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Abstract

In a competitive world where products are designed to last for long periods of time, obtain-
ing time-to-failure data is both difficult and costly. Hence for products with high reliability,
accelerated life testing is required to obtain relevant life-data quickly. This is done by plac-
ing the products under higher-than-use stress levels, thereby causing the products to fail
prematurely. Part of the analysis of accelerated life-data requires a life distribution that
describes the lifetime of a product at a given stress level and a life-stress relationship – which
is some function that describes the way in which the life distribution changes across different
stress levels. In this thesis it is assumed that the underlying life distribution is the well-
known Weibull distribution, with shape parameter constant over all stress levels and scale
parameter as a log-linear function of stress. The primary objective of this thesis is to ob-
tain estimates from Bayesian analysis, and this thesis considers five types of non-informative
prior distributions: Jeffreys’ prior, reference priors, maximal data information prior, uniform
prior and probability matching priors. Since the associated posterior distribution under all
the derived non-informative priors are of an unknown form, the propriety of the posterior
distributions is assessed to ensure admissible results. For comparison purposes, estimates
obtained via the method of maximum likelihood are also considered. Finding these esti-
mates requires solving non-linear equations, hence the Newton-Raphson algorithm is used
to obtain estimates. A simulation study based on the time-to-failure of accelerated data is
conducted to compare results between maximum likelihood and Bayesian estimates. As a
result of the Bayesian posterior distributions being analytically intractable, two methods to
obtain Bayesian estimates are considered: Markov chain Monte Carlo methods and Lindley’s
approximation technique. In the simulation study the posterior means and the root mean
squared error values of the estimates under the symmetric squared error loss function and the
two asymmetric loss functions: the LINEX loss function and general entropy loss function,
are considered. Furthermore the coverage rates for the Bayesian Markov chain Monte Carlo
and maximum likelihood estimates are found, and are compared by their average interval
lengths. A case study using a dataset based on accelerated time-to-failure of an insulating
fluid is considered. The fit of these data for the Weibull distribution is studied and is com-
pared to that of other popular life distributions. A full simulation study is conducted to
illustrate convergence of the proper posterior distributions. Both maximum likelihood and
Bayesian estimates are found for these data. The deviance information criterion is used to
compare Bayesian estimates between the prior distributions. The case study is concluded by
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finding reliability estimates of the data at use-stress levels.
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Chapter 1

Introduction

1.1 Overview

Reliability analysis is a field that lies on the interface of mathematics and engineering, and
is used to understand the performance of a product under given conditions. However with
higher consumer expectations and demands, products have been developed to have very high
reliability under standard-use conditions, resultingly making the process of obtaining relevant
time-to-failure data both costly and difficult.

A common way to deal with this problem is to expose the products to a range of higher-
than-use stress levels, causing the product to fail faster, and thus obtaining time-to-failure
data in a reasonable time frame – a process deemed accelerated life testing (ALT). One then
uses the accelerated data to try and make inference on the products under use-stress levels.

When designing an accelerated life test, there are many factors which need to be considered,
such as: the type of dataset used, the type and method of applying stress to the products
and the life distribution used to model the products’ failures.

In this thesis it is assumed that the time-to-failure of a product follows a Weibull distribution,
where the scale parameter of the distribution is a log-linear function of stress, and the shape
parameter is constant regardless of the level of stress applied. Furthermore it is assumed that
the stress applied to the products is constant at every stress level, and that all failures are
observed before the test is completed, that is, considering a complete dataset.

Statistical analysis requires finding estimates via some procedure, and in this thesis, the
Bayesian approach is of primary consideration.

The Bayesian approach combines prior information on a test with data obtained from a
test to form a posterior distribution – the distribution used to make inference. Often prior
information of an experiment is not readily available; in these cases, non-informative prior
distributions are used. This thesis considers five types of non-informative priors: Jeffreys’
prior, reference priors, maximal data information (MDI) prior, uniform prior and probability
matching priors (PMPs). When using non-informative priors, the form of the resultant

1
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posterior is often not that of a known statistical distribution, hence the propriety of the
posterior distribution needs to be considered before any inference is made.

A further difficulty with Bayesian estimates is that they are often analytically difficult to
solve. Hence both Markov chain Monte Carlo (MCMC) techniques and a method proposed
by Lindley (1980) will be used to find Bayesian estimates. The MCMC techniques used in
this thesis are: slice sampling and the adaptive rejection sampling (ARS) technique. The
simulation of the models was conducted on the Bayesian statistical software, WinBUGS

(Lunn et al., 2000).

In Bayesian literature it is common to contrast the results obtained with the results obtained
via an alternative estimation technique. Therefore estimates obtained via the method of
maximum likelihood are also considered in this thesis. The method of maximum likelihood
often requires solving difficult, non-linear equations, thus the iterative Newton-Raphson (NR)
algorithm is considered to approximate these equations and obtain estimates.

1.2 Objectives

The objectives of this thesis are given as:

• Form the likelihood function of the Weibull distribution, assuming its shape parameter
is constant over all stress levels and its scale parameter is a log-linear time transforma-
tion function.

• Derive the equations to find the maximum likelihood estimates (MLEs) for the Weibull
distribution under the log-linear time transformation function.

• Derive Jeffreys’ prior for the Weibull distribution under the log-linear time transforma-
tion function.

• Derive the reference priors for the Weibull distribution under the log-linear time trans-
formation function.

• Derive the MDI prior for the Weibull distribution under the log-linear time transfor-
mation function.

• Derive the uniform prior for the Weibull distribution under the log-linear time trans-
formation function.

• Form the posterior distributions for the Weibull distribution under the log-linear time
transformation function, using the above-mentioned prior distributions.

• Derive the second-order PMPs for the Weibull distribution under the log-linear time
transformation function for all parameters of interest.
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• Show which of the above-mentioned prior distributions are the second-order probability
matching priors, regardless of the parameter of interest.

• Show properness of the posterior distribution for the Weibull distribution under the
log-linear time transformation function using Jeffreys’ prior and the reference priors.

• Show improperness of the posterior distribution for the Weibull distribution under the
log-linear time transformation function using the MDI prior and uniform prior.

• Complete a convergence study for the MCMC Bayesian estimates for the Weibull dis-
tribution under the log-linear time transformation function.

• Complete a case study for the Weibull distribution under the log-linear time transfor-
mation function for a complete dataset, assuming its scale parameter is an inverse power
law function of stress, using maximum likelihood and MCMC Bayesian estimates.

• Find the form of the Bayesian estimates for the Weibull distribution under the log-linear
time transformation function with the approximation technique suggested by Lindley
(1980).

• Complete a simulation study for the Weibull distribution under the log-linear time
transformation function for maximum likelihood, MCMC and Lindley’s estimates sub-
ject to the squared error loss function, linear exponential (LINEX) loss function and
general entropy loss function (GELF).

• Find the coverage rates and average interval lengths for the Weibull distribution under
the log-linear time transformation function for the maximum likelihood and MCMC
estimates.

1.3 Contributions

The contributions from this thesis are as follows:

• Derive the posterior distribution for the Weibull distribution under the log-linear time
transformation function using the MDI prior, and show that it is an improper distri-
bution.

• Derive the posterior distribution for the Weibull distribution under the log-linear time
transformation function using the uniform prior, and show that it is an improper dis-
tribution.

• Use the approximation technique from Lindley (1980) to find estimates from the Weibull
distribution under the log-linear time transformation function.
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• Complete a simulation study with the Weibull distribution under the log-linear time
transformation function with both symmetric loss functions and asymmetric loss func-
tions.

• Complete a full simulation study showing that the MCMC models for the posterior
distribution of the Weibull under the log-linear time transformation function converge.

1.4 Thesis outline

The structure of this thesis is as follows:

Chapter 2 provides the necessary definitions and explanations required for this thesis. The
main topics discussed in this chapter are: an introduction to reliability analysis and one of its
branches, ALT, and an introduction to statistical estimation techniques, notably the Bayesian
estimation technique and the many methods to derive estimates using Bayes’ theorem.

InChapter 3 the Weibull distribution subject to a k-level constant stress accelerated life test
is considered. We furthermore assume that the scale parameter of the Weibull is a log-linear
time transformation function, and its shape parameter is constant for all levels of stress. Since
the form of the likelihood distribution is difficult to work with, a transformation proposed
by Xu et al. (2015) is considered. Following this transformation, maximum likelihood and
non-informative Bayesian estimates are considered. Five non-informative Bayesian priors are
formed, namely: Jeffreys’ prior, reference priors, the MDI prior, the uniform prior and PMPs.
The posterior distributions under each of these priors is formed and the properness of the
resulting posteriors is considered.

Chapter 4 considers a simulation study for the Weibull distribution. Firstly, the form
of Bayesian estimates with the approximation technique suggested by Lindley (1980) are
found. The simulation study assumes a three-level constant-stress accelerated life test for
the Weibull distribution, assuming its scale parameter is dependent on stress related to
temperature, that is, the Arrhenius model is used. The simulation study finds both the
estimated values and the root mean squared error (RMSE) values for the MLEs, and for
non-informative Bayesian estimates using two approximation techniques: those found via an
MCMC simulation test, and those found using the approximation technique suggested by
Lindley (1980). The estimates are found using three loss functions: the squared error loss
function, LINEX loss function, and GELF. The second part of the simulation study considers
finding the coverage rates for both the maximum likelihood and MCMC Bayesian estimates.

In Chapter 5 a case study for the Weibull distribution is considered using a complete
dataset from Nelson (1990), by finding maximum likelihood and MCMC Bayesian estimates.
Here it is assumed that the scale parameter is an inverse power law function of stress. A
full convergence study is completed to ensure admissible results from the Bayesian MCMC
estimates. The second part of the case study considers finding reliability estimates for the
dataset under use-stress levels.



5 1.4. Thesis outline

Chapter 6 provides concluding remarks of the results and relevant findings of this thesis.
It also provides possibilities for future research of this thesis.

Appendix A provides additional results related to Chapter 3 of this thesis. Notably it
provides extensive derivations to some of the proofs provided by Xu et al. (2015), as well as
preliminaries given by Abramowitz and Stegun (1964) and Ramos et al. (2020) required for
the proofs of properness of the posterior distributions.

Appendix B provides additional results related to Chapter 4 of this thesis. It provides
derivations showing the log-concavity of one of the conditional posteriors under the general
reference prior, additional tables related to posterior means, root mean squared errors and
coverage rates as well as the Rr (R Core Team, 2013) and WinBUGS (Lunn et al., 2000)
code used in both Chapter 4 and Chapter 5.

Appendix C provides additional results related to Chapter 5 of this thesis. It contains
additional plots used in the convergence study as well as additional estimation results.



Chapter 2

Literature review

2.1 Introduction to reliability analysis

Rapid increases in technology, global competition and consumer expectations have put great
pressure on manufacturers to produce high-quality and reliable products. It is expected, with
high probability, that these products should operate under standard operating conditions
without flaws for a sustained period of time.

Reliability analysis is a field that lies on the interface of mathematics and engineering, and
uses these tools to understand the performance of a product. The topic of reliability (and
other similar topics, such as: risk and survival analysis) has appeared in literature as early
as the 17th century in the form of morality tables, however in the 20th century the field
experienced explosive growth, being represented in a wide variety of academic journals –
predominantly in statistics (Singpurwalla, 2006).

According to Soyer et al. (2012), the field of reliability is composed of three basic components,
namely a:

1. structural,

2. stochastic and

3. statistical component.

The structural component is concerned with how the product is put together, and is often
concerned with how well the system is designed in comparison to another. The stochastic
component is concerned with modeling the uncertainties inherent in the product. And the
statistical component is concerned with methods for learning about the performance of a
product, given observed data.

The variable of interest in reliability analysis is clearly time, which is non-negative and can
be either continuous or discrete. Our aim is to determine the performance of a product based
on the frequency of failures over some period of time (Zacks, 2012). Cox and Oakes (1984)
provide three requirements required before the frequency of failure is obtained, namely:
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1. a well defined time origin for each product,

2. a scale to measure the passage of time and

3. the root-cause of failure.

The rest of this section is devoted to discussing in detail:

• the relevant functions used in reliability analysis and

• the different types of datasets used in a reliability analysis.

2.1.1 Relevant functions in reliability analysis

Let T, some positive continuous random variable, denote the interval of time from a well-
defined specific starting point to the occurrence of some event. If this event is time-to-failure
of some item, then T is termed the reliability time.

The most important function in any statistical analysis is the probability density function
(PDF), which denotes the probability that a failure occurs with in an interval 4t (Rausand
and Høyland, 2003). Mathematically it can be expressed as:

f (t) =
P (t ≤ T ≤ t+4t)

4t
, (2.1)

where:

• f (t) ≥ 0∀
t
and

•
∞∫
0

f (t) dt = 1.

Then define the cumulative density function (CDF) of T – denoted by F (t) – as the prob-
ability that the lifetime of some item does not exceed some time t (Rausand and Høyland,
2003). Notationally this is given by:

F (t) = P (T ≤ t) =

t∫
0

f (x) dx, (2.2)

where F (t) is a monotonically increasing function with lim
t→0

F (t) = 0 and lim
t→∞

F (t) = 1.

Furthermore equation 2.2 implies that:

f (t) =
d

dt
F (t) . (2.3)

The primary interest of reliability analysis is to find the lifetime of a given item. Hence define
the reliability function of T – denoted by R (t) – which is the probability that the lifetime of
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some item exceeds some time t (Rausand and Høyland, 2003). Notationally this is given by:

R (t) = P (T ≥ t) =

∞∫
t

f (x) dx. (2.4)

From equation 2.4 above, it is obvious that:

R (t) = 1− F (t) , (2.5)

and from equation 2.3 that:

f (t) = − d

dt
R (t) . (2.6)

The reliability function is a monotonically decreasing function with lim
t→0

R (t) = 1 and
lim
t→∞

R (t) = 0.

The hazard function – denoted by λ (t) – is perhaps the most valuable function in reliability
analysis, and is defined as the frequency with which an item fails (Rausand and Høyland,
2003). Mathematically it is given by:

λ (t) =lim
t→∞

P (t ≤ T ≤ t+ M t | T > t)

M t
=
f (t)

R (t)
, (2.7)

with the following properties:

• λ (t) ≥ 0∀
t
and

•
∞∫
0

λ (t) dt =∞.

Therefore the hazard function is defined as the probability that an item will fail in the interval
(t, t+ M t] given that the item has survived at time t.

Using equation 2.3, it can be shown that:

λ (t) = −R
′ (t)

R (t)
= − d

dt
log (R (t)) (2.8)

(Rausand and Høyland, 2003). Since R (0) = 1 it implies that:

t∫
0

λ (x) dx = −log (R (t)) . (2.9)

Therefore:

R (t) = exp

−
t∫
0

λ (x) dx

 . (2.10)

Furthermore, a related quantity to the hazard function is the cumulative hazard function,
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given by:

Λ (t) =

t∫
0

λ (x) dx (2.11)

(Klein and Moeschberger, 2006).

The average time until failure (or mean time to failure) is given by:

E (t) =

∞∫
0

tf (t) dt, (2.12)

provided that this integral is finite, and the variance is given by:

V ar (t) =

∞∫
0

(t− E (t))2 f (t) dt (2.13)

(Rausand and Høyland, 2003).

2.2 Types of data

The inferential process of a reliability analysis is dependent on how the data has been col-
lected. In this section, two types of datasets considered in reliability analysis are discussed:

• complete datasets and

• censored datasets.

It is assumed that the dataset takes the form: T1, T2, ..., Tn where Ti is given as the time-to-
failure of item i, and have observed values given by: t1, t2, ..., tn. It is also assumed that these
items are censored independently, that is censoring occurs independent of any information
gained from previously failed items in the same test.

2.2.1 Complete dataset

A dataset is defined to be complete if we are able to observe the failures of all n items being
tested. We often order the dataset in an increasing sequence:

T(1) ≤ T(2) ≤ ... ≤ T(n), (2.14)

where T(i) is called the ith order statistic (Klein and Moeschberger, 2006).
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Unit 1

Unit 2
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..
.
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Start Finish
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Failed

Plot showing a complete dataset

Figure 2.1: Plot illustrating a complete dataset.

2.2.2 Censored data set

Often due to time and cost considerations a test is terminated prematurely, resulting in
some items not observing failure. These items are thus considered censored data. Klein and
Moeschberger (2006) provided various categories of censoring, such as:

• Left-censored data,

• Right-censored data,

• Interval-censored data and

• Truncation.

There are two main types of censoring, type I and type II censoring, which will also be
discussed below.

2.2.2.1 Left-censored data

A dataset is said to be left-censored when the failure time of an item is only known to be before
a certain time. Notationally, the exact lifetime of a unit, Ti is considered left-censored if it is
less than or equal to some value Cl – denoting the censoring time (Klein and Moeschberger,
2006).

In the case that Ti ≥ Cl, the exact lifetime of the item is known. By introducing a pair of
random variables (X, ε) – where ε indicates whether the lifetime of an item X is observed
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(ε = 1) or was censored (ε = 0) – and where Ti is equal to X if the lifetime is observed or Cl
if the item was censored. That is, the time-to-failure of item i is given as Ti = max (X,Cl) .

Meeker and Escobar (2014) provide a method for constructing a likelihood function under
left-censored data:

LLeft (θ | t) =
n∏
i=1

f (ti)
εi F (ti)

1−εi . (2.15)

Unit 1

Unit 2

Unit 3
..
.

Unit (n-1)

Unit n

Start Finish

Time to failure

Status

Survived

Failed

Plot showing Left censoring

Figure 2.2: Plot illustrating left-censored data.

2.2.2.2 Right-censored data

A dataset is said to be right-censored when some items have survived the experiment and
their failure times are known only to be beyond their present running times. Notationally,
the exact lifetime of an item, Ti will only be known if it is less than or equal to some value
Cr – denoting the censoring time (Klein and Moeschberger, 2006).

In the event that Ti ≥ Cr the item is said to have survived the test, and its test time is
censored at Cr. By introducing a pair of random variables (X, δ) – where δ indicates whether
unit X failed during the test (δ = 1) or was censored (δ = 0) – and Ti is equal to X if the
lifetime is observed or Cr if the unit was censored. That is, the time-to-failure of item i is
given as Ti = min (X,Cr).

Meeker and Escobar (2014) provide a method for constructing a likelihood function under
right-censored data:

LRight (θ | t) =
n∏
i=1

f (ti)
δi [1− F (ti)]

1−δi . (2.16)
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Figure 2.3: Plot illustrating right-censored data.

2.2.2.3 Interval-censored data

Interval censoring is a more general type of censoring when the failure time of an item is
observed only within a certain interval, denoted by (Li, Ri] , otherwise the item’s failure time
is censored (Klein and Moeschberger, 2006).

Meeker and Escobar (2014) provide a method for constructing a likelihood function under
interval-censored data:

LInt (θ | t) =
n∏
i=1

f (ti)
γi [F (ri)− F (li)]

1−γi , (2.17)

where (γi = 1) if the failure time was observed within the interval (Li, Ri] , and (γ = 0) if the
failure time was censored.
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Figure 2.4: Plot illustrating interval-censored data.

2.2.2.4 Truncation

Another concept similar to censoring is interval truncation (or just truncation), which oc-
curs only when an item’s failure lies within a certain observed interval, denoted by (YL, YR)

(Klein and Moeschberger, 2006). If an item’s failure is not observed within this interval, no
information on the item is available.
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Figure 2.5: Plot illustrating truncation.

Truncation differs from censoring since in the latter partial information is available on each
item. Left truncation occurs when an item enters a study at a particular time and is tested
until the item has failed or has been censored, that is YR in the interval is infinite and we
gain information on a unit when the time-to-failure is larger than YL.
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Figure 2.6: Plot illustrating left truncation.
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In right truncation YL in the interval is 0 and we gain information on an item when the
time-to-failure is less than YR.
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Plot showing right truncation

Figure 2.7: Plot illustrating right truncation.

2.2.2.5 Type I censoring

Type I censoring is a process in which all items began a test at time t = t0 and are run until
all items have failed or until a prespecified time – denoted by t = tf – when the test has
been terminated. That is, after the test the lifetime of items failed before time tf are known
exactly. The information in this type of dataset is given by:

T(1) ≤ T(2) ≤ ... ≤ T(s), (2.18)

where s is the number of items that failed the test before time tf , with s ≤ n. Therefore it
is known that (n− s) items survived the test.

Rausand and Høyland (2003) provide rebuttal against type I censoring: they claim that since
s is stochastic there is a chance none or few items will fail before time tf , therefore reducing
the information available on time-to-failure.

Klein and Moeschberger (2006) provide a method to constructing a likelihood under type I
censoring:

LI (θ | t) = c

n∏
i=1

f (ti)
δi [1− F (ti)]

1−δi , (2.19)

where:

• c is an ordering constant which does not depend on the parameters θ,
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• (δi = 1) if the lifetime of the item was observed and

• (δi = 0) if the lifetime of the item was not observed.
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Plot showing type I censoring

Figure 2.8: Plot illustrating type I data.

2.2.2.6 Type II censoring

In type II censoring the test is run until a prespecified number of failures are observed –
denoted by r, for 0 < r < n. As with Type I censoring, the test begins at time t = t0. The
information in this type of dataset is given by:

T(1) ≤ T(2) ≤ ... ≤ T(r). (2.20)

Therefore (n− r) items are known to have survived the test.

Rausand and Høyland (2003) again provide criticism of such a test: since the time at which
the rth failure occurs is stochastic, the time the test takes to finish cannot be determined.

Klein and Moeschberger (2006) provide a method to constructing a likelihood under type II
censoring:

LII (θ | t) =
n!

(n− r)!

r∏
i=1

[f (ti)] [1− F (ti)]
n−r , (2.21)

where: n!
(n−r)! is the ordering constant.
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Figure 2.9: Plot illustrating type II data.

2.2.2.7 Other types of censoring

Rausand and Høyland (2003) introduce two other forms of censoring which haven’t been
discussed much in literature, namely: type III censoring and type IV censoring.

In Type III censoring is a combination of type I and type II censoring. The test is ter-
minated either at time t = tf or after r failures have been observed, whichever occurs first.
Therefore both tf and r need to be specified prior to the start of the test.

In type IV censoring, n units begin testing at different prespecified points at time. If the
time for censoring of unit i is stochastic, then the censoring is said to be of type IV.
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Figure 2.10: Plot illustrating type IV data.

2.3 Accelerated life testing

Items built today often have very high reliability under their normal use conditions, resulting
in lengthy times-to-failure. Therefore finding reliability data on these items is impractical,
because once their reliability data has been collected, they are already out of date and
replaced by new-and-improved items (Rausand and Høyland, 2003). Sometimes long testing
procedures are costly and hence to economize, it is desirable to speed up the testing process.

ALT is a process of exposing an item to various degrees of stress higher than under its use
(nominal) stress levels in order to obtain reliability data faster. This data is then used to
make inference on the item subject to the use stress level. Depending on the type of item,
there are various techniques used to speed up the failure process, such as: increasing the
temperature, voltage, pressure, vibration and so on. These variables are called the stressors,
and are often represented by the vector, s′ = (S1, S2, ..., Sp)

′ such that S0 < S1 < ... < Sp,
where S0 represents the level of stress on an item at use levels, and Sp denotes the most
severe stress applied to an item (Rausand and Høyland, 2003).

This section aims at discussing the two different type of ALT: qualitative and quantitative,
and the different engineering considerations required for running an ALT.

2.3.1 Qualitative versus Quantitative accelerated life testing

Qualitative accelerated life tests (QualAt) are tests used to find the underlying reasons for an
item’s failure under higher-than-usual stress levels (Escobar and Meeker, 2006). The design
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of such a test is simple: run the item at a higher-than-use stress level of a given variable, and
if the item survives, it passes the test (Nelson, 1990). Otherwise if the item fails, a probable
failure mode is revealed and appropriate action to redesign the item is required. These tests
are referred to by many names, including:

• HALT (Highly accelerated life testing),

• elephant tests,

• STRIFE (Stress life),

• environmental stress testing and

• shake and bake tests.

On the other hand, quantitative accelerated life tests (QuanAT), unlike qualitative life tests,
are designed to obtain quantitative information on the failure rate of the data through a life
distribution (usually: exponential, Weibull or lognormal) at the use level of a unit and thereby
provide useful reliability data (Escobar and Meeker, 2006). In these types of tests probable
failure modes, some knowledge that describes the relationship between failure mechanisms
and the accelerating variables (Vida infra) are known a priori.

2.3.2 Time transformation functions

A time transformation function is one which describes the relationship between the lifetime of
an item and the stress level considered, and is expressed as a distribution’s life characteristic.
Depending on the life distribution assumed, different life characteristics are considered, for
example: for the Weibull – the life characteristic is the scale parameter, for the exponential –
the life characteristic is the mean life and for the lognormal distribution the life characteristic
is the median.

Assume that the life characteristic of a given distribution – denoted by ν – is related to
a vector of specified stress-functions given as µ = (µ0 (Si) , µ1 (Si) , ..., µp−1 (Si))

′ where the
initial stress function µ0 ≡ 1. Then the general form of the time transformation function is
given by:

ν (Si) = exp {θ′µ} , (2.22)

where θ = (θ1, θ2, ..., θp)
′ is a vector of unknown parameters which need to be estimated.

The choice of µ is often determined by the underlying physics of failure, and an ill-chosen
time transformation can often lead to inadmissible results (Singpurwalla, 2006).

A more popular way of expressing the life-time stress function is by a log-linear relationship,
given by:

log (ν (Si)) = θ′µ. (2.23)

In this literature review, three of the most popular models will be discussed, namely:
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• the Arrhenius,

• the Eyring and

• the inverse power law model.

2.3.2.1 Acceleration factor

The acceleration factor (AF) is the ratio of nominal life between the item’s use stress level,
νuse and a higher stress level, νa, notationally given by:

AF =
νuse
νa

, (2.24)

(Nelson, 1990). This is analogous to saying that the rate of failure at the higher stress level
is AF times faster than the rate of failure at the use stress level.

2.3.2.2 Linearity assumption

Nelson (1990) claims that testing for the linearity of the life-stress relationship is vital in
performing an ALT. Non-linearity of the relationship may be caused by:

• the life-test not being run properly (possibly malfunctioning test equipment),

• several failure methods acting on the item at once or

• by choosing a life-stress relationship that is inherently nonlinear.

A subjective test for linearity is plotting the level of stress against the observed values on
log-log paper, and then drawing a line through these points (Nelson, 1990). If the line is
straight then the assumption of linearity holds. Otherwise if data from a given stress level
are out of line from other stress levels, it might imply that the data in that stress level are
in error. The reason for error should be examined to determine whether those data are valid
and should thus be included in the study.

2.3.2.3 Arrhenius model

The Arrhenius model is based on the law derived by Nobel laureate Arrhenius (1889), and
is used to describe the failure of an item due to chemical reactions caused by changes in
temperature.

Nelson (1990) provides a form of the Arrhenius life-stress relationship, and it is given by:

ν (Si) = A× exp
{
−Eact
kSi

}
, (2.25)

where:
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• A is a constant that is characteristic of the product failure mechanism and test condi-
tions,

• Si is the stress applied given in absolute Kelvin temperature (K),

• k is Boltzmann’s constant = 8.6171×10−5 electron-volts per Kelvin and

• Eact is the activation energy of the reaction measured in electron-volts.

To counter the naive assumption that time-to-failure is inversely proportional to the failure
rate, Nelson (1990) claims that the following model is sometimes used:

ν (Si) = A× exp
{
Eact
kSi

}
. (2.26)

Taking the natural logarithm of equation 2.26 yields:

log (ν (Si)) = θ1 + θ2 × µ (Si) , (2.27)

where:

• θ1 = log (A),

• θ2 = Eact
k

and

• µ (Si) = 1
Si
.

The AF of the model presented in equation 2.26 is thus given by:

AFA = exp

{
Eact
k

(
1

Suse
− 1

Sa

)}
, (2.28)

where Suse is the temperature applied at the use stress level, and Sa is the temperature
applied at the higher stress level.

2.3.2.4 Eyring model

Similar to the Arrhenius model, the Eyring model developed by Glasstone et al. (1941) is
used to describe the failure of an item due to chemical reactions caused by not only changes
in temperature, but by other factors such as humidity.

Nelson (1990) provides a form of the Eyring life-stress relationship, and it is given by:

ν (Si) =
A

Si
× exp

{
B

kSi

}
, (2.29)

where:
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• A and B are constants that are characteristic of the product failure mechanism and
test conditions,

• Si is the stress applied given in absolute Kelvin temperature (K) and

• k is Boltzmann’s constant = 8.6171×10−5 electron-volts per Kelvin.

Nelson (1990) claims that for small ranges of absolute temperature, the ratio θ1
Si

is essentially
constant and equation 2.29 is approximately the Arrhenius model.

The AF is thus given by:

AFE = exp

{
B

k

(
1

Suse
− 1

Sa

)}
, (2.30)

where Suse is the temperature applied at the use stress level, and Sa is the temperature
applied at the higher stress level.

2.3.2.5 Inverse power law model

The inverse power law model, or simply the power law, is used to describe failure of an item
as a result of degradation due to changes in non-thermal stress, for example voltage.

Nelson (1990) provides a form of the inverse power law relationship, and it is given by:

ν (Si) =
A

SBi
, (2.31)

where:

• A and B are constants that are characteristic of the product failure mechanism and
test conditions and

• Si is the ith stress level.

Taking the natural logarithm of equation 2.31 yields:

log (ν (Si)) = θ1 + θ2 × µ (Si) , (2.32)

where:

• θ1 = log (A),

• θ2 = B and

• µ (Si) = −log (Si).

The AF of the inverse power law given in equation 2.31 is given by:

AFI =

(
Sa
Su

)B
, (2.33)

where Su is the use stress level and Sa is the higher stress level.
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2.3.3 Accelerated life testing designs

Before an ALT is run, the method of loading stress on to the item needs to be considered.
This section aims at discussing the various ways to design stress loading for an ALT, assuming
that only one stressor is applied to the tested item.

2.3.3.1 Constant stress

In this method an item is run at a constant stress level throughout the test, and is perhaps
the most common way of loading stress. Nelson (1990) claims that the advantages of using
such a model is for its simplicity and because it mimics use stress levels accurately.

Rausand and Høyland (2003) provide a method to running a constant stress test subject to
no censoring:

1. Choose a random stress level denoted by Si for i = 1, 2, ..., p and choose a random
sample of test items of the same type among all available test items.

2. Run the random sample of test items at stress level Si until all the items have failed.

3. Choose another stress level Sj for j = 1, 2, ..., p and repeat steps 1. and 2. until all p
stress levels have been considered.
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Figure 2.11: Plot illustrating items subject to constant stress.

2.3.3.2 Step-Stress

Step-stress accelerated tests (SSALT) is a process in which an item is exposed to successively
higher levels of stress. This method is used because it yields failure rates faster than under
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the constant stress method (Nelson, 1990). However in practical use most items are exposed
to constant stress, and the SSALT models are more complicated in obtaining reliability data.
Rausand and Høyland (2003) provide a method to running a SSALT subject to no censoring:

1. Fix p points in time such that 0 < t1 < t2 < ... < tp < t where t is the length of the
test and randomly choose n items of the same type to be tested starting at time t = 0.

2. In the interval (0, t1] run the items on the constant stress level S1, and at the time t1
remove all items which have failed.

3. In the interval (t1, t2] run the items that have not failed on the constant stress level S2,
again removing all the failed items from the test.

4. Repeat the test on the interval (tk−1, tk] at constant stress level Sk for k = 2, 3, ..., p.

5. In the time interval (tp,∞] , the items which have not yet failed are run at constant
stress Sk+1 until they eventually fail.
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Figure 2.12: Plot illustrating items subject to step-stress.

2.3.3.3 Varying-stress levels

There are three methods which apply varying stress levels on items: progressive-stress ac-
celerated tests (PALT), cyclic stress and random stress testing. PALT is a process in which
the items are exposed to stress level S (t) – some known increasing function of time, until
the test is terminated. In cyclic stress testing the stress level changes cyclically, for example
following a sinusoidal pattern, and in random stress testing the items are exposed to a stress
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level changing randomly with time. However Nelson (1990) claims that it is difficult to con-
trol the varying stress accurately enough to obtain adequate reliability data, and hence these
methods are not often used.
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Figure 2.13: (From left to right) Plot illustrating: PALT, random and cyclic stress.

2.4 Parameter estimation

Parameter estimation is perhaps the most important part of any statistical analysis, and
involves finding numeric estimates via some procedure given sample data. In this thesis two
parameter estimation methods will be discussed, namely:

• the method of maximum likelihood and

• Bayesian methods.

2.4.1 Method of maximum likelihood

Fisher (1922) was the first to formally introduce the method of maximum likelihood as a
means of parameter estimation, and has since been one of the most significant statistical de-
velopments. Consider the joint density function of n independent and identically distributed
observations t = (t1, t2, ..., tn)′ with parameters θ = (θ1, θ2, ..., θp)

′ , denoted by f (t | θ) .

Then the likelihood function is given by:

L (θ | t) =
n∏
i=1

f (ti | θ) . (2.34)
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Often it is preferable to work with the log of the likelihood function, denoted by:

log (L (θ | t)) = L (θ | t) . (2.35)

With respect to its name, the MLEs are the parameter values which maximize equation 2.35,
mathematically:

θ̂ = argmax
θ

(L (θ | t)) .

Often finding the values of θ̂ is difficult since it requires solving a system of non-linear
equations. The most common method to solve these equations is via the iterative-gradient
method, often referred to by its synecdoche, the NR algorithm. The steps used to compile
the NR algorithm are given by Klein and Moeschberger (2006):

1. Choose initial values for θ̂ given by θ̂0.

2. Find the gradient vector of the log-likelihood, given by:

∇′ (θ) =
∂L (θ | t)

∂θ

∣∣∣∣
θ=θ̂

(2.36)

and the Hessian matrix of the log-likelihood:

H (θ) =
∂2L (θ | t)
∂θ∂θ′

∣∣∣∣
θ=θ̂

. (2.37)

3. Compute:
θ̂p+1 = θ̂p − sp ×H−1 (θ)∇ (θ) , p = 0, 1, 2, ... (2.38)

until
∣∣∣θ̂p+1 − θ̂p

∣∣∣ < ε, where:

• sp is an arbitrary constant, usually unity ∀
p
and

• ε is some small, prespecified constant.

Gelman et al. (2013) claim that the choice of starting values θ̂0 is crucial since the algorithm is
not guaranteed to converge for all starting values. He suggests that potential starting values
could be: crude parameter estimates or values generated from conditional maximization.

Other gradient methods described by Rinne (2008) include: the method of steepest ascent
where the Hessian matrix described in equation 2.37 is replaced with the identity matrix,
or the method of scoring where the Hessian matrix is replaced with the observed Fisher
information matrix (Vide infra) and sp = −1 ∀

p
. Despite the fact that the method of

steepest ascent is by far the easiest to compute, it often cannot be recommended since it may
converge slowly if the maximum is defined on a long and narrow ridge.
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2.4.1.1 Properties of maximum likelihood estimators

Rinne (2008) provides some important asymptotic properties of MLEs, namely they are:

• Consistent, that is as n→∞ the estimator converges to its true value with probability
unity.

• Have normality, that is as n→∞ the estimator approaches a normal distribution with
properties:

θ̂ ∼ Normalp (θ, Σ) , (2.39)

where Σ = I−1 (θ) , which, provided that it exists, is the inverse of the Fisher informa-
tion matrix, given as:

I (θ) = −Et
(
∂2log (L (t | θ))

∂θi∂θj

)
. (2.40)

• Efficient, that is it achieves equality in the Cramér-Rao lower bound, which for an
unbiased estimator is:

V ar
(
θ̂
)
≥ 1

nI (θ)
. (2.41)

• Functionally invariant to transformations.

2.4.2 Bayesian Statistics

The Bayesian paradigm was established in the posthumous work of Bayes (1763), who pro-
vided a theory based on personalistic beliefs in the context of uncertainty. This belief comes
in the form of prior knowledge of the unknown parameters postulated before data from an
experiment is available. When data is available, it is combined with the prior knowledge
resulting in updated beliefs on the unknown parameters. This rationalist theory has since re-
sulted in the nomenclature of prior and posterior distributions commonly used by Bayesians
today.

The essential element of the Bayesian approach is Bayes’ theorem, sometimes referred to in
literature as the principle of inverse probability. Let f (t | θ) denote the joint PDF for a
continuous random vector of n observations t and p unknown parameters θ. The likelihood
function of this PDF is then given by L (θ | t) , which represents information carried by the
observations. Let π (θ) be the prior distribution describing the uncertainties of the unknown
parameters. Then Bayes’ theorem states:

π (θ | t) =
L (θ | t)× π (θ)∫
L (θ | t)× π (θ) dθ

, (2.42)

where π (θ | t) is called the posterior distribution. Since the denominator of equation 2.42
does not depend on θ, the integral may treated as a constant. Therefore Bayes’ theorem may
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be reduced to the following relation:

π (θ | t) ∝L (θ | t)× π (θ) . (2.43)

That is, Bayes’ theorem states that the probability distribution of the unknown parameters
θ conditioned on data t is merely proportional to the product of the prior distribution of θ
and the likelihood of θ conditioned on t, simply put:

π (θ | t) ∝ Likelihood function × prior density. (2.44)

Defining the prior distribution is perhaps the most important part of any Bayesian analysis.
Press (2009) describes three types of prior distributions, namely:

• informative,

• conjugate and

• non-informative priors.

2.4.3 Informative priors

An informative prior (or subjective prior) is one which is based on either sample evidence
from previous experiments, or from mere expert reasoning (Jeffreys and Zellner, 1989). These
types of priors are necessary as they force experimenters to explicitly state their beliefs and
prejudices, encouraging others to form their own opinion on the data (Kadane, 1995).

There is however a fair amount of criticism against these priors. Garthwaite et al. (2005)
argue that even expert-judgments are subject to severe error and systematic bias, which
will resultingly impact the outcome of an experiment. Press (2009) adds that it is sometimes
difficult to express an informative prior as a mathematical expression. Furthermore subjective
views may differ greatly between experimenters, making it difficult to compare results on the
same experiment.

2.4.4 Conjugate priors

A popular informative prior is the conjugate prior introduced by Schlaifer and Raiffa (1961).
By definition, a family of distributions is said to be a conjugate family, if for a given likelihood
and prior distribution in the family, the posterior distribution also belongs to the family. That
is, a conjugate prior is one which produces a posterior distribution of a known form and hence
are chosen due to their mathematical convenience.

Press (2009) provides a method to form a conjugate prior:

1. Form the likelihood function for the underlying statistical distribution.
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2. Change the roles of the random variables and parameters in the likelihood function.

3. “Enrich” the parameters of the resulting density kernel of the distribution such that the
parameters do not depend on the sample data.

4. Identify the distribution corresponding to the resulting kernel, and adjoin the appro-
priate normalizing constant to ensure the density integrates to unity.

2.4.5 Non-informative priors

Sometimes before an experiment is run no information is available on the unknown param-
eters, and hence an informative prior cannot be used. In these cases non-informative priors
(often known by other names such as: objective, default or reference) can be used, which are
defined as priors which provides little or no information about any of the unknown parame-
ters (Meeker and Escobar, 2014). These priors have been used throughout the history of the
Bayesian theory: Bayes (1763) himself used a uniform prior for the Bernoulli distribution,
and Laplace (1820) used a uniform prior for the mean of the Gaussian distribution.

The primary purpose of non-informative priors is that their PDFs are constant (or approxi-
mately constant) over the range of the model parameters such that the data dominates the
effect of the prior, and they are chosen by convention or through structural rules, such that
they can be viewed as a standard of reference (Singpurwalla, 2006).

The difficulty with using non-informative priors is that they often produce improper PDFs,
that is, they do not integrate to a finite quantity and result in improper probability theory
(Meeker and Escobar, 2014). However using improper prior PDFs suffices provided that the
corresponding posterior PDF is proper. Press (2009) continues with the rebuttal claiming
that non-informative priors follow the naive assumption that parameters are independent,
which is rare in a real-life scenario.

Five classes of non-informative priors will be discussed in this thesis, namely:

• Jeffreys’ prior,

• reference priors,

• maximal data information prior,

• uniform prior and

• probability matching priors.

2.4.5.1 Jeffreys’ prior

Jeffreys (1961) provided a rule to form a prior distribution, which is perhaps the most widely
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used non-informative prior by Bayesian statisticians. The prior is denoted by:

πJ (θ) ∝ [det (I (θ))]
1
2 , (2.45)

in the case where the prior is developed for a density function with p unknown variables θ
and I (θ) is the Fisher information matrix associated with the likelihood function for the
data, as described in equation 2.40.

The prior is well used due to its invariance property under monotonic transformations, and
when there is little information known about the unknown parameters – and is thus considered
a weak prior.

Although Jeffreys’ prior is successful in one-parameter models, it often experiences difficulties
in the presence of nuisance parameters (Berger and Bernardo, 1992).

2.4.5.2 Reference prior

The reference prior, initially proposed by Bernardo (1979) and later revised by Berger and
Bernardo (1992), was developed to derive a non-informative prior in the presence of nuisance
parameters. A reference prior, denoted by πR, is a prior which maximizes the expected
posterior about the parameters provided by independent replications of an experiment, given
by:

Φ (θ) = Et (K (π (θ | t) , π (θ))) , (2.46)

where
K (π (θ | t) , π (θ)) =

∫
π (θ | t) log

(
π (θ | t)
π (θ)

)
dθ (2.47)

is the Kullback-Leibler distance, which measures how much information is lost when a theo-
retical distribution is used to approximate its true distribution.

The posterior distribution under the reference prior has some interesting properties described
by Bernardo and Smith (1994), notably:

• invariance under one-to-one transformations,

• consistent sampling properties and

• consistent marginalization.

When one parameter is considered and the posterior distribution under the reference prior
is asymptotically normal, the reference prior is identical to Jeffreys’ prior (Bernardo, 1979).
However in multivariate problems the reference prior can be different to Jeffreys’ prior since
it depends on the ordering and grouping of the parameters according to their inferential
interest.

By dividing the vector of parameters θ into parameters of interest and nuisance parameters,
the reference prior amends the deficiencies of Jeffreys’ prior by removing any ad hoc mod-
ifications needed in the multiparameter case. Jeffreys’ prior is de facto the reference prior
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that ensues when all the parameters are grouped together, but should only be considered if
all the parameters are of equal interest.

Berger and Bernardo (1992) provide a general algorithm for developing a reference prior in
the multiparameter case, and is given as follows:

1. For a vector of p unknown parameters θ, derive the Fisher information matrix for the
underlying probability model, as defined in equation 2.40, and, provided that it exists,
find its inverse, denoted by I−1 (θ) .

2. Define: I−1
j as the upper left (Nj ×Nj) corner of I−1 (θ) and Hj ≡ Ij. Then the

matrices hj are the lower right (nj × nj) of Hj, j = 1, 2, ..., p.

3. Separate the parameters in θ intom groups of size ni, denoted by θ(m) for i = 1, 2, ...,m,
and define:

θ[j] =
(
θ(1),θ(2), ...,θ(j)

)
θ[∼j] =

(
θ(j+1),θ(j+2), ....,θ(p)

)
.

4. Choose a nested sequence
{

Ωl
}
of compact sets of Ω, the parameter space of θ, such

that
∞
∪
l=1

Ωl = Ω. If Ωl ⊂ Ω, define:

Ωl
(
θ[j]

)
=
{
θ[j+1] :

(
θ[j],θ[j+1],θ[∼j+1]

)
εΩ? ∃θ[∼j+1]

}
.

5. Define:
πlp
(
θ[∼(m−1)] | θ[m−1]

)
=πlm

(
θ[m] | θ[m−1]

)
=
det (hm (θ))

1
2 IΩ′(θ[m−1])

(
θ(m)

)
∫

Ω′(θ[m−1])
det (hm (θ))

1
2 dθ[m]

.

6. For j = m− 1,m− 2, ..., 1 define:

πlj
(
θ[∼(j−1)] | θ[j−1]

)
=
πlj+1

(
θ[∼(j)] | θ[j]

)
exp

{
1
2
El
j

[(
log (hj (θ)) | θ[j]

)]}
IΩ′(θ[j−1])

(
θ(j)

)∫
Ω′(θ[j−1])

exp
{

1
2
El
j

[(
log (hj (θ)) | θ[j]

)]}
dθ[j]

,

where:

El
j

[(
log (hj (θ)) | θ[j]

)]
=

∫
{θ[∼j]:(θ[j],θ[∼j]εΩl)}

log (hj (θ)) πlj+1

(
θ[∼j] | θ[j]

)
dθ[∼j].

7. Thus, assuming the limit exists, the reference prior is defined as:

πR (θ) = lim
l→∞

πl1 (θ)

πl1 (θ?)
, (2.48)
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where θ? is any fixed point in Ω with positive density for all πl1.

2.4.5.3 Maximal data information prior

Zellner (1977) introduced the MDI prior as one which emphasizes the information of the
unknown parameters from the data in comparison to the prior density. The MDI prior does
so by maximizing the average information from the likelihood function of the data density in
relation to information known a priori about the unknown parameters. Let:

H (θ) =

∫
f (t | θ) log (f (t | θ)) dt (2.49)

be the negative Shannon entropy of the distribution function f (t | θ) , which is some measure
of information. The functional criterion employed in the MDI approach is given by:

G (π (θ)) =

b∫
a

H (θ)π (θ) dθ−
b∫
a

π (θ) log (π (θ)) dθ, (2.50)

which is the prior average information in the data density less the information from the prior

density. G (π (θ)) is maximized by selecting π (θ) subject to
b∫
a

π (θ) dθ = 1, and is given by:

πMDI (θ) =
1

c
× exp {H (θ)} , (2.51)

where:

• a ≤ θ ≤ b and

• c−1 is is the normalizing constant.

The MDI prior however has some invariant limitations, as it is only invariant to linear trans-
formations of either t or θ.

2.4.5.4 Uniform prior

The uniform prior is the simplest non-informative prior considered. Under the uniform prior,
the unknown parameters are assigned a prior distribution on the interval (a, b) using the
uniform distribution. Notationally it is given by:

πU (θ) ∝ c, (2.52)

for some constant c. Since the uniform prior is a constant function, it implies that all possible
values are equally likely a priori.
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2.4.5.5 Probability matching prior

The PMP is a prior distribution which aims to connect frequentist methods to the Bayesian
approach by ensuring that non-informative priors have desirable frequentist properties.

Peers (1965) provided a definition of a PMP for a parameter of interest: if T1, T2, ..., Tn | θ are
independent and identically distributed continuous random variables with density function
f (t | θ) , where θ = (θi,θ

′) is a vector of parameters with θi, a scalar component of interest.
Letting θ(1−α)

i (π,T ) be the (1− α)th posterior quantile of θi under a prior π (θi), then π (θi)

is considered the rth-order PMP if it satisfies:

Pθi

(
θi ≤ θ

(1−α)
i (π,T )

)
= 1− α +O

(
n−

r
2

)
, (2.53)

where:

• Pθi is the frequentist confidence interval,

• n the sample size,

• r > 0 and

• for some 0 < α < 1.

That is, a prior is deemed the rth-order PMP for a parameter of interest if it provides
a coverage probability of a Bayesian credible interval that is asymptotically equivalent to
the coverage probability of the frequentist confidence interval up to a remainder term that
converges to zero faster than n−

r
2 . Hence larger values of r are more desirable since the

actual coverage converges faster to the nominal level, and thus provide confidence intervals
with more accurate coverage.

Rationale for such a prior is given by Datta and Sweeting (2005): they are attractive to
Bayesians as they produce a suitable candidate for an objective prior, and to frequentists as
a means of getting approximate confidence intervals with a Bayesian interpretation.

Datta and Ghosh (1995a) provide a method for developing second-order probability matching
priors for a one-sided credibility interval:

1. For a vector of p unknown parameters θ, derive the Fisher information matrix as defined
in equation 2.40, and, provided that it exists find its inverse, denoted by I−1 (θ) .

2. Let t (θ) be a vector of real-valued twice continuously differentiable parametric functions

of interest, and let the gradient of t (θ) be defined as: ∇′t (θ) =
(
∂t(θ)
∂θ1

, ∂t(θ)
∂θ2

, ..., ∂t(θ)
∂θp

)′
.

3. Define: η (θ) =
∇′t(θ)I−1(θ)√
∇′t(θ)I−1(θ)∇t(θ)

.
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4. The prior π (θ) is considered a probability matching prior if and only if it is a solution
to the following differential equation:

p∑
i=1

∂

∂θi
{ηi (θ) π (θ)} = 0. (2.54)

The merit of using this method to solve probability matching priors is that it is invariant
under monotonic transformations (Datta and Ghosh, 1995b).

2.4.6 Bayesian inference

Bayesian inference requires finding expectations related to the parameters from the posterior
distribution. The posterior expectation of some function of θ, given here by w (θ) , may be
written in the form:

Epost (w (θ) | t) =

∫
w (θ) π (θ | t) dθ∫
π (θ | t) dθ

, (2.55)

for some posterior distribution π (θ | t) . Solving equation 2.55 is often analytically impossible,
hence some approximation technique needs to be used. This section is devoted to introducing
two approximation techniques, namely:

• Lindley’s and

• Tierney-Kadane approximation.

Monte-Carlo procedures are another popular method used to find approximations of equation
2.55, but are discussed in detail in section 2.5.

2.4.6.1 Lindley’s approximation

Lindley (1980) provided a method to approximate the ratio of two integrals of the form given
in equation 2.55. Consider the posterior expectation of some function w (θ), which may be
written as:

Epost (w (θ) | t) =

∫
w (θ)× exp {L (θ | t) + ρ (θ)} dθ∫

exp {L (θ | t) + ρ (θ)} dθ
, (2.56)

where ρ (θ) = log (π (θ)) for some prior distribution π (θ) . Expanding L (θ | t) and ρ (θ) into
a Taylor Series expansion around the MLEs of θ, Lindley (1980) found an approximation for
the posterior expectation, given by:

Epost (w (θ) | t) ≈w
(
θ̂
)

+
1

2

p∑
i=1

p∑
j=1

(wij + 2wiρj)σij+

+
1

2

(
p∑
i=1

p∑
j=1

p∑
k=1

p∑
l=1

Lijkwlσijσkl

)
+O

(
n−1
)
,

(2.57)
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where:

• θ̂ = are the MLEs of θ,

• Lijk = ∂3L(θ|t)
∂θi∂θj∂θk

∣∣∣
θ=θ̂

, where i, j, k = 0, 1, 2, 3 and i+ j + k = 3,

• σij

(
θ̂
)
is the (i, j)th element of the minus inverse Hessian evaluated at θ̂,

• wi

(
θ̂
)

= ∂w(θ)
∂θi

∣∣∣
θ=θ̂

, where θi is the ith element in θ for i = 1, 2, ..., p,

• wij

(
θ̂
)

= ∂2w(θ)
∂θi∂θj

∣∣∣
θ=θ̂

and

• ρi

(
θ̂
)

= ∂ρ(θ)
∂θi

∣∣∣
θ=θ̂

.

Since third-order partial derivatives need to be calculated, this method can be difficult for
models with many variables. Press (2009) suggests that this method should only be used
when the number of parameters ≤ 5.

2.4.6.2 Tierney-Kadane approximation

Tierney and Kadane (1986), like Lindley (1980), proposed a method to approximate the ratio
of two integrals. Their method is based on the Laplace method, which is used to approximate
an integral of the form:

I =

b∫
a

b (θ)× exp {−nh (θ)} dθ, (2.58)

where:

• n is some large, positive number,

• h (θ) is smooth and has its minimum value on the interval a ≤ θ ≤ b at θ = θ̂ and

• b (θ) is smooth.

Following Tierney et al. (1989), the Laplace expansion of I is:

I ≈
√

2πσ2 × exp
{
−nĥ

}
×

×
[
b̂+

1

2n

(
σ2b̂′′ − σ4b̂′ĥ′′′ +

5

12
b̂
(
ĥ′′′
)2

σ6 − 1

4
b̂ĥ(4)σ4

)]
+O

(
n−2
) (2.59)

where:

• b̂ and ĥ denote the values of b (θ) and h (θ) and their derivatives at θ = θ̂ respectively
and

• σ2 =
[
h′′
(
θ̃
)]−1

.
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Thus using the Laplace method, Tierney and Kadane (1986) claimed that the posterior
expectation of some function w (θ) may be written as:

Epost (w (θ) | t) =

∫
exp {ng? (θ)} dθ∫
exp {ng (θ)} dθ

, (2.60)

where:

• g (θ) = 1
n

(log (π (θ)) + L (θ | t)) ,

• g? (θ) = g (θ) + 1
n
log (w (θ)) and

• n is the sample size.

Following the expansion in equation 2.59, the posterior expectation reduces to:

Epost (w (θ) | x) ≈ σ?

σ
exp

{
n
(
g?
(
θ̂?
)
− g

(
θ̂
))}

, (2.61)

where:

• g
(
θ̂
)
and g?

(
θ̂?
)
have their maximum at θ̂ and θ̂? respectively,

• σ =
(
g′′
(
θ̂
))− 1

2 and

• σ? =
(
g′′?
(
θ̂?
))− 1

2
.

In the multiparameter case equation 2.61 becomes:

Epost (w (θ) | t) ≈

det
(
H−1

(
θ̂
?
))

det
(
H−1

(
θ̂
))


1
2

× exp
{
n
(
g?
(
θ̂
?
)
− g

(
θ̂
))}

, (2.62)

where:

• g
(
θ̂
)
and g?

(
θ̂
?
)
have their maximum at θ̂ and θ̂

?
respectively and

• H−1 (θ) and H−1 (θ?) are minus the inverse Hessians of g
(
θ̂
)
and g?

(
θ̂
?
)
at θ̂ and θ̂

?

respectively.

Robert (2007) believes that this method is better than that of Lindley (1980) since it only
requires solving the second-order partial derivatives of w (θ) and, despite only being justified
asymptotically, appears to perform well in most cases. However he also notes that the
feasibility of using this method is dependent on the difficulty of solving for the maximum
values of both g and g?.
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2.5 Monte Carlo procedures

Bayesians often need to integrate over complex and high-dimensional posterior distributions
in order to make inference on estimates. The approximation techniques described in section
2.4.6 are known to work well, however in high-parameter models they can be incredibly
tedious to compute. MCMC, a form of Monte Carlo integration using Markov chains, provides
a reliable method to both finding the form of these complex posterior distributions and
providing a method to solve equation 2.4.6.

Algorithms used to compile MCMC have been around since the 1950s, but only came into
mainstream statistical practices 40 years later due to the rise in computing power (Gilks
et al., 1995). Since then, MCMC methods have revolutionized Bayesian research, and has
extended the breadth of its practical applications.

This section is devoted to discussing the idea behind Markov chains, the different algorithms
used in MCMC and to describing convergence of the chains.

2.5.1 Markov chains

Markov chains were introduced by Russian mathematician Markov (1906) who extended the
theory of probability in a new way – to sequences of linked events.

Consider a discrete time stochastic process {X0, X1, X2, ...} such that the next value in the
process Xt+1, t ≥ 0 is dependent only on the current state of the chain and not on the
history of the chain {X0, X1, ..., Xt−1}, then this process is called a Markov chain. MCMC
is continuous-valued generalization of a Markov chain, and mathematically it can be written
as:

π (Xt+1 ∈ A | X0, X1, ..., Xt) = π (Xt+1 | Xt) , (2.63)

for any set A and where π denotes the transition kernel. A Markov chain is said to have
reached its stationary distribution, the MCMCs target distribution, if the conditional dis-
tribution of Xt+1 given Xt does not depend on t, and the distribution of Xt converges to a
stationary distribution if it satisfies three properties, namely the chain is:

1. Irreducible, that is, it can reach any other state with some non-zero probability after a
certain number of iterations.

2. Aperiodic, that is, the chain does not move between states in periodic intervals.

3. Positive recurrent, that is, the expected amount of time to return to a state is finite.

Finally after discarding m iterations of the chain as a burn-in period (Vida infra), estimates
from the MCMC can be summarized by ergodic averages in the form:

Epost (w (θ) | t) ≈ 1

n−m

n∑
t=m+1

w (Xt | t) (2.64)
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where w is some real valued function of the parameters θ that need to be estimated. Provided
that the samples are independent and n is sufficiently large, the law of large numbers ensures
that this approximation is accurate (Gilks et al., 1995). Furthermore, the Monte Carlo
standard error (MCSE) of the chain is given by:

SEpost (w (θ) | t) =

√√√√√ n∑
t=m+1

(w (Xt | t)− Epost (w (θ) | t))2

(n−m) (n−m− 1)
. (2.65)

2.5.2 Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm was first introduced by Metropolis et al. (1953) who
used it in a mechanical physics context. The algorithm was later generalized by Hastings
(1970) for statistical applications, and is a commonly used algorithm in MCMC.

The idea behind the MH algorithm is that at each time t, the next state in the chain Xt+1 is
chosen by first sampling a candidate point Yt from some proposal density given by q (· | Xt) .

This proposal density can have a variety of forms, but needs to be aperiodic, irreducible
and a good approximation of the target distribution (Gilks et al., 1995). The candidate Yt
generated from the proposal density gets accepted as Xt+1, the next state of the chain with
acceptance probability:

P = min

{
1,
π (Yt) q (Xt | Yt)
π (Xt) q (Yt | Xt)

}
, (2.66)

otherwise if the candidate is rejected the chain does not move and thus Xt+1 = Xt. Note that
when q is symmetric, that is q (Yt | Xt) = q (Xt | Y ), the acceptance probability reduces to:

P = min

{
1,
π (Yt)

π (Xt)

}
. (2.67)

This was an assumption in the initial Metropolis algorithm proposed by Metropolis et al.
(1953), however the updated MH algorithm allows q to be an asymmetric function.

Gilks et al. (1995) provide caution when choosing a proposal density. If the scale of q is too
small, there will be a high acceptance rate and the chain move slowly. If the scale of q is too
large, there will be a low acceptance rate which may cause the chain to be stuck. Therefore
q needs to be scaled appropriately to avoid both of these issues.

The general MH algorithm is given by Brooks et al. (2011) as:

1. Initialize the iteration counter to t = 0 and choose an arbitrary initial value given by
X0.

2. Generate a value Yt using the proposal density given by q (· | Xt).

3. Generate a uniform random variable U on the interval (0, 1).

4. If U ≤ P = min
{

1, π(Yt)q(Xt|Yt)
π(Xt)q(Yt|Xt)

}
, then set Xt+1 = Yt, otherwise set Xt+1 = Xt.



39 2.5. Monte Carlo procedures

5. Set t = t+ 1 and repeat steps 2− 5 many times.

Robert and Casella (1999) claim that the algorithm depends on only two ratios, π(Yt)
π(Xt)

and
q(Xt|Yt)
q(Yt|Xt) , therefore being independent of any normalizing constant, assuming that q is inde-
pendent of Yt. However Lawson (2009) claims that a difficulty with the algorithm is that it
does not guarantee the acceptance of a new value, resulting in convergence difficulties.

2.5.3 Gibbs sampling

The Gibbs sampler was first introduced by Geman and Geman (1984), who used it to sample
from high-dimensional complex distributions used in image restoration. The sampler was later
introduced to statistics by Gelfand and Smith (1990), and since then has been a prominent
technique used by Bayesians to sample from the posterior.

To define the Gibbs sampler let the random variables of the target distribution be θ =

(θ1, θ2, ..., θp)
′ , where the θi’s are either uni- or multidimensional. The fundamental idea

behind Gibbs sampling is to solve a large problem by breaking it down into smaller pieces
and solving each piece individually.

To do this we generate samples from the target distribution by repeatedly taking samples
from the conditional distribution of its random variables conditioned on all the other random
variables, thus forming a Markov chain. The Gibbs sampler is actually a special case of the
MH algorithm, where the proposal density for updating the ith component of θ is given as the
full conditional distribution π (θi | θ−i) , where θ−i represents all the components of θ except
for θi.

The general Gibbs sampler algorithm is given by Brooks et al. (2011) as:

1. Choose arbitrary initial values, θ(0)
1 , θ

(0)
2 , ..., θ

(0)
p .

2. Generate a sample from:

2.1 θ
(i)
1 from π

(
θ1 | θ(i−1)

2 , θ
(i−1)
3 , ..., θ

(i−1)
p

)
,

2.2 θ
(i)
2 from π

(
θ2 | θ(i)

1 , θ
(i−1)
3 , ..., θ

(i−1)
p

)
,

... ...

2.p θ
(i)
p from π

(
θp | θ(i)

1 , θ
(i)
2 , ..., θ

(i)
p−1

)
.

3. Increment i by 1 and repeat step 2 many times.

A benefit of using the Gibbs sampler is found by substituting the proposal density into
equation 2.66, which always results in an acceptance probability of unity. Therefore the
Gibbs sampler guarantees the acceptance of a new value for each iteration, amending the
convergence issue with the MH algorithm. However despite the Gibbs sampler converging
faster than the MH algorithm, it requires the full conditional distribution of θi which is often
difficult to obtain or computationally expensive to run (Lawson, 2009). In those cases the
MH algorithm is preferred.
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2.5.4 Slice sampling

The Gibbs sampling technique requires that the conditional posterior distributions of a dis-
tribution are readily available, which often is not the case.

Slice sampling (or sometimes, the slice Gibbs sampler) is a sampling technique based on the
Gibbs sampler, but used when the conditional distributions are not of a convenient form
(Ntzoufras, 2011). This method works by augmenting the parameter space of a distribution
by adding a set of auxiliary random variables that convert the conditional distributions to a
convenient form whilst keeping the marginal posterior distribution the same.

Consider some distribution π (θ) – either uni- or multiparameter – which may be written by
the following product:

π (θ) =

p∏
i=1

fi (θ) , (2.68)

where: fi (θ) > 0 ∀
i
.

Then π (θ) may be written as:

π (θ) =

∫ p∏
i=1

Ψ (0 < ωi < fi (θ)) df1df2...dfp, (2.69)

where:

• the wi’s are a set of auxiliary variables chosen based on convenience and

• Ψ (·) is an indicator function taking the value unity if 0 < ωi < fi (θ) or 0 elsewhere.

Robert and Casella (1999) give the slice sampler algorithm as:

1. Choose an arbitrary initial value, given by: θ(0).

2. At iteration i, simulate:

2.1 ω
(i)
1 from a uniform random variable U on the interval (0, f1 (θ)),

2.2 ω
(i)
2 from a uniform random variable U on the interval (0, f2 (θ)) ,

... ...

2.p ω
(i)
p from a uniform random variable U on the interval (0, fp (θ)).

2.p+1 Update θ(j) from a uniform random variable U on the interval A(i) with
A(i) =

{
ξ : f (ξ) ≥ ω

(i)
j j = 1, 2, ..., p

}
.

3. Increment i by 1 and repeat step 2 many times.

Ntzoufras (2011) claims that the benefits of using the slice sampler is that it requires neither
the full conditional distribution of a Gibbs sampler nor the specification of a proposal density
as used in the MH algorithm. However the major disadvantage for using such a sampling
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scheme is that it often results in highly correlated chains as a result of the augmented param-
eter space. Furthermore Robert and Casella (1999) claim that as p increases finding the set
A(i) becomes more challenging. To amend this issue, Neal (2003) proposed an adaptive slice
sampling algorithm, which is used in the popular Bayesian statistical software, WinBUGS

(vide infra).

2.5.5 Rejection sampling

2.5.5.1 Non-adaptive rejection sampling

Non-adaptive rejection sampling, or alternatively the accept-reject method, is a method used
to sample from a complex target distribution. Suppose that the target density has the form
π (x) and we can find a density g (x), deemed the envelope density, and some positive constant
c, deemed the envelope constant, such that the following inequality holds:

c ≥ π (x)

g (x)
. (2.70)

Although the target density may be computationally expensive to evaluate, it only needs to
be known up to a multiplicative constant (Robert and Casella, 1999).

Furthermore the envelope density must be picked such that it is both close to the target
density and computationally easy to sample from. The value of c is merely chosen to ensure
that the envelope density is above the target density, and its choice is determined by how
close g (x) is to π (x) (Gamerman and Lopes, 2006). When g (x) is close to π (x) , the constant
c needs only be slightly bigger than unity, however when g (x) is substantially different from
π (x) , c needs to be far larger than unity.

To compile the method, a random value y from g (x) is generated and is accepted with
probability:

P =
π (x)

cg (x)
. (2.71)

If the random value y is accepted set x = y, otherwise if y is not accepted it is discarded
and a further value is generated from g (x) . This process continues until at least one y is
accepted.

The general algorithm for non-adaptive rejection sampling is given by Gilks et al. (1995) as:

1. Generate a value y from the density g (x).

2. Generate a uniform random variable U on the interval (0, 1) .

3. If U ≤ π (x) /cg (x), set x = y, otherwise return to step 1 and repeat many times.

The issue with non-adaptive rejection sampling is that its effectiveness relies on the choice of
c and g (x) . Finding a suitable g (x) is challenging since it requires that the constraint given
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in equation 2.70 is satisfied, which involves tiresome maximization techniques (Gilks et al.,
1995).

2.5.5.2 Adaptive rejection sampling

ARS is a sampling method proposed by Gilks and Wild (1992) and is based off the non-
adaptive sampling algorithm with an added assumption that h (x) = log (π (x)) is concave.
This assumption is useful since if the target distribution is log-concave, it allows the maxi-
mization techniques needed in the non-adaptive rejection sampling method to be avoided.

There are two types of ARS, namely: the tangent method and the derivative-free method.
The former will be discussed in this literature review. The fundamental idea of the tangent
method is to partition the domain of π (x), given by D, into separate intervals and construct
an envelope function on each of these intervals. That is suppose h (x) and h′ (x) have been
evaluated at a set of k abscissae S = (x1, x2, ..., xk) ⊂ D sorted in ascending order. Gilks
and Wild (1992) showed that by letting Tk = {xi : i = 1, 2, ..., k} , a rejection envelope on Tk
can be defined as exp {uk (x)} where uk (x) is a piecewise linear upper hull formed from the
tangents to h (x) at the abscissae in Tk, given as:

uk (x) = h (xj)− (x+ xj)h
′ (xj) , x ∈ [zj−1, zj] , (2.72)

where for zj represents the intersection point of the tangents at xj and xj+1 for j = 1, 2, ..., k−
1. A squeezing function on Tk can be defined as exp {lk (x)} , where lk (x) is a linear lower
hull formed from the chords between adjacent abscissae in Tk, given as:

lk (x) =
(xj+1 − x)h (xj) + (x− xj)h (xj+1)

xj+1 − xj
, x ∈ [xj, xj+1] . (2.73)

And since h (x) is concave, the following inequality holds:

exp {lk (x)} ≤ π (x) ≤ exp (uk (x)) , ∀x ∈ D. (2.74)

A general algorithm for ARS is given by Gilks et al. (1995) as:

1. Initialize S

2. Generate a random value y from the density exp (uk (x)) .

3. Generate a uniform random variable U on the interval (0, 1) .

4. Compute the following:

(a) If U ≤ exp {lk (x)} /exp (uk (x)), set x = y, include y in S and return to step 1,
otherwise;

(b) If U ≤ π (x) /exp (uk (x)), set x = y, include y in S and return to step 1, otherwise;
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(c) Return to step 1.

The merit of using ARS is that it can be used adaptively. That is the set S is updated
every time the random value Y is accepted, resulting in an increase in accuracy for the two
envelope functions, and thus progressively reducing both the number of evaluations required
for π (x) and the risk of further rejections (Robert and Casella, 1999).

2.5.6 Software and packages

The BUGS (Bayesian inference using Gibbs sampling) project is courtesy of Lunn et al.
(2000), and is one of the most versatile options available for performing Bayesian analysis
via MCMC methods. WinBUGS is a statistical-software based on the BUGS project that
is accessible to all due to its user-friendly, ’point-and-click’ environment. Bayesian analysis
in this paper will be performed on Rr (R Core Team, 2013) via the R2WinBUGS (Sturtz
et al., 2005) package. Rr has become the lingua franca of contemporary applied statistics,
and using it in Bayesian analysis is often more convenient and practical than on WinBUGS
itself. Furthermore, Bayesian graphics were created on the Rr packages: coda (Plummer
et al., 2006) and ggmcmc (Fernández-i Marın, 2016).

2.6 Convergence of a model

This section is devoted to talking about the many ways to test for convergence of a Markov
chain, as well as methods used to improve convergence. Assessing the convergence of a model
is incredibly important, as without it the results obtained will be unacceptable.

Although it is important to check for converge, it is also possible that one could fall into the
trap of pseudo-convergence – when the chain appears to have converged when it in fact has
not (Brooks et al., 2011). This phenomenon occurs when parts of the state space are poorly
connected – that is, it takes too many iterations to get from one point to another. As a result
the Markov chain converges to its equilibrium distribution conditioned on the part in which
the chain was started, but not to its true equilibrium distribution.

2.6.1 Graphical methods

Graphical methods are an informal method to assessing the convergence of a model. Despite
not being backed by any valid statistical reasoning, these tests are necessary for a quick and
easy approach in showing whether the model stabilizes. Three graphical methods will be
discussed:

• autocorrelation,

• trace and
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• running mean plots.

2.6.1.1 Autocorrelation plots

An autocorrelation plot is a histogram used to show the correlation between a sample value
and its successive value, and hence shows dependence between samples in a Markov chain.
The plot shows the relationship between the lag of the sampled value and the magnitude of
the autocorrelation, which is some value between ±1, where the first bar representing lag
zero has autocorrelation unity. Autocorrelation plots are incredibly important as they show
the mixing rate of the chain (Lesaffre and Lawson, 2012).

When autocorrelation decreases slowly, the mixing rate is slow and hence so is the rate of
convergence. Autocorrelation plots are also useful because they can indicate the minimum
number of iterations required before the chain reaches its stationary distribution. Despite
being a significant tool in assessing convergence autocorrelation plots should not be used as
a convergence diagnostic, since even if autocorrelation is high in a model it does not imply
an absence of convergence, but rather a low mixing rate.

2.6.1.2 Trace plots

A trace plot for a parameter under consideration plots the number of iterations of the model
against the generated value of a parameter, and is used to show convergence of a model
(Lesaffre and Lawson, 2012). A chain has reached convergence when the plot looks like a
random scatter around a stationary mean, or informally, like a “hairy caterpillar” (Lunn et al.,
2012).

An obvious issue which may occur is that the chain appears to have reached convergence, but
rather got trapped in some region rather than exploring the entire posterior. Another method
to show convergence with trace plots is to simulate two or more chains with significantly
different initial values, and claim convergence when the chains come together and behave in
a similar manner.

2.6.1.3 Running mean plot

A running mean plot shows how well the chain has mixed by plotting the iteration against the
mean of all draws up to and including that iteration (Lesaffre and Lawson, 2012). Initially
the variability of the running mean plot should be high, but as the number of iterations
increase the plot should stabilize to its mean value as the stationary distribution is reached.

2.6.2 Diagnostic tests

Diagnostic tests are used as a formal method throughout MCMC to ensure model accuracy,
and as Cowles and Carlin (1996) state: “a weak diagnostic test is better than no diagnostic
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at all.” This literature review discusses two of the most popular diagnostic tests used in
MCMC:

• Brooks-Gelman-Ruben (BGR) diagnostic and

• Geweke diagnostic.

2.6.2.1 Brooks-Gelman-Ruben diagnostic

The BGR diagnostic was initially proposed by Gelman and Rubin (1992) and later modified
by Brooks and Gelman (1998), and has since become one of the most popular convergence
tests for a multi-modal posterior distribution. The test runs multiple chains and evaluates
convergence by comparing the estimated between-chain and within-chain variances for the
model parameters. If there is a small difference between these variances, convergence has
occurred.

To compute a BGR, consider runningm chains, ς ′ = (ς1, ς2, ..., ςm)′, starting from significantly
different starting points, and run them for a post-burn-in period of n iterations. The mean

of an individual chain is ς̄i = 1
n

n∑
i=1

ςi and the overall mean of all the chains is ς̄ = 1
m

m∑
i=1

ς̄i.

The between-chains variance can be computed as:

B =
n

m− 1

m∑
i=1

(ς̄i − ς̄)2 , (2.75)

and the within-chain variance is given by:

W =
1

m

m∑
i=1

s2
i , (2.76)

where: s2
i = 1

n

n∑
k=1

(
ςki − ς̄i

)
. Under the stationary distribution, the unbiased pooled posterior

variance is given by:

V̂ =
n− 1

n
W +

1

n
B. (2.77)

Finally the potential scale reduction factor (PSRF) can be computed as:

R̂ =
d+ 3

d+ 1
× V̂

W
, (2.78)

where d ≈ 2V̂ / ˆvar
(
V̂
)

is used to account for sampling variability. Brooks and Gelman

(1998) suggests that if R̂ < 1.2, the model has reached convergence for all model parameters,
otherwise the chain needs to run longer.

A graphical version of the BGR was also proposed by Brooks and Gelman (1998) and provides
a quick method to evaluating convergence. The BGR graph plots the relationship between
R̂ and the number of iterations, and convergence occurs when R̂ approaches unity.
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2.6.2.2 Geweke diagnostic

Geweke (1992) provided a diagnostic test to check for convergence. The test uses a frequentist
significance test for the equality of means of an early part of the Markov chain, usually the
first 10% of values, and a late part of the Markov chain, usually the last 50% of values. It is
assumed that the late part of the chain has converged, and the early part has not. Therefore
if the two mean values are close to each other we assume that the two different parts of the
chain are in a similar location in the state space and thus come from a similar distribution.

Let n values of one chain ςi be split into two separate parts, ςA representing the nA elements of
the first part of the chain, and ςB, representing the nB elements of the late part of the chain.
Let their respective posterior means be represented by ς̄A and ς̄B, which can be compared
with the unpaired Z-test given by:

Z =
ς̄A − ς̄B√
s2A
nA
− s2B

nB

, (2.79)

where:

• s2
A and s2

B are the classical estimates of the respective variances for ςA and ςB, and

• Z approximately follows a standard normal distribution as na, nb →∞.

For large values of Z it is concluded that the two parts come from different distributions and
hence a longer burn-in period is required. A plot of the diagnostic described by Lesaffre and
Lawson (2012) is also possible, which plots the Z statistic for successively smaller segments
of the last part of the chain.

2.6.3 Improving convergence

The rate of convergence of a model is heavily dependent on the choice of model, and making
simple changes within a model can help with the convergence process. Whilst none of these
techniques considered are mandatory and some may not work in the context of all problems,
they might aid in obtaining accurate estimates and reduce required processing power.

2.6.3.1 Burn-in period

An adequate burn-in period is required to insure accurate and independent samples from a
chain (Lesaffre and Lawson, 2012). A burn-in period is the initial part of the chain that
is discarded before the chain reaches stochastic stability and any inference on estimates is
made. Determining the length of the burn-in period is difficult since rates of convergence of
different models may vary considerably, more complex models require a longer burn-in period
than their less complex counterparts.
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Brooks (1998) provides a method estimating the length of the burn-in period. Given geo-
metric ergodicity, the t-step transition distribution denoted by π′ (t, ·) is such that:

|π′ (t, ·)− π (·)| ≤M (t) p′, (2.80)

for some M , p ∈ R. The chain is stopped when |π′ (t, ·)− π (·)| ≤ ε, for some ε > 0 in which
case the length of the burn-in period is given by:

t? =
log (ε/M (t))

log (p)
. (2.81)

However this method is impractical since it is difficult to prove the existence of a geometric
rate of convergence and since many commonly used algorithms fail to converge geometrically
quickly.

Other informal methods used to determine convergence have been discussed, such as the
graphical thick pen technique from Gelfand et al. (1990), which claims convergence occurs
when the difference in density estimates obtained via univariate density plots is less than the
width of a felt-tip pen.

2.6.3.2 Stopping time

Deciding the length of time a chain must run for is also an important matter. Despite being
computationally expensive to run a chain for a large number of iterations, running a chain for
too few iterations results in imprecise estimates. A proposal to determining the length of the
chain is made by Gilks et al. (1995): run several chains of length n in parallel, and compare
the values of the estimates. If the values are significantly different, increase the value of n.

2.6.3.3 Initial values

Gelman and Rubin (1992) claim that well selected starting points with respect to the target
distribution need to be selected to insure convergence of the model. A poor choice of initial
values results in the chain becoming stuck in a certain area, and this issue can be observed
on a trace plot (Lesaffre and Lawson, 2012).

The trace plot of a chain with poorly chosen initial values will have an increasing or decreasing
trend resulting in the posterior probability being low in that area. An obvious remedy is to
rechoose new values until the convergence improves.

Brooks (1998) suggests some ad hoc methods to selecting initial values, namely:

• setting hyperparameters to fixed values,

• simplifying the model,

• choosing maximum likelihood estimates as the initial values or by
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• ignoring missing values.

More elaborate techniques to choosing initial values are presented by Gelman and Rubin
(1992), who proposed a mode-finding algorithm to find areas of high density, and then sample
from a t-distribution to find initial values in those areas, and by Brooks and Morgan (1994)
who used a simulated annealing algorithm to generate initial values.

2.6.3.4 Number of chains

One of the most contentious topics in implementing MCMC techniques is in choosing whether
to run one long chain or several short chains in parallel. Proponents of one long chain claim
that the chain will be closer to the target posterior distribution than any short chains, and
that short chains are wasteful after the initial burn-in period is considered Brooks (1998).

Rebuters argue that multiple chains help guard against a single chain leaving a significant
proportion of a sample space unexplored. Also using multiple chains helps to determine how
well the chains have mixed, that is how indistinguishable results from different chains are,
thus protecting the results of any bias.

An alternative method to running multiple chains is proposed by Brooks (1998). He proposes
a regenerative method which involves running one chain which is restarted at appropriate
regeneration times. This essentially splits the one long chain into multiple replications that
are closer to the stationary distribution in comparison to multiple independent chains since
observations are taken from the end of a long chain. However Brooks (1998) finds fault with
the method; it can be both more difficult and computationally expensive than simply running
multiple chains.

2.6.3.5 Thinning

Thinning is a process in which only every mth value (m > 1) in the chain is retained (Lesaffre
and Lawson, 2012). The method of thinning is given notationally by Gilks et al. (1995): let
Xt denote the value of the state at time t, then form the binary process:

Zt =

1 Xt ≤ u

0 Xt > u,

where u is some function of the Markov chain. Here Zt is derived from a Markov chain, but
is not one itself.

Finally we can form the new process Zm
t = Z1+(t−1)m, which is a Markov chain consisting of

every mth value of the original chain, provided that m is sufficiently large. The value of m is
determined by comparing likelihood ratio test statistics and Bayesian information criterion
(BIC) (Vide infra) values between chains with different values of m.
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The main reason for thinning is to reduce high levels of autocorrelation in a model (Lesaffre
and Lawson, 2012). This method may even minimize the autocorrelation in chains with lags
greater than one to an autocorrelation of zero. An additional bonus to thinning a Markov
chain is that it helps save computer memory and reduces processing times. However thinning
is not without its critics. Link and Eaton (2012) claim that thinning is inefficient and results
in less precise estimates and Lesaffre and Lawson (2012) state that thinning a chain results
in a higher MCSE value in comparison to a chain that has not been thinned.

2.6.3.6 Transformations

Transforming helps improve convergence when there are high levels of multicollinearity or
great differences in magnitude between the independent variables of a model (Lesaffre and
Lawson, 2012). Solutions to reduce these problems is to render the independent variables
unit-free by dividing by standardizing them or by utilizing the Gram-Schmidt orthogonaliza-
tion technique to reduce high correlations. However Brooks (1998) remarks that in higher
dimensions orthogonalization is unfeasible.

2.7 Model comparison

It is natural for us to want to compare different statistical models in order to choose the one
which models the data “best”. This thesis introduces two methods for comparing different
models, namely:

• information criteria and

• loss functions.

2.7.1 Information criteria

2.7.1.1 Akaike information criterion

The Akaike information criterion (AIC) was suggested by Akaike (1973) to predict the ac-
curacy of point estimates, typically the MLEs of a model, by approximating the expected
Kullback-Leibler distance (Vide ante) between the estimated model and its true model. The
AIC thus measures the amount of information lost by a model due to estimation, and hence,
given a set of models, the model with the lowest AIC values is deemed best.

Let Mi be the ith model with estimates θ̂i then the AIC for Mi is defined as:

AIC (i) = 2ki − 2L
(
θ̂i | t

)
, (2.82)
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where ki represents the number of parameters estimated in Mi and L (·) represents the
maximum log-likelihood value for θi. Here k acts as a penalty, since increasing the number
of parameters in a model naturally increases the goodness of fit of a model.

Burnham and Anderson (2004) claim that individual AIC values are arbitrary and often
uninterpretable, and hence defined:

Mi= AICi − AICmin, (2.83)

as a method to rescale AIC values, where AICmin is the smallest value among a set of
AIC values, and Mi represents the information lost from using model Mi as opposed to the
best model. Therefore large Mi values imply a less plausible fit in comparison to the best
model. Burnham and Anderson (2004) continue with a rule-of-thumb that if Mi≤ 2 model
Mi has substantial supporting evidence against the remaining models, if 4 ≤Mi≤ 7 model Mi

has considerably less evidence and if Mi> 10 model Mi has no support and should not be
considered.

2.7.1.2 Bayesian information criterion

Schwarz (1978) proposed the BIC, closely related to the AIC, as a method to compare models.

Let Mi be the ith model with estimates θ̂i then the BIC for Mi is defined as:

BIC (i) = 2kilog (n)− 2L
(
θ̂i | t

)
, (2.84)

where n represents the number of data points in t, and hence for larger datasets, gives a larger
penalty per parameter in comparison to the AIC. Therefore the BIC favors more parsimonious
models, and similar to the AIC, the best model has the lowest BIC value.

2.7.1.3 Deviance information criterion

Spiegelhalter et al. (2002) provided the deviance information criterion (DIC), a Bayesian
generalization of the AIC. It does so by replacing the MLE θ̂ with the posterior mean θ̂Bayes =

E (θ | t) , and by replacing the constant k with a data-based bias correction. To define the
DIC first let:

D (θ) = −2L
(
θ̂ | t

)
+ 2log (f (t)) (2.85)

be the deviance evaluated at the posterior mean, where f (t) is some fully specified standard-
izing term dependent on the data alone. Then define pd, the effective number of parameters
as:

pd = D (θ)−D
(
θ̄
)
, (2.86)

where D (θ) denotes the posterior mean of D
(
θ̄
)
. Then the DIC for a model is given by:

DIC = pd +D (θ), (2.87)
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or equivalently as:
DIC = D

(
θ̄
)

+ 2pd, (2.88)

such that it closely resembles the AIC. Like the AIC and the BIC, the best model is the one
with the lowest DIC value. A benefit of using this method in a Bayesian context is that both
pd and DIC can be calculated from an MCMC simulation (Spiegelhalter et al., 2002). By

letting θ1, θ2, ..., θm represent m chains post burn-in, D (θ) can be estimated by 1
m

m∑
i=1

D (θi)

and D
(
θ̄
)
as D

(
1
m

m∑
i=1

D (θi)

)
.

Despite being the most popular information criterion in Bayesian analysis, Spiegelhalter et al.
(2014) provides some criticism of the DIC, mainly:

• pd is not invariant to reparameterization,

• it lacks consistency,

• unlike the AIC, the DIC is not based on a proper predictive criterion and

• it has weak theoretical justification.

2.7.2 Loss functions

Loss functions are objective, non-negative functions used in analysis to measure how well
a model does in predicting the expected outcome (Press, 2009). A loss function, denoted
by: L

(
θ, θ̂
)
thus measures how much loss is incurred by estimating the expected parameter

value θ of the model using θ̂. Furthermore if:

• θ = θ̂ then we say that no loss has occurred,

• θ < θ̂ we claim that θ̂ has overestimated θ and

• θ > θ̂ we claim that θ̂ underestimated θ.

The objective here is to choose a θ̂ which minimizes the loss function.

Three loss functions will be discussed in this thesis:

• squared error,

• LINEX and

• the GELF.
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2.7.2.1 Squared error loss function

The most well used loss function in Bayesian analysis is the squared error (or otherwise,
quadratic) loss function, given by:

LS

(
θ, θ̂
)

= c
(
θ − θ̂

)2

, (2.89)

where: c is some positive constant, usually chosen as unity (Press, 2009). This loss function
is symmetric – that is, underestimates are as consequential as overestimates, which is often
not a realistic assumption. Depending on the test, overestimation may be more severe than
underestimation, or vice versa.

The Bayes estimator under the squared error loss function is given by:

θ̂S = Eθ (θ | t) , (2.90)

that is – provided the expectation exists and is finite, the Bayes estimator of the squared
error loss function is identical to the mean of the posterior distribution.
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Figure 2.14: Figure illustrating the squared error loss function.

2.7.2.2 Linear exponential loss function

The LINEX loss function is an asymmetric loss function due to Jeffreys and Zellner (1989)
and is given by:
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LL

(
θ, θ̂
)

= b
(
exp

{
a
(
θ̂ − θ

)}
− a

(
θ̂ − θ

)
− 1
)
, (2.91)

where:

• a 6= 0 and

• b > 0.

Furthermore when:

• a > 0 overestimation is deemed more serious than underestimation,

• a < 0 underestimation is deemed more serious than overestimation and when

• a ≈ 0 the LINEX loss function is approximately the quadratic loss function.

Therefore depending on the value of a, the LINEX loss function rises approximately linearly
on one side of zero, and approximately exponentially on the other side of zero.

The posterior expectation of the LINEX loss function according to Zellner (1996) is:

Eθ

(
LL

(
θ, θ̂
))
∝ exp

{
aθ̂
}
Eθ (exp {−aθ})− a

(
θ̂ − Eθ (θ)

)
− 1. (2.92)

The Bayes estimator under the LINEX loss function is the value of θ̂ which maximizes
equation 2.92, and is given by:

θ̂L = −a−1log (Eθ (exp {−aθ})) , (2.93)

provided that the expectation exists and is finite.
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Figure 2.15: Figure illustrating the LINEX loss function (a > 0) .
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Figure 2.16: Figure illustrating the LINEX loss function (a < 0) .

2.7.2.3 General entropy loss function

Calabria and Pulcini (1994) introduced the asymmetric GELF as a loss function expressed
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in terms of the ratio of θ and θ̂ given by:

LG

(
θ, θ̂
)

=

(
θ̂

θ

)k

− klog

(
θ̂

θ

)
− 1, (2.94)

where: k 6= 0.

Like the LINEX loss function, when:

• k > 0, overestimation is deemed more serious than underestimation,

• k < 0, underestimation is deemed more serious than overestimation and when

• k ≈ 0 the loss function is approximately symmetric.

The Bayes estimator under the GELF is given by:

θ̂G =
(
Eθ
(
θ−k
))− 1

k , (2.95)

provided that the expectation exists and is finite.

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0

θ

^

θ

L
G

(θ
,θ^

)

GELF (k>0)

Value of k 0.2 0.5 1.0 2.0

Figure 2.17: Figure illustrating the GELF (k > 0) .
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Figure 2.18: Figure illustrating the GELF (k < 0) .

2.8 Life distributions

This section introduces two probability models that are helpful in modeling reliability data –
although naturally any distribution of non-negative random variables can be used to describe
time. The two life distributions mentioned are the:

• exponential and

• Weibull distribution.

2.8.1 Exponential distribution

The exponential distribution is a well used life distribution due to its simplicity. The time-
to-failure T is said to have an exponential distribution with rate parameter θ > 0 if the PDF
is given by:

f (t | θ) =

1
θ
exp

{
− t
θ

}
t ≥ 0

0 t < 0.
(2.96)

The model above will be denoted in the rest of this thesis by: Ti | θ ∼ Exponential (θ) .
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The corresponding cumulative distribution function is:

F (t | θ) =

1− exp
{
− t
θ

}
t ≥ 0

0 t < 0,
(2.97)

the reliability function is given by:

R (t | θ) =

exp
{
− t
θ

}
t ≥ 0

0 t < 0,
(2.98)

and the hazard function is given by:

λ (t | θ) =

1
θ

t ≥ 0

0 t < 0.
(2.99)
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Figure 2.19: Plot showing the various functions of the exponential distribution under different rate
parameter values.

The hazard function is constant regardless of the rate parameter, which highlights potential
issues when using the distribution.

The expected value of the exponential is given by:

E (t) =θ, (2.100)

and the variance is given by:
V ar (t) = θ2 (2.101)
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(Nelson, 1990). Other parameterizations of the exponential distribution are possible. A com-
mon parameterization of the exponential distribution is formed by setting the rate parameter
θ = 1

λ
, which is used predominantly used for items with high reliability (Nelson, 1990).

This parameterization of the exponential distribution results in a CDF of:

F (t | θ) =

1− exp {−λt} t ≥ 0

0 t < 0.
(2.102)

The two exponential models presented are equivalent, however depending on the context a
particular parameterization might be more appropriate than the other.

2.8.2 Weibull distribution

The Weibull distribution was eponymously named after the Swedish physicist Weibull (1939),
who used it extensively in modeling the strength of materials. Since then, the Weibull
has become one of the most cited and important distributions in statistical literature. A
compendium of uses and applications of the Weibull distribution is presented by Rinne (2008).

The time-to-failure T is said to have a Weibull distribution with parameters θ and β, if the
PDF is given by:

f (t | θ, β) =


βtβ−1

θβ
exp

{
−
(
t
θ

)β}
t ≥ 0

0 t < 0,
(2.103)

where θ > 0 is the scale parameter and β > 0 is the shape parameter. The model above will
be denoted in the rest of this thesis by: Ti | θ, β ∼ Weibull (θ, β) . When β = 1 the Weibull
distribution is identical the exponential distribution with rate parameter θ.

The corresponding cumulative distribution function is:

F (t | θ, β) =

1− exp
{
−
(
t
θ

)β}
t ≥ 0

0 t < 0,
(2.104)

the reliability function is given by:

R (t | θ, β) =

exp
{
−
(
t
θ

)β}
t ≥ 0

0 t < 0,
(2.105)

and the hazard function is given by:

λ (t | θ, β) =


β
θ

(
t
θ

)β−1
t ≥ 0

0 t < 0,
(2.106)

The Weibull distribution is used significantly in reliability analysis due to its ability to reflect
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different failure rates. When β > 1 it implies that the failure rate is a increasing function,
when β < 1 it implies that the failure rate is a decreasing function and when β = 1 it implies
that the failure rate is a constant function.
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Figure 2.20: Plot showing the various functions of the Weibull distribution under different param-
eter values.

The expected value of the Weibull distribution is given by:

E (t) =θΓ

(
1 +

1

β

)
, (2.107)
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where Γ (x) is the gamma function defined by:

Γ (x) =

∞∫
0

ux−1e−udu = (x− 1)!, (2.108)

and the variance is given by:

V ar (t) = θ2

[
Γ

(
1 +

2

β

)
−
(
Γ

(
1 +

1

β

))2
]

(2.109)

(Nelson, 1990). Other parameterizations of the Weibull distribution are possible. A common
parameterization of the Weibull distribution is formed by setting the scale parameter θ = 1

λ
,

analogous in a reliability context as “failures per unit of time.” This parameterization of the
Weibull results in a CDF of:

F (t | λ, β) =

1− exp
{
− (λt)β

}
t ≥ 0

0 t < 0.
(2.110)

The two Weibull models presented are equivalent, however depending on the context a par-
ticular parameterization might be more appropriate than the other (Murthy et al., 2004).

2.8.2.1 Testing the Weibull assumption

Before doing any statistical analysis with the Weibull distribution, tests should be conducted
to determine if the underlying data is indeed Weibull. A graphical method to assess the
assumption is by plotting a Weibull probability plot (WPP).

A WPP is a plot of the empirical CDF, F̂ (t) of the Weibull distribution on special scales
such that if the underlying data is indeed Weibull the points will be linear (Rinne, 2008).
The values for F̂ (t) are estimated by either the mean plotting position, given by:

F̂ (ti) ≈
i

n
,

where i is the rank of the dataset and n is the sample size, or by the median plotting position
given by:

F̂ (ti) ≈
i− 0.3

n+ 0.5
.

According to Rinne (2008) a WPP’s advantages are:

• it is fast and simple to use with sufficient accuracy,

• it presents data in a easily understandable form, helping the researcher to make con-
clusions and

• helps to spot unusual data and outliers.
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Rinne (2008) presents a method to construct a WPP for complete datasets:

1. Arrange the data in ascending order: t1 ≤ t2 ≤ ... ≤ tn.

2. Convert the data to logarithms: xi = log (ti) , 1 ≤ i ≤ n.

3. Compute: yi = log
(
−log

(
1− F̂ (ti)

))
.

4. Plot yi on the ordinate against xi on the abscissa.

5. Determine the best straight line by either a regression or least-squares method.

6. Claim the dataset comes from a Weibull distribution if the points scatter around the
straight line.

However this method is subjective, hence for more formal results Murthy et al. (2004) suggests
performing:

• Chi-Square tests,

• Kolmogorov-Smirnov (KS) tests or

• Cramèr-von Mises tests.



Chapter 3

Derivations for Weibull distribution

3.1 Introduction

This chapter introduces an ALT Weibull distribution, where the scale parameter is a log-
linear function of stress and the shape parameter is constant at each level of stress. Two
forms of estimates are derived for this model: maximum likelihood and non-informative
Bayesian estimates. Moreover, five types of non-informative Bayesian priors are considered,
namely: Jeffreys’ prior, reference priors, the MDI prior, the uniform prior and PMPs, and
thus the relevant posterior distributions are constructed. Since the posterior distributions
under all the non-informative priors have an unknown form, the properness of each posterior
is considered before any inference is made later in this thesis.

3.2 Log-linear ALT Weibull model

Assume that the life of a unit Ti follows a Weibull distribution with scale parameter ν (Si) > 0

dependent on some function of stress and shape parameter β > 0 under a k-level constant-
stress ALT. At each stress level Si, ni units are tested until failure. That is, a complete
dataset is considered for this model.

Let: n = n1 +n2 + ..+nk be the total number of units under consideration, and let S0 denote
the use stress level of the units. Furthermore denote the vector of observations under stress
level of i as: ti = (ti1, ti2, ..., tini)

′, and the vector of all observations as: t = (t1, t2, ..., tk)
′ .

Therefore under S0 and accelerated stress Si, i = 1, 2, ..., k, the PDF of the Weibull distribu-
tion under consideration is given by:

fi (ti | βi, ν (Si)) =


βit

βi−1
i

ν(Si)
βi
exp

{
−
(

ti
ν(Si)

)βi}
ti ≥ 0

0 ti < 0.

(3.1)

Assume that the scale parameter is the log-linear time transformation function, and is given

63



Chapter 3 Derivations for Weibull distribution 64

by:
log (ν (Si)) = θ1 + θ2 × µ (Si) , (3.2)

where: θ1 > 0 and θ2 > 0 are unknown parameters which need to be estimated and µ (Si) is
some decreasing-function of stress at stress level Si which needs to be chosen appropriately
depending on the underlying physics of failure.

The failure mechanism is assumed constant at each stress level, that is β0 = β1 = ... = βk = β.
Assuming conditional independence of the failure times tij given stress level Si and the
parameters β and ν (Si), the likelihood function is given by:

L (β, ν (Si) | t) =

ni∏
j=1

βtβ−1
ij

exp {β (θ1 + θ2µ (Si))}
exp

{
−

tβij
exp {β (θ1 + θ2µ (Si))}

}
. (3.3)

The likelihood function under k stress levels is thus given by:

L (β, ν (Si) | t) =
k∏
i=1

βni

exp {βni (θ1 + θ2µ (Si))}

ni∏
j=1

tβ−1
ij exp

−
ni∑
j=1

tβij

exp {β (θ1 + θ2µ (Si))}

 .

(3.4)
Following the method of Xu et al. (2015), define a transformation of the scale parameter
given by:

λi =
1

ν (Si)
, i = 1, 2, ..., k

=exp {− [θ1 + θ2µ (Si)]}

=λ0 × exp {θ2 [µ (S0)− µ (Si)]}

=λ0 × ηδi ,

(3.5)

where:

• λ0 denotes the use stress level,

• η = exp {θ2 (µ (S0)− µ (S1))} = λ1
λ0

denotes the acceleration factor from S0 to S1 and

• δi = µ(S0)−µ(Si)
µ(S0)−µ(S1)

, i = 1, 2, ..., k.

Since µ (Si) is a decreasing function, it implies that δk > δk−1 > ... > δ1 = 1. The new
parameters chosen for the model are: λ0, η and β where the inverse transformations are
given as follows:

• λ0 = exp {− [θ1 + θ2µ (S0)]} ⇐⇒ θ1 = −log (λ0)− log(η)µ(S0)
µ(S0)−µ(S1)

• η = exp {θ2 [µ (S0)− µ (S1)]} ⇐⇒ θ2 = log(η)
µ(S0)−µ(S1)

• β = β ⇐⇒ β = β.
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And hence the Jacobian matrix denoted by J is given by:

J =


−1
λ0

µ(S0)
η[µ(S0)−µ(S1)]

0

0 1
η[µ(S0)−µ(S1)]

0

0 0 1

 , (3.6)

where the determinant of this matrix is: det (J) = −1
λ0η[µ(S0)−µ(S1)]

. Therefore this transfor-
mation is one-to-one. By defining ψ′ = (λ0, η, β)′ , Xu et al. (2015) claim that likelihood
function given in equation 3.4 may be rewritten as:

L (ψ | t) ∝ βnλnβ0 ηβδ̄
k∏
i=1

ni∏
j=1

tβ−1
ij exp

{
−

k∑
i=1

ni∑
j=1

tβijλ
β
0η

βδi

}
, (3.7)

where: δ̄ =
k∑
i=1

niδi.

Note that under this transformation Tij | ν (Si)
? , β? ∼ Weib

(
ν (Si)

? = λ0η
δi , β? = β

)
, which

is the alternative parameterization of the Weibull distribution as defined by equation 2.110.

Let L = log (L (ψ | t)) be the log-likelihood of equation 3.7, which is given by:

L =nlog (β) + (nβ) log (λ0) +
(
δ̄β
)
log (η) +

+ (β − 1)
k∑
i=1

ni∑
j=1

log (tij)−
k∑
i=1

ni∑
j=1

tβijλ
β
0η

βδi .
(3.8)

3.3 Maximum likelihood estimation

The method of maximum likelihood is perhaps the most popular method for deriving esti-
mates. To find these estimates, consider the first-order partial derivatives of the log-likelihood
function given in equation 3.8:

∂L
∂λ0

=
nβ

λ0

−
k∑
i=1

ni∑
j=1

tβijβλ
β−1
0 ηβδi , (3.9)

∂L
∂η

=
δ̄β

η
−

k∑
i=1

ni∑
j=1

tβijλ
β
0βδiη

βδi−1, (3.10)

∂L
∂β

=
n

β
+ nlog (λ0) + δ̄log (η) +

k∑
i=1

ni∑
j=1

log (tij)−

−
k∑
i=1

ni∑
j=1

tβijλ
β
0η

βδilog
(
tijλ0η

δi
)
.

(3.11)

The MLEs of the Weibull distribution are found by setting these partial derivatives equal to
zero and solving for the parameter. However given that these equations are non-linear, some
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iterative procedure will be required to approximate the estimates.

For simplicity, note that from equation 3.9, the estimate of λ0 can be found by:

λ̂0 =

 n
k∑
i=1

ni∑
j=1

tβ̂ij η̂
β̂δi


1

β̂

. (3.12)

Therefore the log-likelihood of ψ? = λ0 (β, η) given in equation 3.8 may be written as:

L? =nlog (β) + nlog (n)− nlog

(
k∑
i=1

ni∑
j=1

tβijη
βδi

)
+

+
(
δ̄β
)
log (η) + (β − 1)

k∑
i=1

ni∑
j=1

log (tij)− n.

(3.13)

Finding the first- and second-order partial derivatives of equation 3.13 yield:

∂L?

∂β
=
n

β
+ δ̄log (η) +

k∑
i=1

ni∑
j=1

log (tij)−
n

k∑
i=1

ni∑
j=1

tβijη
βδilog

(
tijη

δi
)

k∑
i=1

ni∑
j=1

tβijη
βδi

, (3.14)

∂L?

∂η
=
δ̄β

η
−
n

k∑
i=1

ni∑
j=1

βδit
β
ijη

βδi−1

k∑
i=1

ni∑
j=1

tβijη
βδi

, (3.15)

∂2L?

∂β2
=− n

β2
− n(

k∑
i=1

ni∑
j=1

tβijη
βδi

)2

(
k∑
i=1

ni∑
j=1

tβijη
βδi

[
k∑
i=1

ni∑
j=1

tβijη
βδilog

(
tijη

δi
) (
log
(
tijη

δi
))]
− ...

−
k∑
i=1

ni∑
j=1

tβijη
βδilog

(
tijη

δi
) [ k∑

i=1

ni∑
j=1

tβijη
βδi
(
log
(
tijη

δi
))])

,

(3.16)
∂2L?

∂η2
=− δ̄β

η
− n(

k∑
i=1

ni∑
j=1

tβijη
βδi

)2

(
k∑
i=1

ni∑
j=1

tβijη
βδi

[
k∑
i=1

ni∑
j=1

βδi (βδi − 1) tβijη
βδi−2

]
− ...

−

(
k∑
i=1

ni∑
j=1

βδit
β
ijη

βδi−1

)2
 ,

(3.17)
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∂2L?

∂β∂η
=
δ̄

η
+

n(
k∑
i=1

ni∑
j=1

tβijη
βδi

)2

(
k∑
i=1

ni∑
j=1

tβijη
βδi

[
k∑
i=1

ni∑
j=1

tβijη
βδi−1δi

(
βlog

(
tijη

δi
)

+ 1
)]
− ...

−
k∑
i=1

ni∑
j=1

tβijη
βδilog

(
tijη

δi
) [ k∑

i=1

ni∑
j=1

βδit
β
ijη

βδi−1

])
.

(3.18)
Hence the gradient vector of equation 3.13 is given by:

∇′ (ψ?) =

[
∂L?

∂β
,
∂L?

∂η

]′
(3.19)

and the associated Hessian matrix is given by:

H (ψ?) =

[
∂2L?
∂β2

∂2L?
∂β∂η

∂2L?
∂β∂η

∂2L?
∂η2

]
. (3.20)

Therefore the NR algorithm as described in section 2.4.1 may be used to approximate the
MLEs.

To find the variance-covariance matrix of the MLEs, the Fisher information matrix needs to
be derived.

Theorem 3.1. The Fisher information matrix for the Weibull distribution under the log-
linear time transformation function is given by:

I (ψ) =


nβ2

λ20

δ̄β2

λ0η
c1
λ0

δ̄β2

λ0η
β2c4
η2

c3
η

c1
λ0

c3
η

n+c2
β2

 , (3.21)

where:

• c1 =
k∑
i=1

c1i = n (−γ + 1) ,

• c2 =
k∑
i=1

c2i = n
(

2γ + γ2 + π2

6

)
,

• c3 =
k∑
i=1

c1iδi = δ̄ (−γ + 1) ,

• c4 =
k∑
i=1

niδ
2
i and

γ ≈ 0.5772 is Euler’s constant (Abramowitz and Stegun, 1964).

Proof. The proof is provided in Xu et al. (2015). For working out, see appendix A.1.
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And therefore the inverse of the Fisher information matrix is given by:

I−1 (ψ) =
1

M


(nc4+c2c4−c23)λ20

β2

(c1c3−nδ̄−c2δ̄)λ0η
β2

(
c3δ̄ − c1c4

)
λ0

(c1c3−nδ̄−c2δ̄)λ0η
β2

(n2+nc2−c21)η2
β2

(
c1δ̄ − nc3

)
η(

c3δ̄ − c1c4

)
λ0

(
c1δ̄ − nc3

)
η

(
δ̄2 − nc4

)
β2

 , (3.22)

where: M = c4n
2 + n

(
c2c4 − c2

3 − δ̄2
)

+ 2δ̄c1c3 − δ̄2 − c2
1c4.

For simplicity, the inverse of the Fisher information matrix given in equation 3.22 will be
written as:

I−1 (ψ) =
1

M


a11λ20
β2

a12λ0η
β2 a13λ0

a21λ0η
β2

a22η2

β2 a23η

a31λ0 a32η a33β
2

 , (3.23)

where aij i, j = 1, 2, 3 are the corresponding multipliers of the parameters left in the matrix
given in equation 3.22.

Hence, via the properties described in section 2.4.1.1 the MLEs have a variance-covariance
matrix given by:

Σ = I−1 (ψ) =


var

(
λ̂0

)
cov
(
λ̂0, η̂

)
cov
(
λ̂0, β̂

)
cov
(
λ̂0, η̂

)
var (η̂) cov

(
η̂, β̂
)

cov
(
λ̂0, β̂

)
cov
(
η̂, β̂
)

var
(
β̂
)

 . (3.24)

3.4 Non-informative Bayesian derivations

3.4.1 Jeffreys’ prior

Jeffreys’ prior is the most discussed prior in non-informative Bayesian analysis and is de-
scribed in section 2.4.5.1. The prior is given by:

πJ (ψ) ∝ [det (I (ψ))]
1
2 , (3.25)

where the Fisher information matrix is given in equation 3.21.

Theorem 3.2. Jeffreys’ prior for the Weibull distribution under the log-linear time transfor-
mation function is given by:

πJ (ψ) ∝ β

λ0η
. (3.26)

Proof. Finding the determinant of the Fisher information matrix defined in equation A.25
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yields:

det (I (ψ)) =
nβ2

λ2
0

×

∣∣∣∣∣ β2c4
η2

c3
η

c3
η

n+c2
β2

∣∣∣∣∣− δ̄β2

λ0η
×

∣∣∣∣∣ δ̄β2

λ0η
c3
η

c1
λ0

n+c2
β2

∣∣∣∣∣+
c1

λ0

×

∣∣∣∣∣ δ̄β2

λ0η
β2c4
η2

c1
λ0

c3
η

∣∣∣∣∣
=
nβ2

λ2
0

×
[
c4β

2 (n+ c2)

η2β2
− c2

3

η2

]
− δ̄β2

λ0η
×
[
δ̄β2 (n+ c2)

λ0ηβ2
− c3c1

ηλ0

]
+ ...

+
c1

λ0

×
[
δ̄β2c3

λ0η2
− c1c4β

2

λ0η2

]
=

β2

λ2
0η

2
×
[
c4n

2 + nc4c2 − δ̄2n− δ̄2c2 + δ̄c3c1 + δ̄c1c2 − c2
1c4

]
=
β2M

λ2
0η

2

∝ β2

λ2
0η

2
.

(3.27)

Hence Jeffreys’ prior is given by:

πJ (ψ) ∝ [det (I (ψ))]
1
2

=
β

λ0η
.

(3.28)

Therefore the posterior distribution of ψ under Jeffreys’ prior is given by:

πJ (ψ | t) = c−1
J × πJ (ψ)× L (ψ | t)

∝ πJ (ψ)× L (ψ | t)

= β
λ0η
× βnλnβ0 ηβδ̄

k∏
i=1

ni∏
j=1

tβ−1
ij exp

{
−

k∑
i=1

ni∑
j=1

tβijλ
β
0η

βδi

}

= βn+1λnβ−1
0 ηβδ̄−1

k∏
i=1

ni∏
j=1

tβ−1
ij exp

{
−

k∑
i=1

ni∑
j=1

tβijλ
β
0η

βδi

}
,

(3.29)

where cJ is the normalizing constant, and is given by:

cJ =

∞∫
0

∞∫
0

∞∫
1

βn+1λnβ−1
0 ηβδ̄−1

k∏
i=1

ni∏
j=1

tβ−1
ij exp

{
−

k∑
i=1

ni∑
j=1

tβijλ
β
0η

βδi

}
dλ0dβdη. (3.30)

Since the posterior distribution under Jeffreys’ prior is of an unknown form, the properness
needs to be considered to ensure admissible results.

3.4.2 Reference prior

The reference prior approach is discussed in section 2.4.5.2, and is an alternative to Jeffreys’
prior for multiparameter models. To compile a reference prior, the algorithm described in
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section 2.4.5.2 needs to be followed.

Theorem 3.3. The reference prior for the grouping order {λ0, η, β} is given by:

πR1 (ψ) ∝ 1

λ0ηβ
. (3.31)

Proof. The proof is provided in Xu et al. (2015). For working out see appendix A.2.1

Theorem 3.4. The reference prior for the grouping {λ0, (η, β)} is given by:

πR2 (ψ) ∝ 1

λ0η
. (3.32)

Proof. The proof is provided in Xu et al. (2015). For working out see appendix A.2.2

Theorem 3.5. The reference prior for the grouping order {η, (λ0, β)} is given by:

πR2 (ψ) ∝ 1

λ0η
. (3.33)

Proof. The proof can be found in appendix A.2.3.

Theorem 3.6. The reference prior for the grouping {β, (λ0, η)} is given by:

πR1 (ψ) ∝ 1

λ0ηβ
. (3.34)

Proof. The proof can be found in appendix A.2.4.

Table 3.1 provides a summary of the possible reference priors derived above. Since Jeffreys’
prior is de facto the reference prior when all parameters are of equal importance, it is also
included in table 3.1.

Table 3.1: Possible reference priors dependent on the grouping of the parameters in ψ.

Grouping order Reference prior for ψ

{(λ0, η, β)} πJ (ψ) = β
λ0η

{λ0, η, β} , {β, (λ0, η)} , {(λ0, η) , β} πR1 (ψ) = 1
λ0ηβ

{λ0, (η, β)} , {(η, β) , λ0} , {η, (λ0, β)}, {(λ0, β) , η} πR2 (ψ) = 1
λ0η

For convenience, the general reference prior can be defined as:

πR (ψ) =
1

λ0ηβm
, m = −1, 0, 1. (3.35)
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Therefore the posterior distribution of ψ under the prior πR (ψ) is given by:

πR (ψ | t) = c−1
R × πR (ψ)× L (ψ | t)

∝ πR (ψ)× L (ψ | t)

= 1
λ0ηβm

× βnλnβ0 ηβδ̄
k∏
i=1

ni∏
j=1

tβ−1
ij exp

{
−

k∑
i=1

ni∑
j=1

tβijλ
β
0η

βδi

}

= βn−m−1λnβ−1
0 ηβδ̄−1

k∏
i=1

ni∏
j=1

tβ−1
ij exp

{
−

k∑
i=1

ni∑
j=1

tβijλ
β
0η

βδi

}
,

(3.36)

where m = −1, 0, 1 and cR is the normalizing constant, and is given by:

cR =

∞∫
0

∞∫
0

∞∫
1

βn−m−1λnβ−1
0 ηβδ̄−1

k∏
i=1

ni∏
j=1

tβ−1
ij exp

{
−

k∑
i=1

ni∑
j=1

tβijλ
β
0η

βδi

}
dλ0dβdη. (3.37)

The posterior distribution under the general reference prior has an unknown form, therefore
the properness needs to be considered to ensure admissible results.

3.4.3 Maximal data information prior

The MDI prior is described in section 2.4.5.3, and is given by:

πMDI (ψ) ∝ exp {H (ψ)} , (3.38)

where: H (ψ) =
∞∫
0

f (t | ψ) log (f (t | ψ)) dt is the negative Shannon entropy.

Theorem 3.7. The MDI prior for the Weibull distribution under the log-linear time trans-
formation function is given as:

πMDI (ψ) ∝ β
(
λ0η

δi
)
exp

{
γ

β

}
, (3.39)

where: γ ≈ 0.5772 is Euler’s constant (Abramowitz and Stegun, 1964).

Proof. The PDF of the Weibull distribution under the log-linear time transformation function
for any tij may be written as:

f (tij | ψ) =β
(
λ0η

δi
)β
tβ−1
ij exp

{
−
(
tijλ0η

δi
)β}

tij ≥ 0. (3.40)

Consider the negative Shannon entropy of the Weibull distribution under the log-linear time
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transformation function, denoted by H (ψ) :

H (ψ) =

∞∫
0

f (tij | ψ) log (f (tij | ψ)) dtij

=

∞∫
0

β
(
λ0η

δi
)β
tβ−1
ij exp

{
−
(
λ0η

δi
)β
tβij

}
[log (β) + βlog (λ0) + δiβlog (η) + ...

+ (β − 1) log (tij)−
(
tijλ0η

δi
)β]

dtij

=β
(
λ0η

δi
)β
log (β)

∞∫
0

tβ−1
ij exp

{
−
(
λ0η

δi
)β
tβij

}
dtij + ...

+β
(
λ0η

δi
)β
βlog (λ0)

∞∫
0

tβ−1
ij exp

{
−
(
λ0η

δi
)β
tβij

}
dtij + ...

+β
(
λ0η

δi
)β
δiβlog (η)

∞∫
0

tβ−1
ij exp

{
−
(
λ0η

δi
)β
tβij

}
dtij + ...

+β
(
λ0η

δi
)β

(β − 1)

∞∫
0

log (tij) t
β−1
ij exp

{
−
(
λ0η

δi
)β
tβij

}
dtij − ...

−
∞∫
0

(
tijλ0η

δi
)β
β
(
λ0η

δi
)β
tβ−1
ij exp

{
−
(
λ0η

δi
)β
tβij

}
dtij

= log (β) + βlog (λ0) + δiβlog (η) + A−B,

(3.41)

where:

A = β
(
λ0η

δi
)β

(β − 1)

∞∫
0

log (tij) t
β−1
ij exp

{
−
(
λ0η

δi
)β
tβij

}
dtij,

B =

∞∫
0

(
tijλ0η

δi
)β
β
(
λ0η

δi
)β
tβ−1
ij exp

{
−
(
λ0η

δi
)β
tβij

}
dtij.

(3.42)

Consider A, making the substitution:

• uij =
(
λ0η

δi
)β
tβij =⇒ duij = β

(
λ0η

δi
)β
tβ−1
ij dtij,

which gives:

A =
(β − 1)

β

∞∫
0

[
log (uij)− βlog

(
λ0η

δi
)]
exp {−uij} duij

=
(β − 1)

β

[
−γ − βlog

(
λ0η

δi
)]
,

(3.43)
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where:

− γ =

∞∫
0

log (uij) exp {−uij} duij. (3.44)

Consider B, making the transformation:

• yij = tβij,

then yij ∼ Exp
(
θ? =

(
λ0η

δi
)β)

.

Thus:

B =
(
λ0η

δi
)β ∞∫

0

E
[
∼ Exp

(
θ? =

(
λ0η

δi
)β)]

dyij

=
(
λ0η

δi
)β (

λ0η
δi
)−β

=1.

(3.45)

Therefore the MDI prior can be formed as:

πMDI (ψ) =exp {H (ψ)}

=exp

{
log (β) + βlog (λ0) + δiβlog (η) +

(β − 1)

β

[
−γ − βlog

(
λ0η

δi
)]
− 1

}
=β
(
λ0η

δi
)β (

λ0η
δi
)−(β−1)

exp

{
−(β − 1)

β
γ − 1

}
∝β
(
λ0η

δi
)
exp

{
γ

β

}
.

(3.46)

Therefore the posterior distribution of ψ under the MDI prior for k stress levels is given by:

πMDI (ψ | t) = c−1
MDI × πMDI (ψ)× L (ψ | t)

∝ πMDI (ψ)× L (ψ | t)

= βλ0η
δiexp

{
γ
β

}
× βnλnβ0 ηβδ̄

k∏
i=1

ni∏
j=1

tβ−1
ij exp

{
−

k∑
i=1

ni∑
j=1

tβijλ
β
0η

βδi

}

= exp
{
γ
β

}
βn+1λnβ+1

0 ηδ̄(β+1)
k∏
i=1

ni∏
j=1

tβ−1
ij exp

{
−

k∑
i=1

ni∑
j=1

tβijλ
β
0η

βδi

}
.

(3.47)

where cMDI is the normalizing constant, and is given by:

cMDI =

∞∫
0

∞∫
0

∞∫
1

exp

{
γ

β

}
βn+1λnβ+1

0 ηδ̄(β+1)

k∏
i=1

ni∏
j=1

tβ−1
ij exp

{
−

k∑
i=1

ni∑
j=1

tβijλ
β
0η

βδi

}
dλ0dβdη.

(3.48)
The posterior distribution under the MDI prior is of an unknown form, therefore the proper-
ness of the posterior needs to be considered to ensure admissible results.
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3.4.4 Uniform prior

The uniform prior is defined in section 2.4.5.4, and is given by:

πU (ψ) ∝ c, (3.49)

where c is an arbitrary constant. Therefore the posterior distribution of ψ under the uniform
prior is merely proportional to likelihood function, and is given by:

πU (ψ | t) = c−1
U × πU (ψ)× L (ψ | t)

∝ πU (ψ)× L (ψ | t)

= βnλnβ0 ηβδ̄
k∏
i=1

ni∏
j=1

tβ−1
ij exp

{
−

k∑
i=1

ni∑
j=1

tβijλ
β
0η

βδi

}
.

(3.50)

where cU is the normalizing constant, and is given by:

cU =

∞∫
0

∞∫
0

∞∫
1

βnλnβ0 ηβδ̄
k∏
i=1

ni∏
j=1

tβ−1
ij exp

{
−

k∑
i=1

ni∑
j=1

tβijλ
β
0η

βδi

}
dλ0dβdη. (3.51)

The posterior distribution under the uniform prior is of an unknown form, therefore the
properness needs to be considered to ensure admissible results.

3.4.5 Probability matching prior

The PMP is described in 2.4.5.5 and is used to connect the Bayesian and frequentist methods.
The algorithm to construct a second-order PMP for a parameter of interest is given in section
2.4.5.5.

The PMPs were found in Xu et al. (2015), although no working out was shown. Hence
this section is devoted to showing full derivations of the probability matching priors for the
Weibull distribution under the log-linear time transformation function.

Theorem 3.8. The probability matching prior when λ0 is the parameter of interest is given
by:

πM1 (ψ) = g1

(
ηλ
−a12
a11

0 ,
a11 + a13βlog (λ0)

a13β

)
λ
−1−a12

a11
0 β−1, (3.52)

where g1 is an arbitrary positive continuous function.

Proof. Consider λ0 as the parameter of interest. Following the algorithm in section 2.4.5.5
choose t′ (ψ) = (λ0, 0, 0)′ , resulting in the gradient vector ∇′t (ψ) = (1, 0, 0)′. Therefore:

ηi (ψ) =
∇′t (ψ) I−1 (ψ)√

∇′t (ψ) I−1 (ψ)∇t (ψ)
, (3.53)
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which further reduces to:

ηi (ψ) =
I−1

1j (ψ)√
I−1

11 (ψ)
, (3.54)

where: I−1
1j (ψ) is the first row of the inverse Fisher information matrix.

Therefore the probability matching prior πM1 (ψ) should satisfy the following differential
equation:

3∑
i=1

∂

∂ψi
{ηi (ψ)πM1 (ψ)} = 0, (3.55)

Where: ψi is the ith element in ψ.

Equation 3.55 becomes:

∂

∂λ0

[√
a11

M

λ0

β
πM1 (ψ)

]
+

∂

∂η

[
a12√
Ma11

η

β
πM1 (ψ)

]
+

∂

∂β

[
a13√
Ma11

βπM1 (ψ)

]
= 0, (3.56)

where: aij are the values found in the inverse Fisher information matrix, given in equation
3.23.

Equation 3.56 simplifies to:

∂

∂λ0

[
a11

λ0

β
πM1 (ψ)

]
+

∂

∂η

[
a12

η

β
πM1 (ψ)

]
+

∂

∂β
[a13βπM1 (ψ)] = 0. (3.57)

Using the method of characteristics, the differential characteristic equations are as follows:

β∂λ0

a11λ0

=
β∂η

a12η
=

∂β

a13β
=

∂πM1

−πM1

(
a11
β

+ a12
β

+ a13

) . (3.58)

A first family of characteristics comes from:

β∂λ0

a11λ0

=
β∂η

a12η
=⇒ c1 = ηλ

−a12
a11

0 . (3.59)

A second family of characteristics comes from:

β∂λ0

a11λ0

=
∂β

a13β
=⇒ c2 =

a11 + a13βlog (λ0)

a13β
. (3.60)

A third family of characteristics comes from:

β∂λ0

a11λ0

=
∂πM1

−πM1

(
a11
β

+ a12
β

+ a13

) , (3.61)

and since c2 = a11+a13βlog(λ0)
a13β

, this can be simplified to:(
a11 + a12 + a11

(c2−log(λ0))

)
∂λ0

λ0

=
a11∂πM1

−πM1

. (3.62)
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By setting u = c2 − log (λ0) =⇒ du = −λ−1
0 and noting that c2 − log (λ0) = a11

a13β
the above

equation becomes:

(a11 + a12) log (λ0)− a11log

(
a11

a13β

)
+ c3 = −a11log (πM1) . (3.63)

Solving in terms of πM1 yields:

πM1 = λ
−1−a12

a11
0 β−1c?3, (3.64)

where c?3 =
(
a11
a13

)
exp

{
− c3
a11

}
. Therefore

πM1 (ψ) =g1 (c1, c2)λ
−1−a12

a11
0 β−1

=g1

(
ηλ
−a12
a11

0 ,
a11 + a13βlog (λ0)

a13β

)
λ
−1−a12

a11
0 β−1,

(3.65)

where g1 is is any arbitrary positive function differentiable on the two variables.

Theorem 3.9. The probability matching prior when η is the parameter of interest is given
by:

πM2 (ψ) = g2

(
ηλ
−a22
a21

0 ,
a21 + a23βlog (λ0)

a23β

)
λ
−1−a22

a21
0 β−1, (3.66)

where g2 is an arbitrary positive continuous function.

Proof. Consider η as the parameter of interest. Following the algorithm in section 2.4.5.5
choose t′ (ψ) = (0, η, 0)′ , resulting in the gradient vector ∇′t (ψ) = (0, 1, 0)′ . Therefore:

ηi (ψ) =
I−1

2j (ψ)√
I−1

22 (ψ)
, (3.67)

where: I−1
2j (ψ) is the second row of the inverse Fisher information matrix.

Therefore the probability matching prior πM2 (ψ) should satisfy the following differential
equation:

∂

∂λ0

[√
a21

M

λ0

β
πM2 (ψ)

]
+

∂

∂η

[
a22√
Ma22

η

β
πM2 (ψ)

]
+

∂

∂β

[
a23√
Ma22

βπM2 (ψ)

]
= 0, (3.68)

which is simplified to:

∂

∂λ0

[
a21

λ0

β
πM2 (ψ)

]
+

∂

∂η

[
a22

η

β
πM2 (ψ)

]
+

∂

∂β
[a23βπM2 (ψ)] = 0. (3.69)

Using the method of characteristics, the differential characteristic equations are as follows:

β∂λ0

a21λ0

=
β∂η

a22η
=

∂β

a23β
=

∂πM2

−πM2

(
a21
β

+ a22
β

+ a23

) . (3.70)
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Following an approach similar to when λ0 was the parameter of interest, the probability
matching prior πM2 (ψ) is given by:

πM2 (ψ) =g2 (c1, c2)λ
−1−a22

a21
0 β−1

=g2

(
ηλ
−a22
a21

0 ,
a21 + a23βlog (λ0)

a23β

)
λ
−1−a22

a21
0 β−1,

(3.71)

where g2 is any arbitrary positive function differentiable on the two variables.

Theorem 3.10. The probability matching prior when β is the parameter of interest is given
by:

πM3 (ψ) = g3

(
ηλ
−a32
a31

0 ,
a31 + a33βlog (λ0)

a33β

)
λ
−1−a32

a31
0 β−1, (3.72)

where g3 is an arbitrary positive continuous function.

Proof. Consider β as the parameter of interest. Following the algorithm in section 2.4.5.5
choose t′ (ψ) = (0, 0, β)′ , resulting in the gradient vector ∇′t (ψ) = (0, 0, 1)′ . Therefore:

ηi (ψ) =
I−1

3j (ψ)√
I−1

33 (ψ)
, (3.73)

where: I−1
3j (ψ) is the third row of the inverse Fisher information matrix.

Therefore the probability matching prior πM3 (ψ) should satisfy the following differential
equation:

∂

∂λ0

[√
a31

M

λ0

β
πM3 (ψ)

]
+

∂

∂η

[
a32√
Ma33

η

β
πM3 (ψ)

]
+

∂

∂β

[
a33√
Ma33

βπM3 (ψ)

]
= 0, (3.74)

which is simplified to:

∂

∂λ0

[
a31

λ0

β
πM3 (ψ)

]
+

∂

∂η

[
a32

η

β
πM3 (ψ)

]
+

∂

∂β
[a33βπM3 (ψ)] = 0. (3.75)

Using the method of characteristics, the differential characteristic equations are as follows:

β∂λ0

a31λ0

=
β∂η

a32η
=

∂β

a33β
=

∂πM3

−πM3

(
a31
β

+ a32
β

+ a33

) . (3.76)

Following an approach similar to when λ0 was the parameter of interest, the probability
matching prior πM2 (ψ) is given by:

πM3 (ψ) =g3 (c1, c2)λ
−1−a32

a31
0 β−1

=g3

(
ηλ
−a32
a31

0 ,
a31 + a33βlog (λ0)

a33β

)
λ
−1−a32

a31
0 β−1,

(3.77)

where g3 is any arbitrary positive function differentiable on the two variables.
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Finally, it will be shown that the reference priors: πJ (ψ) , πR1 (ψ) and πR2 (ψ) and the
priors: πMDI (ψ) and πU (ψ) are (or are not) the second-order probability matching priors.

Theorem 3.11. The reference prior πJ (ψ) is not a second-order probability matching prior
regardless of which parameter is of interest.

Proof. Substituting πJ (ψ) into equation 3.56 yields:

∂

∂λ0

[√
a11

M

1

η

]
+

∂

∂η

[
a12√
Ma11

1

λ0

]
+

∂

∂β

[
a13√
Ma11

β2

λ0η

]
=

2a13β√
Ma11λ0η

6= 0. (3.78)

Similar answers are given if πJ (ψ) is substituted into equations 3.68 and 3.74. Therefore the
reference prior πJ (ψ) is not the probability matching prior regardless of which parameter is
of interest.

Theorem 3.12. The reference prior πR1 (ψ) is not a second-order probability matching re-
gardless of which parameter is of interest.

Proof. Substituting πR1 into equation 3.56 yields:

∂

∂λ0

[√
a11

M

1

βη

]
+

∂

∂η

[
a12√
Ma11

1

λ0β

]
+

∂

∂β

[
a13√
Ma11

β

λ0η

]
=

a13√
Ma11λ0η

6= 0. (3.79)

Similar answers are given if πR1 (ψ) is substituted into equations 3.68 and 3.74. Therefore the
reference prior πR1 (ψ) is not the probability matching prior regardless of which parameter
is of interest.

Theorem 3.13. The reference prior πR2 (ψ) is a second-order probability matching prior
regardless of which parameter is of interest.

Proof. Substituting πR2 (ψ) into equation 3.56 yields:

∂

∂λ0

[√
a11

M

1

ηβ2

]
+

∂

∂η

[
a12√
Ma11

1

λ0β2

]
+

∂

∂β

[
a13√
Ma11

1

λ0η

]
= 0. (3.80)

Similar answers are given if πR2 (ψ) is substituted into equations 3.68 and 3.74. Therefore
the reference prior πR2 (ψ) is the probability matching prior regardless of which parameter
is of interest.

Theorem 3.14. The prior πMDI (ψ) is not a second-order probability matching prior regard-
less of which parameter is of interest.

Proof. Substituting πMDI (ψ) into equation 3.56 yields:

∂

∂λ0

[√
a11

M
λ2

0η
δiexp

{
γ

β

}]
+

∂

∂η

[
a12λ0η

δi+1

√
Ma11

exp

{
γ

β

}]
+

∂

∂β

[
a13βλ0η

δi

√
Ma11

exp

{
γ

β

}]
= k 6= 0,

(3.81)
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where: k = 2
√

a11
M
λ0η

δiexp
{
γ
β

}
+ (δi + 1) a12√

Ma11
λ0η

δiexp
{
γ
β

}
+ a13√

Ma11
λ0η

δi

(
β−γ
β

)
exp

{
γ
β

}
.

Similar answers are given if πMDI (ψ) is substituted into equations 3.68 and 3.74. Therefore
the prior πMDI (ψ) is not the probability matching prior regardless of which parameter is of
interest.

Theorem 3.15. The prior πU (ψ) is not a second-order probability matching prior regardless
of which parameter is of interest.

Proof. Substituting πU (ψ) into equation 3.56 yields:

∂

∂λ0

[√
a11

M

λ0

β

]
+

∂

∂η

[
a12√
Ma11

η

β

]
+

∂

∂β

[
a13√
Ma11

β

]
=

√
a11

Mβ2
+

a12√
Ma11β2

+
a13√
Ma11

6= 0.

(3.82)

Similar answers are given if πU (ψ) is substituted into equations 3.68 and 3.74. Therefore
the prior πU (ψ) is not the probability matching prior regardless of which parameter is of
interest.

3.4.6 Properness of posterior distributions

For Bayesian analysis to be meaningful the posterior distributions need to be proper, that
is, they integrate to a finite constant. The posterior distribution under each prior derived
above are all of an unknown form, and hence their properness needs to be considered. This
section is devoted proving proneness (or improperness) of the posterior distributions under
the non-informative priors derived above. The necessary lemmas and propositions required
can be found in appendix A.3.

This section includes a proof for the properness of the posterior distributions under: Jeffreys’
prior, the reference priors, the MDI prior and the uniform prior. An alternative proof for the
properness of the posterior distributions for the three reference priors can be found in Xu
et al. (2015).

Theorem 3.16. The posterior distribution for the log-linear Weibull distribution under the
reference priors is proper provided that δ̄ < n δmax and n > m+ 1.

Proof. For the posterior distribution to be proper the following must hold:

cR

∞∫
0

∞∫
0

∞∫
1

πR (ψ | t) dβdλ0dη = 1, (3.83)

for some normalizing constant cR. For this to be true it suffices to show:

∞∫
0

∞∫
0

∞∫
1

πR (ψ | t) dβdλ0dη <∞. (3.84)



Chapter 3 Derivations for Weibull distribution 80

Consider the above integral:

∝
∞∫
0

∞∫
0

∞∫
1

βn−mλnβ−1
0 ηβδ̄−1

k∏
i=1

ni∏
j=1

tβijexp

{
−

k∑
i=1

ni∑
j=1

tβijλ
β
0η

βδi

}
dβdλ0dη. (3.85)

Since λβ0 ∼ Gamma

(
α? = n, β? =

k∑
i=1

ni∑
j=1

tβijη
βδi

)
the integral in equation 3.85 may be written

as:
∞∫
0

∞∫
1

Γ (n) βn−m−1ηβδ̄−1

k∏
i=1

ni∏
j=1

tβij

(
k∑
i=1

ni∑
j=1

tβijη
βδi

)−n
dβdη

∝
∞∫
0

∞∫
1

βn−m−1ηβδ̄−1

k∏
i=1

ni∏
j=1

tβij

(
k∑
i=1

ni∑
j=1

tβijη
βδi

)−n
dβdη,

(3.86)

where Γ (·) is the gamma function defined in equation 2.108.

Following Ramos et al. (2020), let tmax and δmax denote the largest tij and δi values respec-
tively. Then for all tij < tmax and δi < δmax :

lim
η, β→∞

tβijη
βδi

tβmaxηβδmax
= 0. (3.87)

Therefore it follows that,

lim
η, β→∞

k∑
i=1

ni∑
j=1

tβijη
βδi

tβmaxηβδmax
= 1⇒

k∑
i=1

ni∑
j=1

tβijη
βδi ∝

η, β→∞
tβmaxη

βδmax .
(3.88)

Furthermore:

lim
η→1

lim
β→0

k∑
i=1

ni∑
j=1

tβijη
βδi

tβmaxηβδmax
= n⇒

k∑
i=1

ni∑
j=1

tβijη
βδi ∝

η→1, β→0
tβmaxη

βδmax .
(3.89)

Therefore from proposition A.3, it follows that:

k∑
i=1

ni∑
j=1

tβijη
βδi ∝ tβmaxη

βδmax , (3.90)
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in the interval β ∈ [0,∞) and η ∈ [1,∞) . Therefore the integral in equation 3.86 is:

∝
∞∫
0

∞∫
1

βn−m−1ηβδ̄−1

k∏
i=1

ni∏
j=1

tβij
(
tβmaxη

βδmax
)−n

dβdη

∝
∞∫
0

∞∫
1

βn−m−1exp {−cβ} ηβδ̄−nβδmax−1dβdη,

(3.91)

where c = log

 tnmax
k∏
i=1

ni∏
j=1

tij

 > 0 provided that tmax 6= tij ∀
i,j
. Now consider three separate cases:

1. Consider the case where βδ̄ − nβδmax − 1 ≥ 0, then equation 3.91 becomes:

∞∫
0

βn−m−1exp {−cβ}
∞∫
1

ηβδ̄−nβδmax−1dηdβ =∞. (3.92)

2. Consider the case where −1 ≤ βδ̄ − nβδmax − 1 < 0. By letting p? = βδ̄ − nβδmax − 1,
then equation 3.91 becomes:

∞∫
0

βn−m−1exp {−cβ}
∞∫
1

ηp
?

dηdβ =∞. (3.93)

This is because the p-series integral diverges for −1 ≤ p? < 0.

3. Consider the case where βδ̄− nβδmax− 1 < −1. By letting p? = βδ̄− nβδmax− 1, then
equation 3.91 becomes:

∞∫
0

βn−m−1exp {−cβ}
∞∫
1

ηp
?

dηdβ

=

∞∫
0

βn−m−1exp {−cβ}
β
(
δ̄ − nδmax

) dβ

∝
∞∫
0

βn−m−2exp {−cβ} dβ,

(3.94)

since the p-series integral converges when p? < −1. The integral in equation 3.94
converges for n > m+ 1 since β ∼ Gamma (α? = n−m− 1, β? = c) , which is a distri-
bution of a known-form and therefore has a finite-normalizing constant.

Therefore the posterior distributions under the reference priors are proper provided that
δ̄ < n δmax and n > m+ 1, and hence further analysis may be conducted with them.
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Theorem 3.17. The posterior distribution for the log-linear Weibull distribution under the
uniform prior is improper for ∀

n
.

Proof. For the posterior distribution to be proper the following must hold:

cU

∞∫
0

∞∫
0

∞∫
1

πU (ψ | t) dβdλ0dη = 1, (3.95)

for some normalizing constant cU . For this to be true it suffices to show:

∞∫
0

∞∫
0

∞∫
1

πU (ψ | t) dβdλ0dη <∞. (3.96)

Consider the above integral:

∝
∞∫
0

∞∫
0

∞∫
1

βnλnβ0 ηβδ̄
k∏
i=1

ni∏
j=1

tβijexp

{
−

k∑
i=1

ni∑
j=1

tβijλ
β
0η

βδi

}
dβdλ0dη. (3.97)

Since λβ0 ∼ Gamma

(
α? =

(
n+ 1

β

)
, β? =

k∑
i=1

ni∑
j=1

tβijη
βδi

)
, the integral in equation 3.97 may

be written as:

∞∫
0

∞∫
1

βn−1Γ

(
n+

1

β

) k∏
i=1

ni∏
j=1

tβijη
βδi

(
k∑
i=1

ni∑
j=1

tβijη
βδi

)−(n+ 1
β )

dβdη, (3.98)

where Γ (·) is the gamma function defined in equation 2.108.

Following Ramos et al. (2020), let tmax and δmax denote the largest tij and δi values respec-
tively. Then for all tij < tmax and δi < δmax :

lim
η, β→∞

tβijη
βδi

tβmaxηβδmax
= 0. (3.99)

Therefore it follows that,

lim
η, β→∞

k∑
i=1

ni∑
j=1

tβijη
βδi

tβmaxηβδmax
= 1⇒

k∑
i=1

ni∑
j=1

tβijη
βδi ∝

η, β→∞
tβmaxη

βδmax .
(3.100)

Furthermore:

lim
η→1

lim
β→0

k∑
i=1

ni∑
j=1

tβijη
βδi

tβmaxηβδmax
= n⇒

k∑
i=1

ni∑
j=1

tβijη
βδi ∝

η→1, β→0
tβmaxη

βδmax .
(3.101)
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Therefore from proposition A.3, it follows that:

k∑
i=1

ni∑
j=1

tβijη
βδi ∝ tβmaxη

βδmax , (3.102)

in the interval β ∈ [0,∞) and η ∈ [1,∞) . Therefore the integral in equation 3.98 is:

∝
∞∫
0

∞∫
1

βn−1Γ

(
n+

1

β

) k∏
i=1

ni∏
j=1

tβijη
βδi
(
tβmaxη

βδmax
)−(n+ 1

β )
dβdη

∝
∞∫
0

∞∫
1

βn−1Γ

(
n+

1

β

)
exp {−cβ} ηβδ̄−nβδmax−δmaxdβdη,

(3.103)

where c = log

 tnmax
k∏
i=1

ni∏
j=1

tij

 > 0 provided that tmax 6= tij ∀
i,j
. Now consider three separate cases:

1. Consider the case where βδ̄ − nβδmax − δmax ≥ 0, then equation 3.103 becomes:

∞∫
0

βn−1Γ

(
n+

1

β

)
exp {−cβ}

∞∫
1

ηβδ̄−nβδmax−δmaxdηdβ =∞. (3.104)

2. Consider the case where −1 ≤ βδ̄− nβδmax− δmax < 0. By letting p? = βδ̄− nβδmax−
δmax, then equation 3.103 becomes:

∞∫
0

βn−1Γ

(
n+

1

β

)
exp {−cβ}

∞∫
1

ηp
?

dηdβ =∞. (3.105)

This is because the p-series integral diverges for −1 ≤ p? < 0.

3. Consider the case where βδ̄−nβδmax− δmax < −1. By letting p? = βδ̄−nβδmax− δmax,
then equation 3.103 becomes:

∞∫
0

βn−1Γ

(
n+

1

β

)
exp {−cβ}

∞∫
1

ηp
?

dηdβ

∝
∞∫
0

βn−1Γ
(
n+ 1

β

)
exp {−cβ}

β
(
nδmax − δ̄

)
+ δmax − 1

dβ,

(3.106)

since the p-series integral converges when p? < −1. Since δmax − 1 ≥ 0, it implies that
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the integral in equation 3.106 is larger than or equal to:

∞∫
0

βn−1Γ
(
n+ 1

β

)
exp {−cβ}

β
(
nδmax − δ̄

) dβ

∝
∞∫
0

βn−2Γ

(
n+

1

β

)
exp {−cβ} dβ.

(3.107)

Consider the substitution ω = n+ 1
β
⇒ dω = − 1

β2dβ. Then equation 3.107 becomes:

∝
∞∫
n

(ω − n)−n Γ (ω) exp
{
−c (w − n)−1} dω. (3.108)

Following Stirling’s approximation as given in corollary A.1:

Γ (ω) ∼
√

2πωω+ 1
2 exp {−ω} . (3.109)

Therefore:

(ω − n)−n Γ (ω) exp
{
−c (w − n)−1} ∼ (ω − n)−n

√
2πωω+ 1

2 exp
{
−c (w − n)−1 − ω

}
.

(3.110)
Therefore as ω →∞ equation 3.107 becomes:

O (ωω) ω > 0. (3.111)

That is equation 3.107 is not finite as ω →∞ .

Therefore the posterior distribution under the uniform prior is an improper distribution.

Theorem 3.18. The posterior distribution for the log-linear Weibull distribution under the
MDI prior is improper for ∀

n
.

Proof. For the posterior distribution to be proper the following must hold:

cMDI

∞∫
0

∞∫
0

∞∫
1

πMDI (ψ | t) dβdλ0dη = 1, (3.112)

for some normalizing constant cMDI . For this to be true it suffices to show:

∞∫
0

∞∫
0

∞∫
1

πMDI (ψ | t) dβdλ0dη <∞. (3.113)
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Consider the above integral:

∝
∞∫
0

∞∫
0

∞∫
1

exp

{
γ

β

}
βn+1λnβ+1

0 ηδ̄(β+1)

k∏
i=1

ni∏
j=1

tβ−1
ij exp

{
−

k∑
i=1

ni∑
j=1

tβijλ
β
0η

βδi

}
dλ0dβdη.

(3.114)

Since λβ0 ∼ Gamma

(
α? =

(
n+ 2

β

)
, β? =

k∑
i=1

ni∑
j=1

tβijη
βδi

)
, the integral in equation 3.114 may

be written as:

∞∫
1

∞∫
0

exp

{
γ

β

}
βnΓ

(
n+

2

β

) k∏
i=1

ni∏
j=1

tβijη
βδi+δi

(
k∑
i=1

ni∑
j=1

tβijη
βδi

)−(n+ 2
β )

dβdη, (3.115)

where Γ (·) is the gamma function defined in equation 2.108.

Note that exp
{
γ
β

}
> 1∀ β > 0. Therefore the integral in equation 3.115 is greater than:

∞∫
1

∞∫
0

βnΓ

(
n+

2

β

)
ηδ̄

k∏
i=1

ni∏
j=1

tβijη
βδi

(
k∑
i=1

ni∑
j=1

tβijη
βδi

)−(n+ 2
β )

dβdη. (3.116)

Following Ramos et al. (2020), let tmax and δmax denote the largest tij and δi values respec-
tively. Then for all tij < tmax and δi < δmax :

lim
η, β→∞

tβijη
βδi

tβmaxηβδmax
= 0. (3.117)

Therefore it follows that,

lim
η, β→∞

k∑
i=1

ni∑
j=1

tβijη
βδi

tβmaxηβδmax
= 1⇒

k∑
i=1

ni∑
j=1

tβijη
βδi ∝

η, β→∞
tβmaxη

βδmax .
(3.118)

Furthermore:

lim
η→1

lim
β→0

k∑
i=1

ni∑
j=1

tβijη
βδi

tβmaxηβδmax
= n⇒

k∑
i=1

ni∑
j=1

tβijη
βδi ∝

η→1, β→0
tβmaxη

βδmax .
(3.119)

Therefore from proposition A.3, it follows that:

k∑
i=1

ni∑
j=1

tβijη
βδi ∝ tβmaxη

βδmax , (3.120)

in the interval β ∈ [0,∞) and η ∈ [1,∞) . Therefore the integral in equation 3.116 may be
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written as:

∝
∞∫
0

∞∫
1

βnΓ

(
n+

2

β

)
ηδ̄(β+1)

k∏
i=1

ni∏
j=1

tβij
(
tβmaxη

βδmax
)−(n+ 2

β )
dβddη

∝
∞∫
0

∞∫
1

βnΓ

(
n+

2

β

)
exp {−cβ} ηδ̄(β+1)−nβδmax−δmaxdβdη,

(3.121)

where c = log

 tnmax
k∏
i=1

ni∏
j=1

tij

 > 0 provided that tmax 6= tij ∀
i,j
. Now consider three separate cases:

1. Consider the case where δ̄ (β + 1)− nβδmax − δmax ≥ 0, then equation 3.103 becomes:

∞∫
0

βnΓ

(
n+

2

β

)
exp {−cβ}

∞∫
1

ηδ̄(β+1)−nβδmax−δmaxdηdβ =∞. (3.122)

2. Consider the case where −1 ≤ δ̄ (β + 1)−nβδmax−δmax < 0. By letting p? = δ̄ (β + 1)−
nβδmax − δmax, then equation 3.103 becomes:

∞∫
0

βnΓ

(
n+

2

β

)
exp {−cβ}

∞∫
1

ηp
?

dηdβ =∞. (3.123)

This is because the p-series integral diverges for −1 ≤ p? < 0.

3. Consider the case where δ̄ (β + 1) − nβδmax − δmax < −1. By letting p? = δ̄ (β + 1) −
nβδmax − δmax, then equation 3.103 becomes:

∞∫
0

βnΓ

(
n+

2

β

)
exp {−cβ}

∞∫
1

ηp
?

dηdβ

∝
∞∫
0

βnΓ
(
n+ 2

β

)
exp {−cβ}

β
(
nδmax − δ̄

)
− δ̄ + δmax − 1

dβ,

(3.124)

since the p-series integral converges when p? < −1. Since δmax − 1 ≥ 0, it implies that
the integral in equation 3.124 is larger than or equal to:

∞∫
0

βnΓ
(
n+ 2

β

)
exp {−cβ}

β
(
nδmax − δ̄

)
− δ̄

dβ. (3.125)
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Consider the substitution ω = n+ 2
β
⇒ dω = − 1

β2dβ. Then equation 3.125 becomes:

∝
∞∫
n

(
ω−n

2

)−(n+2)
Γ (ω) exp

{
−c
(
w−n

2

)−1
}

(
ω−n

2

)−1 (
nδmax − δ̄

)
− δ̄

dω. (3.126)

Following Stirling’s approximation as given in corollary A.1:

Γ (ω) ∼
√

2πωω+ 1
2 exp {−ω} . (3.127)

Therefore:(
ω − n

2

)−(n+2)

Γ (ω) exp

{
−c
(
w − n

2

)−1
}
y ∼

(
ω − n

2

)−(−n+2)√
2πωω+ 1

2×

× exp

{
−c
(
w − n

2

)−1

− ω

}
y,

(3.128)
where: y =

(
ω−n

2

)−1 (
nδmax − δ̄

)
− δ̄.

Therefore as ω →∞ equation 3.125 becomes:

O (ωω) ω > 0. (3.129)

That is equation 3.125 is not finite as ω →∞ .

Therefore the posterior distribution under the MDI prior is an improper distribution.

As a result the posterior distributions under the reference prior will be considered for the
remainder of this thesis, whereas the posterior distributions under the MDI and uniform prior
will not.



Chapter 4

Simulation study for Weibull distribution

4.1 Introduction

This chapter is devoted to running a simulation study using the estimates derived in chapter
3. Along with the maximum likelihood and MCMC Bayesian estimates, estimates obtained
using Lindley’s approximation technique are also found. The simulation study considers a
three-level constant-stress ALT, where the stress is related to temperature. That is, the
Arrhenius model is required. The first part of the simulation study compares the RMSE
values of the estimates under three different loss functions: the squared error, LINEX and
GELF. The second part of the simulation study finds the coverage rates for the MLEs and
the MCMC Bayesian estimates, as well as their average interval lengths.

4.2 Conditional posterior distributions

Consider the posterior distribution under the prior distribution πR (ψ) as given in equation
3.36. The conditional posterior of λ0 given β and η is given by:

πR (λ0 | β, η, t) ∝ λnβ−1
0 exp

{
−λβ0

k∑
i=1

ni∑
j=1

tβijη
βδi

}
, (4.1)

therefore: λβ0 ∼ Gamma

(
α? = n, β? =

k∑
i=1

ni∑
j=1

tβijη
βδi

)
.

Sampling for the models will be completed using WinBUGS (Spiegelhalter et al., 2002),
which is unable to generate samples from λβ0 . Hence the slice sampler will be required to
obtain samples from λ0.

Furthermore consider the conditional posterior of η given λ0 and β:

πR (η | λ0, β, t) ∝ ηβδ̄−1exp

{
−

k∑
i=1

ni∑
j=1

tβijλ
β
0η

βδi

}
Ψ (1,∞) , (4.2)
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where: Ψ (1,∞) is an indicator function and the conditional posterior is of an unknown form.

Since the conditional posterior distribution is of an unknown form, the slice sampler will be
used to simulate observations of η.

Finally consider the conditional posterior of β given λ0 and η:

πR (β | λ0, η, t) ∝ βn−m−1λnβ0 ηβδ̄
k∏
i=1

ni∏
j=1

tβijexp

{
−

k∑
i=1

ni∑
j=1

tβijλ
β
0η

βδi

}
, (4.3)

which is of an unknown form.

Since the conditional posterior of β given λ0 and η provides a posterior distribution of an
unknown form, The ARS sampling method will be used. The ARS sampling method requires
that the conditional posterior of β | λ0, η derived above is log-concave, which will be shown
in appendix B.4.

4.2.1 Specifying prior distributions in WinBUGS

MCMC Bayesian estimates will be found using the statistical software, WinBUGS (Spiegel-
halter et al., 2002), and the code used for sampling is provided in appendix: B.8, B.9 and
B.10.

When sampling we define independent priors for the unknown parameters, and therefore the
posterior distribution under the prior πR (ψ) may be written as:

πR (ψ | t) ∝ πR (λ0)× πR (η)× πR (β)× L (ψ | t) , (4.4)

where:

• L (ψ | t) is the likelihood function for the Weibull distribution under the log-linear
transformation function,

• πR (λ0) = 1
λ0

is the prior distribution for λ0,

• πR (η) = 1
η
is the prior distribution for η and

• πR (β) = 1
βm
, m = −1, 0, 1 is the prior distribution for β.

When sampling with WinBUGS, the distributions of the priors need to be fully specified.
Following Lunn et al. (2012), when sampling from: πR (λ0) , πR (η) and πR (β) when m = 1,
we approximate the prior distributions with the a gamma distribution with small parameters
to ensure that the distribution is reasonably flat. The prior distributions in this case will be
approximated by: ψi ∼ Gamma (0.001, 0.001), where: ψi is the ith parameter in ψ.

When sampling from πR (β) when m = 0, the prior may be approximated with a uniform
prior with a suitably wide range between parameters, say: β ∼ Uniform (0, 100) (Lunn
et al., 2012).
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Finally, when sampling from πR (β) whenm = −1, there is no statistical distribution found in
WinBUGS which may approximate the prior. Therefore the “zeros trick” will be implemented
to specify a new distribution to approximate this prior (Lunn et al., 2012).

To use this “trick”, first invent an arbitrary observation z = 0, assumed to come from a
∼ Poisson (φ = −log (πR (β))) . The “trick” is based on the observation that a single Pois-
son observation equal to zero with mean: φ = −log (πR (β)) contributes a term: πR (φ) =

exp {−φ} to the likelihood. Therefore, when φ is replaced with a flat prior for β, the correct
prior distribution results.

Lunn et al. (2012) states that the issues with using this method is that it may lead to:

• slow computations,

• poor convergence,

• high autocorrelation and

• high MC error values.

4.3 Sampling steps for simulations

The following steps will be used to sample from the posterior under the prior πR (ψ) under
stress level Si:

1. Generate ni values from a Weibull
(
ν (Si)

? = λ0η
δi , β? = β

)
.

2. Choose initial values given by ψ(0) =
(
λ

(0)
0 , η(0), β(0)

)
.

3. Sample from πR

(
λ

(i)
0 | β(i−1), η(i−1), t

)
via the slice sampler.

4. Sample from πR

(
η(i) | λ(i−1)

0 , β(i−1), t
)
via the slice sampler.

5. Sample from πR

(
β(i) | λ(i−1)

0 , η(i−1), t
)
via the ARS algorithm.

6. Repeat steps 3, 4 and 5 for every value of i.

4.4 Lindley’s approximation

Lindley’s approximation is a method to finding Bayesian estimates, and is described in detail
in section 2.4.6.1. According to Jung and Chung (2018), equation 2.57 reduces to the following
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when a model with three parameters is considered:

E (w (ψ) | t) ≈w
(
ψ̂
)

+ U
(
ψ̂
)

+ ρ1

(
ψ̂
)
A123 + ρ2

(
ψ̂
)
A213 + ρ3

(
ψ̂
)
A321 + ...

+
1

2
[L300B123 + L030B213 + L003B321 + 2L111 (C123 + C213 + C312) + ...

+ L210D123 + L201D132 + L120D213 + L102D312 + L021D231 + L012D321] ,

(4.5)
where:

• ψ̂ =
(
λ̂0, η̂, β̂

)
are the MLEs of ψ,

• Lijk = ∂3L
∂λi0∂η

j∂βk

∣∣∣
ψ=ψ̂

, where i, j, k = 0, 1, 2, 3 and i+ j + k = 3,

• σij

(
ψ̂
)
is the (i, j)th element of the minus inverse Hessian evaluated at ψ̂,

• U
(
ψ̂
)

= 1
2

3∑
i=1

3∑
j=1

wij

(
ψ̂
)
σij

(
ψ̂
)
,

• For i, j, k = 1, 2, 3:

Aijk =wiσii

(
ψ̂
)

+ wjσji

(
ψ̂
)

+ wkσki

(
ψ̂
)

Bijk =σii

(
ψ̂
) [
wiσii

(
ψ̂
)

+ wjσij

(
ψ̂
)

+ wkσik

(
ψ̂
)]

Cijk =wi

[
σii

(
ψ̂
)
σjk

(
ψ̂
)

+ 2σij

(
ψ̂
)
σik

(
ψ̂
)]

Dijk =3wiσii

(
ψ̂
)
σij

(
ψ̂
)

+ wj

(
σii

(
ψ̂
)
σij

(
ψ̂
)

+ 2σ2
ij

(
ψ̂
))

+ ...

+ wk

(
σii

(
ψ̂
)
σjk

(
ψ̂
)

+ 2σij

(
ψ̂
)
σik

(
ψ̂
))

,

• wi

(
ψ̂
)

= ∂w(ψ)
∂ψi

∣∣∣
ψ=ψ̂

, where ψi is the ith element in ψ for i = 1, 2, 3,

• wij

(
ψ̂
)

= ∂2w(ψ)
∂ψi∂ψj

∣∣∣
ψ=ψ̂

,

• ρi

(
ψ̂
)

= ∂ρ(ψ)
∂ψi

∣∣∣
ψ=ψ̂

and

• ρ = log (π (ψ)) , for some prior distribution π (ψ) .

Consider the third-order partial derivatives of the log-likelihood described in equation 3.8:

∂3L
∂λ3

0

=
2nβ

λ3
0

−
k∑
i=1

ni∑
j=1

tβijβ (β − 1) (β − 2)λβ−3
0 ηβδi , (4.6)

∂3L
∂η3

=
2δ̄β

η3
−

k∑
i=1

ni∑
j=1

tβijλ
β
0βδi (βδi − 1) (βδi − 2) ηβδi−3, (4.7)
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∂3L
∂β3

=
2n

β3
−

k∑
i=1

ni∑
j=1

(
tijλ0η

δi
)β
log3

(
tijλ0η

δi
)

, (4.8)

∂3L
∂λ2

0∂η
=−

k∑
i=1

ni∑
j=1

tβijβ
2δi (β − 1)λβ−2

0 ηβδi−1, (4.9)

∂3L
∂λ2

0∂β
=− n

λ2
0

−
k∑
i=1

ni∑
j=1

tβijλ
β−2
0 ηβδi

(((
log
(
tijλ0η

δi
))

(β − 1) + 2
)
β − 1

)
, (4.10)

∂3L
∂η2∂λ0

=−
k∑
i=1

ni∑
j=1

tβijλ
β−1
0 β2δi (βδi − 1) ηβδi−2, (4.11)

∂3L
∂η2∂β

=− δ̄

η2
− 1

η2

k∑
i=1

ni∑
j=1

δit
β
ijλ

β
0η

βδi [β (δi (log (η) (δiβ − 1) + 2) + (δiβ − 1) log (tijλ0))− 1] ,

(4.12)
∂3L

∂β2∂λ0

=− 1

λ0

k∑
i=1

ni∑
j=1

tβijλ
β
0η

βδilog
(
tijλ0η

δi
) (
βlog

(
tijλ0η

δi
)

+ 2
)
, (4.13)

∂3L
∂β2∂η

=− 1

η

k∑
i=1

ni∑
j=1

δit
β
ijλ

β
0η

βδilog
(
tijλ0η

δi
) (
βlog

(
tijλ0η

δi
)

+ 2
)
, (4.14)

∂3L
∂λ0∂η∂β

=− 1

λ0η

k∑
i=1

ni∑
j=1

βδit
β
ijλ

β
0η

βδi
(
βlog

(
tijλ0η

δi
)

+ 2
)
. (4.15)

Therefore, under any prior, posterior estimates for a parameter can be estimated by choosing
w (ψ) appropriately.

When estimates for the squared error loss function are obtained, w
(
ψ̂i

)
= ψ̂i for any param-

eter ψ̂i in ψ̂. Then wi
(
ψ̂i

)
and wii

(
ψ̂i

)
become:

• ∂w(ψi)
∂ψi

= 1 and

• ∂2w(ψi)
∂ψii

= 0,

When any parameter not ψ̂i in ψ̂, denoted by ψ̂−i, w−i
(
ψ̂−i

)
and wij

(
ψ̂−i

)
become:

• ∂w(ψ−i)
∂ψ−i

= 0 and

• ∂w(ψ−i)
∂ψij

= 0.

When estimates for the LINEX loss function are obtained, w
(
ψ̂i

)
= exp

{
−aψ̂i

}
for any

parameter ψ̂i in ψ̂. Then wi
(
ψ̂i

)
and wii

(
ψ̂i

)
become:

• ∂w(ψi)
∂ψi

= −a× exp {−aψi} and

• ∂2w(ψi)
∂ψii

= a2 × exp {−aψi} ,
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for any a 6= 0. When any parameter not ψ̂i in ψ̂, denoted by ψ̂−i, w−i
(
ψ̂−i

)
and wij

(
ψ̂−i

)
become:

• ∂w(ψ−i)
∂ψ−i

= 0 and

• ∂w(ψ−i)
∂ψij

= 0.

When estimates for the GELF are obtained, w
(
ψ̂i

)
= ψ̂−ki for any parameter ψ̂i in ψ̂. Then

wi

(
ψ̂i

)
and wii

(
ψ̂i

)
become:

• ∂w(ψi)
∂ψi

= −k × ψ−k−1
i and

• ∂2w(ψi)
∂ψii

= −k × (−k − 1)× ψ−k−2
i ,

for any k 6= 0. When any parameter not ψ̂i in ψ̂, denoted by ψ̂−i, w−i
(
ψ̂−i

)
and wij

(
ψ̂−i

)
become:

• ∂w(ψ−i)
∂ψ−i

= 0 and

• ∂w(ψ−i)
∂ψij

= 0.

4.5 Simulation study

Consider an example with a three-level, constant stress ALT using a complete dataset. As-
sume that the data comes from a Weibull distribution with constant shape parameter β and
scale parameter ν (Si) dependent on the stress level Si.

The three levels under consideration are:

s′ = (S1, S2, S3)′ = (200, 250, 300)′ , (4.16)

where the stress applied is temperature measured in Kelvin (K) , and it is assumed that the
use stress level is S0 = 150. Since the data is related to temperature, the Arrhenius model is
required. Therefore the shape parameter is given by:

log (ν (Si)) = θ1 +
θ2

Si
, (4.17)

where it is assumed that θ1 = 3 and θ2 = 1000.

Therefore ν (Si) values are given by: ν (S1) = 2980.9580, ν (S2) = 1096.6330 and ν (S3) =

563.0302. Moreover it is also assumed that the shape parameter β = 1, suggesting a constant
failure rate.
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Following the transformations used in chapter 3, λ0 = 6.3361× 10−5, η = 5.2945 and β = 1.

Under this transformation the data follows a Weibull
(
ν (Si)

? = λ0η
δi , β? = β

)
, where:

δi =
1

150
− 1

Si
1

150
− 1

200

, i = 1, 2, 3. (4.18)

For this simulation study, the sizes of ni are equal for i = 1, 2, 3 and the values considered
are: ni = (10, 20, 30, 40, 50), that is n = (30, 60, 90, 120, 150) .

The aim of this section is to compare the estimates of the data obtained from the posteriors
under the priors: πJ (ψ) , πR1 (ψ) and πR2 (ψ) (from here on using the short-hand notation:
πJ , πR1 and πR2), using three loss functions: squared error, LINEX and the GELF. The
comparison among the estimates were made using their RMSE values, defined as:

RMSE =

√√√√ 1

n

N∑
i=1

(
ψ̂i − ψ

)2

, (4.19)

where ψ̂i is the ith estimator of ψ and n is the total number of estimates obtained.

Two classes of estimates will be considered: Bayesian estimates and MLEs. Bayesian es-
timates will be obtained via both an MCMC procedure and by Lindley’s approximation
method. MLEs will be found using the R package maxLik (Henningsen and Toomet, 2011),
via the Newton-Raphson method. The MCMC Bayes’ estimates were found using the Rr

package R2WinBUGS (Sturtz et al., 2005), a package that allows one to operateWinBUGS

within Rr. Here the MLEs will be denoted by ψMLE, Bayesian estimates obtained via the
MCMC procedure as ψMC and Bayesian estimates found via Lindley’s approximation tech-
nique as ψLIN .

The estimates under the squared error loss function will be denoted by ψ(S), the estimates
under the LINEX loss function will be denoted by ψ(L) and the estimates under the GELF will
be denoted by ψ(G). The values of a for the LINEX loss parameter considered are: a = ±0.5

and a = ±1.5, and the values of k for the general entropy loss parameter are: k = ±0.5 and
k = ±1.5.

Furthermore the estimated values highlighted in blue represent the smallest RMSE values
under a given sample size, and the estimated values highlighted in red represent the largest
RMSE values.

A full test for convergence for the Markov Bayes’ estimates is provided in chapter 5. Each
test scheme was repeated a total of 2000 times before results were obtained.

This section shows the results for the posterior under the prior πJ ; the results for the posteriors
under prior πR1 and πR2 can be found in the appendix.
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4.5.1 Estimated values

Tables: 4.1, 4.2 and 4.3 present the posterior means and the expected values for the three
parameters subject to different parameter estimation methods for the posterior distributions
under πJ . As n gets large all three parameters tend towards their true values.

For all three parameters the estimates found using Lindley’s method are closest to the true
value, followed by the MLE values and then by the MCMC estimates.

Tables: B.1, B.2 and B.3 provide the posterior means and expected values for πR1 and the
tables B.9, B.10 and B.11 provide the posterior means and expected values for πR2. The
results for these two priors are the same as the results under prior πJ (Lindley’s methods
provides the estimates closest to the true value; MCMC estimates are the furthest away).

Table 4.1: Mean values for λ0

(
×10−5

)
under prior πJ .

n MCMC Lindley MLE

30 10.3067 8.3629 8.6676

60 8.1239 7.2846 7.4481

90 7.3056 6.8966 7.0031

120 7.1508 6.8673 6.9508

150 7.0207 6.6950 6.7550

Table 4.2: Mean values for η under prior πJ .

n MCMC Lindley MLE

30 6.0776 5.6198 5.7617

60 5.8411 5.4145 5.5028

90 5.7122 5.3925 5.4583

120 5.5547 5.2947 5.3439

150 5.4958 5.3440 5.3755

Table 4.3: Mean values for β under prior πJ .

n MCMC Lindley MLE

30 1.0728 1.0499 1.0646

60 1.0304 1.0233 1.0318

90 1.0192 1.0024 1.0201

120 1.0172 1.0105 1.0150

150 1.0120 1.0083 1.0124
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4.5.2 Root mean squared error values under different loss functions

This section shows the RMSE values for the estimates under the three above-mentioned loss
functions. Again as expected, as n becomes larger so the RMSE values decrease.

The RMSE values for λ0 as illustrated in tables: 4.4, B.4 and B.12 show the lowest RMSE
values for all priors tends to be provided by the MCMC estimates with the GELF when the
loss parameter k > 0. Since the value of the loss parameter is positive it implies that the
GELF overestimated the parameter. Furthermore the largest values in all cases are provided
by the MCMC estimates GELF when the loss parameter k < 0. The range between largest
RMSE value and lowest RMSE value is very large for the small dataset (n = 30) , however as
n becomes larger so that range decreases as well. In all cases the lowest RMSE was provided
by the posterior under prior πR2, whereas the highest value was generally provided by πR1.

Table 4.4: RMSE for λ0

(
×10−5

)
under prior πJ .

n 30 60 90 120 150

λ̂0MLE(S) 8.5076 4.3328 3.2901 2.6357 2.2828

λ̂0MC(S) 8.4508 4.9190 3.3356 2.7575 2.3733

λ̂0LIN(S) 8.2171 4.2107 3.2247 2.5892 2.2541

λ̂0MC(L) a
, k

=
0.5

9.1128 4.9185 3.3355 2.7575 2.3733

λ̂0MC(G) 5.8583 3.7925 2.7969 2.3925 2.1081

λ̂0LIN(L) 8.0293 4.1314 3.1244 2.5645 2.2261

λ̂0LIN(G) 8.3094 4.1011 3.0293 2.6432 2.3237

λ̂0MC(L) a
,k

=
1.5

8.9180 4.9183 3.3354 2.7574 2.3733

λ̂0MC(G) 4.5186 3.3305 2.5956 2.3472 2.0104

λ̂0LIN(L) 7.4882 3.8414 2.9226 2.6232 2.2322

λ̂0LIN(G) 9.1369 4.3342 3.0996 2.5480 2.2185

λ̂0MC(L) a
,k

=
−

0.5

6.4800 4.9191 3.3356 2.7576 2.3733

λ̂0MC(G) 7.7308 4.4871 3.1254 2.6170 2.2717

λ̂0LIN(L) 7.6218 4.3472 3.1756 2.6166 2.2280

λ̂0LIN(G) 8.0586 4.2457 3.1373 2.6999 2.1050

λ̂0MC(L) a
,k

=
−

1.5

7.8730 4.9192 3.3357 2.7576 2.3733

λ̂0MC(G) 10.0719 5.4059 3.3575 2.9157 2.4873

λ̂0LIN(L) 7.4817 4.1113 3.0465 2.6533 2.2004

λ̂0LIN(G) 8.0111 4.2837 3.1185 2.6551 2.1923

The lowest RMSE values for η (as provided by tables: 4.5, B.5 and B.13) are all provided by
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the MCMC estimates with the LINEX loss function when the loss parameter a > 0. This,
like the estimates for λ0, implies overestimation of the parameter values. The largest RMSE
values in all cases are provided by the MCMC estimates with the LINEX loss function when
the loss parameter a < 0. The range between largest and lowest RMSE values is very large
and is even greater in percent terms in comparison to the range for λ0. The RMSE values
were usually the lowest for the posterior under prior πJ , and were always the highest when
the prior πR2 was used.

Table 4.5: RMSE for η under prior πJ .

n 30 60 90 120 150

η̂MLE(S) 2.7736 1.8674 1.4545 1.2004 1.0985

η̂MC(S) 2.4974 1.8997 1.4932 1.2745 1.1029

η̂LIN(S) 2.7034 1.8358 1.4344 1.1893 1.0915

η̂MC(L) a
, k

=
0.5

1.7760 1.4868 1.2147 1.0996 0.9803

η̂MC(G) 2.1933 1.7231 1.3750 1.2036 1.0572

η̂LIN(L) 2.8638 1.7533 1.4198 1.2462 1.0822

η̂LIN(G) 2.6669 1.7732 1.4588 1.1982 1.0598

η̂MC(L) a
,k

=
1.5

1.7980 1.4798 1.2039 1.0965 0.9083

η̂MC(G) 2.0895 1.6542 1.3265 1.1758 1.0338

η̂LIN(L) 2.8833 1.8029 1.4556 1.1794 1.1045

η̂LIN(G) 2.7296 1.7647 1.4724 1.1800 1.0344

η̂MC(L) a
,k

=
−

0.5

4.8633 3.0725 2.1871 1.6896 1.3808

η̂MC(G) 2.3779 1.8314 1.4479 1.2470 1.0833

η̂LIN(L) 2.8932 1.8380 1.4132 1.2019 1.1112

η̂LIN(G) 2.8222 1.7609 1.4071 1.2042 1.0843

η̂MC(L) a
,k

=
−

1.5

9.1119 6.1807 4.4204 3.3172 2.5684

η̂MC(G) 2.6327 1.9769 1.5441 1.3058 1.1252

η̂LIN(L) 2.9172 1.7189 1.3877 1.2053 1.1013

η̂LIN(G) 2.8938 1.8080 1.4174 1.2099 1.0783

Tables: 4.6, B.6 and B.14 show the RMSE values for β. The lowest RMSE value is gener-
ally given by the MCMC estimates with the GELF when the loss parameter k > 0. Again
suggesting overestimation of the parameter values. The highest RMSE values are provided
by the Lindley estimates when using both the GELF and LINEX loss function with loss
parameters a, k > 0. The major difference between the RMSE values for β in comparison to
λ0 and η is that all the RMSE are similar – possibly suggesting symmetry in the distribution.
The prior πR2 generally provided the lowest RMSE values, whereas the highest RMSE values
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were generally given by πJ .

Table 4.6: RMSE for β under prior πJ .

n 30 60 90 120 150

β̂MLE(S) 0.1735 0.1110 0.0870 0.0742 0.0657

β̂MC(S) 0.1749 0.1127 0.0865 0.0745 0.0667

β̂LIN(S) 0.1664 0.1089 0.0850 0.0729 0.0648

β̂MC(L) a
, k

=
0.5

0.1707 0.1141 0.0858 0.0740 0.0664

β̂MC(G) 0.1661 0.1099 0.0850 0.0734 0.0660

β̂LIN(L) 0.1769 0.1091 0.0860 0.0745 0.0648

β̂LIN(G) 0.1748 0.1091 0.0903 0.0751 0.0661

β̂MC(L) a
,k

=
1.5

0.1629 0.1090 0.0846 0.0731 0.0658

β̂MC(G) 0.1609 0.1084 0.0843 0.0728 0.6570

β̂LIN(L) 0.1613 0.1088 0.0845 0.0761 0.0639

β̂LIN(G) 0.1715 0.1085 0.0869 0.0741 0.0651

β̂MC(L) a
,k

=
−

0.5

0.1792 0.1141 0.0872 0.0750 0.0671

β̂MC(G) 0.1718 0.1117 0.0860 0.0741 0.0665

β̂LIN(L) 0.1679 0.1099 0.0890 0.0766 0.0667

β̂LIN(G) 0.1848 0.1086 0.0849 0.0764 0.0655

β̂MC(L) a
,k

=
−

1.5

0.1886 0.1170 0.0887 0.0769 0.0678

β̂MC(G) 0.1781 0.1137 0.0870 0.0749 0.0670

β̂LIN(L) 0.1786 0.1147 0.0911 0.0771 0.0658

β̂LIN(G) 0.1810 0.1123 0.0859 0.0777 0.0667

4.6 Coverage rate

It is desirable to identify regions of the parameter space that are likely to contain the
true parameter value. To do this, after observing the data we can construct an in inter-
val
[
ψ(α2 ), ψ(1−α

2 )

]
, such that the probability that: ψ(α2 ) < ψ < ψ(1−α

2 ) is large.

Hoff (2009) provides a definition of Bayesian coverage:

Definition 4.1. An interval
[
ψ(α2 ), ψ(1−α

2 )

]
based on the observed data has (1− α) % Bayesian

coverage for ψ if:
P
(
ψ(α2 ) < ψ < ψ(1−α

2 ) | t
)

= 1− α. (4.20)

This differs from the definition of frequentist coverage, which is given by:
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Definition 4.2. A random interval
[
ψ(α2 ), ψ(1−α

2 )

]
has (1− α) % frequentist coverage for ψ,

if before data is collected:

P
(
ψ(α2 ) < ψ < ψ(1−α

2 ) | ψ
)

= 1− α. (4.21)

The coverage rate is defined as the proportion of times that the Bayesian credibility or
frequentist confidence interval contains the true parameter value. Therefore by defining:

P
(
ψ(α2 ) < ψ < ψ(1−α

2 ) | ψ
)

=

1 ψ ∈
[
ψ(α2 ), ψ(1−α

2 )

]
0 ψ /∈

[
ψ(α2 ), ψ(1−α

2 )

]
,

(4.22)

the coverage for ψ is the found by finding the proportion of times that ψ is in the interval:[
ψ(α2 ), ψ(1−α

2 )

]
.

The coverage rate should be approximately equal to the nominal coverage rate (Newcombe,
1998). In situations where over-coverage occurs the results are too conservative and more
simulations are required. On the other hand if under-coverage occurs there is over-confidence
in the parameter estimates, and again suggests more simulations are required.

The average lengths of the interval will also be considered in this study, which for parameter
ψ is defined as:

` =
1

n

n∑
i=1

(
ψi(1−α

2 ) − ψi(α2 )

)
, (4.23)

where n is the number of intervals constructed. Due to the computational complexity of the
simulations, the value of n chosen for this simulation study was n = 2000.

The preferred credibility and confidence interval is the one with the shortest length and with
the a coverage rate closest to its nominal value.

4.6.1 Coverage rate results

This section is devoted to showing the coverage rates for the Bayesian MCMC estimates and
MLEs when α = 0.05 and α = 0.1. That is, obtaining both coverage rates and average
interval lengths from 95% and 90% credibility and confidence intervals.

Tables: 4.7, B.7, B.15 and B.17 provide results for the posterior distribution under the priors:
πJ , πR1 and πR2 and results for the MLEs respectively when α = 0.05. We expect the coverage
rate to be close to its nominal value, that is we expect the coverage rate to be around 0.95.

For all the estimates, the results are close to this value.
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Table 4.7: 95% Coverage rate for πJ .

n 30 60 90 120 150

λ0 0.9510 0.9450 0.9500 0.9535 0.9445
` (×10−5) (27.8113) (16.3479) (11.9246) (10.0267) (8.7919)

η 0.9450 0.9420 0.9485 0.9480 0.9485
` (9.5392) (7.1794) (5.8251) (4.8879) (4.3290)

β 0.9410 0.9435 0.9475 0.9485 0.9445
` (0.6033) (0.4078) (0.3277) (0.2835) (0.2519)

Figures: 4.1, 4.2 and 4.3 illustrate the average length for the three parameters under the
different estimation techniques. The average lengths are similar for all the estimates, however
when n is small the MLE lengths tend to be larger than their Bayesian counterparts. As
n becomes larger the interval lengths become smaller, and the difference in interval length
between the different estimators becomes negligible. However the average interval lengths for
λ0 are generally shorter when estimated with the posterior distribution under prior πJ , for η
under prior πJ and for β under prior πR2. The percentage change in average length between
successive sample sizes also decreases as n becomes larger.
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Figure 4.1: Average length for λ0 for the 95% coverage rate.
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Figure 4.2: Average length for η for the 95% coverage rate.
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Figure 4.3: Average length for β for the 95% coverage rate.

90% coverage rates and the associated average lengths are presented in tables: 4.8, B.8, B.16
and B.18. The results are again good for all estimators, as the coverage rate is around 0.9.

Table 4.8: 90% Coverage rate for πJ .

n 30 60 90 120 150

λ0 0.8895 0.8895 0.9015 0.8950 0.9075
` (×10−5) (23.8845) (13.1178) (9.7068) (8.2354) (7.2580)

η 0.8940 0.8915 0.9005 0.8940 0.9040
` (7.9284) (5.9321) (4.8183) (4.0532) (3.5964)

β 0.8930 0.8935 0.8975 0.9020 0.8910
` (0.5075) (0.3431) (0.2746) (0.2385) (0.2119)

Average length plots for the 90% coverage rates are found in figures: 4.4, 4.5 and 4.6. Again,
initially the MLE average interval lengths are longer than the Bayesian average interval
lengths, but as n becomes large so the difference becomes negligible. However the average
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interval lengths for λ0 are generally shorter when estimated with the posterior distribution
under prior πJ , for η under prior πJ and for β under prior πR2.
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Figure 4.4: Average length for λ0 for the 90% coverage rate.



105 4.6. Coverage rate

0.0

2.5

5.0

7.5

10.0

30 60 90 120 150

Sample size

In
te

rv
a
l 
le

n
g
th

Average lengths for η using 90% coverage rate

Estimates: MLE πJ πR1 πR2

Figure 4.5: Average length for η for the 90% coverage rate.



Chapter 4 Simulation study for Weibull distribution 106

0.0

0.1

0.2

0.3

0.4

0.5

30 60 90 120 150

Sample size

In
te

rv
a
l 
le

n
g
th

Average lengths for β using 90% coverage rate

Estimates: MLE πJ πR1 πR2

Figure 4.6: Average length for β for the 90% coverage rate.



Chapter 5

Case Study for Weibull distribution

5.1 Introduction

This section is devoted to applying the Weibull distribution to a dataset initially found in
Nelson (1972). The data – as given in table 5.1 – consists of the time-to-failure of an insulating
fluid subject to a constant elevated test voltage, and at each elevated level of voltage a number
of times-to-failure were observed.

This experiment was run long enough such that all failures were observed, and hence this
is a complete dataset. Nelson (1972) used seven elevated stress levels in his experiment,
represented by the stress vector:

s′ = (S1, S2, S3, S4, S5, S6,, S7)′ = (26, 28, 30, 32, 34, 36, 38)′ , (5.1)

where the stress applied is voltage measured in kilovolts (kV). The aim of the experiment is
to estimate both the relationship between the distribution of time-to-failure and stress, and
the model at the use stress level, denoted by S0 at 20kV.

Nelson (1972) provided some assumptions of the model, namely:

1. For any constant, positive stress the life distribution is Weibull,

2. the shape parameter β of the distribution is constant at each level of stress – that is,
independent of stress – and

3. the scale parameter ν (Si) is an inverse power law function at stress level Si, that is:

log (ν (Si)) = θ1 − θ2 × log (Si) , (5.2)

where: θ1 and θ2 are unknown parameters that need to be estimated.

Therefore the model may be written as Tij | ν (Si) , β ∼ Weibull (ν (Si) , β) with observed
values denoted by tij. Estimates for this model will be presented by the parameters ψ′ =

107
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(λ0, η, β)′ , as used in chapter 3. Under the power law, δi is given as:

δi =
log (20)− log (Si)

log (20)− log (26)
, i = 1, 2, ..., 7. (5.3)

In this case study estimates from the model with be derived from two methods of parameter
estimation: maximum likelihood and MCMC Bayesian methods.

Before any estimates are found, the assumptions provided above need to be tested to ensure
that the results obtained are valid.

Table 5.1: Failure data of an insulating fluid under various stress levels.

Time to failure (minutes)

Voltage (kV) 26 28 30 32 34 36 38

5.79 68.85 7.74 0.27 0.19 0.35 0.09
1579.52 108.29 17.05 0.40 0.78 0.59 0.39
2323.70 110.29 20.46 0.69 0.96 0.96 0.47

426.07 21.02 0.79 1.31 0.99 0.73
1067.60 22.66 2.75 2.78 1.69 0.74

43.40 3.91 3.16 1.97 1.13
47.30 9.88 4.15 2.07 1.40
139.07 13.95 4.67 2.58 2.38
144.12 15.93 4.85 2.71
175.88 27.80 6.50 2.90
194.90 53.24 7.35 3.67

82.85 8.01 3.99
89.29 8.27 5.35
100.58 12.06 13.77
215.10 31.75 25.50

32.52
33.91
36.71
72.89

ni 3 5 11 15 19 15 8

5.1.1 Comparing different distributions

Firstly, the assumption that the dataset comes from a Weibull distribution needs to be
considered. Hence, the dataset will need to be compared to other popular life distributions,
namely: the exponential, gamma and log-normal distribution, to ensure that the fit is the best
comparatively. Here two methods of comparing distributions will be considered: quantile-
quantile (QQ) plots and AIC values.

Figure 5.1 considers QQ plots for the dataset under each stress level. A QQ-plot is a graphical
tool which helps one assess if the data comes from a given distribution (Rinne, 2008). A QQ-
plot plots theoretical quantiles on the abscissa and sample quantiles on the ordinate, and
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the sample is deemed to follow the given distribution if the points roughly follow a straight
line. Theoretical quantiles for the dataset under each stress level were computed using the
R package fitdistrplus (Delignette-Muller et al., 2015).

The QQ-plots shows that the fit is good for the four life distributions, especially under the
stress levels with larger ni (here: S4, S5 and S6). The fit under stress levels with smaller ni
(S1, S2 and S3) appear slightly suspect, however the erratic behavior of these curves is most
likely due to the small sample size. The fit under stress level S7 appears reasonable despite
having a comparatively small sample size (n7 = 8) . The fit between the Weibull, gamma and
exponential distribution appear to be very similar under the stress levels, whereas the fit of
the data with the log- normal model appears slightly different – with the exception of the fit
under the stress level S7.
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Figure 5.1: QQ-plots for the dataset under different distributions.
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Table 5.2 shows the AIC values for the dataset under different distributions. The lowest AIC
value is for the log-normal distribution, implying that it provides the best fit of the data.
However Shaked and Singpurwalla (1982) (who also assessed the fit for this dataset) claim
that from a practical standpoint – despite the log-normal distribution fitting better for this
dataset – the Weibull distribution is preferred due to its monotonic-failure rate. This is in
comparison the the log-normal’s failure rate which first increases and then decreases, which
is an unrealistic description of the time-to-failure. Hence the Weibull distribution will be
considered from here on.

Table 5.2: AIC values of the dataset under different distributions.

Distribution AIC Value Mi AIC

Exponential 620.1166 4.3326

Gamma 626.5542 10.7702

Log-normal 615.7840 0

Weibull 618.4192 2.6352

5.1.2 Testing Weibull assumption

To test for the Weibull distribution, consider figure 5.2 which shows a WPP of the data.
If the data points are close to the trend line then we claim that the dataset comes from a
Weibull distribution. From the plot the data appears to come from a Weibull distribution,
with the exception of the data from stress level S1. Again the issue may be due to the small
sample size.
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Figure 5.2: Weibull plot for the dataset under each stress level.

Nelson (1990) claims that the slope of the WPP is identical to the Weibull’s shape parameter
β. Since the slopes for each stress level are not the same, it implies that the shape parameter
is not constant. However, to meet the naive assumption that the shape parameter is constant,
a second Weibull-plot is given in figure 5.3 such that the slopes of all the curves are constant.
Graphically, the assumption of Weibull distribution appears to be valid, although less so in
comparison to figure 5.2, suggesting that the shape parameter may not actually be constant
as was initially assumed.
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Figure 5.3: Weibull plot for the dataset under each stress level (assuming shape parameter con-
stant).

5.1.3 Testing linearity assumption

This model assumes that the transformed life-stress relationship is linear. A graphical as-
sessment between characteristic life and stress is provided in figure 5.4. It appears that the
life-stress relationship is reasonably linear, with the exception of a kink at stress level S4. This
appears to be caused by the faster than expected failure times at this stress level, suggesting
that some of the failure times at this stress level may be outliers.
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Figure 5.4: Plot illustrating linearity of the life-stress relationship.

5.2 Maximum likelihood estimates

Maximum likelihood estimates for this dataset were found, and their summaries are described
in table 5.3. The value of the shape parameter β < 1 suggesting that the failure rate is
decreasing.

The asymptotic properties as described in section 2.4.1.1 were used in construction the 95%

confidence intervals, which are given by:

• λ̂0 ± zα
2
×
√
var

(
λ̂0

)
,
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• η̂ ± zα
2
×
√
var (η̂) and

• β̂ ± zα
2
×
√
var

(
β̂
)
,

where: zα
2
is a standard normal variate.

Table 5.3: MLE values for the parameters and their respective standard errors.

Parameter Estimate Se 95% confidence interval

λ0(×10−6) 8.0357 1.1870 (5.7093, 10.3621)

η 104.6360 7.9737 (88.3716, 119.6284)

β 0.7766 0.06474 (0.6507, 0.9045)

5.3 Bayesian analysis

This section is devoted to finding Bayesian estimates for the dataset in table 5.1 using the
non-informative priors derived in chapter 3. Before estimates are found a simulation study
needs to be conducted to ensure convergence of the MCMC algorithm.

Three separate chains, denoted here by ς ′ = (ς1, ς2, ς3)′, with well-dispersed starting points
given by:

• ς
(0)
1 =

(
λ

(0)
0 = 1× 10−6, η(0) = 100, β(0) = 0.1

)
,

• ς
(0)
2 =

(
λ

(0)
0 = 3× 10−6, η(0) = 200, β(0) = 0.3

)
and

• ς
(0)
3 =

(
λ

(0)
0 = 5× 10−6, η(0) = 500, β(0) = 0.5

)
were run for 250000 iterations. A burn-in period of 150000 iterations was considered before
estimates were found.

In this study, five graphical methods are used to show convergence, namely:

• trace plots,

• running mean plots,

• autocorrelation plots,

• BGR plots and

• Geweke plots.

The plots for the posterior under the prior πJ are shown in this section, and the plots for the
posteriors under the priors πR1 and πR2 are provided in the appendix.



Chapter 5 Case Study for Weibull distribution 116

5.3.1 Trace plots

Consider the trace plots presented in figures: 5.5, C.1 and C.2. It can be seen that the three
chains for β have mixed well as the plots look like white noise and seem to be centered around
a stationary mean. For the other two parameters, (λ0, η), the three chains do not appear as
stable as the chains for β. However the values appear to fluctuate heavily around their mean
values.
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Figure 5.5: Trace plots for the chains under prior πJ .
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5.3.2 Running mean plots

Running mean plots are given in figures: 5.6, C.3 and C.4. The horizontal lines on the plot
represent the mean values for the parameters.

It appears that β approaches a stationary mean almost immediately, whereas λ0 and η

approach a stationary mean far slower. Although after around 150000 iterations, the lines
for all parameter stabilizes suggesting that the parameters have reached their true mean
value.
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Figure 5.6: Running mean plots for the parameters under prior πJ .
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5.3.3 Autocorrelation plots

Autocorrelation plots can be found in figures: 5.7, C.5 and C.6. For all plots the mixing rate
of β is incredibly quick, suggesting that it finds its stationary distribution almost immediately.
The mixing rate for λ0 and η is far slower, although they eventually approach lag 0.
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Figure 5.7: Autocorrelation plots for the parameters under prior πJ .

5.3.4 BGR plots

The BGR plots in figures: 5.8, C.7 and C.8 plot the R̂ line as described in section 2.6.2.1. If
R̂ < 1.2 we claim that the chains have converged to a stationary mean.
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For all plots at around the 50000th iteration R̂ < 1.2, suggesting convergence.
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Figure 5.8: BGR plots for the parameters under prior πJ .

5.3.5 Geweke plots

Geweke plots presented in figures: 5.9, C.9 and C.10 illustrate the hypothesis: H0 : the mean
values of the first and last part of the chain are the same against Ha : the mean values of
the first and last part of the chain are different, for successively smaller segments of the last
part of the chain. We reject the null hypothesis at a 95% level of significance if the dots on
the plot fall out of the ±1.96 area.

For most segments of the last part of the chain, we fail to reject null hypothesis and claim
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that the first part of the chain and the last part of the chain are significantly similar – which
suggests that the chains have converged.
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Figure 5.9: Geweke plots for the parameters under prior πJ .

5.3.6 Density plots

Figures: 5.10, C.11 and C.12 give density plots for the three parameters in ψ for each chain.
For all parameters, the density plot for each chain appears to be similar suggesting that the
estimates under each chain are similar.

The density plots for β tend to be symmetric whereas the density plots for λ0 and η both
tend to be skewed to the right. Therefore the estimates for these two parameters are dif-
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ferent to those obtained via the method of maximum likelihood which assumes a symmetric
distribution under the normal asymptotic assumptions. The skewness is most likely due to
the small sample size under certain stress levels, for example, the sample size when stress
level S1 is used is only three. Therefore the estimates obtained via the method of maximum
likelihood may be misleading in comparison to the Bayesian estimates.
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Figure 5.10: Density plots for the parameters under prior πJ .

5.3.7 Bayesian estimates

Bayesian estimates are given in tables: 5.4, C.19 and C.20. The estimates under the three
priors are all very similar. As expected, the estimates for λ0 and η are slightly different to
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the MLE values as a result of the MLE values assuming normal asymptotic assumptions.

Table 5.4: Estimates under prior πJ .

Parameter Mean Sd MCMC error 95% credible interval Median

λ0(×10−6) 11.0300 10.1500 0.1250 (1.5910, 38.0600) 8.0700

η 113.6000 50.1800 0.6628 (46.4400, 237.4000) 103.7000

β 0.7756 0.0684 0.0002 (0.6455, 0.9337) 0.7742

DIC values are given in table 5.5. Again the values for the three priors are similar with πR1

having the lowest value – that is, implying the best fit. However after employing the Mi rule
as mentioned in section 2.7.1.1, the difference between fit in the three models is negligible.

Table 5.5: DIC values for the Bayesian priors.

Prior D (ψ) D
(
ψ̄
)

pd DIC 4i DIC

πJ 605.0650 614.027 -8.9620 596.1020 1.2780

πR1 604.5910 614.3580 -9.7670 594.8240 0

πR2 604.5950 614.0850 -9.4900 595.1050 0.2810

One usually expects a positive pd value, however Lesaffre and Lawson (2012) claim that pd
may be negative when the likelihood function is non-log-concave or when the posterior mean
is not a good summary measure. The latter may occur when the posterior distribution for a
parameter is either extremely asymmetric, or symmetric but bimodal.

Lindley’s approximations of the estimates are found in table 5.6. The estimates were found
using the derivations from section 4.4. The values obtained are more closely related to the
MLE values in comparison to their Bayesian MCMC counterparts.

Table 5.6: Lindley’s approximation of the parameters.

Parameter πJ πR1 πR2

λ0(×10−6) 8.0345 8.0351 8.0358

η 104.6316 104.6398 104.6481

β 0.7766 0.7767 0.7768

5.4 Estimates under use-stress level

This section is devoted to obtaining reliability plots and relevant percentiles for the data
under the use stress level (20kV ). The reliability function for the data at any stress level i is



123 5.4. Estimates under use-stress level

given as:

R (t | ψ) =

exp
{
−
(
λ0η

δit
)β}

t ≥ 0

0 t < 0,
(5.4)

therefore reliability under the MLE values can be obtained by merely replacing the parameters
in 5.4 with the estimated values obtained in table 5.3.

Reliability for the Bayesian estimates can be found by the equation:

R (ψ | t) =

∞∫
0

∞∫
1

∞∫
0

R (t | ψ) πR (ψ | t) dλ0dηdβ, (5.5)

where:

• R (t | ψ) is given in equation 5.4 and

• πR (ψ | t) is the posterior distribution under the general reference prior as given in
equation 3.36.

Solving equation 5.5 analytically is difficult, however according to Soyer et al. (2014) re-
liability estimates for the Bayesian estimates can be solved via ergodic averages with the
equation:

R (ψ | t) ≈ 1

n

n∑
i=1

R
(
t | λ(i)

0 , η
(i), β(i)

)
, (5.6)

where:

• n is the number of iterations of the Markov chain, post burn-in and

• λ
(i)
0 , η

(i) and β(i) are the Bayesian estimates of λ0 η and β at iteration i.

Figure 5.11 illustrates the reliability curves of the data under the estimates found above. The
four reliability curves all appear to be very similar. The MLEs initially provide estimates
with the longest reliability, however as time becomes larger the MLEs become smaller in
comparison to the Bayesian estimates. Among the Bayesian estimates, the reliability curve
under the priors πR1 and πR2 are practically identical (the estimates under πR1 are marginally
larger) and appear to give the largest time estimates in comparison to the reliability curve
under the prior πJ .
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Figure 5.11: Reliability plot for the estimates at use stress level (20kV).

Furthermore table 5.7 provides quantiles for the reliability estimates under each estimate.
These percentiles again confirm that as time becomes large the Bayesian estimates provide
the largest reliability at use stress levels in comparison to the MLEs. The nth percentile can
be interpreted as: “the time it took for n% of the insulating fluids to break down.” The 63.2th

percentile of the Weibull distribution is significant as it represents the characteristic life of
the distribution, and is identical to the scale parameter of the model, denoted by: ν (Si)

(Nelson, 1990).
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Table 5.7: Table of percentiles for the reliability curves under the different estimates (minutes).

MLE πJ πR1 πR2

10th 6907.2130 5381.6710 5419.4700 5388.9040

63.2th 124359.2000 124308.7000 126690.7000 126460.4000

90th 364884.1000 492174.9000 508531.2000 499657.0000



Chapter 6

Conclusion

6.1 Concluding remarks

6.1.1 Conclusions for Chapter 3

The premier focus of this thesis was deriving non-informative Bayesian estimates for the
Weibull distribution subject to constant-stress ALT, and assuming that a complete dataset
is used in analysis. TheWeibull distribution was assumed to have a constant shape parameter,
regardless of the stress level, and a scale parameter that was a log-linear function of stress.
The likelihood of the described distribution was constructed, and since finding estimates from
it would be difficult, a transformation proposed by Xu et al. (2015) was considered.

The five non-informative Bayesian priors derived for this thesis were: Jeffreys’ prior, reference
priors, the MDI prior, the uniform prior and PMPs. These priors are considered when little
information prior on an experiment prior to it being run is available.

The properness of the posterior distributions under these non-informative priors were also
considered. The posterior under Jeffreys’ prior, and the two reference priors were found to
be proper distributions, and hence were used for analysis in both a simulation – and case
study. The posterior distributions under the MDI prior and uniform prior were found to be
improper distributions, and hence were not considered further in this thesis.

To contrast the non-informative Bayesian estimates, maximum likelihood estimates were also
derived. The MLEs required solving difficult, non-linear equations and hence an iterative
procedure was required to approximate them. First, these equations were simplified by
forming the MLE for λ0 as a function of the MLEs of η and β, then re-forming the log-
likelihood with λ0 as a function of η and β, and finally using the NR algorithm to approximate
the estimates of η and β from this new log-likelihood.

126
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6.1.2 Conclusions for Chapter 4

Chapter 4 considered a simulation study using the Weibull distribution formed in chapter 3
of this thesis. It contained simulating data from hypothetical, complete datasets under three
elevated stress levels associated with temperature. Therefore the Arrhenius model was used.

The main focus was finding parameter estimates and root mean squared error values for the
parameters subject to different estimation techniques. The estimation techniques considered
were maximum likelihood estimation, and two types of Bayesian estimates: those found
via an MCMC simulation, and those found via the technique suggested by Lindley (1980).
The RMSE values were found under three loss functions: the symmetric squared error loss
function and the asymmetric LINEX loss function and the GELF.

In terms of parameter estimates the Lindley estimates provided results closest to the true
parameter values, followed by the MLEs and then by the MCMC estimates.

The RMSE values for λ0 were smallest for the MCMC Bayesian estimates when the GELF
was used and the loss parameter k was positive. Thus suggesting that the general entropy
loss function overestimated the parameter values. The lowest RMSE values tended to be
provided by the posterior distribution under prior πR2.

For η the lowest RMSE values were provided by the MCMC Bayesian estimates under the
LINEX loss function with the loss parameter a being positive. The lowest RMSE values
tended to be provided by the posterior distribution under the prior πJ .

For β the lowest RMSE values were provided by the MCMC Bayesian estimates under the
GELF with loss parameter k being positive. The posterior distribution under the prior πR2

provided the estimates with the lowest RMSE values.

The second part of the simulation study dealt with finding the 95% and 90% coverage rates
for the maximum likelihood and MCMC Bayesian estimates. Both types of estimates did
well since their coverage rates were approximately their nominal values, although generally
the MCMC Bayesian estimates performed better than the MLEs since their average interval
lengths were generally shorter.

6.1.3 Conclusions for Chapter 5

In chapter 5 a case study for the Weibull distribution was considered by using a dataset from
Nelson (1990), containing the time-to-failure of an insulating fluid subject to various higher
levels of stress. The stress for these data was related to voltage and hence the inverse power
law was used. A full test to show that the assumptions of the model were met and that the
data does indeed follow a Weibull distribution was considered. Moreover, a comparison of
the fit of the data between other common life distributions was also completed.

A full convergence test was considered for the Bayesian MCMC estimates to ensure that the
models reached convergence, and that their results were admissible. The fit of the data be-
tween the non-informative Bayesian estimates were compared with DIC values. The fit was
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best for the posterior distribution under the reference prior πR1, although the difference be-
tween DIC values for the three posterior distributions considered was negligible. Finally, esti-
mates under use-stress level were considered using maximum likelihood and MCMC Bayesian
estimates; and using the resultant estimates a reliability plot was formed.

6.2 Future research

In this paper two life-stress relationships were considered: the Arrhenius relationship used
in the simulation study in chapter 4 and the inverse power law relationship used in chapter
5. There are however other life-stress relationships that are not often discussed in literature,
for example the Eyring relationship, which could be considered in future research.

Figure 5.3 found in chapter 5 of this thesis suggested that the shape parameter of the Weibull
distribution from the Nelson (1972) dataset was not constant at each elevated stress level.
Hence future research could consider a Weibull distribution with both scale and shape pa-
rameter dependent on stress.

The sole distribution used in this paper was the Weibull distribution – perhaps the most
commonly used life distribution in literature. Other life distributions could be considered to
compare against the Weibull distribution – for example, the fit of the data used in chapter
5 was found to be best under the log-normal distribution, and hence should be considered
further. It would also be interesting to derive the estimates for these alternative distributions
using the transformation from Xu et al. (2015).

This paper considered estimates found from complete datasets, however in most practical
situations complete datasets are not used. Hence future research should apply this log-linear
Weibull distribution to the many types of censoring available (see section 2.2) – Xu et al.
(2015) applied this ALT Weibull model to type II censoring.

Shafiq et al. (2018) claims that life-data obtained via accelerated life testing is inevitably
imprecise and hence recommends using fuzzy data – the theory that continuous data is never
precise and should thus be modeled with stochastic properties. Using fuzzy data in analysis
could reduce information lost in data and hence could make results more meaningful (Viertl,
2011). Therefore using fuzzy data should be considered by any future research related to this
topic.

Estimates in this paper were found via three methods: the method of maximum likelihood,
MCMC Bayesian estimates and Bayesian estimates found using the approximation technique
from Lindley (1980). Future research can consider other methods of parameter estimation,
such as the least squares approach, method of moments or even graphical estimation methods
such as those used by Nelson (1990).

Tierney and Kadane (1986) proposed a method to obtain Bayesian estimates, which should
also be considered to compare against the approximations of Lindley (1980) and MCMC
estimates. A priori one would expect the estimates of Tierney and Kadane (1986) to perform
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better than those of Lindley (1980) since the former are of order O (n−2) in comparison to
the latter’s O (n−1).

Finally a comparison between non-informative Bayesian estimates and subjective Bayesian
estimates should also be considered – for example, Soyer et al. (2014) found estimates from
the Nelson (1972) dataset using subjective Bayesian priors.
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Appendix A: Additional results for
Chapter 3

A.1 Fisher information matrix for the log-linear Weibull

distribution

Proof. Consider the second-order partial derivatives of the log-likelihood defined in equation
3.8:
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Define the transformation:

Yi =

(
Xi

θi

)β
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Xiλ0η

δi
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, (A.7)

then Yi is an exponential random variable with rate parameter given by θ? = 1 and hence an
expected value of unity.
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Consider the expectation of equation A.10:
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This can be solved by parts by letting:

• vij = yijlog (yij) =⇒ dvij = (log (yij) + 1) dyij and

• duij = exp {−yij} =⇒ uij = −exp {−yij}.

Hence:
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where:

ψ (1) = −γ =

∞∫
0

log (yij) exp {−yij} dyij ≈ −0.5772, (A.14)
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is Euler’s constant (Abramowitz and Stegun, 1964).

Therefore:
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Solving by parts, let:

• vij = yijlog
2 (yij) =⇒ dvij = (log2 (yij) + 2log (yij)) dyij and
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(Abramowitz and Stegun, 1964).

Therefore:

c2i = E

[
ni∑
j=1

Yijlog
2 (Yij)

]
= ni

(
2γ + γ2 +

π2

6

)
.

Finally define the following products:
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• c4 =
k∑
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Thus, consider the following expected values of the second-order partial derivatives:
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It is known that
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= −nβ
λ2

0

− nβ (β − 1)

λ2
0

=− nβ2

λ2
0

.

(A.22)

Etij

[
∂2L
∂η2

]
=− δ̄β

η2
− E

[
k∑
i=1

ni∑
j=1

tβijλ
β
0βδi (βδi − 1) ηβδi−2

]

=− δ̄β

η2
− β2c4 − δ̄β

η2

=− β2c4

η2
.

(A.23)

Etij

[
∂2L
∂λ0∂η

]
=− E

[
k∑
i=1

ni∑
j=1

tβijβ
2δiλ

β−1
0 ηβδi−1

]

=− δ̄β2

λ0η
.

(A.24)

Hence, the Fisher information matrix of ψ is given as:

I (ψ) =


nβ2

λ20

δ̄β2

λ0η
c1
λ0

δ̄β2

λ0η
β2c4
η2

c3
η

c1
λ0

c3
η

n+c2
β2

 . (A.25)
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A.2 Derivations for reference priors

A.2.1 Reference prior for the grouping {λ0, η, β}

Proof. Let the reference prior for the grouping {λ0, η, β} be πR1 (ψ) . This grouping order
implies that λ0 is regarded as the most important parameter, η is regarded as second in
importance and β is of least importance.

The inverse of the fishers information matrix is given by:

I−1 (ψ) =
1

M


(nc4+c2c4−c23)λ20

β2

(c1c3−nδ̄−c2δ̄)λ0η
β2

(
c3δ̄ − c1c4

)
λ0

(c1c3−nδ̄−c2δ̄)λ0η
β2

(n2+nc2−c21)η2
β2

(
c1δ̄ − nc3

)
η(

c3δ̄ − c1c4

)
λ0

(
c1δ̄ − nc3

)
η

(
δ̄2 − nc4

)
β2

 =
1

M


a11λ20
β2

a12λ0η
β2 a13λ0

a21λ0η
β2

a22η2

β2 a23η

a31λ0 a32η a33β
2

 ,
(A.26)

where aij, i, j = 1, 2, 3 are the corresponding multipliers of the parameters left in the larger
matrix.

Following the notation and procedure of Sun et al. (1998), write the inverse of the Fisher
information matrix as:

I−1 (ψ) =

 j11 j12 j13

j21 j22 j23

j31 j32 j33


−1

=

 j11 j12 j13

j21 j22 j23

j31 j32 j33

 , (A.27)

that is, the elements jik, i, k = 1, 2, 3 represent the (i, k)th element of the Fisher information
matrix, and the elements jik, i, k = 1, 2, 3 represent the (i, k)th element of the inverse of the
Fisher information matrix.

To find h1, form a 1× 1 matrix of the top-left hand corner of A.26, and invert that resulting
matrix. Therefore the value h1 is given by the inverse of the first element of the inverse Fisher
information matrix:

h1 =
1

j11
=
Mβ2

a11λ2
0

. (A.28)

To find h2, form a 2× 2 matrix of the top-left hand corner of A.26, and invert that resulting
matrix. That 2× 2 matrix is given by:

I−1
2 (ψ) =

[
j11 j12

j21 j22

]
=

1

M

[
a11λ20
β2

a12λ0η
β2

a21λ0η
β2

a22η2

β2

]
. (A.29)

And hence the inverse of the matrix given in equation A.29 is:

I2 (ψ) =
Mβ4

kλ2
0η

2

[
a22η2

β2 −a21λ0η
β2

−a12λ0η
β2

a11λ20
β2

]
, (A.30)

where k = a11a22 − a12a21.
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Therefore h2 is given as the bottom right-hand element of the matrix given in equation A.30:

h2 =
a11Mβ2

kη2
, (A.31)

To find h3, form a 3× 3 matrix of the top-left hand corner of A.26, and invert that resulting
matrix. The 3× 3 matrix of the top-left hand corner of A.26 is de facto the entire matrix of
the inverse of the Fisher information matrix, which inverted is the Fisher information matrix
itself. Hence the value of h3 is given by:

h3 = j33 =
n+ c2

β2
. (A.32)

Choose Ωs = [a1s, b1s]× [a2s, b2s]× [a3s, b3s] as a collection of compact sets in (0,∞)×(1,∞)×
(0,∞) , such that: a1s, a3s → 0, a2s → 1, b1s, b2s, b3s →∞.

The conditional prior of β given λ0 and η is given by:

πs3 (β | λ0, η) =

√
h3I[a3s,b3s] (β)
b3s∫
a3s

√
h3dβ

=

√
n+c2
β2 I[a3s,b3s] (β)

√
n+ c2

b3s∫
a3s

1
β
dβ

=
I[a3s,b3s] (β)

βlog
(
b3s
a3s

) .
(A.33)

Given λ0, the conditional prior of (β, η) is given by:

πs2 (β, η | λ0) =
πs3 (β | λ0, η) exp

{
1
2
E [log (h2) | λ0, η]

}
I[a2s,b2s] (η)

b2s∫
a2s

exp
{

1
2
E [log (h2) | λ0, η]

}
dη

=
πs3 (β | λ0, η) exp

{
1
2
log
(
a11Mβ2

kη2

)}
I[a2s,b2s] (η)

b2s∫
a2s

exp
{

1
2
log
(
a11Mβ2

kη2
,
)}

dη

∝
I[a2s,b2s]×[a3s,b3s] (η, β)

ηβlog
(
b3s
a3s

)
log
(
b2s
a2s

) .
(A.34)
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The joint prior of (λ0, η, β) on Ωs is given by:

πs1 (λ0, β, η) =
πs2 (β, η | λ0) exp

{
1
2
E [log (h1) | λ0]

}
I[a1s,b1s] (λ0)

b1s∫
a1s

exp
{

1
2
E [log (h1) | λ0]

}
dλ0

=
πs2 (β, η | λ0) exp

{
1
2
log
(
Mβ2

a11λ20
.
)}

I[a1s,b1s] (λ0)

b1s∫
a1s

exp
{

1
2
log
(
Mβ2

a11λ20
.
)}

dλ0

∝
I[a1s,b1s]×[a2s,b2s]×[a3s,b3s] (λ0, η, β)

λ0ηβlog
(
b3s
a3s

)
log
(
b2s
a2s

)
log
(
b1s
a1s

) .
(A.35)

Hence, the reference prior is given as:

πR1 (ψ) = lim
s→∞

πs1 (λ0, β, η)

πs1 (1, 2, 1)
=

1

λ0ηβ
, (A.36)

assuming that (1, 2, 1) is a point on [a1s, b1s]× [a2s, b2s]× [a3s, b3s].

A.2.2 Reference prior for the grouping {λ0, (η, β)}

Proof. Let the reference prior for the grouping {λ0, (η, β)} be πR2 (ψ). This grouping implies
that λ0 is regarded as the most important parameter, whereas η and β are assumed to be
nuisance parameters.

Following the method found in Sun and Berger (1998), first define a subset of the Fisher
information matrix for η and β as:

I2 (ψ) =

[
j22 j23

j32 j33

]
=

[
β2c4
η2

c3
η

c3
η

n+c2
β2

]
. (A.37)

Then the value of h1 is given by:

h1 =
det (I (ψ))

det (I2 (ψ))
=

Mβ2

(c4 (n+ c2)− c2
3)λ2

0

, (A.38)

and also:
h2 = det (I2 (ψ)) =

c4 (n+ c2)− c2
3

η2
. (A.39)
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Thus the conditional prior of (η, β) given λ0 is given by:

πk2 (η, β | λ0) =

√
h2I[a2s,b2s]×[a3s,b3s] (η, β)

b3s∫
a3s

b2s∫
a2s

√
h2dβdη

=

√
c4(n+c2)−c23

η2
I[a2s,b2s]×[a3s,b3s] (η, β)√

c4 (n+ c2)− c2
3

b3s∫
a3s

b2s∫
a2s

1
η
dβdη

=
I[a2s,b2s]×[a3s,b3s] (η, β)

ηlog
(
b2s
a2s

)
(b3s − a3s)

.

(A.40)

And the marginal prior of λ0 is given by:

πk1 (λ0) ∝ exp
{

1

2
E [log (h1) | λ0]

}
I[a1s,b1s] (λ0)

=exp

1

2

b3s∫
a3s

b2s∫
a2s

πk2 (η, β | λ0) log (h1) dηdβ

 I[a1s,b1s] (λ0)

∝
I[a1s,b1s] (λ0)

λ0

.

(A.41)

Thus the reference prior for {λ0, (η, β)} is given by:

πR2 (ψ) = lim
s→∞

πk2 (η, β | λ0) πk1 (λ0)

πk2 (2, 1 | 1) πk1 (1)
=

1

λ0η
. (A.42)

A.2.3 Reference prior for the grouping {η (λ0, β)}

Proof. Let the reference prior for the grouping {η, (λ0, β)} be πR2 (ψ) . This implies that η
is regarded as the most important parameter, whereas λ0 and β are assumed to be nuisance
parameters.

First define a subset of the Fisher information matrix for λ0 and β as:

I2 (ψ) =

[
j11 j13

j31 j33

]
=

[
nβ2

λ20

c1
λ0

c1
λ0

n+c2
β2

]
. (A.43)

Then:
h1 =

det (I (ψ))

det (I2 (ψ))
=

Mβ2

(n (n+ c2)− c1) η2
, (A.44)

and
h2 = det (I2 (ψ)) =

n (n+ c2)− c1

λ2
0

. (A.45)
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Thus the conditional prior of (λ0, β) given η is given by:

πk2 (λ0, β | η) =

√
h2I[a1s,b1s]×[a3s,b3s] (λ0, β)

b3s∫
a3s

b1s∫
a1s

√
h2dβdλ0

=

√
n(n+c2)−c1

λ20
I[a1s,b1s]×[a3s,b3s] (λ0, β)√

n (n+ c2)− c1

b3s∫
a3s

b1s∫
a1s

1
λ0
dβdλ0

=
I[a1s,b1s]×[a3s,b3s] (λ0, β)

λ0log
(
b1s
a1s

)
(b3s − a3s)

.

(A.46)

And the marginal prior of η is given by:

πk1 (η) ∝ exp
{

1

2
E [log (h1) | η]

}
I[a2s,b2s] (η)

=exp

1

2

b3s∫
a3s

b1s∫
a1s

πk2 (λ0, β | η) log (h1) dλ0dβ

 I[a2s,b2s] (η)

∝
I[a2s,b2s] (η)

η
.

(A.47)

Thus the reference prior for {η, (λ0, β)} is given by:

πR2 (ψ) = lim
s→∞

πk2 (λ0, β | η) πk1 (η)

πk2 (1, 1 | 2) πk1 (1)
=

1

λ0η
. (A.48)

A.2.4 Reference prior for the grouping {β, (λ0, η)}

Proof. Let the reference prior for the grouping {β, (λ0, η)}be πR1 (ψ) . Then β is regarded as
the most important parameter, whereas λ0 and η are assumed to be nuisance parameters.

Furthermore define a subset of the Fisher information matrix for λ0 and η as:

I2 (ψ) =

[
j11 j12

j21 j22

]
=

[
nβ2

λ20

δ̄β2

λ0η

δ̄β2

λ0η
β2c4
η2

]
. (A.49)

Then:
h1 =

det (I (ψ))

det (I2 (ψ))
=

M

β2
(
nc4 − δ̄

) , (A.50)

and

h2 = det (I2 (ψ)) =
β4
(
nc4 − δ̄

)
λ2

0η
2

. (A.51)
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Thus the conditional prior of (λ0, η) given β is given by:

πk2 (λ0, η | β) =

√
h2I[a1s,b1s]×[a2s,b2s] (λ0, η)

b2s∫
a2s

b1s∫
a1s

√
h2dηdλ0

=

√
β4(nc4−δ̄)

λ20η
2 I[a1s,b1s]×[a2s,b2s] (λ0, η)√

β4
(
nc4 − δ̄

) b2s∫
a2s

b1s∫
a1s

1
λ0η
dηdλ0

=
I[a1s,b1s]×[a3s,b3s] (λ0, β)

λ0ηlog
(
b1s
a1s

)(
b2s
a2s

) .

(A.52)

And the marginal prior of β is given by:

πk1 (β) ∝ exp
{

1

2
E [log (h1) | β]

}
I[a3s,b3s] (β)

=exp

1

2

b2s∫
a2s

b1s∫
a1s

πk2 (λ0, η | β) log (h1) dηdλ0

 I[a3s,b3s] (β)

∝
I[a3s,b3s] (β)

β
.

(A.53)

Thus the reference prior for {β, (λ0, η)} is given by:

πR1 (ψ) = lim
s→∞

πk2 (λ0, η | β) πk1 (β)

πk2 (1, 2 | 1) πk1 (1)
=

1

λ0ηβ
. (A.54)

A.3 Preliminaries for properness of priors

Corollary A.1. Let Γ (z) be a gamma function as described in equation 2.108. Then, as
z →∞, Stirling’s approximation is:

Γ (z) ∼ exp {−z} zz−
1
2 (2π)

1
2

[
1 +

1

12z
+

1

288z2
− 139

51840z3
− 571

2488320z4
+ ...

]
,

where the sign ∼ indicates that the two quantities are asymptotic (Abramowitz and Stegun,
1964).

Definition A.2. Let R̄ denote the extended real number line R ∪ {−∞,∞} and let the
subscript ? in R and R̄ denote the exclusion of 0 in these sets. Let g : U → R̄+

? and
h : U → R̄+

? where U ⊂R. We say that g (x) ∝ h (x) if there exists c0 ∈ R+
? and c1 ∈ R+

?

such that c0 ≤ g (x) ≤ c1h (x) for all x ∈ U (Ramos et al., 2020).
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Let a ∈ R̄, g : U → R+ and h : U → R+, where U ⊂ R. We say that g (x) ∝
x→a

h (x) if:

lim
x→a

inf

(
g (x)

h (x)

)
> 0,

where inf (·) is the infimum of the subset and:

lim
x→a

sup

(
g (x)

h (x)

)
<∞,

where sup (·) is the supremum of the subset (Ramos et al., 2020).

Proposition A.3. Let g : (a, b) → R+ and h : (a, b) → R+ be continuous functions on
(a, b) ⊂ R, where a, b ∈ R̄. Then g (x) ∝ h (x) if and only if g (x) ∝

x→a
h (x) and g (x) ∝

x→b
h (x)

(Ramos et al., 2020).

Proposition A.4. Let g : (a, b) → R+ and h : (a, b) → R+ be continuous functions on
(a, b) ⊂ R,where a, b ∈ R̄, and let c ∈ (a, b) . Then if either g (x) ∝

x→a
h (x) or g (x) ∝

x→b
h (x) ,

it follows that:
c∫
a

g (x) dx ∝
c∫
a

h (x) dx,

or that:
b∫
c

g (x) dx ∝
b∫
c

h (x) dx

(Ramos et al., 2020).
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B.4 Log-concavity of the conditional posterior under the

general reference prior

The conditional posterior of β given λ0 and η is log-concave if and only if the second-order
partial derivative of the log conditional distribution with respect to β is negative. Consider
the conditional posterior of β | λ0, η:

π (β | λ0, η) ∝ βn−m−1λnβ0 ηβδ̄
k∏
i=1

ni∏
j=1

tβijexp

{
−

k∑
i=1

ni∑
j=1

tβijλ
β
0η

βδi

}
.

The log of the conditional posterior is given by:

log (π (β | λ0, η)) ∝ (n−m− 1) log (β)+nβlog (λ0)+βδ̄log (η)+β
k∑
i=1

ni∑
j=1

log (tij)−
k∑
i=1

ni∑
j=1

tβijλ
β
0η

βδi .

Differentiating with respect to β gives:

∂log (π (β | λ0, η))

∂β
∝ (n−m− 1)

β
+nlog (λ0)+δ̄log (η) +

k∑
i=1

ni∑
j=1

log (tij)−
k∑
i=1

ni∑
j=1

log
(
tijλ0η

δi
)
tβijλ

β
0η

βδi .

Taking the second derivative with respect to β gives:

∂2log (π (β | λ0, η))

∂β2
∝ −(n−m− 1)

β2
−

k∑
i=1

ni∑
j=1

(
log
(
tijλ0η

δi
))2

tβijλ
β
0η

βδi ,

which is negative since: β, η, λ0 > 0, n−m− 1 > 0 and tij > 0 ∀
ij
. Therefore the conditional

posterior π (β | λ0, η) is log-concave.
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B.5 Additional tables for prior πR1

B.5.1 Posterior mean tables

Table B.1: Posterior means for λ0

(
×10−5

)
under prior πR1.

n MCMC Lindley MLE

30 10.6756 8.3723 8.6676

60 8.1918 7.2867 7.4481

90 7.5083 6.8958 7.0031

120 7.1446 6.8677 6.9508

150 7.0839 6.6953 6.7550

Table B.2: Posterior means for η under prior πR1.

n MCMC Lindley MLE

30 6.1370 5.6241 5.7617

60 5.8053 5.4157 5.5028

90 5.6659 5.3921 5.4583

120 5.5863 5.2949 5.3439

150 5.4762 5.3442 5.3755

Table B.3: Posterior means for β under prior πR1.

n MCMC Lindley MLE

30 1.0454 1.0341 1.0646

60 1.0196 1.0145 1.0318

90 1.0135 1.0090 1.0201

120 1.0098 1.0063 1.0150

150 1.0088 1.0054 1.0124
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B.5.2 Root mean squared error tables

Table B.4: RMSE for λ0

(
×10−5

)
under prior πR1.

n 30 60 90 120 150

λ̂0MLE(S) 8.5076 4.3328 3.2901 2.6357 2.2828

λ̂0MC(S) 9.3036 4.8864 3.4549 2.7796 2.4190

λ̂0LIN(S) 8.2135 4.2123 3.2241 2.5894 2.2542

λ̂0MC(L) a
,k

=
0.5

9.5327 4.8863 3.4549 2.7796 2.4190

λ̂0MC(G) 5.9675 3.7121 2.8433 2.4074 2.1349

λ̂0LIN(L) 7.3231 4.1075 3.1091 2.5029 2.3260

λ̂0LIN(G) 8.1081 4.1864 2.8800 2.5173 2.2170

λ̂0MC(L) a
, k

=
1.5

9.3741 4.8861 3.4548 2.7795 2.4190

λ̂0MC(G) 4.4839 3.2786 2.5970 2.6018 2.0157

λ̂0LIN(L) 7.9294 4.4246 3.2412 2.6048 2.2238

λ̂0LIN(G) 8.2816 4.0344 3.0684 2.5381 2.2651

λ̂0MC(L) a
, k

=
−

0.5

6.2442 4.8865 3.4549 2.7796 2.4091

λ̂0MC(G) 8.0577 4.3552 3.2202 2.6362 2.3109

λ̂0LIN(L) 8.0147 3.8610 3.1882 2.5218 2.2770

λ̂0LIN(G) 7.5453 4.3588 3.0493 2.6676 2.2044

λ̂0MC(L) a
,k

=
−

1.5

8.0397 4.8867 3.4500 2.7797 2.4091

λ̂0MC(G) 10.6726 5.3691 3.7190 2.9412 2.5396

λ̂0LIN(L) 8.3092 4.4564 3.0511 2.6058 2.1922

λ̂0LIN(G) 7.8492 4.0490 3.2057 2.6373 2.1798
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Table B.5: RMSE for η under prior πR1.

n 30 60 90 120 150

η̂MLE(S) 2.7736 1.8674 1.4545 1.2004 1.0985

η̂MC(S) 2.5537 1.8279 1.4981 1.2784 1.1082

η̂LIN(S) 2.7060 1.8361 1.4343 1.1894 1.0916

η̂MC(L) a
,k

=
0.5

1.7952 1.4124 1.2339 1.0961 0.9984

η̂MC(G) 2.2230 1.6544 1.3883 1.2039 1.0608

η̂LIN(L) 2.7837 1.7633 1.4026 1.2264 1.0507

η̂LIN(G) 2.6871 1.7176 1.4065 1.2355 1.0997

η̂MC(L) a
,k

=
1.5

2.9901 1.4659 1.2385 1.0871 0.9961

η̂MC(G) 2.1163 1.5918 1.3455 1.1741 1.0434

η̂LIN(L) 2.8825 1.7888 1.4064 1.1745 1.0994

η̂LIN(G) 2.5618 1.7116 1.3883 1.2123 1.0746

η̂MC(L) a
,k

=
−

0.5

5.0748 3.0273 2.1827 1.7039 1.3811

η̂MC(G) 2.4271 1.7599 1.4555 1.2496 1.0896

η̂LIN(L) 2.8227 1.7394 1.3763 1.1877 1.1054

η̂LIN(G) 2.8467 1.7606 1.4197 1.2002 1.0567

η̂MC(L) a
,k

=
−

1.5
9.4864 6.2390 4.4830 3.3692 2.5131

η̂MC(G) 2.6963 1.9055 1.5465 1.3110 1.1297

η̂LIN(L) 2.6488 1.7587 1.4492 1.2231 1.0604

η̂LIN(G) 2.7543 1.7911 1.3887 1.2377 1.0534
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Table B.6: RMSE for β under priorπR1.

n 30 60 90 120 150

β̂MLE(S) 0.1735 0.1110 0.0870 0.0742 0.0657

β̂MC(S) 0.1645 0.1083 0.0858 0.0714 0.0665

β̂LIN(S) 0.1627 0.1060 0.0844 0.0723 0.0648

β̂MC(L) a
, k

=
0.5

0.1551 0.1072 0.0852 0.0710 0.0662

β̂MC(G) 0.1581 0.1063 0.0847 0.0704 0.0660

β̂LIN(L) 0.1607 0.1104 0.0842 0.0737 0.0655

β̂LIN(G) 0.1728 0.1077 0.0878 0.0729 0.0653

β̂MC(L) a
,k

=
1.5

0.1681 0.1054 0.0842 0.0704 0.0657

β̂MC(G) 0.1547 0.1052 0.0841 0.0703 0.0657

β̂LIN(L) 0.1586 0.1087 0.0863 0.0757 0.0650

β̂LIN(G) 0.1752 0.1070 0.0872 0.0734 0.0646

β̂MC(L) a
,k

=
−

0.5

0.1681 0.1094 0.0864 0.0719 0.0668

β̂MC(G) 0.1622 0.1075 0.0854 0.0711 0.0663

β̂LIN(L) 0.1739 0.1107 0.0878 0.0725 0.0662

β̂LIN(G) 0.1777 0.1104 0.0852 0.0758 0.0647

β̂MC(L) a
,k

=
−

1.5
0.1760 0.1118 0.0877 0.0726 0.0667

β̂MC(G) 0.1670 0.1091 0.0862 0.0716 0.0667

β̂LIN(L) 0.1769 0.1128 0.0888 0.0760 0.0662

β̂LIN(G) 0.1738 0.1103 0.0893 0.0746 0.0668

B.5.3 Coverage rate tables

Table B.7: 95% Coverage rate for πR1.

n 30 60 90 120 150

λ0 0.9490 0.9550 0.9515 0.9495 0.9525
` (×10−5) (29.5801) (16.6838) (12.3201) (10.0862) (8.9308)

η 0.9505 0.9510 0.9490 0.9520 0.9485
` (9.7866) (7.2169) (5.8028) (4.9439) (4.3306)

β 0.9485 0.9460 0.9510 0.9515 0.9465
` (0.5969) (0.4073) (0.3290) (0.2826) (0.2522)
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Table B.8: 90% Coverage rate for πR1.

n 30 60 90 120 150

λ0 0.8960 0.9020 0.9030 0.9020 0.9035
` (×10−5) (23.2169) (13.3509) (10.0207) (8.2854) (7.3640)

η 0.90250 0.9015 0.8970 0.9065 0.9050
` (8.1356) (5.9596) (4.7938) (4.0992) (3.5988)

β 0.8960 0.8990 0.9125 0.9065 0.8960
` (0.5024) (0.3424) (0.2763) (0.2377) (0.2123)

B.6 Additional tables for prior πR2

B.6.1 Posterior mean tables

Table B.9: Posterior means for λ0

(
×10−5

)
under prior πR2.

n MCMC Lindley MLE

30 10.5412 8.3831 8.6676

60 8.3295 7.2888 7.4481

90 7.5861 6.8967 7.0031

120 7.2413 6.8682 6.9508

150 6.9776 6.6956 6.7550

Table B.10: Posterior means for η under prior πR2.

n MCMC Lindley MLE

30 6.2025 5.6285 5.7617

60 5.8252 5.4167 5.5028

90 5.6240 5.3923 5.4583

120 5.5638 5.2951 5.3439

150 5.5452 5.3443 5.3755
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Table B.11: Posterior means for β under prior πR2.

n MCMC Lindley MLE

30 1.0230 1.0183 1.0646

60 1.0116 1.0057 1.0318

90 1.0085 1.0024 1.0201

120 1.0043 1.0020 1.0150

150 1.0028 1.0024 1.0124

B.6.2 Root mean squared error tables

Table B.12: RMSE for λ0

(
×10−5

)
under prior πR2.

n 30 60 90 120 150

λ̂0MLE(S) 8.5076 4.3328 3.2901 2.6357 2.2828

λ̂0MC(S) 8.6230 5.0849 3.4657 2.9105 2.3819

λ̂0LIN(S) 8.2346 4.2140 3.2247 2.5898 2.2543

λ̂0MC(L) a
,k

=
0.5

8.6226 5.0847 3.4656 2.9104 2.2960

λ̂0MC(G) 5.3747 3.8072 2.8305 2.5115 2.1150

λ̂0LIN(L) 8.6606 4.3911 3.2997 2.5458 2.2601

λ̂0LIN(G) 6.7768 4.1456 2.9887 2.6748 2.2155

λ̂0MC(L) a
,k

=
1.5

8.6219 5.0846 3.4656 2.9104 2.2961

λ̂0MC(G) 4.0603 3.2770 2.5729 2.3430 2.0103

λ̂0LIN(L) 7.9261 3.8581 3.2622 2.5958 2.1608

λ̂0LIN(G) 8.3617 4.2752 3.0440 2.6019 2.2335

λ̂0MC(L) a
, k

=
−

0.5

8.6234 5.0850 3.4567 2.9105 2.2965

λ̂0MC(G) 7.3879 4.5978 3.2232 2.7589 2.2789

λ̂0LIN(L) 8.5946 3.9175 3.1306 2.5899 2.2655

λ̂0LIN(G) 7.3903 3.9842 3.2742 2.5171 2.2279

λ̂0MC(L) a
, k

=
−

1.5

8.6241 5.0851 3.4658 2.9106 2.2966

λ̂0MC(G) 9.9968 5.6302 3.5391 3.0797 2.4983

λ̂0LIN(L) 7.2914 4.5670 3.1459 2.5136 2.1443

λ̂0LIN(G) 7.8841 4.0976 3.0197 2.5594 2.2457
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Table B.13: RMSE for η under prior πR2.

n 30 60 90 120 150

η̂MLE(S) 2.7736 1.8674 1.4545 1.2004 1.0985

η̂MC(S) 2.5800 1.9122 1.4722 1.2870 1.1313

η̂LIN(S) 2.7088 1.8366 1.4344 1.1895 1.0916

η̂MC(L) a
,k

=
0.5

1.7860 1.4844 1.2330 1.1055 0.9920

η̂MC(G) 2.2398 1.7360 1.3708 1.2126 1.0733

η̂LIN(L) 2.6483 1.7864 1.4336 1.2051 1.0730

η̂LIN(G) 2.6555 1.7899 1.4215 1.2443 1.0535

η̂MC(L) a
,k

=
1.5

1.9384 1.5161 1.2504 1.0249 0.9785

η̂MC(G) 2.1249 1.6713 1.3345 1.1833 1.0492

η̂LIN(L) 2.7636 1.8371 1.4366 1.2294 1.0960

η̂LIN(G) 2.6378 1.8110 1.4172 1.2644 1.0643

η̂MC(L) a
,k

=
−

0.5

5.2631 3.1508 2.1424 1.7243 1.4326

η̂MC(G) 2.4456 1.8433 1.4323 1.2582 1.1091

η̂LIN(L) 2.5479 1.7613 1.3804 1.1969 1.1023

η̂LIN(G) 2.7818 1.7562 1.4429 1.2104 1.0692

η̂MC(L) a
,k

=
−

1.5
9.7880 6.3622 4.4885 3.3887 2.5691

η̂MC(G) 2.5796 1.9907 1.5182 1.3198 1.1565

η̂LIN(L) 2.5406 1.7263 1.4358 1.2094 1.1025

η̂LIN(G) 2.7615 1.7562 1.4392 1.2681 1.0327
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Table B.14: RMSE for β under prior πR2.

n 30 60 90 120 150

β̂MLE(S) 0.1735 0.1110 0.0870 0.0742 0.0656

β̂MC(S) 0.1570 0.1082 0.0837 0.0723 0.0665

β̂LIN(S) 0.1603 0.1050 0.0835 0.0721 0.0643

β̂MC(L) a
, k

=
0.5

0.1542 0.1074 0.0832 0.0721 0.0663

β̂MC(G) 0.1525 0.1068 0.0829 0.0719 0.0663

β̂LIN(L) 0.1612 0.1043 0.0826 0.0755 0.0638

β̂LIN(G) 0.1641 0.1058 0.0862 0.0727 0.0662

β̂MC(L) a
,k

=
1.5

0.1506 0.1059 0.0825 0.0717 0.0661

β̂MC(G) 0.1497 0.1062 0.0824 0.0716 0.0663

β̂LIN(L) 0.1726 0.1069 0.0848 0.0740 0.0652

β̂LIN(G) 0.1647 0.1071 0.0873 0.0728 0.0662

β̂MC(L) a
,k

=
−

0.5

0.1599 0.1091 0.0842 0.0726 0.0666

β̂MC(G) 0.1553 0.1077 0.0834 0.0722 0.0664

β̂LIN(L) 0.1766 0.1089 0.0866 0.0747 0.0655

β̂LIN(G) 0.1703 0.1085 0.0874 0.0737 0.0671

β̂MC(L) a
,k

=
−

1.5
0.1664 0.1112 0.0853 0.0732 0.0670

β̂MC(G) 0.1588 0.1085 0.0840 0.0725 0.0666

β̂LIN(L) 0.1773 0.1153 0.0861 0.0759 0.0660

β̂LIN(G) 0.1722 0.1090 0.0869 0.7340 0.0653

B.6.3 Coverage rate tables

Table B.15: 95% Coverage rate for πR2.

n 30 60 90 120 150

λ0 0.9520 0.9410 0.9580 0.9465 0.9480
` (×10−5) (29.5406) (17.1340) (12.5445) (10.2768) (8.8650)

η 0.9455 0.9415 0.9495 0.9470 0.9555
` (10.0555) (7.2939) (5.7954) (4.9515) (4.4177)

β 0.9505 0.9460 0.9540 0.9455 0.9425
` (0.5949) (0.4072) (0.3284) (0.2821) (0.2512)
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Table B.16: 90% Coverage rate for πR2.

n 30 60 90 120 150

λ0 0.9020 0.8935 0.9000 0.8890 0.9060
` (×10−5) (23.1381) (13.7289) (10.2026) (8.4199) (7.3083)

η 0.8995 0.8895 0.9100 0.8975 0.8970
` (8.3685) (6.0240) (4.7884) (4.1041) (3.6725)

β 0.9065 0.8950 0.9075 0.8940 0.8870
` (0.5001) (0.3423) (0.2761) (0.2370) (0.2112)

B.7 Additional tables for MLEs

B.7.1 Coverage rate tables

Table B.17: 95% Coverage rate for MLEs.

n 30 60 90 120 150

λ0 0.9490 0.9445 0.9405 0.9385 0.9450
` (×10−5) (32.0809) (17.1885) (12.6323) (10.0496) (8.7791)

η 0.9435 0.9505 0.9515 0.9570 0.9485
` (10.7205) (7.2478) (5.6681) (4.7031) (4.2959)

β 0.9350 0.9370 0.9460 0.9500 0.9410
` (0.6312) (0.4227) (0.3314) (0.2848) (0.2529)

Table B.18: 90% Coverage rate for MLEs.

n 30 60 90 120 150

λ0 0.9350 0.9265 0.9195 0.9105 0.9095
` (×10−5) (27.0069) (14.4699) (10.6344) (8.4601) (7.4074)

η 0.9170 0.9195 0.9130 0.9105 0.9125
` (9.0249) (6.10153) (4.7716) (3.9592) (3.6164)

β 0.8920 0.8915 0.8895 0.8985 0.9000
` (0.5314) (0.3559) (0.2790) (0.2397) (0.2129)

B.8 BUGS script for prior πJ

model{

for(i in 1:N){

#Define likelihood
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#Complete data

X[i] ~ dweib(z, l[i])

#Define scale parameter

#For Arrhenius law

l[i] <- pow(lam, z) * pow(eta, z *((1/l0 - 1/S[i])/ (1/l0 - 1/l1)))

#For Power law

l[i] <- pow(lam, z) * pow(eta, z *(log(lO)/20 - log(S[i])/20)/ (log(lO)/20 - log(l1)/20))

}

#Define priors

zero <- 0

z ~ dunif(0,100)

phi <- -log(z)

zero ~ dpois(phi)

lam ~dgamma(0.001,0.001)

eta ~ dgamma(0.001,0.001)I(1,)

}

#INITS list()

#DATA list()

B.9 BUGS script for prior πR1

model{

for(i in 1:N){

#Define likelihood

#Complete data

X[i] ~ dweib(z, l[i])

#Define scale parameter

#For Arrhenius law

l[i] <- pow(lam, z) * pow(eta, z *((1/l0 - 1/S[i])/ (1/l0 - 1/l1)))

#For Power law

l[i] <- pow(lam, z) * pow(eta, z *(log(lO)/20 - log(S[i])/20)/ (log(lO)/20 - log(l1)/20))

}

#Define priors

z ~ dunif(0,100)

lam ~dgamma(0.001,0.001)
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eta ~ dgamma(0.001,0.001)I(1,)

}

#INITS list()

#DATA list()

B.10 BUGS script for prior πR2

model{

for(i in 1:N){

#Define likelihood

#Complete data

X[i] ~ dweib(z, l[i])

#Define scale parameter

#For Arrhenius law

l[i] <- pow(lam, z) * pow(eta, z *((1/l0 - 1/S[i])/ (1/l0 - 1/l1)))

#For Power law

l[i] <- pow(lam, z) * pow(eta, z *(log(lO)/20 - log(S[i])/20)/ (log(lO)/20 - log(l1)/20))

}

#Define priors

z ~ dgamma(0.001,0.001)

lam ~dgamma(0.001,0.001)

eta ~ dgamma(0.001,0.001)I(1,)

}

#INITS list()

#DATA list()

B.11 R script for finding MLE values

#Load packages
library(maxLik)
#Define functions
f1 = function(beta ,eta){

A = sum(X1^beta * eta^(beta * Stan_d[1]))
B = sum(X2^beta * eta^(beta * Stan_d[2]))
C = sum(X3^beta * eta^(beta * Stan_d[3]))
A + B + C
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}

f2 = function(beta ,eta){

A = sum(X1^beta * eta^(beta * Stan_d[1]) * (Stan_d[1]*log(eta
) + log(X1)))

B = sum(X2^beta * eta^(beta * Stan_d[2]) * (Stan_d[2]*log(eta
) + log(X2)))

C = sum(X3^beta * eta^(beta * Stan_d[3]) * (Stan_d[3]*log(eta
) + log(X3)))

A + B + C

}

f3 = function(beta ,eta){

A = sum(X1^beta * eta^(beta * Stan_d[1] -1) * beta*Stan_d[1])
B = sum(X2^beta * eta^(beta * Stan_d[2] -1) * beta*Stan_d[2])
C = sum(X3^beta * eta^(beta * Stan_d[3] -1) * beta*Stan_d[3])
A + B + C

}

#Define likelihood
ll = function(theta){

beta = theta [1]
eta = theta [2]

ll = n*log(beta) + n*log(n/f1(beta ,eta)) + D_bar*beta*log(eta
) + (beta -1)*sum(log(X)) - n

return(ll)

}

#Define gradient
grad = function(theta){

beta = theta [1]
eta = theta [2]

grad = c(n/beta + D_bar*log(eta) + sum(log(X)) - n *(f2(beta ,
eta)/f1(beta ,eta)),

D_bar*beta/eta - n*(f3(beta ,eta)/f1(beta ,eta))
)

return(grad)
}
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#Empty vectors
l = c()
e = c()
b = c()

#Loop 2000 times
for(i in 1:2000){

#Sample size
n = ##

#Stress vector
S = c(rep(300,n/3), rep(250,n/3), rep(200,n/3))

#Data
X = c(rweibull(n/3,shape = 1, scale = (6.3361e-5*5.2945^2) ^-1),

rweibull(n/3,shape = 1, scale = (6.3361e-5*5.2945^1.6)
^-1),

rweibull(n/3,shape = 1, scale = (6.3361e-5*5.2945) ^-1))

#Subset data
X1 = X[#1st item stress level 3:# last item stress level 3]
X2 = X[#1st item stress level 2:# last item stress level 2]
X3 = X[#1st item stress level 1:# last item stress level 1]

US = unique(S)

#Find delta[i]
d = function(q){

((1/150) -(1/q))/((1/150) -(1/200))
}

Stan_d = sapply(US,d)

Lus = c(n/3,n/3,n/3)

#Find delta bar
D_bar = Lus * Stan_d
D_bar = sum(D_bar)

#Obtain MLE for beta and eta
mle = maxLik(ll ,grad , start = c(1 ,5.2945) , method = "NR")
beta = mle$estimate [1]
eta = mle$estimate [2]

#Obtain MLE for lam
lam = (n/f1(mle$estimate [1],mle$estimate [2]))^(1/mle$estimate [1])
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#Store results in vector
l[i] = lam
b[i] = beta
e[i] = eta

}

Listing B.1: MLE values

B.12 R script for finding coverage rates

#Load packages

library(R2WinBUGS)

#Sample size
n = ##

# Define stress vector

S = c(rep(300,n/3), rep(250,n/3), rep(200,n/3))

# Define initial values

inits = function (){

list(z = 1, eta = 1, lam = 0.00001)

}

#Empty vectors

z = c()

lam = c()

eta = c()

#For loop

for(i in 1:2000){
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#Gen random values

X = c(rweibull(n/3,shape = 1, scale = (6.3361e-5*5.2945^2) ^-1),

rweibull(n/3,shape = 1, scale = (6.3361e-5*5.2945^1.6) ^-1),

rweibull(n/3,shape = 1, scale = (6.3361e-5*5.2945) ^-1))

#Store in data frame

data = data.frame(X,S)

#Call WinBUGS

sim = bugs(data ,inits = inits , model.file = ,

parameters.to.save = c(’z’,’lam’,’eta’), n.chains = 1,

n.iter = 250000 , n.burnin = 150000 , n.thin = 2,

bugs.directory = )

#Store values

z[i] = sim$summary [1,1]

z2.5[i] = as.numeric(quantile(sort(sim$sims.list$z) ,0.025))

z97 .5[i] = as.numeric(quantile(sort(sim$sims.list$z) ,0.975))

z5[i] = as.numeric(quantile(sort(sim$sims.list$z) ,0.05))

z95[i] = as.numeric(quantile(sort(sim$sims.list$z) ,0.95))

lam[i] = sim$summary [2,1]

lam2 .5[i] = as.numeric(quantile(sort(sim$sims.list$lam) ,0.025))

lam97 .5[i] = as.numeric(quantile(sort(sim$sims.list$lam) ,0.975))

lam5[i] = as.numeric(quantile(sort(sim$sims.list$lam) ,0.05))

lam95[i] = as.numeric(quantile(sort(sim$sims.list$lam) ,0.95))



Appendix B: Additional results for Chapter 4 164

eta[i] = sim$summary [3,1]

eta2 .5[i] = as.numeric(quantile(sort(sim$sims.list$eta) ,0.025))

eta97 .5[i] = as.numeric(quantile(sort(sim$sims.list$eta) ,0.975))

eta5[i] = as.numeric(quantile(sort(sim$sims.list$eta) ,0.05))

eta95[i] = as.numeric(quantile(sort(sim$sims.list$eta) ,0.95))

}

#Calculate relevant values

z_true = 1
lam_true = 6.3361e-5
eta_true = 5.2954

#Beta
sum(z2.5 < z_true & z97.5 > z_true)/2000
mean(z97.5 - z2.5)
sum(z5 < z_true & z95 > z_true)/2000
mean(z95 - z5)

#Lam
sum(lam2.5 < lam_true & lam97 .5 > lam_true)/2000
mean(lam97 .5 - lam2 .5)
sum(lam5 < lam_true & lam95 > lam_true)/2000
mean(lam95 - lam5)

#Eta
sum(eta2.5 < eta_true & eta97 .5 > eta_true)/2000
mean(eta97 .5 - eta2 .5)
sum(eta5 < eta_true & eta95 > eta_true)/2000
mean(eta95 - eta5)

Listing B.2: Coverage rate

B.13 R script for Lindley’s approximation

#Define answer vector
fff = c()

#Loop
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for(i in 1:2000){

##Load MLE values ############
beta = b[i]
lam = l[i]
eta = e[i]

##Define Functions ####
p = # log prior
p1 = #derivative of p wrt lam
p2 = #derivative of p wrt eta
p3 = #derivative of p wrt beta
w = #Function of interest
w1 = #derivative of w wrt lam
w2 = #derivative of w wrt eta
w3 =#derivative of w wrt beta

w12 = #derivative of lam and eta
w13 = #derivative of lam and beta
w23 = #derivative of eta and beta
w11 = #derivative of lam and lam
w22 = #derivative of eta and eta
w33 = #derivative of beta and beta

X = c(rweibull(n/3,shape = 1, scale = (6.3361e-5*5.2945^2) ^-1),
rweibull(n/3,shape = 1, scale = (6.3361e-5*5.2945^1.6) ^-1),
rweibull(n/3,shape = 1, scale = (6.3361e-5*5.2945) ^-1))

n = length(S)

X1 = X[#1st item stress level 3:# last item stress level 3]
X2 = X[#1st item stress level 2:# last item stress level 2]
X3 = X[#1st item stress level 1:# last item stress level 1]

US = unique(S)

d = function(q){
((1/150) -(1/q))/((1/150) -(1/200))

}

Stan_d = sapply(US,d)

Lus = c(n/3,n/3,n/3)

D_bar = Lus * Stan_d
D_bar = sum(D_bar)
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##Functions for Hessian ####
f1 = function(beta ,eta ,lam){

A = sum(beta*((beta -1)*eta^(beta*Stan_d[1])*X1^beta*lam^
beta+n))

B = sum(beta*((beta -1)*eta^(beta*Stan_d[2])*X2^beta*lam^
beta+n))

C = sum(beta*((beta -1)*eta^(beta*Stan_d[3])*X3^beta*lam^
beta+n))

A + B + C
}

f2 = function(beta ,eta ,lam){
A = sum(beta^2*Stan_d[1]*lam^(beta -1)*X1^beta*eta^(beta*

Stan_d[1]-1))
B = sum(beta^2*Stan_d[2]*lam^(beta -1)*X2^beta*eta^(beta*

Stan_d[2]-1))
C = sum(beta^2*Stan_d[3]*lam^(beta -1)*X3^beta*eta^(beta*

Stan_d[3]-1))
A + B + C

}

f3 = function(beta ,eta ,lam){
A = sum(eta^(beta*Stan_d[1])*lam^beta*X1^beta*((log(X1*lam*

eta^Stan_d[1]))*beta +1)-n)
B = sum(eta^(beta*Stan_d[2])*lam^beta*X2^beta*((log(X2*lam*

eta^Stan_d[2]))*beta +1)-n)
C = sum(eta^(beta*Stan_d[3])*lam^beta*X3^beta*((log(X3*lam*

eta^Stan_d[3]))*beta +1)-n)
A + B + C

}

f4 = function(beta ,eta ,lam){
A = sum(beta*((beta*Stan_d[1]^2- Stan_d[1])*lam^beta*X1^beta

*eta^(beta*Stan_d[1])+D_bar))
B = sum(beta*((beta*Stan_d[2]^2- Stan_d[2])*lam^beta*X2^beta

*eta^(beta*Stan_d[2])+D_bar))
C = sum(beta*((beta*Stan_d[3]^2- Stan_d[3])*lam^beta*X3^beta

*eta^(beta*Stan_d[3])+D_bar))
A + B + C

}

f5 = function(beta ,eta ,lam){
A = sum(Stan_d[1]*eta^(Stan_d[1]*beta)*lam^beta*X1^beta*((

log(X1*lam*eta^Stan_d[1]))*beta +1)-D_bar)
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B = sum(Stan_d[2]*eta^(Stan_d[2]*beta)*lam^beta*X2^beta*((
log(X2*lam*eta^Stan_d[2]))*beta +1)-D_bar)

C = sum(Stan_d[3]*eta^(Stan_d[3]*beta)*lam^beta*X3^beta*((
log(X3*lam*eta^Stan_d[3]))*beta +1)-D_bar)

A + B + C
}

f6 = function(beta ,eta ,lam){
A = sum(eta^(beta*Stan_d[1])*lam^beta*X1^beta*(log(X1*lam*

eta^Stan_d[1]) ^2))
B = sum(eta^(beta*Stan_d[2])*lam^beta*X2^beta*(log(X2*lam*

eta^Stan_d[2]) ^2))
C = sum(eta^(beta*Stan_d[3])*lam^beta*X3^beta*(log(X3*lam*

eta^Stan_d[3]) ^2))
A + B + C

}

h11 = (-1/lam^2*f1(beta ,eta ,lam))

h12 = (-f2(beta ,eta ,lam))

h13 = (-1/lam * f3(beta ,eta ,lam))

h21 = h12

h22 = (-1/eta^2 *f4(beta ,eta ,lam))

h23 = (-1/eta * f5(beta ,eta ,lam))

h31 = h13

h32 = h23

h33 = (-n/beta^2 -f6(beta ,eta ,lam))

m = matrix(c(h11 ,h12 ,h13 ,h21 ,h22 ,h23 ,h31 ,h32 ,h33), nrow = 3)
m = solve(m)

h11 = -m[1,1]

h12 = -m[1,2]

h13 = -m[1,3]
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h21 = -m[2,1]

h22 = -m[2,2]

h23 = -m[2,3]

h31 = -m[3,1]

h32 = -m[3,2]

h33 = -m[3,3]

g1 = function(beta ,eta ,lam){
A = sum(X1^beta * beta * (beta -1) * (beta - 2) * lam^(beta

-3) * eta^(beta*Stan_d[1]))
B = sum(X2^beta * beta * (beta -1) * (beta - 2) * lam^(beta

-3) * eta^(beta*Stan_d[2]))
C = sum(X3^beta * beta * (beta -1) * (beta - 2) * lam^(beta

-3) * eta^(beta*Stan_d[3]))
A + B + C

}

g2 = function(beta ,eta ,lam){
A = sum(X1^beta * lam^beta * beta * Stan_d[1] * (beta*Stan_

d[1]-1) * (beta*Stan_d[1] -2) * eta^(beta*Stan_d[1] -3))
B = sum(X2^beta * lam^beta * beta * Stan_d[2] * (beta*Stan_

d[2]-1) * (beta*Stan_d[2] -2) * eta^(beta*Stan_d[2] -3))
C = sum(X3^beta * lam^beta * beta * Stan_d[3] * (beta*Stan_

d[3]-1) * (beta*Stan_d[3] -2) * eta^(beta*Stan_d[3] -3))
A + B + C

}

g3 = function(beta ,eta ,lam){
A = sum(X1^beta * lam^beta * eta^(beta*Stan_d[1]) * (log(X1

*lam*eta^Stan_d[1]))^3)
B = sum(X2^beta * lam^beta * eta^(beta*Stan_d[2]) * (log(X2

*lam*eta^Stan_d[2]))^3)
C = sum(X3^beta * lam^beta * eta^(beta*Stan_d[3]) * (log(X3

*lam*eta^Stan_d[3]))^3)
A + B + C

}

g4 = function(beta ,eta ,lam){
A = sum(X1 * beta^2 * Stan_d[1] * (beta - 1) * lam^(beta -2)

* eta^(beta*Stan_d[1]-1))
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B = sum(X2 * beta^2 * Stan_d[2] * (beta - 1) * lam^(beta -2)
* eta^(beta*Stan_d[2]-1))

C = sum(X3 * beta^2 * Stan_d[3] * (beta - 1) * lam^(beta -2)
* eta^(beta*Stan_d[3]-1))

A + B + C
}

g5 = function(beta ,eta ,lam){
A = sum(X1^beta * lam^(beta - 2) * eta^(beta*Stan_d[1]) *

((( log(X1*lam*eta^Stan_d[1]))*(beta -1)+2)*beta -1))
B = sum(X2^beta * lam^(beta - 2) * eta^(beta*Stan_d[2]) *

((( log(X2*lam*eta^Stan_d[2]))*(beta -1)+2)*beta -1))
C = sum(X3^beta * lam^(beta - 2) * eta^(beta*Stan_d[3]) *

((( log(X3*lam*eta^Stan_d[3]))*(beta -1)+2)*beta -1))
A + B + C

}

g6 = function(beta ,eta ,lam){
A = sum(X1^beta * lam^(beta -1)* beta^2 * Stan_d[1] * (beta*

Stan_d[1]-1) * eta^(beta*Stan_d[1]-2))
B = sum(X2^beta * lam^(beta -1)* beta^2 * Stan_d[2] * (beta*

Stan_d[2]-1) * eta^(beta*Stan_d[2]-2))
C = sum(X3^beta * lam^(beta -1)* beta^2 * Stan_d[3] * (beta*

Stan_d[3]-1) * eta^(beta*Stan_d[3]-2))
A + B + C

}

g7 = function(beta ,eta ,lam){

A = sum(X1^beta * lam^beta * Stan_d[1] * eta^(beta*Stan_d
[1])* (beta*(Stan_d[1]*(log(eta)*(Stan_d[1]*beta -1)+2)+
log(X1)*(Stan_d[1]*beta -1)+log(lam)*(Stan_d[1]*beta -1))
-1))

B = sum(X2^beta * lam^beta * Stan_d[2] * eta^(beta*Stan_d
[2])* (beta*(Stan_d[2]*(log(eta)*(Stan_d[2]*beta -1)+2)+
log(X2)*(Stan_d[2]*beta -1)+log(lam)*(Stan_d[2]*beta -1))
-1))

C = sum(X3^beta * lam^beta * Stan_d[3] * eta^(beta*Stan_d
[3])* (beta*(Stan_d[3]*(log(eta)*(Stan_d[3]*beta -1)+2)+
log(X3)*(Stan_d[3]*beta -1)+log(lam)*(Stan_d[3]*beta -1))
-1))

A + B + C

}

g8 = function(beta ,eta ,lam){
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A = sum(X1^beta * lam ^ beta * eta^(beta*Stan_d[1]) * log(
X1*lam*eta^Stan_d[1])* (beta*log(X1*lam*eta^Stan_d[1]))
+2)

B = sum(X2^beta * lam ^ beta * eta^(beta*Stan_d[2]) * log(
X2*lam*eta^Stan_d[2])* (beta*log(X2*lam*eta^Stan_d[2]))
+2)

C = sum(X3^beta * lam ^ beta * eta^(beta*Stan_d[3]) * log(
X3*lam*eta^Stan_d[3])* (beta*log(X3*lam*eta^Stan_d[3]))
+2)

A + B + C
}

g9 = function(beta ,eta ,lam){
A = sum(X1^beta * Stan_d[1] * lam^beta * eta^(beta*Stan_d

[1]) * log(X1*lam*eta^Stan_d[1])*(beta*log(X1*lam*eta^
Stan_d[1]) +2))

B = sum(X2^beta * Stan_d[2] * lam^beta * eta^(beta*Stan_d
[2]) * log(X2*lam*eta^Stan_d[2])*(beta*log(X2*lam*eta^
Stan_d[2]) +2))

C = sum(X3^beta * Stan_d[3] * lam^beta * eta^(beta*Stan_d
[3]) * log(X3*lam*eta^Stan_d[3])*(beta*log(X3*lam*eta^
Stan_d[3]) +2))

A + B + C
}

g10 = function(beta ,eta ,lam){
A = sum(X1^beta * beta * Stan_d[1] * lam^beta * eta^(beta*

Stan_d[1]) * (beta*log(X1*lam*eta^Stan_d[1]) +2))
B = sum(X2^beta * beta * Stan_d[2] * lam^beta * eta^(beta*

Stan_d[2]) * (beta*log(X2*lam*eta^Stan_d[2]) +2))
C = sum(X3^beta * beta * Stan_d[3] * lam^beta * eta^(beta*

Stan_d[3]) * (beta*log(X3*lam*eta^Stan_d[3]) +2))
A + B + C

}

##Third -order derivatives #####
l300 = 2*n*beta/lam^3 - g1(beta ,eta ,lam)

l030 = 2*D_bar*beta/eta^3 - g2(beta ,eta ,lam)

l003 = 2*n/beta^3 - g3(beta ,eta ,lam)
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l210 = - g4(beta ,eta ,lam)

l201 = -n/lam^2 - g5(beta ,eta ,lam)

l120 = - g6(beta ,eta ,lam)

l021 = -D_bar/eta^2 -1/eta^2 * g7(beta ,eta ,lam)

l102 = -1/lam * g8(beta ,eta ,lam)

l012 = -1/eta * g9(beta ,eta ,lam)

l111 = - (lam*eta)^(-1) * g10(beta ,eta ,lam)

##Define U(psi)##

##Define Aijk ####
A123 = w1*h11 + w2*h21 + w3*h31

A213 = w2*h22 + w1*h12 + w3*h32

A321 = w3*h33 + w2*h23 + w1*h13

##Define Bijk ####
B123 = h11 *(w1*h11 + w2*h12 + w3*h13)

B213 = h22 *(w2*h22 + w1*h21 + w3*h23)

B321 = h33 *(w3*h33 + w2*h32 + w1*h31)

##Define Cijk ####
C123 = w1 * (h11*h23 + 2*h12*h13)

C213 = w2 * (h22*h13 + 2*h21*h23)

C312 = w3 * (h33*h12 + 2*h31*h32)

##Define Dijk ####
D123 = 3*w1*h11*h12 + w2*(h11*h22 + 2*h12^2) + w3*(h11*h23 + 2*

h12*h13)

D132 = 3*w1*h11*h13 + w3*(h11*h33 + 2*h13^2) + w2*(h11*h32 + 2*
h13*h12)

D213 = 3*w2*h22*h21 + w1*(h22*h11 + 2*h21^2) + w3*(h22*h13 + 2*
h21*h23)
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D312 = 3*w3*h33*h31 + w1*(h33*h11 + 2*h31^2) + w2*(h33*h12 + 2*
h31*h32)

D231 = 3*w2*h22*h23 + w3*(h22*h33 + 2*h23^2) + w1*(h22*h31 + 2*
h23*h21)

D321 = 3*w3*h33*h32 + w2*(h33*h22 + 2*h32^2) + w1*(h33*h21 + 2*
h32*h31)

##Def final sum ####
u_theta = w12*h12 + w13*h13 + w23*h23 + 0.5*(w11*h11 + w22*h22 +

w33*h33)

fff[i] = w + u_theta + p1*A123 + p2*A213 + p3*A321 + 0.5*(l300*
B123 + l030*B213 + l003*B321 + 2*l111*(C123 + C213 + C312) +
l210*D123 + l201*D132 + l120*D213 + l102*D312 + l021*D231 +
l012*D321)

}

Listing B.3: Lindley’s approximation
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C.14 Additional trace plots
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Figure C.1: Trace plots for the chains under prior πR1.
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Figure C.2: Trace plots for the chains under prior πR2.
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C.15 Additional running mean plots
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Figure C.3: Running mean plots for the parameters under prior πR1.
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Figure C.4: Running mean plots for the parameters under prior πR2.
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C.16 Additional autocorrelation plots
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Figure C.5: Autocorrelation plots for the parameters under prior πR1.
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Figure C.6: Autocorrelation plots for the parameters under prior πR2.
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C.17 Additional BGR plots
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Figure C.7: BGR plots for the parameters under prior πR1.
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Figure C.8: BGR plots for the parameters under prior πR2.
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C.18 Additional Geweke plots
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Figure C.9: Geweke plots for the parameters under prior πR1.
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Figure C.10: Geweke plots for the parameters under prior πR2.
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C.19 Additional density plots
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Figure C.11: Density plots for the parameters under prior πR1.
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Figure C.12: Density plots for the parameters under prior πR2.

C.20 Additional Bayesian estimate tables

Table C.19: Estimates under prior πR1.

Parameter Mean Sd MCMC error 95% credible interval Median

λ0(×10−6) 11.2400 11.3800 0.1360 (1.5200, 39.6600) 8.0890

η 114.2000 51.6600 0.6799 (45.4300, 243.4000) 103.9000

β 0.7696 0.0682 0.0002 (0.6396, 0.9073) 0.7682
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Table C.20: Estimates under prior πR2.

Parameter Mean Sd MCMC error 95% credible interval Median

λ0(×10−6) 11.4100 11.3900 0.1387 (1.4740, 41.2300) 8.1080

η 114.8000 53.2800 0.7309 (44.6300, 248.3000) 104.0000

β 0.7634 0.0682 0.0002 (0.6336, 0.9008) 0.7617
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