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ABSTRACT 
 

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM MODELLING OF SURFACE TOPOLOGY 

IN ULTRA-HIGH PRECISION DIAMOND TURNING OF RAPIDLY SOLIDIFIED 

ALUMINIUM GRADE (RSA 443) 

Hweju Z. 

M.Eng., Mechatronics Engineering 

Supervisor: Prof Khaled Abou-El-Hossein 

Faculty of Engineering, the Built Environment and Information Technology 

P.O. Box 77000, Nelson Mandela University, 

Port Elizabeth, South Africa 

August 2019 

Surface roughness prediction is a crucial stage during product manufacturing since it acts as a 

quality indicator. This investigative research thesis presents an online surface roughness 

prediction, based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) model during Ultra-

High Precision Diamond Turning (UHPDT) of Rapidly Solidified Aluminium (RSA-443) using 

water and kerosene as coolants. Based on the Taguchi L9 orthogonal array, the cutting parameters 

(spindle speed, depth of cut and feed rate) are varied at three levels. Acoustic Emission (AE) 

signals are detected during the UHPDT process using a piezoelectric sensor. Spindle speed, depth 

of cut, feed rate, AE root mean square, prominent frequency and peak rate are considered as model 

inputs in this thesis. The experimental results reveal that a better surface finish is obtained using 

water coolant in comparison to kerosene coolant. Mean Absolute Percentage Error (MAPE) based 

comparison between ANFIS and Response Surface Method (RSM) is carried out. In this study, the 

ANFIS model has a prediction accuracy of 79.42% and 69.40% on water-based and kerosene-

based results respectively. The RSM model yields higher prediction accuracies of  98.59% and 

95.55% on water-based and kerosene-based results respectively.  

Keywords: Adaptive Neuro-Fuzzy Inference System, Ultra-High Precision Diamond Turning, 

Surface Roughness, Acoustic Emission Signal, Mean Absolute Percentage Error, RSA-443. 
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CHAPTER ONE 
 

1.0 INTRODUCTION 
 

1.1 Background  

 

Due to its influence on functionality, durability and aesthetics, product surface finish or topology 

of metallic and alloy components has become a valuable quality during the manufacturing stage. 

Its importance necessitates the incorporation of an efficient surface finish pre-determination model 

into the broad manufacturing process to ensure that the specified surface quality is attained. The 

conventional method of determining surface finish is an instrument called a profilometer. This 

method involves removing the machined component from the production line, a process that is 

time-consuming and the contact between the workpiece and the measuring instrument results in 

damaged product surfaces. Adaptive Neuro-Fuzzy Inference System (ANFIS) is an online and 

non-contact surface roughness predicting tool that has recently received attention due to its 

accuracy in single point diamond turning, albeit on materials other than rapidly solidified 

aluminium (RSA 443) [1, 2]. The accuracy of the ANFIS model is enhanced by using modelling 

data that is almost the same as training data used [3]. ANFIS eliminates the highlighted problems 

associated with the manual prediction of surface roughness.  

The demand for materials with better thermomechanical properties compared to those of 

conventional aluminium alloys, has been the driving force behind the emergence of Rapidly 

Solidified Aluminium (RSA) alloys. The rapid solidification process’s high cooling rates yield 

alloys with a fine microstructure, enhanced strength  and better microhardness [4]. These 

properties ultimately lead to protracted service life and high service performance, making RSAs a 

material of significant interest. No research has been carried out to investigate the suitability of 

ANFIS in predicting the surface finish of Rapidly Solidified Aluminium (RSA 443) with small 

data sets and this investigative research attempts to fill this gap in literature. 

During product machining using single point diamond turning process, cutting parameters and 

process parameters have a great contribution to final surface topology. The interaction between 
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these parameters during the turning process is complex and non-linear, hence making linear 

predicting methods unsuitable for use. The other advantage of ANFIS is that it can model complex 

parameter interactions with higher accuracy than linear mathematical models [5]. An analysis of 

Acoustic Emission (AE) signals produced during the turning process provides a glimpse on the 

nature of the interaction between cutting tool and workpiece. This analysis is aided by the 

availability of modelling methods to transform time domain signals into frequency domain signals. 

Acoustic Emission (AE) signal count rate, root mean square (AErms) and prominent frequency of 

the Fast Fourier Transformed (FFT) signal together with cutting parameters (spindle speed, depth 

of cut and feed) act as inputs to the ANFIS model in this research. The model output is the profile 

roughness parameter (Ra) which is a measure of the surface finish integrity. The ANFIS model 

results are compared to Regression model results using the Mean Absolute Percentage Error 

(MAPE) method.  

This investigative research seeks to address the gap in literature of the unavailability of researches 

on the suitability of on-line and non-contact surface roughness prediction method in the form of 

ANFIS on small data sets during single point diamond turning of RSA 443. The research outcome 

is expected to make commercial optical components surface quality prediction easier, as roughness 

level can be predetermined.  

 

1.2 Problem Statement 

 

Modern manufacturing processes are striving for continuous release of defect-free machined 

components from the turning production line. The conventional off-line contact type surface 

roughness measurement method has the following disadvantages: time-consuming in removing 

workpiece from Computer Numerical Control (CNC) machine, results in damaged workpiece 

surfaces due to contact with the measuring instrument, measuring tip wear and accuracy limited 

by the radius of the tip. Furthermore, the profilometer cannot measure grooves narrower than the 

tip radius. While a lot of researches have been carried out in optimizing cutting and process 

parameters during turning of diverse materials, no research has been carried out on ANFIS 

modelling of RSA 443 surface roughness using small data sets. The use of an on-line surface 

roughness prediction model in the form of ANFIS will eliminate the problems associated with off-
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line measurement methods. The result will be the mass production of high-quality machined 

components. The accuracy of the Adaptive Neuro-Fuzzy Inference System in modelling RSA 443 

surface roughness using small data sets is investigated in this research.  

 

1.3 Hypothesis 

 

Null Hypothesis: 

• The Adaptive Neuro-Fuzzy Inference System cannot accurately predict the surface quality 

of diamond turned aluminium grade (RSA 443) using small data sets.  

 

Alternative Hypothesis: 

• The Adaptive Neuro-Fuzzy Inference System can accurately predict the surface quality of 

diamond turned aluminium grade (RSA 443) using small data sets.  

 

1.4 Aim  

 

To investigate the accuracy of the Adaptive Neuro-Fuzzy Inference System in predicting RSA 443 

surface roughness using small data sets. 

 

1.5 Objectives 

 

i. To measure surface roughness off-line and simultaneously acquire the Acoustic Emission                                       

signal.  

ii. To extract prominent parameters from the acquired Acoustic Emission signal (peak rate, 

root mean square and peak frequency). 

iii. To predict the surface roughness using ANFIS model under different cutting conditions. 
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iv. To determine the accuracy of ANFIS model results by comparison to Regression model 

outputs using Mean Absolute Percentage Error (MAPE). 

 

1.6 Project Scopes   

 

The experiments are designed and conducted based on Taguchi’s orthogonal array in this research. 

The Taguchi experimental design allows numerous parameters to be analyzed without an excessive 

amount of experimentation. At least nine (9) experimental runs are carried out in this research. 

Three levels for spindle speed, feed rate and depth of cut are used, with the manufacturer’s 

specified value as the middle value. The three levels chosen will cater for all levels of values (Low 

(1), Medium (2) and High (3)). Adaptive Neuro-Fuzzy Inference System is used as the modelling 

tool to achieve the research objectives. The parameters used as inputs to the ANFIS model in this 

study are cutting speed, feed rate, depth of cut and Acoustic Emission signal components, namely, 

peak rate, peak frequency and root mean square (AErms). Focus is on single point diamond turning 

of rapidly solidified aluminium grade (RSA 443) using a Nanoform 250 ultra-grind Precision CNC 

machine. The machined components surface roughness is measured off-line by a Taylor Hobson 

Profilometer while Acoustic Emission Piezotron Sensor is used to acquire the AE signal. The 

Simulation of results is done in the MATLAB environment. Results from the ANFIS model are 

compared to Regression model results using the Mean Absolute Percentage Error (MAPE).  

 

1.7 Motivation 

 

This research is motivated by the need for an effective surface quality prediction method for small 

data sets during the machining of rapidly solidified aluminium (RSA 443) alloys. For this research, 

an effective method is one that has the following attributes: accuracy, ability to monitor surface 

roughness online, non-contact and can be integrated into the automated machining system. This 

method will eliminate the contact-type offline method with its associated limitations. 

Companies that use the ANFIS model will enjoy high sales and profits through production of high-

quality products that meet both application specifications and consumer taste. The absence of 
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process pauses in ANFIS surface roughness prediction shortens the total production time while 

increasing production volume. Because of mass production of machined products, the cost of 

producing a unit component is lowered. Since the model can be integrated into the automation 

system, labor costs and human errors will be greatly reduced. Companies that utilize the ANFIS 

model will have a competitive advantage over those using traditional methods.  

 

1.8 Chapter Layout 

 

This thesis report is partitioned into five chapters: 

• Chapter I Introduction/Background: The problem background, objectives and research 

scopes are presented in this chapter. 

• Chapter II Literature Survey: Relevant literature to the study is outlined. 

• Chapter III Materials and Methodology: The study material composition, cutting 

parameters and design of experiment are incorporated. 

• Chapter IV Results and Discussion: Analysis of collected results is presented. 

• Chapter V Conclusion and Recommendations: The consequence of analysis and 

recommendation are given in this chapter. 

The sequence of the five chapters described are schematically represented by Fig. 1.1. 
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Figure 1. 1: Chapter Layout 
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CHAPTER TWO 

 

2.0 LITERATURE SURVEY 

 

2.1 Introduction 
 

The literature survey for this investigative research thesis is divided into 5 sections: rapidly 

solidified aluminium (RSA) alloys, surface roughness in ultra-high precision diamond turning, 

cutting tool materials, review of acoustic emission and signal processing and computational 

intelligence. The first section presents the rapid solidification process and properties of rapidly 

solidified aluminium alloys. The second section presents the surface roughness average parameter 

(Ra) and the factors that affect it during ultra-high precision diamond turning of RSA 443. The 

third section presents the diverse cutting tool materials used in turning processes. Emphasis is 

given to the single point diamond cutting tool that is used in this research. In the fourth section, 

acoustic emission signal acquisition is presented together with the Piezotron sensor used in this 

research. The acoustic emission signal parameters are also reviewed in this section. In the last part, 

a review of Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN) 

and Regression model is made.  

 

2.2 Determinants of RSA Alloy Properties 

 

The demand for aluminium alloys with thermo-mechanical properties superior to those of 

conventional aluminium alloys is the drive behind the emergence of a new generation of alloys 

called rapidly solidified aluminium (RSA) alloys. Among the most significant property 

determinants of RSAs are improved microstructure homogeneity, smaller grain size and alloying 

percentage. 

 

 



Master of Engineering (Mechatronics)  Thesis                                                        Nelson Mandela University 

 

8 
 

2.2.1 Improved Microstructure Homogeneity Effects on RSA Properties 

 

The rapid solidification process yields aluminium alloys with fine microstructures and are 

relatively easy to polish to the desired surface finish for applications in the visual spectral range 

[6]. The relationship between cooling rates and microstructure of rapidly solidified aluminium 

alloys is represented diagrammatically in Figure 2.1. The diagram shows that increasing the 

cooling rate reduces the alloy crystal size while improving the homogeneity of the microstructure. 

Additionally, RSAs have enhanced mechanical strength, relatively high wear resistance, high 

temperature strength and good thermal expansion [7]. 

 

 

  

Figure 2. 1: Effects of Rapid Solidification on Microstructure [8] 
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Abubakre et al. [9] discovered that the final product particle size is improved by raising quenching 

media temperature and use of a quenching medium with relatively higher heat extraction rate. 

Selection of the proper quenching media is therefore, a task that must be undertaken judiciously 

as it influences final product quality.  

 

2.2.2 Small Grain Size Effects on RSA Properties 

 

Aluminium’s use as a lightweight structural material is limited by its lack of strength both at room 

temperature and high temperature when compared to steel [10].  This deficiency is fixed by the 

addition of alloying elements during the rapid solidification process to produce aluminium alloys 

with enhanced strength. According to Katgerman [7], “the higher the cooling rate, the finer the 

microstructure and the better the properties”. By reason of having finer and well distributed 

granules, rapidly solidified aluminium alloys enjoy relatively better mechanical properties in 

comparison to conventional aluminium alloys. Subsequently, rapidly solidified aluminium alloys 

have relatively high tensile strength and impact toughness [11]. The increase in mechanical 

strength with reduction in grain size is in accordance with the Hall-Petch relationship shown by 

equation (2.1). Smaller grain sizes lead to grain boundaries that act as barriers to dislocation [12, 

13]. From the equation, the smaller the grain size diameter, the higher the yield stress. 

                                                                   б𝑦 = б0 +
𝐾𝑦

√𝑑
                                                                (2.1) 

Where    б𝑦 =  yield stress. 

               б0 =  materials constant for the starting stress for dislocation movement 

               𝐾𝑦 =  strengthening coefficient 

                 𝑑 =  grain diameter 
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2.2.3 Alloying Percentage Effects on RSA Properties 

 

A composite of two or more elements, with at least one of the elements being a metal is called an 

alloy [14]. Alloys are a result of the need to enhance the mechanical and chemical properties of 

the original element to fit target application. The percentage of silicon in RSA 443 plays an integral 

role in the determination of strength. Silicon, which constitutes 40% by weight, is a valuable 

constituent element in rapidly solidified aluminium alloy (RSA 443) and is responsible for high 

hardness, abrasive resistance, tensile and yield strength of the aluminium alloys [15, 16]. Table 2.1 

shows the effects of increasing silicon in Al-Si alloys. There is a general increase in Mean Ultimate 

Tensile Strength of the Al-Si alloy with an increase in silicon content. 

 

Table 2. 1: Effects of Increasing Silicon in Al-Si Alloys [8] 

 

Material Specimen Ultimate Tensile 

Strength (N/mm2) 

Mean Ultimate 

Tensile Strength 

(N/mm2) 

Al-Alloy (1.5 % Si) 1 119.21 120.87 

2 122.54 

Al-Alloy (3.0 % Si) 1 129.12 130.88 

2 132.65 

Al-Alloy (4.5 % Si) 1 138.24 139.74 

2 141.25 

Al-Alloy (6.0 % Si) 1 148.74 148.99 

2 149.25 

 

The high silicon content in the aluminium alloys is responsible for the decrease in machining 

cutting forces, ultimately increasing the machinability of rapidly solidified aluminium alloys. The 

cutting forces increase with a reduction in cutting speed. There is an inverse relationship between 

surface roughness and silicon content, that is, an increase in silicon content yields finer surfaces 

[17]. The frictional properties of Al-Si alloys are strongly influenced by the distribution and shape 

of silicon particles embedded in the alloy. It is these desirable frictional properties that have led 
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Al-Si alloys to find applications in the manufacture of bearings, engine pistons and cylinder 

linings.  

 

2.3 Production Methods of Rapidly Solidified Aluminium Alloys 
 

The three production methods of rapidly solidified aluminium alloys are as follows: spray forming 

methods, laser surface melting methods and chill methods. The most familiar among these are 

spray forming and chilling methods. Greater concern has been on the chilling methods, principally 

the melt spinning process due to its capability to mass produce and its relatively high cooling rate 

in the range 104-107 K/s [18]. 

 

2.3.1 Spray Forming Method 

 

The alternative name for the spray forming method is the Osprey process, a name derived from 

the Osprey Metals of Neath, a company that commercialized it in the 1970s [19]. The advantages 

of rapid solidification and powder metallurgy are fused together in the Spray forming method to 

produce aluminium alloy matrices of marvelous qualities. The desirable attributes of the Osprey 

process products comprise fine microstructure, near zero segregation, high density of Al-Si alloy, 

short production path and improved mechanical properties. As described by Singer [20], it is 

feasible to add second or third phase by superposing the added phase current into the vaporized 

phase prior to deposition  

A schematic representation of the spray forming method is given in Figure 2.2. The melt stream is 

sprayed through a nozzle by means of an inert gas such as Argon or Nitrogen. The vaporized gas 

is accelerated towards a suitable substrate, forming a billet in the process. Segregation challenges 

related to conventional casting techniques are appropriately eradicated by the spray forming 

method [21]. There is significant reduction in process steps from melt to final product and 

capability of manufacturing difficult-to-manufacture components by spray forming.  

Owing to minimal process steps in spray forming, production rates are higher and manufacturing 

costs are subsequently lower. The lower handling time in spray forming methods translates to 
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reduced chances of oxide contamination and hence improved fracture resistance and fatigue life. 

Because of the fine microstructure, spray formed alloys can be easily machined to the required 

smoothness and have high wear resistance [22]. 

 

 

 

Figure 2. 2: Spray Forming process schematic [23] 

 

2.3.2 Laser Surface Melting Methods 

 

Laser Surface Melting method has the flexibility to achieve a wide spectrum of cooling rates 

through variation of parameters such as scan-speed and laser power. In the Laser Surface Melting 

method of rapid solidification of aluminium alloys, melting and solidification take place at the 

workpiece surface. A traversing laser source in either single pulse form or continuous beam form 

melts the workpiece surface that simultaneously acts as a heat sink during the solidification phase 

[24]. The flux formed because of the traversing laser beam is subjected to rapid solidification 
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through heat transfer to the heat sink. It is this rapid solidification that determines the 

microstructure of the formed component. Figure 2.3 shows the principle of rapid solidification 

using the laser surface melting method. 

 

 

 

Figure 2. 3: Principle of rapid solidification at the surface showing rapid local melting with a 

traversing heat source [25] 

 

The three solidification parameters, namely, temperature, thermal gradient and cooling rate have 

a bearing on the final product quality, hence the need to accurately control them. Figure 2.4 

represents the temperature profile along the Laser movement direction. It shows that the melt-pool 

temperature at the laser point of contact is higher than that of the neighboring regions. The 

temperature gradient, defined as the ratio of the temperature difference between two points to the 

distance between the points is represented by the steep slopes on either side of the laser melt pool. 

The cooling and heating temperature gradients are represented by left-side and right-side gradients 



Master of Engineering (Mechatronics)  Thesis                                                        Nelson Mandela University 

 

14 
 

respectively. The temperature peak due to superheat prior to melting is represented by a local 

maximum ahead of the flux [26].  

 

 

 

Figure 2. 4: Temperature variation along the beam path [26] 

 

2.3.3 Chill Methods 

 

The melt spinning method of rapid solidification was developed in 1960 by Duwez and his co-

workers [27]. Of the three methods of rapid solidification of aluminium, melt spinning is the most 

widely used industrially due to its high cooling rate and the ability to process large volumes of 

materials. Thin metal strips of alloys are produced on a refrigerated rotating disc drum surface in 

an inert environment. The freezing of silicon in the melt spinning process results in high silicon 

content, that is 40% in RSA-443 [28]. Molten material is forced under pressure through a crucible 
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hole on to a rotating drum surface that is refrigerated inside to enhance the cooling process. The 

process schematic is shown in Figure 2.5.  

 

 

 

Figure 2. 5: The melt spinning process [29] 

 

 2.4 Surface Roughness in Ultra-High Precision Diamond Turning 
 

2.4.1 Surface Roughness Parameters  

 

A sharpened single point diamond cutting tool is employed in Ultra-High Precision Diamond 

Turning (UHPDT) of aluminium alloys to produce optical surfaces that fit application 

specifications. Surface roughness parameters are used to quantify the surface deviation from its 

ideal form. Vorbuger and Raja [30] highlighted that roughness average perimeter (Ra) and peak 

surface roughness spacing (D) are critical parameters in surface roughness evaluation as they 
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determine functionality and performance of machined surfaces. Figure 2.6 is a schematic 

representation of the two parameters.  Roughness average perimeter (Ra), represents vertical 

deviation from the horizontal line of a machined surface. Large deviations signify a rough surface; 

while small deviations signify a smooth surface [31]. 

 

 

 

Figure 2. 6: Roughness Average Perimeter and Peak Surface Roughness Spacing [30] 

 

Between the two parameters, only Ra is considered in this investigative research thesis. The lowest 

achievable value of roughness average perimeter for any turning process is theoretically given by 

equation (2.2). Grzesik [32] found out that at low feed, the theoretical roughness is less than the 

actual roughness. There is an extension of plastic deformation to the work piece surface from the 

cutting region which is later recovered after the turning process [33].  

                                                          𝑅𝑎 = 0.0321 ×
𝑓2

𝑟
                                                            (2.2) 

Where 𝑓 =feed in mm/rev 
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And 𝑟 =tool tip radius in mm 

The other factors with significant contribution to the actual roughness are cutting conditions, 

machined material mechanical properties, tool vibrations and chip formation mechanism [34]. 

 

2.4.2 Effect of Material Characteristics on Surface Roughness 

 

The material characteristics that affect surface topology during ultra-high precision diamond 

turning are crystal orientation, swelling and material anisotropy. Crystal orientation to the cutting 

tool determines the cutting force as some directions are more favorable for shear plane formation 

than others [35]. The effect of crystal direction becomes more significant as the uncut chip 

thickness approaches the material grain size. In ultra-high precision diamond turning, the uncut 

chip size is smaller than the average grain size of the material. At this level however, the tool will 

be cutting through ideal crystals of the material, the surface topology is affected by their orientation 

and properties [36, 37]. 

A complex combination of processes that include material swelling, plastic deformation and elastic 

recovery determines the nano-scale surface topology formation during ultra-high precision 

diamond turning. Kong [38] defined materials swelling as, “the elastic-plastic response of the work 

piece when the cutting tool is removed”. Tool mark deviation from the prescribed profile on the 

workpiece surface is a result of material swelling. Therefore, surface topology cannot solely be 

reduced by optimization of process parameters [39]. Many researches have been carried out to 

investigate material swelling effect on surface topology and the results indicate that surface 

topology is distorted by material swelling [40, 41].   

 

2.4.3 Temperature Effect on Surface Roughness 

 

The conventional way of maintaining temperature to avoid adverse thermal effects during Ultra-

High Precision Diamond Turning (UHPDT) involves the use of coolants. Despite the use of 

coolants, the transfer of heat from the cutting point to the workpiece is inevitable. The temperature 

induces thermal errors on the machined component surface finish. During UHPDT, the heat is 
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transmitted from one layer to the adjacent layer resulting in component swelling. When the heat is 

lost, the component does not recover its original shape uniformly, resulting in non-uniform surface 

roughness [42]. 

The temperature generated at the cutting point induces cutting tool dimensional changes that shift 

the tool cutting point, leading to dimensional errors. Besides its direct effect on surface roughness 

through induction of dimensional errors, temperature also indirectly affects surface roughness 

through tool geometry modification due to tool wear. There is a direct relationship between the 

generated temperature and tool wear. The temperature is a function of workpiece material and 

cutting parameters. It is therefore important that the cutting parameters be carefully selected before 

any cutting operation as the machining cost is affected as well [43]. The three zones of heat 

generation during the cutting process are:  plastic deformation by shearing in the primary shear 

zone;  friction on the cutting face and friction between the chips;  tool on the tool flank [44]. The 

heat generation zones are indicated in Figure 2.7. 

 

 

 

Figure 2. 7: Heat generation zones [44] 
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2.4.4 Tool Vibration Effect on Surface Roughness 

 

The relative vibration among cutting tool, workpiece and measuring instrument has adverse effects 

on surface topology of a machined component [45]. Principally, the relative vibration between the 

cutting tool. The defective surface topology, induced dimensional errors and enhanced tool wear 

negatively influence the cost of production and productivity [46]. Numerous researches have been 

conducted to investigate the effects of tool vibrations on surface topology of machined components 

[47-49]. From these researches, it was discovered that vibrations play a significant role in defining 

surface topology during machining, hence the need to control them.  

The three primary categories of machine vibration are free vibrations, forced vibrations and self-

excited vibrations. Free vibrations are a consequence of internal forces in the system and they 

ultimately die out over time [50]. Forced vibrations are a consequence of external force agitation 

while self-excited vibrations are spontaneous and lead to amplitude boost up to a maximum point. 

The dynamic interaction between the cutter and the workpiece during a turning process causes 

self-excited vibration [51]. According to Amin et al.  [52], “tool chatter is an undesirable vibration 

aspect that leads to an increase in vibration amplitudes because of excitation frequency being the 

same as the natural frequency of the cutting tool”. The net result is the adverse effect on surface 

quality. Additionally, chatter also negatively impacts on tool wear, material removal rate, 

production time and energy consumption [53].  

 

2.4.5 Cutting Parameter Effects on Surface Roughness 

 

The most popular cutting parameters that have been researched on are cutting speed, feed rate, 

depth of cut and tool nose radius; and a combination of these cutting parameters is an integral 

determinant of product surface finish. It is crucial for the cutting parameters to achieve the required 

surface finish during the turning process. Due to the uniqueness of every material, different cutting 

parameter combinations are used to achieve that. Numerous studies have been conducted to 

investigate the effects of every cutting parameter in the machining of various materials.  

Imhade and Ugochukwu [54] investigated the order of influence of cutting parameters during the 

end milling of aluminium and concluded that spindle speed has the greatest influence, followed by 
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feed rate and finally depth of cut. Abdullah et al. [55] investigated the effect of feed rate and cutting 

speed on surface topology of aluminium. The conclusion was that feed rate plays the most 

significant role followed by cutting speed. The results indicate that besides material properties, the 

machining process influences the significance of cutting parameters.  

Surface roughness and cutting speed are inversely related, that is, increasing the cutting speed 

reduces the surface roughness. There is a direct variation of feed rate and surface roughness, that 

is increasing the feed rate increases the surface roughness, and vice versa. There is a direct 

proportion between depth of cut and surface roughness. It has also been concluded that there is an 

inverse relationship between tool nose radius and surface roughness, that is, increasing tool nose 

radius reduces the surface roughness [56].  

 

2.4.6 Tool Geometry Effect on Surface Roughness 

 

Tool geometry refers to the outline and angles of the cutting segment of the cutting tool (see Figure 

2.8). Taha et al. [57] found out that during the turning process, the tool geometry has a significant 

effect on surface integrity, tool life and cutting efficiency, hence the urgency for appropriate tool 

selection prior to machining. According to Gökkaya and Nalbant [58], “the least possible average 

surface roughness has been obtained using the cutting tools of maximum insert radius (1.2 mm)”. 

This signifies that broad edged tools produce greater axial and radial forces than narrow edged 

tools and the cutting tool chamfer angle is directly proportional to the cutting force. Tool life is 

enhanced by use of a cutting tool with a greater chamfer angle as the wedge strength is increased, 

though this is only up to a certain level, after which the tool life begins to diminish. At higher 

cutting speeds, there is an inverse relation between chamfer angle and surface roughness. 

Additionally, a higher chamfer angle produces low surface roughness at higher cutting speed [59]. 

The geometry of a single point cutting tool is shown in Figure 2.8. 
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Figure 2. 8: Tool Geometry of Single Point Cutting Tool [60] 

 

2.4.7 Surface Roughness Effects on Fatigue Life  

 

For applications where components are subjected to cyclic loading such as in aeroengine parts, 

fatigue is of predominant concern since it affects safety, product life and operating costs. It was 

discovered that the fatigue strength is affected by the severity and the machining process used to 

produce the component [61]. Fatigue crack development starts on component surface and since a 

high surface roughness promotes crack formation, the material fatigue strength is therefore 

dependent on surface roughness. There is a direct relationship between the fatigue life of a 

machined component and surface finish, that is, the better the surface finish, the higher the fatigue 

life (see Figure 2.9). Further, cutting speed and feed rate have a greater influence on fatigue life 

than depth of cut [62]. Maiya and Busch [63] investigated the effect of surface roughness on fatigue 

life of stainless steel (grade 304) and discovered the relationship represented by equation (2.3).  

 

                                                                𝑁0 = 1012 × 𝑅𝑞
−0.21                                                  (2.3) 
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Where 𝑁0 = initiation component of total fatigue life 

And     𝑅𝑞 = root-mean-square roughness (μm). 

 

 

 

Figure 2. 9: Surface Roughness versus Fatigue Limit [64] 

 

2.5 Cutting Tool Materials 

 

2.5.1 Single Point Diamond  

 

A Single Point Diamond (SPD) cutting tool derives its name from the single diamond crystal that 

is either natural or synthetic, which is fixed on the cutting tool tip and finally smoothened by 

grinding and polishing processes. The single diamond crystal is fixed by high pressure onto a layer 

of tungsten carbide substrate (see Figure 2.10).  
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Figure 2. 10: Geometry of a typical single point diamond cutting tool [65] 

 

Nakasuji et al. [66] observed that single point diamond tools can attain surface finish accuracies  

of micro/nanometer levels. Diamond is the toughest material in existence and it is the best tool to 

machine non-ferrous, non-metallic and abrasive materials [65]. Single point diamond tools have 

high hardness, high abrasion resistance, high strength and great shock resistance [67]. The 

numerous applications of SPD include the machining of reinforced plastics, marble, granite, 

copper and aluminium alloys [68]. For the same machining operation, SPD tools enjoy longer tool 

life than carbides, hence greater cutting speeds are used. A comparison between single point 

diamond (SPD) tools and carbide tools is given by Table 2.2. 
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Table 2. 2: SPDT and carbide comparison data [69] 

 

Parameter Carbide Tool Diamond Tool 

Initial Cost $149-00 $1 451-00 

Sharpening Cost $14-00 $250-00 

Machine Cost (per minute) $0-85 $0-85 

Setup Time 15 min. 15 min. 

Possible Resharpenings 14 times 6 times 

Tool Life 2 500 linear feet 150 000 linear feet 

 

The presented results indicate that single point diamond cutting tools are generally superior to 

carbide cutting tools. This is attributed to the high elastic modulus of diamond (1000GPa) which 

signifies high specific stiffness. The cutting tool withstands high machining forces without 

undergoing any major deformation. Despite the numerous advantages, a single point diamond 

cutting tool has its own share of disadvantages, among which are its transformation to graphite at 

high temperatures and the relatively initial cost of the cutting tool [70]. 

 

 2.5.2 Carbon and Medium Alloy Steels 

 

Carbon steels are clustered according to carbon percentage as follows: low carbon steel, medium 

carbon steel and high carbon steel as indicated in Table 2.3.  
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Table 2. 3: Carbon Steel Categories [71] 

 

Carbon Steel Category Carbon Percentage 

Low carbon steel 0-0.30% 

Medium carbon steel 0.31-0.60% 

High carbon steel 0.61-1.00% 

Ultra-High carbon steel 1.25-2.00% 

 

Due to their lower cost, low carbon steels are the most common among the three groups [71]. High 

carbon steel is alternatively called carbon tool steel, a name derived from its use as a cutting tool 

material because of its hardness. While steel hardness increases with an increase in carbon content, 

brittleness is negatively affected. The difference between carbon steels and alloy steels lies in the 

inclusion of other elements in addition to carbon. Prominent elements are manganese, silicon, 

nickel, titanium, copper, chromium and aluminium. The choice, proportion and combination of the 

alloying element is determined by the required application specific properties.  

 

2.5.3 High Speed Steels  

 

High Speed Steel (HSS) is an alloy of iron, vanadium, chromium, carbon, molybdenum and 

tungsten. The name was derived from the ability to machine at relatively higher speeds than carbon 

and medium alloy steels. High Speed Steel can efficiently cut in extreme temperatures (1000F) 

without losing its hardness [72]. The desired cutting tool properties such as wear resistance, heat 

resistance, high toughness and high hardness response are attained by combining the respective 

elements in well-designed proportions. High speed steels are clustered into three broad categories 

based on the proportion of major constituent elements, namely tungsten, molybdenum and cobalt. 

Table 2.4 shows the nominal chemical compositions of the common high-speed and intermediate 

high-speed tool steels in use. From the table: 
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• T1- titanium steel 

• M1, M2, M7, M50- Molybdenum steels 

• M35, M42- Cobalt steels 

 

Table 2. 4: High Speed Steel Chemical Composition [73] 

 

Grade Cr Mo V Co 

T1 4.00 - 1.00 - 

M1 4.00 8.00 1.00 - 

M2 4.00 5.00 2.00 - 

M7 4.00 8.75 2.00 - 

M35 4.30 5.00 1.80 5.00 

M42 3.75 9.50 1.15 8.00 

M50 4.00 4.25 1.00 - 

 

2.5.4 Carbides 

 

The need for heat resistant cutting tools in modern manufacturing processes is being necessitated 

by the ever-increasing need for high metal removal rate. This has led to a transition from the use 

of high-speed steels to carbides, whose cutting speeds are 3-5 times faster. The carbide cutting tool 

is composed of powdered carbide particles bound together by a cobalt matrix binder and exists in 

the following categories: tungsten carbide, titanium carbide, tantalum carbide and niobium carbide 

[74]. The proportion of each constituent element in the cutting tool significantly affects the 

properties of the cutting tool. It is recommended that the manufacturer’s specified grade be used 

to enhance tool life and cutting speed. Table 2.5 shows the different grades and the best conditions 

for their applications. 
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Table 2. 5: Carbide Grades and Applications 

 

Carbide Grade Condition of Application 

Shock-Resistant Carbide Interrupted Cutting 

Harder, Chemically Stable Carbide High Speed Finishing 

Heat-Resistant Carbide Super Alloy Machining 

 

2.5.5 Polycrystalline Diamond  

 

Polycrystalline Diamond (PCD) was introduced as a means to improve Ti6Al4V used in the 

aerospace industry [75]. PCD tools are formed by high pressure and temperature combination of 

minute synthetic diamond particles using a carbide substrate binder and cobalt catalyst. The 

presence of cobalt results in an electrically conductive composite that demands the use of electrical 

discharge machining method in conjunction with PCD. PCD is an isotropic material that exhibits 

a unique and desirable property for a cutting tool in its qualification to be brazed [76]. In the 

formation of a composite material based cutting tool like PCD, it is crucial to balance between 

toughness and wear resistance as both are desirable qualities. Abdul-Rani et al. [77] found out that 

PCD cutter wear resistance is enhanced by reduction of diamond grain size.   

 

2.6 Review of Acoustic Emission and Signal Processing 

 

2.6.1 Acoustic Emission Sensors  

 

An acoustic emission sensor is defined as a device which detects an acoustic wave and converts it 

into an electrical signal. It utilizes multiple physical detection principles that include 

electromagnetic, capacitive, magnetostrictive, piezoelectric and interferometers. Selection of an 

appropriate sensor is governed by the correlation between input and output signals. A perfect 

sensor choice is one that would give an output voltage-time curve equivalent to the input 
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amplitude-time curve [78]. Due to the wide frequency spectrum and diverse acoustic signal modes, 

almost any sensor can detect some AE. For the purposes of this research, piezoelectric sensors will 

be discussed. 

Non-destructive sensing techniques are categorized into two broad groups, namely, passive and 

active techniques. Active sensing techniques require an input to detect a parameter while passive 

techniques do not require any input. Piezoelectric acoustic emission sensors are classified under 

non-destructive sensing techniques since they do not require any input but only the detection of 

energy released from the workpiece under investigation [79]. Owing to the numerous advantages 

of non-destructive testing methods, much ground has been gained in terms of their implementation 

in industrial test applications. The state of in-service components can be assessed without physical 

property alteration. Valuable information such as crack growth and plastic deformation can be 

acquired from acoustic emission signals to ascertain the service state of structures such as metal 

pressure vessels, piping systems and reactors [80]. During the turning process, the acquired 

acoustic signal is processed and analyzed for use in tool condition monitoring and surface 

roughness prediction.  

 

2.6.2 Acoustic Emission Sensor Piezoelectricity 

 

Component loading is correlated with stress energy discharge. The resultant transient elastic waves 

propagate inside the material before detection by an acoustic emission sensor. Acoustic emission 

sensors employ the piezoelectric effect in their operation. Piezoelectricity is a pairing phenomenon 

between strain and electric polarization that results in generation of electric charge in materials 

subjected to applied stress. The generated charge is directly proportional to the strain. Examples 

of piezoelectric materials are quartz, Rochelle salt, ammonium dihydrogen phosphate and 

ferroelectrics [81]. Advances in research have made it possible to produce ferroelectric ceramics 

with superior properties to piezoelectric single crystals. These are common in most acoustic 

emission sensors today. 

Piezoelectric material diameter and thickness are crucial dimensions that define sensor sensitivity. 

The Boston Piezo-Optics Inc. defined sensitivity as the smallest change in input signal that a 
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transducer can detect [82]. Resonance frequency of the sensor is determined by the element’s 

piezoelectric and elastic constants. The structure of the Piezotron sensor is shown in Figure 2.11. 

The sensor case acts as a shield against electromagnetic interference. 

 

 

 

Figure 2. 11: Typical Acoustic Emission Sensor [80] 

 

2.6.3 Piezoelectric Material Size Effects 

 

An ideal sensor is closely typified by a nanoscale piezoelectric material with numerous electrode 

sets planted in a sample. Scaling up the piezoelectric material to a convenient size brings about 

some deviation from ideality. The enhanced performance of piezoelectric materials with reduction 

in size is attributed to the increased surface to volume ratio of the material. The increased surface 

to volume ratio subsequently leads to lateral direction relaxation of the surface atoms [83]. 

Resonance and strain averaging are critical consequences of the piezoelectric dimensions. 
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Resonance frequency is the frequency at which the piezoelectric material efficiently converts 

mechanical energy into electrical energy. At this frequency, the sensor gives maximum output. 

The resonant frequency for piezoelectric sensors takes place when piezoelectric material thickness 

is one-half wavelength [78]. The resonant frequency as a function of material thickness is 

expressed by equation (2.4).   

                                                                        𝑑 = (2𝑛 − 1)ƛ/2                                                 (2.4) 

Where d = thickness of piezoelectric material 

           𝑛 = odd or even number 

And      ƛ= signal wavelength 

The acoustic emission signal will give no output when  

                                                                                  𝑑 = 𝑛ƛ                                                      (2.5) 

 

2.6.4 Piezoelectric Sensor Couplants 

 

At atomic level, the contact surfaces between the acoustic sensor and the workpiece are imperfect, 

making contact only on distinct points. Placing a piezoelectric sensor directly on specimen surface 

produces a weak signal which can be enhanced by application of a thin fluid couplant that provides 

better contact between the sensor and material surface. The absence of a couplant makes the force 

transmitting area small; and a couplant fills the small gaps to ensure uniform pressure transmission 

between surfaces [84]. Numerous couplants have been in use and the choice is determined by the 

conditions of application as shown in Table 2.7. 

 

Table 2. 6: Acoustic Emission Couplants [85] 

 

Couplant Approximate Temperature Range 

Dow Corning V-9 Resin ~ -40o C to 100o C 

High Vacuum Stop Cock Grease ~ -40o C to 200o C 
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Ultrasonic Couplants Room Temperature 

Petroleum Grease Room Temperature 

Dow Corning 200 Fluid -273o C to -70o C and -30o C to 200o C 

Dental Cement ~ 0o C to ~50o C 

50 % Indium – 50 % Gallium mixture ~20o C to 700o C 

GE Silicone II 5o C to 200o C 

 

2.6.5 Piezotron Coupler  

 

The two purposes of the Piezotron coupler are the provision of power to the sensor and signal 

conditioning of the high frequency sound signal from the Piezotron sensor. It contains a built-in 

RMS converter with plug-in modules for signal filtration, gain applications and integration time 

constant. The gain module amplifies the signal by a predefined factor and is connected to a series 

connection of two high-pass or low-pass filters. The two filters can be combined to form a band 

pass filter [86].  

The bandpass filtered signal frequency is amplified and combined with the integration time 

constant to form a high frequency envelop. The optocoupler monitors that the level of the RMS 

frequency does not exceed a predefined value. Once the predefined value is exceeded, the 

optocoupler triggers the limit switch to shut. That ensures the removal of baseline noise and 

transmission of high frequency peaks. The optocoupler schematic diagram is shown in Figure 2.12. 
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Figure 2. 12: Kistler Piezotron Coupler [87] 

 

2.6.6 Temperature Dependency of Piezoelectricity 

 

When ferroelectric materials are subjected to temperatures above the Curie temperature, they 

transform into another material form with reduced performance and devoid of piezoelectric 

properties. It is thus a requirement that piezoelectric materials be used at temperatures lower than 

the Curie temperature to preserve their poling stability. Sensor selection must be based on 

temperature restriction provided by the manufacturer; ensuring that the Curie temperature is not 

exceeded. Even after proper sensor selection, temperature monitoring is vital for dynamic heat 

generating applications. On the other extreme, using a piezoelectric sensor at cryogenic 

temperatures reduces the mechanical and electrical properties of piezoelectric sensors. The 

following are consequences of using the sensor in cryogenic temperatures: reduced electrical 
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capacitance, reduced loss factor, reduced strain coefficient and magnified coercive field [88]. 

Temperature changes result in acoustic piezoelectric sensor noise, which alters the actual signal. 

It is essential that the sensor attains thermal equilibrium before use at different temperatures.  

 

2.6.7 Sensor Sensitivity 

 

2.6.7.1 Effect of Cables 

 

Sensor sensitivity is a composite of piezoelectric material and auxiliary components properties. 

Components such as electrical cables used in conjunction with the sensor play an integral role in 

sensor sensitivity determination. Signals are transmitted in the form of high frequency AC signals. 

Circuit capacitive reactance caused by cable capacitance distorts AE signals. It was discovered 

that a cable less than 30 meters in length between power supply and piezoelectric sensor has 

negligible capacitance effects on data signals [89]. The effect of cable length on sensitivity is best 

illustrated by equation (2.6). 

                                                           𝑉𝑜 (𝑆)  =  𝑄(𝑆)/𝐶𝑜                                                           (2.6) 

where 𝑉𝑜 = sensor open circuit voltage; 

            𝑄 = charge produced by a strain S,  

and     𝐶𝑜 = capacitance of the sensor. 

Connecting the sensor to the amplifier through cable will only increase the total circuit capacitance 

as illustrated by equation (2.7). It is evident that the supply voltage is inversely proportional to the 

total capacitance, mainly due to cable length. As such it is recommended that the minimum cable 

length possible be used to minimize output signal distortions due to additional cable capacitance.  

                                                            𝑉(𝑆)  =  𝑄(𝑆)/(𝐶𝑜   +  𝐶𝑐 + 𝐶𝐼)                                     (2.7) 

where 𝐶𝑐 = cable capacitance  

and      𝐶𝐼 = input capacitance of the preamplifier. 
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Another factor to consider in using cables in conjunction with sensors is the routing of the cables. 

Electromagnetic interference is a consequence of running cables along AC power lines and through 

electrostatic discharge areas [90]. Extra protection to the cable is achieved through provision of a 

separate grounded conduit to eliminate undesirable noise. Sensor manufacturer’s recommended 

cable type and length must be used always to obtain best results. 

 

2.6.7.2 Effect of Preamplifier Noise 

 

Sensor spectral response to an acoustic signal relies upon the preamplifier input characteristics, 

hence, use must be made of preamplifiers that are meant for acoustic emission. Current variations 

in the leading amplification device cause noise in shorted preamplifier. For unshorted inputs, the 

noise is attributed to current variations in the input resistor [91]. The root mean square noise 

voltage for the resistor is expressed as: 

                                                                   𝑉 𝑛
2 =  4𝐾𝑇𝑅𝛥𝜐                                                       (2.8) 

where 𝐾= Boltzmann’s constant,  

           𝑇= temperature,  

           𝑅= resistance  

And  𝛥𝜐= preamplifier bandwidth.  

In the case of an open input stage preamplifier without a connected sensor, R represents the stage 

input resistance, otherwise R is an equivalent resistance. Higher noise frequencies are suppressed 

by cable and sensor capacitances. The manufacturer specifies the amplifier noise level as the ratio 

of root mean square voltage to gain as indicated in the following equation.  

                                                                     𝑉𝑠  =  𝑉𝑜/𝐺                                                            (2.9) 

The range for most acoustic emission sensors impedance is 50-1000Ω and is expressed as: 

                                                                    𝑉𝑛
2  =  0.004√𝑍𝑜𝛥𝜐                                             (2.10) 

where 𝑍𝑜 = sensor impedance (K Ω) 
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          𝛥𝜐 = preamplifier bandwidth (Hz)  

The exact preamplifier-sensor-cable combination noise voltage is expressed as: 

                                                               𝑉𝑛𝑜𝑖𝑠𝑒  = √(𝑉𝑠
2  +  𝑉𝑛

2)                                              (2.11) 

A root mean square voltmeter can be used to measure the noise voltage.  

 

2.6.8 Sensor Calibration 

 

Sensor accuracy and system integrity are guaranteed by a periodic sensitivity audit within the 

operating spectrum of frequencies and amplitudes [92]. Accessibility of the sensor is a factor to be 

considered in immovable sensor installation to ensure that calibration can be performed easily. 

The recommended general sensor calibration interval, the associated calibration sensitivity curves 

and all calibration guidelines are provided by the manufacturer. The good news about Kistler 

piezoelectric sensors is that they are factory calibrated and come with a calibration certificate 

traceable to national standards. Calibration is also offered at customer request for immovable 

sensors.   

The Kistler sensor sensitivity units are dBref 1V/(m/s). This research utilizes a Kistler piezoelectric 

acoustic sensor which can detect surface (Raleigh) and longitudinal waves within the frequency 

range 50kHz-900kHz [93]. Either of the two waves can be used to calibrate the piezoelectric 

sensor. Technical Data on the Kistler acoustic emission sensor is provided in Appendix A. During 

the piezoelectric sensor calibration process, comparison is made between the output spectrum of 

the sensor of interest and that of a standard reference sensor.  In the event of a deviation from the 

standard, adjustments must be made on the sensor of interest. The custodian of international 

physical measurement standards is the International Bureau of Weights and Measures. The 

headquarters are in Sévres, France [94].   

 

 



Master of Engineering (Mechatronics)  Thesis                                                        Nelson Mandela University 

 

36 
 

2.6.9 Acoustic Emission Signal Parameters 

 

Since an acoustic emission signal is a composite of numerous parameters, as much information as 

possible must be captured during the data acquisition stage. Among the sea of parameters 

contained in the AE pre-processed signal are amplitude, counts, Measured Area Under Rectified 

Signal Envelop (MARSE), duration and rise time [95]. Figure 2.13 is a diagrammatic 

representation of these features.  

 

 

 

Figure 2. 13: AE Signal Features [96] 

 

Amplitude is an important parameter as it determines whether a signal will be detected or not. It 

is defined as the peak voltage in a waveform. The unit of expression of amplitude is the decibel 

(dB). Detectability of a signal below the operator defined threshold value is unattainable. The unit 

for Rise time is the second (s). It is defined as the time gap between the first threshold crossing 
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and signal amplitude. Rise time provides valuable information about the signal propagation from 

the source to the sensor, hence it can aid during signal filtering stage. The Duration of an AE signal 

is expressed in seconds (s). It is the interval between the first and last threshold crossings of a 

signal. This parameter is fundamental in the identification of different source types and can be 

instrumental in signal filtering. Duration is dependent on signal strength and type of material.  

The alternative name for MARSE is energy counts. It is defined as a measure of the area under 

blanket of the rectified linear voltage time signal from the sensor. The MARSE allows the 

calculation of the energy emitted by the source, provided the signal is above the user defined 

threshold. Counts refers to the number of pulses discharged by the measurement circuitry. Usually, 

the parameter is coupled with other parameters such as amplitude and duration for meaningful 

information to be deducted from the signal form. Acoustic emission RMS is defined as the square 

root of the mean of the squares of AE hits amplitude [97]. Acoustic Emission root mean square 

(AErms) is represented by equation (2.12): 

 

                                       𝐴𝐸𝑟𝑚𝑠 = √
1

𝛥𝑇
∫ 𝐴𝐸2𝛥𝑇

0
(𝑡)𝑑𝑡 = √

1

𝑁
∑ 𝐴𝐸2(𝑖)𝑁

𝑖=1                              (2.12) 

 

Where 𝛥𝑇 = integration time constant 

              𝑁 = number of discrete AE data within ΔT 

 

2.6.10 Acoustic Emission Wave Propagation Effects 

 

 

The acoustic emission wave suffers many effects during its propagation from the source to the 

sensor. The effects on the AE waveform include attenuation, dispersion, diffraction and scattering. 

The AE waveform detected by a sensor is much more complex in form compared to the AE at 

source. It is shaped by the propagation effects between the source and sensor. The important factors 

of wave propagation for AE are wave modes and wave velocity, wave reflection, mode conversion 

and attenuation. 
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The popular modes of wave propagation are dilatational, shear, surface, plate, interfacial, Love 

and creeping. The primary basis for classification of wave modes is the direction of oscillation of 

media particles. On that basis, a longitudinal wave is one in which media particles vibrate in the 

direction of the wave propagation while a transverse wave has media particles vibrating 

perpendicular to wave propagation. The media particles in a surface wave vibrate in an elliptic 

fashion while plate wave particles vibrate vertical to the plate surface. The speed of each wave 

mode is dependent on the material properties of the media. 

Because of attenuation, there is a gradual decrease in AE wave intensity from the source to the 

detection point. The three causes of attenuation are geometric spreading, material damping and 

wave scattering. As a wave traverses in a medium, there is conversion of kinetic energy into heat 

energy. Some of the energy is reflected by structural boundaries within the medium. An instrument 

called a Hsu-Nielson Source is used to measure the effects of attenuation on an AE signal [96]. 

 

2.6.11 A comparison of the AE technique and other NDT Methods 

 

Like any other method of surface roughness monitoring, AE monitoring method has both 

advantages and disadvantages. Iwata and Morivalci [98] pointed out that due to the large difference 

in frequency ranges between signal and noise, it is easy to filter the signal to obtain a better signal 

to noise ratio. Acoustic emission monitoring method does not require modification of existing 

system. The emission of signal during the machining process occurs in real time, thereby allowing 

monitoring to be carried out in real time as well [99]. Unlike in other non-destructive monitoring 

techniques such as ultrasonic sensing where signal are externally sourced, AE signal is internally 

sourced [100].   

Due to the randomness of the acoustic emission signal process, the analysis and interpretation of 

the emitted signal is complex. The complexity is worsened by the non-periodicity and numerous 

signals associated with the signal, rendering mathematical relationships unsuitable in describing 

them. Some of the differences between AE techniques and other NDT methods are illustrated in 

Table 2.7. 
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Table 2. 7: Comparison of AE characteristics with other NDT methods [101] 

 

Acoustic Emission Other NDT Methods 

Requires stress Do not require stress 

Each loading is unique Inspection is directly repeatable 

More material sensitive Less material sensitive 

Less geometry sensitive More geometry sensitive 

Less intrusive on plant process More intrusive on plant process 

Requires access only at sensors Requires access to whole area of inspection 

Main problems noise related Main problems geometry related 

 

2.6.12 Acoustic Emission Signal Correction and Pre-processing 

 

Since an Acoustic Emission Signal is a composite of super-imposed momentary features, it is 

essential to process it to abstract parameters of significance. There are myriads of signal processing 

methods in use for the analysis of AE signals. The abstracted features are valuable for testing or 

monitoring purposes. The preeminent methods for signal analysis are time series analysis, Fast 

Fourier Transform (FFT), Gabor transform (or window (local) Fourier transform), Wigner–Ville 

distribution, and wavelet transform. For this research, only the FFT method will be discussed. 

There is urgency to modify an Acoustic Emission signal into a mode that mirrors all the significant 

parameters embedded within. Examples of such parameters are frequency, amplitude and other 

sources of distortion. The modification process embroils filtering out electrical noise with the aid 

of a signal processing tool such as Fast Fourier Transform (FFT). The raw signal is vague, 

containing both the necessary and undesirable parameters fused together. There are various 

approaches to enumerate the Discrete Fourier Transform (DFT) of a signal. The FFT approach has 

the convenience of significantly shortening enumeration time.  

The leading step in FFT signal analysis is the selection of the primary DFT equation: 
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                                                           𝑋𝑝 = ∑ 𝑥𝑛𝑒−𝑗
2𝜋

𝑁
𝑛𝑝𝑁−1

𝑛=0                                                        (2.13) 

 

Separating Eq. (2.13) into odd and even components: 

                       𝑋𝑝 = ∑ 𝑥2𝑛𝑒−𝑗
2𝜋

𝑁
(2𝑛)𝑝 +

𝑁

2
−1

𝑛=0
∑ 𝑥2𝑛 + 1𝑒−𝑗

2𝜋

𝑁
(2𝑛+1)𝑝

𝑁

2
−1

𝑛=0                                        (2.14) 

                         

                             = ∑ 𝑥2𝑛𝑒−𝑗
4𝜋

𝑁
𝑛𝑝 + 𝑒−𝑗

2𝜋

𝑁
𝑝 ∑ 𝑥2𝑛 + 1𝑒−𝑗

4𝜋

𝑁
𝑛𝑝

𝑁

2
−1

𝑛=0

𝑁

2
−1

𝑛=0                                       (2.15) 

 

                         = 𝐴𝑝 + 𝑊𝑝𝐵𝑝                                                                                                    (2.16) 

 

Where                                                     𝐴𝑝 = ∑ 𝑥2𝑛𝑒−𝑗
4𝜋

𝑁
𝑛𝑝

𝑁

2
−1

𝑛=0 ;                                              (2.17) 

 

                                                             𝐵𝑝 = ∑ 𝑥2𝑛 + 1𝑒−𝑗
4𝜋

𝑁
𝑛𝑝

𝑁

2
−1

𝑛=0                                            (2.18) 

 

And                                                                      𝑊 = 𝑒−𝑗
2𝜋

𝑁 .                                                    (2.19) 

𝐴𝑝 and 𝐵𝑝 are DFTs of length  
𝑁

2
 each:  

𝐴𝑝 equals the sequence {𝑥2𝑛} = {𝑥0, 𝑥2, … 𝑥𝑁−4, 𝑥𝑁−2}                                                            (2.20) 

And 𝐵𝑝 equals the sequence {𝑥2𝑛+1} = {𝑥1, 𝑥3, … 𝑥𝑁−3, 𝑥𝑁−1}                                                 (2.21) 

∫ ɸ(𝑥)(𝑥 + 𝑙)𝑑𝑥 = б0,𝑙
∞

−∞
                                                                                                         (2.22) 
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2.7 Computational/Artificial Intelligence 
 

Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN) are 

branches of Computational Intelligence in which the human brain is represented by computational 

models. ANFIS and ANN are the prediction methods used in this research. A comparison was 

made between the two prediction models to determine their accuracy in surface roughness 

determination. The computational models mimic the human brain in terms of learning capability 

and problem-solving approach. These brain attributes are the foundation of Computational 

Intelligence [102]. Computational Intelligence is an integration of technologies from various fields 

(see Figure 2.14). The two phases of Computational Intelligence development are simulation of 

human experience followed by rule-based conclusions and modelling using ANFIS and ANN. 

Neural networks can model parameters whose relationship is non-linear by checking for patterns 

in provided data. Both ANN and ANFIS are going to be described, but ANN will be explained 

first. 

 

 

 

Figure 2. 14: Artificial Intelligence Disciplines [103] 
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A comparison is made between the conventional computing methods and soft computing methods 

as illustrated in Table 2.8.  

 

Table 2. 8: Differences in approach between conventional computing and Soft Computing [104] 

 

Characteristics Conventional Computing Soft Computing 

Functions By Rules  By example  

Learning Method Logically Perceptual Pattern 

Processing Style Sequential Parallel 

 

2.7.1 Previous Applications of ANFIS and ANN in Surface Roughness Prediction 

 

The complex nature of parameter interaction during the machining process has made researchers 

develop more efficient methods of surface roughness prediction. A survey of researches based on 

surface roughness prediction using computational intelligence reveals that ANFIS, ANN and 

genetic algorithms have been used. Among the three methods, ANFIS and ANN are commonly 

utilized.  

Asiltürk and Çunkas [105] used a feed-forward ANN in surface roughness modeling and prediction 

turning operations on AISI 1040 steel. Dong and Wang [106]  proposed an ANFIS model in end 

milling surface roughness prediction of 6061 aluminum alloy. A radial basis feed forward 

Artificial Neural Network was used by Munoz-Escalon and Maropoulos [107] in surface 

roughness prediction during face milling of Al 7075-T735. Calculation of Pearson correlation 

coefficients was done to ascertain input parameters correlation with surface roughness. The cutting 

parameters used are cutting speed, feed per tooth, axial depth of cut, chip's width and chip's 

thickness. 
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 Jiao et al. [108] utilized an ANFIS model in predicting surface roughness of turned surface. A 

five-layered feed forward network was used in training the hybrid model. Many other researchers 

have implemented computational intelligence methods in surface roughness prediction of various 

materials during machining.  A review of the researches reveals that the computational methods 

are more accurate than the regression model.  

 

2.7.2 Fuzzy Modeling & Fuzzy Inference System 

 

2.7.2.1 Boolean Logic vs Fuzzy Logic 

 

The characteristics of a fuzzy event are vagueness and impreciseness. A fuzzy event cannot be 

classified as either true or false as it is a continuum between the two extreme values. In line with 

the above stated property, any value in the range 0 to 1 can be assumed by an event in fuzzy logic. 

The event value is called the truth value, which denotes the degree of membership of the event to 

the fuzzy set. A lower truth value closer to 0 represents a weaker degree of membership while a 

higher value closer to 1 represents a stronger degree of membership [109]. The value 0 denotes 

absolute falseness while a 1 denotes absolute truthfulness.  

The best way to solve impreciseness in real everyday problems is using fuzzy logic systems. For 

example, considering the condition “add cold water” in a washing machine, for a human brain it 

is easy to understand the meaning of the statement. It is a different story when the task must be 

executed by a computer as it does not know which temperature value is considered as being cold. 

Cold can be any temperature value from 0o C to maybe 32o C.  If a limit is given of the maximum 

temperature to be taken as cold, for example 32oC, any temperature above that such as 32.1o C is 

taken as hot. Such uncertainties are best solved by fuzzy logic systems. Fuzzy control has the 

advantage that no detailed plant mathematical model is required as the operator and designer 

experiences are embedded into the fuzzy controller [110]. Figure 2.15 shows the differences 

between a fuzzy logic system and Boolean logic. 
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Figure 2. 15: Differences between Boolean Logic and Fuzzy Logic [103] 

 

2.7.2.2 Fuzzy Set Theory 

 

In 1965, Lotfi Zadeh [111] introduced a mathematical model called fuzzy set theory to represent 

linguistic vagueness. Since its introduction, the fuzzy set theory has evolved and advanced greatly. 

Most of the available conventional modelling tools available are crisp and precise in nature. Crisp 

statements are either true or false and nothing in between, that is, an element either belongs to a 

set or it does not belong. The fuzzy set theory differs from classical theory in terms of element 

membership. While classical set theory membership is crisp, fuzzy set theory membership takes a 

range of values between 0 and 1 [112]. The fuzzy set theory resembles the biological brain when 

dealing with vague data. Conventional models of problem solving require understanding of all 

variables at play. Due to the complexity of real-life problems, it is nearly impossible to know all 

variables at play. Fuzzy modelling is simplified by putting together numerous parameters. Figure 

2.16 represents a crisp set and fuzzy set respectively. 
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Figure 2. 16: (a) Crisp Set and (b) Fuzzy Set [113] 

 

Linguistic variables like small, tall, large, low, fast, medium, slow, high and heavy are represented 

by fuzzy sets. In fuzzy set theory, it is possible for an element to belong to more than one set at a 

time. A fuzzy set A in its field of discourse, U, is represented as a set of ordered pairs. A pair is 

composed of a variable x and its associated degree of membership as shown by equation (2.23). A 

diagrammatic representation of the mapping of each variable to its associated degree of 

membership is known as a membership function [114].    

                                                                             𝑆 = {(𝑥, µ(𝑥))⎸𝑥𝜖𝑈}                                   (2.23)                                                                                                     

2.7.2.3 Fuzzy Inference Systems 

 

The primary function of a Fuzzy Inference System is decision making. To accomplish this goal, it 

makes use of the “IF…THEN” rules together with connectors “OR” or “AND”. A Fuzzy Inference 

System (FIS) contains the fuzzy reasoning process. A complete FIS has three stages from data 

input to the desired output. These three stages in their order are fuzzification, rule evaluation and 

defuzzification. A detailed system on how the process works is shown in Figure 2.17. 
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Figure 2. 17: Fuzzy Inferencing Unit [115] 

 

2.7.2.4 Fuzzification 

 

The first stage of the Fuzzy Inference System is called Fuzzification. At this stage crisp quantities 

are converted to fuzzy quantities. Sensors are used to determine everyday classical variables such 

as temperature, pressure and speed. These variables must be converted to fuzzy variables before 

they can be processed by a Fuzzy Inference system. During the fuzzification stage, every input is 

assigned its own group of Membership Functions (MF) to which it is converted. The universe of 

discourse is represented by the horizontal axis in the plot of input variable against degree of 

membership and all membership functions and crisp input values are contained within [116]. 

Figure 2.18 is a representation of membership function shapes for crisp inputs within the universe 

of discourse.  

The shape and labelling of the input variables membership functions to be used must be chosen 

prior to coming up with the membership function number during the design process. In selecting 

the membership function shape, accuracy of the output, ease of use and economics of computer 

resources must be considered. Knowledge of the number of regions into which the universe of 

discourse must be partitioned helps in the determination of membership function numbers. The 

number of labels corresponds to the number of membership functions and each label represents a 

region [117].    
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Figure 2. 18: Membership function shapes [118] 

 

Experience is a very integral factor in choosing the Membership Function (MF) shape and number. 

The membership function shape used must be accurate and the number of the membership 

functions must not be too few or too many. Using too few membership functions causes slow 

output response and system oscillation while too many MFs reduce system stability and misfiring. 

The membership functions must overlap so as to avoid the system being reduced into a Boolean 

logic system [119]. The input must not belong to more than two membership functions and the 

overlapping membership function grades must add up to not more than 1. The membership 

functions must not cross each other at the maximum truth value.  

At this stage, each crisp input value and intersection point within the universe of discourse is 

mapped with each membership function and transposed onto the μ axis. The degrees of truth are 

the ones represented by the μ values. The μ values are related to each label as fuzzy inputs. The 

results from this stage are carried to the rule evaluation stage in the fuzzy inference system process. 

 

2.7.2.5 Rule Evaluation 

 

A series of IF-THEN statements constitute the Rule evaluation procedure. In the statement lies an 

operator popularly known as Zadeh operator. Experience and familiarity are required in rule 

determination at this stage of Fuzzy Inference System. In this thesis, such experience was gained 
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using previously obtained turning data in literature. The syntax for the rules used is strict and it is 

structured as follows: 

IF (input1(X1) is membership function1) ZADEH OPERATOR (input2 (X2) is membership 

function2) ……………THEN (output (Y1) is output membership function) 

X and Y represent antecedent and consequent respectively. 

The three types of Zadeh operators used are AND, OR and NOT. The output membership function 

is influenced by the linguistic variable used. The Zadeh operator can afford a maximum of two 

membership functions. There is a similarity between Boolean operators and Zadeh operators such 

that: 

In fuzzy logic: X1 AND X2 = min (X1, X2). The relationship is represented by equation (2.24). 

                                                            µ_𝐴Ո𝐵 = 𝑚𝑖𝑛 [µ_𝐴 (𝑋1), µ_𝐵 (𝑋2)]                            (2.24) 

 

In fuzzy logic: X1 OR X2 = max (X1, X2). The relationship is represented by equation (2.25).  

                                                              µ_𝐴ᴜ𝐵 = 𝑚𝑎𝑥 [µ_𝐴 (𝑋1, µ_𝐵 (𝑋2)]                            (2.25) 

 

In fuzzy logic: The opposite of the set is represented by NOT as represented by equation (2.26). 

                                                                  (µ_𝐴 ) ̅ = [1 − µ_𝐴 (𝑋)                                             (2.26) 

The above equations give the rule strengths from the interfacing of input antecedents X1 and X2 

and the resulting strengths values are called fuzzy outputs.  

 

2.7.2.6 Defuzzification 

 

The defuzzification stage is the third and final stage of the fuzzy inference system. At this stage, 

the conversion of fuzzy outputs into crisp outputs takes place. In fuzzy logic controllers, the crisp 

value represents the action to be taken in process control. The numerous defuzzification methods 
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include the Center of Gravity Method (COG), Center of Sums Method (COS), Center of Area or 

Bisector of Area Method (BOA), Weighted Average Method and Maxima Method [120].  

The factors that must be considered in selecting the defuzzification technique in each application 

are suitability of the design, the efficiency of the technique, continuity of defuzzification result 

and compatibility with fuzzy system. Continuity of defuzzification result means that small changes 

in membership values of the fuzzy output must give rise to small changes in crisp result. This 

principle is particularly important in fuzzy logic controllers. Computational efficiency is 

determined by the nature and number of computations carried out to arrive at the defuzzification 

result [121].  

For the purposes of this research, only the Center of Gravity method shall be discussed. This 

method utilizes fuzzy set centroid to calculate the crisp output value. The first stage is the division 

of the total membership function area into sub-divisions. Each sub-division has its area and 

centroid calculated. To simplify calculations in the microcontroller, a restriction is put on the 

output membership functions to singletons. The result of this stage is crisp, and it is passed out of 

the FIS for processing elsewhere. The crisp value is given by equation (2.27).  

                                                          𝑋 =
∑ 𝑥𝑖.µ(𝑥𝑖)𝑛

𝑖=1

∑ µ(𝑥𝑖)𝑛
𝑖=1

                                                                  (2.27) 

Where 

        𝑥𝑖 = sample element. 

  µ(𝑥𝑖) =membership function. 

         𝑛 =number of elements in the membership function. 

 

2.7.2.7 Mamdani-Type FIS VS. Sugeno-Type FIS 

 

When dealing with expert knowledge, the Mamdani method is better accepted as it gives the 

allowance for expertise description in a human-like way. Mamdani-type FIS finds most of its 

applications in decision support. On the other hand, it works better for dynamic non-linear systems 

control where optimization and adaptive methods must be employed. The most notable difference 

between Mamdani-type FIS and Sugeno-type FIS stems from the conversion of fuzzy inputs into 
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crisp outputs. The weighted average method is used for crisp out computation in Sugeno-type FIS 

while the Mamdani-type FIS employs the defuzzification technique [122]. The Sugeno-type FIS 

has greater processing speed as the time consuming defuzzification process is replaced by the 

efficient weighted average method. The Sugeno-type FIS has linear or constant membership 

functions while the membership functions for Mamdani-type FIS are in the form of fuzzy sets 

[123].  

 

2.7.3 Artificial Neural Networks  

 

The birth and growth of Artificial Neural Networks is inspired by the amazing way in which the 

human brain operates. Unlike the typical computers, the human brain does not need coding for it 

to solve complex problems. It learns and can adjust to solve problems from experience gained 

from similar previously encountered problems. The inability of modern computers to learn, 

coupled with the fact that not all real-life problems can be expressed in code form, has inspired 

researchers to come up with models that emulate the biological nervous system [124]. 

The human brain’s massive cognitive efficiency is attributed to its basic part called a neuron which 

acts as a biological switch in the nervous system. The neuron collects, processes and transmits 

signals in the form of electrical impulses [125]. The feature responsible for information reception 

on the neuron is called a dendrite and is indicated on the neuron structure diagram in Figure 2.19. 

Received signals accumulate in the nucleus until a threshold value is attained, after which the 

signal is transmitted to adjacent neurons through the axon. Signal effect on a neuron is dependent 

on the weight of the synapse.   
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Figure 2. 19: Biological Neuron Structure [126] 

 

The mathematical neuron model was born out of the researchers’ push for low energy consumption 

computational tools capable of learning and performing distributed computation with high input 

noise tolerance. Artificial neurons are represented as nodes in Artificial Neural Networks. A signal 

traverses the network through a layered assemblage of nodes, with the signal being transformed at 

each layer. The layers of nodes between the input and output are called hidden layers. Artificial 

Neural networks have the competence to alter the weights based on the form of input data received. 

The mathematical model of a neuron is shown in Figure 2.20. 
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Figure 2. 20: Mathematical Model of a Neuron [126] 

 

2.7.3.1 Neural Network Architecture 

 

Architecture refers to the arrangement and connection pattern of nodes. Based on the inter-

connection of nodes, there exist two main groups of Artificial Neural Networks: 

• Feed-forward networks 

• Feed-back networks 

 

2.7.3.1.1 Feed-Forward Artificial Neural Networks 

 

In Feed-Forward Artificial Neural Networks, the nodes are connected in one direction from the 

input towards the output. A neuron in a preceding layer is connected to every other neuron in the 

next layer [127]. In this architecture type, no output is fed back to the network (see Figure 2.21). 

This is the most common of the two architectures. Feed-Forward Artificial Neural Networks have 

applications in pattern generation, recognition (character recognition) and classification (customer 

data bases) [128].  
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Figure 2. 21: Feed-forward Artificial Neural Network [129] 

 

Figure 2.21 shows a one-layer Feed-forward Neural Network with the following parameters: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠 = 𝑛 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 = 𝑚 

The output and input vectors are respectively expressed as 

                                                                   𝑦 = [𝑦1 𝑦2 … 𝑦𝑚]𝑡                                                  (2.28) 

                                                                   𝑥 = [𝑥1 𝑥2 … 𝑥𝑛]𝑡                                                 (2.29) 

Each input neuron has a weight associated with it and from Figure 3, the activation value of neuron 

1 is given as:  

                                                                 𝑎1 = 𝑤11𝑥1 + 𝑤12𝑥2 + ⋯ + 𝑤1𝑛                            (2.30) 

The activation value of the ith neuron can thus be written as: 

                                                                  𝑎𝑖 = ∑ 𝑤𝑖𝑗
𝑛
𝑗=1 𝑥𝑗    for 𝑖 = 1,2, … , 𝑚                     (2.31) 
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The non-linear mapping due to transformation by each of the m neurons is expressed as: 

                                                                   𝑦𝑖 = 𝑓(𝑤𝑖
𝑡𝑥), for 𝑖 = 1,2, … , 𝑚                            (2.32) 

where 𝑤𝑖 is defined as    

                                                                   𝑤𝑖 ≜ [𝑤𝑖1 𝑤𝑖2 … 𝑤𝑖𝑛]                                              (2.33) 

The input space is mapped to the output space by the following expression 

                                                                𝑦(𝑡) = 𝛤[𝑃𝑥(𝑡)]                                                        (2.34) 

Where W is the weight matrix given by 

                                                                     𝑃 ≜ [

𝑤11 ⋯ 𝑤1𝑛

⋮ ⋱ ⋮
𝑤𝑚1 ⋯ 𝑤𝑚𝑛

]                                            (2.35) 

 

2.7.3.1.2 Feed-back Artificial Neural Networks 

 

Feedback artificial Neural Networks are also called recurrent networks. In feedback Artificial 

Neural Networks, weight adjustment information is fed back from the output layer to previous 

layers to reduce output error. It has applications in speech recognition [129]. Figure 2.22 shows 

the Artificial Neural Network architecture. 
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Figure 2. 22: Feedback Artificial Neural Network Architecture [130] 

 

Output 𝑜𝑗 controls 𝑜𝑖 in the loop. The feedback loop delay elements introduce true delay between 

𝑡 and ∆𝑡. Using the feedforward notation,  

                                                          𝑜(𝑡 + ∆) = 𝛤[𝑤0(𝑡)]                                                                (2.36)  

represents 𝑜(𝑡)  mapping to 𝑜(𝑡 + ∆). 

Equation (2.36) is represented by the block diagram in Figure 2.23. 

 

 

 

Figure 2. 23: Mapping Block Diagram [129] 
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2.7.3.2 Learning in Artificial Neural Networks 

 

The capability of Artificial Neural Networks to learn is achieved by inter-neuron weighted 

connections. In real life, there are some problems that cannot be expressed in code. That is when 

learning algorithms come in handy. An example of such a problem is facial recognition. The 

different learning types for Artificial Neural Networks are: 

 

2.7.3.2.1 Supervised Learning 

 

During the learning process, both the input and the expected output are presented to the network. 

With the given sets of data, the system can compute resultant error from the difference between 

the expected output and actual output. The error is fed back into the system to adjust the weights 

on the neuron interconnections. The most commonly used rule in this category is the delta rule 

(Back Propagational Neural Networks). Learning occurs at each cycle that the system is presented 

with processing data. Each cycle is called an epoch. When a network is presented with data, it first 

makes a guess as to what it may be. It then uses the error to adjust the weights of the connections 

between nodes. Firstly, the network calculates the output based on equation (2.37): 

                                         𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝑖𝑛𝑝𝑢𝑡1 × 𝑤𝑒𝑖𝑔ℎ𝑡1 + 𝑖𝑛𝑝𝑢𝑡2 × 𝑤𝑒𝑖𝑔ℎ𝑡2 + ⋯ )       (2.37) 

Or 

                                                                   𝑂 = 𝑓(∑ 𝑥𝑖 𝑤𝑖
𝑛
𝑖=1 )                                               (2.38) 

 

The error can now be found from the difference between the actual output and the target output: 

                                                             𝑒𝑟𝑟𝑜𝑟 = 𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡                 (2.39) 

Or 

                                                                     𝑒 = 𝑡 − 𝑜                                                               (2.40) 

The error is used to adjust the weights: 
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                                             𝑤𝑒𝑖𝑔ℎ𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 × 𝑒𝑟𝑟𝑜𝑟 ×  𝑖𝑛𝑝𝑢𝑡                 (2.41) 

Or  

                                                                  ∆𝑤 = 𝑟 × 𝑒 × 𝑥                                                        (2.42) 

To ensure that only small changes are made to the weights on each iteration, a small learning rate 

(r) is applied. If the learning rate is too high the perceptron can jump too far and miss the solution, 

if it's too low, it can take an unreasonably long time to train. This gives a final weight update 

equation of: 

𝑤𝑒𝑖𝑔ℎ𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 × (𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡) × 𝑖𝑛𝑝𝑢𝑡               (2.43) 

Or   

                                                                         ∆𝑤 = 𝑟(𝑡 − 𝑜)𝑥𝑖                                               (2.44) 

 

2.7.3.2.2 Unsupervised Learning 

 

In this learning type, only input data set is provided to the network. The network must find a pattern 

between the provided data without any outside influence. This is the type of learning used in data 

mining applications such as finding user’s preferences. This is achieved from analyzing the 

preferences of previous similar users. 

2.7.3.2.3 Reinforcement Learning 

 

A reward is offered to the network depending on how well it has performed. Reinforcement 

learning has a feedback mechanism like the supervised learning. Only one set of data is presented 

to the network and through trial and error, the system maximizes on the offered reward. 

 

2.7.3.3 Artificial Neural Networks Learning Rules 

 

A desirable feature of Artificial Neural Networks is their ability to learn from experience. The 

learning is achieved through variation of neural interconnection weights. The mechanism of 
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varying the weights is known as a learning rule. There are numerous Artificial Neural Network 

Learning Rules.  

 

2.7.3.3.1 Hebbian Learning Rule 

 

The Hebbian Learning rule was introduced by a neurophysiologist by the name Donald Hebb in 

1949. It later developed to be an influential rule in soft computing. Following extensive study of 

neurons, Hebb established that repeated stimulation of a neuron by an adjacent neuron lowers the 

activation threshold. The rule states that “the connection between adjacent neurons is strengthened 

by simultaneous firing of the neurons” [131]. Feed-forward Neural Networks use this rule during 

the unsupervised learning process. The Hebbian learning rule is mathematically represented in 

Figure 2.24. 

 

 

 

Figure 2. 24: Excitation effect of first node [131] 

 

According to Hebb, 

                                                                      𝑤𝑖𝑗 = ŋ𝑥𝑗𝑦𝑖                                                          (2.45) 
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Where wij = common weight when there is excitation from the jth to the ith node 

            Xj = activation of the jth node 

            Yi = output to the ith node 

             Ŋ = step size weight control 

          

2.7.3.3.2 Perceptron Learning Rule 

 

The Perceptron Learning Rule was introduced by Rosenblatt. Its name is derived from the basic 

part of a neuron, the perceptron. The perceptron learning rule uses a linear classifier to categorize 

input data into two groups. Error correction is achieved by comparison of actual output and target 

output. Weights between adjacent nodes are adjusted based on identified error. The perceptron 

learning rule is used in single layer feed forward architecture networks. The operation principle of 

the perceptron learning rule is similar to the Hebb learning rule with the only difference being the 

absence of  connection weights modification in the event of correct network response. In addition 

to weight adjustment, the rule also adjusts the threshold β [132]. 

                                                                         𝛥𝛽 = {
0, 𝑥 ≤ 𝛽
1, 𝑥 > 𝛽

                                                (2.46) 

 

2.7.3.3.3 Delta Learning Rule (Widrow-Hoff Rule) 

 

The Delta Learning Rule was introduced by Bernard Widrow and Marcian Hoff. This rule is also 

called the Least Mean Square Method. The Delta Learning Rule has a continuous activation 

function and falls within the supervised learning category. It compares the actual output to the 

desired output of the system and the error is calculated. The summation of the product of weight 

and input value gives the output node’s activation. The Widrow-Hoff rule utilizes Gradient 

Descent learning. According to McClelland and Rumelhart [133], “error is minimized by 

modifying weights along the most direct path”.  Therefore, the first order derivative of error with 

respect to the weight is proportional to the negative change of the weight. 
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2.7.4 Adaptive Neuro-Fuzzy Inference Systems  

 

2.7.4.1 Overview of Adaptive Neuro-Fuzzy Inference System 

 

According to Jang [134], an Adaptive Neuro-Fuzzy Inference System is a hybrid of Artificial 

Neural Networks (ANN) and Fuzzy Inference Systems (FIS). Unlike in fuzzy logic systems where 

fuzzy rules are obtained from human expert knowledge, ANFIS automatically generates the fuzzy 

if then rules [135]. The use of human expert knowledge gets complicated in terms of time and 

number of rules to be generated, as the system to be modelled becomes bigger. ANFIS combines 

the advantages of both Fuzzy Logic systems and ANN. The two types of fuzzy inference systems 

are Sugeno-Takagi and Mamdani systems. The five data transformation stages of ANFIS are 

fuzzification, fuzzy operator application, application method, output aggregation and 

defuzzification.   

 

2.7.4.2 ANFIS Architecture 

 

An Adaptive Neuro-Fuzzy Inference System network is a multilayer network of interconnected 

adaptive nodes. The nodal outputs are dependent on the weights gained from previous experience. 

Error is minimized by modifying the weights as prescribed by the learning rules. The Takagi-

Sugeno fuzzy inference system with two inputs is shown in Figure 2.25 while Figure 2.26 shows 

the ANFIS architecture. 
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Figure 2. 25: First order Sugeno model [136] 

 

 

 

Figure 2. 26: ANFIS Architecture [136] 
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For the ANFIS structure with two inputs and one output, the rule base contains the Takagi-Sugeno 

fuzzy if-then rule as follows: 

𝐼𝑓 𝑥 𝑖𝑠 𝐴 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵 𝑡ℎ𝑒𝑛 𝑧 𝑖𝑠 𝑓(𝑥, 𝑦) 

where 𝐴 and 𝐵 are the fuzzy sets in the antecedents and 𝑧 = 𝑓(𝑥, 𝑦)is a crisp function in the 

consequent. Usually 𝑓(𝑥, 𝑦) is a polynomial for the input variables 𝑥 and 𝑦. For a first order two 

rule Sugeno fuzzy inference system, the two rules may be stated as: 

                  Rule 1: 𝐼𝑓 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1 𝑡ℎ𝑒𝑛 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1                                     (2.47) 

                  Rule 2: 𝐼𝑓 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2 𝑡ℎ𝑒𝑛 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2                                     (2.48) 

Layer 1: Membership functions for input parameters are contained in this layer. The examples of 

membership functions used in Layer 1 are triangular and bell shaped. The membership function 

for layer one is given by the following equation, 

                                                                           𝑂𝑖
1 = µ𝐴𝑖

(𝑥)                                                    (2.49) 

Where 𝑥 = node i input 

               𝐴𝑖 = linguistic variable associated with node i 

Layer 2: the weight of each membership function is checked in layer 2. Input variables from layer 

1 are received and it represents the fuzzy sets of the received input parameters. Membership value 

computation takes place at this stage and the degree of membership to a given set is determined. 

The result of layer 2 is forwarded to layer 3. Incoming signals are amplified in this layer. The firing 

strength of the function is represented by the output at this node. 

                                                                           𝑂𝑖
2 = µ𝐴𝑖

(𝑥)µ𝐵𝑖
(𝑦)                                       (2.50) 

Where i = 1:2 

Layer 3: The alternative name of layer 3 is the rule layer. Fuzzy rule pre-condition matching is 

performed by the nodes in this layer. At this level, the ratio of the ith rule’s firing strength to the 

sum of all firing strengths is calculated. 

                                                                          𝑂𝑖
3 = 𝑊𝑖

̅̅ ̅ =
𝑊𝑖

𝑊1+𝑊2
                                           (2.51) 
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Where i = 1:2 

Layer 4: The alternative name for this layer is the defuzzification layer. This gives the output of 

the inference system. The node function at this stage is given as follows: 

                                                                      𝑂𝑖
4 = 𝑓𝑖𝑊̅𝑖(𝑃𝑖𝑥 + 𝑄𝑖𝑦 + 𝑅𝑖)                              (2.52) 

Where i = 1:2 

Layer 5: Transformation of fuzzy results and the summation of all incoming signals are computed 

at this stage. 

                                                                    𝑂𝑖
5 = 𝑠𝑦𝑡𝑒𝑚 𝑜𝑢𝑡𝑝𝑢𝑡                                            (2.53) 

Where i = 1:2 

 

2.7.4.3 ANFIS Learning Algorithm 

 

A learning algorithm equips the ANFIS model with the capability to learn about a given 

input/output data set. The procedure entails computation of membership function parameters for 

the given input/output data set. The calculated membership function parameters determine the 

association between the input and output data set. During the learning process, the membership 

function parameters are modified to reduce errors. The learning algorithm has the responsibility of 

mapping all the input data to the output data during the training stage [137]. According to research, 

a hybrid learning algorithm that combines Least Squares Method (LSM) and Gradient Descent 

Method (GDM) has enhanced convergence. Layer 4 consequent parameter optimal value is 

identified by the least squares method while the premise parameter is fixed. The efficiency of the 

fuzzy inference system is determined by the gradient vector as the value of the gradient vector 

obtained determines the degree of adjustment required to reduce error [138]. Convergence is 

improved by reduction of the search space through premise parameters fixing. The forward 

propagation of the hybrid learning algorithm employs the least squares method (LSM) while the 

backward propagation employs the gradient descent method (GDM). Table 2.9 shows a 

comparison between the two passes in the hybrid learning algorithm. 
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Table 2. 9: The two passes in the hybrid learning algorithm [119] 

 

 Forward Pass Backward Pass 

Premise Parameters Fixed Gradient descent 

Consequent Parameters Least-squares Estimator Fixed 

Signals Node outputs Error Signals 

 

2.7.4 Regression Model 

 

Regression analysis is a statistical means for estimating the relationship among variables. The 

variables include a set of independent and dependent variables. The independent variables are also 

known as predictor variables while the dependent variable is called the criterion variable. 

Knowledge of the relationship among variables enables the estimation of the dependent variables 

in situations where only independent variables are available. The regression model is a widely 

used model in surface roughness prediction during single point diamond turning. The model is the 

form of a mathematical equation shown by equation 2.54. The significance of the independent 

variables can be assessed using the Analysis of  Variance (ANOVA). 

𝑌 = 𝑏0 + 𝑏1𝑥1 + ⋯ + 𝑏𝑝𝑥𝑝                                                                                                     (2.54) 

Where  

𝑌 = dependent variable 

𝑥𝑖 = independent variables 

𝑏𝑖 = regression coefficients 
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2.8 Conclusion 
 

The purpose of this review was to gain an insight into the various factors that affect surface 

roughness as well as the available surface roughness prediction models. It is clear from the 

reviewed literature that surface roughness is directly affected by cutting parameters. It is also 

evident that the extracted acoustic emission signals contain some unique signatures that are 

valuable in surface roughness prediction. There is limited research on the use of Adaptive Neuro-

Fuzzy Inference System model incorporating acoustic emission signal parameters. Hence the 

decision to study that field. This study will expand the already available body of knowledge on 

surface roughness prediction methods for RSA-443. The next chapter explains the major 

components and stages used in ultra-high precision diamond turning of RSA-443.  
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CHAPTER THREE 
 

3.0 MATERIALS AND METHODOLOGY 

 

3.1 Introduction  
 

In this chapter, the stages involved in achieving the research objectives are highlighted. These 

stages range from materials selection, through design of experiment to the prediction of surface 

roughness. Lastly, the Adaptive Neuro-Fuzzy Inference System (ANFIS) prediction results are 

analyzed by comparison to Regression model results using Mean Absolute Percentage Error 

(MAPE). The Ultra-High Precision Diamond Turning (UHPDT) process is performed under two 

types of coolants: kerosene and water.  

 

3.2 Workpiece Material Selection 
 

A 60 mm diameter cylindrical specimen of RSA-443 is used in this investigative research. The 

workpiece is firmly fixed to an adapter disk for ease of holding with the machine vacuum chuck. 

The RSA 443 workpiece contains 40% silicon. Figure 3.1 shows the RSA 443 workpiece mounted 

on an aluminum adapter disk. Table 3.1 shows the mechanical, physical and thermal properties of 

RSA 443.  
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Figure 3. 1: RSA 443 Workpiece Mounted on Aluminum Adapter Disk 

 

Table 3. 1: Mechanical Properties of RSA 443 Alloy [139] 

 

Property Nominal Value Unit 

Hardness 105 HB 

Density 2.54 g/cm2 

Thermal Expansion 13.6 10-6/K  

Young’s Modulus 102 GPa 

Ultimate Tensile Strength 245 MPa 

Yield Strength 155 MPa 

Elongation 1.5 % 
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3.3 Design of Experiment 
 

The steps followed in designing the experiment are shown in Figure 3.2. 

 

 

 

Figure 3. 2: Design of Experiment Steps 

 

3.3.1 Selection of Process Variables and Limits 

 

Spindle speed, feed rate and depth of cut have been chosen as process variables in this investigative 

research study. Three levels have been decided for each of the three cutting parameters with the 

manufacturer’s recommended value as the center value. The spindle speed should be as high as 

practical in order to save time and to minimize temperature rise in the part. The depth of cut should 

be as great as possible within the limits of part strength, chucking equipment, power of the machine 

tool and amount of stock to be removed in order to minimize the number of cuts required. Feed 

depends on the desired finish and on the strength and rigidity of the workpiece. The process 

1
• Selection of Process Variables and Limits

2
• Selection of Orthogonal Arrays

3
• Assigning the independent variables to each column
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parameters with their associated levels are shown in Table 3.2. The recommended process 

parameters are given in the ASM Handbook of Machining that is attached in Appendix B. 

 

Table 3. 2: Process Parameters with associated levels 

 

Parameters Levels 

1 2 3 

Spindle Speed (rpm)-A 1250 1750 2500 

Feed (mm/min)-B 7.5 15 22.5 

Depth of Cut (µm)-C 5 15 25 

 

3.3.2 Selection of Orthogonal Arrays (Taguchi Design) 

 

Orthogonal arrays enable the determination of parameter effects on a response using the least 

number of experimental runs. Before selecting an orthogonal array, the minimum number of 

experiments to be conducted is to be fixed based on equation (3.1). 

                                                    𝑁 𝑇𝑎𝑔𝑢𝑐ℎ𝑖 = 1 + 𝑁𝑉(𝐿 − 1)                                                               (3.1) 

Where N Taguchi= Number of experiments to be conducted 

                       NV= Number of parameters 

                          L= Number of levels 

The pre-condition for equation (3.1) is that 𝐿 ≥ 4. Hence, in this research, NV=3 and L=4.  

Substituting NV and L in equation (3.1); 

 𝑁 𝑇𝑎𝑔𝑢𝑐ℎ𝑖 = 1 + 3(4 − 1) = 9 
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According to this result, at least 9 experimental runs (L9 Taguchi orthogonal array) are to be 

conducted.  

3.3.3 Assigning the independent variables to each column 

 

The independent variables and their respective levels are expressed in tables (see Table 3.3 and 

Table 3.4). 

Table 3. 3: Levels of process parameters used in Taguchi (L9) Orthogonal Array 

 

Experiment Number Levels 

A B C 

1 1 1 1 

2 1 2 2 

3 1 3 3 

4 2 1 2 

5 2 2 3 

6 2 3 1 

7 3 1 3 

8 3 2 1 

9 3 3 2 
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Table 3. 4: Experimental design using L9 Taguchi orthogonal array 

 

Experiment Number Levels 

Spindle Speed 

(rpm) 

Feed (mm/min) Depth of Cut (µm) 

1 1250 7.5 5 

2 1250 15 15 

3 1250 22.5 25 

4 1750 7.5 15 

5 1750 15 25 

6 1750 22.5 5 

7 2500 7.5 25 

8 2500 15 5 

9 2500 22.5 15 

 

3.3.4 Tool Centering and Spindle Balancing 

 

Prior to executing the experiment, the cutting tool is centered (see Figure 3.3), and the spindle is 

balanced (see Figure 3.4) to eliminate unwanted oscillations that negatively impact on the ultra-

high precision diamond turning results. In this research, spindle balancing was carried out at 2 500 
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rpm, 2 000 rpm and 1 000 rpm. These selected balancing values cover all speed levels, that is, low, 

medium and high speeds that are used in this research. 

 

 

 

Figure 3. 3: Diamond Cutting Tool Centering 
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Figure 3. 4: Spindle balancing platform DIFFSYS 

 

 3.3.4 Ultra-High Precision Diamond Turning Setup 

 

The ultra-high precision diamond turning process was performed on an ultra-grind Nanoform 250 

Computer Numerical Control (CNC) machine with the machining setup shown (see Figure 3.5). 

The features of the CNC machine include a foolproof human machine interface, a natural built-in 

granite base for machine stability and an FEA optimized dual frame for protection against adverse 

environmental conditions. The cutting conditions of the ultra-high precision diamond turning 

experiments are summarized in Table 3.5. 
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Figure 3. 5: Ultra-High Precision Diamond Turning Setup 

 

Table 3. 5: RSA 443 Cutting conditions 

 

Cutting Condition Specification 

Workpiece RSA 443 

Rake angle -5o 

Nose radius 0.5 mm 

Tool Single crystal natural diamond  
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3.3.4.1 Experimental Procedure 

 

• The Piezotron sensor is secured to the spindle mount by means of a magnetic clamp at 4cm 

from workpiece to detect acoustic emission signals generated during the ultra-high 

precision diamond turning of RSA 443.  

• A Kistler Piezotron coupler (5125B) is directly connected to the Piezotron sensor. Its 

purpose is to amplify, filter and RMS conversion of the acquired acoustic emission signal.  

• Tool centering and balancing using gauge indicator and spindle balancing platform was 

done. 

• Machine G-codes for the turning operation were entered. 

• Facing of workpiece surface was done before actual tests were run. 

• The acoustic emission data of each experimental run was acquired. The LabVIEW software 

(front panel) showing AE signal during RSA 443 machining is shown in Figure 3.6.  

• The surface roughness of each experimental run was determined using a Taylor Hobson 

Profilometer, prior to the subsequent experimental run. 

 

 

 

Figure 3. 6: LabVIEW Software (front panel) showing AE signal during RSA 443 Machining 
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3.3.5 Surface Roughness Measurement Setup 

 

A contact-type Taylor-Hobson profilometer (see Figure 3.7) was used to measure the surface 

roughness of machined workpieces since it can be used with a wide variety of surface types. 

Transverse direction surface roughness measurements of the machined workpiece are made and 

recorded in a table. The description of the profilometer used is represented by Table 3.6. 

 

 

 

Figure 3. 7: Taylor Hobson Profilometer 
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Table 3. 6: Taylor Hobson Profilometer Description 

 

Feature Specification 

Repeatability 50 nm 

Diameter of optics measuring possibility <2 mm 

Maximum measured diameter 300 mm 

Maximum surface sag 20 mm 

 

3.3.6 Acoustic Emission Signal Acquisition Experiment Process Flow 

 

The acoustic emission signal data acquisition process has three segments namely, sensing, signal 

processing and storage and display (see Figure 3.7). The Piezotron sensor is a transducer that 

converts force into an electrical signal which is magnified by an amplifier. The in-built filter 

eliminates the noise components of the signal that is interfaced to the storage and display unit by 

the data acquisition card. The acoustic emission signal circuit components specifications for this 

research are given (see Table 3.7). The components used are active components that require power 

supply to work. 

 

 

 

Figure 3. 8: Acoustic Emission Signal Acquisition Experiment Process Flow 
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Table 3. 7: Acoustic Emission Signal Circuit Components Specifications. 

 

COMPONENT SPECIFICATION IMAGE 

Piezotron Sensor Kistler 8152B 

 

Piezotron Coupler Kistler 5125B 

 

Connector BNC-2110 

 

Power Source 

 

Input/output Voltage 

(220V/24V) 

 

High Pass Filter 50 kHz to 700 kHz In-built 

Low Pass Filter 100 kHz to 1 MHZ In-built 

Data Acquisition 

Card 

NI PCI-6110E  
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3.3.7 Acoustic Emission Signal Feature Extraction 

 

Once the acoustic emission signal has been captured, a systematic approach is utilized to extract 

signal features of interest. In this case, peak rate, AErms and peak frequency are determined for 

the captured acoustic emission signals.  

 

3.3.5.1 Acoustic Emission Peak Rate Determination 

 

Figure 3.9 is a flow chart for the MATLAB algorithm that was developed to determine the peak 

rate of the acoustic emission signals in time domain. The algorithm is shown in Appendix C. In 

this thesis, a peak is defined as a point whose value is greater than 0.04 and greater than its adjacent 

points. The value of 0.04 was judiciously chosen by the student as a way of dealing with well 

pronounced peaks. Below the value, the peaks are not distinct. 

 

 

Figure 3. 9: Acoustic Emission Peak Rate Determination Flow Chart 
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3.3.5.2 Acoustic Emission Root Mean Square Determination 

 

Acoustic emission Root Mean Square is determined according to equation (3.2).  

                                                                     𝑅𝑀𝑆 = √
1

𝑁
[∑ (𝑋𝑖)2]𝑁

𝑖=1                                       (3.2) 

Where  𝑁 = total number of events 

           𝑋𝑖 = amplitude vibration signal 

              𝑖 = order of event 

 

3.3.5.3 Peak Frequency Determination 

 

The signal peak frequency was extracted from the Fourier transformed signal in the EXCEL 

platform. Figure 3.10 represents the steps that were taken to achieve the task: 

 

 

Figure 3. 10: Peak Frequency Determination Flow Chart 

1
• IMPORT SIGNAL DATA INTO EXCEL

2
• COMPUTE FFT COMPLEX

3
• COMPUTE FFT MAGNITUDE AND FREQUENCY

4
• PLOT FFT TRANSFORMED DATA

5
• EXTRACT PEAK FREQUENCY
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3.3.6 Adaptive Neuro-Fuzzy Inference System Modelling 

 

In this investigative research, a two-layered feed-forward ANFIS architecture with six inputs is 

used to predict the surface roughness of single point diamond turned RSA 443. Use is made of the 

Sugeno-style Fuzzy Inference and gaussian membership functions. Three (3) membership 

functions will be used and they will divide the range into 3 equal portions. The ANFIS model 

process flow followed in this thesis is presented in Figure 3.11. Use is made of ANFIS toolbox in 

MATLAB environment.  

 

Figure 3. 11: ANFIS Model Process Flow 

• Fuzzy System Initialization: At this stage, both training data sets and checking data sets 

are loaded from storage file to the workspace and subsequently to the ANFIS graphical 

user interface. The used data has six input parameters namely, feed rate, cutting speed, 

depth of cut, AErms, peak frequency and peak rate. Surface roughness parameter (Ra) is 

the output from the model. The loaded data is in numeric matrix format with the first 
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columns representing inputs while the output is represented by the last column. The ANFIS 

Editor display in Fig. 3.12 shows the loading sub-display.  

• Generation of Fuzzy Inference System: This stage follows the loading of data into the 

system. The Inference System is generated by FIS command in the ANFIS editor graphical 

user interface. The Sugeno-style Fuzzy Inference is used in this research. At this stage, the 

number and type of membership functions used is specified. The gaussian membership 

functions will divide the range into 3 equal portions. 

• Initiate Learning Process: Since a complete fit is not achievable, the default tolerance of 0 

is changed, hence a tolerance of 0.001 is used in this research.  The default number of 

epochs in MATLAB is 3. This value is not enough for training, hence 20 epochs are used 

in this research. The epochs are the number of iterations that must be carried out until the 

data begins to overfit. 

• Validation of Results: Once the training process has been completed, the results are tested 

by comparison with testing data. In this thesis, three additional experimental runs are 

carried out to provide testing data. Seven data sets are used as training data while the 

remaining five data sets are used as testing data.  
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Figure 3. 12: ANFIS Editor Display 

 

3.4 Conclusion 
 

This chapter has managed to explain the major components and stages used in ultra-high precision 

diamond turning of RSA-443. The next chapter is aimed at investigating the surface roughness 

prediction accuracy of ANFIS. Comparison is made of ANFIS prediction accuracy to RSM. Use 

is made of the Mean Absolute Percentage Error.  
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CHAPTER FOUR 
 

4.0 RESULTS AND DISCUSSION 
 

4.1 Introduction 
 

This section presents results obtained during Ultra-High Precision Diamond Turning (UHPDT) of 

RSA 443 under different coolants (kerosene and water). A comparison is made between surface 

finishes for water and kerosene coolants. For both coolants, the surface profile charts for the worst 

and best surface roughness finishes are presented. Acoustic emission signal features (AErms, peak 

rate and prominent frequency) are acquired from the captured signals. Using cutting parameters 

(spindle speed, depth of cut and feed rate) and signal parameters, Regression and ANFIS models 

are utilized in predicting the surface roughness of the machined components. The model accuracy 

for both coolants is determined using the Mean Absolute Percentage Error (MAPE) method. 

MATLAB software is utilized in surface roughness prediction in this chapter.  

 

4.2 Surface Roughness Experimental Results  
 

The Surface Roughness Experimental Results using kerosene and water coolants are tabulated in 

Table 4.1. The series plots of measured surface roughness for both coolants are shown in Figure 

4.1.  
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Table 4. 1: Surface Roughness Experimental Results  

 

Experiment 

Number 

Spindle 

Speed (rpm) 

Feed 

(mm/min) 

Depth of 

Cut (µm) 

Ra (nm) 

Kerosene 

Coolant 

Water 

Coolant 

1 1250 7.5 5 21 16 

2 1250 15 15 33 21 

3 1250 22.5 25 38 29 

4 1750 7.5 15 17 14 

5 1750 15 25 23 20 

6 1750 22.5 5 26 21 

7 2500 7.5 25 12 11 

8 2500 15 5 18 14 

9 2500 22.5 15 19 17 
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Figure 4. 1: Series Plots of Experimental Surface Roughness  

 

The results indicate that the surface roughness values obtained using water as a coolant are better 

when compared to kerosene results. For either of the coolants, the lowest roughness values (12nm 

for kerosene and 11nm for water) occurred at a high spindle speed of 2500rpm, low feed of 

7.5mm/min and depth of 25µm. Better surface finishes during ultra-high precision diamond 

turning of RSA 443 can be obtained at high speed and low feed. The worst surface roughness 

values for either coolants (38nm for kerosene and 29nm for water) occurred at low spindle speed 

of 1250rpm, high feed of 22.5mm/min and cutting depth of 25µm. These findings indicate that 

larger feed rate and lower spindle speed negatively impact on surface roughness. In this 

investigative research, both data sets will be used for prediction purposes. The percentage 

difference between surface roughness values is expressed as ΔRa. Spindle speed, feed rate and 

depth of cut are denoted by X1, X2 and X3 respectively while the surface roughness parameters 

for kerosene and water are denoted by Rk and Rw respectively. Table 4.2 presents the percentage 

differences between water and kerosene surface roughness values. 
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ΔRa is calculated using equation 4.1: 

                                                     𝛥𝑅𝑎(%) = (
(𝑅𝐾−𝑅𝑊)

𝑅𝐾
) × 100.                                                (4.1) 

Where 𝑅𝐾 = Kerosene-based surface finish parameter 

            𝑅𝑊 = Water-based surface finish parameter                                                            

 

Table 4. 2: Percentage Difference Between Water and Kerosene Surface Roughness Values 

 

X1 X2 X3 Ra (nm) ΔRa (%) 

 Rk  Rw 

1250 7.5 5 21 16 -23.81 

1250 15 15 33 21 -36.36 

1250 22.5 25 38 29 -23.68 

1750 7.5 15 17 14 -17.65 

1750 15 25 23 20 -13.04 

1750 22.5 5 26 21 -19.23 

2500 7.5 25 12 11 -8.33 

2500 15 5 18 14 -22.22 

2500 22.5 15 19 17 -10.53 

Delta-Mean -19.43 

 

The mean percentage change from kerosene to water-based results is -19.43%. The negative sign 

depicts a decrease in surface roughness. The largest change in surface roughness occurs at the 

second experiment run with a value of -36.36%. The lowest change in surface roughness occurs at 

the seventh experiment run with a value of -8.33%. The best and the poor surface roughness profile 

charts from the Surface Profilometer for RSA 443 are given in Figure 4.2 and Figure 4.3. 
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Figure 4. 2: a) Surface Profile Chart for Worst Water Ra value (29 nm) and b) Surface Profile 

Chart for Worst Kerosene Ra value (38 nm)   
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Figure 4. 3: a) Surface Profile Chart for Best Water Ra value (11 nm) and b) Surface Profile 

Chart for Best Kerosene Ra value (12 nm)   

 

4.3 Determination of Acoustic Emission Signal Parameters 
 

Acoustic emission root mean square (AErms), prominent frequency and peak rate are determined 

from the emitted AE signal. The acoustic emission signal amplitude variation with time and 
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corresponding prominent frequency for experimental runs 3 and 7 for either coolant is shown in 

Figures 4.4 and 4.5. The acoustic emission signal count rate for all signals are determined. In this 

research, a peak is defined as a sample greater than its two nearest neighbors and greater than 0.04. 

the MATLAB code for peak rate determination is included in Appendix B. All determined acoustic 

emission signal parameters are presented in Table 4.3 and Table 4.4.  

 

 

 

Figure 4. 4: a) Time domain signal for Ra =38nm (kerosene) and b) Frequency domain signal for 

Ra = 38nm (kerosene) 
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Figure 4. 5: a) Time domain signal for Ra =12nm (kerosene) and b) Frequency domain signal for 

Ra = 12nm (kerosene) 
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Table 4. 3: Acoustic Emission Signal Analysis Results (Kerosene Coolant) 

 

Experiment 

Number 

Spindle 

Speed 

(rpm) 

Feed 

(mm/min) 

Depth 

of Cut 

(µm) 

AErms 

(V) 

Prominent 

Frequency 

(Hz) 

Peak Rate 

(min-1) 

Ra 

(nm) 

1 1250 7.5 5 2.968e-2 566.973 4.1914e+04 21 

2 1250 15 15 2.750e-2 645.176 1.14e+04 33 

3 1250 22.5 25 2.825e-2 2003.955 3.8e+04 38 

4 1750 7.5 15 2.781e-2 674.502 4.215e+04 

 

17 

5 1750 15 25 2.786e-2 1133.945 2.49e+04 23 

6 1750 22.5 5 2.837e-2 2003.955 4.56e+04 26 

7 2500 7.5 25 2.786e-2 1280.576 3.6e+04 12 

8 2500 15 5 3.432e-2 2003.955 3.1e+04 18 

9 2500 22.5 15 2.831e-2 1309.902 4.2e+04 19 
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Table 4. 4: Acoustic Emission Signal Analysis Results (Water Coolant) 

 

Experiment 

Number 

Spindle 

Speed 

(rpm) 

Feed 

(mm/min) 

Depth 

of Cut 

(µm) 

AErms 

(V) 

Prominent 

Frequency 

(Hz) 

Peak Rate 

(min-1) 

Ra 

(nm) 

1 1250 7.5 5 3.090e-2 2003.955 6.102e+04 16 

2 1250 15 15 2.746e-2 1300.127 4.002e+04 21 

3 1250 22.5 25 3.140e-2 2003.955 6.710e+04 29 

4 1750 7.5 15 2.696e-2 1407.656 3.227e+04 14 

5 1750 15 25 2.661e-2 1407.656 3.234e+04 20 

6 1750 22.5 5 2.639e-2 527.871 3.198e+04 21 

7 2500 7.5 25 2.627e-2 1261.025 2.920e+04 11 

8 2500 15 5 2.151e-2 469.219 1.397e+04 14 

9 2500 22.5 15 2.721e-2 1397.881 3.513e+04 17 

 

4.4 Regression Model Prediction of Surface Roughness 
 

The regression model is formulated from the combination of different operating conditions and the 

measured surface roughness values at every experiment stage. The regression equation is 

calculated using Excel statistics analysis software. The Regression model computation results are 

presented in Table 4.5. 
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4.4.1 Water-Based Results Surface Roughness Prediction using Regression Model  

 

The null hypothesis H0 and the alternative hypothesis H1 are formulated as follows: 

H0: 𝑅𝑎 = 𝑏0                                                                                                                                             (4.2)         

H1: 𝑅𝑎 = 𝑏0 + 𝑏1𝑥1 + ⋯ + 𝑏𝑝𝑥𝑝                                                                                                     (4.3) 

 

Table 4. 5: Regression Model Computation Results 

 

 

 

The regression model developed is given by equation 4.4: 

𝑅𝑎 = 42.338 − 0.005961𝐶 + 0.520𝐹 + 0.201𝐷 − 1169.440𝐴𝑒 − 1.106 × 10−3𝑃𝑓  + 2.395 ×

10−4𝑃𝑟                                                                                                                                          (4.4) 

Where 

𝑅𝑎 = surface roughness (nm) 



Master of Engineering (Mechatronics)  Thesis                                                        Nelson Mandela University 

 

95 
 

𝐶 = Spindle Speed (rpm) 

𝐹 =  Feed (mm/min) 

𝐷 = Depth of cut (µm) 

𝐴𝑒 = Acoustic emission root mean square (V) 

𝑃𝑓 = Prominent Frequency (Hz) 

𝑃𝑟 = Peak rate (min-1) 

Table 4.6 shows the predicted surface roughness values and the corresponding absolute errors.  

 

Table 4. 6: Regression Model Prediction Results 

 

Exp. No. Observed Ra 

(nm) 

Predicted Ra  

(nm) 

Residuals Absolute Error 

(%) 

1 16 16.06 -0.06 0.38 

2 21 21.74 -0.74 3.52 

3 29 28.75 0.32 1.10 

4 14 13.47 0.25 1.79 

5 20 19.80 0.20 1.00 

6 21 20.83 0.17 0.81 

7 11 11.25 -0.25 2.27 

8 14 13.91 0.09 0.64 

9 17 17.20 -0.20 1.18 

MAPE 1.41 

Prediction Accuracy 98.59 

 

From regression, R square (R2) equals 0.995. It means that 99.5% of the variance of Y is explained 

by x. The adjusted R2 value equals 0.981 while the multiple correlation (R) equals 0.998. This R 

value means that there is very strong direct relationship between the predicted data (𝑌̂) and the 

observed data (Y). 

The overall regression is right tailed, F(1,6)= 70.98 and p-value is 0.01396. Since p-value < 

α(0.05), H0 is rejected. The linear regression model given by H1 therefore provides a better fit 

than the model without the independent variables. The MAPE value for water coolant-based results 

is 1.41%. This means that the prediction accuracy of the model is 98.59%. 
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4.4.1.1 Validation of Surface Roughness Prediction Model for Water Coolant Based Results 

 

Table 4.7 is a presentation of validation results for water coolant-based results. During the 

validation of regression model, cutting and AE signal parameters not used in DOE are input into 

the model and compared with actual experimental results. For simplicity, the 3 extra data sets in 

ANFIS training have been utilized for this purpose. The MAPE method has been employed to 

gauge the regression model accuracy. 

 

Table 4. 7: Validation Results for Water Coolant-based Model 

 

Exp.  

No.  

C 

 (rpm) 

F 

(mm/

min) 

D  

(µm) 

AErms 

(V) 

Pf (Hz) Pr (min-1) Exp. 

Ra 

 (nm) 

Predicted 

Ra  

(nm) 

Abs. 

Error 

% 

10 1250 7.5 15 3.089e-2 2003.955 6.102e+04 17.48 18.1 3.54 

11 1750 15 5 2.761e-2 1410.656 3.234e+04 17.14 14.6 14.81 

12 2500 22.5 25 2.721e-2 1397.881 3.513e+04 19.71 19.2 2.58 

MAPE 6.97 

Prediction Accuracy 93.03 

 

The MAPE value for validation of water coolant-based model is 6.97%. This means that the 

prediction accuracy of the model is 93.03%. The high prediction accuracy indicates the validity of 

the model. 

 

4.4.2 Surface Roughness Prediction Regression Model for Kerosene Coolant Based Results 

 

The null hypothesis H0 and the alternative hypothesis H1 are formulated as follows: 

𝐻0: 𝑅𝑎 = 𝑏0                                                                                                                                          (4.5) 

𝐻1: 𝑅𝑎 = 𝑏0 + 𝑏1𝑥1 + ⋯ + 𝑏𝑝𝑥𝑝                                                                                                      (4.6) 

The Excel based statistical regression analysis results are shown in Table 4.7. 
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Table 4. 8: Regression Model Computation Results 

 

 

 

The regression model developed is given by equation 4.7: 

𝑅𝑎  = 25.451 − 1.182 × 10−2𝐶 + 6.227 × 10−1𝐹 + 1.384 × 10−1𝐷 + 363.163 𝐴𝑒 + 2.147 ×

10−3𝑃𝑓  −  1.573 × 10−4𝑃𝑟                                                                                                         (4.7) 

Where 

 𝑅𝑎 = Surface Roughness (nm) 

𝐶 = Spindle Speed (rpm) 

𝐹 = Feed (mm/min) 

𝐷 = Depth of cut (µm) 

𝐴𝑒 = Acoustic emission root mean square (V) 
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𝑃𝑓 = Prominent Frequency (Hz) 

𝑃𝑟 = Peak rate (min-1) 

Table 4.9 shows the predicted surface roughness values and the corresponding absolute errors. 

 

Table 4. 9: Regression Model Prediction Results 

 

Exp. No. Observed Ra 

(nm) 

Predicted Ra 

(nm) 

Residuals Absolute Error 

(%) 

1 21 21.45 -0.45 2.14 

2 33 31.68 1.32 4.00 

3 38 36.74 1.26 3.32 

4 17 16.44 0.56 3.29 

5 23 26.21 -3.21 13.96 

6 26 26.91 -0.91 3.50 

7 12 11.25 0.75 6.25 

8 18 17.84 0.16 0.89 

9 19 18.49 0.51 2.68 

MAPE (%) 4.45 

Prediction accuracy 95.55 

 

The R square (R2) value equals 0.97. It means that 97.0% of the variance of Y is explained by x. 

The adjusted R square value equals 0.88 while the multiple correlation (R) equals 0.985. The high 

value of the multiple correlation (R) signifies a strong direct relationship between the predicted 

data (𝑌̂) and the observed data (Y). 

The overall regression model is right tailed, F(1,6)=10.945 and the p-value is 0.086. Since p-value 

< α (0.05); H0 is rejected. Therefore, the linear regression model given by equation 4.6 provides a 

better fit than the model without the independent variables. The mean absolute percentage error 

for the model is 4.45%. This means that the model’s prediction accuracy is 95.55%. Figure 4.6 
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presents series plots of Absolute Error Values for either coolant. It is seen that the absolute errors 

for water-based experiments are lower than Kerosene based results. 

 

 

 

Figure 4. 6: Series Plots of Absolute Error Values 

 

4.4.2.1 Validation of Surface Roughness Prediction Model for Kerosene Coolant Based Results 

 

Table 4.10 is a presentation of validation results for kerosene coolant-based results. During the 

validation of regression model, cutting and AE signal parameters not used in DOE are input into 

the model and compared with actual experimental results. For simplicity, the 3 extra data sets in 

ANFIS training have been utilized for this purpose. The MAPE method has been employed to 

gauge the regression model accuracy. 

 

 

 



Master of Engineering (Mechatronics)  Thesis                                                        Nelson Mandela University 

 

100 
 

Table 4. 10: Validation Results for Kerosene Coolant-based Model 

 

Exp.  

No. 

C 

 

(rpm) 

F 

(mm/min) 

D 

(µm) 

AErms 

(V) 

Pf (Hz) Pr  

(min-1) 

Exp. 

Ra 

(nm) 

Pred. 

Ra 

(nm) 

Abs. 

Error 

% 

10 1250 7.5 15 3.089e-2 2003.955 61017 24 23.34 2.75 

11 1750 15 5 2.761e-2 1410.656 32340 23 22.77 1.00 

12 2500 22.5 25 2.721e-2 1397.881 35129 22 20.73 5.77 

MAPE 3.17 

Prediction Accuracy 96.83 

 

The MAPE value for validation of water coolant-based model is 3.17%. This means that the 

prediction accuracy of the model is 96.83%. The high prediction accuracy indicates the validity of 

the model. 

 

4.5 ANFIS Prediction of Surface Roughness  
 

The input parameters to the ANFIS model are three cutting parameters and three signal parameters 

represented in Table 4.3 and Table 4.4. For either coolant, L9 orthogonal array has been used. 

However, for the purpose of improving the accuracy of the ANFIS model, 3 extra data sets have 

been included for either coolant. It should be noted that the extra data sets were not part of the L9 

orthogonal array used in this research but were obtained from interpolation. In this research, the 

12 data sets were divided into 6 training data sets and 6 testing data sets. It is crucial to ensure that 

the selected testing data set is representative of the present total data as well as all future data. This 

selection was very difficult, particularly for the small data sets used in this research. The approach 

taken in this research in selecting training data set was to choose the data with the largest range of 

surface roughness from the highest to the lowest. The other concern was the selection of the proper 

size of training and testing data sets. Ideally, neural networks perform better with larger training 

data sets. This is not possible with the small data set available.  
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Prior to ANFIS modelling, the data is normalized by min-max normalization method. This method 

performs a linear alteration on the original data. The values are normalized in the range [0, 1]. The 

computation is given by equation 4.8. 

                                                                       𝑍 =
𝛾−𝑚𝑖𝑛𝑎

𝑚𝑎𝑥𝑎−𝑚𝑖𝑛𝑎
                                                         (4.8) 

Where 𝑍 = normalized value 

            𝛾 = new value in the required range 

     𝑚𝑖𝑛𝑎 = minimum value in the required range 

     𝑚𝑎𝑥𝑎 = maximum value in the required range 

 

4.5.1 ANFIS Modelling of Water Coolant Based Results 

 

Table 4.11 is a presentation of 3 extra data sets introduced for the purposes of increasing the 

accuracy of the ANFIS model during training. The experiment numbers of the extra data sets are 

named 10, 11, and 12. Results at each modelling stage are presented. Experimental data was 

normalized before it was imported into the MATLAB environment from Notepad. Table 4.12 is a 

presentation of the normalized data.  

 

Table 4. 11: Extra Data Sets for ANFIS Training (Water Coolant Based Results) 

        

Experiment 

Number 

Spindle 

Speed 

(rpm) 

Feed 

(mm/min) 

Depth 

of Cut 

(µm) 

AErms 

(V) 

Peak 

Frequency 

(Hz) 

Peak Rate 

(min-1) 

Ra 

(nm) 

10 1250 7.5 15 3.089e-2 2003.955 6.102e+04 17.48 

11 1750 15 5 2.761e-2 1410.656 3.234e+04 17.14 

12 2500 22.5 25 2.721e-2 1397.881 3.513e+04 19.71 
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Table 4. 12: Normalized ANFIS Data (Water Coolant Based Results) 

 

Experiment 

Number 

Spindle 

Speed 

(rpm) 

Feed 

(mm/min) 

Depth 

of 

Cut 

(µm) 

AErms (V) Peak 

Frequency 

(Hz) 

Peak 

Rate 

(min-1) 

Ra 

(nm) 

1 0.00 0.00 0.00 0.95 1.00 8.86E-01 0.28 

2 0.00 0.50 0.50 0.60 0.54 4.90E-01 0.56 

3 0.00 1.00 1.00 1.00 1.00 1.00E+00 1.00 

4 -0.40 0.00 0.50 0.55 0.61 3.44E-01 0.17 

5 -0.40 0.50 1.00 0.52 0.61 3.46E-01 0.50 

6 -0.40 1.00 0.00 0.49 0.04 3.39E-01 0.56 

7 0.00 0.00 1.00 0.48 0.52 2.87E-01 0.00 

8 -1.00 0.50 0.00 0.00 0.00 0.00E+00 0.17 

9 -1.00 1.00 0.50 0.58 0.61 3.98E-01 0.33 

10 0.00 0.00 0.50 0.95 1.00 8.86E-01 0.36 

11 -0.40 0.50 0.00 0.62 0.61 3.46E-01 0.34 

12 -1.00 1.00 1.00 0.58 0.61 3.98E-01 0.48 
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Once the imported data was in the MATLAB workspace, it was loaded to the ANFIS graphical 

user interface. Figure 4.7 shows the screen shot of the data loading stage from the MATLAB 

workspace to the ANFIS graphical user interface. The following experiment numbers were used 

during the model training stage: 2,3,9,10,11 and 12. 

 

 

 

Figure 4. 7: ANFIS Model Training Data Loading Stage  

 

During the FIS generating stage, the dsigmf membership function with the number [2 2 2 2 2 2] 

was selected as it yielded the least error after trying different membership function shapes. Figure 

4.8 shows the Fuzzy Inference System (FIS) generating stage. 
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Figure 4. 8: Fuzzy Inference System (FIS) Generating Stage 

 

The FIS training stage screen shot is shown in Figure 4.9. It is observed that epoch 91 error is  

3.3006e-05. The curve shows the error reduction of each epoch for the 100 epochs used in this 

study. It is observed that the minimum error target was reached at epoch 90, after which there was 

no further error reduction.  
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Figure 4. 9: Fuzzy Inference System Training Stage 

 

The FIS test plot against training data is shown in Figure 4.10. The experimental values of surface 

roughness are shown by the blue dots while predicted values are shown by red dots. The 

overlapping of plots depicts high prediction accuracy. It is observed from this figure that all 

predicted outputs for training data are very close to the experimental outputs of training data.   
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Figure 4. 10: Training Set Stage Results (Water Coolant) 

 

The FIS test plot against testing data is shown in Figure 4.11. This is done to validate the ANFIS 

model. The experimental values of surface roughness are shown by the blue dots while predicted 

values are shown by red dots. The slight divergence of the blue dots from the red dots indicates  

the presence of some marginal error in the ANFIS prediction model.  
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Figure 4. 11: Testing Set Sample Results (Water Coolant) 

 

The surface plot of the predicted results is shown in Figure 4.12. It is evident that the surface 

occupies the entire area of the decision space. In the 3D ANFIS Surface Viewer, low (better) 

surface roughness values are represented by the blue color close to the floor. The yellow color 

represents high surface roughness values. Overall, the 3D surface plots show that the surface 

roughness values are low in the speed range of -0.5 to -1 and the feed range of  0 to 0.5.      
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Figure 4. 12: ANFIS Surface Viewer 

 

The rule viewer in Figure 4.13 shows the ANFIS results for the training set using normalized data. 

It shows that the surface roughness value is 0.0405 nm for the following set of parameters (-0.5; 

0.5; 0.5; 0.788; 0.771; 0.673). 
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Figure 4. 13: ANFIS Rule Viewer 

 

The ANFIS learning information is shown in Table 4.13. 
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Table 4. 13: ANFIS Learning Information 

 

Learning Scenario Value 

Number of Nodes 161 

Number of linear Parameters 64 

Number of Non-Linear Parameters 48 

Total Number of Parameters 112 

Number of Training Data Pairs 6 

Minimal Training RSME 0.000001 

Number of Fuzzy Rules 64 

 

The membership function that gave the best results was the dsigmf, hence its use during the 

prediction stage. The minimum number of membership functions used was two as a way of 

reducing the complexity of the ANFIS model. The results of the ANFIS model prediction for 

surface roughness using water as a coolant are represented by Table 4.14. The training stage results 

are validated by comparison to testing stage results. 
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Table 4. 14: Comparison of ANFIS results with experimental findings (Water Coolant) 

 

Training Data Set 

Experiment 

Number 

Measured Ra (nm) Predicted Ra (nm) Absolute Error (%) 

2 0.56 0.55 1.79 

3 1.00 1.00 0.00 

9 0.33 0.34 3.03 

10 0.36 0.36 0.00 

11 0.34 0.34 0.00 

12 0.48 0.48 0.00 

Average Absolute Error (%) 0.80 

Prediction Accuracy (%) 99.20 

 

Testing Data Set 

Experiment 

Number 

Measured Ra (nm) Predicted Ra (nm) Absolute Error (%) 

1 0.28 0.36 28.57 

4 0.17 0.15 11.76 

5 0.50 0.30 40.00 

6 0.56 0.45 19.64 

7 0.00 0.00 0.00 

8 0.17 0.21 23.53 

Average Absolute Error (%) 20.58 

Prediction Accuracy 79.42 

 

The low percentage errors in the ANFIS results are very good. The ANFIS model’s prediction 

accuracy for training and testing data is 99.20% and 79.42% respectively. This indicates a high 

prediction accuracy of ANFIS model in predicting surface roughness of small data sets. 
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4.5.2 ANFIS Modelling of Kerosene Coolant Based Results 

 

Table 4.15 is a presentation of 3 extra data sets introduced for the purposes of increasing the 

accuracy of the ANFIS model during training using kerosene coolant-based results. Table 4.16 is 

a representation of the normalized data obtained using kerosene coolant.  

 

Table 4. 15: Extra Data Sets for ANFIS Training (Kerosene Coolant Based Results) 

 

Experiment 

Number 

Spindle 

Speed 

(rpm) 

Feed 

(mm/min) 

Depth 

of Cut 

(µm) 

AErms 

(V) 

Peak 

Frequency 

(Hz) 

Peak 

Rate 

(min-1) 

Ra (nm) 

10 1250 7.5 15 3.089e-2 2003.955 61017 24 

11 1750 15 5 2.761e-2 1410.656 32340 23 

12 2500 22.5 25 2.721e-2 1397.881 35129 22 
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Table 4. 16: Normalized Data (Kerosene Coolant Based Results) 

 

Experiment 

Number 

Spindle 

Speed 

(rpm) 

Feed 

(mm/min) 

Depth 

of Cut 

(µm) 

AErms 

(V) 

Peak 

Frequency 

(Hz) 

Peak 

Rate 

(min-1) 

Ra 

(nm) 

1 0.00 0.00 0.00 0.32 0.00 0.90 0.35 

2 0.00 0.50 0.50 0.00 0.05 0.00 0.81 

3 0.00 1.00 1.00 0.11 1.00 0.78 1.00 

4 0.40 0.00 0.50 0.04 0.07 0.90 0.19 

5 0.40 0.50 1.00 0.05 0.39 0.40 0.42 

6 0.40 1.00 0.00 0.13 1.00 1.00 0.54 

7 1.00 0.00 1.00 0.05 0.50 0.72 0.00 

8 1.00 0.50 0.00 1.00 1.00 0.57 0.23 

9 1.00 1.00 0.50 0.12 0.52 0.90 0.27 

10 0.00 0.00 0.50 0.95 1.00 0.89 0.22 

11 0.40 0.50 0.00 0.62 0.61 0.35 0.67 

12 1.00 1.00 1.00 0.58 0.61 0.40 0.61 
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Once the imported data was in the MATLAB workspace, it was loaded to the ANFIS graphical 

user interface. Figure 4.14 shows the screen shot of the data loading stage from the MATLAB 

workspace to the ANFIS graphical user interface. The following experiment numbers were used 

during the model training stage: 1,2,3,10,11 and 12. 

 

 

 

Figure 4. 14: ANFIS Model Data Loading Stage 
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The FIS generation stage is shown by Figure 4.15. At this stage, a gbellmf is utilized at it has the 

least errors after trying different membership function shapes. The ANFIS is trained using a 

tolerance of 0.001 and 120 epochs.  

 

 

 

Figure 4. 15: FIS Generation Stage 
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The FIS training stage screen shot is shown in Figure 4.16. It is observed that epoch 120 error is  

0.0062858. The curve shows the error reduction of each epoch for the 120 epochs used in this 

study. It is observed that the minimum error target was reached at epoch 92, after which there was 

no further error reduction. 

 

 

 

 Figure 4. 16: ANFIS Training Stage 
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The FIS test plot against training data is shown in Figure 4.17. The experimental values of surface 

roughness are shown by the blue dots while predicted values are shown by red dots. The 

overlapping of plots depicts high prediction accuracy. It is observed from this figure that all 

predicted outputs for training data are very close to the experimental outputs of training data.   

 

 

 

Figure 4. 17: Training Set Stage Results (Kerosene Coolant) 
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The FIS test plot against testing data is shown in Figure 4.18. This is done to validate the ANFIS 

model. The experimental values of surface roughness are shown by the blue dots while predicted 

values are shown by red dots. The slight divergence of the blue dots from the red dots indicates  

the presence of some marginal error in the ANFIS prediction model. 

 

 

 

Figure 4. 18: Testing Set Stage Results (Water Coolant) 
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The rule viewer in Figure 4.19 shows the ANFIS results for the training set using normalized data. 

It shows that the surface roughness value is 0.177 nm for the following set of parameters (0.5; 0.5; 

0.5; 0.475; 0.5; 0.45). 

 

 

 

Figure 4. 19: ANFIS Rule Viewer 

 

The surface plot of the predicted results is shown in Figure 4.20. It is evident that the surface 

occupies the entire area of the decision space. In the 3D ANFIS Surface Viewer, low (better) 

surface roughness values are represented by the blue color close to the floor. The yellow color 

represents high surface roughness values. Overall, the 3D surface plots show that the surface 

roughness values are low in the speed range of 0 to 1 and the feed range of  0 to 0.5.      
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Figure 4. 20: ANFIS Surface Viewer 

 

The results of the ANFIS model prediction for surface roughness using water as a coolant are 

represented by Table 4.17. The training stage results are validated by comparison to testing stage 

results. 
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Table 4. 17: Comparison of ANFIS results with experimental findings (Kerosene Coolant) 

 

Training Data Set 

Experiment Number Measured Ra (nm) Predicted Ra (nm) Absolute Error (%) 

1 0.35 0.35 0.00 

2 0.81 0.81 0.00 

3 1.00 1.01 1.00 

10 0.22 0.22 0.00 

11 0.67 0.67 0.00 

12 0.61 0.61 0.00 

Mean Absolute Error (%) 0.17 

Prediction Accuracy (%) 99.83 

 

Testing Data Set 

Experiment Number Measured Ra (nm) Predicted Ra (nm) Error (%) 

7 0.00 0.03 2.91 

8 0.23 0.20 13.04 

9 0.27 0.22 18.52 

4 0.19 0.07 63.16 

5 0.42 0.47 11.90 

6 0.54 0.14 74.07 

Mean Absolute Error (%) 30.60 

Prediction accuracy (%) 69.40 
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The low percentage errors in the ANFIS results are very good. The training error is 0.17% while 

the testing error is 30.60%. The values indicate prediction accuracies of 99.83% and 69.40%  on 

training and testing data respectively. These values are as expected, that is, the training error is 

lower than the testing error. The obtained error values indicate the high accuracy of ANFIS model 

in predicting surface roughness of small data sets. The slightly higher error value in testing data 

may be due to the unavailability of data to sufficiently train the ANFIS model.  

 

4.6 Comparison of Regression and ANFIS Models for Water and Kerosene Surface 

Roughness Results 

 

The Mean Absolute Percentage Error has been used as the performance indicator. It has been 

computed for both ANFIS and Regression results. The MAPE is calculated by Equation 4.2. Both 

coolants’ modelling results are pictorially represented by Figure 4.22. It is seen that the regression 

model has a higher accuracy compared to ANFIS model in predicting the surface roughness of 

single point diamond turned RSA-443. 

 

 

 

Figure 4. 21: Comparison of Regression and ANFIS Models in Predicting Surface Roughness 

(Water Coolant) 
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4.7 Impact of Acoustic Emission Signal Parameters on Prediction Accuracy 
 

The regression model linking the critical machining parameters (cutting speed (C1), feed (C2) and 

depth of cut (C3) is given by Equation (4.9). Table 18 shows that the use of critical machining 

parameters alone in the RSM prediction model has a prediction accuracy of 96.35%. 

𝑅𝑎 = 18.8377 − 0.006351𝐶1 + 0.5778𝐶2 + 0.1500𝐶3                                                            (4.9) 

 

Table 4. 18: Surface Roughness Values Based on Critical Machining Parameters 

 

C1 [rpm] C2 [mm/min]  C3 [µm] Measured 

Ra [nm] 

Predicted Ra 

[nm] 

Absolute 

Error (%) 

1250 7.5 5 16 15.98 0.13 

1250 15.0 15 21 21.82 3.90 

1250 22.5 25 29 27.65 4.66 

1750 7.5 15 14 14.31 2.21 

1750 15.0 25 20 20.14 0.70 

1750 22.5 5 21 21.47 2.24 

2500 7.5 25 11 11.04 0.36 

2500 15.0 5 14 12.38 11.57 

2500 22.5 15 17 18.21 7.12 

MAPE 3.65 

Prediction Accuracy 96.35 

 

Equation 4.10 is a regression model that utilized both critical machining parameters and AE signal 

parameters in surface roughness prediction. The parameters are C1 (cutting speed), C2 (feed), C3 

(depth of cut), X1 (AErms), X2 (prominent frequency) and X3 (peak rate). It is evident from the 

tabulated results (refer with: Table 4.19) that the use of both critical machining parameters and AE 

signal parameters has a high prediction accuracy of 97.32%. 

𝑅𝑎 = 42.393 − 0.006𝐶1 + 0.523𝐶2 + 0.179𝐶3 − 1142.378𝑋1 − 0.00021𝑋2 + 0.000199𝑋3 

(4.10) 
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Table 4. 19: Surface Roughness Values Based on Both AE Signal Parameters and Critical 

Machining Parameters 

 

C1 

[rpm] 

C2 

[mm/min] 

C3 

[µm] 

X1 

[V] 

X2 [Hz] X3  

[min-1] 

Measured 

Ra [nm] 

Predicted 

Ra [nm] 

Absolute 

Error 

(%) 

1250 7.5 5 0.031 2003.96 6.10e+04 16 15.91 0.56 

1250 15.0 15 0.027 1300.13 4.00e+04 21 22.16 5.52 

1250 22.5 25 0.031 2003.96 6.71e+04 29 28.55 1.55 

1750 7.5 15 0.027 1407.66 3.23e+04 14 13.65 2.50 

1750 15.0 25 0.027 1407.66 3.23e+04 20 19.36 3.20 

1750 22.5 5 0.026 527.87 3.20e+04 21 20.96 0.19 

2500 7.5 25 0.026 1261.03 2.92e+04 11 11.44 4.00 

2500 15.0 5 0.022 469.22 1.40e+04 14 13.48 3.71 

2500 22.5 15 0.027 1397.88 3.51e+04 17 17.49 2.88 

MAPE 2.68 

Prediction Accuracy 97.32 

 

 From the study, it can be concluded that the use of AE signal parameters in conjunction with 

critical machining parameters enhances surface roughness prediction accuracy of a model that 

solely employs critical machining parameters by 0.97%. The use of a composite model is 

recommended to enhance prediction accuracy. This result is a confirmation of the reviewed 

literature which has demonstrated that the effectiveness of soft computing models is dependent on 

the size of the experimental dataset, and it can be lower compared to that of the regression models 

for a small-sized dataset. The lower prediction accuracy of ANFIS is due to the small and 

insufficient data sets available for the ANFIS model training. 

 

4.8 Summary of results 
 

The objectives of this research work were aimed at investigating the accuracy of the ANFIS model 

in surface roughness prediction during single point diamond turning of RSA-443. Prediction 

accuracy on training data sets was compared with prediction accuracy on testing data sets for either 
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coolant (water and kerosene). While both training and testing results were considerably good, the 

training results for ANFIS model were more accurate than testing results as expected. For water 

coolant, the training results have a mean absolute error of 0.80%; that is, a prediction accuracy of 

99.20%. The mean absolute error for testing results is 20.58%; that is, a prediction accuracy of 

79.42%. For kerosene coolant, the training results mean absolute error is 0.17%, that is a prediction 

accuracy of 99.83%. The mean absolute error for kerosene testing results is 30.60% and a 

prediction accuracy of 69.40%. The slightly higher values of testing error may be due to the small 

data sets available for the ANFIS model training. 

The Mean Absolute Percentage Error (MAPE) was also used to evaluate ANFIS model relative 

accuracy to Regression model. For either coolant, it was observed that while both models are 

accurate, the Regression model is relatively more accurate than the ANFIS model when using 

small data sets. This result is a confirmation of the reviewed literature which has demonstrated that 

the effectiveness of soft computing models is dependent on the size of the experimental dataset, 

and it can be lower compared to that of the regression models for a small-sized dataset. The lower 

prediction accuracy of ANFIS is due to the small and insufficient data sets available for the ANFIS 

model training. 
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CHAPTER FIVE 
 

5.0 CONCLUSION AND RECOMMENDATIONS 
 

5.1 Introduction 
 

The overall aim of this research was to investigate the accuracy of ANFIS model in predicting 

surface roughness of single point diamond turned RSA443. This chapter presents the conclusion 

of the investigative research. Suggested recommendations for further study are also highlighted in 

this chapter.  

 

5.2 Conclusions 
 

In this research, ANFIS and Regression models have been successfully used to predict the surface 

roughness of single point diamond turned RSA443 using small data sets. A comparison of 

Regression results and ANFIS results using MAPE suggests that Regression model prediction has 

produced better results than ANFIS model using small data sets. In this study, the mean absolute 

percentage error of ANFIS was 19.17% greater than Regression’s when using water as a coolant. 

When using kerosene as a coolant, the mean absolute percentage error of ANFIS was 26.15% 

greater than Regression’s. However, a comparison of ANFIS prediction error in training data sets 

against testing data sets error reveals that the error is slightly higher in training data sets. This is 

due to the small data that is not good enough for ANFIS model learning. 

Despite the ANFIS model being less accurate than the regression model when using small data 

sets, its prediction accuracy of above 65% for either coolant is accurate. Due to its capability to be 

incorporated in online prediction processes, ANFIS can be reliably used to predict the surface 

roughness of RSA 443 using small data sets.  

The result of this study has  confirmed what is in the reviewed literature, that is, the effectiveness 

of soft computing models is dependent on the size of the experimental dataset, and it can be lower 

compared to that of the regression models for a small-sized dataset. The lower prediction accuracy 

of ANFIS is due to the small and insufficient data sets available for the ANFIS model training. 
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5.3 Recommendations 
 

In this research, only Regression model performance has been compared to ANFIS model. 

Alternative methods such as RSM and GA-ANN can be tried to predict the surface roughness of 

single point diamond turned RSA443 with the overall goal of reducing production cost and 

shortening production time. The effectiveness of using only acoustic emission signal parameters, 

without turning parameters such as spindle speed, feed rate and depth of cut can be investigated. 

The effect of varying rake angle can be investigated to achieve optimum surface roughness of 

RSA443. Only three signal parameters have been used in this research, leaving a sea of other 

parameters that can be included in future studies. 
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APPENDIX A: KISTLER 8152B DATA 

 

Table A- 1: Kistler 8152B Data 
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APPENDIX B: ASM HANDBOOK, VOLUME 16: MACHINING, 

p761-804 
 

Table B- 1: Machining Parameters  
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APPENDIX C: PEAK RATE ALGORITHM 

 

 

 

Figure C- 1: MATLAB Algorithm for Peak Rate Determination 
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APPENDIX D: INPUTS MEMBERSHIP FUNCTIONS  

 

 

 

Figure D- 1: Initial membership function plot for the input variable ‘cutting speed’ 

  

 

 

Figure D- 2: Initial membership function plot for the input variable ‘Feed’ 
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Figure D- 3: Initial membership function plot for the input variable ‘Depth of Cut’ 

 

 

 

Figure D- 4: Initial membership function plot for the input variable ‘AErms’ 
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Figure D- 5: Initial membership function plot for the input variable ‘Prominent Frequency’ 

 

 

 

Figure D- 6: Initial membership function plot for the input variable ‘Peak Rate’ 
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APPENDIX E: TURNITIN | EPHORUS RESULTS FOR THESIS 
 

 


