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Abstract 

In the past couple of decades, longitudinal and survival data analysis have emerged 

as important and popular concepts of biostatistics and statistics for disease 

modelling. In recent years, these two statistics concepts have been combined to 

develop a joint model for longitudinal and survival data analysis. Joint model is a 

simultaneous modelling application of longitudinal and survival data while taking into 

account a possible association between them. In this thesis, three sub-topics 

(Conditional score approach, estimating equation approach, and modified Cholesky 

decomposition approach) are utilised to model the association if the independence 

assumption is violated.  

Using the conditional score approach, the study investigated the association 

between longitudinal covariates and time-to-event process to examine the within-

subject measurement error that could influence estimation when the assumption of 

normality and mutual independence is violated. Given the assumption violation, I 

proposed an estimating equation approach based on the conditional score to relax 

parametric distributional assumptions for repeated measures random effects. I jointly 

modelled the time-dependent biomarkers and event times using Cox model with 

intermittent time-dependent covariates measure, in which the longitudinal model was 

used to characterize the biomarker underlying (unobservable) trajectory and 

incorporated as a latent time-dependent covariate in the survival model to predict 

failure times. Estimates of the parameters were obtained by a restricted maximum 

likelihood estimate (REML). A modified Cholesky decomposition method was used to 

capture the within-subject covariance for a positive definite and symmetric matrix, 
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with the assumption that the observed data from different subjects are independent. I 

illustrated the proposed method by a real data set from a lung study and simulation. 

An extension to the joint model of longitudinal-survival data was also proposed, in 

which the longitudinal data has a cumulative and weighted effect on the hazard 

event function. Using a Bayesian parametric method, I proposed a skewed weighted 

probability density function to estimate the parameters. The weighted cumulative 

effect used enabled different longitudinal profile to be incorporated over time in 

calculating the hazard ratio between the subjects. The proposed functions provide 

greater flexibility for modelling the association structure of different longitudinal and 

survival sub-model. The focus was on the association between the biomarker (serum 

creatinine, sCr) and the development of an end-stage renal disease (ESRD). Since 

the effect of sCr biomarker is anticipated to be a cumulative effect, with the 

development of sCr biomarker over time leading to progressively higher damage of 

the kidney. The approach was applied as simulation for validation of the proposed 

method.  

 

Keywords: Biomarker, Cumulative effect, Density function, Laplace Approximation, 
Weight function, Conditional score, Estimating equation, Bayesian method, Cholesky 
decomposition 
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CHAPTER ONE 

1.0 Introduction to Joint Model of Longitudinal and Survival Data 

1.1 Background 

In the past couple of decades, longitudinal and survival data analysis have emerged 

as some of the fastest growing concepts in biostatistics and statistics to for disease 

modelling. Longitudinal-data/ panel-data analysis generally refers to statistical 

methods for repeated measurements of data analysis from a longitudinal study. In 

various medical researches, repeated measurements (biomarkers) data include 

multiple observations of an outcome variable such as body mass index (BMI), that 

are measured overtime on the same study unit during the course of follow up or the 

outcome of data on time to the happening of a particular event. For instance, time-to-

event outcomes in Randomized controlled trials (Argyropoulos and Unruh 2015), in 

which patients follow-up are recorded over a period and biomarkers are repeatedly 

collected at multiple time intervals (repeated measurement). Such repeated 

biomarkers may be CD4+ count or viral load biomarkers for HIV/AIDS, Geriatric 

cognitive performance study, Systolic blood pressure and a coronary event in 

Cardiovascular study, Prostate-specific antigen biomarker and recurrence in Cancer 

study and so on. The fundamental concept of longitudinal data analysis is how to 

resolve correlations within-subjects and handling missing observations. 

On the other hand, survival analysis deals with survival data or time-to-event data for 

which the outcome variable is time to the occurrence of an event. Data obtained in 

this manner is referred to as survival data of the time to the occurrence of a 

particular event (Austin, Lee, and Fine 2016).  An event could be, for instance, 

death, the end of the period spent in remission from disease, relief from diseases, 
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symptoms, equipment failure, a disease recurrence, or discharge from a hospital. 

The survival data is the time to an event, i.e. the time at which a particular event of 

interest occurred. Such events may be Adverse like the relapse or recurrence of a 

disease like a tumour or malaria; Positive event like discharge from the hospital, 

Neutral event such as cessation of breastfeeding. Time-to-event data are usually 

incomplete, and thus cannot be handled by standard statistical tools for complete 

data. Many studies focus on the effect of patients’ information on different survival 

predictions and modelling repeated data with event time outcomes in order to 

construct dynamic prediction models that modify the event over-time with 

accumulating evidence (Andrinopoulou et al. 2015). A typical example is right 

censoring, which occurs when the survival time of interest is only known to be 

greater than some observed censoring time due to the end of follow up or the 

occurrence of early withdrawal or competing events.  

In recent years, these two statistics concepts have been blended to develop joint 

models for longitudinal and survival data analysis. Originally, the joint model was 

introduced to independently address the difference in longitudinal data analysis and 

survival analysis problems. Joint modelling in longitudinal data analysis was basically 

meant to adjust for non-ignorable missing data due to informative or outcome related 

to dropouts, which traditional methods such as linear mixed-effects models cannot 

handle accurately. While survival analysis was first proposed for Cox's proportional 

hazards model to deal with time-dependent covariates that are measured 

intermittently, which may be/ not subject to measurement error, Joint models, have 

also become popular in medical research.  Here, both the longitudinal variable (such 

as a disease biomarker) and the time-to-event variable (such as the disease-free 
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survival time), are important outcome variables to evaluate the efficacy of 

interventions or treatments. 

Time-to-event outcomes can be used to censor a longitudinal data and modelling 

both the repeated and time event outcomes separately, for instance, using time-

dependent random effect models and survival model (Barrett and Su 2016), 

modelling Linear mixed models and Cox models (Hickey et al. 2016). This may 

sometimes be ineffective and can as well lead to biased size estimates if the two 

event outcomes are correlated (Ibrahim, Chu, and Chen 2010). The Cox PH model is 

the commonly used model for survival data (Cox 1972) and serves as part of the 

techniques that will be used in the study. The Cox model has extended to include the 

random effects (Vaupel, Manton, and Stallard 1979), multivariate survival times 

(Hougaard 2000), covariates measurement error (Wulfsohn and Tsiatis 2010), time-

dependent covariates (Sweeting and Thompson 2011). The model also incorporates 

extensions such as longitudinal modelling with outcome-dependent drop-out 

(Henderson, Diggle, and Dobson 2000), and modelling longitudinal-time event with 

the inclusion of latent classes (Berlin, Parra, and Williams 2014). 

1.2 Motivating Study Data 

Impaired Renal function is recognised as one of the risk factors that leads to 

development of tuberculosis (TB), especially the extra-pulmonary TB (EPTB) type. 

This type of TB is more pronounced in patients with chronic renal disease (CRD) 

compared to patients with normal renal function. The progressive decrease of renal 

failure over months or years occur in stages. Each stage determines the progression 

of TB patients with impaired renal function from the level of abnormally low to 

progressively defective glomerular filtration rate. There are no randomised clinical 

trials that provide guideline or evidence of TB treatment with impaired renal failure. 
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The treatment guidelines currently available are based on case studies, such as 

pharmacological guideline of the drugs used and experts’ recommendations from the 

international agencies involved in TB control. TB patients with impaired renal failure 

experience different side effects such as high blood pressure, anaemia, bones 

weakness and damage of nerves. However, when the TB progresses, this may 

eventually lead to impaired renal failure, which necessitates looking for factors that 

may influence the treatment of an impaired renal failure patient with TB. Such factors 

are the drug pharmacokinetics to determine the proportion of drug excreted by 

kidneys and dialysis clearance (both haemodialysis and peritoneal dialysis), which 

affects the serum levels of drugs and consequently, the toxicity. Furthermore, the 

toxic severity predicts high blood levels of drugs, the accessibility of alternative 

effective ways to cure the TB patient with co-infection and possible drug interactions, 

which may affect therapy. 

Although, TB is a rare causal agent of progressive renal failure, it is an important 

one. It is definitely preventable and easy to treat. Study evidence showing the extent 

to which TB causes end-stage renal failure worldwide are few. For this reason, there 

is little information on the contribution that tuberculosis makes to the burden of renal 

disease. The motivating study data used throughout this thesis pertains to the 

hospital records of TB patients with impaired renal failure that have undergone 

treatments from 1/03/2008 to 1/03/2018 from Grey Hospital, King Williams Town, 

Eastern Cape, South Africa. The medical and clinical interest from the data lies in the 

long-term performance of treatment of renal failure in TB patients. In this study, the 

glomerular filtration rate (GFR) biomarker, in which serum creatinine level is used as 

an indicator of filtration through the glomerular filter considered for the survival rate.    
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Preliminary analyses were conducted to show the evidence within subject-specific 

trajectories for longitudinal are important prediction ways for serum creatinine in 

renal failure. The longitudinal profiles average is showed in Figure 1a (Appendix) and 

the within subject-specific profiles for some randomly selected TB patients with 

impaired renal function from our motivating data is illustrated in Figure 1b 

(Appendix). It was observed that patients with GFR failure status show a relative 

difference time of development than patients without failure. Hence, these 

longitudinal profiles have enough information to help the clinician to monitor the risk 

status progression of each of the patients.  

1.3 Research Problem Statement 

Tuberculosis with impaired renal function is not different from other forms of disease 

caused by the Mycobacterium TB complex. The commonest causative agent is the 

human tubercle bacillus (M. tuberculosis) but the bovine tubercle bacillus (M. bovis) 

can also be responsible. However, it is unknown how the renal function dosage 

adjustments advocated by the guidelines affect the efficiency outcomes for TB 

patients with chronic renal failure. It is also unclear how this dosage treatment affects 

the frequency of drug-related side effects in patients with chronic renal failure 

resulting from the differences between previous treatment and current follow-up. 

Therefore, it is very important to understand clearly and comprehensibly, the impact 

of renal function in investigating and assessing the efficiency of using repeated 

covariates measures with correlated error to predict clinical outcome and the within 

the subject-specific cumulative effects association structures between a longitudinal 

biomarker and time-to-event. To identify correlation in the survival endpoint and 

processes that produced longitudinal measured outcomes, which could improve the 

efficacy of clinical treatment as well as providing a better insight into many areas of 
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the clinical effect of interventions contained within the treatment. To tackle these 

questions, a Bayesian approach was specifically applied to develop a flexible joint 

longitudinal-survival model to determine where and how the approaches could give 

value in interpreting the findings. 

1.4 Aim of the Research 

The study aims to offer an explicit assessment of the gain in efficiency from using 

repeated measures for covariates with correlated error for a joint model to predict 

clinical outcome and improve the prediction prognosis. 

1.4.1 Objectives of the Research 

1. This study seeks to discover the pragmatic application of Bayesian inferences 

for flexible joint modelling of longitudinal-survival time event outcomes with 

latent class variables. 

2. This study will test the cumulative effects association structures between a 

longitudinal biomarker and time-to-event.  

3. This study will be used to express the association between changes in history 

in longitudinal-survival outcomes 

4. This study will discover correlation summary measures of the trajectory of 

longitudinal-survival outcomes 

1.5 Research Questions 

The models will establish a good paradigm for the analysis of repeated and time 

event with follow-up data that is mainly applicable in two settings:  

i. When the focus is on a survival outcome, and wish to account for the effect of 

endogenous time-dependent covariates measured with error. 
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ii. When the focus is on the longitudinal outcome and wishes to correct for 

cumulative effects association.  

1.6 Outline of the Thesis structure  

Chapter 1 introduced the background of joint models for longitudinal and time-to-

event outcomes, the problem of research for the thesis, the aims and objectives of 

the research. Chapter 2 discussed the overview of the literature reviews on 

methodological development and clinical application of joint models of longitudinal 

and time-to-event outcomes over the past two decades. It also described the 

fundamentals and standard statistical techniques for longitudinal analysis and time-

to-event analysis. Chapter 3 discussed the joint model of longitudinal and time-to-

even process for repeated covariates measures with a correlated error. Chapter 4 

discussed the analyses and interpretation of the results from the joint model 

analysis. Chapter 5 discussed the conclusion and recommendations in line with the 

joint model.  
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CHAPTER TWO 

2.0 An Overview on Literature Reviews for Joint Models 

2.1 Introduction 

This chapter describes the literature available on the fundamentals and standard 

statistical techniques for longitudinal analysis and time-to-event analysis. For 

longitudinal data analysis, the missing data mechanisms, missing data imputation 

must rely on certain missing data assumptions for both ignorable and non-ignorable 

missing data and the most common models used are discussed. For time-to-event 

data analysis, the basic quantities, missing data mechanisms, the methods for time-

to-event data and diagnostics are described. For joint analysis, different approaches 

to parameter estimation and the different modelling strategies are discussed. A gap 

in the research of joint modelling with regard to the use of parametric time-to-event 

models in joint modelling is identified. This thesis will try to fill in that gap. 

2.2 Longitudinal Data Analysis 

Longitudinal data are measurements of the samples (or subjects) often collected or 

measured repeatedly over time in studies like clinical trials or follow-up studies, in 

which individuals are measured repeatedly. It studies the change in an outcome over 

time. In longitudinal data analysis, there are two approaches to use: (i.) Marginal 

models –this refers to the outcomes of the population mean over time and the effects 

of the covariate on the population mean; (ii.) Mixed-effects models – represents the 

effects of the covariates on subject-specific mean response trajectories. Once the 

data structure is described, the key is to distinguish between the parameters of the 
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model, classified into fixed effects and random effects. In this way, the response or 

dependent variable is assumed a function of fixed effects, non-observable cluster-

specific random effects, and an error term. However, two main classes of models are 

reviewed - the linear mixed-effects models (LMM) for normally distributed 

longitudinal data and Generalized linear mixed-effects models, which is an extension 

of LMM to exponential families. 

i. Linear Mixed-Effects Models (LMM) 

Linear mixed-effect models also known as Classical mixed models have been a 

standard approach to analyse normally distributed longitudinal outcome variables. 

However, the general form of Linear Mixed effect Models assumes that  

,                              (2.4)i i i i iY X Z b = + +  

where  is the outcome vector for subject  with dimension ,  and  are  

and  matrices of known covariates, . The columns of  are a 

subset of the columns in   such that . The error term ( ) is a  vector of 

measurement errors,  is a  vector called subject-specific random effects, and 

 is a  vector of regression coefficient called the fixed effects. The random 

effects assumed that ( )~ 0,  ib N D is independent of  and describe the between-

subject variability i.e. variance-covariance matrix  and 
1

n

i

i

N n
=

= while  explains the 

within-subject variability and assumed to follow ( )  0,  
e

N  . If  is a random 

intercept and the error terms are assumed to be mutually independent, we can then 

write 2

bD = and
2 

ie ne
I= , where  is the identity matrix of dimension . It follows 

that 2 2( , )b e  = or reparameterized as 2( , )b  = , where the intra-class correlation 

coefficient is expressed as 2 2 2/ ( )b b e  + . Equation (2.4) model implies that, 
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marginally,  follows a normal distribution with mean iX  and variance-covariance 

matrix     T

i i i i
V Z DZ= + . The random effects   ib  can be interpreted as residuals to 

express unit-specific trends deviating from the population mean. The simplest form 

of
i is

2 
inI . 

ii. Generalized Linear Mixed Effects Models (GLMMs) 

Generalized linear mixed-effects models (GLMMs) are an extension of generalized 

linear models by incorporating random regression coefficients to characterize within-

subject correlations in longitudinal or clustered data. GLMMs also extend linear 

mixed- effects models to a rich class of distributions, which can be generally 

expressed in the form of exponential families conditional on random coefficients. A 

distinctive feature of GLMMs is that the fixed effects may no longer have a marginal 

interpretation. In addition, the computational burden increases substantially in 

GLMMs. 

In GLMM, it is assumed that given a vector of random effects   ib ,   , 1, ,ij iY j n=  , are 

independent and follows a distribution in the exponential family with 

( )[ | ] |ij i ij ivar Y b V E Y b =   , where  is the dispersion parameter, and variance function 

 is determined by the specific distribution of   | ij iY b . The mean of conditional 

response  is linked to the fixed and random effects through a linear predictor  

for some known link function ɡ(.) 

 ( )

| ,

,ij ij

T T

ij

ij i

i

j i

ij j iX Z b

E Y b

 

 

=

= +

 =  

ɡ   
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The distribution of random effects  is commonly assumed as   0,
b

N
 
 
 
 . For 

instance, model (2.4) is a special case of the generalized linear mixed-effects model 

with identity link function ( )   =ɡ and normal distribution ( )20,N  for   | ij iY b . In this 

case ( )2 2  [ | ] , , . 1ij ivar Y b V = = = . Parameters in the generalized linear mixed- 

effects model can be estimated either by directly maximizing the likelihood with 

numerical integration, by EM algorithm, or by maximizing an approximation of the 

log-likelihood function. 

For Model assumptions, we assume each subject is associated with a vector of 

random coefficients (effects) . Let  denote the observation on subject  at 

occasion   , 1, ., ,  1, .,ij j n i n=  =  . Conditional on the random effects ,  are 

assumed to follow a distribution in the exponential family with probability density 

function 

 ( ) ( ) ( ) | , , exp ,ij i ij ij ij ijf y b y c y      = − +
    

where  and  are parameters and  and  are known functions. Based on 

the theory of exponential families, the conditional mean and variance of   ijY are 

( ) ( )| , ,ij ij i iju E Y b    = = and ( ) ( )  | , , /ij ij i ijv var Y b     = =  , respectively. Here we 

use  and  to denote the first and second derivatives of . Normal, 

binomial, Poisson, exponential, gamma, and inverse Gaussian distributions are 

special cases of exponential families. 

Difference from linear mixed effects models, GLMMs model the mean of Y through a 

one-to-one continuous differentiable transformation and assume that the transformed 

mean is characterized by a linear model, i.e.
T T

ij ij ij iX Z b = + , where ij  is the linear 
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predictor. The random effects  are usually assumed to follow a multivariate normal 

distribution with zero mean and variance-covariance matrix  and are assumed to be 

independent of the covariates. Therefore, linear mixed effects models are a special 

case of GLMMs, in which   has a marginal interpretation because 

( ) ( )  ( )| | , T T T

ij ij i ij ij i ijE Y E E Y b E x z b x   = = + =  given that ( ) 0iE b = . This indicates 

that the marginal mean ofY is a linear model with respect to  . However, this 

relationship is not generally true when the link function  is nonlinear. For other 

distributions in GLMMs,   is generally interpreted as the impact of covariates on the 

mean response of a specific subject conditional on the random effects.  

For GLMMs inference, the likelihood function of , ,  and D  is evaluated by 

integrating the conditional probability distribution over ib . Specifically, we have  

 

( ) ( ) ( )

( ) ( )

1

1 1

, , |

                  = |                       (2.5)
i

n

i i i i

i

nn

i i i i

i j

L D f Y b f b db

f Y b f b db

 
=

= =

=

 

  

The maximum likelihood estimates can be obtained by maximizing the equation 

(2.5). Since the integration is intractable, the Gaussian quadrature approximates 

through integral as a weighted sum, can be used to approximate the integral.  

2.3 Time-to-Event Data Analysis 

Survival analysis, or time-to-event data analysis, refers to statistical methods for 

time-to-event data. An event time, or survival time, is defined as the time from an 

initial event such as diagnosis of a disease to the occurrence of an event of interest 

such as death. Time-to-event data arise commonly in clinical trials and other follow-

up studies. For example, time to death or treatment failures is a primary clinical 
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outcome variable to evaluate the effectiveness of a treatment for patients with a 

terminal disease. For convenience, I used the words event, failure, and death 

interchangeably. 

Survival Function 

Assumes that T  is a continuous random variable with probability density function 

(p.d.f.) ( )
( )

0
lim
t

P t T t t
f t

t



→

  +
=  and cumulative distribution function 

(c.d.f.) ( )  PrF t T t=  , giving the probability that the event has occurred by 

duration t  and t  is the change in time. The survival function is  

( )   ( ) ( )Pr 1
t

S t T t F t f x dx



=  = − =   

which gives the probability of being alive just before duration t , or more generally, 

the probability that the event of interest has not occurred by duration t . 

Hazard Function 

Hazard function describes the instantaneous rate of occurrence of the event (failure 

rate) or risk of an even within ,t t dt+ provided that the subject survived to 

time t (Rubin 2004). This is also referred to as the risk function and expressed as 

 ( )
 

0

Pr |
lim , 0
t

t T t dt T t
h t t

dt →

  + 
=   

The numerator of this expression is the conditional probability that the event will 

occur in the interval ,t t dt+  given that it has not occurred before, and the 

denominator, dt  is the width of the interval. Taking the limit as the width of the 

interval goes down to zero, we obtain an instantaneous rate of occurrence. 

The cumulative hazard function, which is the area under the hazard function up to 

time, t is defined as  
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 ( ) ( )
0

t

H t h u du=    

Finally, the survival function in terms of the hazard function is expressed as  

( ) ( )( ) ( )( )
0

exp exp
t

S t h u du H t= − = −  

However, let  be subjects censored in survival data and subject  number of death 

at time  with event , the likelihood function for both survival and hazard 

function can be written as: 

 
1 1

( ) ( )
n n

i i i

i i

S t H t
= =

= =    

With the equation, the log likelihood can be expressed as: 

( )

( )( ) ( )( )

( )( ) ( )

1

1

1

       

       

n

i

i

n

i i i

i

n

i i i

i

log log

log S t log H t

log H t t





=

=

=

=

=

= −







 

Non-Parametric Methods of Survival Models 

Using Non-parametric methods in survival analysis, the main characteristic is that 

there is no assumptions made about the distribution of  survival times. The Kaplan-

Meier estimate is common when discussing nonparametric survival methods. The 

Kaplan-Meier product-limit estimator was proposed by Kaplan and Meier in 1958 

(E.L. Kaplan 1958).  

The Kaplan-Meier Estimate 

The Kaplan-Meier estimate of the Survival function ( ) ( )PrS t T t=   of T can be 

expressed as  
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 ( )

1

1

1,                              0

ˆ                  (2.6)
1 ,         ,

j

j

t t
j

t t

S t d
t t



 


 = 
−    

 


  

where 10 ... Dt t    denote the distinct uncensored number of event times it  (Dirk F. 

Moore 2016), ( )
1

n

j i ji
I T t

=
=   is the number of subjects who are “at risk" just prior 

to time jt , and ( )
1

, 1
n

j i j ii
d I T t 

=
=  =  is the number of uncensored events at jt . 

Note that ( )Ŝ t is a proper survival function only if the largest observation time is 

uncensored (E.L. Kaplan 1958). 

This estimate contains no assumed parametric distribution. Nonparametric survival 

methods are particularly useful when we want to compare the survival curves of two 

groups, such as an experimental group and control group (Dirk F. Moore 2016). 

Nonparametric methods  was examined as an exploratory analysis, but since this 

method is not able to generate survival probabilities, other methods are utilized more 

extensively. 

Semi-parametric Methods of Survival Models 

The most popular Semiparametric model for survival analysis modelling is the Cox 

proportional hazard model (Cox 1972). Given that  is the vector covariates and 

( )| (t)t X is the conditional hazard of  at time , the hazard function for the Cox 

model is expressed as: 

 ( ) ( ) ( )( )0| (t) exp                              (2.7)Tt X t X t  =   

where ( )1,....,
T

n  = is the vector of regression coefficients and ( )0 t is the baseline 

hazard function (unspecified). The model (2.7) can be rewritten as: 
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( ) ( )( ) ( )

( ) ( )  ( )

0

0

0

0

| (t) exp

| (t) exp exp

t

T

t

T

t X X s d s

or

S t X X s d s

  

 

=

 
= − 

 





 

where ( )| (t)t X and ( )| (t)S t X are the conditional cumulative hazard function and 

conditional survival function given the covariate history up to t and ( )0 t is an 

unspecified baseline cumulative hazard function.  

A proportional hazards model stems from the previous idea of wanting to examine 

the difference between two survival distributions. This difference can be defined 

using the parameter, , in what is known as the Lehmann alternative, 

( ) ( )1 0S t S t


= (Dirk F. Moore 2016). Utilizing the relationship between the survival 

function and the hazard function we know that ( ) ( )1 0h t h t=  and association is 

known as the proportional hazards assumption (Dirk F. Moore 2016). We can also 

allow the inclusion of covariates in vector z  by letting ze  = (Dirk F Moore 2016). 

There are no assumptions made about the distribution of event times with a 

proportional hazards model (Anon 2012). The partial log-likelihood function does not 

require a baseline hazard to be specified (Anon 2012). Instead, the model assumes 

that covariates act multiplicatively on the hazard rate (Anon 2012) 

Partial Likelihood 

Cox proportional hazards model is a Semiparametric model that extends the 

proportional hazards model by using the partial likelihood function (Fox and 

Weisberg 2011). The partial likelihood allows for a baseline survival distribution to be 

defined by covariates instead of a specific parametric survival distribution (Dirk F. 

Moore 2016). A basic representation of the Cox proportional hazards model is, 
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( ) ( ) ( )( )0| (t) exp Tt X t X t  =  

where ( )| (t)t X  is an unspecified baseline hazard function,   is a vector of 

regression coefficients, and ( )1 2, ,....,T

i i i ip   = is a vector of covariates (Anon 

2012). The common method for the model inference on  is the partial likelihood 

method to eliminate the infinite-dimensional baseline hazard function and it is 

expressed as: 

 ( )
( )( )

( )( )
( )

1

exp

exp

i

i

T
p

i i

T
i j i

j T

X T
L

X T






=



 
  

=  
 
  




  

where  ( ) : iR t i T t=  is the risk set at time t , and the set of individuals who are at 

risk or alive prior to time t . By maximizing the partial likelihood estimate of Cox 

model, a joint likelihood of   and 0 can be expressed as: 

( ) ( )  ( )( ) ( )0 0 0
0

1

, exp exp exp ( ) ( )
i

i
p

T
T T

i i i i

i

L d T X T X s d s



     
=

  = −
    

   

Despite the Cox proportional hazards model's popularity, its proportionality 

assumptions are often not satisfied. Thus, there is a need for other models that do 

not use proportionate assumptions. 

Parametric Methods of Survival Models 

Parametric methods for survival analysis make use of the assumption that the 

survival times come from a specific distribution (David Collett 2003; Klein and 

Moeschberger 1997) such as Exponential, Weibull, Log-Logistic, Log-Normal, 

Extreme Value and Logistic distribution. Consequently, some distribution are applied 

to actuarial applications, in which left-truncation and right censoring cases such as 

Gompertz, Perks, Beard, Makeham, Makeham-Perks and Makeham-Beard 
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distributions are widely used. These distributions are generally used to model 

explicitly the effect of variables on survival times and likelihood inference is used for 

different shapes of the hazard function. 

In a right-censoring case, the likelihood of parametric model is given by: 

 

( ) ( )  ( ) 

( ) ( )  ( ) 

1

1

1

, , ; ;

, , ; ;

i i

i

p

i i i i

i

p

i i i i

i

L t f t S t

or

L t h t S t

 



   

   

−

=

=

=

=





  

where  represents the number of individuals,  indicates the parameters estimates, 

 denotes the follow-up time in  individual and is the censoring indicator for the 

 individual. 

In left truncation cases, the probabilities are changed to conditional probabilities 

using 
( )

( )

;

;

i

i

f t

S A




 and 

( )

( )

;

;

i

i

S t

S A




 to replace the probability density and survival function, 

respectively. The likelihood for left truncation and right-censoring changes to (Klein 

and Moeschberger 1997): 

 ( )
( )

( )

( )

( )

1

1

; ;
, ,

; ;

i ip
i i

i i

i i i

f t S t
L t

S A S A

 

 
 

 

−

=

   
=       

   
   

where  is the truncation time for the  individual. The two likelihoods are differ 

because the left-truncated and the right-censoring likelihood is divided by the 

survival of the truncation times. 

Parametric survival models are based on a distribution for the hazard function, 

( )h t (Dirk F. Moore 2016). A simple survival distribution is the exponential 

distribution, which has a constant hazard, ( )h t = (Dirk F. Moore 2016). I can derive 

the cumulative hazard function as: 
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 ( ) ( ) 0
0 0

|
t t

tH t h u du du t t  = = = =    

Consequently, I have a survival function of ( ) tS t e −= and probability density function 

is ( ) tf x e  −= . Several other distributions can be utilized for a parametric survival 

model depending on the distribution that best fits the data. 

Unlike nonparametric survival models, parametric models do generate a survival 

probability based on covariates. Parametric models lack the flexibility to capture the 

shape of the hazard function and patient-specific survival predictions are highly 

dependent on a correct baseline hazard function (Crowther, Abrams, and Lambert 

2012). 

Time-Independent Covariates 

Assume that X is the time-independent covariates and ( )|S t X is the survival 

function subject with covariate X can be predicted from Cox model as: 

( ) ( ) ( ) 0
ˆ ˆ| exp exp                         (2.8)TS t X t X =  

Hence, ( )ˆ |S t X  can be approximated by a normal distribution with mean ( )|S t X and 

variance of ( )  ( ) 
( ) ( )

2
1

2
ˆ ˆˆ | |

ˆexpi

i

Ti

TT t
j ij R T

Var S t X S t X W M W

X T





−





 
  

= + 
  
    




  

where 
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( ) ( ) ( )

( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

02

ˆexp
ˆ ,

ˆexp

ˆexp

ˆexp

ˆ ˆexp exp

ˆexp

i

i

i

i

i

i i

i

T

j i j ij R T

i
TT t

j ij R T

T
T

j i j i j ij R T

i T

j ij R T

T
T T

j i j i j i j ij R T j R T

T

j ij R T

X T X T
W t

X T

X T X T X T

X T

M

X T X T X T X T

X T


 








 













 



= −
 
  






=
   
      −













 


2

i

p

T t




 
   



 

Time-Dependent Covariates 

Assume that ( )X t  is the time-dependent covariates with conditional survival function 

( )( )|S t X t is estimated either by: 

( ) ( )( ) ( )0

0

ˆ ˆ ˆ| (t) exp exp

t

TS t X X s d s 
 

= − 
 
  

Or product-limit estimate 

( ) ( )  ( )0

0

ˆ ˆ ˆ| (t) 1 exp

t

T

s t

S t X X s d s 


 
= − 

 
   

It is nontrivial issue to obtain an analytical variance of ( )( )ˆ |S t X t and this can be 

done by the bootstrap method. 

Accelerated Failure Time Models 

Accelerated Failure Time (AFT) model provides an alternative to Proportional Hazard 

model for statistical modelling of survival data. AFT model is used in industrial fields 

and seldom applied in the case of survival data. If the appropriate parametric form of 

AFT model is used then it offers a potential statistical approach in case of survival 

data, which is based upon the survival curve rather than the hazard function. The 

AFT model is also known as the log-location scale model. 

Accelerated Failure Time Models with Time-Independent Covariate 
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The accelerated failure time (AFT) describe the relationship between the survival 

time T of a time covariate X subject and the baseline time 0T given as ( )0 exp TT T X= , 

where 0T is the time-independent of X . The AFT model can then be expressed as: 

 

( ) ( ) 

( ) ( )  ( )

0

0

| exp

| exp exp

T

T T

S t X S t X

or

t X t X X



   

=

=

  

where ( )|S t X is the survival function at the time T and ( ) 0 exp TS t X is the 

baseline survival function at the time T . The factor ( )exp T X  is referred to as the 

acceleration factor. This factor measures the association in the AFT model and is the 

ratio of survival times corresponding to any fixed value of survival time. The 

acceleration factor evaluates the effect of predictor variables on survival time. In 

AFT, if ( )exp 1T X  , the effect of covariate is decelerated and if ( )exp 1T X  , the 

effect of the covariate is accelerated. 

Parametric Accelerated Failure Time Models 

In a parametric AFT model, the error term is assumed to follow a parametric 

distribution. Some common parametric AFT models are discussed briefly below. 

a. Exponential AFT model: The model assumes that   

 ( ) 0log TT q q X = + +   

where  is independent of X and follows the standard extreme-value distribution with 

survival function ( ) ( ) exp expP z z  = −  . The model is also equivalent to: 

 
( ) ( ) 0| exp TS t X S t X=

  

( )   ( )0 0 exp ,  exp ,  and =where S t t q q  = − = − −  
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Exponential AFT satisfies the proportional hazard function assumption as: 

( ) ( ) ( )0| exp Tt X t X  =  

with an exponential baseline hazard ( )0 t =  

b. Weibull AFT model: the model assumes that  

( ) 0log TT q q X = + +  

where 0  is a scale parameter, and  is independent of X and follows the standard 

extreme-value distribution with survival function ( ) ( ) exp expP z z  = − . The 

Weibull AFT model is expressed as: 

( ) ( ) 0| exp TS t X S t X=  

( )   ( )0 0 exp ,  exp / ,  =1/ , and =where S t t q q     = − = − −  

The Weibull AFT satisfies the proportional hazard function assumption as: 

( ) ( ) ( )0| exp Tt X t X  =  

with an exponential baseline hazard ( ) 1

0 t t  −= . The Weibull AFT model reduces 

to the exponential AFT model when 1 = . 

c. Log-normal AFT model: the model assumes that  

( ) 0log TT q q X = + +  

where  is independent of X and follows a normal distribution with mean 0 and 

variance . The Log-normal AFT model is expressed as: 
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( )
( ) ( )0log

 | 1

Tt q X
S t X






 − − 
= −  

  

 

( )
( ) 0

0

log
 1  and =

t q
where S t q 



− 
= − − 

 
 

 

 

Semi-parametric Accelerated Failure Time Models 

Semi-parametric AFT model assumes the following model 

0

TY q q X = + +  

where Y is a known monotone increasing transformation of a survival time and  is 

independent of X . To make 0q  identifiable, assume further that ( ) 0E  = . 

Alternatively, the model can be expressed as: TY q X = +  where 0q = +  

Accelerated Failure Time Models with Time-Dependent Covariate 

An AFT model relates the survival timeT of a time-dependent covariate X  subject to 

the baseline time variable 0T that corresponds to the condition 0X = expressed by 

( )( )0

0

exp

T

TT X s ds=   

where 0T is assumed to be independent of X and it can also be expressed as: 

( ) ( ) 0

0

| (t) exp

T

TS t X S X s ds
 

=  
 
  

where ( )| ( )S t X t is the conditional survival function of a subject given ( ), (0 )X s s t   

at the time T , the covariate history up to time , and 0( )S t is the survival function at 

the time 0T  (Dupuy 2014; Jin 2016; Lin and Ying 1995; Robins and Tsiatis 1992). 
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This implies that subjects with covariate X fail on expanded time 

scale ( ) 
0

exp

t

T X s ds . Under this model, the subject covariate history 

 ( ),0X s s t  is accelerated by a factor of ( ) exp T X t at time  relate to the 

baseline. However, the model can be written as: 

( ) ( )  ( ) 0

0

| (t) exp exp

t

T Tt X X s ds X t   
 

=  
 
  

where ( )| (t)t X is the conditional hazard of T  at time  given the covariate history 

up to  and 0( )t is the baseline hazard function. 

2.4 joint model overview 

Joint models of longitudinal and survival data have received increased attention from 

scholars in the past two and half decades. The models are useful for analysing 

survival models with missing data or measurement errors in time-dependent 

covariates. It could also be used for longitudinal models with informative dropouts as 

well as the associated structures between the longitudinal and survival processes via 

latent variables. In practice, joint model of longitudinal and survival data often occur 

simultaneously. For instance, in several biomedical researches, patients’ information 

(such as CD4 cell) are frequently collected repeatedly over period with interest on 

the time to recovery or recurrence of a disease. However, there may be association 

between the longitudinal trajectories and the time-to-event. Using a separate 

analysis for the association between the longitudinal trajectories and the time-to-

event may lead to biased and inefficient estimates if the two outcomes are 

correlated. Therefore, joint models are essential to use in order to incorporate all 

information simultaneously for valid and efficient estimates and inferences.  
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The motive behind joint modelling in medical research emanated from four broad 

scientific situations: 

i. Ways to improve inference for a longitudinal measurements with an 

informative dropout 

ii. To improve inference for survival measurements with an intermittent and 

endogenous time-dependent covariates 

iii. To study the correlated association structure between the longitudinal 

trajectories and the time-to-event 

iv. To improve the inference efficiency from the external information 

From  previous studies, several approaches have been developed for modelling 

longitudinal and survival data simultaneously such as combining the prediction 

association of longitudinal measurements and time to an event (Wulfsohn and Tsiatis 

1997). Joint models with an inclusion of endogenous and time-dependent covariates 

to model the relationship between the covariate and risk of the event (Rizopoulos, 

2011). In some proposed methods, joint modelling reduces biasness in the extended 

Cox model and the two-stage model and also improves predicted survival 

probabilities (Hickey et al. 2016). However, a study shows that joint modelling has 

been used to determine a surrogacy to an event such as cancer biomarkers as an 

indicator of cancer progression or regression (Elashoff, Li, and Li 2007). A classic 

approach of joint models setting is the use of mixed-effects model for the longitudinal 

data and a Cox models or an Accelerated failure time (AFT) for the survival data, 

with a shared random effects. Most times, the likelihood approach is used for the 

parameter estimates through EM algorithm.  

Past studies have tended to focus on the ‘Univariate’ joint modelling, in which a 

single longitudinal and a single survival response are jointly modelled. In practice, 
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most of the data collected are frequently complex. It is imperative to collect multiple 

longitudinal outcomes and possibly multiple survival outcomes such as recurrent 

outcomes from patients to have a good joint modelling analysis. This is referred to as 

‘multivariate joint modelling’. An increase in the flexibility and predictive power from 

the extension of the classical Univariate joint model structure to a multivariate 

framework brings a number of computation intensity challenges. 

There have been several attempts to extend joint analysis for a single longitudinal 

outcome to the situation where multiple outcomes are simultaneously recorded with 

the event times. A key issue in modelling multivariate longitudinal data and their 

association with event times is to formulate the joint evolution of these multiple 

endpoints. In a standard joint models formulation, the underlying current subject-

specific value of a biomarker is assumed to associate with the risk of an event 

happening at the same time t with an association parameter , which may not be 

enough to describe the association structure. In the light of this, different studies 

have proposed an alternative association structure between the longitudinal and 

time-to-event outcomes (Brown, Ibrahim, and Degruttola 2005; Rizopoulos et al. 

2014; Ye, Lin, and Taylor 2008).  Of note, the model for longitudinal outcomes needs 

to take into account two outcomes association; first, the risk of an event allowed to 

depend on the longitudinal profile slope, and secondly, the risk of an event that 

depends on the cumulative effect. These data associations are usually characterized 

by latent variables, either continuous (random effects) or discrete (latent classes), 

which are also used to link the longitudinal outcomes and survival data.  

In the setting of standard Cox model, many studies have proposed the use of 

weighted cumulative models (Breslow et al. 1983; Thomas 1988). In another study, a 

parametric time-dependent weight function was included as an extension to Cox 
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model (Abrahamowicz et al. 2006). In other studies on joint model of survival-

longitudinal data, the association structure is often evaluated by either linking the 

value of longitudinal outcomes into the survival model or by using the shared 

random-effects models to examine scientifically the association between the survival 

time and the underlying unobserved longitudinal processes (Henderson et al. 2000; 

Tsiatis and Davidian 2004a).  

2.5 Joint Modelling for Longitudinal and Time-to-Event Data 

Joint modelling is an extension of survival data analysis, which combines the 

prediction association of longitudinal measurements and time to an events (Wulfsohn 

and Tsiatis 1997). In biostatistics, a longitudinal biomarker measured repeatedly over 

time may be used to predict occurrence of an event such as death or inception of a 

disease. Joint modelling plays a significant role and allows the inclusion of 

endogenous covariates and time-dependent covariates in  a model to see 

relationship between the covariate and the risk of the event (Anon 2012; Rizopoulos 

2011a). In some previous studies, joint modelling reduces biasness in the extended 

Cox model and the two-stage model also improves predicted survival probabilities 

(Hickey et al. 2016). However, Another study however, shows that joint modelling 

can be used to determine surrogacy to an event such as cancer biomarkers as an 

indicator of cancer progression or regression (Elashoff et al. 2007).  

2.5.1 Mixed-Effects Models for Longitudinal Sub-model 

Let ( )iy t  denote the observed value of the longitudinal outcome for the ith individual 

(i =1,….,n) at time t with a particular time points , 1.......ij it j n= . Therefore, the mixed-

effect model is expressed as: 
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Where  is the regression coefficients of a matrix vector for the fixed effects ,  is 

the row vectors matrix for the random effects . E denotes the random effects 

covariance variance matrix,  represents the error terms and  as the variance 

of the error term. 

2.5.2 Cox Models for Survival Data Sub-model 

Assume that  represents the true failure time (FT) for the ith  patients with  

censoring time and *( , )i i iT min T C= denotes the observed FT for ith  patients. 

However, hazard function from the Cox model is assumed to satisfy the relationship: 

* *
|

0
0

( | )
( ) lim ( )exp( ),      0i i

dt

P t T t dt T t
h t h t w t

dt


→

  + 
= =   

where  is the associated covariates with the hazard function and  represents the 

corresponding regression coefficients vector,  denotes the baseline hazard 

function. It is assumed that the hazard ratio is only determined by the covariates, 

whose value is fixed during the follow-up, such as age, gender and treatment 

outcomes.  

2.6 Two-Stage Joint model Approach 

A common approach used for joint model of longitudinal and survival model is based 

on two-stage methods, which seems to be simpler in computation. In a study by 

Henderson et al  (2000), different random effects were allowed in the longitudinal 
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and survival models with the assumption that the within subject-specific random 

effects are correlated (Henderson et al. 2000). Others studies propose the use of 

Bayesian approaches for the joint models (Huang, Hu, and Dagne 2014; Ibrahim, 

Chen, and Sinha 2004). In the literature, various kinds of two-stage approaches have 

been developed. A naïve two-stage approach has the following stages: 

Stage 1: A linear mixed-effect model is fitted for the longitudinal data and the 

covariates measured/mismeasured are estimated from the fitted model. 

Stage 2: The estimates from the first stage is then substituted to fit the survival 

model separately with unobserved true covariates values.  

Modified two-stage approaches have developed to serve as an advantage over the 

naïve methods for simplicity and ease of implementation with an existing software. 

The constraint of these approaches is that they may lead to biased estimates and 

inferences. There are many reasons for this. Firstly, if the truncations results from 

the events are not included in the longitudinal covariates model parameter 

estimation, the longitudinal outcomes will produce bias estimate. Secondly, if the 

estimation of uncertainty in the first stage is not integrated in the second stage for 

the estimation of survival model hence, the standard errors of the estimates in the 

survival model may be underestimated. Thirdly, the longitudinal and survival 

processes information are not fully combined in each model fit to result in the most 

efficient estimates. In this sense, various modified two-stage approaches have been 

developed to address the bias estimation issues in the longitudinal model 

parameters caused by ignoring informative truncation and depending on the strength 

of the association between the longitudinal and survival processes. 
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2.6.1 The naïve two-stage method and full likelihood approach 

Suppose in a sample of n  subjects, let 
ijY  represents the longitudinal measurements 

collected on each subject at times , 1,....,ijt i n= , 1,...., ij n= , where in  is the number of 

measurements on subject i  and ( )1,..., ii i inY Y Y= . Denote iT  to be the event time for 

subject i , which is subject to iC censoring assumed to be non-informative, where iC is 

independent of iT  given covariates iX . The observed event time for subject i  are 

( ),i i iT min T C= and ( )i i iI T C =  , such that 1i = if i iT C and 0i = if i iT C . The 

longitudinal data consist of the measurements of the ith subject 

 ( ), 1,2...,ij i ij iy y t j n= =  taken at time points
ijt . 

The joint model for longitudinal and survival data is postulated from a Cox hazard 

model in the form: 

( ) ( ) ( )T

0| ( ), ( )                    (1)i i i i it t w t exp w m t    = +  

 0( ) ( )exp ( ) ( ) ,       0T T T

i i i i ih t h t w m x t z t b t  = + + 
 

 

where ( )0 t  is the unspecified baseline hazard function and iw  is a baseline 

covariates vector. Also,  ( ) ( ),0i it m t  =    represents the history of the true 

unobserved longitudinal process up to time point 
ijt . The longitudinal sub-model is 

given as: 

2

( ) ( ) ( ),

( ) ( ) ( ) ( ),  ( ) ~ (0, )                              (2)

i i i

T T

i i i i i i

y t m t t

m t x t z t t t N




    

= +

= + +
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where 
i

x  and 
i

z  are matrices of the fixed effects and random effects respectively.   

is a vector of regression coefficient. The naïve two-stage approach for the joint 

models is specified as proposed by (Tsiatis and Davidian 2004b). In this method, the 

longitudinal model is first fitted separately and the fitted values from the longitudinal 

analysis, ˆ ( )im t are incorporated as covariates in the joint model fitting.  

Based on the limitations of the existing methods, Huong et al (2018) recently 

proposed a modified two-stage approach, in which the fitted values of the 

parameters from the longitudinal model were used and the expected function was 

approximated for the complete data log-likelihood. In contrast to the use of the partial 

likelihood method to estimate the coefficients regression for the relative risk model, 

Huong et al (2018) applied the approximation approach for the full likelihood method. 

Newton-Raphson algorithm was used for the implementation in the second stage. 

The two-stage method for the joint model by Huong et al (2018) is described as 

follow: 

Stage 1: Linear mixed-effects model is fitted for the longitudinal process from the 

longitudinal sub model as: 

2* *
ˆ( ) ( ) ( ) ( ) ( ) ( ),  ( ) ~ (0, )               (3)

i i i i i

T T

ij ij ij i ij i ij i ij ijy t m t t x t z t b t t N


    = + = + +  

Stage 2: The joint model is then fitted using the estimates from the fitted parameters 

in stage 1 in the form of: 

( ) ( ) ( )T

0 ( ) ( )ˆ ˆ( ) , ( )                         (4)T T

i i i i i i ix t z t bt t exp w m t m t     += + =  



 
32 

The advantage of  Huong et al (2018) proposed method   is the ease  of 

implementation when the standard mixed-effects software is used for the stage 1 

and software for survival model for the stage 2.  

2.7 A standard Joint model for longitudinal and survival data 

Joint models are used to deal with statistical issues that cannot be handled in 

separate model analysis of longitudinal and survival data. It is a refined approach to 

model the association between time-dependent covariates and the event of interest 

when the covariate trajectory is not completely observed and subject-specific to 

measurement error. Most times, two types of data are collected for a longitudinal 

study for each subject-specific variable, namely, repeated events of longitudinal 

measurements during follow-up observation, and process of events in time-

dependent covariates. The joint modelling approach assumes that the random 

effects account for the correlation between the longitudinal repeated measures as 

well as the association between the longitudinal outcome and the survival events; 

the random effects are shared between the two processes (Rizopoulos 2010). The 

joint model is the duo of a survival model for both the categorical and continuous 

time-to-event process with a mixed-effects model for repeated data. However, the 

joint model for longitudinal and survival data, therefore, enables one to study the 

likelihood approach framework, where generalized linear mixed-effects models 

measure the longitudinal process and the time-dependent event is measured by Cox 

regression model.   

In a sample of n  subjects, let 
ijY  represents the longitudinal measurements collected 

on each subject at times , 1,....,ijt i n= , 1,...., ij n= , where in  is the number of 

measurements on subject i  and ( )1,..., ii i inY Y Y= . Denote iT  to be the event time for 
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subject i , which is subject to iC censoring assumed to be non-informative, where iC is 

independent of iT  given covariates iX . The observed event time for subject i  are 

( ),i i iT min T C= and ( )i i iI T C =  , such that 1i = if i iT C and 0i = if i iT C . In 

models selection approach, marginal distribution of iY  would be specified in which 

generalized linear mixed effects models within-subject correlations are modelled by 

latent random effects ib , where ib  or ( )if b indicates the underlying trajectory/trend in 

iY . However, under the framework of generalized linear mixed effect model, the 

distribution of 
ijY is expressed as: 

( )  1| ,T T

ij i ij ij iE Y b X X b= +g  

where ( ).g  is a link function. In the joint model literature, iT  is usually characterized 

using parametric or semi-parametric Cox models. A parametric model can be 

specified as 

( )  '

1| ,T

i i i iE T b X vb= +g  

where '

iX  is a vector of covariates that are associated with the event process, and 

( ).g is a known link function. Under the Cox regression framework the hazard of iT  is 

specified as 

( ) ( ) ( )'

0 1| ,T

i i i it b t exp X vb  = +  

where ( )0 t  is a parametric or completely unspecified baseline hazard function. If 

( )0 1,i i ib b b= contains the random intercept and slope for iY , then the model assumes 

that the subject-specific starting value and time trend in the underlying trajectory of 
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iY  affect the event risk. A natural extension is that a function of ib , e.g., 0 1i ib b t+  is 

treated as a time-dependent covariate in model.  

The joint model can also be specified if assumed to non-zero-mean normal 

distribution for a shared parameter model and if the parameter is shared by both 

longitudinal and survival data according to Rizopoulos (2010). 

The joint model for a shared parameter model is expressed as: 

 0

( ) ( ) ( ) ( ),

( ) ( )exp ( ) ( ) ,       0

T T

i i i i i

T T T

i i i i i

y t x t z t t

h t h t w m x t z t t

  

  

 = + +


 = + +   
 

where m computes the effect of the repeated biomarkers with the risk of an event. 

However, it is assumed that the risk of time-dependent outcome is correlated with 

the true and unobserved value of the repeated biomarkers. 

Rizopoulos (2010) showed an extended joint model to allow an additional source of 

variation at the survival endpoint that cannot be explained by the longitudinal data. 

Specifically, a separate random variable i  can be introduced into the model, so that 

we have 

( ) ( ) ( )'

0 1| , ,T

i i i i i it b t exp X vb    = + +  

Alternatively, the survival model can be specified as: 

( ) ( ) ( )'

0 2| ,T

i i i it t exp X    = +  

And i and ib are assumed to have a multivariate normal distribution with variance-

covariance matrix  
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Joint modelling can be used to predict that the event risk at the given time t depends 

on the mean level of biomarkers at the same time period t, 

1 0

1

( ) exp ( )
P

T

k k ik pk ip

P

M h t w m f t
=

 
= + 

 
  

It can be used as an extension of model M1, which is not only the current value but 

also the slopes of biomarker trajectories at the time t related to the hazard, 

'

2 0

1 1

( ) exp ( ) ( )
P P

T d

k k ik pk ip pk ip

P P

M h t w m f t m f t
= =

 
= + + 

 
   

where ' ( ) ( )ip ip

d
f t f t

dt
= . Since ' ( )ipf t denotes the slope of the longitudinal outcome over 

a period, 
pkm is held constant.  

The third extension of joint modelling considers the prediction of the Model M3 as a 

cumulative value of the longitudinal outcome, which relates the survival outcomes 

with a summary area under the longitudinal profiles of the whole history of the 

markers. 

3 0

1 0

( )exp ( )

tP
T d

k k ik pk ip

P

M h t w m f s ds
=

 
= + 

 
   

However, the model is not depending only on the current value of the longitudinal 

outcome but also on the cumulative value in time t calculated by the integral of ( )ipf s . 

Rizopoulos (2010) proposes a combination of all the models expressed to give: 
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This model assumes that the risk for an event at a particular time t is associated with 

the underlying value of P1 biomarkers at a specific time point and the area under the 

curve for P2 biomarkers at the same time point. 

2.8 Joint model likelihood 

The likelihood function of joint modelling of the observed data 
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where ( )iP b  is the probability density function of random effects and  is the 

parameter vector of the joint model. Given the unobserved “true” value of the 

longitudinal process  | |( ) ( )i i im x t z t + , the observed time to event and longitudinal 

data are assumed to be mutually independent. 

Maximum likelihood estimation is one of the standard approaches to obtain the 

parameters estimates and statistical inference for the joint modelling, in which the 

integration with respect to random effects is required. Due to the complexity of the 

joint model, the integration usually turns out to be quite a challenge. The EM 
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algorithm can be successfully applied to the joint modelling for inference, and the 

expectation of any function of random effects is evaluated by using an m-points 

Gauss-Hermite quadrature formula. A Monte Carlo approach is also quite 

straightforward to assist in obtaining the expectation of functions of random effects or 

using fully exponential Laplace approximation for these integrations with respect to 

random effects.  
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction  

This chapter describes the method for data collection, models specification and the 

proposed joint models for the study. It entails the detailed account of the research 

design according to the structure of the objectives of the study. It also outlines the 

ethical consideration, and how it was addressed. It discusses the challenges around 

the statistical models used in the joint model of longitudinal and survival data and 

proposed a method to deal with such challenges. In this chapter, we used the 

existing models to see the challenges in the model fit and provide an improved 

model to overcome the challenges. 

3.2 Data Collection and Design 

Data were collected from Grey Hospital in King Williams Town, Eastern Cape 

Province, South Africa.  In total, 612 tuberculosis (TB) patients, with impaired renal 

function were sampled out of the 2987 patients on observation study whose data 

was recorded and stored in computer database files of the hospital. The data was a 

special consideration applied to the treatment of TB in patients with impaired renal 

function from March 2008 to March 2018.  

The main complaint of the patients admitted into the study were patients with at least 

3 months history of TB, patients with marked loss of weight such as 20kg in 3 

months, patients with generalized abdominal pains and those with severe fever and 

night sweats. The background co-infection considered were patients with HPT, 



 
39 

dyslipidemia, newly diagnosed HIV, a CD4 count of 13, and started on AZT/3TC/EFV 

2 weeks before the study. The study also considered some clinical examinations like 

vitals if normal, generalized shotty nodes, bipedal oedema and all other systems if 

they are normal. The epidemiology of TB in patients with renal disease is seen if 

there is an increased risk incidence and prevalence of TB in End-stage renal disease 

(ESRD) and dialysis patients. Also, if there is an increased rate of opportunistic 

infections (OIs) especially TB in HIV-positive hemodialysis patients versus HIV-

negative patients and if there is an increase in mortality of these patients.  

3.2.1 Ethical Consideration 

Govan Mbeki Research and Development Centre (GMRDC), University of Fort Hare, 

Alice with ethical reference number QIN111SAZE01 and the Eastern Cape 

Department of Health, Eastern Cape, South Africa, with reference number- 

EC_201808_007 approved this research. Subjects were identified with numbers 

instead of their names and all information regarding the study was kept confidential.  

3.3 Joint Model Estimation Methods 

In medical research, it is very common to collect data on measurements of 

longitudinal outcomes such as a continuous response and the time-to-event 

outcomes of each individual as well as other additional covariates data. Most times, 

the interest is to capture the longitudinal processes trajectory and/ or to specify the 

association characteristics between the longitudinal processes and the survival 

outcomes with other additional covariates. A popular approach is to assume a linear 

mixed-effects model for longitudinal data (Laird and Ware 1982) and the use of Cox 

proportional hazards (PH) model for the survival outcomes (Cox 1972). However, in 
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this thesis, we are addressing two joint modelling challenges that usually occur in 

analyzing the joint model of longitudinal and survival data.  

1. The challenge of the association structures between longitudinal covariates 

and time-to-event process in examining the within-subject measurement error 

that could influence the estimation, when the assumption of normality and the 

mutual independence is violated. 

2. The model for longitudinal outcomes taking into account the association of the 

outcome from the risk of an event that depends on the longitudinal profile 

slope and the risk of an event that depends on the cumulative effect. 

Longitudinal outcomes are usually collected with time, and is used as time-

dependent covariates when modelling survival outcomes. To apply the Cox PH 

model with time-dependent covariates, complete understanding of the true 

covariates account is required for each individual. Generally, time-dependent 

covariates are often measured at irregular intervals or intermittently with error. This 

complicates and often leads to estimation biases in the survival model if mis-

measured values are substituted for true covariates in the proportional hazards 

model (Prentice 1982). The primitive idea is to simply assign or attribute the 

unknown value to ordinary least square estimate, which also show biased inference 

in the estimation process.  

3.4. Joint Model with Correlated Measurement Error for Repeated Covariates  

Many research methodologies have proposed a reduction in the bias estimate for the 

parameter inference association structures between longitudinal covariates and time-

to-event process. This is because of the  failure time due to the within-subject 

measurement error that could influence the estimation when the assumption of 
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normality and mutual independence  is violated (Bartlett and Keogh 2018; Lash et al. 

2014) or for the available longitudinal outcomes collected intermittently only (Van 

Den Houten et al. 2019). In order to reduce the bias of the primitive approach, 

regression calibration is used to replace the unknown covariates by available 

observed data regression, and may still give biased estimates (Spiegelman, Rosner, 

and Logan 2000; Wang et al. 1998; Wang, Lin, and Guttierrez 1999). It may, 

therefore, yield incorrect results for a measurement error that is large and/or large 

relative risk of interest (Wang, Wang, and Wang 2000; Wulfsohn and Tsisatis 1997). 

Also, a corrected score approach was proposed in order to reduce the estimate bias 

to deal with the time-independent covariates of interest like random effects, which 

usually leads to consistent and robust estimators (Kosmidis 2014; Kosmidis and Firth 

2010). Likelihood approach has been consistently and efficiently used with the 

assumption of normality for both random effects and the measurement error (Faucett 

and Thomas 1996; Henderson et al. 2000; Rizopoulos 2011b; Wulfsohn and Tsisatis 

1997). Likelihood approaches can be very intensive computationally due to the 

integration of the random effects. A conditional score estimation using the 

generalized linear model was proposed in a study to provide adequate statistic for 

the unknown covariates, and also used conditional estimating equation for the 

parameter inference (Stefanski and Carroll 1987). In another study, a conditional 

score estimator for Cox proportional model was proposed for the parameter to avoid 

any underlying random effects assumptions (Tsiatis and Davidian 2001). Song and 

Wang (2014) improved the method to show the consistency and robustness of the 

estimates.  

When modelling the joint longitudinal-survival data, the normality assumption is 

considered on measurement error and unobserved random effects. In the literature, 
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the normality assumption is taken for granted in the sense that within-subject random 

errors are normally distributed and mutually independent. For distributional normality 

assumption, the measurement error can, to some extent, still correlate but the 

random effects may not exactly account for all the underlying association. It is also 

noted in the literature that misspecification of the covariance structures could 

contribute to statistical inference error (Daniels and Zhao 2003; Henderson et al. 

2000; Tsiatis and Davidian 2004b; Wang, Carroll, and Liang 1996).  

3.4.1 The Proposed Estimation Method for Covariate with Correlated Error 

This chapter examined the within-subject measurement error that could influence 

estimation when the assumption of normality and mutual independence is violated by 

using the conditional score (CS) approach proposed by (Tsiatis and Davidian 2001). 

Given the potential issues of assumption violation, an estimating equation approach 

based on generalized conditional score (GCS) is proposed to relax parametric 

distributional assumptions for random effects and is relatively easy to implement. 

The main interest is to jointly model the time-dependent biomarkers and event times, 

in which a longitudinal model is used to characterize the biomarker underlying 

(unobservable) trajectory, which is incorporated as a latent, time-dependent 

covariate in the survival model to predict failure times for Cox models with 

intermittently measured Time-dependent covariates. Then, the proposed method is 

compared with other existing methods (such as Idea and naïve regression (NR) 

methods) to determine the best performing method in examining the within-subject 

measurement error that could influence estimation when the assumption of normality 

and mutual independence is violated. 
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3.4.2 Model definition 

For subject i let ( )iY t denote the underlying, smooth trajectory of biomarker, iT  the 

event time, and ( )iZ t  a set of possibly time-varying covariates. Because the 

biomarker is intermittently measured at time points 
ijt and there are intra-subject 

measurement errors, ( )iY t is not directly observable; instead, measurements of ( )i ijW t  

are available such that 

( ) ( ) ( )i ij i ij i ijW t Y t t= +                       (1) 

where ( )i ijt  are measurement errors. In reality, the event time iT  may be subject to 

right censoring so we observe ( )min ,i i iT T C
−

=  and ( )i i iI T C =  , where iC  is the 

censoring time. Measurements of ( )i ijW t  will then be available at time 

points , 1,..,ij i it T j n
−

 = . 

The longitudinal model focuses on characterizing the change in ( )iY t  overtime. If the 

change can be described by a polynomial function or splines of time t, then ( )iY t  is 

specified as 

( ) ( ) ,T

i iY t t b=                  (2) 

where ib  is a vector of subject-specific random effects. A simple example 

is 0 1( )i i iY t t = + , or more flexibly
0 1 0( ) ... , ( ,.., )p T

i i i pi i i piY t t t b b b  = + + + = . Model (2) 

assumes the trajectory of ( )iY t  is determined by a relatively small set of time-fixed 

random effects, which may not fully account for within-subject variation overtime. A 

mean-zero stochastic process ( )iU t  is thus added to the model such that 

( ) ( ) ( )T

i i iY t t b U t= +                      (3) 
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The process ( )iU t  is usually assumed to be independent of ib  and covariates ( )iZ t . 

Examples of ( )iU t  include integrated Ornstein-Uhlenbeck (IOU) process and 

stationary Gaussian process. In fact, ( )iU t  captures biological fluctuations around the 

smooth trend ( )T

it b  and induces an additional within-subject autocorrelation 

structure on top of that by ib . Choosing in between (2) and (3) reflects the belief 

whether the “inherent," dominant time trend in the biomarker is associated with T  or 

the biological fluctuations are important features we should capture as well when 

characterizing the survival model.  

In (2) and (3), random effects ib  are commonly assumed to be normally distributed 

and the mean and covariance matrix may depend on ( )iZ t . Measurement errors 

2( ) ~ (0, )i ijt N   are independent of ib  and ( )iU t  for all 0t  . Under (3), ( )i ijt  takes 

into account measurement error as well as local, transient biological variation that is 

unlikely to carry over across j , so the independence assumption for ( )i ijt  at 

different 
ijt  is reasonable. Model (3) reduces to (2) when the stochastic process ( )iU t  

is absorbed into ( )i ijt  so that ( )i ijt  contains both measurement error and local 

biological fluctuations. In this case, a covariance structure may be necessary for 

( )i ijt  to characterize within-subject correlation over time. If time-period is too long, 

the within-subject correlation due to biological variation will be negligible, or if 

measurement error is in a larger scale than biological variation, the independence 

assumption would still hold approximately. 

A Cox proportional hazards model is used to specify the interrelationship 

between ( )iY t , iT , and ( )iZ t : 
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0
0

{ | , ( ), ( )}
( ) lim ( )exp{ ( ) ( )}            (4)Ti i i i

i i i
dt

P t T t dt T t Y t Z t
t t Y t Z t

dt
   

−

→

  + 
= = +  

where ( ) { ( ),0 }i iY t Y t =   is the history of the biomarker up to time t . This 

specification implies that given covariates and history ( )iY t , the biomarker is 

associated with the event risk through its current value ( )iY t . Alternative 

specifications are possible, for example,
0 1( ) ( ) exp{ ( )},T

i i it t b Z t   = +  where 1ib  is the 

random slope if ( )iY t . This formulation is applied to circumstances where it is 

believed that, given ( )iY t  and covariates, the main force that drives the event process 

is the underlying constant rate of change in ( )iY t . The Cox model proposed shows 

that the censoring is non-informative, the random effects ib  and failure time are both 

independent of the longitudinal measurements observed. 

Many researchers using standard statistics software like R and SAS have studied 

parameter estimation and statistical inference for the joint model for the linear mixed 

effects with different potential covariance structures for within-subjects. In many of 

these studies, i are assumed to be mutually independent with constant variance 

i.e. 2~ (0, )
iid

ij N  , may not be true all the time. In this study, we examined the mutually 

independent assumption violation influence of i on the statistical parameter 

estimation and inference of survival without any distributional assumption made on 

random effects ib . 

3.4.3 Conditional Score Estimator 

A conditional score estimator (CS) was first proposed by (Tsiatis and Davidian 

2001). It is an estimating-equation based method, that condition on a “sufficient 

statistic” for random effects ib  in respect to unknown parameters in the Cox model 
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when the underlying time-dependent covariate follows a linear mixed effect model. 

Consider a random intercept and slope model for ( )iY t : 

                                                 (5) 

Assume measurement errors ( )i ijt  in (1) are i.i.d. normal variables 2(0, )N   given 

random effects ib , covariates ( )iZ t , ( )i ijY t
−

 and that the biomarker is measured at 
ijt  

and subject i  is at risk at
ijt . Let ˆ ( )iY t  be the ordinary least squares estimator for ( )iY t  

based on measurements up to t . In the case of (5), ˆˆ ( ) (1, ) ,i iY t t b=  where ˆ
ib  is the 

ordinary least squares estimates intercept and slope for subject i . Note that ˆ
ib  is 

defined for subjects with at least two measurements by time t . Let ( )iJ t  be the at-risk 

indicator for subjects with at least two measurements at time t , such 

that
2( ) ( , )i i iJ t I T t t t=   . Under the assumption that censoring or seeing a 

measurement at time t  given ib  and biomarker data prior to t  are not dependent on 

measurement errors prior to t , it can be shown that 

2ˆ ( ) | ( ) 1, ( ), , Z ( ) ~ ( ( ), ( )),i i i i i i iY t J t t b t N Y t t  =  

where 2( ) { , } and ( )i ij ij it t t t t  =   is the variance of predicted value ˆ ( )iY t . In the case 

of (5), 

,

2
2 ,

, , 1

1( ) ( ) ,
( )

i tn

i ij i t
i t i t j

t t t
n t t


=

= −
+ −   

where 
,i tn  is the number of time points in ( )i t  and 

,i tt  is the mean of the 
,i tn  time 

points. 

The following derivation of conditional score estimating equations assumes 
2  is 

known. Extension to the case of unknown 
2  is discussed next. 

0 1( ) .i i iY t b b t= +
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Define the counting process 
2( ) ( , 1, )i i i idN t I t T t dt t t=   +  =  .The conditional 

density for the joint distribution of ˆ{ ( ) , ( ) }i idN t r Y t y= = is 

ˆ{ ( ) , ( ) | ( ) 1, ( ), , Z ( )}

ˆ ˆ{ ( ) , ( ) , ( ) 1, ( ), , Z ( )} { ( ) | ( ) 1, ( ), , Z ( )}       (6)

i i i i i i

i i i i i i i i i i i

P dN t r Y t y J t t b t

P dN t r Y t y J t t b t P Y t y J t t b t



 

= = =

= = = =  = =
                       

The first component from (6) is a Bernoulli variable with probability given as: 

0 ( ) exp{ ( ) ( )},T

i it dt Y t Z t  +  and the second is a normal variable 2( ( ), ( )i iN Y t t  . After 

simplifications it can be shown that to order dt , (6) is equal to 

 
1

2

( )
2 2 2

0

2 22

ˆ ˆ( )exp{ ( )}( ) ( ) ( ) ( ) ( )
exp ( ) exp ,

( ) 2 ( ){2 ( )}

idN t
T

ii i i i i
i

i ii

t Z t dtt dN t Y t Y t Y t
Y t

t tt

  

    

    + +   
 −    

        
 

Which, indicates that a "sufficient statistic" for ib  is 2 2 ˆ( , , ) ( ) ( ) ( )i i i iS t t dN t Y t   = + . 

Conditional on 2( , , )iS t   , it can be shown that 

2

0

2 2 2

0

* 2

0

lim { ( ) 1| ( , , ), Z ( ), ( ), ( )} /

( )exp{ ( , , ) ( ) 2 ( )} ( )

( ) ( , , , ).

i i i i i
dt

T

i i i i

oi

P dN t S t t t J t dt

t S t t Z t J t

t E t

  

       

   

→
=

= − +

=

 

This suggests that the conditional density of 

1
( ) ( )

n

ii
dN t dN t

=
= given 2( , , ), Z ( ), ( ), ( )i i i iS t t t J t   , 1,.., ,i n= is * 2

0 ( ) ( , , , )oit E t    , 

where * 2 * 2

1
( , , , ) ( , , , )

n

o oii
E t E t     

=
= . Therefore, a natural estimator for 0 ( )t dt  is 

given by 

* 2

0 ( ) ( ) ( , , , )ot dt dN t E t   =                                (7) 

The parameters   and   can be estimated by solving the following estimating 

equation, which is an analogue to score equations of partial likelihood: 

2 * 2

0

1

{ ( , , ), Z ( )} { ( ) ( , , , ) ( ) } 0
n

T

i i i oi

i

S t t dN t E t t dt     
=

− =  

Substitution of 
0
ˆ ( )t  in (7) for 0( )t  yields the conditional score estimating equation 
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* 2
2

* 2
1

( , , , )
[{ ( , , ), Z ( )} ] ( ) 0,

( , , , )

n
T i

i i i

i oi

E t
S t t dN t

E t

  
 

  =

− =                  (8) 

where 

* 2 2 * 2

1

( , , , ) { ( , , ), Z ( )} ( , , , ).
n

T

i i i oi

i

E t S t t E t       
=

=  

When
2 0 = , the estimating equation (8) reduces to the partial likelihood score 

equations. 

The above derivation assumes that 
2  is known.  

According to the proposed work of (Tsiatis and Davidian 2001), a within-subject error 

was assumed to be normally distributed and mutually independent, violating the 

independent assumption may result to a bias estimate, in which the variance of the 

least square fit will have changed. From the assumption that the random effects ib  

and the error within-subject i for the i subject are normally distributed with 

2(0, )
inN I  is given as ˆ(Z ( ) ) ( )i ls iE t Z t=  and 

2 1

, ,
ˆVar(Z ( ) ) ( , ) ,T T

i ls i t i tt t D D t −=  which will 

help in the statistical inference of conditional intensity for survival analysis when 

using the conditional score approach framework. However, in most cases 
2  needs 

to be estimated from the data. A natural estimator of 
2  is the pooled residual sum 

of squares from the least squares fit over subjects with at least three measurements: 

2 1

1

( 2)
ˆ ,

( 2)( 2)

n

i ii

n

i ii

I n SSE

I n n
 =

=


=

 −




 

where iSSE  is the residual sum of squares for the in  measurements on subject i . It 

can be shown that 
2̂  is a consistent estimator of 

2  under the assumption that the 

measurement errors ( )i ijt  are i.i.d. 
2(0, )N   random variables given random effects 
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ib , covariates Z ( )i t , the biomarker history prior to 
ijt  , and ( ) 1i ijJ t = . When 

2̂  is 

substituted for
2 , solving the conditional score equation (8) yields ˆ ˆ( , )  . It can be 

shown that ˆ ˆ( , )   is consistent and asymptotically normal. The usual sandwich 

approach may be used to derive their standard errors. Compared to the likelihood 

approaches, the conditional score method is relatively easier to implement. Although 

the derivation is discussed in a simple situation where a linear time trend is assumed 

for each subject, the method can be extended to general polynomial and spline 

trajectories. 

If the mutually independent assumption has been violated with covariance ,i the 

variance formula above for Ẑ ( )i lst  is no longer valid.   The underlying variance is 

given as  

1 1

, , , , , , ,
ˆVar(Z ( ) ) ( , ) ( , ) ,T T T T

i ls i t i t i t i t i t i t i tt t D D D D D D t− −=                     (9) 

where the covariance matrix of the measurement errors for 
thi  subject at time t is 

, ( : )i t ij ijCov t t =   and assumes that the measurement errors are mutually 

independent, the above algorithm can be expressed as  

2 1

, ,
ˆVar(Z ( ) ) ( , ) ,T T

i ls i t i tt t D D t −=                        (10) 

where 

1

2 2 1

1

( 2)(tr( ) tr(( ) ))
ˆ( ) ,

( 2)( 2)

n T T

i i i i i i ii

n

i ii

I n D D D D
E

I n n
 

−

=

=

  − 
=

 −




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3.4.4 Inference on Pooled Estimator 

If I define ,i i i iW Db = +  where iD is the ( 1)in   matrix with 
th

 column 
it  where 

1 2( , ,.., )
i

T

i i i int t t t=  and 0,1,.., in=  and 
2̂  is the estimating equation solution.  

2

1

ˆ ˆ( 2)(( ) ( ) ( 2) ) 0,
n T

i i i i i i i ii
I n W Db W Db n 

=
 − − − − =  

where 1 1ˆ ( ) ( ) .T T T T

i i i i i i i i i ib D D D W b D D D − −= = +  as  

1ˆ ˆ( ) ( ) ( ( ) ) ,
i

T T T T

i i i i i i i n i i i i iW Db W Db I D D D D −− − = −  gives the unbiased estimating 

equation for 
2  and we note that 

2

2

1 2

ˆ ˆ( ( 2)(( ) ( ) ( 2) ))

ˆ ˆ( [ ( 2)(( ) ( ) ( 2) ) | , , , Z , , ])

( [ ( 2)( ( ( ) ) ( 2) ) | , , , Z , , ])
i

T

i i i i i i i i

T

i i i i i i i i i i i i i i

T T T

i i n i i i i i i i i i i i i

E I n W Db W Db n

E E I n W Db W Db n T C b t n

E E I n I D D D D n T C b t n





  −

 − − − −

=  − − − −

=  − − −

 

However, since we have ( | , , ,Z , , ) 0i i i i i i iE T C b t n =  and 2Var( | , , , Z , , )
ii i i i i i i nT C b t n I = , 

1

1

1

1

[ ( 2)( ( ( ) ) ) | , , , Z , , ]

( 2)( [ ( ( ) ) ) | , , , Z , , ])

( 2)(tr{( ( ) ) ( ) | , , , Z , , )})

( 2) tr{( ( )

i

i

i

i

T T T

i i n i i i i i i i i i i i

T T T

i i n i i i i i i i i i i i

T T T

i n i i i i i i i i i i

T

i n i i i i

E I n I D D D D T C b t n

I n E I D D D D T C b t n

I n I D D D D E T C b t n

I n I D D D D

 

 



−

−

−

−

 −

=  −

=  −

=  − 2

1 2

2

) }

( 2)( { ( ) }) }

( 2)( 2) ,

i

T

n

T T

i i i i i i

i i

I

I n n tr D D D D

I n n







−=  −

=  −

 

Since, 
2̂ is uniform estimate of 

2 and shows that the internal conditional 

expectation is zero; hence, the estimating equation is unbiased.  

However, if ( | , , ,Z , , ) 0i i i i i i iE T C b t n =  and Var( | , , ,Z , , )i i i i i i i iT C b t n =  , then,  

1

1

[ ( 2)( ( ( ) ) ) | , , , Z , , ]

( 2)( { } {( ) })

i

T T T

i i n i i i i i i i i i i i

T T

i i i i i i i

E I n I D D D D T C b t n

I n tr tr D D D D

 −

−

 −

=   − 
 

Hence, since 2

ii nI  therefore 
2̂ is often a biased estimate and shows different 

interpretation. The influence of misspecification of covariance of error on the 
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inference of the survival parameters may lead to a larger bias for the conditional 

score estimator. This shows that when the mutually independent assumption is 

violated, it may result in the misuse of least square estimator variance of Z ( )i lst , 

which causes biased inference for survival parameters using the above conditional 

score approach. To rectify this erroneous variance estimator, one can substitute it by 

equation (9). In lieu of this, generalized least square (GLS) estimate of unknown 

underlying variance for survival parameters which is proposed in this thesis and 

assumes to have smaller variance than ordinary least square (OLS) estimate and 

referred to as generalized conditional score estimator.  

3.4.5 Generalized Conditional Score Estimator 

Let Ẑ ( )i glst  represents the GLS estimate of Z ( )i t  for measurement errors for 
thi  

subject at time t , thus we have 1 1 1

, , , , , ,Z ( ) ( )T T T

i gls i t i t i t i t i t i tt t D D D W− − −=   . This GLS estimate 

Ẑ ( )i glst is assumed to follow a multivariate normal distribution with mean Z ( )i t  and 

variance 1 1

, , ,( )T T

i t i t i tt D D t− − and it is denoted by
2

ˆ ( )i glsX t
 .  However, to show that the 

conditional score on Z ( ) 1i t = and the full expression for sufficient statistic is  

2

ˆ, ( )
ˆ( , , ) ( ) Z ( ) ,

i gls
i i t i i glsX t

S t dN t t  = +  

where ( )idN t  is the counting process increase of 2( ) ( 1, , )i i i iN t I U t t t= =   . 

Likewise, the conditional intensity function is expressed as 

1

,
0

lim ( ( ) 1| ( , , ), ( )i i i t i
dt

dt P dN t S t Y t−

→
=   

2 2

ˆ0 , ( )

1
( )exp ( , , ) Z ( ),

2 i gls

T

i i t i iX t
t S t Y t     

 
=  − + 

 
            (11) 

The conditional intensity function of  
1( ) ( )n

i idN t dN t−=   is expressed as 
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, 0 0{ ( , , ), Z , ( ), ( ), 1,.., } ( ) ( , , , )i i t i i i tS t t t Y t i n t E t    = =   

where
,{ : 1,.., }t i t i n =  = and 0 0 ,

1

( , , , ) ( , , , )
n

t i i t

i

E t E t   
=

 =  ; 

2 2

ˆ0 , , ( )

1
( , , , ) exp ( , , ) Z ( ),

2 i gls

T

i i t i i t i iX t
E t S t Y t      

 
 =  − + 

 
 indicates a fair estimate of  

0 ( )t dt , which is expressed as 0 0( ) ( ) ( , , , )tt dt dN t E t  =  . 

Let ( , )i kt  represents a deterministic function (predictably-locally bounded 

process) and I denote ( , )T

k  = , therefore, intensity function of 
thi  subject is 

denoted as ( , )i kt  to underline the parameter function of k .  An estimate of 

k can be defined as a solution to the equation using the M-estimator proposed by 

Andersen et al. (1993, p433) as 

1

1

0 ,

1

( ) ( , ){ ( ) ( , ) }

          ( , ){ ( ) ( , , , ) ( ) } 0,          (12)

n

k i k i i k

i

n

i k i i i t i

i

V t dN t t dt

t dN t E t t dt

   

   

=

=

=  −

=  −  =





 

When I substitute 
0
ˆ ( )t dt  for 0 ( )t dt  the equation (12) may be expressed as  

0 ,

1

1 0

( , , , )
( ) ( , ) ( ) ( ) 0

( , , , )

n
i i t

k i k i

i t

E t
V t dN t dN t

E t

 
 

 =

 
=  − = 

 
  

 and define 
1 1 1 ,( , , , ) ( , , , )n

t i i i tE t E t   = =    with 
1 , 0 ,( , , , ) ( , ) ( , , , ),i i t i k i i tE t t E t     =    

subsequently, the estimating equation can be given as 

0 ,

1

1 0

( , , , )
( ) ( , ) ( ) 0.             (13)

( , , , )

n
i i t

k i k i

i t

E t
V t dN t

E t

 
 

 =

 
=  − = 

 
  

From what was proposed by Andersen et al. (1993, p433) on M-estimator and 

Maximum likelihood estimator, we, therefore, aimed for two classes of ( , )i kt  . The 

first class is
,( , ) ( ( , , ), Z )T

i k i i t it S t  =  , which is referred to as ME estimation and the 
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second class is
2

ˆ, ( )
( , ) ( ( , , ) , Z )

i gls

T

i k i i t iX t
t S t   =  − , referred to as MLE estimation.  

The main interest is to estimate a statistical inference for ( , )T

k  = , which is a 

straightforward application to the proposed generalized conditional score framework. 

Newton-Raphson numerical methods are expected methods used to obtain the 

solution to the equation (13), which in fact may have various roots when a primitive 

estimator is used as a starting value and may be a pragmatic approach for locating 

consistent root. We used simulation studies to ascertain the proposed processes.   

3.4.6 Inference on Conditional Intensity and Sufficient Statistics 

A detailed inference for determining and verifying the sufficient statistics and 

conditional intensity function process as proposed in our models are given as 

( )

2

1 2

0

( ) .. ,

( ) ( )exp ( ) Z    1,2,.., ;    1,2,.., ,

q

i ij io i ij i ij iq ij ij

T

i i i i

W t b b t b t b t

t t X t i n j m



   

 = + + + + +


= + = =

 

 where 
0 1( , ,.., )T

i i i iqb b b b= , 
1 2( , ,.., ) ~ (0, )

i

T

i i i m i iN   =   and GLS estimator of  ( )iX t is 

expressed as  

1 1 1

, , , , , ,( ) ( ) ,T T T

i gls i t i t i t i t i t i tX t t D D D W− − −=    

The mean and variance of the generalized least square estimator are given as  

1 1 1

, , , , , ,

1 1 1 1 1 1

, , , , , , , , , , ,

1 1

ˆ, , ,

ˆ   ( ( ) | ) ( ) ,

ˆVar( ( ) | ) ( ) ( )

                           = ( )

T T T T

i gls i i t i t i t i t i t i t i i

T T T T

i gls i i t i t i t i t i t i t i t i t i t i t i t

T T

i t i t i t

E X t b t D D D D b t b

X t b t D D D D D D t

t D D t 

− − −

− − − − − −

− −

=   =

=     

 = 2

( )i glsX t

 

Let assume that 1

, , or i t i t

−  is known, hence the conditional estimator of ˆ ( )i glsX t on 

{ , ( ), ( ) 1, }i i i ib t t Y t Z= is normally distributed with mean of 
0( ) q

i iX t b t ==   and 

variance 1 1

, , ,( )T T

i t i t i tt D D t− − . Therefore, we 

have ˆ{ ( ) , ( ) | ( ) 1, , ( )i i gls i i i ijdN t X t x Y t b W t s= = = taken up to include time  at ( )it t t is 
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( ) ( )ˆ ˆ( ) , ( ) , , , ( ) ( ) | ( ) 1, , , ( )i i gls i i i i gls i i i iP dN t X t x b Z t t P X t x Y t b Z t t= = = = =  

( ) ( )
( )

2

2

ˆ1 ( )

0 0 1 2
2

ˆ ( )

( ( ))
exp

2
( ) exp ( ) Z 1 ( ) exp ( ) Z .

2

i gls

i gls

i

X tT T

i i i i

X t

x X t

t dt X t t dt X t
  

     



−

 −
 
 
    = + − +

   
 

The likelihood for conditional intensity of { ˆ( ) , ( )i i glsdN t X t= } given { ( ) 1, , , ( )i i i iY t b Z t t= } 

to the order of dt is expressed as  

( )
( )

( )

2
( )

0 1 2 2
2 ˆ ( )
ˆ ( )

( )

0

2 2

ˆ ˆ( ) ( )

ˆ ˆ( ) 2 ( ) ( ) ( )1
( ) exp ( ) Z exp

2
2

ˆ ˆ( ) exp Z( ) (
exp ( ) ( ) exp

2

i

i gls

i gls

i

i gls i gls

dN t
i gls i gls i iT

i i

X t
X t

dN t
T

ii gls i

i i

X t X t

X t X t X t X t
t dt X t

t dtX t X
X t dN t

  




 


 

 − +
  + −

   
 

    
   = + −

  
  

2 2

2

ˆ ( )

) ( )
.   (3.14)

2
i gls

gls i

X t

t X t



 +
 
 
 

When I have conditional intensity on ( ) 1iY t = , complete sufficient statistic ( )iS  for 
ib  

becomes 

2

ˆ, ( )
ˆ( , , ) ( ) ( )

i gls
i i t i i glsX t

S t dN t X t  = +  

However, equation (14) becomes  

( )

( )
( )

( )

,

( )
2 2 2 4 2

ˆ ˆ0 ( )

1 2 2 2
2 ˆ ˆ( ) ( )
ˆ ( )

( )
2

0

1 2 2
2 ˆ ( )
ˆ ( )

2 ( ) ( ) ( )( ) exp Z ( )
exp

2
2

( ) exp Z 1
exp ( )

2
2

i

i gls i t

i gls i gls

i gls

i

i gls

i gls

dN t
T

i i i i ii X t X i i

X t X t
X t

dN t
T

i
i

i i

X t
X t

S S dN t dN t X tt dt X t S

t dt S
S dN t

   

 


 





   − + +
   − +

 
 

 
 = − + −

( )

( )

2
2 2

ˆ 2( )
ˆ ( )

2
( )

2 2

ˆ0 02 ( )
ˆ ( )

2 ( ) ( )
( )

2

1
( ) exp Z exp ( ) ( )

2 2

ˆ( ), ( ) | ( ) 1, , , ( ) ,

i gls

i gls

i

i gls

i gls

i i i
iX t

X t

dN t
T i

i i i iX t

X t

i i gls i i i i

X t S X t
dN t

S
t dt S dN t dN t

P dN t X t Y t b Z t t

 


     


 −
 +
 
 

 
  = − + −

   
 

= =

where ( )
2 1 2

2

ˆ0 2 ( )
ˆ ( )

2 ( ) ( )
exp 2

2 i gls

i gls

i i i

X t

X t

X t S X t
 



− −
 =
 
 

. Therefore, we have 
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( )

( )

( ) ( )

,( ) 1| ( , , ), , ( ), ( ) 1

( ) 1, | , ( ), ( ) 1
.

( ) 1, | , ( ), ( ) 1 ( ) 0, | , ( ), ( ) 1

i i i t i i i

i i i i i

i i i i i i i i i i

P dN t S t Z t t Y t

P dN t S Z t t Y t

P dN t S Z t t Y t P dN t S Z t t Y t

=  =

= =
=

= = + = =

 

The numerator ( )un  and denominator ( )ed  for the above equation is expressed as 

( ) ( )

( )

2
2 2

ˆ0 02 ( )
ˆ ( )

2

02

ˆ ( )

1
( ) exp Z exp | ... ,

2 2

exp | ... ,
2

i gls

i gls

i gls

T i
u i i i iX t

X t

i
e u i i

X t

S
n t dt S P b db

S
d n P b db

     





 
 = − + −
 
 

 
 = + −
 
 





 

The density function for random effects 
ib is denoted as the probability of ( )| ...ib . 

Hence, I have 

( )

( )

( )

,

2
2 2

ˆ0 2 ( )
ˆ ( )

2 2
2 2

ˆ0 2 2( )
ˆ ˆ( ) ( )

0

( ) 1| ( , , ), , ( ), ( ) 1

1
( ) exp Z exp

2 2

1
( ) exp Z exp exp

2 2 2

( ) ex

i gls

i gls

i gls

i gls i gls

i i i t i i i

T i
i i X t

X t

T i i
i i X t

X t X t

P dN t S t Z t t Y t

S
t dt S

S S
t dt S

t dt



    


    
 



=  =

 
 − + −
 
 

   
   − + − + −
   
   

 ( ) ( )2 2 2 2

ˆ ˆ0( ) ( )

1 1
p Z exp ( )exp Z .

2 2i gls i gls

T T

i i i iX t X t
S t S dt        
   

− = − +   
   

 

Therefore, the conditional intensity function is given as  

( ) ( )2 2

ˆ, 0 , ( )

1
| ( , , ) ( )exp ( , , ) Z ( ).

2 i gls

T

i i i t i i t i iX t
t S t t S t Y t       

 
   − + 

 
 

3.4.7 Covariance Function Estimation 

It is a well-known fact that in the proposed generalized conditional score method, it 

requires the full understanding of within-subject covariance from the survival 

estimating equation (13), which is a function of covariance matrices
,i ts  and are 

usually unknown with a practicable inference. Let assume that 
c represents the 

parameters within-subject covariance and 
2 2( ) 0V  = denotes the corresponding 
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estimating equation, the inference of the statistical estimation for within-subject 

covariance 
i can exclude the survival parameters ( , )T

k  = , which is based on the 

information on the measurements derived from the longitudinal process. However, if 

we denote ( , , )T

c   = , then parameters estimating equations  can be expressed 

by 

1

2

( )
( ) 0                  (15)

( )

k c

c

V
V

V

 




 
= = 
 

 

where 
1( )k cV    is used to relax the required covariance 

,i ts understanding in 

equation (13).  I obtain the estimator for ˆ
c through two ways, firstly, it is obtained 

according to equation 
2( ) 0cV  =  and secondly, by replacing the parameters of the 

covariance by ˆ
c in 

1( ) 0k cV   =  for the survival inference. A method of modified 

Cholesky Decomposition approach is used to estimate the within-subject covariance 

for the longitudinal outcomes modelled with linear mixed effects 

2

1 2( ) .. ( )q

i i io i i i i iq i iW t b b t b t b t t= + + + + + model and assumed to be from multivariate 

normal distribution with (0, )iN  . 

3.4.8 Cholesky Decomposition Modification 

I adopted a modified Cholesky decomposition to model the positive definite 

covariance matrix 
i  in order to equally obtain 1 or T T T

i i i i i i iL L D L D L− − =  = , where 
iL a 

lower triangular matrix with diagonal entries equal to 1 and 
iD is a unit diagonal 

matrix. These lower diagonal entries, 
iL  are said to be negatives of the 

autoregressive coefficients ( )ijl  from the autoregressive model 

( )1

1 ,j

ij ij l ijl il il ijW X W X −

== + − +  where 
iX is the underlying values from longitudinal 

outcomes 
iW  and 

iD (diagonal entries) are the variance prediction denoted by 
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2 var( | )ij ij ib = . I also denote the model for unconstrained coefficients 2 and logijl ij   

as 

2= ,  log .T T

ijl ijl ij ij     =  

  Hence, the within-subject covariance parameter 
i  is denoted as ( , )T

c  = , 

where  and ijl ij   are vectors of covariates, which may comprise the baseline 

covariates and time based polynomial terms as well as the interaction between them.  

Similarly, random effects is treated as a nuisance parameter when using the 

generalized conditional score approach in order of sample size and can be possibly, 

a high dimension, thus MLE of 
c may result to a biased estimation. Because of this, 

we tend to use restricted log-likelihood for 
c express as 

( ) ( )( )

1

1 1

1

1

1 1
( ) log | ( ) | log | ( )

2 2

1
               ( ) ,                            (16)

2

n n
T

nq c i c i i c i

i i

n
T

i i i i c i i i

i

L D D

W Db W Db

  



−

= =

−

=

= −  − 

− −  −

 



 

Where ( )
1

1 1( ) ( )T T

i i i c i i i c ib D D D W 
−

− −=   , ( )i iCov  = and 
1( ,.., )

i

T

i i imW W W= .  

I assume that
1( ,.., )

i

T

ij i imW W W= , which denotes thj  measurement for i subjects and 

iX represents covariates measurements for i subjects. A modified Cholesky 

decomposition method is used to capture the within-subject covariance for a positive 

definite and symmetric matrix, assumed that observed data from different subjects 

are independent. The modified characteristics of log-likelihood function after 

multiplying by -2 w.r.t. 
c . 

( )( )

1

1 1

1
1 1 1 1

1

( ) log log

               +

n n
T

nq i i i i

i i

n
T T T T

i i i i i i i i i i i i

i

X X

W W W X X X X W

 −

= =

−
− − − −

=

=  + 

 −   

 



 

Then the derivatives are as follows 



 
58 

( )

( )

1
1 1 1

1 1

1

1 1

2 Trace 2 ,

Trace ,

T Tn n
nq T T T Ti i

i i i i i i i i i i i i i

i is s s

n n
nq T T T

i i i i i i i i i i

i is

L L
X X X H L X W D H L DW

R G W D L H R L DW

  



−
− − −

= =

−

= =

   
=  + 

   


= −



 

 

 

where Trace (.) is the trace function of a matrix, 
1( ,.., )

ii i i mR diag r r= , 

( )
1

1 1

i

T T

i m i i i i i iD I X X X X
−

− −= −    and ( )
1

1 1 1

i

T T T

i m i i i i i i i i i i iG I L X X X X L H L D L
−

− − −= −  = , 
imI is 

the identity matrix.  

Also we have 0 and 0i i i i iL X G D X= =  and the properties are  

( ) ( ) ( ) ( )

                    .

TT

i i i i i i i i i

T T

i i i i i

E WW Var W E W E W

X X

   



= +

=  +
 

I denote 
2

i

s

nq

i

s





= 


 and

2

i

s

nq

i

s





= 


, then we have the following 

( ) ( ) ( )

( )

1
1 1 1

1
1 1 1

Trace Trace

                   = Trace Trace

                   = Tr

s

T T
T T T Ti i

i i i i i i i i i i i i i i i i

s s

T T
T T Ti i
i i i i i i i i i i i i

s s

L L
E X X X H L X D H L D E WW

L L
X X X H L X D H L D

  
 

 

−
− − −

−
− − −

    
 =  +   

    

    
 +    

    

1

1

ace

                   = Trace 0,

T

i
i i i

s

T

i
i

s

L
H L

L
H





−

−

 
 

 

 
= 

 

 

( ) ( ) ( )( )
( ) ( )

( ) ( )

( )

1

1

1

2 Trace Trace

                    Trace Trace

                     Trace Trace

                      = Trace Trace

s

T T T

i i i i i i i i i i i i i

T T

i i i i i i i i i

T

i i i i i i

i i i i

E R G D L H R L D E W W

R G D L H R L D

R L H R L

R R L

  −

−

−

 = −

= − 

= − 

− ( )
( ) ( )

1

                      = Trace Trace 0

T

i i

i i

L H

R R

−

− =

 

( ) ( )

( ) ( )

        0

           0

s s

s s

i i i

i i i

E E

E E

 

 





  =  =

 =  =
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For the second derivatives, I denote 
si  and

si as the following 

( )

( )

1
1 1 1

1

1

1

1
Trace ,

1
Trace .

2

s

s

T Tn
T T T Ti i
i i i i i i i i i i i i i

i s s

n
T T T

i i i i i i i i i i

i

L L
X X X H L X W D H L DW

n

R G W D L H R L DW
n





 

−
− − −

=

−

=

   
 =  +  

   

  = − 





 

Derivative with respect to 
s  and

s  

( )

( ) ( )

1
1 1

1

1 1
1 1 1 1 1

1
Trace

              Trace

              

s

Tn
T T i i
i i i i i i

is s s

T T
T T T T Ti i i
i i i i i i i i i i i i i i i i

s s s

T
T i

i

s

L L
X X X H X

n

L L L
X X X H L H L X X X X H L X

D L
W



  

  



−
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= 

− −
− − − − −

 



    
=   

   

    
−  +        

 
+





1 1 ,
T T

T Ti i i i
i i i i i i i i i i

s s s s

L L D
H L DW W D H D L W

   

− −

 

   
+ +  

     

( )

( )

1
1 1 1 1

1

1
1 1 1 1

1
        

        Trace ,

s

Tn
T T T T T Ti i

i i i i i i i i i i i i i i i i i

i s s

T T
T T Ti i
i i i i i i i i i i i i i i i i

s s

L L
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n

L L
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

 

 

 



−
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=

−
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

 
=

 

   
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  

   
−  −  
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
=





( )( )1
1 1

1

1 1

1
Trace
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             2 ,

n
T T T

i i i i i i i i i i i

i

T
T T T T Ti
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s

R L X X X X L H R G
n

D
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

−
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=

− −

 



− + 

 



 

Thereafter, I have 

( )

( )

1
1 1 1

1
1 1

,

.

T
T T Ti i i

i i i i i i i i i i

s s s

T Ti
i i i i i i i i i i

D L L
X X X X H L H L L

D
X X X X H L R L D
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

−
− − −

 

−
− −



   
= −  + 

   


= 



 

In order for the restricted log-likelihood to serve as a linear regression model, 

restricted log-likelihood was maximized with respect to c  to obtain a restricted 

maximum likelihood estimate (REML) and it requires numerical approaches to 

estimate. However, one can use Newton-Raphson algorithm for the numerical 
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methods but complexity of restricted log-likelihood function as well as Choleskey 

regression model decomposition and the high-dimensional within-subject random 

effects, our try-out experiment indicates that Newton-Raphson algorithm 

performances are good enough to capture the ( , )T

c  = in a restricted maximum 

likelihood estimate (REML). Alternatively, Nelder-Mead algorithm was used to 

generate a restricted maximum likelihood estimate (REML) for ˆ
c and the standard 

deviation of ˆ
c was calculated by the sandwich rule. I let the first derivative to be 

equal to zero in order to show if they are unbiased estimator under the assumption 

that different subjects from the observed data are mutually independent. The REML 

is said to be consistent with asymptotic normal distribution under some certain 

conditions, i.e. if 
1

( ) ( ,.., )
d

T

   =    and 
1

( ) ( ,.., )
g

T

   =    have the unbiased 

estimating equations of 

( )
( )

0
( )

V









 
= = 

 

 

The sandwich rule may be used to compute the standard deviation of the estimators. 

I simulated data to demonstrate such properties and the results are shown in chapter 

four of this thesis. 

3.5 Joint Model with Cumulative Association Structure Effects  

There have been several attempts to extend joint analysis for a single longitudinal 

outcome to the situation where multiple outcomes are simultaneously recorded with 

the event times. A key issue in modelling multivariate longitudinal data and their 

association with event times is in formulating the joint evolution of the multiple 

endpoints. In a standard joint models formulation, the underlying current subject-

specific value of a biomarker is assumed to associate with the risk of an event 
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happening at the same time t with an association parameter , which may not be 

enough to describe the association structure. In l light of this, different studies have 

proposed an alternative association structure between the longitudinal and time-to-

event outcomes (Brown et al. 2005; Rizopoulos et al. 2014; Ye et al. 2008).  , It has 

been noted that the model for longitudinal outcomes needs to take into account two 

associated outcomes. First, the risk of an event that depends on the longitudinal 

profile slope, and second, the risk of an event to depend on the cumulative effect. 

These data associations are usually characterized by latent variables, either 

continuous (random effects) or discrete (latent classes), which are also used to link 

the longitudinal outcomes and survival data.  

In the setting of standard Cox model, many studies have proposed the use of 

weighted cumulative models (Breslow et al. 1983; Thomas 1988). In another study, a 

parametric time-dependent weight function was included as an extension to Cox 

model (Abrahamowicz et al. 2006). In many studies, joint model of survival-

longitudinal data is often evaluated by either linking them, putting the value of 

longitudinal outcomes into the survival model or by using the shared random-effects 

models to examine scientifically the association between the survival time and the 

underlying unobserved longitudinal processes (Henderson et al. 2000; Tsiatis and 

Davidian 2004a).  

In most cases, statistical inference is required to implement the survival model, when 

the complete knowledge of the longitudinal process is not completely available. In 

recent researches, it is observed that past and present longitudinal processes may 

informatively affect the survival model. Rate of change of the disease would be 

important if there would be a change in the risk factor. The analysis should not only 

be based on disease survival rate to the current risk factors at even time but also 
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pertains to the past period. If the level of longitudinal process on the survival risk is 

not accounted for by the past information in the analysis of the longitudinal data, the 

analysis may leads to under estimation or bias estimate.  

3.5.1 The Proposed Methods for the Estimation Challenges 

This chapter considers extensions of the joint models to multidimensional 

longitudinal and/or survival data. The approaches covered here are useful for studies 

that collect information on more than one longitudinal outcome or event on each 

participant (repeated measurements of multi-covariates patient-reported outcomes 

were used to predict patient survival). In the course of this study, we proposed to 

introduce the cumulative information longitudinal process into the survival model 

instead of using the standard default present value models to examine the 

association between the event time and longitudinal process. A weighted moment 

integration of trajectory information was used to observe the impact of longitudinal 

process on the survival time process and it is specified as 

 ( ) ( )
0

 

t

it v n v dv −                                               (17) 

where ( ).in  is the longitudinal process trajectory, v  represents the time point of past 

longitudinal process and ( ).  is the weighted function. However, the longitudinal 

profile levels at different past times may have different influence on the present 

survival risks. The weight of underlying longitudinal process for the present levels 

may be constant over  time but might get weaker as time lag increases. The 

longitudinal process may have positive effect or negative effect on the survival risk.  
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Integration has been a method to solve the problem arising from the statistical 

inference in the survival model with time-varying coefficient ( )t  for ( )in t . Many 

well-established statistical inference approaches have proposed survival model such 

as piecewise function for coefficient parameterization, linear polynomial method, B-

splines methods to describe the underlying time-varying coefficient. However, for this 

study, a double exponential function is proposed for the distribution of weighted 

curve ( )t v − . The weighted function through an exponential function can be given 

as  

( )

( )

( )

( )

,        0 , 0,  and ,         

,               0 , 0,  and ,         

a t v

a v

t v be v t a b R

v be v t a b R





− −

−

− =    

=    
                     (17.1) 

The reason for choosing exponential function for the effects of weighted function 

( ).  is that, the past effects of longitudinal process on the current risk of survival rate 

may have the tendency to be reducing as time lag increases.  

However, the joint model stated may not be appropriate for more complex 

association between the outcomes of longitudinal and time-to-event processes 

(Sylvestre and Abrahamowicz 2009). Therefore, a specific alternative model (a 

truncated weighted skewed-normal) that accounts for a cumulative effect for 

longitudinal outcomes that includes the integral of the longitudinal trajectory, was 

proposed (Brown 2009; Rizopoulos 2012), and this may increase the statistical 

power analysis (Abrahamowicz et al. 2006). This extension of joint model of the 

longitudinal outcome, which relates the survival outcomes with a summary area 

under the longitudinal profiles of the whole history of the markers as: 
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( ) 0

0

( )exp ( ) ( , )

t

T

i k k ik ip ih t h t w t f s b ds 
 

= + 
 

                   (17.2) 

where 
0

( , )

t

ip if s b ds is the summary area under the longitudinal profile bounded by 

( , )ip if s b .  

3.5.2 The Model formulation 

The framework for a single longitudinal process, in which linear mixed-effects models 

was proposed with polynomial function of time for longitudinal responses. This 

framework is extended in this study to statistical inferences on multivariate 

generalized linear mixed-effects model to describe the distribution of different types 

of longitudinal processes. I first looked at a class of model of random effects 

variables to model the association between longitudinal and survival data. Suppose 

there are K  response variables, for 1,..,k K= , let ikY  be a ( 1)ikn   vector of repeated 

responses for the thK  outcome collected on i subject at any time 

point , 1,.., , 1,...,ijk ikt i n j n= = . However, it is possible that the measurement ijkt  differs 

from subject to subject. In this proposed model, the assumption is that given random 

effects
ikb , the distribution of 

ikY  is a member of exponential families whose linear 

predictor is given as 

( ) ( ) | ( )k ik ik ikh E Y t b f t=                                      (18) 

where ( ).kh is a known monotonic link function, ( )ikY t  the thk  longitudinal response 

measured at time t  on subject i , and ( )ikf t  a time-dependent function to describe 
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the true, underlying longitudinal profile for response k . Within the mixed effects 

model framework, a natural choice for ( )ikY t  is 

( ) ( ) ( ) ,        T T

ik ik k ik ikf t X t Z t b= +                           (19) 

where 
k is a vector of fixed effects, and ( )ikX t and ( )ikZ t are covariates measured at 

time t . To allow flexible trajectories in the longitudinal responses, the components 

in ( )ikX t and ( )ikZ t  can be further classified into time-dependent covariates, and the 

latter may contain spline functions to characterize the time trend. 

The standard Cox proportional hazards model is proposed for survival data to 

investigate the association of event time with covariates and a cumulative condition 

to account for the trajectory longitudinal process information is assumed as 

( ) ( ) ( ) ( )
0 ( )

             
l

l

t
t t

i i
t

t

t v n v dv v n t v dv − = −                      (20) 

where ( ) 0, ,max 0,lt t c t c − −  represents the assumption that the cumulative 

information is computed if the baseline or last period of time t c− , which not earlier 

than the baseline subsequently is ( ) ( ) 0 , ,min ,t t t c t c . Therefore, with the 

assumption of generalized linear mixed effects (19) for multivariate longitudinal 

responses, equation (20) describes the longitudinal responses cumulative 

information, which, can be expanded as 
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( ) ( ) ( ) ( ) ( ) ( )

( )( )( ) ( ) ( )

( ) ( ) ( )

0 0 0 0

0 0 0

0 0

( ) ( ) ( ) ( )

0 0 0 0
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0 0 0
0
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1
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−
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i i
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t C v v dv X v dv Z b v dv

m t v dv m t v
q



    

    

 

−

= =

−

= =

=

+

 
= − + + 

 

= − + +

−
= +



    

   


0 ( )

0
       

t t
qv dv

(21) 

 where ( ) ( )0 1
qq q q

qt v C t v−

=− =  − , !
( )! !

q

q q
C

−
=  and ( ) ( )q

im t is the derivative of 

( )im t w.r.t. time and ( ) T T

i i im t X Z b= + . From the equation (21), by considering the 

cumulative information of longitudinal process, the coefficient of the current value 

becomes ( )
0 ( )

0
( )

t t

im t v dv=   in the Cox proportional hazard model. However, the 

coefficient of the current value of longitudinal regression process in the Cox 

proportional hazard model and the cumulative term from equation (20) is 

subsequently as 

( ) ( )

( )

( )

0

0

0 0 0

( )

0

( )

0
0

( ) ( ) ( )

0 0 0
0

.

t t

i

q
t t

au T

i i i

q
t t t t t t

au T au au

i i i

u m t u du

e t u X Z b

e t u du X e du Z b e du



  

  

−

=

− − −

=

−

 
= − + + 

 

 
= − + + 

 





   

 

A general formulation of Cox proportional model to characterize its association with 

the longitudinal outcomes can be expressed as  
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( )( ) ( ) ( ) 0

1

| , , exp , ; ,   
K

T

i i i i ik ik i k

k

h t H t W u h t W m f t u 
=

 
= + 

 
                   (22) 

where ( ) ( ) ,0 ,1i ikH t f s s t k K=     denotes the history of underlying longitudinal 

processes up to time t , iW  is a vector of time-fixed covariates with regression 

coefficients , (.)ikm  specifies which components of ( )ikf t  are associated with the 

hazard at time t , 
iu  is a frailty on subject i , and k  is a vector of outcome specific 

regression coefficients in function ikm . Some examples of (.)ikm  are given as 

( ) 
( ) ( )

( )

( ) 

( ) 

0

0
0

, ; , with           (22.1)

, ; ,                                                              (22.2)

, ;                               

gq
ik ik

ik ik i k gk ikg
g

T

ik ik i k k ik

ik ik i k i

d f t d f t
m f t u f t

dt dt

m f t u b

m f t u u

 

 



=

= =

=

=



                                      (22.3)

 

Equation (22.1) in its simplest form (q = 0) models the effect of the underlying 

trajectory of the kth longitudinal outcome on event times. This parameterization is 

frequently used in joint models with interest being to evaluate impact of longitudinal 

biomarkers on the risk of clinically meaningful milestones. When q > 0, the 

formulation assumes that not only the longitudinal outcome at time t , but also its 

slope and curvature at time t , affects the event risk. To facilitate model parsimony 

and interpretability, values of q  no greater than 2 are recommended. Such 

parameterisation is often used in connection with spline functions when 

modelling ( )ikf t , which guarantees tractable quantification of the derivatives. 

Equation (22.2) represents a commonly used strategy for longitudinal measurements 

with non-ignorable missing data caused by some terminating events such as death 

or dropout. This parameterization assumes that the risk of death or dropout at time t  

depends on deviation of the ith subject from the overall mean (e.g., deviation of 
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subject-specific slope from the population slope). In contrast to the previous two 

parameterizations, formulation (22.3) does not directly include any components in 

( )ikf t  to characterize its association with the event risk, but rather assumes that the 

dependence between the longitudinal and survival endpoints is modelled by the joint 

distribution (e.g., multivariate normal distribution) between a frailty iu  and the 

random effects ikb . This is a more flexible framework, which allows extra variation at 

the survival endpoint that cannot be explained by longitudinal data. The model 

reduces to (22.2) if iu  can be expressed as a linear function of
ikb . 

3.5.3 The weights function 

In equation (23), it was assumed that all the biomarker previous values from 0 to 

time t  are of equal significance for studies with smaller follow up time, but for studies 

with many biomarkers, it is not reasonable to assume that the baseline values have 

the same importance as values with a longer time of follow-up. To account  for  

possible  complex biomarker overtime, an extension of the association between the 

biomarker values measured at a different time point and risk estimates require a 

flexible approach (Fisher and Lin 1999; Thomas 1988). In the majority of humans 

biomarker measured, it is expected that the more recent measures may be more 

pertinent for hazard estimation at time t  compared to values measured that are far 

away from the same time point and this is where a weight function is required that is 

a decreasing function of time.  

The expectation of this weight function has been seen in a study (Vacek 1997), in 

which normal and exponential cumulative distribution functions were applied to 

assign heavier weights to earlier values. The normal density function is applied to 
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assign the maximum weights to measures at period ,s s t   and is defined as 

(Abrahamowicz et al. 2006):  

( )  
2

2

( )

2
exp ,

t s
t s


 −


− = −  

where ( ).  is the appropriate weight function selected for different weights at 

different time points ( )t s t s


− = −  when t s  and otherwise zero, s  is the time prior 

to or equal to t and t s− is the elapsed time since exposure. However, in this 

section, I used an approach for cumulative effect, weighted normal effects and 

weighted skewed-normal effects and truncated weighted skewed-normal effects 

distributions for flexibility of the model to estimate the necessary parameters from the 

dataset directly. I specified the differential weights in the formulation of cumulative 

effect as: 

( ) 0

0

( )exp ( ) ( ) ( , )

t

T

i i t ih t h t w t t s f s b ds   

 
= + − 

 
 , 

I use Area under the density curve (AUC) to calculate the time intervals of specific 

interest, in order to facilitate the relative importance of different biomarker history.  

The relative AUC is defined as: 

  ( ) ( ),( )t t s
AUC F t s F t

− 
= − −  

3.5.4 Statistical inference 

Statistical inference for the joint models is developed through Maximum likelihood 

estimation (MLE) framework. It follows the conventional assumptions for longitudinal 

process and time to event process assumed mutually independent for random 

effects and the mutual covariates. The independent measurements value is taken by 

pre-specifying the visit process and the underlying censoring process is assumed 
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non-informative. In addition, the random effects as well as the observed data are 

assumed mutually independent. The likelihood function for the joint models is given 

as  

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1 21, 1,

1 2

1 1
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; , , : , : | ...

               , , | , | ...
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i i i i mi m i m

m m

i i i i i m

i i

m

i i i i i i i

i

data P T Y P b db db db

P T Y b P b db db db

P T b P Y b P b db

   

  

   

= =

= =

=

=

  
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

 

where   is the parameters vector of joint models, the argument data  represents 

observed data of all the individuals from both longitudinal and time to event 

processes, and the log-likelihood function is given as  

( ) ( ) ( ) ( )( )
1

; log , | , | , | .             (25)
m

i i i i i i i

i

data P T b P Y b P b db    
=

=   

The MLE approach is used for the statistical inference to develop the joint models for 

multivariate longitudinal process and time to event process, then, the parameters 

estimate proposed to minimize the log-likelihood function from equation (25). The 

estimations for the joint models are obtained by solving the equation (25). 
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It is assumed that the derivative change conditions of integral are satisfied, as it is 

one of the case study in the models. 

With MLE approach, we proposed to compute the covariance matrix for the 

estimates using Fisher information and the negative of Hessian matrix is used in the 

Fisher information estimate, which is expressed as  

( )
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2 2
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Therefore, the covariance matrix for the estimate parameters is approximately 

expressed as 

( )
( )

1
2 ,ˆ ˆ

T

data
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
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 

−

 
=  
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Hence, the parameter for the statistical inference is obtained by ( )ˆC  . The EM-

algorithm was used to compute MLE of parameter estimator and full exponential 

Laplace approximation was used for the posterior expectations of random effects 

functions. The simulation study proves and verifies the applicability of the approach.  
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3.5.5 Parameter Estimation Procedure 

Parameter estimation can be done via a maximum likelihood method when the 

number of latent class is given. The likelihood function is written out based on the 

assumption longitudinal and survival endpoints are independent given the latent 

class membership. Let   denote a vector of all parameters that appear in the model. 

The likelihood is given as  

( ) ( ) ( ) ( )( )
1

; log , | , | , |
m

i i i i i i i

i

data P T b P Y b P b db    
=

=   

where each component's density function can be written out based on equation (24). 

Note that the density ( )| ,i iP Y b  is a product of the multivariate normal density of 

transformed 
iY  and Jacobian of Beta transformation. A penalized likelihood approach 

can be used when the baseline hazard is estimated by splines. Maximum likelihood 

estimates are obtained via an expectation-maximization (EM) algorithm or some 

Newton Raphson type of algorithm to maximize the likelihood using the gradient and 

Hessian matrix. The EM algorithm relies on computation of the posterior probability 

of class membership in each E-step conditional on the observed data and current 

parameter estimates. The posterior class membership of subject can be determined 

using the class with the highest posterior probability. The assumption of conditional 

independence between longitudinal and survival endpoints can be tested using a 

residual analysis. In addition, the number of latent classes may be selected using the 

Bayes Information Criterion (BIC), which has been shown to work reasonably well 

compared to other criteria when determining the number of components in mixture 

models. 

Parameter estimation is done by EM-algorithm by minimizing the likelihood function 

of the observed data, ( ), , : 1,i i iT Y i m = , which is performed by iteration of E-step for 
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the expected log-likelihood of the complete data, ( ), , , : 1,i i i iT Y b i m = , which is a 

conditional on the observed data to estimate the current parameters. M-step iteration 

was also performed on the new parameter estimates by minimizing the log-likelihood 

expectation. One-step Newton-Raphson method is proposed for survival parameters 

and other parameters and each M-step iteration for estimating equations are  

( )( ) ( )0

1

log , , , | | , , , 0
m

i i i i i i i i i

i

P T Y b P b T Y db   
=


=


  

where 0  represents the current parameters estimates and new parameters 

expected to be estimated for the next iteration, until it converges. However, the 

expected functions for random effects conditional on the observed data for the 

current parameters estimates 0  are required and given as 
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


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   
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



 

The expected functions are on the assumptions that (i) the observed data from 

different subject are mutually independent and (ii) the random effects and common 

covariates for both longitudinal and time point process are independent. The 

Gaussian Hermite quadrature method are proposed in some studies for the joint 

model inference (Henderson et al. 2000; Wulfsohn and Tsisatis 1997) but quite 

computationally intensive when the random effects dimension is increasingly large 
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and ordinary computer has difficulty to deal with such computational burden. Also, an 

Adaptive Gaussian Hermite quadrature method was proposed to consequently 

improve Gaussian Hermite quadrature method (Liu and Pierce 1994). Another 

straightforward method proposed by Henderson et al. (2000) and Hsieh et al. (2006), 

is Monte Carlo approach, which is also computationally intensive and with Monte 

Carlo error.  

However, a fully exponential Laplace approximation would likely be proposed to deal 

with posterior expectations. From the equation (25), a second order approximation to 

the expectation ( )( ) | , ,i i i iE h b T Y  can be obtained using a fully exponential function to 

approximate the moment-generating function ( )exp( ( ))iE h b , which has a positive 

integrand and the result is differentiated as shown below: 

Let ( )( ) exp( ( )) | , ,i i i iM s E sh b T Y= , ( )( )( )( ) ( )exp | , ,i i i i iM s s E h b sh b T Y  =  

and ( )0( ) | ( ) | , ,s i i i iM s s E h b T Y=  = , therefore, I approximate ( )M s to obtain the 

posterior expectation as 
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where ( ) ( )log , , ,i i i i iG b P b T Y= , ( ) ( ) ( ) ( ) ( )* log , , ,i i i i i i i iG b sh b P b T Y sh b G b= + = + , and 

( )ˆ argmax log , , ,i i i i ib P b T Y= , in which 

( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( )*

ˆ 0,

1ˆ ˆ ˆ ˆ ,
2

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2

i

T

i i i i i i i

T T

i i i i i i i i i i i i

G b

G b G b b b G b b b

G b sh b G b sh b b b b b sh b G b b b

 =

 + − −

   + + − + − + −

 



 
75 

where ( ) ( ).  and .G G   represents the 1st and 2nd derivatives w.r.t ib  and similarly 

( ) ( ).  and .sh sh  .  The expression becomes 
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Differentiating the expected value becomes 
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Since ( ) ( )( ) ( ) ( )( ) ( )( )
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  This is the Laplace approximation of the 2nd order used in the study. 
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CHAPTER FOUR 

4.1 ANALYSIS OF THE ESTIMATIONS RESULTS 

4.2 Joint model with correlated error:  

4.2.1. Simulation study I: Distributions with AR(1) within-subject covariance 

It is not an easy task to develop a statistical inference for positive definite and high 

dimensional covariance matrix parameters, particularly for the within-subject 

covariance matrices in this study. However, for linear mixed-effects models, there 

are available plug-in packages to obtain within-subject covariance estimators, such 

as lme, lme4, nlme by R software package. The value of the unknown covariance in 

the survival estimating equations was substituted with the output of estimators 

obtained from lme4 results, which is fairly unbiased and consistent with right fitted 

model and large number of longitudinal outcomes as established from the simulation 

outcome results. The lme4 package is embedded with the assumption that the 

random effects are from multivariate normal distributions but can also be generated 

from other distributions as illustrated with the simulation studies in each of the 

scenarios. Using bias analysis settings in each simulation scenarios and three 

different underlying distributions were considered for comparison: (i) normal 

distribution as explained in the bias analysis; (ii) mixture normal with 0.5 mix 

distribution generated by setting sep=3, chose upper triangular matrix to yield cov( )ib  

and standard deviations of ib in the case of normal but 12 0.043D = , and (iii) skew-

normal distribution with skewness coefficients of -0.2 and 0.91 for 

0ib and 1ib respectively. The details on how random effects were generated from each 
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of the distributions (i-iii) can be found in Appendix A.  The same mean and 

covariance was used to generate each of the random effects 
ib as norm case unless 

specified. Random effects distribution and the measurement error was set to be 

normally distributed with 0 = and AR(1) of covariance structure with 
2 0.7 = . The 

correlation parameter of autoregressive of lag 1 was conducted in the following 

scenario: scenario1: when the correlation is negative ( 0.65 = − ), scenario 2: when 

the correlation is weakly positive ( 0.3 = ); scenario 3: when the correlation is positive 

( 0.55 = ), and scenario 4: when the correlation is strongly positive ( 0.8 = ). 

Each of the correlation with  0,2,4,8,14,24,32,40,48,56,64,72,80it   was generated 

in order to make the autoregressive of covariance structure more identifiable. The 

simulations were conducted with Monte Carlo 500 datasets and 500n = for each 

datasets with 1 = − and 0 = . The inference of covariance parameters for survival 

and autoregressive was illustrated using four different approaches: the ideal (I), 

conditional score (CS), and naïve regression (NR) and the proposed generalized 

conditional score (GCS) summarized in Table 1-4. The ideal results are obtained by 

using the exact values of ( )iX t  in partial likelihood function to obtain the estimators 

of likelihood and standard deviation for the parameters of survival, which is a 

benchmark of perfect inference performance. The MEst estimations was used 

because MLE approach is very similar in performance with MEst approach, and 

relative bias is calculated through percentage of differences in mean of Monte Carlo 

estimates and true values. Figure 1A (Appendix F) presents the subject-specific 

longitudinal responses in the simulation study. 

The results from the simulation study indicate that CS method overestimate the Cox 

model coefficients ( and ) when the error terms are negatively correlated and 
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gives a significant bias for a strong correlation. For instance, the relative bias (RB) 

for  estimator is more than 50% when the correlation is negative, 0.65 = −  and it 

tends to reduce the coefficients of the regression model when the errors are 

correlated positively, while the larger correlation tends to larger bias as summarized 

in Table 1.  

Table 1: Scenario I: Simulation results for three random effects distributions 
with ρ(-0.65) and σ2(0.7) of AR(1) within-subject covariance. 
Methods Normal Mixture Skew-normal 

 Mean RB (%) SD Mean RB (%) SD Mean RB (%) SD 

 
    Ideal  
    CS 
    GCS 
    NR 

 
-1.03 
-1.01 
-0.94 
-0.89 

 
0.43 
56.1 
2.1 

14.3 

 
0.07 
0.15 
0.11 
0.08 

 
-1.04 
-1.07 
-0.97 
-0.86 

 
0.25 
28.6 
1.02 
11.6 

 
0.11 
0.23 
0.08 
0.06 

 
-1.03 
-1.01 
-0.93 
-0.89 

 
1.01 
62.3 
1.15 
13.1 

 
0.09 
0.16 
0.13 
0.08 

AR(1): 

    -CS 

    -GCS 

  -GCS 

 
0.813 
0.634 
-0.651 

 
31.61 
0.52 
0.31 

 
0.039 
0.027 
0.014 

 
0.802 
0.632 
-0.653 

 
29.09 
0.51 
0.04 

 
0.041 
0.029 
0.015 

 
0.822 
0.590 
-0.654 

 
31.62 
0.53 
0.30 

 
0.040 
0.028 
0.015 

SD, Monte Carlo standard deviation; RB, percentage of estimated relative bias. Methods: Ideal; CS, conditional 
score; NR, naive regression and GCS, generalized conditional score. 

 

However, when the correlation is strong, that is, 0.8 =  the conditional score 

approach has a reduced performance compared to that of naïve approach, and have 

a slightly larger variation compared to the naïve approach. The naïve approach is 

used to attenuate the coefficients of regression.  

Table 2: Scenario II: Simulation results for three random effects distributions 
with ρ(0.3) and σ2 (0.7) of AR(1) within-subject covariance. 
Methods Normal Mixture Skew-normal 

 Mean RB (%) SD Mean RB (%) SD Mean RB (%) SD 

 
    Ideal  
    CS 
    GCS 
    NR 

 
-1.01 
-0.89 
-1.03 
-0.78 

 
0.52 
8.6 
2.4 

13.7 

 
0.08 

0.104 
0.13 

0.067 

 
-1.02 
-9.26 
-1.04 
-0.88 

 
0.40 
5.3 
1.3 

11.5 

 
0.062 
0.105 
0.109 
0.075 

 
-1.00 
-0.91 
-1.04 
-0.79 

 
0.12 
9.4 
1.7 

16.3 

 
0.081 
0.120 
0.127 
0.071 

AR(1): 

  -CS 

  -GCS 

  -GCS 

 
0.831 
0.602 
0.652 

 
11.7 
0.5 
0.8 

 
0.014 
0.019 
0.021 

 
0.837 
0.603 
0.653 

 
11.9 
0.7 
1.2 

 
0.013 
0.018 
0.021 

 
0.835 
0.595 
0.645 

 
11.2 
0.5 
2.5 

 
0.013 
0.019 
0.021 

SD, Monte Carlo standard deviation; RB, percentage of estimated relative bias. Methods: Ideal; CS, conditional 
score; naive regression and GCS, generalized conditional score. 
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Meanwhile, In all the three different distribution approaches for random effects, it 

was noted that the mixture distribution for random effects were observed to have 

smaller bias in terms of parameter association of .  

 

Table 3: Scenario III: Simulation results for three random effects distributions 
with ρ(0.55) and σ2 (0.7) of AR(1) within-subject covariance. 
Methods Normal Mixture Skew-normal 

 Mean RB (%) SD Mean RB (%) SD Mean RB (%) SD 

 
    Ideal  
    CS 
    GCS 
    NR 

 
-1.06 
-0.84 
-1.05 
-0.83 

 
0.74 
26.8 
4.3 

28.8 

 
0.06 
0.07 
0.11 
0.05 

 
-1.02 
-0.93 
-1.03 
-0.91 

 
0.31 
18.5 
3.1 

22.1 

 
0.07 
0.15 
0.11 
0.08 

 
-1.01 
-0.84 
-1.02 
-0.82 

 
0.21 
27.8 
1.3 

30.1 

 
0.06 
0.07 
0.13 
0.05 

AR(1): 

  -CS 

  -GCS 

  -GCS 

 
0.544 
0.716 
0.614 

 
28.9 
1.01 
0.91 

 
0.022 
0.037 
0.032 

 
0.546 
0.716 
0.614 

 
28.5 
1.01 
0.8 

 
0.022 
0.036 
0.031 

 
0.542 
0.692 
0.593 

 
29.1 
2.6 
2.6 

 
0.022 
0.035 
0.031 

SD, Monte Carlo standard deviation; RB, percentage of estimated relative bias. Methods: Ideal; CS, conditional 
score; RC, regression calibration; NR, naive regression and GCS, generalized conditional score. 

 
In regards to the GCS approach proposed, it improves the inference for survival 

parameters with nearly unbiased estimates in spite of the underlying random effects 

distribution. It is observed that the mean of the Monte Carlo estimates are very close 

compared to the ideal approach performances of inference for AR(1) random error 

covariance as illustrated in Tables 1–4. 

Table 4: Scenario IV: Simulation results for three random effects distributions 
with ρ(0.8) and σ2 (0.7) of AR(1) within-subject covariance. 
Methods Normal Mixture Skew-normal 

 Mean RB (%) SD Mean RB (%) SD Mean RB (%) SD 

 
    Ideal  
    CS 
    GCS 
    NR 

 
-1.06 
-0.75 
-1.18 
-0.78 

 
0.71 
36.6 
8.3 

33.7 

 
0.06 
0.05 
0.28 
0.05 

 
-1.02 
-0.86 
-1.15 
-0.85 

 
0.31 
26.1 
5.7 

25.8 

 
0.05 
0.05 
0.22 
0.04 

 
-1.01 
-0.74 
-1.09 
-0.77 

 
0.21 
47.5 
1.1 

44.9 

 
0.06 
0.06 
0.25 
0.05 

AR(1): 

  -CS 

  -GCS 

  -GCS 

 
0.376 
0.732 
0.867 

 
66.9 
4.7 
0.9 

 
0.019 
0.075 
0.034 

 
0.378 
0.727 
0.865 

 
66.5 
3.8 
0.7 

 
0.041 
0.029 
0.015 

 
0.374 
0.689 
0.850 

 
67.2 
4.7 
2.5 

 
0.009 
0.064 
0.034 

SD, Monte Carlo standard deviation; RB, percentage of estimated relative bias. Methods: Ideal; CS, conditional 
score; NR naive regression and GCS, generalized conditional score. 
 

The GCS approach considers within-subject covariance and the corresponding 

survival estimators of survival part tend to have a larger variation and the approach 

can substantially reduce bias for the random effects. 
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4.2.2. Simulation study II: Cholesky decomposition of within-subject 

covariance 

With the same scenarios as in simulation I, another simulation study  was carried out 

for the underlying within-subject covariance using modified Cholesky decomposition 

instead of AR(1) structure but measurement errors for the underlying covariance 

remained the same. Scenarios of three different distribution of random effects were 

investigated again and each scenario was simulated with 500 Monte Carlo datasets 

and 500n = in the orthogonal polynomial functions with a degree of q and d both 

equal to 4, respectively, and with underlying values (0, 2,2, 1) = − − and 

( 0.5,1,1.5, 1) = − − . Both MLE and MEst estimations approaches similar to those 

aforementioned were investigated. It was noted that when the number of reasonable 

longitudinal outcomes are comparatively large, e.g.8 16in  , both MLE and MEst 

estimations of GCS method performed similarly and give almost unbiased estimates 

and credible statistical inference. However, if 
in  are not adequately large due to 

conditional intensity and covariance complexity, the GCS method of MLE estimate 

have a tendency of reliable performance compared to MEst estimates.    

Table 5 summarizes the results from the simulation performed to demonstrate the 

performance of the estimation approaches of scenarios with smaller 

possible
in of3 11in   . The GCS-CD was used for the Cholesky decomposition 

approach to capture the measurement errors covariance and MEst approach of GCS 

for survival parameter in the form  
,( , ) ( ( , , ), )i s i i t iK t S t Z  =   as it appears in the 

estimating equations, and it was proposed that 
2

ˆ, ( )
( , ) ( ( , , ) , )

i
i s i i t iX t gls

K t S t Z   =  −  to 

account for the adjusting variation term 
2

ˆ ( )iX t gls
 in respect to  estimating equation. 

The results presented in the Table 5 indicate that both conditional score (CS) and 
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naïve approach led to substantial bias, in which the CS method performance 

reduces to performance of naïve approach and both show very poor probability 

coverage. It was also observed that MEst estimates from GCS approach 

overestimate the survival parameters slightly but MLE estimates of GCS approach 

show a good performance statistically with almost unbiased estimates and the 

probability coverage show that the approach is valid. It was also noted that the 

random effects variation, var( )ij  is variant, while invariant in the autoregressive AR(1) 

approach from the last simulation on distributions with AR(1) within-subject 

covariance. However, the proposed REML approach shows a good statistical 

inference performance about the covariance parameters ( , )c   = .  

Table 5: Scenario I: Simulation results for Cholesky decomposition of within-
subject covariance 
Methods Normal Mixture Skew-normal 

 Mean RB (%) SD Mean RB (%) SD Mean RB (%) SD 

 
    Ideal  
    CS 
    GCS-CD 
    GCS-CD(mle) 
    NR 

 
-1.06 
-0.22 
-1.23 
-1.10 
-0.38 

 
0.72 
79.3 
13.5 
2.1 

71.8 

 
0.06 
0.04 
0.24 
0.11 
0.04 

 
-1.02 
-0.47 
-1.06 
-1.01 
-0.52 

 
0.3 

72.5 
5.9 
0.7 

65.3 

 
0.06 
0.05 
0.09 
0.08 
0.04 

 
-1.04 
-0.24 
-1.22 
-1.01 
-0.31 

 
0.5 

77.8 
14.7 
0.9 

71.8 

 
0.06 
0.05 
0.24 
0.09 
0.04 

MCDI: 
          

          

          

 

 
0.002 
-2.009 
1.998 
-0.988 

 
- 

0.2 
0.2 
0.4 

 
0.001 
0.032 
0.031 
0.046 

 
0.001 
-2.002 
2.001 
-1.002 

 
- 

0.0 
0.2 
0.1 

 
0.002 
0.031 
0.023 
0.034 

 
0.000 
-2.001 
2.000 
-1.002 

 
- 

0.0 
0.1 
0.1 

 
0.001 
0.042 
0.034 
0.048 

MCDI: 
          

          

          

 

 
-0.623 
0.999 
1.568 
-1.016 

 
0.4 
1.3 
0.2 
0.6 

 
0.015 
0.121 
0.128 
0.134 

 
-0.510 
0.998 
1.505 
-1.008 

 
0.4 
1.5 
0.6 
0.9 

 
0.021 
0.113 
0.134 
0.126 

 
-0.613 
0.999 
1.508 
-1.011 

 
0.6 
1.2 
0.3 
1.1 

 
0.021 
0.119 
0.139 
0.133 

SD, Monte Carlo standard deviation; RB(%), percentage of estimated relative bias. Methods: Ideal; CS, 
conditional score; NR, naive regression; GCS-CD, the MEst output of generalized conditional score estimation 
with Cholesky decomposition of within-subject covariance; GCS-CD(mle), the MLE output of generalized 
conditional score estimation with Cholesky decomposition of within-subject covariance. 
 
In many numerical algorithms, a good initial value can largely improve the algorithm 

performance. In the simulation study, the naïve estimators are used for the starting 

points for CS and GCS approaches for the survival inference and the initial values 

for ( , )  can be randomly generated values near the underlying values as starting 

points, say within the range of ±0.5. In practice, without the knowledge of underlying 
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values, we can firstly set zeroes as the starting point, and then use the converged 

values with some slight modifications as the new starting points, which will usually 

converge to the consistent root. In the meantime, the outputs with several different 

initial values can be used to check the convergence for the real data application. 

 A joint mean-covariance model was applied with a modified Cholesky 

decomposition to estimate a reversible linear equation, which was used to depict the 

longitudinal outcomes and covariates in the model with subject identification and 

observation time point.  

 

Figure 1: Modified Cholesky Decomposition model fits for log variances (left) 
and AR(1) coefficients (right) for simulation study 

The fitted curve for the real data (Figure 1) shows that the fitted polynomial function 

curvature shape is captured well and indicate a good fit for autoregressive 

coefficients (AR(1)) in examining the AR(1) coefficient versus time lag between the 

measurements and the fitted curve. 

4.2.3 Real Data Application  

The proposed method is applied to TB-ESRD dataset, which includes a total number 

of 612 TB patients with impaired renal function. Each patient was assigned to a 
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treatment regime to compare the treatment effects and the survival end-point was a 

CD4 count ≥50% decline, which may lead to chronic TB or death of the patients. 

With time to progression to the survival end-point and other covariates such as age, 

weight, gender, CD4 count, and drug use were collected on each patient for about 

every 3 months. It was previously noted that CD4 biomarker is a good surrogate for 

treatment effect but may be subject to a considerable measurement error. The real 

data was used to illustrate the joint modelling in covariance within-subject in a 

longitudinal analysis of a balanced data correspond to the simulation conducted for 

balanced data, assigned to the 
10log 4CD  count of TB patients with impaired renal.  

It was observed that in both simulation and real dataset, the variation of 

10log 4CD seems to rise with respect to time with a slight reduction in 
10log 4CD  on 

the last measurement in a real dataset. It was assumed that 
1( )i io iX t b b t= + denotes 

the underlying log of CD4 count for i subject at time t  and observed measurements 

is represented by ( ) ( ) ( )i i iW t X t t= + , where ( )i t can be time-independent or time-

dependent. In the analysis of data application, death or chronic TB progression was 

considered as a censored event and the hazard function was analysed using a Cox 

proportional hazard model.  

CD4 count was transformed using logarithm in order to make it easier to deal with a 

big number and the longitudinal 10log 4CD  covariate was pre-analysed with the R 

command of nlme and lme4 with REML approach, which was used to fit the within-

subject covariance with AR(1), independent, and compound Symmetry structures. 

We observed that from the nlme fitted of the linear mixed model for AR(1) within-

subject covariance indicated with lowest BIC. From the analysis of the data, 

longitudinal 10log 4CD  was modelled with AR(1) within-subject covariance and data-
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driven method modified Cholesky decomposition was used for the general case. 

Thus, three different starting point was randomly chosen to check the estimating 

convergence and the real data indicated that all the three point converged towards 

the same estimating values of ( , )   . 

The analysis of the survival part of the real data suggested that the GCS approach 

was not significant, which is supported by the study of Song et al. (2002) which 

suggests the CD4 count and treatment effect was not significant and was proposed 

as a surrogate marker. Therefore, the treatment covariate was excluded from the 

final proportional hazard model. 
10log 4CD was included  with other baseline 

covariates of interest into the final PH model such as age, BMI, and gender, where 

BMI from the analysis indicates that it was not significant in the final output from the 

model with the longitudinal 
10log 4CD  covariate, age and gender. The statistical 

Inference for real data analysis results for the CS and GCS approaches, and for the 

GCS approach, the within-subject covariance was captured by AR(1) with lme R 

command and by the data-driven method of the modified Cholesky decomposition. 

Both MEst and MLE estimations are presented for each approach, except for the 

GCS with Cholesky decomposition covariance, which is presented in Table 6. The 

standard deviations were estimated with sandwich rule as mentioned in the 

simulation study. The covariate age has a positive significant effect on the hazard 

rate, which indicate that the older the TB patients, the higher the risk of death. The 

results also indicated that gender has no significant effect on the hazard rate, which 

shows that gender does not increase the risk of death among the TB patients. 

However, it was kept in the model to illustrate its insignificance. 

Table 6: Statistical Inference for survival analysis of real data results for the 
CS and GCS approaches 
 CS GCS-AR(1) GCS-CD 
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Covariates  MEst MLE MEst MLE MLE 

10log 4CD  -3.124 (0.231) -2.052 (0.228) -2.282 (0.221) -2.269 (0.211) -2.442 (0.255)* 

Age  0.036 (0.009) 0.036 (0.009) 0.036 (0.009) 0.036 (0.009) 0.036 (0.009)* 

Gender  0.418 (0.213) 0.419 (0.212) 0.426 (0.206) 0.426 (0.205) 0.314 (0.292) 

Values inside the parenthesis are the standard deviation, * indicates the significance of covariate of 
95% Wald confidence interval. 

 

The simulation studies showed MEst method for Cholesky decomposition might 

overestimate the parameters a bit, so the MLE approach for Cholesky decomposition 

was used exclusively to estimate the application of real datasets. The comparison 

results from the three approaches showed that GCS with Cholesky decomposition 

(GCS-CD) provided the more substantial coefficients of 
10log 4CD  compared to CS 

approach, which is the same from the simulation results and attenuate the 

coefficients of regression if there is any positive correlation among the within-subject 

error exist. At the same time, the results indicate  the estimates of GCS-AR(1) 

covariance are almost the same as the CS approach but differ and stronger in GCS-

CD (modified Cholesky decomposition) for the longitudinal coefficient of 
10log 4CD , 

which suggests that the capturing of the covariance within-subject are more accurate 

using the Cholesky decomposition approach than simple AR(1). Figure 3 shows the 

scatter plot of 
10log 4CD  against time, with the six covariates measurement visibly 

symmetric and normally distributed. It is reasonable to assume that 
i is normally 

distributed, that is ~ (0, )i iN  . A joint mean-covariance model was applied with a 

modified Cholesky decomposition to estimate a reversible linear equation, which was 

used to depict the longitudinal outcomes and covariates in the model with subject 

identification and observation time point. 
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Figure 2: shows the scatter plot of CD4 cell against time 

The fitted curve for the real data shows that the fitted polynomial function curvature 

shape is well-captured and indicates a good fit for autoregressive coefficients 

(AR(1)) in examining the AR(1) coefficient versus time lag between the 

measurements and the fitted curve (Figure 4).  

 

Figure 3: Real data Modified Cholesky Decomposition model fits for log 
variances (left) and AR(1) coefficients (right) 

 

The MLE approach for modified Cholesky decomposition based on the covariance 

within-subject was fitted with other covariates and the longitudinal response of 

10log 4CD  in a similar way to compare the fitted models using the log-likelihood of 
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the estimates. The covariance matrix of the fitted model produced the fitted curves 

with 95% confidence interval using the sandwich bootstrap method. The mean fitted 

curve with log-variance, AR(1) and the 95% confidence interval in Figure 4 showed 

that there is decreasing association of log-variance fitted with respect to time and 

curve shape of AR(1) fitted  coefficient with a time lag.  

 

Figure 4: Modified Cholesky Decomposition model fits for mean against time 
(top), log variances vs. time (left) and AR(1) coefficients vs. time (right) and 

their corresponding 95% C.I. 

 

4.3. Analysis Results on Joint Model with Cumulative Effects Association 

Structures  

4.3.1 Simulation study 

A simulation study was conducted to evaluate the performance of the proposed 

methodology. Given the complexity and associated long computational time of the 
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models, we assumed and simulated a continuous longitudinal outcome in the form 

of: 

0 0 1 1 1 2 2 2 3 3 3
( ) ( , ) ( ) ( ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ),

i i i i i i n i n i n i
y t f t b t b b t b t b t t        = + = + + +  + +  + +  +  

Natural cubic splines were assumed for both the fixed and random effect part of the 

model, with
0 1 2 3( , , , ) ~ (0, )i i i i diagb b b b b MN P= , { ( , ) : 1,2,3}

n k
t k =  and 2( ) ~ (0, )i t N   as 

previously defined. The time derived from a uniform distribution was simulated. For 

the survival part, adjustment was made only for the treatment group for simple 

survival, expressed as: 

( ) 0 1

0

( )exp ( ) ( , ) ,

t

i i t ih t h t Trtgroup t s f s b ds   

 
= + − 

 
  

where ( )t s


−  was specified as a standard normal distribution. The baseline risk 

was simulated from a Weibull distribution 1

0 ( )h t t −= , given 0.8445 = . A 

censoring rate approximately 80% and a uniform censoring distribution was selected 

for censoring time with 2.5c = . The results of simulation for the performance of the 

proposed methodology seems to be good with relatively small bias (Table 1&2). The 

root mean square estimate (RMSE), with the exclusion of 
4D  parameter has the 

variance-covariance parameter for the random effects correspond to the third and 

final interval of the cubic spline. This may be due to the number of insufficient 

repeated outcomes in the interval. 

Analysis outputs for the simulated dataset similar to the renal serum trial data are 

summarized in Table 7. This include the classical joint models’ inference with default 

current values setting, and current values denoted by JM. The model performance of 

the treatment effects and the change of serum creatinine with time indicated that 

both approaches give similar results. The results indicated that the treatment has a 
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positive effect on the longitudinal profile of serum creatinine biomarker. The higher 

serum creatinine biomarker suggests a lower hazard rate of death of patients with 

ESRD. The results from the two joint models suggest that treatment of serum 

creatinine may prolong survival of patients’ with end-stage renal disease (ESRD). 

However, the cumulative analysis indicates that the effect of the current value of 

survival model shows that the level of serum creatinine (sCr) biomarker effect on the 

hazard rate of death may be time-varying, and requires further investigation. As 

expected, the shapes of the integration area were a bit different from the models with 

both current and cumulative values of longitudinal process for the survival analysis. 

The simulation results also indicated the proposed estimation approach works better 

for a cumulative effect, in which the estimations are almost unbiased and the Root 

Mean Square Error shows the best accurate estimate of the cumulative effect.  

Table 7: Analysis outputs for the simulated dataset similar to renal serum trial 
data 

 JM with  

Current values 

JM with  

Cumulative effects 

 Coefficient Value Bias RMSE Value Bias RMSE 

Longitudin

al Process 

Intercept 0.561 0.052 0.065 0.544 0.044 0.032 

ns(years, 3)1 0.684 -0.205 0.231 0.625 -0.199 0.188 

ns(years, 3)2 0.886 0.113 0.225 0.799 0.107 0.206 

ns(years, 3)3 0.712 0.501 0.607 0.701 0.522 0.556 

ns(years, 3)4 0.751 0.498 0.561 0.762 0.468 0.520 

 0.274 0.000 0.001 0.216 0.000 0.006 

Survival 

Process 

Treatment group  -0.079 0.052 0.228 -0.065 0.051 0.219 

Parameter 

association   2.616 -0.002 0.389 2.409 -0.001 0.305 

Scale parameter  1.003 0.089 0.399 1.000 0.066 0.328 

D[1, 1] 1.000 0.005 0.040 1.001 0.002 0.021 

D[2, 2] 1.092 -0.209 0.251 1.005 -0.214 0.208 

D[3, 3] 1.036 0.483 0.492 1.018 0.469 0.442 

D[4, 4] 0.992 1.073 1.289 0.973 1.123 1.247 

D[5, 5] 0.899 2.542 2.583 0.884 2.520 2.594 

 

The survival density functions of the estimation of the parameters indicated in Figure 

5 shows the same shape with that of the real data application. The simulation results 
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suggest that the estimations from the joint model under my proposed framework are 

always roughly unbiased and efficient regardless of the value of 0b  . 

 
Figure 5: Density functions of estimators of survival parameters from Monte Carlo 

simulation with the underlying parameter setting and the hazard model 

 

4.3.2. Application to Real Dataset 

The proposed methodology was applied to analyse the dataset introduced in chapter 

1 of this thesis. Every new patient enrolled in the study cohort every year and 

followed-up over some time. Patient’s clinical information was recorded through 

annual follow-up protocol measurements. The year of entry was used as a baseline 

for each new individual and the urinary albumin test results were collected within at 

least a year of entry into the study. You may have a kidney disease or life- 

threatening kidney failure when serum creatinine level is high, or if two or more 

levels are high. The normal serum creatinine range is 0.6–1.1 mg/dL in women and 

0.7–1.3 mg/dL in men. This test compares creatinine in blood and urine, and 
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development of kidney disease is dependent on many risk factors such as age, 

existences of diabetes, high blood pressure, heart disease, family member history of 

kidney disease, BMI, smoking status and obesity. A very high serum creatinine plays 

a very important role in a higher rate of renal disease. In addition, longer time of 

diabetes in combination with higher sCr values results in a higher renal failure and 

thus higher risk of End-stage renal disease (ESRD).  

Of the 612 TB patients with impaired renal function considered in this study 

consisting of both longitudinal and survival outcomes on clinical information 

biomarker of renal disease, only 383 patients were considered as per the inclusion 

criteria in the analysis presented herein. The baseline characteristics for all the 

patients included in the study are described in Table 8. The average age and 

diabetes duration at baseline calculated as time at the diagnosis were 49.4 years 

(SE = 0.194) and 11.1 years (SE = 0.030) respectively, and the mean baseline blood 

pressure 124.1 mmHg (SE = 1.62).  

Table 8: Baseline Characteristics of TB patients with renal disease 
Variable Mean (SE); N = 2531 Mean (SE); N = 383 

Age (years) 49.4 (0.194) 50.21(.528) 

Serum creatinine 3.71(0.108) 3.29(0.237) 

Urinary albumin 3.39(0.010)) 3.51(0.022) 

Blood pressure 124.06(1.620)) 122.33(2.927) 

Diabetes 11.06(0.030) 10.79(0.048) 

Family history 3.27(0.017) 3.05(0.045) 

status2 .48(0.010) .57(0.025) 

 

Figures 6 and 7 plots were used to describe the survival and longitudinal outcomes 

that illustrate the Kaplan-Meier estimate of Treatment success for the two treatment 

groups, and the subject-specific of longitudinal trajectories for serum creatinine 

biomarker of patients with and without an endpoint.  
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Figure 6: Kaplan-Meier estimator of treatment success probabilities for the two 
treatment groups 

 

 

 
Figure 7: Subject-specific longitudinal trajectories for log serum creatinine for 
patients with and without endpoint 

  The natural cubic splines was applied to both the fixed and random effects 

component of the longitudinal model to establish the evidence of non-linearity of the 

longitudinal outcomes. We thus have; 

0 0 1 1 1 2 2 2
( , ) ( ) ( ) ( , ) ( ) ( , ) ( ),

i i i i n i n i
f t b b b t b t t     = + + +  + +  +  
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The outcome from the longitudinal model includes time as a linear effect for the 

square root of the biomarker in both fixed and random effects as: 

0 0 1 1
[ { ( ) | ( , ) ( ) time,}]

i i n i i i
E y t b t b b b  =  = + + +   

The logit link was used for the albumin and the random effects follow a multivariate 

normal distribution. Penalized B-splines were used in the model for the square root 

of serum biomarker outcome. The shape of the log(serum creatinine) endpoint 

appears to be non-linear for many patients. In the longitudinal model, we controlled 

for the baseline age at entry, low or high level of sCr, blood pressure, diabetes 

duration and family history was controlled and expressed as 

0 0 1 1 1 2 2 2

3 3 3 3

( ) ( ) ( ) ( , ) ( ) ( , )

            ( )Age Diabetes sCr BP

i i i n i n

ii i i i

y t b b t b t

t

    

    

= + + +  + +  +

+ + + +
 

where { ( , ), 1, 2}
n i

t i =  represents the matrix of B-spline for the cubic natural spline of 

time at 50th percentile with one interior knot for the time to follow-up, 

( ) ~ (0, )
i it N P and ~ (0, )

i
N Mb with 2

ii c nP I= and M are unstructured variance-

covariance matrix.  

In the model for Cox regression, the weighted integral of the subject-specific linear 

estimate of the mixed model ( , )t if s b  was included in the linear estimate of the 

relative risk model, which represents the average subject-specific of log(serum 

creatinine) level. In the model, the treatment effect and age, was controlled and also 

their interaction in the model. Apart from the cumulative effect, two weight functions 

option were defined in fitting the proposed model .  Both the probability density 

function for the normal distribution and skewed normal distribution were specified to 

fit the weighted cumulative effect and also fit an unweighted cumulative effect model 

in the form 
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( ) 0 1 2 3

0

( )exp Drug Age (Drug Age ) ( ) ( , ) .

t

i i i i i t ih t h t t s f s b ds     

 
= + +  + − 

 


All the analyses in this study were run in R package. 

DIC values  were used to select the best-performed model and the results from the 

model for the current value, cumulative effect and weighted cumulative model have 

similar values, but the truncated skewed-weighted cumulative effect model 

performed best with DIC of 7454.173 (Table 9).  

Table 9: Candidates model selection 
Model  Df. LPML DIC pD 

Current value 1184 -4064.73 7819.52 1148.712 

Cumulative effect 1185 -3976.741 7621.856 1147.112 

Weighted normal effect 1186 -3966.625 7621.947 1153.718 

Skewed-Weighted normal  1184 -3966.86 7603.106 1145.709 

Truncated Skewed weighted normal 1184 -3911.524 7454.173 1127.597 

 

The results from the models are summarized in Table 10–12. The cumulative effect 

with weighted description using truncated skewed normal density function was 

observed to be the best fit between the two weighted models for log(serum 

creatinine). In the regression coefficients, there are some slight changes in the sub-

models, in which 1 unit increase in the value of log(serum creatinine) levels is 

strongly associated with 4.3-fold (95% CI: [3.6-5.1]) increase of the risk of death 

event under the current value. For the cumulative effect model parameterization, a 

unit increase in the area under the longitudinal outcome profile equals  1.3 fold (95% 

CI: [1.2-1.3]) increase of the death risk and for the model with Weighted normal 

effect, a unit increase for the fold log(serum creatinine) corresponds to 5.1 fold (95% 

CI: [3.8-7.4]) increase in the risk of death. The models with weighted functions, the 

normal density function for the scale parameter, is observed to be 0.08 (95% CI: 

[0.04-0.14]).  This means that measurement before time t for the serum creatinine 

within the last 2months and 4days are associated with the event risk at the same 
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time t, and the measurement after the current value is suggested to be irrelevant in 

the estimation of risk of an event at time t. The summaries are given in Table 10 and 

11. 

Table 10: Relative risk model with penalized-spline-approximated baseline risk 
function for the parameter estimates and 95% credible intervals under the joint 
modelling analysis for Log(serum Creatinine) longitudinal outcome Event 
Process 
 Current value Cumulative effect 
Parameters  LogHazard 

(SE) 

95% CI P-value LogHazard 

(SE) 

95% CI P-
value 

Drug1 0.81 (0.1474) (-0.61-2.39) 0.317 0.47 (0.1194) (-1.05-2.06) 0.481 
Age  0.06  (0.0014) (0.04-0.07) <0.001 0.05 (0.0014) (0.03-0.07) <0.001 
Drug1:age -0.01 (0.0027) (-0.04-0.01) 0.408 -0.004 (0.0022) (-0.03-0.03) 0.756 
Association parameter  1.45 (0.0062) (1.29-1.63) <0.001 0.22 (0.0018) (0.19-0.26) <0.001 
       
 Weighted normal effect 
 LogHazard 

(SE) 

95% CI P-value    

Drug1 -0.18 (0.1403) (-2.02-1.63) 0.788    
Age  0.06 (0.0017) (0.03-0.08) <0.001    
Drug1:age 0.007 (0.0028) (-0.03-0.04) 0.580    

Ass:(Intercept)    1.63 (0.0273) (1.34-2.00) <0.001    

Ass:ns(year, 2)1   0.59 (0.0057) (0.47-0.72) <0.001    

Ass:ns(year, 2)2   0.22 (0.0098) (0.07-0.39) 0.003    

       

 Skewed Weighted normal Truncated skewed Weighted 
normal 

 LogHazard 

(SE) 

95% CI P-value LogHazard 

(SE) 

95% CI P-
value 

Drug1 0.86 (0.1027) (-0.44-2.11) 0.199 0.64 (0.0971) (-0.86-1.89) 0.306 
Age  0.06 (0.0013) (0.04-0.07) <0.001 0.06 (0.0012) (0.04-0.07) <0.001 
Drug1:age -0.02 (0.0018) (-0.04-0.01) 0.265 -0.01 (0.0019) (-0.04- 

0.02) 
0.390 

Association parameter 2.85 (0.0165) (2.52-3.21) <0.001 1.52 (0.0178) (1.30-2.02) <0.001 
 Weight function  

Scale parameter        0.08 (0.0040) (0.04-0.14) <0.001 0.08 0.0015) (0.05-0.14) <0.001 

Shape parameter                6.23 (0.2261) (0.79-9.82) <0.001 

       
A difference in the log-scale for serum creatinine corresponds to a ratio in the original scale and hence exp(Assoct) gives the 
corresponding hazard ratio for a doubling of serum bilirubin. 

 

In Table 6, the cumulative-effect parameter estimation suggests that a unit increase 

in the longitudinal profile of diabetes corresponds to a 1.8 fold (95% CI: [1.4 – 2.5]) 

increase of the risk. This is slightly higher than the 1.5-fold (95% CI: [1.1 – 3.1]) 

increase of the risk estimated for the truncated weighted skewed normal parameter 

estimation function (best-fit model). The scale parameter estimation for both 

weighted normal and weighted skewed normal density function is 3.05 (95% CI: 
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[1.02 – 5.11]), which indicates that the diabetes responses within the last 9.15 years 

before t are risk associated event with almost the same time with maximum follow-up 

year (15 years). Therefore, the results suggest that both the baseline levels of the 

biomarker and the longitudinal outcome of the biomarker are strongly associated  

with the hazard of the risk event. 

Table 11: Relative risk model with penalized-spline-approximated baseline risk 
function for the parameter estimates and 95% credible intervals under the joint 
modelling analysis for diabetes longitudinal outcome: Event Process 
 Current value  Cumulative effect  

Parameters  LogHazard (95% CI) P-value LogHazard (95% CI) P-value 

Drug1 0.61 (-0.31 - 1.12) 0.274 0.62 (-0.21 - 1.32) 0.341 
Age  0.03 (0.01 - 0.07) <0.001 0.03 (0.02 - 0.07) <0.001 
Drug1:age -0.04 (-0.02  -0.01) 0.321 -0.03 (-0.03 - 0.02) 0.699 
Association parameter  0.58 (0.31 - 0.90) <0.001 0.45 (0.29 - 0.76) <0.001 
     
 Weighted normal effect   

 LogHazard (95% CI) P-value   

Drug1 -0.17 (-2.05 - 1.33) 0.544   
Age  0.04 (0.01 - 0.09) <0.001   
Drug1:age 0.05 (-0.02 - 0.08) 0.422   

Association parameter   0.77 (0.22 - 1.19) <0.001   

     

 Skewed Weighted normal Truncated skewed Weighted 
normal 

 LogHazard (95% CI) P-value LogHazard (95% CI) P-value 

Drug1 0.45 (-0.14 - 1.61) 0.092 0.44 (-0.16 - 1.59) 0.106 
Age  0.07 (0.04 - 0.08) <0.001 0.08 (0.04 - 0.09) <0.001 
Drug1:age -0.01 (-0.04 - 0.02) 0.073 -0.01 (-0.04 - 0.02) 0.090 
Association parameter 0.73 (0.32 - 2.12) <0.001 0.41 (0.10 - 1.14) <0.001 
 Weight function  

Scale parameter        3.05 (1.03 - 5.11) <0.001 3.05 (1.02 - 5.11) <0.001 

Shape parameter               4.15 (0.66 - 5.27) <0.001 

A difference in the log-scale for serum creatinine corresponds to a ratio in the original scale and hence exp(Assoct) gives the 
corresponding hazard ratio for a doubling of serum bilirubin. 

 

Using normal density weight function, parameterization is more significant when a 

random intercepts and random slopes structure is assumed for the longitudinal sub 

model, where a random-effect is used for the subject-specific deviations from the 

average intercept and slope. However, in this setting from Table 7, the parameter 

estimation indicates that patients at a higher level for the longitudinal outcome at 

baseline (intercept) or a steeper increase in the longitudinal trajectories (slope) are 

more likely to have the risk event. 
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Figure 8 shows that the comparison of estimated weight functions for log(serum 

creatinine), indicating the degree of flexibility in the estimated weight function, with 

different rates of decreasing and different periods of relevance for the biomarkers. As 

seen from Figure 8, it was observed that the best model fit (truncated weighted 

skewed normal density) shows a maximal weight for values slightly earlier than the 

weighted skewed normal density. 

 
Figure 8: Comparison of Weight functions estimation. A-Weighted skewed 
normal density and B- Truncated Weighted Skewed normal density 

Figure 9 shows the calculated values for the relative Area under the curve (AUC) for 

each of the estimated parameterization: current value, cumulative, weighted skewed 

normal and weighted truncated skewed normal functions, which show the relative 

importance of each of the biomarkers over several specific intervals of the follow up 

period. 
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Table 12: Longitudinal Process for parameter estimates and 95% credible 
intervals with D[i, j] element of the covariance matrix for the random effects 
under the joint modelling analysis for diabetes longitudinal outcome 
 Current value Cumulative effect 
 Coeff. (95% CI) P-value Coeff. (95% CI) P-value 

Intercept 15.67 (12.42 - 17.63) <0.001 15.67 (12.45 - 17.68) <0.001 
Year   0.56 (050 - 0.71) <0.001 0.56 (052 - 0.73) <0.001 

 1.32 (1.21 - 1.57) <0.001 1.32 (1.98 - 1.55) <0.001 

D[1, 1] 14.33 (13.01 - 16.77) <0.001 14.33 (13.01 - 16.77) <0.001 
D[2, 1] 3.42 (1.54 - 5.10) <0.001 3.38 (1.04 - 5.03) <0.001 
D[2, 2] 2.08 (1.09 - 3.22) <0.001 2.06 (1.11 - 3.25) <0.001 
     
 Weighted normal effect  

 Coeff. (95% CI) P-value   

Intercept 15.64 (12.54 - 17.73) <0.001   
ns(year, 2)1 0.55 (048 - 0.75) <0.001   

 1.31 (1.20 - 1.59) <0.001   

D[1, 1] 14.31 (13.01 - 16.75) <0.001   
D[2, 1] 3.40 (1.53 - 5.14) <0.001   
D[2, 2] 2.09 (1.11 - 3.25) <0.001   
     
 Skewed Weighted normal Truncated skewed Weighted 

normal 
 Coeff. (95% CI) P-value Coeff. (95% CI) P-value 

Intercept 15.63 (12.41 - 17.59) <0.001 15.62 (12.40 - 17.59) <0.001 
Year  0.54 (049 - 0.70) <0.001 0.53 (049 - 0.71) <0.001 

 1.31 (1.19 - 1.58) <0.001 1.32 (1.19 - 1.58) <0.001 

D[1, 1] 14.30 (12.88 - 16.91) <0.001 14.30 (12.88 - 16.91) <0.001 
D[2, 1] 3.41 (1.55 - 5.12) <0.001 3.40 (1.54 - 5.12) <0.001 
D[2, 2] 2.07 (1.11 - 3.23) <0.001 2.07 (1.12 - 3.24) <0.001 

It was observed that the interval from 0 to 2.0 accounts for more than 40% density 

function of the relative biomarker and that the function for all the parameterization  is 

closely more equally distributed across the entire period. 

 
Figure 9: rAUC for Current, Cumulative, Normal and Skewed normal density 

function for the biomarker 
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The density functions plots for the estimation of survival parameters is illustrated in 

Figure 10. The five scenarios parameterization for baseline hazards indicate the 

survival parameters estimations obtained from the joint likelihood of longitudinal and 

survival outcomes maximization may not be an asymptotic normal distribution in 

some cases but they may be well-represented with some skewed distribution or 

distributions with a heavy tail. This supports the best- fit model of the skewed normal 

density function.  

 
Figure 10: Density functions of estimators of survival parameters from Monte Carlo 

simulation with the underlying parameter setting and the hazard model for Weighted 
truncated skewed normal density. 
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CHAPTER FIVE 

5.1 CONCLUSION AND RECOMMENDATION 

5.2 Joint model for Correlated Measurement Error for Repeated Covariates  

In joint modelling of longitudinal-survival measurements through linear mixed models 

and Cox proportional model, the error measurements are normally assumed 

independently and identically distributed from a normal distribution. The usual 

assumption is that random error is normally distributed but the mutual independence 

may not always be true. The simulation studies in this thesis indicate that the 

independence assumption can be violated if the random error is biased. Bias may be 

introduced on the Cox regression parameters for both longitudinal 
10log 4CD  and 

baseline covariates if the inference for the survival regression parameters is 

influenced by the independence assumption violation. Most times, the likelihood 

approach may be computationally intensive due to the joint model complexity in 

terms of integration demand for the random effects and survival function.  

Thus, the conditional score estimate was used to provide consistency and 

robustness estimates for survival parameters, which has proven to have vast 

computational advantage. The proposed generalized conditional score method is 

better in inference for the covariance structure of the random errors and the survival 

data simultaneously but may not be possible if the two-stage approach is 

implemented to cater for the covariance structure. However, in analysing the real 

data, the rule of significance was simply applied to select the polynomial degree of 

time for modelling the covariance structure using the modified Cholesky 

decomposition and to select a variable for the Cox model. 
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There is a need to apply caution when using the conditional score estimation 

approach and generalised conditional score estimation approach (proposed) for 

survival analysis under the joint modelling framework of longitudinal and survival 

data. This is because an adjusting term of variation of sufficient statistic is introduced 

to the exponential power of the hazard function to assist the inference. Sometimes, 

this can be a bit tricky as the exponential function is much more sensitive to the 

change of power. Without proper inference for the covariance of random errors, the 

generalised conditional score approach may also lead to biased inference for the 

survival parameters. It becomes expedient to utilise the classical likelihood-based 

approach to investigate further the impact on survival analysis if the assumption of 

independence of random errors is violated.  

5.3 Joint Model with Cumulative Effects Association Structures 

The results from this study are actuated by the biomedical inquiry about the 

association between biomarkers and the probability risk of renal disease. I proposed 

an extension to a Longitudinal-Survival joint model framework, where cumulative 

parameterization and statistical inference are used to compare parameterization of 

the current values in joint modelling and a truncated weighted-cumulative effect with 

parametric weight functions introduced to significant parameterization. Two similar 

but alternative weight functions (normal and skewed functions) were also researched 

for a cumulative effect, and used to directly estimate the scale and structure 

parameters from the data. The proposed weight function was further exemplified with 

a small simulation study. The inference indicates cumulative effect is adequate and 

the truncated weighted cumulative effect determines more precisely, the behaviour 

of the association that exists in time-varying covariate and the correlative risk of an 

event of interest. This allows the hazard function calculation at time t to rely on a 
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cumulative-effect for biomarker history and estimation in the most relevant duration 

of interest. Therefore, the current-value and cumulative-effect parameterization 

indicate remarkable illustrations for truncated weighted-cumulative effect 

parameterization. 

However, an extension of a more general family of weight functions including more 

number of parameters to estimate, would be  great development in the joint 

modelling.  In a clinical perspective, it would be of a great interest to extend the 

methodology to allow functionality in the survival sub-model for recurrent events or 

progression, competing events, and interval-censored event. A left-truncated data 

and additional exogenous time-varying covariates can be included in the survival 

sub-model in the joint model.  

This framework can be extended to other regression models for survival data such 

as AFT models. 
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Appendix C: Simulation procedures used for the distributions in chapter 4 

1. Mixture of normal distribution 

Example of this is described in Davidian and Gallant (1993).  

Mixture of bimodal random effects are generated from two normal distributions of 

( , )TN RR  and ( , )TN RR−  with proportion of mixing of p 

and 2 2

11 11{( 2)( ,0) }
T

sep r r = + , where R represents the upper triangular matrix. We 

denoted 11 12

220

r r
R

r

 
=  
 

 and 
2 2

11 12 12 22

2

12 22 22

.T r r r r
RR

r r r

 +
=  
 

 

We let ~ ( , )TY N RR and 
      if  and ~ (0,1)

    if  and ~ (0,1) 

Y p U
Z

Y p U

 

 


= 

− 
 

Then (Z) (1 )( ) 2 (2 1)E p p p p    = + − − = − = −  and 2 2(Z ) ( )E E Y=  

Therefore, ( )
2

( ) (2 1)TVar Z RR p = − −  and if 0.5,  ( ) 0p E Z= =  as a special case.  

We generated the mixture normal distributions by 0 0(2 1)Z Z p  = − − +  with 0  and 

variance 0  for 0.5 and 4p sep= =  

2. Skew-normal distributions 

We followed the skew-normal distribution discussed by Azzalini and Dalla (1996). 

The density of a random variable Z said to be a skew-normal with parameter is 

written as ~ ( )Z SN   and expressed as 

( ; ) 2 ( ) ( )   zf z z z   =   

where ( ) and ( )z z    represent the mean = 0 and variance = 1density and 

distributional function, respectively. The parameter  varies in ( , )−   in accordance 
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with the procedure of the skewness and 0 =  corresponds to (0,1)N  density. For a 

random number generation, we used a more efficient variant of 

      if 

    if  

Y Y W
Z

Y Y W






= 

− 
 

to avoid rejection of samples. If 
0Y and 

1Y  are independent variables and ( 1,1)  − , 

then 

1
22

0 1| | (1 )Z Y Y = + −  is ( ( ))SN    

where 
1
22( ) (1 )   = − and 

1
22( ) (1 )   = − . Also, it can be expressed as  

1
22

0| | (1 )  where 1,...,j j j jZ Y Y j k = + − =  

However, random variable 
1( ,.., )T

kZ Z Z=  is a k-dimensional skew-normal variable 

with vector of shape parameter   and dependent parameter . For briefness, we 

denoted ~ ( , )kZ SN    used for the expected mean and variance as 

( )
2 2

2 2

2

2

0

0

0

0 0

1 1
(| |)
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2
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1 0 1 2 2( ) ( ) var(| |) ( ) ( ) ( )T TVar Z Y       = + =   

we defined the following as 

1
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also, denoted 
0Z CZ= , 

0 0( )Var Z =   and 2 2

0 1( ) ( ,.., )kdiag   = , where  

( )

( )

1
2

1
2

1

0

2

0 0
( )

0 0
( )

0 0 k

c
diag

C diag c
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c

 
   
 = =      
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( )( )1 1 1 2
0 1 1 1 2 0 1

2
,  ( ) 1 ( ) ( ) ( ) and (Z ) ( ) ( ).T TC C E CE Z C


          



− − − =  = − − = =  

Therefore, the skew normal distribution was generated using 0 1

2
( )Z C  


= + . 
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Appendix D: Chapter four analysis codes  

Joint model for Correlated Measurement Error for Repeated Covariates 

 

WinBUGS and R codes examples 

 

Model  

{ 

  For (I in 1:N) { 

  For (j in 1:T) { 

        Y[I,j]~dnorm(mu[I,j], tau.c) →Yij ~N(uij+rc) 

        Mu[I,j]<-alpha[i]+beta[i] * (x[i]-xbar) → uij =αi + βi(xi-ẍ) 

  } 

  Alpha[i]~dnorm(alpha.c, alpha.tau) 

  Beta[i]~dnorm(beta.c, beta.tau) 

} 

  Tau.c~dgamma(0.001, 0.001) 

  Sigma1/sqrt(tau.c) 

  Alpha.c~dnorm(0.0, 1, 0E-6) 

  Alpha.tau~dgamma(0.001, 0.001) 

  Beta.c~dnorm(0.0, 1, 0E-6) 

 

Model { 

 For (I in 1:N) { 

       For (j in 1:M) { 

             Y[I,j]~dnorm(muy[I , j], tauz) 

             

muy[i]beta1[1]+beta1[2]*t[j]+beta1[3]*t[j]*drug[i]beta1[4]*gender[i]+beta1[5]*previou

s[i]+beta1[6]*status[i]+u[I,1]+u[I,2]*t[j] 

     } 

     surt[i]~dweib(1, mut[i]) I(surt.cen[i], ) 

     log(mut[i])beta2[1]+beta2[2]*drugs[i]+ 

beta2[3]*gender[i]+beta2[4]*previous[i]+beta2[5]*status[i]+r1*u[I,1]+r2*u[I,2]+r3*(u[I,1

]+u[I,2]*tee[i] 

     u[I,1:2]~dmnorm(u0[ ], tau [ , ] 

} 

  tau[1:2, 1:2]~dwish (R[ , ], 23) 

  beta1 [1:6]~dmnorm(betamu1[ ], Sigma1[ , ] 

  tauz~dgamma(0.1, 0.1) 

  beta2 [1:5]~dmnorm(betamu2[ ], Sigma2[ , ] 

  r1~dnorm (0, 0.01) 
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  r2~dnorm (0, 0.01) 

  r3~dnorm (0, 0.01) 

} 

 

Load readxl, mcmcplots 

Load data 

plot(tb$bmi ~ tb$time, xlab = "time length", ylab="bmi length") 

sink("mod1.txt") 

> cat(" 

+ MODEL LR1 { 

+ for(i in 1:N) { 

+ age[i] ~ dnorm(mu[i], tau) 

+ mu[i] <- alpha + beta*bmi[i] 

+ } 

+ alpha ~ dnorm(0,0.001) 

+ beta ~ dnorm(0,0.001) 

+ tau <- pow(sigma, -2) 

+ sigma ~ dunif(0,10) 

+ } 

+ ", fill = TRUE) 

> sink() 

> N = length(age) 

> data = list("N","age","bmi") 

> params = c("alpha", "beta") 

> inits <- function () {list(alpha = rnorm(1), beta = rnorm(1), sigma = 1)} 

> nc <- 3 

> ni <- 5000 

> nb <- 1000 

> nt <- 1 

> bugs.out <- bugs(data=data, inits=inits, parameters.to.save=params, 

model.file="mod1.txt", n.chains=nc, n.iter=ni, n.burnin=nb, n.thin=nt, debug=TRUE, 

DIC=TRUE, bugs.directory = "C:\\Program Files\\WinBUGS14", 

working.directory=getwd()) 

> print(bugs.out, digits = 3) 

> bugs.summary <- bugs.out$summary 

> bugs.DIC <- bugs.out$DIC 

> bugs.summary 

> bugs.DIC 

> plot(bugs.out) 

> mcmcplot(bugs.out) 

 

/*Specify the initial value for fixed effects parameters and covariances;*/  
parms  
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beta0=5.7510  
beta1=-0.0013  
alpha1=-1.9965  
alpha2=-3.3536  
alpha3=-3.9501  
alpha4=-3.5721  
gamma=0.0411  
eta1=1.0508  
PsiSq=1.4594  
SigmaSq=1.8513;  
/*Non-negative constraints for variances;*/  
bounds PsiSq SigmaSq >0;  
/*Specify log-likelihood function;*/  
MeanYij = beta0+beta1*tij+ui0;  
VarYij = SigmaSq;  
ll_long = (1-IND)*(-0.5*log(VarYij)-0.5*(Yij-meanYij)**2/VarYij);  
p=alpha1*t1+alpha2*t2+alpha3*t3+alpha4*t4+gamma*age+eta1* ui0;  
hij=1/(1+exp(-p));  
ll_surv=ind*(yij*log(hij) +(1-yij)*log(1-hij));  
ll=ll_surv +ll_long;  
/*Specify model;*/  
model yij ~ general(ll);  
random ui ~ normal(0, PsiSq) sub=id;  
run; 

 

############################################################ 
# 
#  Simulation to compare sampling properties of three  
#  different estimators for the mean of a distribution  
#  based on an iid sample of size n: 
# 
############################################################ 
 
#  function to view the first k lines of a data frame 
 
view <- function(dat,k){ 
 
   message <- paste("First",k,"rows") 
   krows <- dat[1:k,] 
   cat(message,"\n","\n") 
   print(krows) 
 
} 
 
#  function to calculate summary statistics across the 1000 
#  data sets  
 
simsum <- function(dat,trueval){ 
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   S <- nrow(dat) 
 
   MCmean <- apply(dat,2,mean) 
   MCbias <- MCmean-trueval 
   MCrelbias <- MCbias/trueval 
   MCstddev <- sqrt(apply(dat,2,var)) 
   MCMSE <- apply((dat-trueval)^2,2,mean)   
#  MCMSE <- MCbias^2 + MCstddev^2   # alternative lazy calculation 
   MCRE <- MCMSE[1]/MCMSE 
 
   sumdat <- rbind(rep(trueval,3),S,MCmean,MCbias,MCrelbias,MCstddev,MCMSE, 
            MCRE) 
   names <- c("true value","# sims","MC mean","MC bias","MC relative bias", 
              "MC standard deviation","MC MSE","MC relative efficiency") 
   ests <- c("Sample mean","Trimmed mean","Median") 
 
   dimnames(sumdat) <- list(names,ests) 
   round(sumdat,5) 
} 
 
#  function to generate S data sets of size n from normal 
#  distribution with mean mu and variance sigma^2 
 
generate.normal <- function(S,n,mu,sigma){ 
    
  dat <- matrix(rnorm(n*S,mu,sigma),ncol=n,byrow=T)  
 
#  Note: for this very simple data generation, we can get the data 
#  in one step like this, which requires no looping.  In more complex 
#  statistical models, looping is often required to set up each 
#  data set, because the scenario is much more complicated.  Here is 
#  a loop to get the same data as above; try running the program and see 
#  how much longer it takes! 
 
#  dat <- NULL 
# 
#   for (i in 1:S){ 
# 
#      Y <- rnorm(n,mu,sigma) 
#      dat <- rbind(dat,Y) 
# 
#   } 
 
   out <- list(dat=dat) 
   return(out) 
} 
 
#  function to generate S data sets of size n from gamma 
#  distribution with mean mu, variance sigma^2 mu^2 
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generate.gamma <- function(S,n,mu,sigma){ 
 
   a <- 1/(sigma^2) 
   s <- mu/a 
 
   dat <- matrix(rgamma(n*S,shape=a,scale=s),ncol=n,byrow=T)  
 
#  Alternative loop 
 
#   dat <- NULL 
# 
#   for (i in 1:S){ 
# 
#      Y <- rgamma(n,shape=a,scale=s) 
#      dat <- rbind(dat,Y) 
# 
#   } 
 
   out <- list(dat=dat) 
   return(out) 
} 
 
#  function to generate S data sets of size n from a t distribution 
#  with df degrees of freedom centered at the value mu (a t distribution 
#  has mean 0 and variance df/(df-2) for df>2) 
 
generate.t <- function(S,n,mu,df){ 
 
    dat <- matrix(mu + rt(n*S,df),ncol=n,byrow=T)  
 
#   Alternative loop 
 
#   dat <- NULL 
# 
#   for (i in 1:S){ 
# 
#      Y <- mu + rt(n,df) 
#      dat <- rbind(dat,Y) 
# 
#   } 
 
   out <- list(dat=dat) 
   return(out) 
} 
    
 
#  function to compute the 20% trimmed mean 
 
trimmean <- function(Y){mean(Y,0.2)} 
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#  set the seed for the simulation 
 
set.seed(3) 
 
#  set number of simulated data sets and sample size 
 
S <- 1000  
 
n <- 15 
 
#  generate data  --Distribution choices are normal with mu,sigma 
#  (rnorm), gamma (rgamma) and student t (rt) 
 
#  a possible "fair" comparison would be to generate data from each 
#  of these distributions with the same mean and variance and see how 
#  the three methods perform on a relative basis under each condition 
 
mu <- 1 
sigma <- sqrt(5/3) 
 
# out <- generate.normal(S,n,mu,sigma)  # generate normal samples 
# out <- generate.gamma(S,n,mu,sigma)  # generate gamma samples  
  out <- generate.t(S,n,mu,5)   # generate t_5 samples 
 
outsampmean <- apply(out$dat,1,mean) 
 
outtrimmean <- apply(out$dat,1,trimmean) 
 
outmedian <- apply(out$dat,1,median) 
 
summary.sim <- data.frame(mean=outsampmean,trim=outtrimmean, 
           median=outmedian) 
 
#view(round(summary.sim,4),5) 
 
#  get summary statistics for each estimator 
 
results <- simsum(summary.sim,mu) 
 
############################################################# 
 
sampmean.ses <- sqrt(apply(out$dat,1,var)/n) 
 
#  take the average 
 
ave.sampmeanses <- mean(sampmean.ses) 
 
#  coverage of usual confidence interval based on sample mean 
 
t05 <- qt(0.975,n-1) 
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coverage <- sum((outsampmean-t05*sampmean.ses <= mu) &  
          (outsampmean+t05*sampmean.ses >= mu))/S 
 
 
pop <- 2 
samp <- rnorm(100, 2, sd = 0.5) 
bias(samp, pop) 
bias(samp, pop, type = 'relative') 
bias(samp, pop, type = 'standardized') 
 
dev <- samp - pop 
bias(dev) 
 
# equivalent here 
bias(mean(samp), pop) 
 

 

> n.sim1 <- 500; set.seed(123) 
> x1 <- rnorm(n.sim1, mean = 10, sd = 5) 
> x2 <- rbinom(n.sim1, size = 100, prob = 0.5) 
> e <- rnorm(n.sim1, mean = 0, sd = 1) 

> b1 <- 2.5 
> b2 <- -5 
> a <- 2 
> y <- a + b1 * x1 + b2 * x2 + e 

sim.dat <- data.frame(y, x1, x2) 

> freq.mod <- lm(y ~ x1 + x2, data = sim.dat) 
 

model { 
for(i in 1:N){ 
y[i] ~ dnorm(mu[i], tau) 
mu[i] <- alpha + beta1 * x1[i] + beta2 * x2[i] 
} 
alpha ~ dnorm(0, .01) 
beta1 ~ dunif(-100, 100) 
beta2 ~ dunif(-100, 100) 
tau ~ dgamma(.01, .01) 
} 

 

> sink("bayesmod.txt") 
> cat(" 
modelf 
for(i in 1:N)f 
y[i] ~ dnorm(mu[i], tau) 
mu[i] <- alpha + beta1 * x1[i] + beta2 * x2[i] 
g 
alpha ~ dnorm(0, .01) 

https://rdrr.io/r/stats/Normal.html
https://rdrr.io/r/stats/sd.html
https://rdrr.io/github/philchalmers/SimDesign/man/bias.html
https://rdrr.io/github/philchalmers/SimDesign/man/bias.html
https://rdrr.io/r/base/typeof.html
https://rdrr.io/github/philchalmers/SimDesign/man/bias.html
https://rdrr.io/r/base/typeof.html
https://rdrr.io/github/philchalmers/SimDesign/man/bias.html
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beta1 ~ dunif(-100, 100) 
beta2 ~ dunif(-100, 100) 
tau ~ dgamma(.01, .01) 
g 
", fill=TRUE) 
> sink() 

 

> y <- sim.dat$y 
> x1 <- sim.dat$x1 
> x2 <- sim.dat$x2 
> N <- nrow(sim.dat) 

 

> bayes.mod.fit.R2WinBUGS <- bugs(model.file = "bayes.mod", 
+ data = sim.dat.bugs, 
+ parameters.to.save = bayes.mod.params, 
+ inits = bayes.mod.inits, 
+ n.chains = 3, 
+ n.iter = 5000, 
+ n.burnin = 1000, 
+ n.thin = 1, 
+ bugs.directory = "C:/Users/Azeez/WinBUGS14/") 

 

 

Joint Model with Cumulative Effects Association Structures 

library sn, JMbayes, splines2, splines: Loading required package: stats4 
load data into R 
> longk$status2 <- as.numeric(longk$status != "alive") 
> survk$status2 <- as.numeric(survk$status != "alive") 
> sfit <- survfit(Surv(years, status2) ~ drug, data = survk) 
> lme.Fit1<-lme(log(serBilir)~ns(year,2) + age + spiders + albumin + sex, data = 
longk, random =~ns(year,2)|id, method = "REML") 
coxFit<-coxph(Surv(years, status2)~1, data = survk, x=TRUE) 
> coxFit1 <- coxph(Surv(years, status2) ~ drug * age, data = survk, x = TRUE) 
> lmeFit <- lme(log(serBilir) ~ ns(year, 2), data = longk, random = ~ ns(year, 2) | id) 
> lmeFitt <- lme(log(serBilir) ~ ns(year, 2), data = longk, random = ~ ns(year, 2) | id, 
method = "REML") 
> jointFitt <- jointModelBayes(lmeFitt, coxFit1, timeVar = "year", n.iter = 30000) for 
MCMC iterations:  
> plot(jointFitt) Hit <Return> to see next plot:  
> iForm<-list(fixed = ~0 + year + ins(year, 2), random = ~0 ) 
> iForm<-list(fixed = ~0 + year + ins(year, 2), random = ~0 + year + ins(year, 2), 
indFixed = 1:3, indRandom = 1:3)  
> jointFit.s <- update(jointFitt, param = "td-extra", extraForm = iForm) for MCMC 
iterations: 
  
> wf <- function(u, parms, t.max) 
+ num <- dnorm(x = u, sd = parms) 
> wf 
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> den <- pnorm(q = c(0, t.max), sd = parms) 
> num / (den[2L] - den[1L]) 
> wf <- function(u, parms, t.max) 
   num <- dnorm(x = u, sd = parms) 
> summary(jointFitt, include.baseHazCoefs = TRUE) 
> jointFit2 <- update(jointFitt, estimateWeightFun = TRUE, weightFun = wf, 
priorShapes = list(shape1 = dunif), priors = list(priorshape1 = c(0, 5))) for MCMC 
iterations: 
> plot(jointFit2, which = "weightFun", max.t = max(survk$year)) 
> plot(jointFit2) Hit <Return> to see next plot:  
> wfsn <- function(u, parms, t.max) 
+     num <- dst(x = u, omega = parms[1], alpha = parms[2]) 
>     den <- pst(x = c(0, t.max), omega = parms[1], alpha = parms[2]) 
> wfsn <- function(u, parms, t.max) num <- dst(x = u, omega = parms[1], alpha = 
parms[2]) 
> jointFit3 <- update(jointFitt, estimateWeightFun = TRUE, weightFun = wfsn, 
priorShapes = list(shape1 = dunif, shape2 = dunif), priors = list(priorshape1 = c(0, 5), 
priorshape2 = c(0, 10))) 
MCMC iterations: 
> plot(jointFit3, which = "weightFun", max.t = 0.5) 
> plot(jointFit2, which = "weightFun", max.t = 0.5) 
> jointFit4 <- update(jointFitt, param = "shared-RE", n.iter = 50000) 
MCMC iterations: 
> plot(jointFit4, which = "weightFun", max.t = 0.5) 
> plot(jointFit4) 
> fixef.JMbayes(jointFitt) 
> anova.JMbayes(jointFitt, jointFit2, jointFit3, jointFit4) 
> logLik.JMbayes(jointFitt) 
> logLik.JMbayes(jointFitt, jointFit2, jointFit3, jointFit4) 
> logLik.JMbayes(jointFit2) 
> logLik.JMbayes(jointFit3) 
> logLik.JMbayes(jointFit4) 
 

Sensitivity analysis 

> jointFitt10knots <- update(jointFitt, lng.in.kn = 10L) 
MCMC iterations: 
> plot(jointFitt10knots) Hit <Return> to see next plot:  
> jointFitt20knots <- update(jointFitt, lng.in.kn = 20L) 
MCMC iterations: 
> cbind("10 knots" = fixef(jointFitt10knots), "15 knots" = fixef(jointFitt), "20 knots" = 
fixef(jointFitt20knots)) 
> cbind("10 knots" = fixef(jointFitt10knots, process = "Event"), "15 knots" = 
fixef(jointFitt, process = "Event"), "20 knots" = fixef(jointFitt20knots, process = 
"Event")) 
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Appendix E: Motivating data subject-specific Longitudinal profiles 

 

 

Figure-1s: Sample within subject-specific longitudinal profiles for six selected 
patients 
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Appendix F: MCMC diagnostic plots 

A. Kernel density estimation plots for the parameters of the longitudinal and 

survival submodels from all the joint model compared. 

Model 1: Current value parameterization 

 

Model 2: Cumulative effect 

 



 
130 

Model 3: Weighted Normal effect  

 

B. Trace plots for the parameters of the longitudinal and survival submodels from 

joint models. 

Model 1: Current value effect 
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Model 2: Cumulative effect 

 

Model 3: Weighted normal effect 
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Model 4: Weighted skewed normal effect 
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