in Chapter 8, which concludes 

this research project.  

 

Figure 2-4 Thesis Structure and DSR methodology 

There are  numerous  research strategies that were used in this research to address the research 

questions. These research strategies include a literature study, prototyping, and experiments. 

Literature Study: This strategy was used to perform the Explicate the problem, outline the 

artefact and define requirements activities of the DSR methodology (Peffers et al., 2007). The 

literature study introduces the topics of SMGs in South Africa, renewable energy sources, 

predictive analytics, scheduling problems and scheduling algorithms (Peffers et al., 2007).  

Prototyping: The design strategy was used to conduct the Design and Develop artefact 

activities of the DSR method (Peffers et al., 2007). The output of the literature study is used as 

design guidelines for the design of the EFM, and the scheduling algorithms (Peffers et al., 

2007). 

Experiment: Experiments were used in the Demonstrate activity of DSR to determine the 

accuracy of the EFM in forecasting energy generated in SMGs (Saunders,  Lewis & Thornhill, 

2011). Experiments are also used to determine the effectiveness and efficiency of the Charge 

Scheduling Model for scheduling the charging of EVs. 
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2.6 ETHICAL CONSIDERATIONS 

 Ethics clearance was not necessary for this research since no human subjects were required in 

this research. 

2.7 CONCLUSIONS 

The chapter discussed the research methodology and strategies used in this research. The DSR 

methodology was used throughout. The DSR approach presented by Hevner (2007) consists of 

three cycles - Relevance, Rigor and Design. Peffers et al. (2007) presented a six activities 

process approach to DSR to guide researchers and provide them with a structure within which 

to conduct their research. The three-cycle DSR approach, in conjunction with the DSR process 

activities, were used to manage how this research was conducted. This research utilised a 

literature study, a case study and interviews  to identify the challenges faced by EV drivers 

when they want to charge their EVs. 

The next chapter applies the first activities of the literature related to the DSR process, which 

is the problem identification activity. Chapter 3 focuses on reviewing SMG technologies, 

renewable energies, and forecasting models available for forecasting the energy generated by 

PV-powered SMGs.  
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CHAPTER THREE 

ENERGY FORCASTING IN SMART MICROGRIDS 

3.1 INTRODUCTION 

The preceding chapter discussed the research design for this research, and how the DSR 

methodology will be applied to this research.  This chapter addresses the following research 

questions: 

RQ1: What factors influence energy generation in a PV-powered SMG? 

RQ2: What models can be used to forecast energy generated in a SMG? 

  To address RQ1 and RQ2, this chapter will review literature on SMGs and SMG 

implementations in Section 3.2, and the challenges and opportunities presented by SMGs 

(Section 3.3). The case study used in this research uses a SMG that is powered by solar energy, 

implying that a discussion of the different types of renewable energy is necessary (Section 3.4). 

Section 3.5 will also review the literature on forecasting, particularly focusing on energy 

generated in PV-powered SMGs (RQ2).  The chapter will also review the different techniques 

that are used in forecasting (Section 3.5). The implications of the literature review will be 

discussed in Section 3.6, before several conclusions are made in Section 3.7. The structure of 

Chapter 3 is illustrated in Figure 3-1. 
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Figure 3-1 Chapter 3 Structure 

3.2 SMART MICROGRIDS 

Smart grids have become an important topic in the last few years due to the implementation of 

smart cities, as they are a critical component of the success of smart cities (Zanella, Bui, 

Castellani, Vangelista & Zorzi, 2014). Figure 3-2 illustrates the components of a smart grid. 

Some of the components necessary in a smart grid include controllers, computers, sensors, 

generators and actuators. 
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Figure 3-2 Components of a smart grid (Heart Transverter, 2016) 

The technology in smart grid networks allows for two-way communication between the 

consumers and the power utility. Smart grid networks use the concept of the IoT to collect and 

communicate data about the network to consumers and the utility (Zanella et al., 2014).  

The implementation of smart grids presents several advantages such as (Yan, Qian, Sharif, & 

Tipper, 2013; Goncalves Da Silva, Ilic, & Karnouskos, 2014): 

• More efficient transmission of electricity; 

• Quicker restoration of electricity after power disturbances; 

• Reduced operations and management costs for utilities, and ultimately lower power 

costs for consumers; 

• Reduced peak demand, which will also help lower electricity rates; 

• Increased integration of large-scale renewable energy systems 

• Better integration of customer-owner power generation systems, including renewable 

energy systems; and 

• Improved security. 

SMGs represent one piece of a larger smart grid that could eventually allow for easier smart 

grid implementation. SMGs function similarly to traditional grids by supplying distributed 

generation and managing localised grid operations. However, SMGs can provide a more 

efficient, reliable, and sustainable approach to supplying power by constantly balancing 

generation with load demands (Hare, Shi, Gupta, & Bazzi, 2016). SMGs can operate in two 
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forms, either as an island, which is disconnected from the main power grid, or connected to the 

main power grid (Figure 3-3). In an islanded SMG, the SMG does not draw power from the 

main electricity grid; the connection to the main electricity grid through Intelligent Building 

System (IBS).  

 

Figure 3-3 Main grid connected SMG (Vasquez & Guerrero, 2014) 

In a SMG that is connected to the main grid, the power from the SMG is supplemented by the 

main electricity grid (Figure 3-3). SMGs that are grid-connected allow for more reliability in 

power supply in case of power interruptions in either the SMG, or the main grid. 

3.3 CHALLENGES AND BENEFITS OF SMG 

Power utility companies have been reluctant to endorse microgrids (Xenias et al., 2015). The 

historical argument has been the safety concern of unintentional “islanding”, that is, a part of 

the grid that has become separated from the grid, but not shut down during a blackout. The 

safety concern is that unintentional islanding can be dangerous to utility workers, who may not 

be aware that a circuit within the “island” still has power (Parashar & Dhankhar, 2014). 

Secondly, islanding may prevent automatic reconnection of devices into the grid. Existing grid 

protocols address this concern in that they dictate that all distributed power generation must be 

shut down during power outages. To address these concerns, new inverter technologies have 

been designed to integrate renewable energy sources, such as solar and wind, while allowing 

safe operation in island mode (Parashar & Dhankhar, 2014).  
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Another challenge has been the lack of established standards for SMGs. However, the Institute 

of Electrical and Electronics Engineers in the United States of America has developed a 

standard, called the “Guide for Design, Operation, and Integration of Distributed Resource 

Island Systems with Electric Power Systems” (IEEE Standards Coordinating, 2011). The 

standard provides best practice guidelines for implementing SMGs and provides different ways 

in which SMGs can island and reconnect, seamlessly providing power to users of the SMG. 

The key ‘tipping point” for the adoption of SMGs into the overall smart grid architecture is 

cost. As costs for key SMG elements, such as renewable energy sources (e.g., solar), energy 

storage (e.g., batteries, supercapacitors), advanced load generation controls, and smart switches 

continue to decline, the economics for SMGs for specific applications will become cost 

competitive compared to traditional power sources. 

The growth of microgrids within distributed networks introduces new challenges such as 

reverse power flows, since electric networks are designed for one-way flow, more complex 

protection schemes, altered voltage profiles, and impacts to system stability (Eltigani & Masri, 

2015). Another reason why some users do not implement microgrids is that they lack 

knowledge of the potential benefits that microgrids present. 

SMGs present  numerous  opportunities or benefits. SMGs perform dynamic control over 

energy sources, meaning that they can adapt to varying operational conditions (Wang, O’Neill 

& Kamath, 2015). Examples include PV panels, wind turbines or the main power grid, enabling 

autonomous and automatic self-healing operations. During normal or peak usage, or at times 

of failure of the primary power grid, a SMG can operate independently of the larger grid, and 

isolate its generation nodes and power loads from disturbance, without affecting the larger 

grid's integrity (Salam, Mohamed & Hannan, 2008).  Thus, a SMG can provide more reliable, 

economical and efficient energy to communities, especially those with erratic power supplies. 

SMGs interoperate with existing power systems, information systems, and network 

infrastructure, and are capable of feeding power back to the larger grid during times of grid 

failure or power outages (Hare et al., 2016). SMGs ensure more reliable and efficient 

transmission of electricity and achieve this by guaranteeing that there is always an alternative 

source of power. In the case of power disturbances in the main electricity grid, the power supply 

will be restored faster by using a readily available power source from SMGs (Lasseter, 2011). 

SMGs can also reduce power costs to consumers, in two ways. Firstly, since consumers also 

produce energy needed using microgrids, the cost of maintaining the SMGs fall onto the owners 
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of the SMG. Secondly, since some of the energy needs of the consumers are being met using 

SMGs, the main power generator used by the power utilities will not be working at full capacity 

all the time, thus lengthening their life span, and the rate at which they will need to be serviced. 

Increased integration of large-scale renewable energy systems is one of the key benefits of 

SMGs, because integrating renewable energy sources reduces the carbon footprint in supplying 

each kilowatt hour to consumers. Better integration of customer-owned power generation 

systems is another benefit. Since there is an incentive of gaining money from supplying the 

excess power generated back into the main grid, customers tend to invest more into systems 

that can easily integrate with the main grid. The challenges and benefits of SMGs are 

summarised in Table 3-1. 

Table 3-1 Summary of challenges and benefits of SMGs 

Challenges Benefits 

Unintentional “islanding” (Parashar 

& Dhankhar, 2014). 

Dynamic control over energy sources (Wang et al., 

2015). 

Can prevent automatic reconnection 

of devices (Parashar & Dhankhar, 

2014). 

SMGs can operate independently (Salam et al., 2008). 

Reduce power costs (Hare et al., 2016); 

Lack of established standards 

(Davis & Costyk, 2005). 

SMGs interoperate with existing power systems 

(Lasseter, 2011). 

Threat of reverse power flows 

stability (Eltigani & Masri, 2015). 

Relieves pressure off the main grid (Lasseter, 2011). 

Integrates with the main grid relatively easier 

(Lasseter, 2011). 

The implementation of SMGs can provide lower electricity costs, reliable power supply and a 

reduced carbon footprint (Lasseter, 2011; Wang et al., 2015; Hare et al., 2016). These benefits 

are  a result of the use of a renewable energy supply. The next section explores the different 

types of renewable energy sources available that can be used in SMGs. 

3.4 RENEWABLE ENERGY 

PV power and wind energy have become more important as alternative energy sources in the 

last 15 years (REN21, 2019). Solar PV has seen a rise in output in the recent years as shown in 

Figure 3-4. The percentage power output from renewable energy sources increased to 181 

Gigawatts in 2018 (REN21, 2019). 
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Figure 3-4 World Energy Generation (REN21, 2019) 

3.4.1 Photovoltaic Energy 

Solar energy is the radiant energy produced by the sun. There are two main types of solar 

energy technologies, namely, solar thermal energy and solar PV energy (Zhang, Zhao, Smith, 

Xu & Yu, 2012).  

• Solar thermal energy - this technology converts solar energy into thermal energy. The 

thermal energy produced is used for activities such as space heating, or heating water 

to steam, and then the steam is converted into electricity using steam turbines.  

• Solar PV energy - this technology converts solar energy into electricity by using PV 

cells. PV systems can be installed on rooftops, integrated into building designs and 

vehicles, or scaled up to megawatt scale power plants. The energy is converted to 

electricity by PV cells, which absorb the energy.  

Figure 3-5 (a) illustrates the energy generated on a clear and sunny day, and Figure 3-5 (b) 

shows the energy generated on a cloudy day. Figure 3-5 (a) shows that the solar irradiance 

gradually increases, peaking around mid-day on a clear sunny day. Figure 3-5 (b) shows that 

the solar irradiance gradually increases in the morning, but unlike Figure 3-5 (a), the solar 

irradiance fluctuates throughout the day. 
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Figure 3-5 Atmospheric influence on a Solar System (Faranda & Leva, 2008) 

The amount of solar radiation reaching a surface as light photons determines the amount of 

energy generated by the PV cell. As the light photons travel through the atmosphere, some of 

the photons are absorbed by atmospheric elements, such as CO2, and scattered by clouds, 

implying that the amount of number of light photons reaching any surface is a function of 

atmospheric variables and cloud cover. The angle with which a surface is tilting also influences 

the number of light photons reaching that surface. The light photons are also subject to 

scattering (Faranda & Leva, 2008; Kelly & Gibson, 2011).   

PV systems are becoming more popular as more people are becoming environmentally 

conscious. PV systems are ideal for installation in areas with an abundance of sunlight, such as 

rural areas in Africa. It also costs less to setup PV systems compared to the cost of setting up 

grid infrastructure, which also increases the pressure on the electricity grid (Suberu, Mustafa, 

Bashir, Muhamad & Mokhtar, 2013). 
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In South Africa, the PV industry is small but growing exponentially, with an estimated 159 

MW installed already. This growth has largely been due to the fall in prices of PV panels, 

coupled with the increasing cost of electricity (De Vos, 2016). PV panels are comprised of PV 

cells, and the cells convert solar radiation from the sun into direct current (DC) (Lotsch, 

Goetzberger, & Hoffmann, 2005). In DC, electrons flow in one direction in a circuit, and in 

alternating current (AC), electrons do not move along with current flow and, instead, the flow 

of electric charge periodically reverses direction (Gelani, Nasir, Dastgeer & Hussain, 2017). 

Electricity is mostly used as AC because it is easier to transmit over long distances, making it 

cheaper. This means that the DC from the PV panels must be converted into AC before it can 

be used or transmitted. This conversion is done using an inverter. The inverter takes DC from 

the PV panels and converts it to AC. Inverters are fault detectors and data sources for the 

voltage and current in AC and DC circuits. There are also two types of inverters available for 

solar PV systems: a central inverter, and a micro-inverter. Micro-inverters optimise for each 

individual solar panel, not for an entire solar system, as central inverters do. Optimizing  for 

each individual solar panel enables every solar panel to perform at maximum potential. One 

solar panel will not drag down the performance of an entire solar array, as opposed to central 

inverters that optimize  for the weakest link (Sher & Addoweesh, 2012). The process by which 

solar energy is converted into electricity consists of four main steps (Figure 3-6). 

 

Figure 3-6 Solar energy conversion into electricity (DeBono, 2015) 
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PV systems convert energy from the sunlight into DC, as shown in Step 1. PV systems use 

different approaches to manage the energy produced. Solar energy can be converted from DC 

to AC (Step 2), and can be immediately used to power the home, as shown in Step 3 (Figure 

3-6). Alternatively, if there is no immediate use for power generated, the energy will be stored 

in battery packs for later use, for example in the evening when there is no sunlight. If the 

batteries are fully charged and there is no use for the excess power generated, then the excess 

power is fed into the main power grid, as illustrated in Step 4 (Figure 3-6). If the solar PV 

system is not connected to the grid, this excess power will be lost. 

3.4.2 Types of Data in the Energy Generation Process 

The data generated during the energy generation process is made up of several different data 

types, and is collected inside the PV-powered SMG. The amount of energy generated in the 

SMG is influenced by meteorological conditions (Ciobanu, Eftimie, & Jaliu, 2014). Therefore, 

it is important to collect this meteorological data from weather stations and/or weather services, 

such as AccuWeather (AccuWeather, 2018). The data can be collected at each point using 

sensors that can be used to collect the data (Figure 3-7). Figure 3-8 illustrates a general design 

of the data collection points in a PV-powered SMG, for charging EVs. The weather data, 

sourced from a weather service API, is stored in a central database. The energy generators and 

inverters have inbuilt sensors that record variables, such as the energy being generated per unit 

time, and operational status. Battery packs and charging points also carry similar sensors. All 

the data collected is transmitted to a central database, where it can be analysed and presented 

on a dashboard. 
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Figure 3-7 Architecture of SMG adapted from (Parashar & Dhankhar, 2014) 

When the sun is at its peak (intense), during midday, the most solar energy is collected; 

therefore, there is an increase in the energy output. During summer days when the temperature 

is at its highest, there is a heat build-up and this results in a reduction of efficiency in the energy 

generation process (Mejia, Kleissl, & Bosch, 2014; Vasisht, Srinivasan & Ramasesha, 2016). 

Vasisht et al. (2016) reported that module efficiency was reduced by 0.08 per cent  per degree 

rise in temperature for temperatures above 45C. The Lethabo PV plant in South Africa, has a 

reduction in efficiency from 91 per cent  to 78 per cent  in summer (Eskom, 2015). This 

reduction is because too much heat increases the conductivity of the semiconductors making 

the charges balance, thus reducing the magnitude of the electric field. In addition, if humidity 

penetrates the PV panel’s frame, this reduces the panel’s performance, resulting in a lower 

amount of energy being absorbed, and the permanent deterioration in the performance of the 

modules. However, in the summer the production is increased even though the efficiency is 

reduced (Eskom, 2015; Vasisht et al., 2016). Conditions, such as heavy rain and fog, can also 

decrease the amount of solar energy produced, and clear skies increase the amount produced. 

Renewable energy sources, the energy management system (EMS), and the main power grid 

generate large amounts of data that can be analysed in conjunction with environmental factors 

to add more value to SMGs. The data generated includes the solar yield, total power output, 

AC and DC input and output, state of charge, PV inverter yield and consumption. 
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Examples of the data that can be collected from data collections point PV-powered SMG 

(Figure 3-8) are provided in Table 3-2. The meteorological data that will be considered and 

collected for this study include solar radiation, wind speed, ambient temperature and humidity 

(Ciobanu et al., 2014). Cloud cover also needs to be considered for this research study, because 

cloudy days contribute to a decrease in the amount of sunlight collected, since clouds reflect 

some of the sun’s rays and limit the amount of sun absorbed by the PV panels. 

Table 3-2 Types of Data (Victronenergy, 2016) 

Data source Example of data type 

Meteorological data Solar radiation, cloud cover, wind speed, ambient temperature and 

humidity. 

Inverters  Current and voltage on AC and DC circuits, energy being produced, 

PV inverter yield. 

Storage Batteries State of Charge (SOC), DC output. 

PV panels DC output, kWh output. 

Charging Stations Time, AC input. 

Data can be collected from the inverters, lithium batteries and charging stations using built-in 

sensors that record the amount of energy passing through each component (Figure 3-8). 

The data repository created from all the various data collection points using sensors in this 

section can be analysed and used to create value for both energy producers and consumers. 

3.5 FORECASTING 

The value created from analysing data collected during the energy generation process includes 

more savings due to less energy consumption from the main power grid, extra income from 

supplying energy back into the power grid, and a stable and reliable energy source. Existing 

EMS only use the data collected to monitor the amount of energy generated, energy stored and 

energy that is used. One way of adding value is by applying load balancing and demand 

response based on usage patterns and environmental factors (Yu & Hong, 2016). Load 

balancing and demand response are critical to smart grids and can also be applied in microgrids 

(Wang et al., 2015). 
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The decisions relating to the deployment of PV arrays rely on insolation data, which is data 

that measures the amount of solar radiation that has reached the earth’s surface (SolarHomes, 

2012). Solar energy from the solar radiation is influenced by multiple factors such as location, 

elevation, season and weather conditions (Figure 3-8). However, this data only shows the 

variations in the amount of solar radiation collected at a specific location over time, but the 

data does not indicate the amount of solar energy that will be collected at a future point in time, 

given the same conditions. The lack of forecasting capability means that there is no way users 

can know if their future energy demands will be met, or not. This can be a major deterrent 

towards the adoption of SMGs that use solar PV energy. For example, a home owner needs to 

know whether they will have enough power to do their laundry without compromising their 

other power needs, and a power utility needs to know if enough energy is going to be generated 

to meet power demand, and how much additional power will be needed to supplement in case 

of  low sunlight. 

 

Figure 3-8 Solar Power and Solar Irradiation in South Africa (SolarHomes, 2012) 

A potential solution to this problem is to use predictive analytics to forecast the amount of 

energy generated. Predictive analytics use historical data to detect patterns in data and, based 

on the patterns, predict future behaviour (Wu & Coggeshall, 2012). Predictive analytics uses 

statistics, modelling, machine learning and artificial intelligence techniques to make the 

predictions (Wu & Coggeshall, 2012).  
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3.5.1 Energy Forecasting 

Predictive analytics are useful in SMGs as they can be used for strategic planning and 

forecasting demand (Hazen, Boone, Ezell & Jones-Farmer, 2014). Predictive analytics can be 

applied to the data generated by PV panels and weather data to forecast how much energy will 

be produced under certain weather conditions. This information can then be used in strategic 

planning, load balancing and forecasting demand. There are  numerous   machine learning 

based predictive algorithms that can be used to detect patterns and make predictions in the data, 

using predictive modelling. Predictive modelling is the method used by predictive analytics to 

create a statistical model to make predictions (Richiardi, Achard, Bunke & Ville, 2013). 

A study was conducted by Foley, Leahy, Marvuglia and McKeogh (2012), to determine the 

current methods for forecasting the amount of power generated from wind turbines. Foley et 

al. (2012) acknowledged the stochastic nature of weather, particularly wind speeds, and 

categorised forecasting models into two broad categories: 

• those that use historical time series of wind speeds; and 

• those that use estimated values from a numerical weather prediction model as input. 

The first category uses statistical analysis to forecast the average hourly wind speed to forecast 

power production. The second category uses exploratory variables, such as average hourly 

wind speeds and direction derived from the meteorological model of the wind dynamics to 

predict wind power N-steps ahead. The results of the study revealed that the first category 

obtained good results in  most cases, in the estimation of mean monthly, or even higher 

temporal scale (quarterly, annual) wind speed. However, in mean daily, or hourly wind speed 

forecasts, the influence of atmospheric dynamics is more important, so that the use of the 

models of the second category becomes essential.  The second category uses methods such as 

physical methods. The models developed for physical methods generally use global databases 

of meteorological measurements, but they require large computational systems  to achieve 

accurate results due to the amount of data used as input. In the physical approach, a detailed 

description of the lower atmosphere is used to estimate the wind power output. The second 

category also uses a statistical and learning based approach that uses vast amounts of data and 

meteorological processes that are not explicitly represented. The statistical and learning 

approach establishes a link between historical power production and weather first, and then the 

link is used to forecast the future power output. The research showed that Support Vector 
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Machines (SVMs), Bayesian statistics and artificial neural networks are used to establish the 

link between weather and wind power output, because they have been shown to produce better 

forecasts (Foley et al., 2012). Even though the study was specifically used for wind power 

generation, the same approach could be taken to determine the best approach in forecasting the 

amount of energy generated from PV-powered SMGs. The nature of the weather variables 

considered are the same for wind power and PV panels. 

Another study worth considering was conducted by Zeng and Qiao (2013), who determined 

the effectiveness of using SVMs over auto regressive (AR) models in the prediction of short-

term solar power. The study acknowledged the different variables that influence the amount of 

solar power produced, but only looked at one variable, namely solar radiation, to predict the 

solar power output.  The study revealed that SVMs are superior to AR models at predicting 

solar power produced when looking at short term prediction (Zeng & Qiao, 2013). Although 

the study only focused on short term prediction, which was an hour ahead prediction, SVMs 

are a strong candidate for forecasting the amount of energy generated in SMGs. One 

shortcoming of this study was that only one variable was considered in predicting the solar 

power output, and more meteorological variables should be considered. 

A review of the techniques that can be used to forecast energy generated was conducted by 

Inman, Pedro and Coimbra (2013). The review showed that regressive based forecasting 

techniques, which utilise the correlated nature of irradiance observations, perform well in both 

data-rich and data-poor environments. This study also showed that artificial intelligence (AI) 

based forecasting techniques offer improved non-linear approximator performance. The AI 

based techniques are more appropriate for non-linear, stochastic and multivariate problems. 

Examples of AI-based techniques include artificial neural networks (ANN), and multi-layer 

networks, such as multi-layer perceptron (MLP). The study showed that ANN-based 

techniques perform well in data rich environments, and these techniques have successfully 

modelled solar irradiance from an intra-hour to yearly time horizons (Inman et al., 2013). 

The results of the studies conducted by Foley et al. (2012), Zeng and Qiao (2013), and Inman 

et al. (2013) suggest that there is potential in using machine learning algorithms to predict the 

amount of energy that can be generated by PV panels. The study by Zeng and Qiao (2013) 

focused on showing the effectiveness of the forecasting technique in the short term, whilst the 

study by Inman et al. (2013) reviews the different forecasting techniques that have yielded 

success in both the short- and long-term time horizons 
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The different approaches used will be considered and adapted to create a predictive analytics 

model that can be used to forecast the amount of energy generated in a PV-powered SMG. In 

the next section we look at the different algorithms that can be used for prediction, however, 

the list is not exhaustive. AR models were not investigated, because the study conducted by 

Zeng and Qiao (2013) suggests that AR-based models are inferior to SVM in energy 

forecasting. 

3.5.2 Prediction Algorithms3 

There are two common approaches used for predictions. The first approach is to use a 

continuation of a trend line generated by plotting past data.  This approach represents a simple 

approach to prediction. However, although simple in its approach, it often produces inaccurate 

results. Inaccurate results are more prevalent for data from dynamic environments, and the 

environment is influenced by external factors. The second approach involves creating a 

predictive model. The generated predictive model should evaluate all the variables impacting 

on the results. The model will predict results in relation to a future scenario. Data mining 

technology can be used to understand how all the impacting variables relate to each other 

(Mittal & Gill, 2013; Sivarajah, Kamal, Irani & Weerakkody, 2017). The following sections 

investigate different machine learning based predictive models. 

3.5.2.1 Linear Regression 

A linear regression algorithm is used to estimate real values using continuous variables (Seber 

& Lee, 2014). This algorithm establishes the relationship between independent and dependent 

variables by fitting a line of best fit. The line of best fit is based on the following linear equation: 

𝑦 = 𝑎 ∗ 𝑥 + 𝑏    (1) 

Where y is the dependent variable, a is the slope, x is the independent variable, and b is the 

intercept. The coefficients a and b are derived based on minimising the sum of the squared 

difference of distance between data points and the regression line. Linear regression can be in 

two forms, namely, simple linear regression or multiple linear regression. Simple linear 

 
3 This is contained in a peer-reviewed conference paper at the South African Telecommunications and Network 

Applications Conference in September 2018. Nyumbeka D., Wesson JL. and Scholtz B. Machine Learning 

Models for Forecasting Energy Generated in Photovoltaic-powered Smart Microgrids. SATNAC 2018 

Proceedings. (APPENDIX B) 
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regression is characterised by one independent variable, and multiple linear regression is 

characterised by multiple independent variables (Seber & Lee, 2014).  

3.5.2.2 Neural Networks (Multilayer Perceptron) 

The Multilayer Perceptron (MLP) is one of the most common  techniques used that uses 

machine learning algorithms. The MLP can be used for both classification and regression 

(Ribarsky, Xiaoyu Wang, & Dou, 2014), and is represented by the following mathematical 

expression: 

ŷ = v 0 + ∑ 𝑣𝑗𝑔(𝑤𝑗
𝑇𝑥)

𝑁𝐻

𝑗=1

   (2) 

Where x ̀ is the input x, augmented by 1, i.e. x ̀=〖(1, x^T)〗^T,wj is weight of the jth hidden 

node v_0, v_1, v_20 … . v_NH, are the weights of the output node, and y ̂is the output of the 

network.  

To obtain the weights, the mean square error is defined, and the weights are optimised using 

gradient techniques (Ahmed, Amir, Neamat & El-Shishiny, 2010; Hassim & Ghazali, 2012) 

Figure 3-9 represents a neural network with one hidden layer.  The main advantages of MLPs 

are that the network can learn from non-linear models, and it can learn in real time. 

 

Figure 3-9 One hidden layer MLP (Hassim & Ghazali, 2012) 
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3.5.2.3 Decision Trees 

The decision tree algorithm can be used to solve classification problems (Rokach & Maimon, 

2014). The algorithm is a type of supervised learning algorithm. An advantage of the decision 

tree algorithm is that it can be used for dependent and categorical variables. The algorithm 

splits the population into two or more homogenous sets. The classification is done on the most 

significant independent variables, to make as many distinct groups as possible (Rokach & 

Maimon, 2014).  

3.5.2.4 Support Vector Machine (SVM) 

A SVM plots each data item as a point in n-dimensional spaces, where n is the number of 

variables, and the value of each variable is the value of a coordinate. SVMs are based on 

statistical learning theory (Räsänen, Voukantsis, Niska, Karatzas & Kolehmainen, 2010). 

SVMs have been applied successfully in classification problems, regression and forecasting, 

as they include aspects and techniques from machine learning, statistics, mathematical analysis 

and convex optimisation. SVMs possess adaptability, are globally optimisable, and generally 

perform well. SVMs are also suitable for classification of small samples of data (Radhika & 

Shashi, 2009; Raghavendra & Deka, 2014). The study by Zeng and Qiao (2013) provided 

results that show that SVMs can be used effectively to forecast energy output. 

3.5.2.5 Naive Bayes 

The Naïve Bayes algorithm is based on the Bayes theorem and the theorem of total probability. 

The algorithm assumes independence between predictors (Patil & Sherekar, 2013). The 

algorithm assumes that the presence of a feature in a class is unrelated to the presence of any 

other features in the data. The result of this assumption is that all the features, although 

independent, contribute to the probability of a condition being true. The assumptions of 

independent conditionality do not always hold true in real world applications, yet the 

algorithms learn rapidly in some supervised classification problems (Dimitoglou, Adams, & 

Jim, 2012). 

3.5.2.6 K-Nearest Neighbours (KNN) 

The KNN algorithm can be used in both regression and classification problems. The algorithm 

utilises all the available cases in the dataset to classify new cases by a majority vote of the new 

case’s K neighbours (Vikjord & Jenssen, 2014). The algorithm performs well where cyclical 
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data such as year, month, day and time are involved. The KNN algorithm can be tuned to work 

with cyclical data, unlike tree methods, for example, which are not able to deal with cyclical 

factors (Mangalova & Agafonov, 2014). However, the KNN algorithm can be computationally 

expensive. 

3.5.2.7 K-Means 

The K-means algorithm solves clustering problems, and the algorithm is a type of unsupervised 

learning problem. The algorithm classifies a dataset using a set number of clusters (k clusters). 

This is done in such a way that intra-cluster similarity is high, and the inter-cluster similarity 

is low (Capó, Pérez & Lozano, 2016). The data points in a cluster are homogenous and 

heterogeneous to clusters around it (Al-Wakeel, Wu & Jenkins, 2016). K-means is described 

by (Capó et al., 2016), as follows: 

Given a set of n data points (instances) D= {x1…xn} Rd and an integer K, the K-means problem 

is to determine a set of K centroids C={c1,…cK} C={c1,…,cK} in Rd to minimize the following 

error function: 

𝐸(𝐶) =  ∑  𝑘=1…𝐾
  min||𝑥 − 𝑐𝑘||2    (3)

𝑥∈𝐷

 

Some of the advantages of the K-means algorithm are that the algorithm is simple, efficient, 

scalable, and can handle big data linear complexity with the size of the dataset. The 

disadvantages include that  numerous  clusters must be defined in advance, which are sensitive 

to noise and outliers (Räsänen et al., 2010; Bandyopadhyay & Saha, 2012; McLoughlin, Duffy, 

& Conlon, 2015). There are many other algorithms that can be used in predictive analytics. The 

decision as to which algorithm to use is dependent on a number of factors, primarily the 

performance of the algorithm, the accuracy of the algorithm, and then evaluating which 

algorithm best helps in accomplishing the research objectives, i.e. accurately forecasting 

energy generation in a SMG. 

This literature review has shown that there is potential for growth and adoption of SMGs, and 

that the rate of adoption can be increased by forecasting the amount of energy generated inside 

a SMG. The literature also showed that existing algorithms are available that can be adapted to 

forecast the amount of energy generated in the SMG. However, each algorithm will need to be 

implemented and evaluated to test its accuracy and performance. The results will then be used 
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to make a recommendation on which algorithm is the most appropriate in terms of accuracy 

and performance. 

Now that the forecasting of energy generated in SMG has been discussed, the next section 

discusses implications from the literature study. The EVs are charged using energy from the 

SMG, and the schedules generated rely on the energy forecast as input, thus making the 

literature reviewed in Section 3.2 – Section 3.5 necessary. 

3.6 IMPLICATIONS 

The preceding sections discussed existing models that have been used in forecasting, and some 

algorithms that are used in predictive modelling. The studies reviewed in Section 3.5 show that 

machine learning based algorithms that use statistical principles can be more effective and 

produce reliable predictions of the amount of the energy generated. It can, therefore, be 

deduced that the EFM for forecasting energy generated in PV-powered SMG should 

incorporate principles from statistical modelling, computational and algorithmic intelligence  

to make accurate forecasts. 

The literature review revealed that only one environmental factor was used in previous studies. 

However, this study will use three environmental variables, namely: 

• Ambient temperature; 

• Humidity; and 

• Cloud cover. 

The EFM must predict how these variables influence each other, implying that a multivariate 

statistical model will have to be considered when building the model, since the ambient 

temperature, humidity and cloud cover are dependent variables (Dattalo, 2013). Multivariate 

regression models relationships between multiple variables that have an influence on each of 

the variable’s relationship with the output (Tofallis, 2011). The requirement to forecast the 

energy generated from these weather variables comprises the first requirement for the EFM: 

R1 - Use air temperature, cloud cover and humidity to forecast the energy generated in 

PV-powered SMGs. 
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  For the model to be effective, the energy forecasts must be effectively generated, resulting in 

the second requirement: 

R2 - Provide energy forecasts in real time. 

The meteorological variables that will be considered and collected for this study are solar 

radiation, wind speed, ambient temperature and humidity (Ciobanu et al., 2014). Cloud cover 

also needs to be considered, because cloudy days contribute to a decrease in the amount of 

sunlight collected, since clouds reflect some of the sun’s rays and limit the amount of sun 

absorbed by the PV panels. 

Data can be collected from the inverters, lithium batteries and charging stations using built-in 

sensors that record the amount of energy passing through each component (Figure 3-8). 

3.7 CONCLUSIONS 

This chapter investigated RQ1 and RQ2, and reported on literature in the field of smart grids 

and SMGs, particularly focusing on SMGs that are powered by renewable energy (Section 3.2).  

The outcomes of Section 3.2 provided an in-depth discussion on how SMGs are implemented 

and the different types available. The case study used in this research will be an off-grid SMG, 

with the option to integrate with the main grid. This section also illustrated how the 

environmental factors, such as temperature and cloud cover, can influence the amount of 

energy generated. Cloud cover reduces the amount of energy generated, and clear skies have 

the reverse effect. The identification of these variables addresses RQ1, and these weather 

variables will be used as input for forecasting. 

Section 3.5 reviewed forecasting models that have been used in energy generation previously. 

The literature study in Section 3.5 revealed that a combination of statistical principles, 

computational intelligence and algorithm design should be used  to generate accurate forecasts.  

The key contributions from this chapter are: 

• The identification of the three factors that influence energy generation, namely: ambient 

temperature, humidity, and cloud cover; 

• Models that can be used to forecast energy generated in a PV-powered SMG are: MLP, 

Decision Trees, SVM, KNN and Naïve Bayes; 
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Section 3.6 also provided another key deliverable from this chapter, namely the requirements 

of the EFM model, which are: 

R1 - Use air temperature, cloud cover and humidity to forecast energy generated in PV-

powered SMGs, and, 

R2 - Provide energy forecasts in real time. 

The next chapter investigates how the machine learning based forecasting models can be 

applied to energy forecasting in PV-powered SMGs. Chapter 4 focuses on the design, 

implementation and evaluation of energy forecasting to determine the capacity of the SMG. 

The energy available was identified as one of the constraints in scheduling the charging of EVs, 

therefore, forecasting of the capacity is required. 

  



43 

CHAPTER FOUR 

ENERGY FORECASTING 

4.1 INTRODUCTION 

The preceding chapter reviewed literature on forecasting energy generation in PV-powered 

SMGs. The chapter also proposed a set of requirements for an EFM.  This chapter reports on 

the DSR activity of design and development of the EFM, and addresses the following RQ: 

RQ3: How effective is the proposed model for forecasting energy generation? 

This chapter will use the design implications from Chapter 3 to propose an EFM that can be 

used to forecast the amount of energy generated from PV-powered SMG. This chapter, as 

illustrated by Figure 4-1, outlines how DSR was followed during the design phase of the 

proposed EFM. Section 4.2 presents the overview and case study used in this research. The 

design process for the EFM is then discussed in Section 4.3. Section 4.4 will also review the 

implementation of the proposed EFM, as well as the development process and tools used during 

the implementation of the proposed EFM. Section 4.5 covers the evaluation of the proposed 

EFM. Section 4.6 includes the evaluation methods, the evaluation procedure and the results of 

the evaluation. Section 4.7 concludes with a discussion of the effectiveness of the proposed 

model. An overview of the case study used in this research is provided  to understand the 

context in which the EFM was built and will operate. 
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Figure 4-1 Chapter 4 Structure 

4.2 OVERVIEW OF CONTEXT AND CASE STUDY 

The case study used in this study was a SMG installed in South Africa, which has 46 PV panels 

connected in 2 strings. A string is a series of connected PV panels (Trpezanovski & Dimitrov, 

2016). The SMG is owned and operated by a South African National e-mobility program that 

is conducting research and development into the commercialisation of key technologies that 

will support the EV industry in South Africa.  Each PV panel in the SMG has a maximum 

power output of 255 Watts, making the total output of the SMG equivalent to 11.73 kW. For 

the experiments, the microgrid was set to run so that maximum output was produced, and the 

inverter output was recorded. The microgrid implementation uses the IEC61850 protocol 
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(Mackiewicz, 2006). Figure 4-2 shows uYilo’s charging station, located at the Nelson Mandela 

University. 

 

Figure 4-2 uYilo e-mobility centre 

The aim of the IEC61850 protocol is to ensure the automation system is future proof, flexible, 

scalable, maintainable and provides interoperability between the intelligent devices 

(Mackiewicz, 2006). The protocol recommends hierarchical Ethernet-based substation 

automation architecture to monitor and control the system using a virtualisation concept of the 

system aspects.  

 

Figure 4-3 IEC61850 Implementation 
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Figure 4-3 depicts a server that is connected to the EMS via TCP/IP using the IEC61850 

Manufacturing Message Specification (MMS) standard to ensure standardisation of 

communication. The server will be accessible remotely, and controlled and monitored through 

the EMS, enabling the user to monitor and control the system. Table 4-1 summarises the 

parameters that are accessible and controllable via the TCP/IP connection. 

Table 4-1 SMG parameters accessible via TCP/IP. 

Component Parameter 

Battery Management 

System (BMS): 

 

• BMS mode indication as well as selectable. 

• Battery voltage indication. 

• Battery SOC indication. 

Inverter • Inverter mode indication and selectable (system reset, on, off, 

standby, etc.). 

• DC bus voltage indication. 

• Battery voltage, current and power indication. 

• Charging mode (Constant current/ constant voltage) indication. 

• PV power indication. 

• AC 3 phase output power, voltage, and current and frequency 

indication. 

• Grid 3 phase voltage and frequency indication. 

Grid switch Closed or open (inverter grid connected or Micro-grid mode) 

indication, as well as being selectable. 

Transfer switch • Each switch position (grid/ micro-grid) indication, and selectable. 

• Switch voltage, current and power feedback indication. 

The above controllable parameters work on the same principle that the current system works 

on via the EMS, by having the system be configured by the user when the EMS algorithm is 

not selected to be ‘active’. In the case where the algorithm is indeed on/active, the system 

configures the controllable parameters automatically.  

The following is required via an Ethernet connection: 

• EMS algorithm: 

o Mode selection needs to be indicated and controlled by the user. 
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• Algorithm parameters need to be indicated and changeable: 

o Time of day parameters; 

o SOC of battery pack; 

o Charge rate adjustments enabled; and 

o Grid connection/disconnection. 

4.3 DESIGN 

This section discusses the steps in the design process of the EFM. The artefact design process 

is discussed in the Section 4.3.1. Section 4.3.2 explores the objectives and requirements of the 

EFM. Section 4.3.3 discusses the actual design of the EFM. 

4.3.1 Artefact Design Process 

The literature review (Section 3.2 to Section 3.4) was used as the basis on which the proposed 

EFM was built, and highlighted why there is a need for forecasting the amount of energy 

generated in a PV-powered SMG. Section 3.4 analysed existing models that can be used in 

forecasting, and these models will serve as input in the design of the EFM. The DSR 

methodology aims to provide a solution to real-world problems using artefacts. An artefact will 

be designed that forecasts the energy generated in a PV-powered SMG.  The objectives of the 

model were identified through a literature study and extant systems analysis. Figure 4-4 

illustrates the artefact design process.  

 

Figure 4-4 Artefact design process 
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Section 2.4 identified the three cycles involved in the DSR methodology according to Hevner 

(2007). Two of the cycles were applied during the artefact design process, that is, the relevance 

and rigor cycles. During the rigor cycle, the challenges in forecasting energy generated in a 

PV-powered SMG were identified, as well as the different forecasting models that could be 

applied to the problem of forecasting the energy generated in SMGs. The relevance cycle 

involved the analysis of existing EFMs. Together, the rigor and relevance cycles provided input 

for the design cycle of the DSR methodology. 

4.3.2 Objectives and Requirements of the Energy Forecasting Model 

The identification and explicit outline of the objectives of the EFM is key in evaluating the 

proposed model. The objectives were identified from the literature study (Section 3.5) during 

the rigor cycle of DSR methodology, and the existing systems analysis was identified during 

the relevance cycle of the DSR methodology. The objectives of the EFM will also assist with 

outlining the requirements of the EFM. At this point, it is important to make a distinction 

between the EFM and the energy forecasting system. The EFM relies on forecasting techniques 

based on machine learning and statistical techniques. On the other hand, an energy forecasting 

system uses the proposed model to forecast energy generated in the PV-powered SMG. 

Therefore, the objectives of each will be listed separately. 

One of the key steps in successfully developing an EFM is to define the objectives of the 

forecasting model (Ahmed et al., 2010; Richiardi et al., 2013). The key objectives identified 

for the EFM in a PV-powered SMG are as follows: 

• Accurately forecast the 24-hour capacity of a PV-powered SMG using air temperature, 

cloud cover and humidity; and 

• Forecast energy generated in PV-powered SMG in real time. 

The requirements of the model were gathered during the second activity (Outline artefact and 

Define the requirements) (Section 3.4) of DSR. The three primary requirements are: 

R1 – To use air temperature, cloud cover and humidity to forecast energy generated in 

PV-powered SMGs (Section 3.6), 

R2 – To provide energy forecasts in real time (Section 3.6), and 
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R3 – To provide accurate 24-hour energy forecasts (Section 4.2). 

4.3.3 Design of Energy Forecasting Model 

Chapter 3 concluded by recommending forecasting models that can be used to estimate the 

amount of energy generated in a PV-powered SMG (Section 3.5.2). Section 3.5.2 revealed that 

there are  numerous  models, such as machine learning models that use statistical techniques 

that can be used to forecast energy generated. The environmental factors that are considered in 

this research are ambient air temperature, humidity and cloud cover. The proposed model will 

need to show how these environmental factors influence the energy created (Dattalo, 2013).  

Following the objectives of the model, the next phase is to gather the data the model will ingest. 

The data that will be considered by this model are air temperature, humidity, wind speed, cloud 

cover and inverter yield. These weather variables were identified during the literature review 

in Section 3.4.1 and Section 3.5. The environmental factors are shown in Table 4-2. 

Table 4-2 Environmental factors 

Variable 

Air temperature 

Cloud cover 

Humidity 

Wind speed 

The weather in Table 4-2 was  collected using an application programming interface (API), 

from weather data providers such as AccuWeather (AccuWeather, 2018). AccuWeather 

provides an API where the selection of weather variables is required for a geolocation. The 

data provided  was gathered from a local weather station in Port Elizabeth. The inverter yield 

used as training data was collected from the inverter at the SMG located at uYilo. The inverter 

yield was  collected every 30 minutes, and the corresponding weather data was collected as 

well.  

After data collection, the next phase in predictive model design is the process of cleaning the 

data (Zeng & Qiao, 2013). Cleaning data refers to the process by which any missing values in 

the data is removed. Data cleaning is an important part of the predictive modelling design 
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because it ensures data integrity. Before the data collected is used to train the proposed model, 

missing values must be removed, because the missing data can interfere with the integrity of 

the model (Mittal & Gill, 2013; Salem & Abdo, 2016). 

After the data has been cleaned, the next phase is to specify which subset of the data is going 

to be used to train the model. Depending on the method used, this process can be changed 

dynamically. Changing the subset of data used to train the model, can be used to test the 

robustness of the predictive model  

The proposed forecasting model uses the approach considered in Section 3.5.2. This section 

identified KNN, Decision trees, SVR, MLP and Naïve Bayes as the machine learning models 

that can be used in energy forecasting. Figure 4-5 illustrates the proposed design for forecasting 

the energy generated in a PV-powered SMG. Weather forecasts are collected from weather 

APIs, such as AccuWeather, and inverter data is collected from the MLT server. MLT is the 

brand of the inverter used and automatically logs all readings from the inverter to a remote 

server. This data is collected and stored in the database with matching timestamps. The data 

pre-processing, results in the data having matching time stamps. After collection, the data is 

then used to train the identified machine learning models. 

 

Figure 4-5 Proposed Forecasting Model adapted from (Yoo & Hur, 2013) 

4.4 DEVELOPMENT OF ENERGY FORECASTING MODEL 

There are  numerous  tools that can be used to develop machine learning based forecasting 

models. Examples include Java, Python, and R. This project used Python as the development 

language using Anaconda’s integrated development environment’s toolkit. Python was 
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selected as the programming language, because it has emerged as one of the more powerful 

languages for predictive analytics (Begoli & Horey, 2012; Davenport & Dyche, 2013; 

O’Driscoll, Daugelaite, & Sleator, 2013), and it was suitable for the case study environment.  

The machine learning algorithms, KNN, MLP, Decision trees, and SVR were implemented in 

a library called Scikit-learn (Scikit learn, 2017). Scikit-learn is a free machine learning library 

for the Python programming language. Scikit-learn is optimised to interact with Python’s 

scientific libraries NumPy and SciPy (Scikit learn, 2017). 

The data was then fitted into a regression model and the kernel used was specified. The kernel 

used in the development of this model was the radial basis function (RBF). The RBF uses a 

gamma parameter, which must be greater than one. The behaviour of the model is  sensitive to 

the gamma parameter. If gamma is too large, the radius of the area of influence of the support 

vectors only includes the support vector itself, and no amount of regularisation with C will be 

able to prevent overfitting. When gamma is  small, the model is too constrained and cannot 

capture the complexity or “shape” of the data. The region of influence of any selected support 

vector would include the whole training set. The resulting model will behave similarly to a 

linear model, with a set of hyperplanes that separate the centres  of high density of any pair of 

two classes (Albon, 2016; Scikit learn, 2017). The estimates are generated after fitting the data 

into a regression model.  

The next section discusses the evaluations conducted to test the accuracy of the predictive 

model used. 

4.5 EVALUATION 

The objective of this section is to evaluate whether, or not, the objectives and requirements of 

the EFM were achieved. The strategies for evaluation used in DSR objectives are discussed in 

Section 4.5.1. The evaluation plan follows in Section 4.5.2. 

4.5.1 Evaluation Strategies for the DSR evaluation 

Evaluations in DSR are concerned with the assessment of DSR outputs, i.e. models, theories 

and artefacts. Evaluations are an important aspect of DSR that assist researchers in 

demonstrating the utility, quality, and efficacy of design artefacts using rigorous evaluation 

methods (Hevner et al., 2004). It is vital that artefacts are evaluated  to assess the artefacts’ 

impact on solving a real-world problem. Pries-Heje, Baskerville and Venable (2008) support 
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the importance of artefact evaluations by highlighting the impact that an evaluation has on the 

designer’s thinking. The evaluations tend to influence the designer’s thinking due to the 

iterative nature of build and evaluate within the design cycle. The design cycle seeks not only 

to deliver a well-defined artefact, but also to contribute to the body of knowledge within the 

research domain. Pries-Heje et al. (2008) argue that without knowledge generation during 

evaluation, DSR could potentially be concluded by only theorising the utility of the designed 

artefact. This, then, results in failure to fulfil  research goals affiliated with new knowledge 

generated by the assessment of the impact the artefact has in practice. Therefore, the evaluation 

process should not only address the quality of the artefact as a utility, but also the quality of its 

knowledge output. The significance of the quality of knowledge output emphasises the need to 

have sound evaluation strategies and methods.  

The Framework for Evaluation in Design Science Research (FEDS) was developed by 

(Venable, Pries-heje, & Baskerville, 2016) for evaluation in DSR. The objective of the FEDS 

is to aid DSR researchers in the establishment of appropriate evaluation strategies and methods 

to meet the needs of their particular DSR project (Figure 4-6). The FEDs address the question:  

What would be a good way to guide the design of an appropriate strategy for 

conducting the various evaluation activities needed throughout a DSR project? 

 

Figure 4-6 Framework for Evaluation in Design Science with Strategies (Venable et al., 

2016) 
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The FEDS framework not only aids researchers in the establishment of the appropriate 

evaluation strategy, or methods for the output of a DSR research project, but also provides a 

process for using the framework to design the particular evaluation strategy. The framework 

supports evaluation design decisions by creating a bridge that maps evaluation goals to 

evaluation strategies. The framework is built  based  on  the following:  

• The functional purpose of the evaluation, and 

• The paradigm of the evaluation.  

Existing literature classifies the functional purpose of evaluations into two categories (Pries-

Heje et al., 2008; Venable et al., 2016), namely, formative and summative. Formative 

evaluations are evaluations that take place before or during a project’s implementation, with 

the aim of improving the project’s design and performance. Summative evaluations are used 

to produce empirically based interpretations that provide a basis for the creation of shared 

meanings about the artefact in different contexts. Summative evaluations focus on meanings 

and support the kinds of decisions that influence the selection of an artefact for an application. 

This implies that formative evaluations are more appropriate for the design of the artefact, and 

summative evaluations are more appropriate for evaluating the extent to which the results 

match the expectations of the artefact. 

The FEDS framework proposed by Venable et al. (2016) identifies four evaluation strategies 

that can be used when selecting the best-suited evaluation strategy, as follows: 

• Quick and simple; 

• Human risk and effectiveness; 

• Technical risk and efficacy; and  

• Purely technical artefact. 

Quick and simple - this strategy conducts relatively little formative evaluation and progresses 

quickly to summative evaluations. The evaluation trajectory of this strategy includes relatively 

few evaluation episodes leading to low cost and quick project conclusions, even though the 

strategy may not be reasonable in the face of various design risks (Venable et al., 2016).  

The human risk and effectiveness - this strategy emphasises formative evaluations early in 

the process, possibly with artificial-formative evaluations, but progressing quickly to more 
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naturalistic-formative evaluations. Near the end of this strategy, more summative evaluations 

are utilised, which focus on the rigorous evaluation of the effectiveness of the artefact. The 

utility/benefits of the artefact will continue to accrue even when the artefact is placed in 

operation in real organisational situations, and over the long run, despite the complications of 

human and social difficulties of adoption and use (Venable et al., 2016). 

Technical risk and efficacy - this strategy emphasises formative evaluations iteratively earlier 

in the process, but progressively moving towards artificial summative evaluations. Venable et 

al. (2016) said that “Artificial summative evaluations are used to rigorously determine the 

efficacy of the artefact, that is, the utility/benefits derived from the use of the artefact are due 

to the artefact, not due to other factors”. Towards the end of the technical risk and efficacy 

strategy, more summative-naturalistic evaluations are engaged (Venable et al., 2016). 

Purely technical strategy - This is used when an artefact is purely technical, without human 

users, or planned deployment, with users  so far removed from what is developed to make 

naturalistic evaluation irrelevant. This strategy is similar to the quick and simple strategy, but 

favours artificial over naturalistic evaluations throughout the process, as naturalistic strategies 

are irrelevant to purely technical artefacts, or when planned deployment with users is far in the 

future (Venable et al., 2016). Table 4-3 summarises the relevant circumstances where one may 

select each of the four strategies.  
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Table 4-3 Selecting a Relevant DSR Evaluation Strategy - adapted from (Venable et al., 

2016) 

DSR evaluation 

strategies 
Circumstance selection criteria Functional Purpose  

Quick and simple If small and simple construction of design, with 

low social and technical risk and uncertainty. 

Formative 

Summative 

Human risk and 

effectiveness 

 

If the major design risk is social or user-oriented 

and/or; 

If it is relatively cheap to evaluate with real users 

in their real context and/or; 

If a critical goal of the evaluation is to rigorously 

establish that the utility/benefit will continue in 

real situations and over the long run. 

Formative 

Summative 

 

Technical risk and 

efficacy 

If the major design risk is technically oriented 

and/or; 

If it is prohibitively expensive to evaluate with 

real users and real systems in the real setting 

and/or;  

If a critical goal of the evaluation is to rigorously 

establish that the utility/benefit is due to the 

artefact, not something else. 

Formative 

Summative 

Purely technical 

artefact 

 

If the artefact is purely technical (no social 

aspects), or artefact use will be well in the future 

and not today. 

 

4.5.2 Plan for Evaluating the Energy Forecasting Model 

The aim of the evaluation plan is to evaluate the five forecasting models, under the same 

conditions, using the same datasets, to determine which of the models produced the most 

accurate forecasts. The five forecasting algorithms are MLP, Decision trees, Naïve Bayesian, 

KNN, and SVR.   Numerous  considerations have to be made before the forecasting models 

can be compared. The first consideration is the number of parameters that will be fed into the 

machine learning algorithms.  The weather variables that were considered in this research were 

temperature, humidity and cloud cover. The total power produced by the inverter is a function 

of these three weather variables. Another variable that was considered is the time at which 

these variables were recorded. The forecast  output is the total power produced by the inverter. 

The selection of the evaluation methods was based on mapping the evaluation objectives to the 

evaluation strategy selected, as recommended by Venable et al. (2016), and summarised in 

Table 4-4. The evaluation strategy selected for this research was the technical risk and efficacy 

strategy, due to the technical nature of the SMG and, also, owing to the fact that the cost of 

implementing the testing, using a real-world system would be expensive. The technical risk, 

and efficacy strategy, focuses on formative iterative evaluation in the early process of design 

and development, but progressively moves towards artificial-summative evaluations of the 
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artefact. The technical risk and efficacy strategy was used in this research, with a combination 

of methods and approaches in the evaluations used to evaluate the model (Figure 4-6). 

Table 4-4 DSR Evaluation Techniques (Pries-Heje et al., 2008) 

Evaluation 

Techniques 

Description 

Analytical Static Analysis: Examination of the artefact structure to identify static qualities 

such as complexity. 

Architecture Analysis: Examination of the artefact fitting into a technical 

architecture. 

Optimisation: Demonstrate inherent optimal properties of the artefact or 

provide optimality bounds on artefact behaviour. 

Dynamic Analysis: Examination of the artefact to identify dynamic qualities 

such as performance. 

Experimental  Controlled Experiment: Examination of the artefact in a controlled 

environment to identify qualities such as usability. 

Simulation: Execution of the artefact using artificial data.  

Observational  Case Study: In-depth examination of the artefact in a specific environment. 

Field Study: Monitor the artefact usage in multiple projects.  

Descriptive  Informed Argument: Information usage from the knowledge base, such as 

relevant research, to construct a convincing argument for the artefact’s utility.  

Scenarios: Demonstration of the artefact’s utility through well-designed 

scenarios. 

Testing Functional (Black Box) Testing: Execution of the artefact interfaces to identify 

defects and failures. 

Structural (White Box) Testing: During the artefact implementation, perform 

coverage testing of a metric such as execution paths. 

 

The proposed forecasting model will be evaluated by means of: 

• Iterative formative evaluation; and 

• A summative evaluation. 

There are  numerous  evaluation techniques that can be used in the DSR. Such evaluations are 

analytical, experimental, descriptive, testing and observational (Pries-Heje et al., 2008; 

Venable et al., 2016). 

The technique used to evaluate the EFM was the experimental technique. Controlled 

experiments were conducted using actual weather data and inverter data. Cross-validation is a 

technique used to test the performance of learning algorithms and compare multiple learning 

algorithms by splitting the data into two datasets. One dataset is used to train the model, and 

the other dataset is used to validate the learning model (Krstajic, Buturovic, Leahy, & Thomas, 
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2014). During cross-validation, the training and validation datasets must have a crossover in 

successive rounds of testing, such that each data point is validated.  

There are five forms of cross-fold validation, as follows: 

• Substitution validation; 

• Hold-out validation; 

• K-fold cross-validation; 

• Leave-one-out cross-validation; and 

• Repeated K-fold cross-validation. 

Substitution validation- in this method all the data available is used to train the model, and 

then the same dataset is used to validate the model. The one drawback of this method is 

overfitting. This means that the model might perform well on this dataset, but poorly when a 

different dataset is used (Bengio & Grandvalet, 2004; Efron, 2004; Ross et al., 2009). 

Hold-out validation- in this approach the data is split into two non-overlapping parts. One 

dataset is then used to train the model, and the other is used to validate the model. The benefit 

of this approach is that it avoids overfitting, and yields more accurate estimates for 

generalisations. The disadvantages of this method are that hold-out validation does not use all 

the available data, and that the results are highly dependent on the selection of data, which was 

used to train and validate the model (Bengio & Grandvalet, 2004; Efron, 2004; Ross et al., 

2009). 

K-fold cross-validation- In K-fold cross-validation, the data is partitioned equally into k sets. 

K iterations of training and validation are performed such that, in each of the iterations, a 

different fold is held out and used to validate the k-1 remaining folds (Ross et al., 2009; Krstajic 

et al., 2014; Bergmeir, Hyndman, & Koo, 2018). 

Leave-one-out cross-validation (LOOCV) - This is a special case of k-fold cross-validation 

where all the data, except a single observation, is used to train the model, and the model is 

validated against the single observation. The advantage of this approach is that LOOCV is 

unbiased and the drawback is the high variance. However, the high variance leads to unreliable 

results (Bengio & Grandvalet, 2004; Efron, 2004; Brovelli, Crespi, Fratarcangeli, Giannone, & 

Realini, 2008; Paynter, 2017). 
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Repeated K-fold cross-validation- In k-fold cross-validation, only k estimates are produced, 

and, to increase the number of estimates, k-fold validation can be repeated multiple times. 

However, the data must be reshuffled and re-stratified in each iteration model (Bengio & 

Grandvalet, 2004; Efron, 2004; Ross et al., 2009). 

Table 4-5 Pros and Cons of cross-fold validation approaches (Ross et al., 2009) 

Validation Pros Con 

Re-substitution Simple Overfitting 

Hold-out Independent training and test Reduced data for training and 

testing 

k-fold Accurate estimates  Small samples for performance 

evaluation; overlapped training 

data 

LOOCV Unbiased performance estimates Large variance  

Repeated k-fold validation Large number of performance 

estimates  

Overlapping test and training 

data 

The pros and cons of the different cross-validation approaches are summarised in Table 4-5. 

K-fold cross-validation is the most frequently used form of cross-validation because it produces 

more accurate estimates, due to the reasons stated in Table 4-5. This method is a standard 

approach for testing the predictive accuracy of models (García-Gutiérrez, Martínez-Álvarez, 

Troncoso, & Riquelme, 2015; Khondoker, Dobson, Skirrow, Simmons, & Stahl, 2016). Figure 

4-7 illustrates how k-fold cross-validation works and in Figure 4-7, k=4. 

 

Figure 4-7 Four-fold Cross-validation adapted from (Ross et al., 2009) 

Therefore, k-fold cross-validation was used in evaluating the forecasting model for energy 

generated in a PV-powered SMG.  
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4.6 ANALYSIS OF RESULTS 

This section discusses the procedures taken and the evaluations conducted in the evaluation of 

the EFM. Two evaluations were conducted and are discussed in Section 4.6.2 and Section 4.6.3. 

4.6.1 Procedures 

The forecasting model was implemented using the Scikit-learn library in Python.   For the 

model to learn, some historical data had to be used to train the machine learning model. The 

variables considered in this research were identified through a literature review (Section 3.4), 

and existing predictive models (Section 3.5.2). The machine learning models were supplied 

with the same amount of data, under the similar conditions, and the results were compared.  

The DSR evaluation technique of experimentation was used in this evaluation, specifically the 

k-fold cross-validation method used to evaluate learning models (Ross et al., 2009). The 

weather data was ingested by the forecasting model as flat files. However, the amount of  data 

collected from the inverter was compromised. The data collected from the inverter was the 

power output in kilowatts, and the time stamp at which the power recording was made. The 

inverter stores this data locally and stores a backup online. The data was compromised because 

there were days when the inverter was switched off, or the inverter was configured so that it 

would not produce the maximum output available. This meant the data had to be excluded from 

the analysis, thus reducing the data available for training the forecasting models. Therefore, the 

data had to undergo pre-processing to exclude missing values. The weather data was provided 

by the South African Weather Service (WeatherSA, 2018). 

4.6.2 Evaluation 1 

Estimator performance was used to determine which machine learning model was the best to 

use. Estimator performance shows the quality of predictions generated by models (Tyagi & 

Chandra, 2017; Chen, Connor, & Korajczyk, 2018). The estimator performance is illustrated 

by the following equation: 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(%

= (𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)/(𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠) ∗ 100 
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4.6.2.1 Results  

Figure 4-8 shows the results of the forecast  output using each forecasting model, and reveals 

that the KNN based model outperformed the other five forecasting models. However, it is 

important to note that even though the KNN outperformed the other forecasting models, the 

estimates produced were still far from satisfactory. 

 

Figure 4-8 Observed output vs Estimated output 

Figure 4-9 illustrates that KNN had a performance of approximately 73 per cent.  which was 

the highest performance. Decision trees produced the second-best performance, with an 

estimator performance of approximately 71 per cent , and Bayesian neural networks were third 

with a performance of approximately 64 per cent . SVR had a performance score of 

approximately 60 per cent .  The MLP had the lowest performance of about 22 per cent.  
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Figure 4-9 Estimator Performance 

4.6.2.2 Discussion and Implications 

The estimates produced by the five reviewed forecasting models that were evaluated were all 

below 75 per cent ,  and deemed unsatisfactory, since an acceptable forecasting model should 

have an estimator performance of at least 95 per cent  (Rao, Fung, & Rosales, 2008). An 

accuracy of 95 per cent   is acceptable because this limits the error range to 5 per cent  or less. 

However, the results produced are useful since they indicate which forecasting models are the 

most likely to provide accurate estimates. 

One of the reasons that the reviewed models performed poorly could be because the training 

sets were small (n=169). We expect that as the amount of data collected from the inverter 

increases, the models will have a larger dataset to learn from, and the estimator performance 

of forecasting models will improve. The reason why this behaviour occurs is that, as the sample 

size increases, it becomes easier for the model to learn what the corrective value is, thus 

creating a better model (Bottou, 2010; Zinkevich, Weimer, Li & Smola, 2010). However, if the 

sample size increases, it becomes too large, the improvement in the model plateaus, and it 

becomes difficult for the model to find a corrective value that models the data correctly (Bottou, 

2010; Zinkevich et al., 2010).  

This evaluation showed that machine learning based forecasting models have the potential to 

be used to estimate the amount of energy generated in a SMG. However, in this case the 

accuracy achieved was lower than the 95 per cent threshold referred to earlier. This evaluation 
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also showed that the KNN, decision trees and SVR models can potentially be used as 

forecasting models for energy generated in a SMG due to their good performance.  

The results of the initial evaluation showed that the performance of the models was still below 

the expected threshold, and this was probably due to the small dataset (n=169) (Bottou, 2010; 

Zinkevich et al., 2010). One limitation of the study is that no record of weather conditions was 

kept, therefore historical weather data for the area was obtained from a local weather station. 

The temperature and humidity recordings were recorded at a weather station a short distance 

(approximately 8km) from the PV panels, and is not truly reflective of the environment around 

the PV panels.  The next section discusses the second evaluation conducted.  

4.6.3 Evaluation 24 

The results of the experiment in Section 4.6.2.1 implied that the estimator performance from 

the first evaluation was unsatisfactory. Section 4.6.2.2 suggested that this unsatisfactory 

performance could be because the dataset used to train the models was too small. Therefore, in 

the second evaluation, a larger dataset (n=1151) was collected and used to train the machine 

learning models. The learning models used temperature, humidity and cloud cover to forecast 

the amount of energy generated. The implementation was also done using the initial model 

discussed in Section 4.6.1. The machine learning models used were developed using scikit-

learn library in Python. 

 
4 Some of the literature discussed in this section was published in a peer-reviewed conference paper at the South 

African Telecommunications and Network Applications Conference in September 2018. Nyumbeka D., Wesson 

JL. and Scholtz B. Machine Learning Models for Forecasting Energy Generated in Photovoltaic-powered Smart 

Microgrids. SATNAC 2018 Proceedings (APPENDIX B) 
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4.6.3.1 Results 

 

Figure 4-10 Evaluation 2 Estimator Performance 

SVR had the highest estimator performance with a performance of 85 per cent .  The KNN and 

Decision Trees method had the second-best estimator performance of approximately 84 per 

cent .  However, the KNN had a lower variance compared to the Decision Trees method. The 

MLP method had the fourth best estimator performance during the evaluation. The Bayesian 

neural networks had the second last estimator performance, and the lowest variance in its 

estimates. 

 

Figure 4-11 Evaluation 2 Estimator Variance 
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4.6.3.2 Discussion 

The second evaluation had a higher estimator performance compared to the first evaluation. 

One of the reasons why the initial evaluation had lower estimator performance was that the 

dataset used was relatively small (Section 4.6.2.2). The use of a larger dataset (n=1151) to train 

the machine learning models in the second evaluation supports this assertion. In the initial 

evaluation, SVR had the third best estimator performance, and, in the second evaluation, SVR 

had the highest estimator performance.   The implication is that SVR produces better estimates 

as the dataset gets larger. KNN performed relatively well in both evaluations and had a 

relatively low variance in the estimates it produced. This means that KNN produced more 

reliable results in both conditions. Decisions trees produce relatively high estimator 

performances, but decision trees have a high variance in its estimates.  

One of the qualities of a good forecasting model is that it produces highly accurate forecasts 

and has low variances (Ahmed et al., 2010; Foley et al., 2012; Marquez & Coimbra, 2012). 

The model chosen must consistently yield reliable forecasts. 

4.7 CONCLUSIONS 

The objective of this chapter was to implement forecasting techniques, and evaluate which 

technique produces the best estimates. This chapter addressed RQ3, which is: 

RQ3: How effective is the proposed model for forecasting energy generation? 

The forecasting models were designed using the recommended techniques in Section 3.5, and 

these were:  

• KNN; 

• SVR; 

• MLP; 

• Bayesian neural networks;  and  

• Decision trees.  

These machine learning models were implemented using the scikit-learn library in Python. The 

estimator performances of each machine learning predictive model was recorded. Two 

evaluations were conducted under the same conditions with different sized datasets. The first 

evaluation had a smaller dataset (n=169), and the second evaluation used a considerably larger 
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dataset (n=1151). The results showed that with a larger dataset, SVR produced more accurate 

estimates. SVR also had a low variance. This leads to the conclusion that SVR is the machine 

learning based forecasting model that should be used in this research because of the results 

produced, thus addressing RQ3. 

The main contribution from this chapter is the EFM. The next chapter investigates the 

scheduling problem, and how methods for scheduling can be implemented to effectively 

schedule the charging of EVs. The chapter will identify and discuss the different factors that 

affect the charging of EVs, and ultimately the effective scheduling method for charging EVs. 
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CHAPTER FIVE 

CHARGE SCHEDULING OF ELECTRIC VEHICLES 

5.1 INTRODUCTION 

Chapter 4 reported on the design and development of the EFM using forecasting models 

identified in Chapter 3. This chapter reviews the literature on scheduling  to address the 

following research question: 

RQ4: What constraints influence the charge scheduling of EVs in PV-powered SMGs? 

This chapter (Figure 5-1) reviews the different types of scheduling constraints (Section 5.2), 

models (Section 5.3) and algorithms (Section 5.4) appropriate for EVCS. Section 5.5 reports 

on the dynamics involved in the charging of EVs.  This chapter will also identify the constraints 

particular to EV charging (Section 5.6). A criterion for selecting appropriate scheduling 

algorithms is proposed in Section 5.7. Section 5.8 investigates the charging behaviour of EV 

drivers, thus identifying their preferences when it comes to charging. Section 1.1 and Section 

3.2 briefly introduced the use of sensors in SMGs to collect data, such as operational status, 

and the environment around the sensor. The use of sensors in SMGs to collect data implies that 

these pervasive technologies are important, and a review of how these sensors operate, and the 

different architectures that support such models, is thus warranted (Section 5.9). The chapter 

concludes by suggesting selection criteria for selecting the most appropriate scheduling 

algorithm, and makes some concluding remarks on the chapter.  
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Figure 5-1 Chapter 5 Structure 

5.2 SCHEDULING5 

Scheduling is one of the more challenging problems in Computer Science, and involves the use 

of a set of limited resources to execute predefined tasks (Brucker & Knust, 2012).  Scheduling 

can be described more formally as the problem of determining when to execute a set of 

tasks/activities that are subject to time and resource constraints in the best way possible. This 

 
5 Some of the literature discussed in this section was published in a double-blind peer-reviewed conference paper 

at the BUIS TAGE 10th Conference in May 2018. Nyumbeka D., Wesson JL. and Scholtz B. Selecting Scheduling 

Algorithms for Charging of Electric Vehicles in Photovoltaic Powered Microgrids. BUIS TAGE 2018 

Proceedings (APPENDIX A). 
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description is important because it highlights the four types of scheduling constraints that must 

be investigated (Baptiste & Le Pape, 2005; Vil´ım, 2007; Monette, 2010; Su, Wang, & Roh, 

2014): 

• Task; 

• Resources; 

• Time; and 

• Objectives.  

Constraints are restrictions in the scheduling of events and can be categorised as either hard or 

soft constraints. Table 5-1 contains a summary of the scheduling constraints cited in literature.  

Monette’s (2010) work attempted successfully to bridge the gap between high level modelling 

of scheduling problems and their effective resolution. All four constraint types were identified 

in the study by Monette (2010), which proposed an effective solution for a job-shop scheduling 

problem using a high-level modelling of the problem. All four constraints were also used in a 

study of global constraints that are specific to scheduling problems (Vil´ım, 2007).  

Table 5-1 Scheduling Constraint Types. 

Constraints Authors  Focus of article where cited 

Task Vil’im (2007) and  

Monette (2010). 

Scheduling from high level models 

Global constraints in scheduling 

Resource Vil’im (2007) and  

Monette (2010). 

Scheduling from high level models 

Global constraints in scheduling 

Time Vil’im (2007) and  

Monette (2010). 

Scheduling from high level models 

Global constraints in scheduling 

Objective Baptiste and Le Pape 

(2005) 

Vil’im (2007) 

Monette (2010)  

Su et al. (2014) 

 

Scheduling from high level models 

Global constraints in scheduling 

Stochastic energy scheduling in microgrids 

Objective function minimisation under setup 

constraints 

 

Two studies (Baptiste & Le Pape, 2005; Su et al., 2014), used the time and objective constraint 

types. In Vil’im (2007), the scheduling domain was stochastic energy in microgrids, and he 

argued that the scheduling should be driven by the objective function. Baptiste and Le Pape 

(2005), focused on a scheduling problem in which a set of jobs was subjected to release dates 

and deadlines, and these jobs were to be performed on a single machine. The authors minimised 

the objective function under these setup conditions. 
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Hard constraints are constraints that cannot be violated under any circumstance. Soft 

constraints can be violated, although there is a penalty associated with violating them   (Badoni, 

Gupta, & Mishra, 2014; Babaei, Karimpour, & Hadidi, 2015).   For a scheduling model to be 

considered  effective, the hard constraints must be satisfied (Benavoli, Chisci, Farina, Ortenzi, 

& Zappa, 2006; Pillay, 2014; Thepphakorn, Pongcharoen, & Hicks, 2014; Bettinelli, 

Cacchiani, Roberti, & Toth, 2015). An example of a hard constraint in a timetabling scheduling 

problem, is that a student cannot attend two classes at the same time. If such a hard constraint 

is violated, then the scheduling model is not effective. An example of a soft constraint in an 

exam timetabling problem, would be that students should not write exams in two consecutive 

timeslots. However, this constraint can be violated if it is contradicted by a hard constraint 

(Benavoli et al., 2006; Cong, Bin, Zhiru, Liu, & Zhang, 2009; Bettinelli et al., 2015). Figure 

5-2 illustrates the proposed scheduling constraints classification model of constraints in 

scheduling. This model was adapted from works by authors mentioned in Table 5-1, and others 

(Benavoli et al., 2006; Badoni et al., 2014; Pillay, 2014; Thepphakorn et al., 2014; Babaei et 

al., 2015; Bettinelli et al., 2015). 

A task is any time action that needs to be performed at a certain point in time, and can also be 

described as an event. Each task has a duration, which is the time it takes to complete the task. 

The duration of each task may be fixed or dynamic. Another key characteristic of tasks is that 

they can be given a deadline, beyond which the task cannot be done, or a release date, which 

refers to the date before which the task cannot start. The task can also be given different modes, 

and each mode may have a different duration of time. A task may also be optional, implying 

task execution is not mandatory (Vil´ım, 2007; Monette, 2010). 
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Figure 5-2 Scheduling Constraints Classification Model (Author’s contribution) 

Resource is the third category of constraints and refers to any commodity that is needed for a 

task to be executed. There are four different types of resources, namely (Vil´ım, 2007; Monette, 

2010):  

• Machine resources; 

• Cumulative resources; 

• Reservoir resources; and 

• State resources. 

Machine resources refers to a resource that can only be used by one task at a time. A cumulative 

resource refers to resources that can be used by several tasks at the same time, up to maximum 

capacity. This means that tasks require some amount of a resource, and the constraint is that at 

each time step, and for each cumulative resource, the sum of the amount used by the tasks that 

are executing at this step, cannot exceed the capacity of the resource.  
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If r (C) represents the total capacity of a resource, and r (t) represents the resource consumed 

by each task, then: 

r(C) ≥ ∑ r(ti)   (4) 

A reservoir resource has a capacity, but also comes with a minimum and maximum capacity, 

and the constraint states that at any point the current capacity must be between the minimum 

and maximum capacity. State resources relate to tasks that require certain states to execute. 

Two tasks that require different states may not overlap in time, and there is no constraint on 

activities requiring the same state. 

A time constraint (also referred to as a precedence constraint) may need to be defined since 

tasks may be related to other tasks. Defining a time, or precedence constraint, restricts the task 

execution by specifying which tasks must be executed first, and which tasks must be executed 

last. The maximum time between tasks can be specified to reduce the delays between tasks. 

Also, the duration of each task must be defined as well. A job refers to a group of related tasks 

(Vil´ım, 2007; Monette, 2010). 

Objective constraints (or objective functions) can be applied to scheduling problems. There are 

many types of objective constraints. ,  Many of these are aggregations, however, dependent on 

one decision variable, with the aggregation being a simple sum, or a weighted sum of the 

functions. Some well-known objective functions are: 

• The minimisation of the largest completion time, or makespan: 

𝐶max   = 𝑚𝑎𝑥𝐴𝐶(𝐴)    (5) 

• The weighted sum of the tardiness: 

𝑇Σ = ∑ 𝑡(𝐴) ∗ 𝑇(𝐴)  (6)
𝐴

 

where t(A) is the tardiness cost per unit time. 

• The weighted sum of the earliness and the tardiness: 

𝐸𝑇Σ = ∑ 𝑡(𝐴) ∗ 𝑇(𝐴) + 𝑒(𝐴) ∗ 𝐸(𝐴)
𝐴

   (7) 

where t(A) and E(a) are the tardiness and earliness costs per unit time for each activity. 
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Other types of objectives exist (Baptiste & Le Pape, 2005; Monette, 2010), but are not covered 

in this work. 

5.3 SCHEDULING MODELS  

Several constraints need to be considered when tackling scheduling problems (Pinedo, 2012; 

Babaei et al., 2015). Tasks and resources are two of these constraints. The amount of resources 

available for task execution are the variables in a scheduling problem. For example, in a course 

scheduling problem, the number of students taking a class, the number of teachers available 

and the number of time slots in day, are examples of variables (Pinedo, 2012; Babaei et al., 

2015). The behaviour of variables considered in a scheduling problem determines the type of 

scheduling model, or approach, one should take to solve the problem.  Many models have been 

proposed for solving scheduling problems. Two of the most common models are: 

• Deterministic models; and  

• Stochastic models.  

In a deterministic model, the properties are well known, i.e. none of the properties are random 

and the applied load is deterministic. The output of a deterministic model, given the same set 

of initial conditions and variables, is determined by the conditions and set of variables (Brucker 

& Knust, 2012; Pinedo, 2012). On the other hand, the stochastic model has random properties, 

and the applied load also has random properties. This means that in stochastic models, there is 

some inherent randomness, implying that the same set of initial conditions and variables will 

lead to different outputs. If there is a single random variable, stochastic treatment should be 

considered in the model (Brucker & Knust, 2012; Pinedo, 2012).  Stochastic scheduling 

problems are difficult to solve in nature due to the uncertainty of the variables. A satisfactory 

solution to a stochastic scheduling problem often involves computing a solution that is robust 

with respect to the uncertainty introduced by the variables. The uncertainty can be due to jobs 

taking more time than allocated to them, machine breakdown, or unforeseen delays. When 

attempting to create a solution to a stochastic scheduling problem, one must answer the 

following question, “Can I solve the deterministic version of the problem?” Answering yes to 

this question is important, because the answer is a prerequisite to finding a robust solution to 

the stochastic scheduling problem (Bertsekas & Castanon, 2002; Zambelli, Siqueira, Cicogna, 

& Soares, 2006; Su et al., 2014) 
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5.4 SCHEDULING ALGORITHMS6 

The scheduling model selected has a bearing on which algorithms should be considered, 

otherwise the most optimal solution will not be identified (Bertsekas & Castanon, 2002; 

Zambelli et al., 2006; Su et al., 2014). Scheduling algorithms can be classified into three 

possible types (Pinedo, 2012): 

• Exact algorithms; 

• Approximation algorithms; and 

• Heuristic algorithms. 

Exact algorithms provide solutions that are exact. Examples of such algorithms are branch and 

bound algorithms. Branch and bound algorithms systematically enumerate candidate solutions 

by mimicking a rooted tree. In the rooted tree, the root is the full set of solutions, and the 

algorithm explores the different branches of the tree. Each branch represents a subset of the 

solutions (Ritt, 2016). 

 

Figure 5-3 Classification of scheduling algorithms adapted from (Pinedo, 2012) 

Approximation algorithms provide solutions that are within a fixed percentage of the optimum 

solution. These types of algorithms have fast processing times types (Pinedo, 2012).  

 
6 Some of the literature discussed in this section was published in a double-blind peer-reviewed conference paper 

at the BUIS TAGE 10th Conference in May 2018. Nyumbeka D., Wesson JL. and Scholtz B. Selecting Scheduling 

Algorithms for Charging of Electric Vehicles in Photovoltaic Powered Microgrids. BUIS TAGE 2018 

Proceedings (APPENDIX A) 
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Heuristic algorithms are algorithms that provide nearly the correct solution, or a solution not 

for all instances of the problem. Heuristic algorithms are mainly used for problems that are 

difficult to solve using conventional algorithms. Heuristic algorithms are classified as part of 

population-based metaheuristic algorithms (Babaei et al., 2015), and can be further classified 

into two classes (Benavoli et al., 2006). The first class is called construction heuristics, and, in 

this class, the algorithm starts without a schedule and adds the different tasks/jobs one at a time. 

The second class is the improvement heuristic in which a schedule already exists, but the 

algorithm tries a better but similar schedule. Heuristic algorithms can be classified based on 

their approach, namely: 

• Single-based; or  

• Population-based.  

Single-based solutions focus on modifying one solution, until that one solution is the optimal 

solution. There are  many algorithms that model this behaviour, including: 

• Simulated Annealing (SA) algorithm; 

• Local search algorithm,; and  

• Tabu Search (TS) algorithm.  

Population-based approaches maintain multiple candidate solutions and seek to improve these 

solutions. Examples of population-based metaheuristics include the following (Blum & Roli, 

2003; Manda, Satapathy & Poornasatyanarayana, 2012): 

• Swarm intelligence; 

• Evolutionary algorithms; and  

• Genetic algorithm computation.  

5.4.1 Single solution Based Algorithms 

The SA algorithm was inspired by the process of annealing in metal work (Babaei et al., 2015). 

The process of annealing involves heating and cooling materials to alter their properties.  As 

the metal cools, its structure becomes fixed. The simulated annealing algorithm keeps a 

“temperature” variable used to simulate the heating process. The “temperature” variable is 

initially set to high, and then the variable cools as the algorithm runs.  While the” temperature” 

variable is high, the algorithms can accept solutions that are worse than the current solution, 
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but, as the “temperature” variable cools, the chances of accepting worse solutions than the 

current solution decreases, thus allowing the algorithm to gradually focus on the optimal 

solution. However, the algorithm sometimes accepts solutions worse than the current solution 

(Babaei et al., 2015; Lin, Bian, & Liu, 2016). Accepting a solution that is worse than the current 

solution is not ideal, since this approach can lead to loss of time attempting to find a better 

solution. Another disadvantage of using SA is that SA cannot tell you whether it has found an 

optimal solution.  Another method, such as branch and bound technique, is required to achieve 

this. SA has been used to generate daily nursing care schedules. Cheng, Ozaku, Kuwahara, 

Kogure and Ota (2008) proposed that daily schedules for nursing care in a hospital can be 

created using SA due to the similarities between scheduling daily care by nurses in hospitals 

and the traditional job shop scheduling problem, which has been solved using SA. Cheng et 

al.’s (2008) study provided evidence that SA can generate effective schedules for daily nursing 

care. However, the study by Cheng et al. (2008) also concluded that the SA approach needs 

further evaluations.  

The TS algorithm uses memory structures to avoid local optima (Babaei et al., 2015) and 

enforces conditions that constrain and free the search process, and uses memory functions of 

varying time spans for intensifying and diversifying the search (Babaei et al., 2015; Lin et al., 

2016). TS often performs very well when working in conjunction with other algorithms such 

as GA. TS is often used in conjunction with GA instead of SA because TS avoids local optima, 

thus greatly improving the chances of finding the best solution. However, the downside of this 

is that this reduces the diversity in a potential solution, often leading to suboptimal solutions. 

5.4.2 Population-solution Based Algorithms 

Swarm intelligence (SI) is an artificial intelligence (AI) algorithm based on the idea of 

decentralised, self-organised systems. Swarm intelligence has been applied to scheduling 

problems such as the school time-tabling problem. Swarm intelligence algorithms are inspired 

by the collective intelligence of swarms of biological populations (Madureira, Sousa & Pereira, 

2005).  Examples are, Ant Colony Optimisation (ACO) and Particle Swarm Optimisation 

(PSO) (Madureira et al., 2005). In ACO, the ants optimise solutions by making sure that the 

ants move on the problem graph and change it in such a way that future ants can build better 

solutions (Piotrowski, Napiorkowski, Napiorkowski & Rowinski, 2017). Henry Obit (2010) 

described ACO as an approach inspired by ants’ behaviour when finding a route between the 

food and the ants’ nest (or formicary). When ants look for food, they move randomly, but 
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always leave a tracking pheromone. When other ants find this route, they follow it, and when 

they reach the food, they return home, leaving tracking pheromones besides the ones they 

initially followed. The pheromones left, evaporate with time, and this makes certain routes less 

attractive to the next ant (Henry Obit, 2010). PSO is a stochastic-based optimisation algorithm, 

inspired by the social behaviour of bird flocking and fish schooling (Salem & Hassine, 2015). 

PSO simulates the social environment for the particles and the swarm of particles represents 

the search space. Each particle represents a potential solution. The optimal solution is found 

through the interactions between these particles.  Each particle keeps track of its best path as 

well as the best optimal path of its closest neighbour. The particles’ best path is obtained by 

evaluating the particles optimal path, and that of its neighbours (Madureira et al., 2005; Salem 

& Hassine, 2015). Evolutionary algorithms are based on the evolutionary nature of biology, 

such as reproduction, mutation and recombination, and are worth reviewing because of their 

ability to adapt to changing environments.  Evolutionary algorithms mimic these processes in 

the way in which they optimise solutions. Evolutionary algorithms have been applied to task 

scheduling by Omara and Arafa (2010), who successfully implemented two genetic algorithms 

with heuristic principles to improve performance. The genetic algorithms were applied to the 

task, and mapping of precedence-constrained task graphs in processors. When scheduling a 

task using a limited and diminishing supply of resources, an algorithm must adapt based on the 

remaining supply. Evolutionary algorithms take potential solutions and apply the principle of 

survival to generate a new set of approximations based on their objective functions. These 

algorithms follow five steps (Kokash, 2005; Coello Coello, 2016), namely: 

1. Initialise and evaluate initial population; 

2. Perform competitive selection; 

3. Apply genetic operators to generate new solutions; 

4. Evaluate solutions in the population; and 

5. Start again from Step 2 and repeat until the convergence criteria are met. 

A genetic algorithm is an example of an evolutionary algorithm. Pezzella, Morganti and 

Ciaschetti (2008) used a genetic algorithm to solve the flexible job scheduling problem by 

using different strategies to generate the initial population, choosing individuals for 

reproduction and reproducing new individuals.  This study by Pezzella et al. (2008), 

successfully provided evidence that the integration of more strategies in a genetic framework 

leads to better results, with respect to other genetic algorithms.  Genetic algorithms code 
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attributes into a set of genes, and follow a similar process to the one outlined above for 

evolutionary algorithms. The first step is initialisation and evaluation of all the members of the 

population by calculating the “fitness” of the individual. The next step in the process is the 

selection. Selection evaluates the likelihood of the individual fitting into the overall population. 

Evaluation and selection are the equivalents of ‘competitive selection.’ After selection, 

crossover occurs, and this process selects attributes of the selected individuals to generate new 

individuals, and this is the equivalent of generating new solutions. Mutation then follows 

crossover. Mutation works by making changes to an individual’s genome at random. After 

mutation, the individuals become the next generation, and the process can be repeated starting 

with the evaluation step. The genetic algorithm executes until a termination condition is met 

(Portela et al., 2015; Piotrowski et al., 2017). 

Randomisation is a key criterion to consider in determining which algorithm to use for 

scheduling. Randomisation in an algorithm allows for better exploration of search space of 

solutions. By using randomisation, a more diverse set of possible solutions is created. 

Randomisation is found in heuristic algorithms such as SA, PSO and ACO (Baghel, Agrawal, 

& Silakari, 2012). Another important factor to consider is the processing time of the algorithm. 

The use of a search history allows algorithms to find optimal solutions quickly, thus leading to 

fast processing times. PSO, ACO, and some evolutionary algorithms, keep track of optimal 

paths, which can be used to find optimal solutions quickly (Blum & Roli, 2003; Manda et al., 

2012). 

Four criteria were identified as necessary in generating effective schedules, based on the 

discussion in Section 5.2 and Section 5.3: 

• Speed (fast processing times) types (Blum & Roli, 2003; Manda et al., 2012; Pinedo, 

2012); 

• Search history (Madureira et al., 2005; Babaei et al., 2015); 

• Randomisation (Blum & Roli, 2003; Baghel et al., 2012; Manda et al., 2012); and 

• Constraints (Benavoli et al., 2006; Pillay, 2014; Thepphakorn et al., 2014; Bettinelli et 

al., 2015). 

These four criteria are all important to solving the scheduling of EV charging in PV-powered 

microgrids theoretically.   It is also important, however,  to acknowledge the importance of 

pragmatism in the proposed solution. Pragmatism can be described as dealing with a problem 
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in a realistic and sensible manner,  considering the practical issues of the problem. In the 

scheduling of EVs for charging, there are pragmatic issues, which must be addressed. The first 

one is EV drivers’ preferences in terms of the charging station, and the type of charger they 

would prefer. Ensuring that the EV drivers’ preferences are considered,  allows for the drivers 

to derive maximum value from the generated schedule (Sun, Yamamoto, & Morikawa, 2016; 

Daina, Sivakumar, & Polak, 2017a).  Another implication of allowing the drivers to select their 

preferred charging station, and charging point, is that a suboptimal option might be selected as 

the best option from the drivers’ perspective (Sun et al., 2016; Daina, Sivakumar, & Polak, 

2017b). This means that EVCS deviates from traditional optimisation problems in that the goal 

is to recommend a charging slot based on an optimal schedule, but also allows the drivers to 

select their preferred option, even though this might result in a less optimal option being 

selected.  The second pragmatic issue is related to the first issue of driver preference; it involves 

giving the drivers multiple recommendations (Sun et al., 2016; Daina et al., 2017a; Daina et 

al.,2017b). The recommendations will provide the drivers with available charging stations 

based on variables such as remaining driving range of the EV, the distance the EV is from the 

charging station, and the destination of the EV.  The remaining driving range, and the distance 

from the charging station are important in that they determine which charging stations the EV 

can reach. The destination of the EV is also important in that it allows us to limit the search 

space in which charging stations are to be recommended 

Adopting the four criteria necessary when generating effective schedules is important when 

developing a pragmatic scheduling algorithm for EVCS.  

5.5 CHARGING OF ELECTRIC VEHICLES 

One drawback to EV adoption is that the range one can travel before the battery needs to be 

recharged is limited (Oliva, Weihrauch & Bertram, 2013). These issues are made worse by the 

fact that the batteries take a long time to charge (Bullis, 2013). The charge times vary between 

30 mins to 8 hours depending on the type of charger one is using (Mohanty & Kotak, 2017). 

However, there are solutions being developed to address this issue. One of the solutions 

involves building a network of public and private charging stations. The charging stations in 

the networks will include user authentication and billing systems, public safety and planning 

issues, the negotiation of international standards, and augmenting the electricity grid to carry 

the increased load.  
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One of the key issues that must be investigated is the charging process that needs to take place 

when the batteries run flat. EVs use lithium-ion batteries.  Building a network of charging 

stations on major roads can improve the adoption rate of EVs, but does not solve the issue of 

time (O’Kane, 2016). Long charge times discourage those who want to use EVs. Therefore, 

reducing charge times is also important. The charge time is influenced by the capacity of each 

EV’s battery. Therefore, the network of charging stations should have different charging 

capabilities, depending on the batteries used by the EVs. For example, the charging capacities 

and current carrying capacity for a small passenger EV, and a heavy delivery van are different, 

implying that these differences should be reflected in the types of chargers provided 

(Department of Energy US, 2016).  

There are three different types of chargers that can be used to charge EVs (Tuttle & Baldick, 

2012; Chau, 2014): 

• Level 1 - refers to single-phase alternating current (AC) using grounded receptacles, 

such as those used in domestic appliances. The EV may incorporate a standard domestic 

power chord to connect the vehicle to a domestic socket outlet or a Level 1 charging 

station. 

• Level 2 - delivers up to 20kW of power from either single phase or three phase AC 

sources.  Individuals can install a level 2 charging station at home, while businesses 

and local governments can also provide level 2 charging for a fee or free if they wish. 

• Level 3 - refers to direct current (DC) or “fast charging” chargers. Such chargers deliver 

high currents to achieve short charge times. These fast charging chargers are being 

proposed for public charging stations. 

It is important for EV drivers to know the different types (Level 1, 2 or 3) of chargers available 

at a charging station. This information has a bearing on the driver’s decision of which charging 

station he wants to use. For example, the EV driver will probably use a charging station with a 

Level 3 charger if the EV driver does not want to wait for too long. The types of chargers 

available at the charging station is therefore one of the constraints that must be considered.   To 

optimise charging schedules of EVs, it is important to know the amount of energy that will be 

available, thus implying that a forecast of the energy generated is necessary (Suleman, Gaylard, 

Tshaka & Snyman, 2015). 
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High power output chargers, such as those produced by Tesla, are having a positive influence 

on the charge times (Gnann et al., 2018).  Gnann et al. (2018), conducted a study that analysed 

current charging behaviour in Germany and Sweden, and they tried to determine the future fast 

charging infrastructure needs for the two countries. The study determined that the ratios of EVs 

to fast charging stations are similar to conventional fuel stations, and that charging power and 

battery capacity had the most influence. 

  To maximise the user experience of EV drivers, the charging infrastructure for EVs should be 

easily accessible and compatible with the different EVs available. This implies that a common 

protocol for charging should be made available. One such protocol, the Open Smart Charge 

Protocol (OSCP) (Portela et al., 2015), uses a system that specifically determines which 

messages can be sent by the distribution system operator to the operator, and the form in which 

these messages should be. The OSCP was officially released and adopted by the Open Charge 

Alliance in May 2015 (Open Charge Alliance, 2015). The protocol is used to communicate a 

24-hour prediction of the capacity in the microgrid. The charging station capacity refers to the 

amount of energy available from the microgrid. The service provider then determines the 

charging profiles that can fit within the boundaries of the available capacity. 

Figure 5-4 illustrates how the OSCP works. The 24-hour forecast is represented by blue in 

Figure 5-4. The service providers then generate charging profiles (red) for EVs that will 

optimally use the available capacity without straining the network (Li et al., 2015; Portela et 

al., 2015; Ye et al., 2015). 

 

Figure 5-4 Generalisation of the OSCP (Open Charge Alliance, 2015) 
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In an OSCP network, two types of messages determine the effectiveness of the network: 

• The information about the available capacity; and 

• The possibility to return capacity, or to ask for more capacity. 

Using a system that uses the OSCP allows for the following benefits: 

• Open protocol; 

• Up to ten times more charging points are possible; 

• Reduced infrastructure implementation cost; 

• Less cost for grid upgrade; and 

• Optimal usage of energy grid. 

The OSCP is important to the scheduling problem since it communicates the capacity of the 

PV-powered SMG. The 24-hour prediction required by the OSCP refers to the capacity of the 

grid for the next 24 hours.  

5.6 CONSTRAINTS FOR ELECTRIC VEHICLE CHARGE SCHEDULING 7 

The problem of creating a scheduling model for the charging of EVs requires a stochastic 

model, due to the presence of some stochastic variables, which are influenced by weather 

conditions. Examples of stochastic variables are the capacity of the PV-powered SMG and the 

SOC of the battery pack in the EV.  

Ma, Callaway and Hiskens. (2013) proposed an EV charging schedule that uses overnight 

valleys in charging plugs in EVs. The model they proposed was successful in creating a 

schedule in accordance with the power constraints. The model also sent activation/deactivation 

signals to the charging stations. However, this study did not use renewable energy sources, was 

directed at autonomous EV, and assumes the demand is predictable. The proposed solution also 

incorporates sending activation and deactivation signals to the charging stations. 

Tran et al. (2013) proposed a multi-cable charging facility incorporating a scheduling algorithm 

that uses information about the arrivals, charging times and deadlines to assign charging 

 
7 Some of the literature discussed in this section was published in a peer-reviewed conference paper at the BUIS 

TAGE 10th Conference in May 2018. Nyumbeka D., Wesson JL. and Scholtz B. Selecting Scheduling Algorithms 

for Charging of Electric Vehicles in Photovoltaic Powered Microgrids. BUIS TAGE 2018 Proceedings 

(APPENDIX A). 
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stations. The EVs are then scheduled based on a first come, first served basis. This model 

differs from the one used by Hernández-Arauzo, Puente, Varela and Sedano (2015), in that 

each EV has its own charging station. Hernandez-Arauzo et al. (2015) proposed a model for 

charging EVs in a private community park, where each parking space in the community has its 

own charging port.  

The scheduling problems discussed in related studies (Ma et al. 2013; Trans et al. 2013; 

Hernández-Arauzo et al. 2015) differ from the problem identified in this research, in that they 

use power supplied by the grid to charge the EV, whereas in this study we use power generated 

from a PV-powered SMG. However, this study is similar to the one considered by Tran et al. 

(2013), in that there are multiple charging ports in each charging station. 

The scheduling constraints in Table 5-1 were applied to EV charging, and, are tasks, time, 

resource and objective based constraints (Figure 5-5). Eight hard and five soft constraints were 

identified, and are shown in Figure 5-5. The task identified is “charging”, which is the charging 

of an EV from a PV-powered SMG (Vil´ım, 2007; Monette, 2010).  The time constraints vary 

based on the time the EV driver requires to charge the EV, the charge remaining in the EV and 

the amount of power in the SMG. Different scenarios exist through which the time constraints 

will become dynamic (Vil´ım, 2007; Monette, 2010). The resource constraints are the capacity 

of the PV-powered SMG, and the chargers available at any point in time. The chargers are 

machine resources (Vil´ım, 2007; Monette, 2010).  The primary objective in EVCS is to reduce 

the wait time and the charging time at a charging station.  

During the charging task, the scheduling model will use resources from the PV-powered SMG, 

such as energy, and assign charging ports based on the time of arrival, SOC of the EV, and the 

time the EV driver should charge the EV. 

The hard and soft constraints for the EVCS problem were identified based on interviews with 

experts at the e-mobility research centre, and a review of literature on charging stations and 

constraints (Kobayashi, Kiyama, Aoshima, & Kashiyama, 2011; Tran et al., 2013; O’Kane, 

2016; UCSB Sustainabilty, 2016; US Department of Energy, 2016).  The eight hard constraints 

identified are: 

1. Near real-time (the scheduling of EV charging must happen in near real-time); 

2. Port limitation (a charging port can only be used by one EV at a time); 

3. EV occupation (an EV can only occupy one charging port); 
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4. Number of ports (the number of EVs charging cannot exceed the number of charging 

ports at a charging station); 

5. SMG capacity (the total amount of charge required must not exceed the total capacity 

of the SMG at any particular time);  

6. Minimum charging time (the EV driver must spend the least time possible at a charging 

station); 

7. Minimal wait time; and 

8. Prior scheduling (an EV driver cannot occupy a charging port without prior scheduling). 

The scheduling will always be done in near real time, to account for the time taken to establish 

a connection, and the time taken to process the scheduling request. 

 

Figure 5-5 EV charging constraints 

The five soft constraints identified are: 

1. Port occupation (an EV cannot occupy a charging port for more than their allocated 

time unless the port is still available for use); 

2. Port allocation (an EV must only use the allocated charging port); 

3. Charger type (an EV driver can request a specific type of charger); 

4. Time slot (an EV driver may request his/her preferred charging time slot); and 
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5. Closest charging station (an EV must be scheduled at the closest charging station). 

5.7 SELECTION CRITERIA FOR THE SCHEDULING ALGORITHM 

Selecting which algorithm to use when dealing with a scheduling problem is a challenging 

endeavour. Selecting the algorithm can determine whether the proposed solution is effective or 

not (Su et al., 2014). The performance of algorithms depends on the environment in which the 

algorithm is operating. The same algorithm can perform well under one set of conditions and 

perform poorly under a different set of conditions (Brucker & Knust, 2012; Pinedo, 2012). 

One key issue that must be addressed before developing, or selecting an algorithm for a 

scheduling problem, is to define the scheduling problem. The EVCS problem has different 

types of constraints, and these were grouped into four categories, as shown in Figure 5-5. The 

resources involved in EV charging, such as capacity in the PV-powered SMG, are largely 

dependent on surrounding weather conditions. Also, the capacity of a SMG influences the 

number of EVs a charging station can accommodate at a time. These two resource-based 

constraints depend on the variable energy, which is stochastic in nature, which suggests that a 

stochastic approach is warranted. Energy is stochastic because it depends on weather 

conditions, which are always changing.  

In EVCS, the most optimal solution from a set of candidate solutions is required. This implies 

there is no single definitive solution, meaning from a set of possible solutions, the best solution 

must be selected. Heuristic algorithms, by design, evaluate the solution sets and select the best 

solution, implying that a heuristic-based algorithm is required to determine the optimal 

solution, from the set of possible solutions (Brucker & Knust, 2012; Pinedo, 2012). In our case, 

the heuristic algorithm is driven by the constraints mentioned above. 

The use of memories in heuristic algorithms refers to the use of previous searches in searching 

for solutions (Baghel et al., 2012). Memories guide searches for solutions that can be found in 

less time. The use of memories has been associated with TS, SA and ACO algorithms. The 

uses of memories when searching for optimal solutions leads to shorter processing times.  

Deris, Omatu, Ohta and Saad (1999) used a genetic-based algorithm and produced an optimal 

solution for the university course timetabling problem. The solution presented, used constraint-

based reasoning. This work provides evidence that, when there is a finite set of predefined 

constraints, genetic algorithms perform well. The one disadvantage of the genetic-based 
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algorithm is that simulations can take a long time before finding the optimal solution. The fact 

that genetic-based algorithms can take a long time is a major disadvantage in this study because 

the scheduling of EV charging should happen in real time.  

Nosheen, Bibi and Khan (2013) successfully used the ACO technique to create a scheduling 

algorithm for scheduling n-processes on a CPU. The proposed algorithm managed to provide 

an optimised solution, together with the minimum average wait time, the response time and the 

turnaround time.  

The four selection criteria for scheduling algorithms that are appropriate for the EV charging 

problem were identified based on the literature review on scheduling algorithms (Section 5.4). 

The six algorithms relevant to the EV charging schedule problem were identified and evaluated 

against these four selection criteria (Table 5-2) In Table 5-2, a tick means that the algorithm 

successfully satisfies the criterion, and a cross means that it does not. 

Table 5-2 Selection Criteria 

Criterion TS SA ACO PSO GA EA 

Speed ✓ ✕ ✓ ✓ ✕ ✓ 

Search history ✓ ✓ ✓ ✓ ✓ ✓ 

Randomisation  ✕ ✕ ✓ ✓ ✓ ✓ 

Constraints ✕ ✕ ✓ ✓ ✕ ✓ 

Total Score 2 1 4 4 2 4 

Legend: TM – Tabu Search; SA - Simulated annealing; ACO - Ant Colony Optimisation; PSO - particle 

swarm optimisation; GA - genetic algorithms; and EA - evolutionary algorithms 

One of the scheduling constraints states that the scheduling should be done in real time, or near 

real time; this means that the scheduling algorithm must have a fast processing time. The use 

of information from previous searches performed by the algorithm allows the algorithm to find 

an optimal solution faster, resulting in fast processing times (Babaei et al., 2015; Lin et al., 

2016). Using randomisation allows for a more diverse set of possible solutions, which is 

important because it can lead to the best possible solution (Blum & Roli, 2003; Manda et al., 

2012). Satisfying all the hard constraints is used to determine if a scheduling algorithm is 

effective, or not (Benavoli et al., 2006; Pillay, 2014; Thepphakorn et al., 2014; Bettinelli et al., 

2015). Satisfying the objective function is key to creating effective schedules and, since this 
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objective is one of the hard constraints, it must be satisfied (Benavoli et al., 2006; Pillay, 2014; 

Thepphakorn et al., 2014; Bettinelli et al., 2015).  

Table 5-3 provides a summary of an evaluation of the algorithms according to their satisfaction 

of the hard constraints in EVCS. The evaluation of whether an algorithm will satisfy a hard 

constraint was based on the generic behaviour of the algorithm. In reality, the behaviour of the 

algorithms in Table 5-3 might differ from what is discussed. Population-based metaheuristic 

algorithms, such as the ACO, PSO and EA will most likely satisfy all the hard constraints, 

since they had the highest score of 8. This is because population-based metaheuristic 

algorithms maintain multiple solutions and improve these solutions until the most optimal 

solution is identified. Genetic algorithms might struggle with near real-time scheduling, 

because genetic algorithms take a long time before arriving at a solution. (Deris et al, 1999; 

Razali & Geraghty, 2011). Single solution-based metaheuristic algorithms, such as TS and SM, 

will most likely not satisfy some of the resource-based constraints, because these algorithms, 

at times, fail to select the best solution (Babaei et al., 2015; Lin et al., 2016). 

Table 5-3 Evaluation of EV Scheduling Algorithms using constraints 

Constraint  TS SA ACO PSO GA EA 

RESOURCES 

Port limitation  ✓ ✓ ✓ ✓ ✓ ✓ 

EV occupation  ✕ ✓ ✓ ✓ ✓ ✓ 

Number of ports  ✕ ✕ ✓ ✓ ✓ ✓ 

SMG capacity ✕ ✕ ✓ ✓ ✓ ✓ 

TASKS 

Prior scheduling. ✓ ✓ ✓ ✓ ✓ ✓ 

OBJECTIVE AND TIME 

Near real-time ✕ ✕ ✓ ✓ ✕ ✓ 

Least time ✕ ✕ ✓ ✓ ✕ ✓ 

Wait time ✕ ✕ ✓ ✓ ✕ ✓ 

Total Score 2 3 8 8 5 8 

Soft constraints were not evaluated against the algorithms since they do not have to be satisfied. 

It is important to also note that, when selecting a scheduling algorithm, satisfying all the hard 

constraints is a must; the selected algorithm should also attempt to satisfy as many soft 

constraints as possible (Benavoli et al., 2006; Cong et al., 2009; Bettinelli et al., 2015). Based 

on the theoretical evaluation results summarised in Table 5-2 and Table 5-3, we recommend 

the use of the evolutionary algorithms, ACO and PSO for EVCS. The positive attributes of 

these algorithms include the use of randomisation, the use of memories and fast processing 
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times. Evolutionary algorithms’ behaviour of adapting and mutating, based on their 

environment, qualify them as the most appropriate algorithms, because the resources involved 

in EVCS will always be changing based on the resource usage. 

However, these algorithms do not  consider the need for pragmatism in the way they work. The 

importance of accounting for driver preferences in scheduling, where and when they charge 

their EVs, cannot be understated. The algorithms evaluated in Table 5-3 generate optimised 

schedules, which do not  consider each driver’s preference in terms of where and when they 

will charge. It is, therefore, necessary, at this point, to note that the algorithm that will be used 

to generate the charging schedule adopt some of the positive attributes of the evaluated 

algorithms and, more importantly, allow the drivers to choose the option they prefer. 

The four selection criteria that were identified (Section 5.4), will be used to create a pragmatic 

scheduling algorithm that caters to drivers’ preferences. 

5.8 CHARGING BEHAVIOUR 

Having identified the constraints that affect the charging of EVs (Section 5.6), it is important 

to investigate what influences the charging behaviour of EV drivers. Determining the factors 

influencing where and when EV drivers will charge their EVs, will assist in making 

recommendations of which charging station to use.  

Yang, Yao, Yang, and Zhang (2016) conducted a study to determine how best to model 

charging and route behaviour of EV drivers. The study identified initial SOC at the origin point 

as the most important factor influencing whether one should charge or not, and then the SOC 

at the destination point influences the route the driver should take Yang et al. (2016). Yang et 

al. (2016), also suggested that, when there are multiple charging stations available, charging 

stations’ attributes,, such as the charge time and the location of the charging stations have a 

more significant influencing factor. The results of the study also revealed that EV drivers will 

most likely choose a route that is closer to the origin point, and, consistent with the EV driver's 

travel direction (Yang et al., 2016). 

Sun et al., (2016), conducted a study focusing on modelling the choice behaviour of EV drivers 

of where to fast charge their EVs. The study evaluated this behaviour on trips with a single fast 

charge between the point of origin and destination (Sun et al., 2016). The study was conducted 

to determine the extent to which the EV drivers would detour from their route to use a fast 



88 

charger. The study’s results revealed that EV drivers generally prefer charging stations with 

shorter detours, and located at gas stations. Another result, which was expected, was that the 

remaining charge influenced the decision to charge or not, and where to charge. The study also 

looked at the behaviour of commercial and private EV drivers.  Commercial EV drivers seemed 

to prefer charging stations encountered earlier on their paths. Private EV drivers showed an 

affinity for free charging, whilst the commercial EV drivers preferred to pay (Sun et al., 2016). 

Another related study was conducted by Xu, Meng, Liu and Yamamoto, (2017). The study 

investigated the choice for charging mode (normal or fast) and location, using preference data 

for EV drivers in Japan. During the study, a mixed logit model was developed to determine 

which factors to use, and how these factors influenced the EV drivers’ choice of which charging 

mode to use. The study identified battery capacity, midnight indicator, initial SOC and number 

of past fast charging events as the main predictors for EV driver’s choice of charging mode 

and location (Xu et al., 2017).  

All the studies reviewed (Sun et al., 2016; Yang et al., 2016; Xu et al., 2017), indicated that 

there are a set of factors that influence the decision-making process of an EV driver. The 

implication is that the factors identified in the studies reviewed should be considered (Table 

5-4).  

The following section reviews the concept of IoT, and how IoT is relevant to this research. The 

discussion of IoT is important, because it can provide a model through which data can be 

collected from components in the Charge Scheduling Model. 

Table 5-4 Factors influencing charging behaviour 

Factor Author 

SOC Sun et al. (2016); Yang et al. (2016): Xu et al. (2017) 

Charge mode Xu et al. (2017) 

Location of charging station Yang et al. (2016) 

Location type Sun et al. (2016); Yang et al. (2016): Xu et al. (2017) 

Travel direction Sun et al. (2016); Yang et al. (2016): Xu et al. (2017) 

5.9 INTERNET OF THINGS (IOT) MODELS 

An investigation of IoT models is important because it establishes the importance of IoT in the 

design of a model for EVCS. The constraints influencing EVCS (Section 5.6), and the variables 

affecting the energy yield in PV-powered SMGs, can be measured in the physical world and 
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they must be converted into a digital format, which can be used by the proposed Charge 

Scheduling Model. 

There has been an increase in the number of micro technologies (smart sensors) with 

capabilities to monitor, collect and communicate data via networking protocols, about the 

environment they are located in. The rise in connectivity by humans, partly due to newer 

technologies such as 4G, and now 5G, has led to the need to connect to the environment around 

us. These smart sensors have made it possible for objects to be connected to the internet 

(Section 3.4.3). The connectedness of objects to the internet is known as the IoT. Coetzee and 

Eksteen (2011) referred to the IoT as objects that are connected to the internet and are 

accessible via network protocols. These objects will define machine to machine (M2M) 

communication (Coetzee & Eksteen, 2011). IoT can be a conduit for the autonomous exchange 

of useful information between different invisibly embedded, uniquely identifiable, real-world 

objects around us (Shen & Liu, 2011). Connected devices are estimated to  reach 25 to 50 

billion by the year 2020 (Lee & Lee, 2015; Weinberg, Milne, Andonova & Hajjat, 2015). 

Coetzee & Eksteen (2011), described a "thing" as anything connected to the internet that can 

be uniquely identified, providing data, or a service. Examples of such things range from 

smartphones to embedded sensors in motor vehicles, electricity grids, and homes.   

The IoT revolution has been facilitated by technological advances, but IoT's potential 

applications are what is driving its rapid evolution (Borgia, 2014). IoT facilitates better decision 

making by collecting accurate real-time information on the identity, status, and location of 

objects around us, and this can lead to economic, social and environmental benefits. An 

example is the potential application of IoT in this research, and the application can have 

environmental (reduced carbon footprint) and economic benefits (business model resulting 

from this proposed model). An IoT ecosystem can be differentiated into three components 

(Coetzee & Eksteen, 2011; Miorandi, Sicari, De Pellegrini, & Chlamtac, 2012; Borgia, 2014): 

• The sensing object; 

• A data transportation/network medium; and  

• A data processing platform. 

These components are further elaborated on in the reviews of the following models: 

• The Four Layered Architecture; and  
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• The Three-Phase Data Flow. 

5.9.1 The Four Layered Architecture  

The use of layered architecture in IoT environments has been proposed by multiple researchers. 

The Four Layered Architecture was proposed by Yu and Wang (2012) and consists of the 

following layers: 

• Object / Sensing layer (Objects); 

• Network layer; 

• Services; and  

• Application layer. 

 

Figure 5-6 Four Layer Architecture adapted from (Yu & Wang, 2012; Bi, Xu & Wang, 

2014; Xu, He & Li, 2014) 

5.9.2 The Objects Layer 

The objects, or sensing layer, consists of sensing objects, or smart devices, that have the 

capability of collecting data about the environment around them (Miorandi et al., 2012; Yu & 

Wang, 2012; Gubbi et al., 2013; Xu et al., 2014) These sensing objects must be uniquely 

identifiable, and their ability to report on the environment around them sets up the foundation 

of IoT ecosystems Some of the objects found in the sensing layer can also act as actuators 

(Miorandi et al., 2012). 
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5.9.3 Network Layer 

The second layer is the network layer and, in this layer, network protocols that allow for the 

data collected in the sensing layer to be transmitted, are defined (Xu et al., 2014). Such 

protocols, as shown in Figure 5-6, include local area networks (LAN), Wi-Fi and Wireless 

Sensor Networks (WSN). This layer also acts as an interface for all connected objects and 

enables them to share information with each other. Bi et al. (2014) suggest that WSN are one 

of the most important infrastructural components in IoT.   

5.9.4 Services Layer 

The services layer consists of middleware technologies with varying functions, but all 

contributing to the interaction between the network layer and applications (Xu et al., 2014). 

The use of middleware technologies in this layer to provision for software and hardware 

technologies is necessary for IoT. An example of such technologies includes cloud computing. 

Cloud computing allows for the abstraction of computers, which can easily be provisioned 

based on processing power requirements. The services layer also includes storage, and can also 

be referred to as the storage and abstraction layer (Yu & Wang, 2012; Bi et al., 2014; Kapeso, 

2016) 

5.9.5 Applications Layer 

It is important to be able to visualise the objects and information in IoT applications, and this 

visualisation layer is called the applications layer (Gubbi et al., 2013).   Examples of systems 

used in the applications layer include ERP systems, and visualisation tools such as Tableau and 

Power BI. Such tools are critical in increasing efficiency operationally as they can be used to 

communicate vital information with minimal human intervention (Turban, Leidner, McLean 

& Wetherbe, 2007; Yu & Wang, 2012; Xu et al., 2014). 

The transmission of data in the Four Layered Architecture is described in the Section 5.9.6 

5.9.6 The Three-Phase Data Flow Model 

Borgia (2014), described IoT ecosystems through the interaction of data in cyber-physical 

systems. Cyber-physical systems are information systems that are integrated with physical 

processes. This capability allows for variables to be controlled and managed in a more efficient 
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way (Turban et al., 2007; Lee, 2008). Borgia (2014) proposed that the IoT components in the 

IoT environment interact in three phases (Figure 5-7): 

• Collection phase; 

• Transmission phase; and 

• The process, management and utilisation phase. 

 

Figure 5-7 IoT Data Flow Architecture (Borgia, 2014) 

5.9.7 Collection phase 

The collection phase refers to the different identification and sensory technologies embedded 

in the physical environment (Borgia, 2014). The collection phase is important because it allows 

for the definition of the data collection points in the model using sensor technology.  

The collection phase consists of two layers; a short-range communication layer and a sensing 

layer. Examples of identification and sensory technologies in the sensing layer include RFIDs, 

sensors, actuators, and smart meters. These sensing technologies are used to gather 

environmental data, which lay the foundation of the IoT applications. Sensors also convert 

analogue environmental variables, such as ambient temperature and humidity, into digital 

information, which can be communicated wirelessly to other devices. The transformation also 

facilitates the conversion of the collected data into a form that is human readable. Through this 

conversion process, sensors act as a bridge between the physical and cyber environments. Each 
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sensor is connected to a node, which acts as an interface between the physical and cyber 

environments. A node can be connected to one or many sensors, and, if connected wirelessly, 

the sensors form a wireless sensor network (WSN). The data collected in these WSNs is then 

transferred to data storage and processing platforms (Borgia, 2014).  

5.9.8 Transmission phase 

The data collected in the collection phase is then transmitted through a network to the data 

storage and processing platforms, and this process is called the transmission phase (Borgia, 

2014). Network protocols must be defined through which data can be communicated and/or 

transported to the storage or consumption destination. The consumption of the collected data 

can be achieved through gateways defined over heterogeneous networks such as Ethernet, 

Wireless Local Area Network (WLAN) and Wi-Fi. The data is transferred over a network 

through different protocols such as TCP/IP, web-sockets and Bluetooth (Borgia, 2014). 

5.9.9 The Process, Management and Utilisation phase 

The data collected during the collection phase and transmitted via network defined protocols, 

is utilised during the process, manage and utilisation phase (Borgia, 2014). The process, manage 

and utilisation phase consists of two layers: 

• Service platform and enabler; and 

• Application layer. 

The service platform and enabler layer use Service Oriented Architectures (SOA) and Cloud 

computing to support processing, managing and utilisation of data in IoT applications. Cloud-

based technologies have been the main drivers of IoT applications (Buyya, Broberg & 

Gościński, 2011). This phase includes processes such as data cleaning, filtering, aggregation 

and analysis. This phase has applications in domains such as emergency and e-health services, 

and energy management (Borgia, 2014) 

5.9.10 Discussion 

The IoT architecture is relevant to EV scheduling, because it allows for input data such as SoC 

in the battery, or status of a charging point, to be collected. The Four Layered Architecture 

(Figure 5-6), and the Three-Phase Data Flow model (Figure 5-7) for IoT applications, were 

reviewed in this section. The Four Layered Architecture details how IoT interactions should 
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use four layers, and how these layers interact with each other. The description provided by the 

Four Layered Architecture provides examples of components found in each layer. The Three-

Phase Data Flow model describes IoT architecture from a data perspective, detailing how data 

flows within the architecture. 

The Four Layered Architecture, and the Three-Phase Data Flow model, have a number of 

similarities in the way in which they describe information flow. Both models describe how data 

is gathered from the physical environment using objects based on sensing technologies. They 

also both refer to the importance of network transmitting data between the sensing layer to the 

data storage technologies. Another similarity between the models is that they refer to the need 

for tools in the applications layer, through which information in the IoT can be communicated.  

5.10 CONCLUSIONS 

The purpose of this chapter was to review existing literature on the scheduling of EV charging, 

and to identify constraints relevant to EVCS. This chapter addressed RQ4, which is: 

What are the constraints involved in scheduling EV charging? 

This chapter addressed RQ4 by identifying the constraints unique to the scheduling of EV 

charging. The constraints identified are summarised in Figure 5-5. The chapter identified the 

different types of constraints that must be considered in the EV charging scheduling problem. 

Both hard, and soft constraints, were identified. The hard constraints must all be satisfied if the 

schedule generated is to be considered useful. The main contributions from Chapter 5 are: 

• Constraints involved in EVCS (Table 5-3 and Figure 5-5); 

• Factors influencing charging behaviour of EV drivers; 

• IoT Model; and 

• Criteria for selecting scheduling algorithms (Table 5-2). 

The proposed criteria and the scheduling constraints classification model were successfully 

used to evaluate six scheduling algorithms. Positive attributes from these algorithms will be 

adapted and incorporated into the scheduling algorithm. The algorithm that will be used must 

have fast processing times, using memory structures to store charging history. This chapter also 

motivated the need for an IoT-based Charge Scheduling Model. 
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The literature study in this chapter also assisted in gathering the requirements of the Charge 

Scheduling Model (Table 5-5). 

Table 5-5 Requirements of Charge Scheduling Model. 

# Requirement Source 

R1 Forecast the amount of energy generated in PV-powered SMGs. Section 4.4 

R2 Provide real time information on the status of charging stations  Section 5.5 

R3 Allow EV drivers to schedule the charging of EVs based on their 

preference. 
Section 5.8 

R4 Allow EV drivers to plan long distance routes. Section 5.8 

R5 Reduce wait time at the charging station Section 5.5 

The requirements will be used during the design and development activity of the DSR. The 

requirements will inform the design process as to what the Charge Scheduling Model must 

support. The next chapter focuses on the design and development of a Charge Scheduling 

Model for PV-powered SMGs. 
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CHAPTER SIX 

ELECTRIC VEHICLE CHARGE SCHEDULING MODEL 

6.1 INTRODUCTION 

The previous chapter discussed the design and implementation of an EFM in PV-powered 

SMGs. The EFM designed and implemented in the previous chapter produced relatively 

accurate forecasts, approximately 85 per cent , using SVR-based regression. This chapter 

explains the design and development of a scheduling model for the charging of EVs in PV-

powered SMGs. The objective of Chapter 6 is to address RQ5: 

RQ5: How can an EVCS prototype be designed for the charging of EVs in PV-powered 

SMGs? 

During the design cycle of the DSR methodology, we used information gathered from literature 

and existing systems to design an artefact that addresses real world problems, in our case, the 

scheduling of EVs in PV-powered SMGs. Section 6.2 describes the proposed criteria for 

effective scheduling algorithms and the constraints unique to EVCS. The design process for 

the Charge Scheduling Model in a PV-powered SMG is discussed in Section 6.3. This 

discussion will then be followed by a discussion of the implementation process of the proposed 

Charge Scheduling Model (Section 6.4). The structure of this chapter is shown in Figure 6-1. 
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Figure 6-1 Chapter 6 Structure 

6.2 CRITERIA AND CONSTRAINTS  

Section 5.4 reviewed scheduling algorithms and identified the characteristics of the algorithms 

that make them efficient and effective for solving scheduling problems. The characteristics 

identified were then used to create selection criteria that can be used to evaluate the 

appropriateness of a scheduling algorithm (Section 5.7). The four criteria identified were: 

• Speed (fast processing times); 

• Search history; 

• Randomisation; and  

• Constraints. 

However, the criteria can also be used as a guide to the key characteristics when designing a 

scheduling algorithm. Ensuring that the proposed scheduling algorithm has fast processing 

times will improve the efficiency of the algorithm. By using information from previous 
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schedules (search histories) for each user, a more optimal schedule can be generated. 

Randomisation allows for a better solution pool when generating schedules. The last criterion 

is constraints; ensuring that all the hard constraints are not violated is key to the effectiveness 

of a scheduling algorithm and subsequently, the Charge Scheduling Model. 

Section 5.2 identified the constraints that are unique to EVCS as shown in Table 6-1. The 

conclusions from Chapter 4 are taken into consideration during the design of Charge 

Scheduling Model.  

Table 6-1 EVCS constraints 

 Hard constraint Soft Constraints 

Resource  • Port limitation 

• EV occupation 

• Number of ports 

• SMG capacity 

• Non-overloading of SMG utilities. 

• Charger type 

• Port allocation 

• Port occupation 

Task • Prior scheduling • Closest charging station 

Objective • Near real time  

• Minimum charging time 

• Minimal wait time 

 

Time • Near real time  

• Minimum charging time 

• Minimal wait time 

• Time slot 

6.3 ARTEFACT DESIGN PROCESS 

The literature review assisted in the identification of the problems facing EV drivers in 

scheduling when to charge their EVs and plan their trips (Section 5.5). The literature review 

also assisted in the design of the EFM for PV-powered SMGs. Section 2.2 discusses the DSR 

methodology and how the DSR methodology can address real world problems by using an 

artefact. In this research, a model is proposed to address the issues faced by EV drivers when 

they want to schedule the charging of their EVs. The literature review also proposes the use of 

the IoT as a potential useful platform on which to implement the model. Figure 6-2 illustrates 

the design process that was followed in determining the model requirements and objectives. 

This process mirrors the three-cycle view of the DSR, as proposed by Hevner (2007). 
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According to Hevner (2007), the Rigor and Relevance cycles generate input for the third cycle, 

the Design cycle. The Rigor cycle identified the challenges in EVCS, and then the Relevance 

cycle reviewed existing scheduling models that have been used previously for scheduling 

resource constrained scheduling problems. 

 

Figure 6-2 Design Process of Charge Scheduling Model adapted from Hevner & 

Chatterjee (2010) 

Figure 6-2 illustrates the three-phase cycle view of DSR, and how it was applied in this research 

study. 

6.3.1 Objective of the Charge Scheduling Model 

The objective of the Charge Scheduling Model is to alleviate the problems resulting in range 

anxiety, which have been attributed as one of the factors affecting EV adoption rate. The 

proposed model will allow EV drivers to: 

• Schedule where and when to charge their EVs; 

• Plan and reserve charging slots for long distance trips; and 

• Use renewable energy sources to charge EVs. 

6.3.2 Charge Scheduling Model Requirements 

The requirements of the proposed Charge Scheduling Model and EVCS were gathered during 

the Relevance and Rigor cycles (Chapters 3 and 4). The literature review process identified 
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the key requirements of a scheduling model (Table 5-5), and the constraints unique to EV 

charge scheduling (Section 5.6). The requirements of the proposed Charge Scheduling Model 

are (Table 5-5.): 

R1 - Forecast the amount of energy generated in PV-powered SMGs. 

R2 - Provide real time information on the status of charging stations. 

R3 - Allow EV drivers to schedule the charging of EVs based on their preference. 

R4 - Allow EV drivers to plan long distance routes. 

R5 - Reduce wait time at the charging station. 

The first requirement (R1) was identified in Chapter 3 and was addressed during the design and 

development activity of the DSR (Chapter 4). The remaining requirements were gathered in 

Chapter 5 and summarised in Section 5.10. 

6.3.3 Electric Vehicle Charge Scheduling Model 

A model will be used to describe how the different components and devices in EVCS will 

interact with each other (Figure 6-3).  Figure 6-3 illustrates the proposed Charge Scheduling 

Model, highlighting the different devices utilised by the model.  
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Figure 6-3 Proposed Charge Scheduling Model (Author’s contribution)  
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Component A refers to the hard constraints that are  considered by the pragmatic scheduling 

algorithm. All the constraints taken into consideration by the algorithm cannot be violated, as 

this will lead to the model failing to meet its main objective of reducing the wait time when 

charging EVs. Component B, in the Applications layer, refers to the preferences of the EV 

drivers. These preferences are critical in the driver finding utility in the Charge Scheduling 

Model, and ensuring that the EV charge scheduling becomes more seamless with minimal 

interruptions to their schedules. 

The Charge Scheduling Model in Figure 6-3 is a prescriptive model, as mentioned in Section 

2.2. The proposed model for Charge Scheduling Model used elements from two common IoT 

models. The two models are: 

• The Four Layered Architecture (Section 5.9.1); and  

• The Three-Phase Data Flow (Section 5.9.2). 

The proposed Charge Scheduling Model combines elements from the Four Layered 

Architecture and the Three-Phase Data Flow model, into a comprehensive Charge Scheduling 

Model (Figure 6-3). The Three Phase Data Flow model prescribes how data is collected using 

components described in the Four Layered Architecture, and transmitted within the Charge 

Scheduling Model. The Four Layered Architecture was proposed by Yu et al. (2012) and 

updated by Kapeso (2016).  

6.3.4 The Four Layered Architecture 

The Four Layered Architecture consists of the following four layers: 

• The Objects layer; 

• The Network layer; 

• The Storage and abstraction layers; and 

• The Applications layer. 

Figure 6-3 is an illustration of the model and how the different layers interact with each other. 

The Objects layer consists of the different hardware devices that interface between the cyber 

and the physical world. The interface translates environmental variables between the cyber and 

the physical worlds. Examples of such devices include sensors and smart devices. The next 

layer in the topology is the Network layer, which consists of network protocols that allow for 
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data to be communicated between the Object and the Storage and Abstraction layers. Data 

storage and abstraction processes are located in the Storage and Abstraction layer. The 

Applications layer is comprised of user and user-facing technologies. In the Charge Scheduling 

Model, the objects that are used to collect real world information include smart sensors on the 

EV that record information, such as the SOC and battery temperatures. Another object, the 

onboard diagnostics device 2 (OBD2), is a device used to gather information collected by smart 

sensors in the EV battery (Khorsravinia, Hassan, Rahman, & Al-Haddad, 2017). The OBD2 

device has the capability to connect to mobile devices using Bluetooth. There are also sensors 

on the EV charger. The PV panels also come with sensors that measure atmospheric variables, 

as well as charge each cell. These objects make up the Objects Layer (Figure 6-4). 

 

Figure 6-4 Objects Layer adapted from Kapeso (2016) 

The data collected in the Objects layer using sensors is communicated to the Storage and 

Abstraction layer, using network protocols defined in the Network layer (Figure 6-3). The 

network smart sensors in the Objects layer transmit the data recorded using Bluetooth and Wi-

Fi over the Internet. 

 

Figure 6-5 Network Layer adapted from Kapeso (2016) 

The Storage and Abstraction layer (Figure 6-6) in the Charge Scheduling Model is made up of 

a stack of Amazon Web Services (AWS). The data collected is stored in a Database 

Management System (DBMS), using the AWS Relational Database Service (RDS). The 

database will be abstracted and processed on a stack of servers called EC2. The EFM will also 

be part of this layer. The EFM will use data collected by the Weather API and Inverter output 

to generate the forecasts. The pragmatic scheduling algorithm is also part of this layer. 
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Figure 6-6 Storage and Abstraction Layer adapted from Kapeso (2016) 

The Applications layer (Figure 6-7) summarises the different technologies that will interface 

with the users. The data collected and transmitted to the Storage and Abstraction layers is then 

communicated to the users via mobile devices and web applications. The EV drivers can make, 

or confirm bookings, through web or mobile applications. After an EV submits a charging 

request, the EV drivers are presented with a list of recommendations of where to charge their 

EVs. The recommendations presented to the EV driver are ranked, and decision theory is used 

for this purpose. There is also a web application for the systems administrators to manage the 

system.  

 

Figure 6-7 Applications Layer adapted from Kapeso (2016) 

6.3.5 Three-Phase Data Flow Model 

Modelling the flow of data generated is important. The Three-Phase Data Flow model proposed 

by Borgia (2014) is appropriate for IoT architecture, and consists of the following three phases: 

• Collection phase; 

• Transmission phase; and 

• Process, Manage and Utilise phase. 

Collection phase: In an IoT environment, data is collected by sensors. The sensors often have 

conditional gateways, which determine the operational status of the sensor, or a component in 

the IoT architectures (Figure 6-8). These conditions are often set by manufacturers to define 

the operational boundaries of the hardware devices. For example, current discharge within 
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certain boundaries implies normal function, and, outside the boundaries, implies abnormal 

behaviour. An example of how this would work in the context of EV charging is to determine 

the operational status of a charging point or battery pack used for energy storage. 

 

Figure 6-8 Collection phase adapted from Borgia (2014) 

Transmission phase: During this phase, data is transmitted over networks from the collection 

phase to the processing, managing  and utilisation phase. Multiple data formats are utilised by 

the model, including JSON and XML.  

Processing, Management and Utilise phase: Once data has been collected and transmitted, 

the data is processed by various applications in the Application layer.  Data processing can 

occur on static or streaming data. In the Charge Scheduling Model, the streaming data types 

available are log files, the current microgrid capacity, and the log files generated by the EV 

charger endpoints. The data streamed is used together with user-entered data, such as preferred 

charger and time, to determine the best possible charging slot for the user. The input data is fed 

into a scheduling algorithm, and, together with the constraints summarised in Table 6-1, are 

applied to determine the most appropriate charging slot. The recommendation of the chosen 

charging slot is then provided to the user. The user can either accept the recommended slot, or 

they can choose a lower slot. The accepted slot is then recorded in the data repository. The 

processing, management and utilise phase is illustrated in Figure 6-9. 
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Figure 6-9 Data Processing, Management and Utilise Phase adapted from Borgia (2014) 

The next section discusses the implementation of the design of the Charge Scheduling Model 

proposed in this section. 

6.4 DEVELOPMENT 

Section 6.3 describes the design process for the proposed Charge Scheduling Model. It is 

important to describe the tools and process that were used to convert the proposed Charge 

Scheduling Model into the EVCS prototype, which serves as a proof of concept. The method 

used to convert the Charge Scheduling Model into an EVCS prototype is described in Section 

6.4.1. Section 6.4.2 reports on the envisaged workflow of the EVCS prototype. Section 6.4.3 

provides an overview of the algorithm used to schedule EV charging in a PV-powered SMG. 

6.4.1 Incremental Prototyping 

The implementation of the two artefacts was done in two iterations, as follows (Elverum & 

Welo, 2015): 
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• EFM (Chapter 4); 

• Charge Scheduling Model (Chapter 6). 

The EFM was implemented in the first iteration because the capacity of the SMG is one of the 

constraints of the scheduling model. The first iteration addressed the following RQs: 

RQ2: What models can be used to forecast energy generated in PV-powered SMGs? 

RQ3: How effective is the proposed model for forecasting energy generation? 

The second iteration of the Design and Develop activity focused on the development of the 

Charge Scheduling Model. The second iteration focused on addressing the following RQ: 

RQ5: How can an EVCS prototype be designed for the charging of EVs in PV-powered 

SMGs? 

The technology stack used to implement the scheduling model is illustrated in Figure 6-10. The 

database management system used was the AWS RDS, using MySQL. The AWS RDS was 

used because of its reliability, with an estimated uptime of 99.9 per cent  (AWS, 2018b). This 

means that the risk of any downtime is reduced significantly. AWS Elastic Beanstalk was used 

for its scalability. Amazon Elastic Cloud Compute (EC2) was used as a service that allows one 

to create a server in the cloud, hosted by AWS (AWS, 2018a). AWS Lambda is a computing 

platform, which allows one to deploy code without provisioning servers (AWS, 2018d). The 

forecasting model developed in Section 4.4, was developed using Python and will be deployed 

using the AWS Lambda. Since the weather data used in the forecasting model (from 

Accuweather) is retrieved in periodical intervals, the python code will only be deployed 

periodically. The code used to implement the forecasting model will be triggered using 

scheduled Cron jobs on the EC2 instances. A Cron is a scheduling utility tool used to run 

repetitive tasks at a specified time (Bourne, 2014). Once a task has been scheduled to run at a 

specified time, it is referred to as a Cron job. The generated forecasts will be stored in the 

MySQL database. 
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Figure 6-10 Software Stack (Author’s contribution) 

Elastic Beanstalk is one layer of abstraction away from the EC2 layer. Elastic Beanstalk will 

setup an environment that can contain  numerous  EC2 instances, an optional database, as well 

as a few other AWS components, such as an elastic load balancer, auto-scaling group, and a 

security group. Elastic Beanstalk will manage these items whenever the software running in 

AWS is updated. Elastic Beanstalk does not add additional costs on top of the resources that it 

creates. This format of deploying web applications is better than implementing the different 

services individually, because the load balancer will auto increase or decrease the computing 

resources required, based on the required computing power, thus ensuring elasticity (AWS, 

2018c). The web application for the EVCS was implemented using the Laravel framework, 

which is a PHP framework. Laravel allows for the development of highly responsive web 

applications (Laravel, 2018). Google’s distance matrix API was also used, which is a service 

provided by Google and provides the estimated travel distance and time between two points 

(Google, 2018). Table 6-2 lists the Google APIs used during implementation The Directions 

API is a service for retrieving directions between locations. The Geocoding API allows for 

GPS coordinates to be retrieved from addresses and vice versa. 
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Table 6-2 Google APIs (Google, 2018) 

API Description 

Distance Matrix Service provided by Google, which provides travel distance and 

time between two points. 

Maps Javascript Allows users to customise maps with their own content. 

Directions Calculates directions between locations using HTTP requests. 

Geocoding  Services provide geocoding and reverse geocoding of addresses. 

Places Service returns information about places using HTTP requests, as 

JSON or XML 

The EVCS prototype was developed as a web application. The reason for this approach was to 

eliminate mobile platform dependence. Developing the application as a web application 

ensures that it is accessible on all platforms, i.e. desktop and mobile. Another reason was that 

HTML5 now allows for geolocation using the geolocation API (Gup, 2013). However, the 

geolocation is done after the user has authorised the application to provide his location. The 

API uses whatever geolocation method the browser uses. This could be based on IP, access 

point MAC, GPS or cell-id. If the geolocation method is the IP-based method, the coordinates 

generated are not always correct, and are, at times, off by tens of kilometres radius (Gup, 2013; 

Dan, Parikh, & Davison, 2016; Ciavarrini, Greco, & Vecchio, 2018). However, if the 

geolocation method used is the GPS-based method, the coordinates can be accurate to within 

3m. The geolocation method used can be influenced by specifying the “enableHighAccuracy”, 

which requests GPS if available. EV drivers will most likely use the application on their mobile 

devices, which have GPS chipsets, thereby allowing for more accurate location data (Gup, 

2013).  

6.4.2 Workflow of the EVCS prototype 

Figure 6-11 shows the workflow of the EVCS prototype. First time users  must sign up to allow 

for the collection of the driver and EV information. Once the driver profile and EV’s details 

have been captured, the EV driver submits the following input regarding their preferences: 

• The preferred charge time; 

• The preferred charger type; 

• The preferred location type; and 
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• The destination. 

Additional inputs such as the SOC captured by the EV driver, and the current location are 

submitted as well.  

This information is ingested by the scheduling algorithm, which then determines which 

charging station the EV driver should use to charge their EV, based on the preferences entered. 

The scheduling algorithm (Section 6.4.3) then recommends a charging station and a charging 

port. The EV driver can accept a recommended charger and charging station. 

 

Figure 6-11 EVCS prototype workflow (Author’s contribution) 

For first time users, devices such as Leaf Spy Pro (Figure 6-12) are used to accurately measure 

the State of Health (SOH). The item of interest in Figure 6-12 is the SOH of the EV’s battery 

pack. SOH refers to an EV’s ability to hold a charge compared to when the EV was new (Qing, 

Huang, & Sun, 2014; Murnane & Ghazel, 2017). This implies that when an EV is brand new, 

the EV has 100 per cent  SOH, and the SOH will progressively decline as the EV gets used. 

The rate at which the SOH declines is influenced by usage and charging patterns. Usage refers 

to how frequently the EV is driven, implying that SOH can be inferred using the mileage of the 

EV. Another factor that affects the SOH is the type of chargers used to charge the EV. Studies 

have shown that the use of DC chargers results in faster deterioration of EV batteries 

(Electropaedia, 2005; Lin, Tang & Wang, 2015; Mallia, 2017). EVs can also be described using 



111 

depth of discharge (DoD); if a cell is 100 per cent  DoD, it means that the cell is fully 

discharged, meaning that 100 per cent  DoD implies 0 per cent  state of charge. 

 

Figure 6-12 Visualisation of BMS from Leaf Spy Pro (Turbo3, 2018) 

The next section discusses the development of the scheduling algorithm that was used to 

determine the charging slot to which an EV driver is assigned. 

6.4.3 Scheduling Algorithm 

 

Figure 6-13 Pseudocode for the pragmatic scheduling algorithm 
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Section 5.4 discussed the different types of algorithms used in traditional scheduling. In this 

research, taking a pragmatic approach is critical because it ensures that the EV driver’s 

preferences are  considered when generating the charging schedule.  

The pragmatic scheduling algorithm is illustrated in Figure 6-13. The objective of the 

scheduling algorithm is to generate the most effective schedule,  considering the EV driver’s 

preferences. The decision of where to charge is based on  numerous  factors, which are referred 

to as the driver’s preferences. The factors considered in this research (Section 5.8 and Section 

6.4.2) are summarised below: 

• Capacity (this must be met, or the station is eliminated); 

• Charger preference (DC/Hybrid/Slow); 

• Location type (Office, Mall, Roadside with convenience, Roadside without 

convenience); 

• Destination; and  

• Preferred time. 

The satisfaction of a combination of these factors determines whether, or not, an EV driver 

selects a charging station as his preferred option. The combination of factors where each of 

these factors matches the EV driver’s preference is assumed to be the best option. One approach 

that can be used to recommend the best option based on a set of criteria is the Weighted Sum 

Model (WSM). WSM is one of the best known multi criteria decision analysis (MCDA) models 

used in decision theory (Song & Kang, 2016). In MCDA, given m alternatives and n decision 

criteria, assuming that the criteria are beneficial, i.e. the higher the value then the higher the 

benefit, then the importance, A, of the alternative is given by (Esangbedo & Che, 2016): 

𝐴𝑖
𝑊𝑆𝑀−𝑠𝑐𝑜𝑟𝑒 = ∑ 𝑤𝑗𝑎𝑖𝑗

𝑛

𝑗=1

  ,   𝑓𝑜𝑟 𝑖 = 0,1,2, … , 𝑚.   (8) 

For the maximisation case, the best alternative is the one that yields the total maximum value. 

In this research, each of the factors was assigned a value of 1, when the factor and preference 

matched, and 0 when they did not match. This sum score was then calculated according to the 

above equation. This implies that when the available charging stations are presented to the 

driver, the results will be ranked based on the number of preferences that match the driver’s 

preferences. In addition to the driver’s preferences, the frequency of use for each charging 
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station by the EV driver was considered. If a driver has used a particular charging station 

several times, he/she is asked to favourite the location. Favourite charging stations contribute 

to the total maximum value. 

The second consideration is the power calculation used to determine how much energy is 

required to charge the EV to 90 per cent  charge. The EV is charged only to 90 per cent  because 

the charge rate slows down after the battery is 90 per cent  full (Figure 6-14). 

 

Figure 6-14 Charge Profile for a BMW i3 (Vanderput, 2018) 

Power is calculated using the following formula for single phase electric power: 

𝑃(𝑘𝑊) = 𝑉 ∗ 𝐼 ∗ 𝑝𝑓 ÷ 1000      (9)     

Assuming that pf is unity, then: 

𝑃(𝑘𝑊) = 𝑉 ∗ 𝐼 ÷ 1000    (10) 

The formulas for triple phase electric power are given by: 

𝑃(𝑘𝑊) = 𝑉 ∗ 𝐼 ∗ 𝑝𝑓 ∗ 1,732 ÷ 1000      (11) 

And assuming unity for pf, yields: 

𝑃(𝑘𝑊) = 𝑉 ∗ 𝐼 ∗ 1,732 ÷ 1000      (12) 
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The next calculation considered is the power required to charge the EV to 90 per cent  of the 

full charge. However, the SOH of the EV’s battery also needs to be incorporated, due to its 

significance for an EV’s battery. The SOH allows us to determine the true energy storage 

capacity of the EV. Therefore, the energy required, PR is given by:  

𝑃𝑅 = 𝐵𝑐 ∗ 𝑆𝑂𝐻 − 𝑆𝑂𝐶        (13) 

Where, BC is the battery capacity, SOH is the state of health of the battery, and SOC is the state 

of charge. 

These power equations were used to estimate the time it will take to charge the EV to 90 per 

cent  of its full charge.  The charge time can be calculated as follows: 

𝑡 = 𝑃𝑅 ÷ 𝑃             (14) 

Where t is the time it takes to charge the EV batteries to 90 per cent , PR is the required power 

to get to 90 per cent  of the full charge, and P is the load of the charger. EVs come with specific 

charging capabilities, implying that if a car has a 3,7kW charger, even if we connect the EV to 

a 7,2kW charger, the EV will charge at 3,7kW. This is important because it has an impact on 

the time taken to charge the EV. 

The pragmatic scheduling algorithm uses the terms and concepts discussed in Section 6.4.2 to 

schedule when and where an EV will charge. The decision to use a pragmatic algorithm, rather 

than the evolutionary based algorithms used in scheduling was taken, because the goal of the 

algorithm is to schedule when and where drivers can charge their EVs, taking into account their 

preferences and allowing them to select an option different from the recommendation made by 

the EVCS prototype. Allowing drivers to input preferences might result in suboptimal 

schedules being generated in charging stations. 

EVs have energy efficiencies that are specified by the EV manufacturers. The energy efficiency 

specifies the amount of energy spent per unit distance, and varies, depending on where the EV 

is being driven. Driving in urban areas tends to consume more energy compared to driving on 

highways.  This is probably due to the acceleration and deceleration, which ends up using more 

energy. From the GPS location, it can be determined whether a driver is driving in an urban 

area, or on a highway. From this determination, the appropriate energy efficiency rate can be 
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chosen. Using the energy efficiency rate, the distance that can be travelled given the remaining 

energy can be determined. This is illustrated in equation below: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
1

𝑒𝑛𝑒𝑟𝑔𝑦 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (
𝑘𝑊
𝑘𝑚

)
∗ 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐ℎ𝑎𝑟𝑔𝑒   (15)  

The GPS location, through Google’s Distance Matrix, is used to calculate the driving distance 

from the EV’s current location to each of the charging stations. Google’s Distance Matrix 

allows for the driving distance and time to be calculated, if the origin and destination GPS 

coordinates are provided. 

The driving distance for each of the charging stations is then compared to the estimated distance 

possible on the remaining charge, and the charging stations further than the estimated distance 

are removed from the results. The next check conducted is to check if the remaining charging 

stations have enough capacity to charge the EV. Equation (12) was used to calculate the 

required charge. The charging stations without enough capacity are removed from the results. 

Charging stations that are fully booked within 30 minutes of the preferred booking time by the 

EV driver, are then removed from the results. Thirty minutes is an arbitrary value chosen that 

allows for delays, or early release of a charging point. The next step in the algorithm, is to use 

the WSM to determine the best option for the EV driver, which is then recommended. The top 

five results are then presented to the EV driver, who can accept the recommended charging 

station, or alternatively select one from the remaining options. The charging application then 

updates the EV driver’s choice. The estimated charging time is based on equation (13). 

Figure 6-15 shows an example of the EVCS prototype developed during this research. The 

request submitted is for a long-distance trip from Summerstrand in Port Elizabeth to Gonubie 

Manor in East London, South Africa.  
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Figure 6-15 EVCS prototype for long distance trip request 

Figure 6-16 shows the result presented to the EV driver; the driver is presented with options of 

where they should stop and charge their EV  for the driver to reach their final destination 

without running out of charge. The EVCS prototype considers the factors mentioned in Section 

6.2. 

 

Figure 6-16 EVCS prototype result for long distance trip 

6.5 CONCLUSIONS 

Chapter 6 focused on the third activity of the DSR methodology: Design and Develop Artefact 

(Section 2.4), and reported on the design process of the Charge Scheduling Model. Incremental 

prototyping was used to develop the proof of concept of the Charge Scheduling Model. This 

chapter discussed the design of the Charge Scheduling Model by combining the Four Layered 
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Architecture (Section 6.3.1.3.1) for IoT applications, and the Three-Phase Data Flow model 

(Section 6.3.1.3.2). Chapter 6 also identified the implementation tools that are necessary for 

the implementation of the EVCS prototype. The goal of the EVCS prototype is to provide 

evidence that the Charge Scheduling Model can be implemented, and that the model is 

effective. The effectiveness of the Charge Scheduling Model will be determined in the 

following chapter.  

The technology stack used in the implementation of the Charge Scheduling Model was shown 

in Figure 6-10. The WSM used in MCDA theory was used to rank the recommendations of 

where to charge, based on the EV driver’s preferences.  

The work done in this chapter, showed how an IoT-based model can be used to develop a 

Charge Scheduling Model, therefore addressing RQ5: 

RQ5: How can an EVCS prototype be designed for the charging of EVs in PV-powered 

SMGs? 

The key contributions made by Chapter 6 were: 

• The Charge Scheduling Model (Figure 6-3); 

• The EVCS prototype (Section 6.4); and  

• The Scheduling algorithm (Section 6.4.3). 

The next chapter focuses on evaluating the effectiveness of the deliverables mentioned above. 
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CHAPTER SEVEN  

EVALUATION 

7.1 INTRODUCTION 

Chapter 6 addressed the design and development activity of the DSR, and the artefacts 

produced, namely the Charge Scheduling Model and the EVCS prototype. Chapter 6 explained 

how the Four Layered Architecture and the Three-Phase Data Flow model of IoT applications 

were included in the proposed Charge Scheduling Model. Chapter 7 will describe the 

Demonstration and Evaluation (Figure 7-1) activities of the DSR methodology. 

The objective of Chapter 7 is to address RQ6:  

RQ6: How effective is the proposed Charge Scheduling Model in scheduling the charging 

of EVs? 

 

Figure 7-1 Chapter 7 DSR Activities (Hevner & Chatterjee, 2010) 

The technology and risk strategy of the FEDS framework adopted in Section 4.5.1 was used as 

a guide for the evaluation process, including summative, artificial-summative and naturalistic-

summative evaluations. 
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Figure 7-2 Chapter 7 Structure 

7.2 EVALUATION PLAN 

The evaluation plan discussed in this section establishes the objectives of the evaluation, 

discusses the design, the process and evaluation episodes of the evaluation. The established 

objectives will be used to determine if the evaluation process is a success.  

7.2.1 Evaluation Objectives 

The objective is to evaluate the artefacts in this study, namely: 

• The theoretical Charge Scheduling Model, which comprises: 

- The Four Layered Architecture; and 

- The Three-Phase Data Flow Process. 

• The practical EVCS prototype, which is a proof of concept of the Charge Scheduling 

Model. 
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The theoretical Charge Scheduling Model was designed in consultation with feedback from the 

literature review study conducted in Chapter 3, and the requirements listed in in Table 5-5. The 

EVCS prototype was developed as a proof of concept of the proposed Charge Scheduling 

Model. The EVCS prototype makes use of IoT-based architectures to support the proposed 

Charge Scheduling Model. The Charge Scheduling Model is aimed at providing real-time 

information on available charging stations, and assisting EV drivers with recommendations 

regarding where and when to charge their EVs. The Charge Scheduling Model also allows for 

the creation of an integrated platform for drivers to charge their EVs. 

The objectives of the Charge Scheduling Model were identified and listed in Section 6.3.1.1. 

The objectives of the evaluation are the following: 

• To evaluate the proposed Charge Scheduling Model’s ability to support the effective 

scheduling of EV charging in PV-powered SMGs; 

• To identify any shortcomings of the proposed Charge Scheduling Model and EVCS 

prototype. 

To evaluate the effectiveness of the Charge Scheduling Model, the constraints (Section 6.2) 

and requirements (6.3.1.2) will be used to create evaluation episodes, to measure if the 

requirements were met and no constraints violated. 

7.2.2 Evaluation Design, Process and Episodes 

The selection of evaluation methods was aimed at meeting the evaluation objectives as 

suggested by Venable et al. (2014). The evaluation episodes were designed to evaluate whether 

the EVCS prototype meets the requirements listed in Table 5-5.  Both the two artefacts, namely 

the Charge Scheduling Model and the EVCS prototype were evaluated using both the formative 

and summative-naturalistic evaluations. Table 4-4 shows evaluation techniques that can be 

used in DSR, and the techniques used in this research were: 

• Analytical; 

• Experimental; 

• Descriptive; and  

• Testing. 
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Figure 7-3 illustrates the evaluation process, and highlights that the technical and risk efficacy 

evaluation was chosen as the strategy appropriate to evaluate the EVCS prototype and the 

Charge Scheduling Model. Figure 7-3 also highlights that the Charge Scheduling Model is the 

theoretical contribution of this study, and the EVCS prototype is the practical contribution.  

The evaluation episodes were informed by the constraints and objectives of the Charge 

Scheduling Model. The episodes to determine whether the Charge Scheduling Model is 

effective was driven by these objectives and constraints 

 

Figure 7-3 Evaluation Process (Author’s contribution) 

Santner, Williams, and Notz (2003), defined simulated inputs as numerical values of simulated 

factors that collectively define the experimental region, which then define the design. The need 

for use of simulated input data can be due to small sample sizes, which, in turn, then affects 

the generalisability of the findings. Using simulated input data can also be necessary in cases 

where the cost of collecting actual input data in real world conditions is high (Kohli & Peralta, 

2017). Simulated data was used to evaluate the Charge Scheduling Model. The reason for using 

simulated data is that there is a lack of real-world infrastructure, such as charging stations, EVs 

and EV drivers in South Africa.  Therefore, input data used in this evaluation was simulated. 

The simulated data was generated randomly using the PHP function below: 

𝑟𝑎𝑛𝑑(𝑚𝑖𝑛, 𝑚𝑎𝑥) 
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Random assignments have been used to assign  values to independent variables (Seo, Jeon & 

Ha, 2018). The random number generator function is used to randomly assign which type of 

variable is going to be used in each experiment. For example, to simulate which type of charger 

the driver prefers, the random function will be used as follows: 

𝑟𝑎𝑛𝑑(1,3) 

A minimum value of 1 is used since the minimum primary key for the charger types in the 

database is 1. The maximum value, 3 is the highest primary key in the database for charger 

types. This process is repeated multiple times top simulate test data for each of inputs in Table 

7-2. These cars were chosen because of their availability at the Uyilo e-mobility centre. The 

profiles of the two vehicles used in this research are provided in Table 7-1 (EV Database, 

2018b, 2018a; Miles, 2018).  

Table 7-1 Range profiles for Nissan Leaf and BMW i3 (EV Database, 2018a, 2018b; 

Miles, 2018) 

 Nissan Leaf BMW i3 

Battery Capacity 24 kWh 33 kWh 

Range urban 11.0 kWh/100km 10.4 kWh/100km 

Range highway 18.3 kWh/100km 17.6 kWh/100km 

Range combined 14.2 kWh/100km 13.8 kWh/100km 

Usable energy 22kWh 27kWh 

The range profiles were used by the pragmatic scheduling algorithm when estimating the 

driving distance from the remaining charge in the EV (Section 6.4.3). The BMW i3 has a higher 

energy efficiency compared to the Nissan Leaf. The combined range was used to since it 

represents the average mileage per 100km for both urban and highway consumption (Miles, 

2018). 

Table 7-2 shows the data types of the data used for the evaluations. The input vehicle’ primary 

keys in the database were used to represent the EVs. The primary keys of the charger types 

were  used to represent the charger preferences. The current location and destination do not 

have a minimum or maximum value. The duration of the charge was not included as an input, 

because it is a calculated value. However, the duration is important when making a 

recommendation to the driver.  
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Table 7-2 Inputs data types to EVCS. 

Input Description Value type Min Max 

Vehicle The type of electric vehicle  Integer 1 2 

Charger 

preferences 

The type of plug in charger  Integer (1-3) 

 

1 3 

Location 

preferences 

The type of location of the charging 

station 

Integer (1-4) 1 4 

Remaining 

charge (SOC) 

The amount of charge remaining in 

the battery pack 

Integer (0 – 

90% of full 

battery 

capacity) 

0% 90% 

Current 

location 

The location from which the 

charging request was made. 

String (GPS)   

Destination The destination of the EV driver String (GPS)   

Preferred 

charge time 

The time the EV driver would like 

to charge his EV 

Datetime 08:00 17:00 

7.2.2.1 Formative Evaluation of the EVCS prototype 

Formative evaluations were incorporated into the iterative development process of the EVCS 

prototype, thus creating an opportunity for detecting and eliminating any functional issues in 

the program logic. During development of the EVCS prototype, the prototype was evaluated 

through EVCS prototype’s program logic. The objective of this process was to ensure the 

integrity of the EVCS prototype and remove any errors in the program logic. This functional 

testing was done before the summative evaluation of the EVCS prototype, which was more 

comprehensive. 

7.2.2.2 Summative Evaluation of Charge Scheduling Model 

The summative evaluation was conducted in the second phase, and this phase, and involved 

the summative-naturalistic evaluation of the EVCS prototype, and the artificial summative 

evaluation of the proposed Charge Scheduling Model.  Section 4.5.1 discussed the evaluation 

strategies available for DSR Methodologies. The FEDS framework proposed by Venable et al. 

(2016), indicated that a summative evaluation of the Charge Scheduling Model can be utilised 

to determine the efficacy of the Charge Scheduling Model. Table 4-3 shows the criteria to 

determine which evaluation strategy to use.  

To participate in the evaluation of the model, the participant had to meet the requirements 

mentioned. This is important, because it allowed the participant to critically evaluate the 

components of the proposed Charge Scheduling Model. Figure 7-4 summarises the two 

evaluation episodes that were used in the evaluation of the artefacts.  
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Figure 7-4 Evaluation Process Overview for EVCS prototype and Charge Scheduling 

Model (Author’s contribution) 

7.3 ANALYSIS OF RESULTS 

This section details the procedure followed in the conducting the experiments used to evaluate 

the EVCS prototype. This section also provides a review of the results from the 

experimentation process. 

7.3.1 Round Trip Delay Experiment 

The Round-trip delay (RTD) experiment was used to determine the time taken for the client to 

send a request to a remote server, and the server to acknowledge receipt of the request and send 

a response to the client. In this study, the client was the mobile responsive web app, the EVCS 

prototype, and the remote server was the AWS EC2 instance hosting the EVCS prototype 

application. The RTD experiment was conducted to determine the performance and time 

metrics of the EVCS prototype. The real time response time when an EV driver makes a request 

to charge their EV is important, because it addresses R2. 

7.3.1.1 Procedure 

The setup for the RTD experiment was done in two stages, as follows: 

• Stage 1 - local testing was done using a server application on a local host machine on a 

laptop; and 

• Stage 2 – remote testing was done using a server application on a remote server. The 

remote server was located in the AWS’s Ireland region. 
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Table 7-3 shows the specifications between the two systems used in the RTD experiment. The 

remote server was an AWS EC2 t2.micro instance using Apache’s Hypertext Transfer Protocol 

Daemon (HTTPD) web server. 

Table 7-3 Specifications for local and remote server 

 Local Remote (EC2 Instance) 

CPU 1 1 

RAM 16GB 1GB 

Processor speed 2.8GHz Up to 3.3 GHz 

Operating System Mac OS Mojave Cent OS 

The web application was developed using the Laravel’s PHP framework (Section 6.4.1). The 

first stage of the evaluation was done using a locally hosted server on a Mac Book Pro at the 

Nelson Mandela University. The goal of the first stage of the evaluation was to eliminate any 

bugs in the program logic for key functionality. The key tests were done from a single user 

perspective. The reasoning behind single user tests is that if the test fails for a single user, then 

more work must be done on the program logic to achieve the desired result.  

The RTD experiment was completed by initiating charging requests from a single driver thirty 

times. These tests were conducted using simulated data for the driver’s preferences.  

The charging stations in Table 7-4 were chosen  to represent the different type. Due to the lack 

of charging infrastructure in South Africa, simulated locations for charging stations were used 

in the evaluation. The locations where chosen due to their diversity in terms of preferences 

mentioned in Section 5.8.  
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Table 7-4 Simulated Charging Locations 

# Location GPS  

1.  Nelson Mandela University -34.0037, 25.6698 

2.  Greenacres Mall -33.9487, 25.5768 

3.  Baywest Mall -33.9517, 25.4601 

4.  Central, Port Elizabeth -33.9617, 25.6202 

5.  Kings Court Centre and Apartments -33.9910, 25.5570 

6.  Aloe Mall, Uitenhage -33.7569, 25.4086 

7.  Engen Motors Pedi -33.1955, 27.1194 

8.  Premier Hotel Regent, East London -33.0191, 27.9189 

9.  Market Square Grahamstown 33.3076, 26.5214 

10.  IDZ Office Park East London -33.0506, 27.8541 

The simulated data was generated using the method described in Section 7.2.2. 

Table 7-5 Electric Vehicle key. 

Electric vehicle 

1 BMW i3 

2 Nissan Leaf 

 

Table 7-6 Charger type preferences key 

Charger preferences 

1 DC Fast Charger 

2 Hybrid Charger 

3 Slow Charger 
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Table 7-7 Location preferences key 

Location preferences 

1 Mall 

2 Office Park 

3 Roadside - auxiliary services 

4 Roadside - no auxiliary services 

Table 7-8 Simulated input data 

Exp EV 
Charger 

preference 

Location 

preference 

Remaining 

charge 

(SOC) 

Current 

location 

Preferred 

charge 

times 

Available 

charging 

stations 

1 1 1 2 29 1 1 All 

2 1 3 1 22 1 2 All 

3 1 3 2 10 1 4 All 

4 1 2 2 9 1 8 All 

5 1 1 3 7 1 9 All 

6 1 1 4 8 1 3 All 

7 1 1 1 17 1 5 All 

8 2 2 2 3 1 10 All 

9 2 1 1 20 1 11 All 

10 2 1 1 5 1 14 All 

11 1 3 3 2 1 15 All 

12 1 1 1 19 1 12 All 

13 1 3 1 26 1 4 All 

14 2 3 3 19 1 7 All 

15 2 1 3 17 1 2 All 

16 2 2 3 17 1 18 All 

17 1 1 1 20 1 4 All 

18 1 3 2 4 1 6 All 

19 1 1 1 9 1 2 All 

20 2 1 4 3 1 16 All 

21 2 1 1 2 1 8 All 

22 1 3 2 10 1 4 All 

23 1 1 4 13 1 16 All 

24 2 2 2 20 1 5 All 

25 1 1 2 4 1 6 All 

26 1 1 3 5 1 4 All 

27 1 3 2 15 1 11 All 

28 2 3 2 5 1 17 All 

29 2 1 2 17 1 15 All 

30 2 3 3 6 1 10 All 

 

Table 7-5 to Table 7-7 show the key value relationships that can be used to decode the data 

shown in Table 7-8. The keys are the primary keys of the data in the database of the EVCS 

prototype. Table 7-8 lists the simulated input data used to perform the RTD experiment. There 
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were ten (10) charging stations in the simulated EVCS network. The locations of the charging 

stations were selected based on the literature review in Section 5.8. 

The charging stations were all available during the experiments,  because the primary objective 

of the RTD experiments was to measure the delay time. 

7.3.1.2 Results  

The goal of this experiment was to determine the time taken from the time an EV driver submits 

a request to charge their EV, to the point when he received a response from the server 

application. The results of the RTD experiment performed from a local host server produced 

times with an average of 2.85 secs (Table 7-9). The results of the local tests were conducted 

during Stage 1 testing, and results of Stage 2 are represented by the remote column. 

The shortest time observed during stage 1 of testing was 1.34 seconds, and the longest observed 

was 3.78 seconds. The average execution time for the 30 experiments performed was 

approximately 2,45 secs. Figure 7-5 shows the progression of the experiments. 

Table 7-9 RTD Experiment Results 

Experiment Local (secs) Remote (secs) 

1 1,3363 1,3455 

2 2,3612 1,8231 

3 3,0089 1,4022 

4 2,6799 1,1023 

5 2,8279 1,0838 

6 2,8898 1,3245 

7 3,6898 1,4563 

8 3,1788 1,2946 

9 3,7822 1,4038 

10 2,2347 1,4573 

11 1,8381 1,1300 

12 2,6189 1,2590 

13 2,6416 1,2893 

14 2,9129 1,2912 

15 2,5213 1,3074 

16 2,8621 0,9124 

17 2,0468 0,8265 

18 2,8750 0,8923 

19 2,3958 1,1609 

20 2,0616 0,8921 
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Experiment Local (secs) Remote (secs) 

21 2,4714 1,4820 

22 2,0042 1,0023 

23 2,1667 0,9732 

24 1,9433 0,9343 

25 2,4361 1,0129 

26 1,6535 0,7825 

27 2,2627 0,6900 

28 2,0404 1,0024 

29 2,2853 1,0042 

30 1,5799 0,9727 

Average 2,4535 1,1504 

Figure 7-5 shows the comparison of the RTD experiment times between the local host and the 

remote host. It is also important to note there was another factor that influenced the results 

shown in Figure 7-5, namely, the time taken to make API calls to the Distance Matrix API to 

calculate the distance between the EV driver’s current location and the different charging 

stations. Figure 7-5 also shows the results of the tests conducted using a remote server. The 

RTD between a user submitting a scheduling request and results being presented to the user 

was considerably reduced. The shortest RTD experiment conducted was 0,41 secs. The RTD 

time was reduced because of more dedicated resources on the server. The average RTD time 

of the remote was considerably lower, and did not exhibit the trend of progressively increased 

RTD time as the experiments progressed.  
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Figure 7-5 Local vs Remote RTD Experiment Comparison 

7.3.2 Analytical Evaluation of Scheduling Algorithm 

Evaluating the scheduling algorithm’s performance was  important in determining the 

effectiveness of the Charge Scheduling Model, and the EVCS prototype. The EVCS 

prototype’s ability to generate effective charging schedules relies on the scheduling algorithm 

making correct recommendations. This evaluation addressed, R3 as listed in Table 5-5 (Section 

6.3.1.2). The scheduling algorithm designed and developed in Section 6.4.3, takes input from 

the EV driver through the EVCS prototype.  

7.3.2.1 Evaluation Procedure 

The metric used to evaluate the proposed algorithm’s ability to make correct recommendations 

to the EV driver,  about where and when to charge his EV, was accuracy. The accuracy of the 

recommendations presented by the proposed algorithm is given by (Tan, Steinbach, & Kumar, 

2006): 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑓11 + 𝑓00

𝑓11 + 𝑓10 + 𝑓01 + 𝑓00
 

In this study, the predictions are the recommendations made by the proposed algorithm. A 

confusion matrix was also used as a second method to determine the accuracy of the proposed 

algorithm. A confusion matrix is a N x N matrix, where N is the number of classes being 

predicted (Engstrand & Moeller, 1967; Srivastava, 2016). Table 7-10 summarises how a 

confusion matrix works.  

Table 7-10 Confusion Matrix (Srivastava, 2016) 

  

Target 

  Positive Negative 

Model 
Positive a b Positive Predicted Value a/(a+b) 

Negative c d Negative Predicted Value d/(c+d) 

  

Sensitivity  Specificity 
Overall Accuracy 

a/ (a +c) d/ (b +d) 

Accuracy in a confusion matrix describes the proportion of predictions that were accurate. The 

positive predicted value is the proportion of positive cases that were correctly identified. The 

negative predictive value refers the proportion of negative cases that were correctly identified. 

Sensitivity describes the proportion of actual positive cases, which are correctly identified, and 

the specificity refers to the proportion of actual negative cases, which are correctly identified 

(Brownlee, 2016; Srivastava, 2016). 

The charging stations used in the evaluation were all assumed to have characteristics based on 

the charging station at Nelson Mandela University (Section 4.2). In South Africa, there is a 

lack of charging infrastructure, hence the need to   assume  that the characteristics of the 

charging stations  were similar to the one at Nelson Mandela University. Another assumption 

made was that the pricing per kWh was the same for the different charger types available, and 

that there was no preferential treatment for EV drivers. Preferential treatment of EV drivers 

means that other drivers would be considered more important. This assumption was made  to 

limit the number of variables influencing the decision to charge, and no such pricing model has 

been formulated for South Africa. The ranking of the results from the proposed algorithm, i.e. 

the recommendation, was made using one of the more popular models of MCDA, the WSM 

(Song & Kang, 2016). 
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Table 7-11 Episodes Evaluated. 

Episodes Expected outcome 

No free charging port No recommendation 

No capacity in SMGs No recommendation 

Destination is known Recommendation close to destination 

Driver has preferentially used a charging station  Recommendation at the said charging station. 

Simulated (Table 7-8) data was used as input for the scheduling algorithm, and the data was 

randomly generated using the method described in Section 7.2.2. The simulated data was used 

to test a few scenarios where the outcome was known beforehand (Table 7-11): 

• There is no free charging slot around the preferred time – the charging stations within 

driving range are fully occupied at the preferred time, i.e.  1 hour of the preferred time, 

therefore no recommendation is expected. 

• There is no charging capacity at the SMGs to charge the EV – all islanded SMG within 

the driving range of the EVs do not have the capacity to charge the EV. The expected 

outcome for this scenario is no recommendation. An islanded SMG is a SMG that is 

not connected to the main electricity grid. 

• The destination is known – If the driver inputs the destination, then the expectation is 

that the EV should be charged at a charging station in the driver’s travel direction. 

• The driver has used a particular charging station before more than 50 per cent  of the 

times. Several studies have linked the frequency of use to the derivation of utility which 

we can interpret as preference (Willoughby, 2008; Hamilton, Ratner, & Thompson, 

2011; Park, Purnell, Freeman, Reese, & Varga, 2017). Therefore, an assumption is 

made that the driver  prefers  this charging station. 

7.3.2.1 Analysis of Results 

The results of the confusion matrix are presented as percentages in Table 7-12. The accuracy 

of the proposed algorithm was 90 per cent  for the number of tests conducted (n=50). The 

positive predicted value was high, as well as the negative predicted value.  

Table 7-12 Confusion Matrix Results for Scheduling algorithm. 

 Positive Negative Percentage 

Positive 30 3 91% 

Negative 2 15 88% 

 94% 83% 90% 
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These results were viewed favourably because it is ideal for the algorithm to report correctly 

both on positive and negative outcomes. A positive outcome is when a recommendation is 

given by the proposed algorithm, when the test case was supposed to produce a 

recommendation. A negative outcome is when there were no available charging stations, and 

no recommendation was given by the proposed algorithm, and the test case was also not 

supposed to give a recommendation (Brownlee, 2016; Srivastava, 2016). A sensitivity value of 

94 per cent  means that 94 per cent  of actual positive outcomes were correctly identified. A 

specificity of 83 per cent  means that the algorithm correctly identified actual negative 

outcomes. The positive and negative predicted values are particularly important, as they report 

on the validity of the schedules generated by the algorithm. 

Another important metric considered during the evaluation was the execution time of the 

algorithm. The execution time of the algorithm was reported on in Section 7.3.1. The execution 

times were recorded on a remote server. Figure 7-6 shows the execution time for the 

experiments conducted to determine the accuracy of the algorithm (n=50). The average 

execution time for the experiments was 0,88 secs. This is consistent with the average time for 

the earlier experiments shown in Figure 7-6. The execution time for the algorithm is important 

because it allows us to make inferences regarding the criteria and constraints mentioned in 

Section 6.2. One of the criteria for scheduling algorithms is fast processing times, and reporting 

on the execution time of the algorithm allows us to measure the processing time.  

 

Figure 7-6 Execution time of scheduling algorithm 
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The execution times can further be improved by ensuring that a high-speed network is 

maintained. Each API call has a latency associated with each API call. This latency can be 

affected by the remote server’s network. Therefore, it is important to maintain a high-speed 

network  to avoid the latency from compounding and resulting in the algorithm having slow 

processing times.  

 

Figure 7-7 Total response time 

Figure 7-7 illustrates the total response time, which is the total time taken from the time the 

user sends a request and receives a response from the EVCS prototype. The delay time refers 

to the time taken by the driver’s request to travel to the EVCS prototype, and the time taken by 

the response from the EVCS prototype to reach the driver, and, this excludes the execution 

time illustrated in Figure 7-6. The experiments showed that the algorithm execution time is 

greater than the time taken by the request travelling to and from the EVCS prototype. On 

average the 78 per cent  of the total response time is spent by the algorithm generating the 

effective charging schedule. 
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Figure 7-8 Total Response Time and Average Time 

One of the hard constraints, as mentioned in Table 6-1, is near real-time scheduling. Near real-

time refers to processing times that are close to real time. Near real time implies slower than 

actual real time, and can be in the order of seconds (Wilson, 2015; Cohen, 2018). Therefore, 

according to Cohen (2018) and Wilson (2015), the average processing time of 1,13 secs of the 

EVCS prototype can be accepted as near real time. 

7.4 DISCUSSION: FULFILMENT AND ANALYSIS OF REQUIREMENTS 

After the evaluation had been conducted and finalised, it was important to determine whether  

the objectives of the evaluation were met, and also the requirements, or not. The requirements 

of the Charge Scheduling Model were listed in Table 5-5. These requirements were gathered 

through literature reviews and consultations with existing systems. Section 5.6 identified the 

constraints that are unique to EV charge scheduling in PV-powered SMGs. Section 5.9 

identified IoT architectures as necessary to facilitate the data collection in the Charge 

Scheduling Model. Section 6.3.1.3 identified the different components in the IoT-based Charge 

Scheduling Model. The preferences of the EV drivers were identified in Section 5.8. This 

resulted in a well-defined list of requirements (Table 5-5) for the Charge Scheduling Model, 

and the design of the Charge Scheduling Model was described in Section 6.3.1.3; the design 

utilised the IoT Four Layered Architecture and the Three Phase Dataflow. The Four Layered 

Architecture described the Charge Scheduling Model from a component’s perspective (Figure 

6-3),  outlined the different components, and how the components in each layer interact with 
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each other. The Three Phase Dataflow model described the Charge Scheduling Model from a 

data perspective, specifically describing how data is collected, transmitted and processed. 

The EVCS prototype was implemented to provide some evidence that the proposed Charge 

Scheduling Model can be used to effectively schedule when and where EV drivers can charge 

their EVs. The results of the tests performed in Sections 7.3.1 and 7.3.2 indicate that the EVCS 

can be used to schedule the charging of EVs. The web server used was implemented using 

PHP, using AWS. The scheduling algorithm was also implemented in PHP (Section 6.4.3). The 

EVCS prototype was implemented using the PHP, and hosted using AWS with the forecasting 

model (Section 4.4) implemented using python. It is, however, important to note that the 

implementation tools can be different from the ones used in this research. The proposed Charge 

Scheduling Model defines the considerations, the components and architecture required to 

effectively schedule the charging of EVs in PV-powered SMG. 

The response times from when a driver sends a request to when the driver receives a 

recommendation, were analysed. The RTD experiment was conducted on both a local server 

and remote host. The RTD experiment showed that the average time between a request and a 

response was less on a remote server, and this was attributed to dedicated resources being 

available on a remote host. The accuracy of the proposed scheduling algorithm was also 

evaluated, and the average accuracy calculated, using a confusion matrix, was 90 per cent. . 

The mean execution time of the algorithm was recorded as 1,49 secs. 

Another key point to mention, is that the average RTD for the experiments conducted was 0,88 

secs. One of the objectives in this research was to schedule the charging of EVs in near real-

time. According to Cohen (2018) and Wilson (2015), the time of 1,13 secs falls under the near 

real time category. The experiments also showed that on average, 78 per c ent  of total time 

taken to schedule an EV, is the time taken by the pragmatic charge scheduling algorithm. This 

determination means that a stable and reliable internet connection is required to maintain the 

effectiveness of the Charge Scheduling Model.  

Table 7-13 summarises the requirements of the Charge Scheduling Model addressed by the 

EVCS prototype, and the metrics used to determine whether the requirements were met, or not.   

It is evident that the model forecasts the capacity of the SMG (Section 4.6).  
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Table 7-13 Fulfilment of Requirements 

 Requirements Metric 
EVCS 

prototype 

R1 
Forecast the amount of energy generated in a PV-

powered SMG. 

Accuracy 
✓ 

R2 
Provide real time information on the status of 

charging stations. 

Effectiveness 
✓ 

R3 
Allow an EV driver to schedule the charging of his 

EV based on his preferences. 

Accuracy 

Efficiency 

Effectiveness 
✓ 

R4 
Allow EV drivers to plan long distance trips. Effectiveness 

✓ 

R5 
Reduce wait time at the charging stations. Effectiveness 

✓ 

The evaluation regarding requirement one (R1) was conducted in Section 4.5 and Section 4.6. 

An accuracy for the EFM of approximately 84 per cent  was achieved using the SVR algorithm. 

Research questions R2 – R5 were evaluated using the metrics of effectiveness, efficiency and 

accuracy in Section 7.3. The scheduling algorithm was evaluated using accuracy and efficiency 

in Section 7.3.2. 

The fulfilment of requirements is critical in determining whether the EVCS prototype address 

the problem statement stated in Section 1.2. The multiple RQs, identified as being necessary in 

the journey to address the problem of effectively scheduling the charging EVs in PV powered 

SMGs, specifically RQ6,  must be addressed in this Chapter. The first requirement was 

addressed and evaluated in Chapter 4, specifically Section 4.6. The need for a forecasting 

model was motivated in Section 4.3.2.  

The second requirement of showing the real time status of charging stations, was addressed by 

the EVCS prototype. This requirement is important, because it shows the status of the charging 

network, and adds to the effectiveness of the Charge Scheduling Model.  

Section 7.3.1 and 7.3.2 discusses and shows that the requirements three to five were  met. The 

EVCS prototype’s ability to generate effective schedules in an efficient manner was evaluated 

in the Section 7.3.1 and 7.3.2. The RTD experiments evaluated the EVCS to determine the time 

taken for result to be presented back to the driver after making a request. Using time as a unit 

measure, allows for efficiency to be measured. The analytical evaluation of the pragmatic 

scheduling algorithm allowed for the metrics effectiveness and accuracy to be measured. The 

confusion matrix (Table 7-12), was used to determine the accuracy of the pragmatic scheduling 

algorithm, used in the EVCS prototype. The confusion matrix was also used to evaluate the 
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effectiveness of the EVCS prototype. The EVCS prototype showed that the average  time for 

a request was 1,13 secs, which can be qualified as near real time.  

7.5 CONCLUSIONS 

The objective of Chapter 7 was to evaluate the Charge Scheduling Model and the EVCS 

prototype and thus address RQ6: 

How effective is the proposed Charge Scheduling Model in scheduling the charging of 

EVs? 

This chapter represented the Demonstration and Evaluate activities of the DSR methodology. 

The demonstration of the theoretical artefact was achieved through the implementation of the 

EVCS prototype. The EVCS prototype was then evaluated using the experimental and 

analytical techniques of the FEDS framework. The RTD experiment, conducted to determine 

the time taken for an EV driver to get a response, showed the EVCS prototype will have 

relatively fast times. The proposed scheduling algorithm was also evaluated using different 

scenarios (Table 7-11) and yielded an accuracy of approximately 90 per cent  (Section 7.3.2). 

The execution time of the algorithm was also evaluated, and the mean execution was 

determined to be 0,88 secs. The author postulated that the execution times could have been 

faster if not for the multiple API calls to the Distance Matrix API associated with each charging 

request.  The contributions from this chapter were: 

• Recommended improvements to Charge Scheduling Model; and 

• Quantitative feedback on the pragmatic scheduling algorithm. 

The experimentation process also determined that the execution time of the pragmatic 

scheduling algorithm constitutes about  78 per cent  of the total response time. This, finding 

means that a stable and reliable internet connection is required to maintain an effective Charge 

Scheduling Model. 

The requirements identified at the beginning of this research were fulfilled, and this 

determination was made through the evaluations in this Chapter. It is important  also to note 

that, since this is a limited research study (proof of concept study), a full field study will need 

to be conducted, using real world EVs, charging infrastructure and EV drivers to fully test the 

robustness of this proposed Charge Scheduling Model. This next phase of this study, which is 
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future work, will be to evaluate this proposed Charge Scheduling Model in the real-world 

conditions. 

Section 7.4 highlighted the requirements addressed by the Charge Scheduling Model and the 

EVCS prototype. The outcome reported positively on the objectives of the evaluation (Section 

7.2.1).  

From the results of the evaluation, we can deduce that the proposed Charge Scheduling Model, 

and the EVCS prototype, are effective in scheduling the location and time when EV drivers 

can charge their EVs. 
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CHAPTER EIGHT 

CONCLUSIONS AND RECOMMENDATIONS 

8.1 INTRODUCTION 

This study investigated how a scheduling model can be designed for the scheduling of EV 

charging in PV-powered SMGs. The main aim of this study was: 

To design a Charge Scheduling Model for the effective scheduling of EV charging in PV-

powered SMGs. 

The Charge Scheduling Model was designed  to reduce the wait times for charging points at 

charging stations to a minimum.  The research study addressed the RQM: 

RQM: How can a Charge Scheduling Model be designed to effectively schedule the 

charging of EVs in PV-powered SMGs? 

Chapter 8 focuses on the last activity of the DSR, which is Communication (Section 2.4). The 

Communication activity entails reflecting on the importance of the problem, the artefacts, and 

the theoretical and practical contributions made by this study (Section 8.3). The limitations of 

the study will also be reflected on (Section 8.4). Recommendations, based on the research 

process, will be provided, as well as details on future research (Section 8.5). A summary will 

then conclude this research study (Section 8.6).  
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Figure 8-1 Chapter 8 Structure 

8.2 ACHIEVEMENT OF RESEARCH OBJECTIVES 

This research study analysed a real-world problem of EVCS, and a solution was proposed that 

would solve the identified problem. To achieve the main aim of this research study, several 

RQs were determined.  The RQs mentioned in Section 1.6 were used to guide the research 

process. Table 8-1 maps the RQs used in this research study, and the chapters in which the RQs 

were addressed. 
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Table 8-1 Research Questions and Chapters. 

Research Questions Chapter 

RQ1: What factors influence energy generation in PV-powered SMGs? 3 

RQ2: What models can be used to forecast energy generated in PV-powered SMGs? 3 

RQ3: How effective is the proposed model for forecasting energy generation? 4 

RQ4: What constraints influence the charge scheduling of EVs in PV-powered 

SMGs? 
5 

RQ5: How can an EVCS prototype be designed for the charging of EVs in PV-

powered SMGs? 
6 

RQ6: How effective is the proposed Charge Scheduling Model in scheduling the 

charging of EVs? 
7 

The first RQ1 was addressed by reviewing existing literature on SMGs, renewable energy and 

forecasting models. The literature review of SMGs in Section 3.2 and Section 3.3 identified 

the challenges and benefits presented by  using  SMGs. Section 3.4 reviewed the literature on 

renewable energy, and presented the benefits of using renewable energy sources in SMGs. 

Section 3.4 also identified the factors that influence energy generation in PV-powered SMGs. 

The identified factors were: 

• Ambient temperature; 

• Humidity; 

• Cloud cover; and  

• Windspeed. 

These factors were used as input data for in the Energy Forecasting Model used to forecast the 

energy output in PV powered SMG. 

The second RQ (RQ2) was also addressed in Chapter 3 (Section 3.5), where  various studies 

that had attempted to forecast energy using machine learning based algorithms, were reviewed. 

This review led to seven, machine learning based forecasting models, being reviewed (Section 

3.5.2). However, the list was shortlisted to five machine learning based algorithms that can be 

used for energy forecasting. The five models were: 

• KNN; 

• SVR; 

• MLP; 

• Bayesian neural networks; and  

• Decision trees.  
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RQ3 was addressed in Chapter 4; the focus of this chapter was to evaluate the appropriateness 

of the machine learning based algorithms for forecasting energy generated in PV-powered 

SMGs. An overview and context of the case study at the uYilo e-mobility centre was  given in 

Section 4.2. The requirements and objectives of the EFM were provided in Section 4.3. The 

FEDS was  chosen as the evaluation strategy for the EFM. The experimentation to evaluate the 

accuracy of each of the machine learning based algorithms was done in two iterations. During 

the first evaluation, the KNN algorithm achieved the best estimator performance of 

approximately 73per cent,  followed by the Decision Trees algorithm. The second evaluation 

was performed, and the SVR algorithm produced a better estimator performance of 85 percent,  

followed by the KNN and Decision Trees algorithms. The increase in estimator performance 

between the two evaluations was attributed to a larger data set used in the second evaluation. 

The achieved level of accuracy was not achieved for EFM due to the limited historical weather 

data and inverter output from the SMG.  Initially, a minimum of 95 per cent  accuracy was the 

target. Wind speed was not included in the input data used to train the machine learning 

algorithms, because we did not  have access to the wind data. 

RQ4 was addressed in Chapter 5 where the chapter reviewed the literature on scheduling and 

EVs. The objective of this chapter was to identify the scheduling constraints that are unique to 

EVs. A literature review of existing scheduling algorithms was conducted in Section 5.4; this 

review identified the key and common characteristics that are used in scheduling algorithms. 

These characteristics and constraints (Section 5.6) led to selection criteria being proposed for 

selecting the appropriateness of scheduling algorithms (Section 5.7). The hard constraints 

identified for EVCS were:  

• Near real-time; 

• Port limitation; 

• EV occupation; 

• Number of ports; 

• SMG capacity; 

• Minimum charging time; 

• Minimal wait time; and 

• Prior scheduling. 
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Violating any of the identified hard constraints would result in the goal of reducing the time a 

driver has to wait to charge their EV at a charging station, not being achieved. Ensuring that 

the EVCS prototype schedules the EV driver in near real time, allows for a more efficient 

Charge Scheduling Model. Violating the port limitation, EV occupation, and the number of 

ports constraints could result in more than one driver being allocated to the same charging port 

at the same time, which would potentially result in long wait times, and longer charge times, 

thus violating the minimal wait and charge time constraints. This ultimately leads to the 

diminished effectiveness of the Charge Scheduling Model. A violation of the SMG capacity 

constraint could result in drivers being scheduled at charging stations where there is not enough 

power to charge their EV. Violating the prior scheduling constraint, would result in reserved 

charging ports being occupied by drivers who are not scheduled. 

A decision was also taken to use a pragmatic algorithm for the scheduling, because  for the 

model to be effective, driver preferences had to be taken into consideration. Section 5.8 

identified the factors that influence where and when drivers charge their EVs.  

The identification of these scheduling constraints addressed RQ4. Chapter 5 also identified IoT 

as the appropriate platform on which to build the Charge Scheduling Model, because IoT 

models allow data to be collected from elements in the Charge Scheduling Model. 

Chapter 6 focused on addressing RQ5 and described the artefact design process for the proposed 

Charge Scheduling Model (Section 6.2). The proposed Charge Scheduling Model (Figure 8-2) 

was translated into an EVCS prototype in Section 6.4. The implementation of the pragmatic 

scheduling algorithm was discussed in Section 6.4.3. The WSM used in MCDA was used in 

the pragmatic scheduling algorithm, to rank the solutions, and make a recommendation. 

Chapter 7 focused on evaluating the proposed Charge Scheduling Model and the EVCS 

prototype in scheduling the charging of EVs in PV-powered SMGs. The FEDS was used as the 

evaluation strategy (Section 7.2). Iterative formative evaluation and summative-naturalistic 

evaluation were used to evaluate the EVCS prototype, and the Charge Scheduling Model 

respectively. The average execution time of the pragmatic scheduling algorithm on a remote 

server was 1,49 secs, which is acceptable for near real-time processing (Section 7.3.2) (Figure 

7-6). Another test was conducted to determine the RTD, and a comparison was done between 

using a local host and a remote host (Figure 7-5). An interview was conducted with an expert 

in e-mobility to determine if the Charge Scheduling Model was effective in EVCS. The expert 
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believed that the Charge Scheduling Model met all the design requirements. When asked for 

any improvements that could be made to the Charge Scheduling Model, the expert indicated 

that the Charge Scheduling Model could include the vendors and suppliers of the equipment 

that will be used in the Charge Scheduling Model. The expert also believed that the model 

would reduce wait times for EV drivers when they wanted to charge their EVs. The expert also 

highlighted the importance of evaluating the Charge Scheduling Model in real-world 

conditions, but acknowledged the difficulty involved due to the lack of infrastructure in South 

Africa. 

This research study was successful in addressing the main RQ of this research by addressing 

all the sub research questions successfully. The thesis statement of this research study: A 

Charge Scheduling Model can be designed to effectively schedule the charging of EVs using a 

PV-powered SMG, was confirmed by the outcome of this research study. 

8.3 RESEARCH CONTRIBUTIONS 

This research has made several contributions to the field of sustainable mobility and PV-

powered SMG. These contributions can be applied to the context of South Africa. These 

research contributions can be categorised into theoretical and practical, as discussed below. 

8.3.1 Theoretical Contributions 

There are  numerous  theoretical contributions made by this research, as follows: 

• Factors that influence energy generation in PV-powered SMGs (Section 3.6); 

• EFM (Section 4.7); 

• Constraints of EVCS (Table 6-1); 

• Criteria for selecting scheduling algorithms (Section 6.2); 

• Requirements of Charge Scheduling Model (Table 5-5); and 

• The proposed Charge Scheduling Model (Figure 8-2). 

The factors that influence energy generated in a PV-powered SMGs were determined from a 

literature review in Section 3.4. The review of existing literature on SMGs, and renewable 

energy sources, identified the weather variables that influence the energy produced in a PV-

powered SMG (Section 3.4).  It was important to identify these factors as they are critical when 

forecasting energy generation. The factors identified were ambient temperature, humidity and 
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cloud cover. Once these factors were identified, machine learning based forecasting techniques, 

appropriate for forecasting PV power output, were reviewed. The identified factors served as 

input data together with the inverter output and this historical weather and inverter output was 

used to train the forecasting algorithms identified (Section 3.7). The forecasting algorithm with 

the best estimator performance was recommended for use in the EFM (Section 4.7). 

A literature review was also used to identify the constraints that are unique to EVCS. Both hard 

and soft constraints were identified (Table 6-1). The literature review method was also utilised 

to determine criteria for selecting scheduling algorithms for EVCS (Section 6.2). 

The requirements of the Charge Scheduling Model were determined from a literature review 

in Chapter 5. The Charge Scheduling Model objective was to minimise wait times for EV 

drivers in PV-powered SMGs, and the requirements were compiled with that objective in mind. 
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Figure 8-2 Proposed Charge Scheduling Model 
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The Charge Scheduling Model was also based on theory and literature. The literature studies 

were conducted to gather the requirements (Section 6.3.1.2), the constraints (Section 6.2) and 

objectives (Section 6.3.1.1). The Charge Scheduling Model also incorporated Decision theory 

concepts, and Decision theory was used to evaluate the results generated by the scheduling 

algorithm. In MCDA, a WSM can be used to determine what a user’s choice will be, based on 

their preferences (Song & Kang, 2016). The WSM assumes that as the number of preferences 

met increases, so does the probability that the user will make  that choice. In the Charge 

Scheduling Model, as the number of preferences met by a charging station increases, so does 

the probability  that the EV driver will prefer that charging station. A review of the mapping 

between the objectives and requirements presented in Table 7-13, showed that the initial 

requirements of this research study were met, thereby allowing for improved performance in 

the task of EV charge scheduling. Therefore, Charge Scheduling Model met the requirements 

for the task of scheduling the charging of EVs in a PV-powered SMG. 

The Charge Scheduling Model is IoT-based and consists of: 

• The Four Layered Architecture; and 

• The Three-Phase Data Flow. 

The Four Layered Architecture described the elements in the Charge Scheduling Model using 

layers, and how they interface with each other. The Three-Phase Data Flow Model describes 

how data is collected and how the data is transmitted in the Charge Scheduling Model. The 

Charge Scheduling Model was the main contribution of this research study. The Charge 

Scheduling Model can be applied to the field of EV charging networks with distributed energy 

sources, such as wind hydroelectric. The Charge Scheduling Model can also be applied to EV 

charging networks that are grid dependent for energy. 

8.3.2 Practical Contributions 

The practical contribution from this research was the EVCS prototype (Section 6.4), and the 

pragmatic scheduling algorithm (Section 6.4.3). The EVCS prototype utilises the pragmatic 

scheduling algorithm, and addresses the requirements listed in Table 5-5.  

The pragmatic scheduling algorithm makes use of Google-based APIs (Table 6-3) to determine 

the location, directions, distance and driving time between locations for EV drivers. The 

algorithm takes driver preferences (Table 5-4) into consideration when determining where to 
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schedule an EV to charge. The algorithm also uses the WSM to rank the results, and make a 

recommendation of which result the driver should select. 

The EVCS prototype and pragmatic scheduling algorithm were evaluated through experimental 

evaluations, to determine if they are effective in scheduling EV charging. The result of the 

RTD experiment indicated that the EVCS prototype was effective in scheduling the charging 

of EVs (Section 7.3.1). The execution time of the pragmatic algorithm indicated that the 

algorithm made recommendations in near real-time (Section 7.3.2). These results are important, 

because they present opportunities for comparative studies when other researchers conduct 

similar research. 

8.4 PROBLEMS EXPERIENCED AND LIMITATIONS OF STUDY 

 Numerous  problems were experienced during this research study. The first problem 

encountered was  regarding  historical weather and inverter data. The issue was the time 

intervals at which the weather variables were recorded. The weather data was recorded hourly, 

which was not ideal, because the inverter output data was recorded at ten-minute intervals. 

However, this issue was resolved by calculating hourly averages for the inverter output, and 

then matching the hourly weather data to the hourly average of the inverter output. Access to 

inverted data was limited because the SMG was still under implementation during this research, 

and this resulted in the period in which data could be collected being limited. The SMG would 

often go offline and fail to collect data. These two issues resulted in limited input data for the 

Energy Forecasting Model.  

The second problem experienced was the lack of real-world data  regarding  charging stations 

and driver preferences. It would have been preferable to model the charging behaviour of EV 

drivers to real-world data, and then build a predictive model using historical preference data. 

This issue was addressed by randomly simulating preference data (Table 7-8). 

A limitation of the study was due to the lack of an evolved charging infrastructure network and 

EVs.   Data used in the evaluation of the EVCS prototype was simulated data. The charging 

stations were modelled on the one at uYilo e-mobility centre. However, the capacity of 

charging stations was assumed to be higher than that currently available at uYilo. 
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8.5 RECOMMENDATIONS FOR FUTURE RESEARCH  

The findings from this study have highlighted several opportunities and recommendations for 

future research. This research study presented a Charge Scheduling Model that can be used to 

schedule when and where EV drivers can charge their EVs. The EV drivers can reserve 

charging points at charging stations in advance. The model also allows EV drivers to plan when 

and where to charge EVs during long distance trips. 

Firstly, future research can evaluate the Charge Scheduling Model in real-world conditions 

with actual data. Using data from real-world conditions will potentially highlight areas of the 

model that can be improved. Secondly, the accuracy achieved by the EFM (85%) was below 

the 95 per cent  threshold set in Section 4.6.2.2, with a relatively small dataset. As part of future 

research, the accuracy of the EFM can be improved to a minimum of 95 per cent .. A larger 

dataset should also be used to train the Energy Forecasting Model. Thirdly, to obtain real-world 

data is to collaborate with other researchers or organisations in Europe, where more evolved 

charging infrastructure exists, and there are more EVs. Fourthly, the Charge Scheduling Model 

can incorporate other types of renewable energy sources, such as wind and hydroelectricity. 

This will make the Charge Scheduling Model more robust. During the evaluation of the Charge 

Scheduling Model, the expert interviewed suggested that the model should include details of 

suppliers and vendors of the elements in the proposed Charge Scheduling Model.  

8.6 SUMMARY 

The focus of this research was to design a scheduling model for the charging of EVs in PV-

powered SMGs. The proposed Charge Scheduling Model was intended to reduce the wait times 

at charging stations by EV drivers to a minimum. Research questions were formulated to aid 

the research process (Section 1.6). This research study produced a Charge Scheduling Model 

for scheduling the charging of EVs in PV-powered SMGs.  

The DSR methodology was used to guide the research process for this research study. A 

literature review was used to investigate the existing body of knowledge, identify the problem 

and gather requirements. The prototyping strategy was used to design the Charge Scheduling 

Model, and the experimentation research strategy was used to evaluate the proposed Charge 

Scheduling Model. The case study used for this research was based on the SMG for EV 

charging at the uYilo e-mobility centre. 
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The main theoretical contribution of this research is the Charge Scheduling Model, which is 

IoT-based and allows EV drivers to schedule when and where to charge their EVs in a PV-

powered SMG. The model was implemented as the EVCS prototype to demonstrate that the 

model is feasible and effective. The EVCS prototype was also evaluated, and the outcome from 

the evaluation was that the EVCS prototype was also effective. 

This study can thus be concluded by stating that the Charge Scheduling Model can effectively 

schedule EV charging in a PV-powered SMG, and reduce the wait times at charging stations 

to a minimum. 

 

----THE END---- 
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