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ABSTRACT

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM MODELLING OF SURFACE TOPOLOGY
IN ULTRA-HIGH PRECISION DIAMOND TURNING OF RAPIDLY SOLIDIFIED
ALUMINIUM GRADE (RSA 443)

Hweju Z.
M.Eng., Mechatronics Engineering
Supervisor: Prof Khaled Abou-El-Hossein
Faculty of Engineering, the Built Environment and Information Technology
P.O. Box 77000, Nelson Mandela University,
Port Elizabeth, South Africa
August 2019

Surface roughness prediction is a crucial stage during product manufacturing since it acts as a
quality indicator. This investigative research thesis presents an online surface roughness
prediction, based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) model during Ultra-
High Precision Diamond Turning (UHPDT) of Rapidly Solidified Aluminium (RSA-443) using
water and kerosene as coolants. Based on the Taguchi L9 orthogonal array, the cutting parameters
(spindle speed, depth of cut and feed rate) are varied at three levels. Acoustic Emission (AE)
signals are detected during the UHPDT process using a piezoelectric sensor. Spindle speed, depth
of cut, feed rate, AE root mean square, prominent frequency and peak rate are considered as model
inputs in this thesis. The experimental results reveal that a better surface finish is obtained using
water coolant in comparison to kerosene coolant. Mean Absolute Percentage Error (MAPE) based
comparison between ANFIS and Response Surface Method (RSM) is carried out. In this study, the
ANFIS model has a prediction accuracy of 79.42% and 69.40% on water-based and kerosene-
based results respectively. The RSM model yields higher prediction accuracies of 98.59% and

95.55% on water-based and kerosene-based results respectively.

Keywords: Adaptive Neuro-Fuzzy Inference System, Ultra-High Precision Diamond Turning,

Surface Roughness, Acoustic Emission Signal, Mean Absolute Percentage Error, RSA-443.
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CHAPTER ONE

1.0 INTRODUCTION

1.1 Background

Due to its influence on functionality, durability and aesthetics, product surface finish or topology
of metallic and alloy components has become a valuable quality during the manufacturing stage.
Its importance necessitates the incorporation of an efficient surface finish pre-determination model
into the broad manufacturing process to ensure that the specified surface quality is attained. The
conventional method of determining surface finish is an instrument called a profilometer. This
method involves removing the machined component from the production line, a process that is
time-consuming and the contact between the workpiece and the measuring instrument results in
damaged product surfaces. Adaptive Neuro-Fuzzy Inference System (ANFIS) is an online and
non-contact surface roughness predicting tool that has recently received attention due to its
accuracy in single point diamond turning, albeit on materials other than rapidly solidified
aluminium (RSA 443) [1, 2]. The accuracy of the ANFIS model is enhanced by using modelling
data that is almost the same as training data used [3]. ANFIS eliminates the highlighted problems

associated with the manual prediction of surface roughness.

The demand for materials with better thermomechanical properties compared to those of
conventional aluminium alloys, has been the driving force behind the emergence of Rapidly
Solidified Aluminium (RSA) alloys. The rapid solidification process’s high cooling rates yield
alloys with a fine microstructure, enhanced strength and better microhardness [4]. These
properties ultimately lead to protracted service life and high service performance, making RSAs a
material of significant interest. No research has been carried out to investigate the suitability of
ANFIS in predicting the surface finish of Rapidly Solidified Aluminium (RSA 443) with small
data sets and this investigative research attempts to fill this gap in literature.

During product machining using single point diamond turning process, cutting parameters and

process parameters have a great contribution to final surface topology. The interaction between
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these parameters during the turning process is complex and non-linear, hence making linear
predicting methods unsuitable for use. The other advantage of ANFIS is that it can model complex
parameter interactions with higher accuracy than linear mathematical models [5]. An analysis of
Acoustic Emission (AE) signals produced during the turning process provides a glimpse on the
nature of the interaction between cutting tool and workpiece. This analysis is aided by the
availability of modelling methods to transform time domain signals into frequency domain signals.
Acoustic Emission (AE) signal count rate, root mean square (AE:ms) and prominent frequency of
the Fast Fourier Transformed (FFT) signal together with cutting parameters (spindle speed, depth
of cut and feed) act as inputs to the ANFIS model in this research. The model output is the profile
roughness parameter (Ra) which is a measure of the surface finish integrity. The ANFIS model
results are compared to Regression model results using the Mean Absolute Percentage Error
(MAPE) method.

This investigative research seeks to address the gap in literature of the unavailability of researches
on the suitability of on-line and non-contact surface roughness prediction method in the form of
ANFIS on small data sets during single point diamond turning of RSA 443. The research outcome
is expected to make commercial optical components surface quality prediction easier, as roughness
level can be predetermined.

1.2 Problem Statement

Modern manufacturing processes are striving for continuous release of defect-free machined
components from the turning production line. The conventional off-line contact type surface
roughness measurement method has the following disadvantages: time-consuming in removing
workpiece from Computer Numerical Control (CNC) machine, results in damaged workpiece
surfaces due to contact with the measuring instrument, measuring tip wear and accuracy limited
by the radius of the tip. Furthermore, the profilometer cannot measure grooves narrower than the
tip radius. While a lot of researches have been carried out in optimizing cutting and process
parameters during turning of diverse materials, no research has been carried out on ANFIS
modelling of RSA 443 surface roughness using small data sets. The use of an on-line surface
roughness prediction model in the form of ANFIS will eliminate the problems associated with off-
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line measurement methods. The result will be the mass production of high-quality machined
components. The accuracy of the Adaptive Neuro-Fuzzy Inference System in modelling RSA 443

surface roughness using small data sets is investigated in this research.

1.3 Hypothesis

Null Hypothesis:

e The Adaptive Neuro-Fuzzy Inference System cannot accurately predict the surface quality

of diamond turned aluminium grade (RSA 443) using small data sets.

Alternative Hypothesis:

e The Adaptive Neuro-Fuzzy Inference System can accurately predict the surface quality of

diamond turned aluminium grade (RSA 443) using small data sets.

1.4 Aim

To investigate the accuracy of the Adaptive Neuro-Fuzzy Inference System in predicting RSA 443

surface roughness using small data sets.

1.5 Objectives

I.  To measure surface roughness off-line and simultaneously acquire the Acoustic Emission
signal.

ii.  To extract prominent parameters from the acquired Acoustic Emission signal (peak rate,
root mean square and peak frequency).

iii.  To predict the surface roughness using ANFIS model under different cutting conditions.
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iv.  To determine the accuracy of ANFIS model results by comparison to Regression model
outputs using Mean Absolute Percentage Error (MAPE).

1.6 Project Scopes

The experiments are designed and conducted based on Taguchi’s orthogonal array in this research.
The Taguchi experimental design allows numerous parameters to be analyzed without an excessive
amount of experimentation. At least nine (9) experimental runs are carried out in this research.
Three levels for spindle speed, feed rate and depth of cut are used, with the manufacturer’s
specified value as the middle value. The three levels chosen will cater for all levels of values (Low
(1), Medium (2) and High (3)). Adaptive Neuro-Fuzzy Inference System is used as the modelling
tool to achieve the research objectives. The parameters used as inputs to the ANFIS model in this
study are cutting speed, feed rate, depth of cut and Acoustic Emission signal components, namely,
peak rate, peak frequency and root mean square (AErms). Focus is on single point diamond turning
of rapidly solidified aluminium grade (RSA 443) using a Nanoform 250 ultra-grind Precision CNC
machine. The machined components surface roughness is measured off-line by a Taylor Hobson
Profilometer while Acoustic Emission Piezotron Sensor is used to acquire the AE signal. The
Simulation of results is done in the MATLAB environment. Results from the ANFIS model are
compared to Regression model results using the Mean Absolute Percentage Error (MAPE).

1.7 Motivation

This research is motivated by the need for an effective surface quality prediction method for small
data sets during the machining of rapidly solidified aluminium (RSA 443) alloys. For this research,
an effective method is one that has the following attributes: accuracy, ability to monitor surface
roughness online, non-contact and can be integrated into the automated machining system. This

method will eliminate the contact-type offline method with its associated limitations.

Companies that use the ANFIS model will enjoy high sales and profits through production of high-

quality products that meet both application specifications and consumer taste. The absence of
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process pauses in ANFIS surface roughness prediction shortens the total production time while
increasing production volume. Because of mass production of machined products, the cost of
producing a unit component is lowered. Since the model can be integrated into the automation
system, labor costs and human errors will be greatly reduced. Companies that utilize the ANFIS

model will have a competitive advantage over those using traditional methods.

1.8 Chapter Layout

This thesis report is partitioned into five chapters:

e Chapter I Introduction/Background: The problem background, objectives and research
scopes are presented in this chapter.

e Chapter Il Literature Survey: Relevant literature to the study is outlined.

e Chapter Il Materials and Methodology: The study material composition, cutting
parameters and design of experiment are incorporated.

e Chapter IV Results and Discussion: Analysis of collected results is presented.

e Chapter V Conclusion and Recommendations: The consequence of analysis and

recommendation are given in this chapter.

The sequence of the five chapters described are schematically represented by Fig. 1.1.
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e INTRODUCTION/BACKGROUND

e LITERATURE SURVEY

e MATERIALS AND METHODOLOGY

e RESULTS AND DISCUSSION

e CONCLUSION AND RECOMMENDATIONS
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Figure 1. 1: Chapter Layout
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CHAPTER TWO

2.0 LITERATURE SURVEY

2.1 Introduction

The literature survey for this investigative research thesis is divided into 5 sections: rapidly
solidified aluminium (RSA) alloys, surface roughness in ultra-high precision diamond turning,
cutting tool materials, review of acoustic emission and signal processing and computational
intelligence. The first section presents the rapid solidification process and properties of rapidly
solidified aluminium alloys. The second section presents the surface roughness average parameter
(Ra) and the factors that affect it during ultra-high precision diamond turning of RSA 443. The
third section presents the diverse cutting tool materials used in turning processes. Emphasis is
given to the single point diamond cutting tool that is used in this research. In the fourth section,
acoustic emission signal acquisition is presented together with the Piezotron sensor used in this
research. The acoustic emission signal parameters are also reviewed in this section. In the last part,
a review of Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN)

and Regression model is made.

2.2 Determinants of RSA Alloy Properties

The demand for aluminium alloys with thermo-mechanical properties superior to those of
conventional aluminium alloys is the drive behind the emergence of a new generation of alloys
called rapidly solidified aluminium (RSA) alloys. Among the most significant property
determinants of RSAs are improved microstructure homogeneity, smaller grain size and alloying

percentage.
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2.2.1 Improved Microstructure Homogeneity Effects on RSA Properties

The rapid solidification process yields aluminium alloys with fine microstructures and are
relatively easy to polish to the desired surface finish for applications in the visual spectral range
[6]. The relationship between cooling rates and microstructure of rapidly solidified aluminium
alloys is represented diagrammatically in Figure 2.1. The diagram shows that increasing the
cooling rate reduces the alloy crystal size while improving the homogeneity of the microstructure.
Additionally, RSAs have enhanced mechanical strength, relatively high wear resistance, high

temperature strength and good thermal expansion [7].
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4 10°
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Melt — 10* | microstructures | and process > eutectic and other
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crystalline phases,
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Cooling rate (K/S) Increasing
homogeneity

Figure 2. 1: Effects of Rapid Solidification on Microstructure [8]
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Abubakre et al. [9] discovered that the final product particle size is improved by raising quenching
media temperature and use of a quenching medium with relatively higher heat extraction rate.
Selection of the proper quenching media is therefore, a task that must be undertaken judiciously

as it influences final product quality.

2.2.2 Small Grain Size Effects on RSA Properties

Aluminium’s use as a lightweight structural material is limited by its lack of strength both at room
temperature and high temperature when compared to steel [10]. This deficiency is fixed by the
addition of alloying elements during the rapid solidification process to produce aluminium alloys
with enhanced strength. According to Katgerman [7], “the higher the cooling rate, the finer the
microstructure and the better the properties”. By reason of having finer and well distributed
granules, rapidly solidified aluminium alloys enjoy relatively better mechanical properties in
comparison to conventional aluminium alloys. Subsequently, rapidly solidified aluminium alloys
have relatively high tensile strength and impact toughness [11]. The increase in mechanical
strength with reduction in grain size is in accordance with the Hall-Petch relationship shown by
equation (2.1). Smaller grain sizes lead to grain boundaries that act as barriers to dislocation [12,

13]. From the equation, the smaller the grain size diameter, the higher the yield stress.

6, = 6, + (2.1)

Ky
Vd
Where 6, = yield stress.
6, = materials constant for the starting stress for dislocation movement

K, = strengthening coefficient

d = grain diameter
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2.2.3 Alloying Percentage Effects on RSA Properties

A composite of two or more elements, with at least one of the elements being a metal is called an
alloy [14]. Alloys are a result of the need to enhance the mechanical and chemical properties of
the original element to fit target application. The percentage of silicon in RSA 443 plays an integral
role in the determination of strength. Silicon, which constitutes 40% by weight, is a valuable
constituent element in rapidly solidified aluminium alloy (RSA 443) and is responsible for high
hardness, abrasive resistance, tensile and yield strength of the aluminium alloys [15, 16]. Table 2.1
shows the effects of increasing silicon in Al-Si alloys. There is a general increase in Mean Ultimate

Tensile Strength of the Al-Si alloy with an increase in silicon content.

Table 2. 1: Effects of Increasing Silicon in Al-Si Alloys [8]

Material Specimen Ultimate Tensile Mean Ultimate
Strength (N/mm?) Tensile Strength
(N/mm?)
Al-Alloy (1.5 % Si) 1 119.21 120.87
2 122.54
Al-Alloy (3.0 % Si) 1 129.12 130.88
2 132.65
Al-Alloy (4.5 % Si) 1 138.24 139.74
2 141.25
Al-Alloy (6.0 % Si) 1 148.74 148.99
2 149.25

The high silicon content in the aluminium alloys is responsible for the decrease in machining
cutting forces, ultimately increasing the machinability of rapidly solidified aluminium alloys. The
cutting forces increase with a reduction in cutting speed. There is an inverse relationship between
surface roughness and silicon content, that is, an increase in silicon content yields finer surfaces
[17]. The frictional properties of Al-Si alloys are strongly influenced by the distribution and shape

of silicon particles embedded in the alloy. It is these desirable frictional properties that have led

10
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Al-Si alloys to find applications in the manufacture of bearings, engine pistons and cylinder

linings.

2.3 Production Methods of Rapidly Solidified Aluminium Alloys

The three production methods of rapidly solidified aluminium alloys are as follows: spray forming
methods, laser surface melting methods and chill methods. The most familiar among these are
spray forming and chilling methods. Greater concern has been on the chilling methods, principally
the melt spinning process due to its capability to mass produce and its relatively high cooling rate
in the range 10%-107 K/s [18].

2.3.1 Spray Forming Method

The alternative name for the spray forming method is the Osprey process, a name derived from
the Osprey Metals of Neath, a company that commercialized it in the 1970s [19]. The advantages
of rapid solidification and powder metallurgy are fused together in the Spray forming method to
produce aluminium alloy matrices of marvelous qualities. The desirable attributes of the Osprey
process products comprise fine microstructure, near zero segregation, high density of Al-Si alloy,
short production path and improved mechanical properties. As described by Singer [20], it is
feasible to add second or third phase by superposing the added phase current into the vaporized
phase prior to deposition

A schematic representation of the spray forming method is given in Figure 2.2. The melt stream is
sprayed through a nozzle by means of an inert gas such as Argon or Nitrogen. The vaporized gas
is accelerated towards a suitable substrate, forming a billet in the process. Segregation challenges
related to conventional casting techniques are appropriately eradicated by the spray forming
method [21]. There is significant reduction in process steps from melt to final product and

capability of manufacturing difficult-to-manufacture components by spray forming.

Owing to minimal process steps in spray forming, production rates are higher and manufacturing

costs are subsequently lower. The lower handling time in spray forming methods translates to

11
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reduced chances of oxide contamination and hence improved fracture resistance and fatigue life.
Because of the fine microstructure, spray formed alloys can be easily machined to the required

smoothness and have high wear resistance [22].

Ceramic
particulate

.: f— Droplets

.
. " e

Tube/ring
< Billet

Figure 2. 2: Spray Forming process schematic [23]

2.3.2 Laser Surface Melting Methods

Laser Surface Melting method has the flexibility to achieve a wide spectrum of cooling rates
through variation of parameters such as scan-speed and laser power. In the Laser Surface Melting
method of rapid solidification of aluminium alloys, melting and solidification take place at the
workpiece surface. A traversing laser source in either single pulse form or continuous beam form
melts the workpiece surface that simultaneously acts as a heat sink during the solidification phase

[24]. The flux formed because of the traversing laser beam is subjected to rapid solidification

12
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through heat transfer to the heat sink. It is this rapid solidification that determines the

microstructure of the formed component. Figure 2.3 shows the principle of rapid solidification

using the laser surface melting method.

LASER
BEAM
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SURFACE
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# WORKPIECE
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Figure 2. 3: Principle of rapid solidification at the surface showing rapid local melting with a

traversing heat source [25]

The three solidification parameters, namely, temperature, thermal gradient and cooling rate have

a bearing on the final product quality, hence the need to accurately control them. Figure 2.4

represents the temperature profile along the Laser movement direction. It shows that the melt-pool

temperature at the laser point of contact is higher than that of the neighboring regions. The

temperature gradient, defined as the ratio of the temperature difference between two points to the

distance between the points is represented by the steep slopes on either side of the laser melt pool.

The cooling and heating temperature gradients are represented by left-side and right-side gradients

13
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respectively. The temperature peak due to superheat prior to melting is represented by a local

maximum ahead of the flux [26].
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Figure 2. 4: Temperature variation along the beam path [26]

2.3.3 Chill Methods

The melt spinning method of rapid solidification was developed in 1960 by Duwez and his co-
workers [27]. Of the three methods of rapid solidification of aluminium, melt spinning is the most
widely used industrially due to its high cooling rate and the ability to process large volumes of
materials. Thin metal strips of alloys are produced on a refrigerated rotating disc drum surface in
an inert environment. The freezing of silicon in the melt spinning process results in high silicon

content, that is 40% in RSA-443 [28]. Molten material is forced under pressure through a crucible

14
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hole on to a rotating drum surface that is refrigerated inside to enhance the cooling process. The

process schematic is shown in Figure 2.5.
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Figure 2. 5: The melt spinning process [29]

2.4 Surface Roughness in Ultra-High Precision Diamond Turning

2.4.1 Surface Roughness Parameters

A sharpened single point diamond cutting tool is employed in Ultra-High Precision Diamond

Turning (UHPDT) of aluminium alloys to produce optical surfaces that fit application

specifications. Surface roughness parameters are used to quantify the surface deviation from its

ideal form. Vorbuger and Raja [30] highlighted that roughness average perimeter (Ra) and peak

surface roughness spacing (D) are critical parameters in surface roughness evaluation as they

15
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determine functionality and performance of machined surfaces. Figure 2.6 is a schematic
representation of the two parameters. Roughness average perimeter (Ra), represents vertical
deviation from the horizontal line of a machined surface. Large deviations signify a rough surface;

while small deviations signify a smooth surface [31].

Figure 2. 6: Roughness Average Perimeter and Peak Surface Roughness Spacing [30]

Between the two parameters, only Ra is considered in this investigative research thesis. The lowest
achievable value of roughness average perimeter for any turning process is theoretically given by
equation (2.2). Grzesik [32] found out that at low feed, the theoretical roughness is less than the
actual roughness. There is an extension of plastic deformation to the work piece surface from the

cutting region which is later recovered after the turning process [33].
f2
Ry = 0.0321 x — (2.2)

Where f =feed in mm/rev

16
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And r =tool tip radius in mm

The other factors with significant contribution to the actual roughness are cutting conditions,

machined material mechanical properties, tool vibrations and chip formation mechanism [34].

2.4.2 Effect of Material Characteristics on Surface Roughness

The material characteristics that affect surface topology during ultra-high precision diamond
turning are crystal orientation, swelling and material anisotropy. Crystal orientation to the cutting
tool determines the cutting force as some directions are more favorable for shear plane formation
than others [35]. The effect of crystal direction becomes more significant as the uncut chip
thickness approaches the material grain size. In ultra-high precision diamond turning, the uncut
chip size is smaller than the average grain size of the material. At this level however, the tool will
be cutting through ideal crystals of the material, the surface topology is affected by their orientation
and properties [36, 37].

A complex combination of processes that include material swelling, plastic deformation and elastic
recovery determines the nano-scale surface topology formation during ultra-high precision
diamond turning. Kong [38] defined materials swelling as, “the elastic-plastic response of the work
piece when the cutting tool is removed”. Tool mark deviation from the prescribed profile on the
workpiece surface is a result of material swelling. Therefore, surface topology cannot solely be
reduced by optimization of process parameters [39]. Many researches have been carried out to
investigate material swelling effect on surface topology and the results indicate that surface

topology is distorted by material swelling [40, 41].

2.4.3 Temperature Effect on Surface Roughness

The conventional way of maintaining temperature to avoid adverse thermal effects during Ultra-
High Precision Diamond Turning (UHPDT) involves the use of coolants. Despite the use of
coolants, the transfer of heat from the cutting point to the workpiece is inevitable. The temperature

induces thermal errors on the machined component surface finish. During UHPDT, the heat is
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transmitted from one layer to the adjacent layer resulting in component swelling. When the heat is
lost, the component does not recover its original shape uniformly, resulting in non-uniform surface

roughness [42].

The temperature generated at the cutting point induces cutting tool dimensional changes that shift
the tool cutting point, leading to dimensional errors. Besides its direct effect on surface roughness
through induction of dimensional errors, temperature also indirectly affects surface roughness
through tool geometry modification due to tool wear. There is a direct relationship between the
generated temperature and tool wear. The temperature is a function of workpiece material and
cutting parameters. It is therefore important that the cutting parameters be carefully selected before
any cutting operation as the machining cost is affected as well [43]. The three zones of heat
generation during the cutting process are: plastic deformation by shearing in the primary shear
zone; friction on the cutting face and friction between the chips; tool on the tool flank [44]. The

heat generation zones are indicated in Figure 2.7.

Figure 2. 7: Heat generation zones [44]
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2.4.4 Tool Vibration Effect on Surface Roughness

The relative vibration among cutting tool, workpiece and measuring instrument has adverse effects
on surface topology of a machined component [45]. Principally, the relative vibration between the
cutting tool. The defective surface topology, induced dimensional errors and enhanced tool wear
negatively influence the cost of production and productivity [46]. Numerous researches have been
conducted to investigate the effects of tool vibrations on surface topology of machined components
[47-49]. From these researches, it was discovered that vibrations play a significant role in defining

surface topology during machining, hence the need to control them.

The three primary categories of machine vibration are free vibrations, forced vibrations and self-
excited vibrations. Free vibrations are a consequence of internal forces in the system and they
ultimately die out over time [50]. Forced vibrations are a consequence of external force agitation
while self-excited vibrations are spontaneous and lead to amplitude boost up to a maximum point.
The dynamic interaction between the cutter and the workpiece during a turning process causes
self-excited vibration [51]. According to Amin et al. [52], “tool chatter is an undesirable vibration
aspect that leads to an increase in vibration amplitudes because of excitation frequency being the
same as the natural frequency of the cutting tool”. The net result is the adverse effect on surface
quality. Additionally, chatter also negatively impacts on tool wear, material removal rate,

production time and energy consumption [53].

2.4.5 Cutting Parameter Effects on Surface Roughness

The most popular cutting parameters that have been researched on are cutting speed, feed rate,
depth of cut and tool nose radius; and a combination of these cutting parameters is an integral
determinant of product surface finish. It is crucial for the cutting parameters to achieve the required
surface finish during the turning process. Due to the uniqueness of every material, different cutting
parameter combinations are used to achieve that. Numerous studies have been conducted to

investigate the effects of every cutting parameter in the machining of various materials.

Imhade and Ugochukwu [54] investigated the order of influence of cutting parameters during the
end milling of aluminium and concluded that spindle speed has the greatest influence, followed by
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feed rate and finally depth of cut. Abdullah et al. [55] investigated the effect of feed rate and cutting
speed on surface topology of aluminium. The conclusion was that feed rate plays the most
significant role followed by cutting speed. The results indicate that besides material properties, the

machining process influences the significance of cutting parameters.

Surface roughness and cutting speed are inversely related, that is, increasing the cutting speed
reduces the surface roughness. There is a direct variation of feed rate and surface roughness, that
IS increasing the feed rate increases the surface roughness, and vice versa. There is a direct
proportion between depth of cut and surface roughness. It has also been concluded that there is an
inverse relationship between tool nose radius and surface roughness, that is, increasing tool nose

radius reduces the surface roughness [56].

2.4.6 Tool Geometry Effect on Surface Roughness

Tool geometry refers to the outline and angles of the cutting segment of the cutting tool (see Figure
2.8). Taha et al. [57] found out that during the turning process, the tool geometry has a significant
effect on surface integrity, tool life and cutting efficiency, hence the urgency for appropriate tool
selection prior to machining. According to Gokkaya and Nalbant [58], “the least possible average
surface roughness has been obtained using the cutting tools of maximum insert radius (1.2 mm)”.
This signifies that broad edged tools produce greater axial and radial forces than narrow edged
tools and the cutting tool chamfer angle is directly proportional to the cutting force. Tool life is
enhanced by use of a cutting tool with a greater chamfer angle as the wedge strength is increased,
though this is only up to a certain level, after which the tool life begins to diminish. At higher
cutting speeds, there is an inverse relation between chamfer angle and surface roughness.
Additionally, a higher chamfer angle produces low surface roughness at higher cutting speed [59].

The geometry of a single point cutting tool is shown in Figure 2.8.
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Figure 2. 8: Tool Geometry of Single Point Cutting Tool [60]

2.4.7 Surface Roughness Effects on Fatigue Life

For applications where components are subjected to cyclic loading such as in aeroengine parts,

fatigue is of predominant concern since it affects safety, product life and operating costs. It was

discovered that the fatigue strength is affected by the severity and the machining process used to

produce the component [61]. Fatigue crack development starts on component surface and since a

high surface roughness promotes crack formation, the material fatigue strength is therefore

dependent on surface roughness. There is a direct relationship between the fatigue life of a

machined component and surface finish, that is, the better the surface finish, the higher the fatigue

life (see Figure 2.9). Further, cutting speed and feed rate have a greater influence on fatigue life

than depth of cut [62]. Maiya and Busch [63] investigated the effect of surface roughness on fatigue

life of stainless steel (grade 304) and discovered the relationship represented by equation (2.3).

Ny = 1012 x R;*?!

(2.3)
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Where N, = initiation component of total fatigue life

And R, = root-mean-square roughness (um).
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Figure 2. 9: Surface Roughness versus Fatigue Limit [64]

2.5 Cutting Tool Materials

2.5.1 Single Point Diamond

A Single Point Diamond (SPD) cutting tool derives its name from the single diamond crystal that

is either natural or synthetic, which is fixed on the cutting tool tip and finally smoothened by

grinding and polishing processes. The single diamond crystal is fixed by high pressure onto a layer

of tungsten carbide substrate (see Figure 2.10).
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Figure 2. 10: Geometry of a typical single point diamond cutting tool [65]

Nakasuji et al. [66] observed that single point diamond tools can attain surface finish accuracies
of micro/nanometer levels. Diamond is the toughest material in existence and it is the best tool to
machine non-ferrous, non-metallic and abrasive materials [65]. Single point diamond tools have
high hardness, high abrasion resistance, high strength and great shock resistance [67]. The
numerous applications of SPD include the machining of reinforced plastics, marble, granite,
copper and aluminium alloys [68]. For the same machining operation, SPD tools enjoy longer tool
life than carbides, hence greater cutting speeds are used. A comparison between single point
diamond (SPD) tools and carbide tools is given by Table 2.2.
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Table 2. 2: SPDT and carbide comparison data [69]

Parameter Carbide Tool Diamond Tool
Initial Cost $149-00 $1 451-00
Sharpening Cost $14-00 $250-00
Machine Cost (per minute) | $0-85 $0-85

Setup Time 15 min. 15 min.
Possible Resharpenings 14 times 6 times

Tool Life

2 500 linear feet

150 000 linear feet

The presented results indicate that single point diamond cutting tools are generally superior to

carbide cutting tools. This is attributed to the high elastic modulus of diamond (1000GPa) which

signifies high specific stiffness. The cutting tool withstands high machining forces without

undergoing any major deformation. Despite the numerous advantages, a single point diamond

cutting tool has its own share of disadvantages, among which are its transformation to graphite at

high temperatures and the relatively initial cost of the cutting tool [70].

2.5.2 Carbon and Medium Alloy Steels

Carbon steels are clustered according to carbon percentage as follows: low carbon steel, medium

carbon steel and high carbon steel as indicated in Table 2.3.
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Table 2. 3: Carbon Steel Categories [71]

Carbon Steel Category Carbon Percentage
Low carbon steel 0-0.30%
Medium carbon steel 0.31-0.60%
High carbon steel 0.61-1.00%
Ultra-High carbon steel 1.25-2.00%

Due to their lower cost, low carbon steels are the most common among the three groups [71]. High
carbon steel is alternatively called carbon tool steel, a name derived from its use as a cutting tool
material because of its hardness. While steel hardness increases with an increase in carbon content,
brittleness is negatively affected. The difference between carbon steels and alloy steels lies in the
inclusion of other elements in addition to carbon. Prominent elements are manganese, silicon,
nickel, titanium, copper, chromium and aluminium. The choice, proportion and combination of the

alloying element is determined by the required application specific properties.

2.5.3 High Speed Steels

High Speed Steel (HSS) is an alloy of iron, vanadium, chromium, carbon, molybdenum and
tungsten. The name was derived from the ability to machine at relatively higher speeds than carbon
and medium alloy steels. High Speed Steel can efficiently cut in extreme temperatures (1000F)
without losing its hardness [72]. The desired cutting tool properties such as wear resistance, heat
resistance, high toughness and high hardness response are attained by combining the respective
elements in well-designed proportions. High speed steels are clustered into three broad categories
based on the proportion of major constituent elements, namely tungsten, molybdenum and cobalt.
Table 2.4 shows the nominal chemical compositions of the common high-speed and intermediate

high-speed tool steels in use. From the table:
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e T1- titanium steel

e M1, M2, M7, M50- Molybdenum steels

e M35, M42- Cobalt steels

Table 2. 4: High Speed Steel Chemical Composition [73]

Grade Cr Mo \% Co
T1 4.00 - 1.00 -
M1 4.00 8.00 1.00 -
M2 4.00 5.00 2.00 -
M7 4.00 8.75 2.00 -
M35 4.30 5.00 1.80 5.00
M42 3.75 9.50 1.15 8.00
M50 4.00 4.25 1.00 -
2.5.4 Carbides

The need for heat resistant cutting tools in modern manufacturing processes is being necessitated

by the ever-increasing need for high metal removal rate. This has led to a transition from the use

of high-speed steels to carbides, whose cutting speeds are 3-5 times faster. The carbide cutting tool

is composed of powdered carbide particles bound together by a cobalt matrix binder and exists in

the following categories: tungsten carbide, titanium carbide, tantalum carbide and niobium carbide

[74]. The proportion of each constituent element in the cutting tool significantly affects the

properties of the cutting tool. It is recommended that the manufacturer’s specified grade be used

to enhance tool life and cutting speed. Table 2.5 shows the different grades and the best conditions

for their applications.
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Table 2. 5: Carbide Grades and Applications

Carbide Grade Condition of Application
Shock-Resistant Carbide Interrupted Cutting
Harder, Chemically Stable Carbide High Speed Finishing
Heat-Resistant Carbide Super Alloy Machining

2.5.5 Polycrystalline Diamond

Polycrystalline Diamond (PCD) was introduced as a means to improve Ti6Al4V used in the
aerospace industry [75]. PCD tools are formed by high pressure and temperature combination of
minute synthetic diamond particles using a carbide substrate binder and cobalt catalyst. The
presence of cobalt results in an electrically conductive composite that demands the use of electrical
discharge machining method in conjunction with PCD. PCD is an isotropic material that exhibits
a unique and desirable property for a cutting tool in its qualification to be brazed [76]. In the
formation of a composite material based cutting tool like PCD, it is crucial to balance between
toughness and wear resistance as both are desirable qualities. Abdul-Rani et al. [77] found out that

PCD cutter wear resistance is enhanced by reduction of diamond grain size.

2.6 Review of Acoustic Emission and Signal Processing

2.6.1 Acoustic Emission Sensors

An acoustic emission sensor is defined as a device which detects an acoustic wave and converts it
into an electrical signal. It utilizes multiple physical detection principles that include
electromagnetic, capacitive, magnetostrictive, piezoelectric and interferometers. Selection of an
appropriate sensor is governed by the correlation between input and output signals. A perfect

sensor choice is one that would give an output voltage-time curve equivalent to the input
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amplitude-time curve [78]. Due to the wide frequency spectrum and diverse acoustic signal modes,
almost any sensor can detect some AE. For the purposes of this research, piezoelectric sensors will

be discussed.

Non-destructive sensing techniques are categorized into two broad groups, namely, passive and
active techniques. Active sensing techniques require an input to detect a parameter while passive
techniques do not require any input. Piezoelectric acoustic emission sensors are classified under
non-destructive sensing techniques since they do not require any input but only the detection of
energy released from the workpiece under investigation [79]. Owing to the numerous advantages
of non-destructive testing methods, much ground has been gained in terms of their implementation
in industrial test applications. The state of in-service components can be assessed without physical
property alteration. Valuable information such as crack growth and plastic deformation can be
acquired from acoustic emission signals to ascertain the service state of structures such as metal
pressure vessels, piping systems and reactors [80]. During the turning process, the acquired
acoustic signal is processed and analyzed for use in tool condition monitoring and surface

roughness prediction.

2.6.2 Acoustic Emission Sensor Piezoelectricity

Component loading is correlated with stress energy discharge. The resultant transient elastic waves
propagate inside the material before detection by an acoustic emission sensor. Acoustic emission
sensors employ the piezoelectric effect in their operation. Piezoelectricity is a pairing phenomenon
between strain and electric polarization that results in generation of electric charge in materials
subjected to applied stress. The generated charge is directly proportional to the strain. Examples
of piezoelectric materials are quartz, Rochelle salt, ammonium dihydrogen phosphate and
ferroelectrics [81]. Advances in research have made it possible to produce ferroelectric ceramics
with superior properties to piezoelectric single crystals. These are common in most acoustic

emission sensors today.

Piezoelectric material diameter and thickness are crucial dimensions that define sensor sensitivity.

The Boston Piezo-Optics Inc. defined sensitivity as the smallest change in input signal that a
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transducer can detect [82]. Resonance frequency of the sensor is determined by the element’s

piezoelectric and elastic constants. The structure of the Piezotron sensor is shown in Figure 2.11.

The sensor case acts as a shield against electromagnetic interference.

Case
o

Electrically
Conducting
Bond

Molding
Connector

5

Wear Plate

Piezo Element

Figure 2. 11: Typical Acoustic Emission Sensor [80]

2.6.3 Piezoelectric Material Size Effects

An ideal sensor is closely typified by a nanoscale piezoelectric material with numerous electrode

sets planted in a sample. Scaling up the piezoelectric material to a convenient size brings about

some deviation from ideality. The enhanced performance of piezoelectric materials with reduction

in size is attributed to the increased surface to volume ratio of the material. The increased surface

to volume ratio subsequently leads to lateral direction relaxation of the surface atoms [83].

Resonance and strain averaging are critical consequences of the piezoelectric dimensions.
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Resonance frequency is the frequency at which the piezoelectric material efficiently converts
mechanical energy into electrical energy. At this frequency, the sensor gives maximum output.
The resonant frequency for piezoelectric sensors takes place when piezoelectric material thickness
is one-half wavelength [78]. The resonant frequency as a function of material thickness is

expressed by equation (2.4).
d=(2n—-1)2x/2 (2.4)
Where d = thickness of piezoelectric material
n = odd or even number
And %= signal wavelength
The acoustic emission signal will give no output when

d = ni (2.5)

2.6.4 Piezoelectric Sensor Couplants

At atomic level, the contact surfaces between the acoustic sensor and the workpiece are imperfect,
making contact only on distinct points. Placing a piezoelectric sensor directly on specimen surface
produces a weak signal which can be enhanced by application of a thin fluid couplant that provides
better contact between the sensor and material surface. The absence of a couplant makes the force
transmitting area small; and a couplant fills the small gaps to ensure uniform pressure transmission
between surfaces [84]. Numerous couplants have been in use and the choice is determined by the

conditions of application as shown in Table 2.7.

Table 2. 6: Acoustic Emission Couplants [85]

Couplant Approximate Temperature Range
Dow Corning V-9 Resin ~-40°Cto 100° C
High Vacuum Stop Cock Grease ~-40°Cto 200°C
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Ultrasonic Couplants Room Temperature

Petroleum Grease Room Temperature

Dow Corning 200 Fluid -273° C to -70° C and -30° C to 200° C
Dental Cement ~0°Cto~50°C

50 % Indium — 50 % Gallium mixture ~20° C to 700° C

GE Silicone 11 5°Ct0200° C

2.6.5 Piezotron Coupler

The two purposes of the Piezotron coupler are the provision of power to the sensor and signal
conditioning of the high frequency sound signal from the Piezotron sensor. It contains a built-in
RMS converter with plug-in modules for signal filtration, gain applications and integration time
constant. The gain module amplifies the signal by a predefined factor and is connected to a series
connection of two high-pass or low-pass filters. The two filters can be combined to form a band
pass filter [86].

The bandpass filtered signal frequency is amplified and combined with the integration time
constant to form a high frequency envelop. The optocoupler monitors that the level of the RMS
frequency does not exceed a predefined value. Once the predefined value is exceeded, the
optocoupler triggers the limit switch to shut. That ensures the removal of baseline noise and

transmission of high frequency peaks. The optocoupler schematic diagram is shown in Figure 2.12.
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Figure 2. 12: Kistler Piezotron Coupler [87]

2.6.6 Temperature Dependency of Piezoelectricity

When ferroelectric materials are subjected to temperatures above the Curie temperature, they
transform into another material form with reduced performance and devoid of piezoelectric
properties. It is thus a requirement that piezoelectric materials be used at temperatures lower than
the Curie temperature to preserve their poling stability. Sensor selection must be based on
temperature restriction provided by the manufacturer; ensuring that the Curie temperature is not
exceeded. Even after proper sensor selection, temperature monitoring is vital for dynamic heat
generating applications. On the other extreme, using a piezoelectric sensor at cryogenic
temperatures reduces the mechanical and electrical properties of piezoelectric sensors. The

following are consequences of using the sensor in cryogenic temperatures: reduced electrical
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capacitance, reduced loss factor, reduced strain coefficient and magnified coercive field [88].
Temperature changes result in acoustic piezoelectric sensor noise, which alters the actual signal.

It is essential that the sensor attains thermal equilibrium before use at different temperatures.

2.6.7 Sensor Sensitivity

2.6.7.1 Effect of Cables

Sensor sensitivity is a composite of piezoelectric material and auxiliary components properties.
Components such as electrical cables used in conjunction with the sensor play an integral role in
sensor sensitivity determination. Signals are transmitted in the form of high frequency AC signals.
Circuit capacitive reactance caused by cable capacitance distorts AE signals. It was discovered
that a cable less than 30 meters in length between power supply and piezoelectric sensor has
negligible capacitance effects on data signals [89]. The effect of cable length on sensitivity is best
illustrated by equation (2.6).

Vo () = Q(5)/Co (2.6)
where I/, = sensor open circuit voltage;
Q = charge produced by a strain S,
and C, = capacitance of the sensor.

Connecting the sensor to the amplifier through cable will only increase the total circuit capacitance
as illustrated by equation (2.7). It is evident that the supply voltage is inversely proportional to the
total capacitance, mainly due to cable length. As such it is recommended that the minimum cable

length possible be used to minimize output signal distortions due to additional cable capacitance.
V(s) = Q©S)/(C, + Cc+ Cp) (2.7)
where C, = cable capacitance

and  C; = input capacitance of the preamplifier.
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Another factor to consider in using cables in conjunction with sensors is the routing of the cables.
Electromagnetic interference is a consequence of running cables along AC power lines and through
electrostatic discharge areas [90]. Extra protection to the cable is achieved through provision of a
separate grounded conduit to eliminate undesirable noise. Sensor manufacturer’s recommended

cable type and length must be used always to obtain best results.

2.6.7.2 Effect of Preamplifier Noise

Sensor spectral response to an acoustic signal relies upon the preamplifier input characteristics,
hence, use must be made of preamplifiers that are meant for acoustic emission. Current variations
in the leading amplification device cause noise in shorted preamplifier. For unshorted inputs, the
noise is attributed to current variations in the input resistor [91]. The root mean square noise

voltage for the resistor is expressed as:
V2 = 4KTRAv (2.8)
where K= Boltzmann’s constant,
T=temperature,
R=resistance
And Av= preamplifier bandwidth.

In the case of an open input stage preamplifier without a connected sensor, R represents the stage
input resistance, otherwise R is an equivalent resistance. Higher noise frequencies are suppressed
by cable and sensor capacitances. The manufacturer specifies the amplifier noise level as the ratio

of root mean square voltage to gain as indicated in the following equation.

Vo = /G (2.9)
The range for most acoustic emission sensors impedance is 50-1000Q and is expressed as:

V2 = 0.004VZ,4v (2.10)

where Z, = sensor impedance (K Q)
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Av = preamplifier bandwidth (Hz)

The exact preamplifier-sensor-cable combination noise voltage is expressed as:
Vioise = \/(Vsz + I/TLZ) (2.11)

A root mean square voltmeter can be used to measure the noise voltage.

2.6.8 Sensor Calibration

Sensor accuracy and system integrity are guaranteed by a periodic sensitivity audit within the
operating spectrum of frequencies and amplitudes [92]. Accessibility of the sensor is a factor to be
considered in immovable sensor installation to ensure that calibration can be performed easily.
The recommended general sensor calibration interval, the associated calibration sensitivity curves
and all calibration guidelines are provided by the manufacturer. The good news about Kistler
piezoelectric sensors is that they are factory calibrated and come with a calibration certificate
traceable to national standards. Calibration is also offered at customer request for immovable

SENSOrs.

The Kistler sensor sensitivity units are dBrer 1V/(m/s). This research utilizes a Kistler piezoelectric
acoustic sensor which can detect surface (Raleigh) and longitudinal waves within the frequency
range 50kHz-900kHz [93]. Either of the two waves can be used to calibrate the piezoelectric
sensor. Technical Data on the Kistler acoustic emission sensor is provided in Appendix A. During
the piezoelectric sensor calibration process, comparison is made between the output spectrum of
the sensor of interest and that of a standard reference sensor. In the event of a deviation from the
standard, adjustments must be made on the sensor of interest. The custodian of international
physical measurement standards is the International Bureau of Weights and Measures. The

headquarters are in Sévres, France [94].
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2.6.9 Acoustic Emission Signal Parameters

Since an acoustic emission signal is a composite of numerous parameters, as much information as
possible must be captured during the data acquisition stage. Among the sea of parameters
contained in the AE pre-processed signal are amplitude, counts, Measured Area Under Rectified
Signal Envelop (MARSE), duration and rise time [95]. Figure 2.13 is a diagrammatic

representation of these features.
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Figure 2. 13: AE Signal Features [96]

Amplitude is an important parameter as it determines whether a signal will be detected or not. It
is defined as the peak voltage in a waveform. The unit of expression of amplitude is the decibel
(dB). Detectability of a signal below the operator defined threshold value is unattainable. The unit
for Rise time is the second (s). It is defined as the time gap between the first threshold crossing
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and signal amplitude. Rise time provides valuable information about the signal propagation from
the source to the sensor, hence it can aid during signal filtering stage. The Duration of an AE signal
is expressed in seconds (s). It is the interval between the first and last threshold crossings of a
signal. This parameter is fundamental in the identification of different source types and can be

instrumental in signal filtering. Duration is dependent on signal strength and type of material.

The alternative name for MARSE is energy counts. It is defined as a measure of the area under
blanket of the rectified linear voltage time signal from the sensor. The MARSE allows the
calculation of the energy emitted by the source, provided the signal is above the user defined
threshold. Counts refers to the number of pulses discharged by the measurement circuitry. Usually,
the parameter is coupled with other parameters such as amplitude and duration for meaningful
information to be deducted from the signal form. Acoustic emission RMS is defined as the square
root of the mean of the squares of AE hits amplitude [97]. Acoustic Emission root mean square

(AEms) is represented by equation (2.12):

AE, s = J% [T AE? (tdt = /%Z’i\’zlAEz(i) (2.12)

Where AT = integration time constant

N = number of discrete AE data within AT

2.6.10 Acoustic Emission Wave Propagation Effects

The acoustic emission wave suffers many effects during its propagation from the source to the
sensor. The effects on the AE waveform include attenuation, dispersion, diffraction and scattering.
The AE waveform detected by a sensor is much more complex in form compared to the AE at
source. It is shaped by the propagation effects between the source and sensor. The important factors
of wave propagation for AE are wave modes and wave velocity, wave reflection, mode conversion

and attenuation.
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The popular modes of wave propagation are dilatational, shear, surface, plate, interfacial, Love
and creeping. The primary basis for classification of wave modes is the direction of oscillation of
media particles. On that basis, a longitudinal wave is one in which media particles vibrate in the
direction of the wave propagation while a transverse wave has media particles vibrating
perpendicular to wave propagation. The media particles in a surface wave vibrate in an elliptic
fashion while plate wave particles vibrate vertical to the plate surface. The speed of each wave

mode is dependent on the material properties of the media.

Because of attenuation, there is a gradual decrease in AE wave intensity from the source to the
detection point. The three causes of attenuation are geometric spreading, material damping and
wave scattering. As a wave traverses in a medium, there is conversion of Kinetic energy into heat
energy. Some of the energy is reflected by structural boundaries within the medium. An instrument
called a Hsu-Nielson Source is used to measure the effects of attenuation on an AE signal [96].

2.6.11 A comparison of the AE technique and other NDT Methods

Like any other method of surface roughness monitoring, AE monitoring method has both
advantages and disadvantages. lwata and Morivalci [98] pointed out that due to the large difference
in frequency ranges between signal and noise, it is easy to filter the signal to obtain a better signal
to noise ratio. Acoustic emission monitoring method does not require modification of existing
system. The emission of signal during the machining process occurs in real time, thereby allowing
monitoring to be carried out in real time as well [99]. Unlike in other non-destructive monitoring
techniques such as ultrasonic sensing where signal are externally sourced, AE signal is internally
sourced [100].

Due to the randomness of the acoustic emission signal process, the analysis and interpretation of
the emitted signal is complex. The complexity is worsened by the non-periodicity and numerous
signals associated with the signal, rendering mathematical relationships unsuitable in describing
them. Some of the differences between AE techniques and other NDT methods are illustrated in
Table 2.7.
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Table 2. 7: Comparison of AE characteristics with other NDT methods [101]

Acoustic Emission Other NDT Methods
Requires stress Do not require stress
Each loading is unique Inspection is directly repeatable
More material sensitive Less material sensitive
Less geometry sensitive More geometry sensitive
Less intrusive on plant process More intrusive on plant process
Requires access only at sensors Requires access to whole area of inspection
Main problems noise related Main problems geometry related

2.6.12 Acoustic Emission Signal Correction and Pre-processing

Since an Acoustic Emission Signal is a composite of super-imposed momentary features, it is
essential to process it to abstract parameters of significance. There are myriads of signal processing
methods in use for the analysis of AE signals. The abstracted features are valuable for testing or
monitoring purposes. The preeminent methods for signal analysis are time series analysis, Fast
Fourier Transform (FFT), Gabor transform (or window (local) Fourier transform), Wigner—Ville
distribution, and wavelet transform. For this research, only the FFT method will be discussed.

There is urgency to modify an Acoustic Emission signal into a mode that mirrors all the significant
parameters embedded within. Examples of such parameters are frequency, amplitude and other
sources of distortion. The modification process embroils filtering out electrical noise with the aid
of a signal processing tool such as Fast Fourier Transform (FFT). The raw signal is vague,
containing both the necessary and undesirable parameters fused together. There are various
approaches to enumerate the Discrete Fourier Transform (DFT) of a signal. The FFT approach has

the convenience of significantly shortening enumeration time.

The leading step in FFT signal analysis is the selection of the primary DFT equation:
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A, and B, are DFTs of length Y each:
2
A, equals the sequence {x,,,} = {Xo, X2, ... Xy_4, Xn—2}

And B,, equals the sequence {xy,41} = {x1, X3, ... Xy_3, Xy_1}
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(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
(2.21)

(2.22)
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2.7 Computational/Artificial Intelligence

Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN) are
branches of Computational Intelligence in which the human brain is represented by computational
models. ANFIS and ANN are the prediction methods used in this research. A comparison was
made between the two prediction models to determine their accuracy in surface roughness
determination. The computational models mimic the human brain in terms of learning capability
and problem-solving approach. These brain attributes are the foundation of Computational
Intelligence [102]. Computational Intelligence is an integration of technologies from various fields
(see Figure 2.14). The two phases of Computational Intelligence development are simulation of
human experience followed by rule-based conclusions and modelling using ANFIS and ANN.
Neural networks can model parameters whose relationship is non-linear by checking for patterns
in provided data. Both ANN and ANFIS are going to be described, but ANN will be explained

first.

Artificial

Intelligence

Figure 2. 14: Artificial Intelligence Disciplines [103]

41




Master of Engineering (Mechatronics) Thesis Nelson Mandela University

A comparison is made between the conventional computing methods and soft computing methods
as illustrated in Table 2.8.

Table 2. 8: Differences in approach between conventional computing and Soft Computing [104]

Characteristics Conventional Computing Soft Computing
Functions By Rules By example
Learning Method Logically Perceptual Pattern
Processing Style Sequential Parallel

2.7.1 Previous Applications of ANFIS and ANN in Surface Roughness Prediction

The complex nature of parameter interaction during the machining process has made researchers
develop more efficient methods of surface roughness prediction. A survey of researches based on
surface roughness prediction using computational intelligence reveals that ANFIS, ANN and
genetic algorithms have been used. Among the three methods, ANFIS and ANN are commonly
utilized.

Asilturk and Cunkas [105] used a feed-forward ANN in surface roughness modeling and prediction
turning operations on AISI 1040 steel. Dong and Wang [106] proposed an ANFIS model in end
milling surface roughness prediction of 6061 aluminum alloy. A radial basis feed forward
Artificial Neural Network was used by Munoz-Escalon and Maropoulos [107] in surface
roughness prediction during face milling of Al 7075-T735. Calculation of Pearson correlation
coefficients was done to ascertain input parameters correlation with surface roughness. The cutting
parameters used are cutting speed, feed per tooth, axial depth of cut, chip's width and chip's

thickness.
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Jiao et al. [108] utilized an ANFIS model in predicting surface roughness of turned surface. A
five-layered feed forward network was used in training the hybrid model. Many other researchers
have implemented computational intelligence methods in surface roughness prediction of various
materials during machining. A review of the researches reveals that the computational methods

are more accurate than the regression model.

2.7.2 Fuzzy Modeling & Fuzzy Inference System

2.7.2.1 Boolean Logic vs Fuzzy Logic

The characteristics of a fuzzy event are vagueness and impreciseness. A fuzzy event cannot be
classified as either true or false as it is a continuum between the two extreme values. In line with
the above stated property, any value in the range 0 to 1 can be assumed by an event in fuzzy logic.
The event value is called the truth value, which denotes the degree of membership of the event to
the fuzzy set. A lower truth value closer to O represents a weaker degree of membership while a
higher value closer to 1 represents a stronger degree of membership [109]. The value 0 denotes

absolute falseness while a 1 denotes absolute truthfulness.

The best way to solve impreciseness in real everyday problems is using fuzzy logic systems. For
example, considering the condition “add cold water” in a washing machine, for a human brain it
is easy to understand the meaning of the statement. It is a different story when the task must be
executed by a computer as it does not know which temperature value is considered as being cold.
Cold can be any temperature value from 0° C to maybe 32° C. If a limit is given of the maximum
temperature to be taken as cold, for example 32°C, any temperature above that such as 32.1° C is
taken as hot. Such uncertainties are best solved by fuzzy logic systems. Fuzzy control has the
advantage that no detailed plant mathematical model is required as the operator and designer
experiences are embedded into the fuzzy controller [110]. Figure 2.15 shows the differences

between a fuzzy logic system and Boolean logic.
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Figure 2. 15: Differences between Boolean Logic and Fuzzy Logic [103]

2.7.2.2 Fuzzy Set Theory

In 1965, Lotfi Zadeh [111] introduced a mathematical model called fuzzy set theory to represent
linguistic vagueness. Since its introduction, the fuzzy set theory has evolved and advanced greatly.
Most of the available conventional modelling tools available are crisp and precise in nature. Crisp
statements are either true or false and nothing in between, that is, an element either belongs to a
set or it does not belong. The fuzzy set theory differs from classical theory in terms of element
membership. While classical set theory membership is crisp, fuzzy set theory membership takes a
range of values between 0 and 1 [112]. The fuzzy set theory resembles the biological brain when
dealing with vague data. Conventional models of problem solving require understanding of all
variables at play. Due to the complexity of real-life problems, it is nearly impossible to know all
variables at play. Fuzzy modelling is simplified by putting together numerous parameters. Figure

2.16 represents a crisp set and fuzzy set respectively.
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Figure 2. 16: (a) Crisp Set and (b) Fuzzy Set [113]

Linguistic variables like small, tall, large, low, fast, medium, slow, high and heavy are represented
by fuzzy sets. In fuzzy set theory, it is possible for an element to belong to more than one set at a
time. A fuzzy set A in its field of discourse, U, is represented as a set of ordered pairs. A pair is
composed of a variable x and its associated degree of membership as shown by equation (2.23). A
diagrammatic representation of the mapping of each variable to its associated degree of
membership is known as a membership function [114].

S = {(x, ()| xeU) (2.23)

2.7.2.3 Fuzzy Inference Systems

The primary function of a Fuzzy Inference System is decision making. To accomplish this goal, it
makes use of the “IF... THEN” rules together with connectors “OR” or “AND”. A Fuzzy Inference
System (FIS) contains the fuzzy reasoning process. A complete FIS has three stages from data
input to the desired output. These three stages in their order are fuzzification, rule evaluation and
defuzzification. A detailed system on how the process works is shown in Figure 2.17.
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Figure 2. 17: Fuzzy Inferencing Unit [115]

2.7.2.4 Fuzzification

The first stage of the Fuzzy Inference System is called Fuzzification. At this stage crisp quantities
are converted to fuzzy quantities. Sensors are used to determine everyday classical variables such
as temperature, pressure and speed. These variables must be converted to fuzzy variables before
they can be processed by a Fuzzy Inference system. During the fuzzification stage, every input is
assigned its own group of Membership Functions (MF) to which it is converted. The universe of
discourse is represented by the horizontal axis in the plot of input variable against degree of
membership and all membership functions and crisp input values are contained within [116].
Figure 2.18 is a representation of membership function shapes for crisp inputs within the universe

of discourse.

The shape and labelling of the input variables membership functions to be used must be chosen
prior to coming up with the membership function number during the design process. In selecting
the membership function shape, accuracy of the output, ease of use and economics of computer
resources must be considered. Knowledge of the number of regions into which the universe of
discourse must be partitioned helps in the determination of membership function numbers. The
number of labels corresponds to the number of membership functions and each label represents a
region [117].
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Figure 2. 18: Membership function shapes [118]

Experience is a very integral factor in choosing the Membership Function (MF) shape and number.
The membership function shape used must be accurate and the number of the membership
functions must not be too few or too many. Using too few membership functions causes slow
output response and system oscillation while too many MFs reduce system stability and misfiring.
The membership functions must overlap so as to avoid the system being reduced into a Boolean
logic system [119]. The input must not belong to more than two membership functions and the
overlapping membership function grades must add up to not more than 1. The membership

functions must not cross each other at the maximum truth value.

At this stage, each crisp input value and intersection point within the universe of discourse is
mapped with each membership function and transposed onto the p axis. The degrees of truth are
the ones represented by the p values. The p values are related to each label as fuzzy inputs. The
results from this stage are carried to the rule evaluation stage in the fuzzy inference system process.

2.7.2.5 Rule Evaluation

A series of IF-THEN statements constitute the Rule evaluation procedure. In the statement lies an
operator popularly known as Zadeh operator. Experience and familiarity are required in rule

determination at this stage of Fuzzy Inference System. In this thesis, such experience was gained
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using previously obtained turning data in literature. The syntax for the rules used is strict and it is

structured as follows:

IF (inputl(X1) is membership functionl) ZADEH OPERATOR (input2 (X2) is membership
function2) ............... THEN (output (Y1) is output membership function)

X and Y represent antecedent and consequent respectively.

The three types of Zadeh operators used are AND, OR and NOT. The output membership function
is influenced by the linguistic variable used. The Zadeh operator can afford a maximum of two
membership functions. There is a similarity between Boolean operators and Zadeh operators such
that:

In fuzzy logic: X1 AND X2 = min (X1, X2). The relationship is represented by equation (2.24).

WANB = min [p_A (X1), B (X2)] (2.24)

In fuzzy logic: X1 OR X2 = max (X1, X2). The relationship is represented by equation (2.25).

W AuB = max [p_A (X1, p_B (X2)] (2.25)

In fuzzy logic: The opposite of the set is represented by NOT as represented by equation (2.26).
(LAY =[1-pAX) (2.26)

The above equations give the rule strengths from the interfacing of input antecedents X1 and X2

and the resulting strengths values are called fuzzy outputs.

2.7.2.6 Defuzzification

The defuzzification stage is the third and final stage of the fuzzy inference system. At this stage,
the conversion of fuzzy outputs into crisp outputs takes place. In fuzzy logic controllers, the crisp

value represents the action to be taken in process control. The numerous defuzzification methods
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include the Center of Gravity Method (COG), Center of Sums Method (COS), Center of Area or
Bisector of Area Method (BOA), Weighted Average Method and Maxima Method [120].

The factors that must be considered in selecting the defuzzification technique in each application
are suitability of the design, the efficiency of the technique, continuity of defuzzification result
and compatibility with fuzzy system. Continuity of defuzzification result means that small changes
in membership values of the fuzzy output must give rise to small changes in crisp result. This
principle is particularly important in fuzzy logic controllers. Computational efficiency is
determined by the nature and number of computations carried out to arrive at the defuzzification
result [121].

For the purposes of this research, only the Center of Gravity method shall be discussed. This
method utilizes fuzzy set centroid to calculate the crisp output value. The first stage is the division
of the total membership function area into sub-divisions. Each sub-division has its area and
centroid calculated. To simplify calculations in the microcontroller, a restriction is put on the
output membership functions to singletons. The result of this stage is crisp, and it is passed out of
the FIS for processing elsewhere. The crisp value is given by equation (2.27).

ST xn(xy)
X === 2.27
I u(x) ( )

Where
x; = sample element.
u(x;) =membership function.

n =number of elements in the membership function.

2.7.2.7 Mamdani-Type FIS VS. Sugeno-Type FIS

When dealing with expert knowledge, the Mamdani method is better accepted as it gives the
allowance for expertise description in a human-like way. Mamdani-type FIS finds most of its
applications in decision support. On the other hand, it works better for dynamic non-linear systems
control where optimization and adaptive methods must be employed. The most notable difference

between Mamdani-type FIS and Sugeno-type FIS stems from the conversion of fuzzy inputs into
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crisp outputs. The weighted average method is used for crisp out computation in Sugeno-type FIS
while the Mamdani-type FIS employs the defuzzification technique [122]. The Sugeno-type FIS
has greater processing speed as the time consuming defuzzification process is replaced by the
efficient weighted average method. The Sugeno-type FIS has linear or constant membership
functions while the membership functions for Mamdani-type FIS are in the form of fuzzy sets
[123].

2.7.3 Artificial Neural Networks

The birth and growth of Artificial Neural Networks is inspired by the amazing way in which the
human brain operates. Unlike the typical computers, the human brain does not need coding for it
to solve complex problems. It learns and can adjust to solve problems from experience gained
from similar previously encountered problems. The inability of modern computers to learn,
coupled with the fact that not all real-life problems can be expressed in code form, has inspired

researchers to come up with models that emulate the biological nervous system [124].

The human brain’s massive cognitive efficiency is attributed to its basic part called a neuron which
acts as a biological switch in the nervous system. The neuron collects, processes and transmits
signals in the form of electrical impulses [125]. The feature responsible for information reception
on the neuron is called a dendrite and is indicated on the neuron structure diagram in Figure 2.19.
Received signals accumulate in the nucleus until a threshold value is attained, after which the
signal is transmitted to adjacent neurons through the axon. Signal effect on a neuron is dependent

on the weight of the synapse.
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Figure 2. 19: Biological Neuron Structure [126]

The mathematical neuron model was born out of the researchers’ push for low energy consumption

computational tools capable of learning and performing distributed computation with high input

noise tolerance. Artificial neurons are represented as nodes in Artificial Neural Networks. A signal

traverses the network through a layered assemblage of nodes, with the signal being transformed at

each layer. The layers of nodes between the input and output are called hidden layers. Artificial

Neural networks have the competence to alter the weights based on the form of input data received.

The mathematical model of a neuron is shown in Figure 2.20.
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Figure 2. 20: Mathematical Model of a Neuron [126]

2.7.3.1 Neural Network Architecture

Architecture refers to the arrangement and connection pattern of nodes. Based on the inter-

connection of nodes, there exist two main groups of Artificial Neural Networks:

e Feed-forward networks

e Feed-back networks

2.7.3.1.1 Feed-Forward Artificial Neural Networks

In Feed-Forward Artificial Neural Networks, the nodes are connected in one direction from the
input towards the output. A neuron in a preceding layer is connected to every other neuron in the
next layer [127]. In this architecture type, no output is fed back to the network (see Figure 2.21).
This is the most common of the two architectures. Feed-Forward Artificial Neural Networks have
applications in pattern generation, recognition (character recognition) and classification (customer
data bases) [128].
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Figure 2. 21: Feed-forward Acrtificial Neural Network [129]

Figure 2.21 shows a one-layer Feed-forward Neural Network with the following parameters:
Number of inputs =n
Number of outputs =m
The output and input vectors are respectively expressed as
Y =[D1y2 e Iml* (2.28)
X = [x1 X3 . Xp]" (2.29)

Each input neuron has a weight associated with it and from Figure 3, the activation value of neuron

1 is given as:
a1 = W11x1 + lexz + oo + Wln (230)
The activation value of the ith neuron can thus be written as:

@ =Tfawyx fOri=12..,m 23
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The non-linear mapping due to transformation by each of the m neurons is expressed as:

y; = f(wix), fori =1,2,..,m (2.32)
where w; is defined as

wi & [Wi Wig ... Win] (2.33)

The input space is mapped to the output space by the following expression

y(t) = T'[Px(t)] (2.34)
Where W is the weight matrix given by
Wi1 0 Win
paf ] (2.35)
Wmi = Wmn

2.7.3.1.2 Feed-back Artificial Neural Networks

Feedback artificial Neural Networks are also called recurrent networks. In feedback Artificial
Neural Networks, weight adjustment information is fed back from the output layer to previous
layers to reduce output error. It has applications in speech recognition [129]. Figure 2.22 shows
the Artificial Neural Network architecture.

54




Master of Engineering (Mechatronics) Thesis

Nelson Mandela University

feedback

outputs
competition/inhibition

feedback

Figure 2. 22: Feedback Artificial Neural Network Architecture [130]

Output o; controls o; in the loop. The feedback loop delay elements introduce true delay between

t and At. Using the feedforward notation,
o(t +4) =TI'[we(?)]
represents o(t) mapping to o(t + A).

Equation (2.36) is represented by the block diagram in Figure 2.23.

(2.36)

Instantaneous

x(0) > network

I'[Wo(]
o)
Delay (L——
A ~

Figure 2. 23: Mapping Block Diagram [129]
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2.7.3.2 Learning in Artificial Neural Networks

The capability of Artificial Neural Networks to learn is achieved by inter-neuron weighted
connections. In real life, there are some problems that cannot be expressed in code. That is when
learning algorithms come in handy. An example of such a problem is facial recognition. The

different learning types for Artificial Neural Networks are:

2.7.3.2.1 Supervised Learning

During the learning process, both the input and the expected output are presented to the network.
With the given sets of data, the system can compute resultant error from the difference between
the expected output and actual output. The error is fed back into the system to adjust the weights
on the neuron interconnections. The most commonly used rule in this category is the delta rule
(Back Propagational Neural Networks). Learning occurs at each cycle that the system is presented
with processing data. Each cycle is called an epoch. When a network is presented with data, it first
makes a guess as to what it may be. It then uses the error to adjust the weights of the connections

between nodes. Firstly, the network calculates the output based on equation (2.37):
output = f(inputl X weight1 + input2 X weight2 +---)  (2.37)
Or

0 = f(Xiz1xi wy) (2.38)

The error can now be found from the difference between the actual output and the target output:
error = target output — actual output (2.39)
Or
e=t—o (2.40)

The error is used to adjust the weights:
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weight change = learning rate X error X input (2.41)
Or
Aw =rXeXx (2.42)

To ensure that only small changes are made to the weights on each iteration, a small learning rate
(r) is applied. If the learning rate is too high the perceptron can jump too far and miss the solution,
if it's too low, it can take an unreasonably long time to train. This gives a final weight update

equation of:
weight change = learning rate X (target output — actual output) X input (2.43)
Or

Aw =71(t —0)x; (2.44)

2.7.3.2.2 Unsupervised Learning

In this learning type, only input data set is provided to the network. The network must find a pattern
between the provided data without any outside influence. This is the type of learning used in data
mining applications such as finding user’s preferences. This is achieved from analyzing the

preferences of previous similar users.

2.7.3.2.3 Reinforcement Learning

A reward is offered to the network depending on how well it has performed. Reinforcement
learning has a feedback mechanism like the supervised learning. Only one set of data is presented

to the network and through trial and error, the system maximizes on the offered reward.

2.7.3.3 Artificial Neural Networks Learning Rules

A desirable feature of Artificial Neural Networks is their ability to learn from experience. The

learning is achieved through variation of neural interconnection weights. The mechanism of
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varying the weights is known as a learning rule. There are numerous Artificial Neural Network

Learning Rules.

2.7.3.3.1 Hebbian Learning Rule

The Hebbian Learning rule was introduced by a neurophysiologist by the name Donald Hebb in

1949. It later developed to be an influential rule in soft computing. Following extensive study of

neurons, Hebb established that repeated stimulation of a neuron by an adjacent neuron lowers the

activation threshold. The rule states that “the connection between adjacent neurons is strengthened

by simultaneous firing of the neurons” [131]. Feed-forward Neural Networks use this rule during

the unsupervised learning process. The Hebbian learning rule is mathematically represented in

Figure 2.24.

Y

Figure 2. 24: Excitation effect of first node [131]

According to Hebb,

Wij = DXjYi

(2.45)
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Where wij = common weight when there is excitation from the jth to the ith node
X;j = activation of the jth node
Yi = output to the ith node

D = step size weight control

2.7.3.3.2 Perceptron Learning Rule

The Perceptron Learning Rule was introduced by Rosenblatt. Its name is derived from the basic
part of a neuron, the perceptron. The perceptron learning rule uses a linear classifier to categorize
input data into two groups. Error correction is achieved by comparison of actual output and target
output. Weights between adjacent nodes are adjusted based on identified error. The perceptron
learning rule is used in single layer feed forward architecture networks. The operation principle of
the perceptron learning rule is similar to the Hebb learning rule with the only difference being the
absence of connection weights modification in the event of correct network response. In addition

to weight adjustment, the rule also adjusts the threshold B [132].

AR = {(1) j‘c ig (2.46)

2.7.3.3.3 Delta Learning Rule (Widrow-Hoff Rule)

The Delta Learning Rule was introduced by Bernard Widrow and Marcian Hoff. This rule is also
called the Least Mean Square Method. The Delta Learning Rule has a continuous activation
function and falls within the supervised learning category. It compares the actual output to the
desired output of the system and the error is calculated. The summation of the product of weight
and input value gives the output node’s activation. The Widrow-Hoff rule utilizes Gradient
Descent learning. According to McClelland and Rumelhart [133], “error is minimized by
modifying weights along the most direct path”. Therefore, the first order derivative of error with

respect to the weight is proportional to the negative change of the weight.
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2.7.4 Adaptive Neuro-Fuzzy Inference Systems

2.7.4.1 Overview of Adaptive Neuro-Fuzzy Inference System

According to Jang [134], an Adaptive Neuro-Fuzzy Inference System is a hybrid of Artificial
Neural Networks (ANN) and Fuzzy Inference Systems (FIS). Unlike in fuzzy logic systems where
fuzzy rules are obtained from human expert knowledge, ANFIS automatically generates the fuzzy
if then rules [135]. The use of human expert knowledge gets complicated in terms of time and
number of rules to be generated, as the system to be modelled becomes bigger. ANFIS combines
the advantages of both Fuzzy Logic systems and ANN. The two types of fuzzy inference systems
are Sugeno-Takagi and Mamdani systems. The five data transformation stages of ANFIS are
fuzzification, fuzzy operator application, application method, output aggregation and

defuzzification.

2.7.4.2 ANFIS Architecture

An Adaptive Neuro-Fuzzy Inference System network is a multilayer network of interconnected
adaptive nodes. The nodal outputs are dependent on the weights gained from previous experience.
Error is minimized by modifying the weights as prescribed by the learning rules. The Takagi-
Sugeno fuzzy inference system with two inputs is shown in Figure 2.25 while Figure 2.26 shows
the ANFIS architecture.
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Figure 2. 25: First order Sugeno model [136]
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Figure 2. 26: ANFIS Architecture [136]
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For the ANFIS structure with two inputs and one output, the rule base contains the Takagi-Sugeno

fuzzy if-then rule as follows:
If xisAand yis Bthenzis f(x,y)

where A and B are the fuzzy sets in the antecedents and z = f(x,y)is a crisp function in the
consequent. Usually f(x, y) is a polynomial for the input variables x and y. For a first order two
rule Sugeno fuzzy inference system, the two rules may be stated as:

Rulel:If xis Ajand yis By then fy = p1x+quy +ny (2.47)

Rule2: If xis Ayand yis By then f, = p,x + @,y + 13 (2.48)

Layer 1: Membership functions for input parameters are contained in this layer. The examples of
membership functions used in Layer 1 are triangular and bell shaped. The membership function

for layer one is given by the following equation,
0} =y, (%) (2.49)
Where x = node i input
A; = linguistic variable associated with node i

Layer 2: the weight of each membership function is checked in layer 2. Input variables from layer
1 are received and it represents the fuzzy sets of the received input parameters. Membership value
computation takes place at this stage and the degree of membership to a given set is determined.
The result of layer 2 is forwarded to layer 3. Incoming signals are amplified in this layer. The firing

strength of the function is represented by the output at this node.
0F = a,(O)up, () (2.50)
Where i = 1:2

Layer 3: The alternative name of layer 3 is the rule layer. Fuzzy rule pre-condition matching is
performed by the nodes in this layer. At this level, the ratio of the ith rule’s firing strength to the

sum of all firing strengths is calculated.

03 =W =2 (2.51)
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Where i =1:2

Layer 4: The alternative name for this layer is the defuzzification layer. This gives the output of

the inference system. The node function at this stage is given as follows:
0f = fiW;(Pix + Q;y + Ry) (2.52)
Where i = 1:2

Layer 5: Transformation of fuzzy results and the summation of all incoming signals are computed
at this stage.

0; = sytem output (2.53)

Wherei=1:2

2.7.4.3 ANFIS Learning Algorithm

A learning algorithm equips the ANFIS model with the capability to learn about a given
input/output data set. The procedure entails computation of membership function parameters for
the given input/output data set. The calculated membership function parameters determine the
association between the input and output data set. During the learning process, the membership
function parameters are modified to reduce errors. The learning algorithm has the responsibility of
mapping all the input data to the output data during the training stage [137]. According to research,
a hybrid learning algorithm that combines Least Squares Method (LSM) and Gradient Descent
Method (GDM) has enhanced convergence. Layer 4 consequent parameter optimal value is
identified by the least squares method while the premise parameter is fixed. The efficiency of the
fuzzy inference system is determined by the gradient vector as the value of the gradient vector
obtained determines the degree of adjustment required to reduce error [138]. Convergence is
improved by reduction of the search space through premise parameters fixing. The forward
propagation of the hybrid learning algorithm employs the least squares method (LSM) while the
backward propagation employs the gradient descent method (GDM). Table 2.9 shows a
comparison between the two passes in the hybrid learning algorithm.
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Table 2. 9: The two passes in the hybrid learning algorithm [119]

Forward Pass

Backward Pass

Premise Parameters

Fixed

Gradient descent

Consequent Parameters

Least-squares Estimator

Fixed

Signals

Node outputs

Error Signals

2.7.4 Regression Model

Regression analysis is a statistical means for estimating the relationship among variables. The

variables include a set of independent and dependent variables. The independent variables are also

known as predictor variables while the dependent variable is called the criterion variable.

Knowledge of the relationship among variables enables the estimation of the dependent variables

in situations where only independent variables are available. The regression model is a widely

used model in surface roughness prediction during single point diamond turning. The model is the

form of a mathematical equation shown by equation 2.54. The significance of the independent

variables can be assessed using the Analysis of Variance (ANOVA).

Y = by + bix; + -+ byx,
Where

Y = dependent variable

x; = independent variables

b; = regression coefficients

(2.54)
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2.8 Conclusion

The purpose of this review was to gain an insight into the various factors that affect surface
roughness as well as the available surface roughness prediction models. It is clear from the
reviewed literature that surface roughness is directly affected by cutting parameters. It is also
evident that the extracted acoustic emission signals contain some unique signatures that are
valuable in surface roughness prediction. There is limited research on the use of Adaptive Neuro-
Fuzzy Inference System model incorporating acoustic emission signal parameters. Hence the
decision to study that field. This study will expand the already available body of knowledge on
surface roughness prediction methods for RSA-443. The next chapter explains the major
components and stages used in ultra-high precision diamond turning of RSA-443.
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CHAPTER THREE

3.0 MATERIALS AND METHODOLOGY

3.1 Introduction

In this chapter, the stages involved in achieving the research objectives are highlighted. These
stages range from materials selection, through design of experiment to the prediction of surface
roughness. Lastly, the Adaptive Neuro-Fuzzy Inference System (ANFIS) prediction results are
analyzed by comparison to Regression model results using Mean Absolute Percentage Error
(MAPE). The Ultra-High Precision Diamond Turning (UHPDT) process is performed under two

types of coolants: kerosene and water.

3.2 Workpiece Material Selection

A 60 mm diameter cylindrical specimen of RSA-443 is used in this investigative research. The
workpiece is firmly fixed to an adapter disk for ease of holding with the machine vacuum chuck.
The RSA 443 workpiece contains 40% silicon. Figure 3.1 shows the RSA 443 workpiece mounted
on an aluminum adapter disk. Table 3.1 shows the mechanical, physical and thermal properties of
RSA 443.
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RSA 443 Workpiece

Workpiece Adaptor

Figure 3. 1: RSA 443 Workpiece Mounted on Aluminum Adapter Disk

Table 3. 1: Mechanical Properties of RSA 443 Alloy [139]

Property Nominal Value Unit

Hardness 105 HB
Density 2.54 g/lcm?
Thermal Expansion 13.6 109K
Young’s Modulus 102 GPa
Ultimate Tensile Strength 245 MPa
Yield Strength 155 MPa

Elongation 1.5 %
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3.3 Design of Experiment

The steps followed in designing the experiment are shown in Figure 3.2.

N
» Selection of Process Variables and Limits

1 /

N

« Selection of Orthogonal Arrays

2 /
« Assigning the independent variables to each column

3

Figure 3. 2: Design of Experiment Steps

3.3.1 Selection of Process Variables and Limits

Spindle speed, feed rate and depth of cut have been chosen as process variables in this investigative
research study. Three levels have been decided for each of the three cutting parameters with the
manufacturer’s recommended value as the center value. The spindle speed should be as high as
practical in order to save time and to minimize temperature rise in the part. The depth of cut should
be as great as possible within the limits of part strength, chucking equipment, power of the machine
tool and amount of stock to be removed in order to minimize the number of cuts required. Feed

depends on the desired finish and on the strength and rigidity of the workpiece. The process
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parameters with their associated levels are shown in Table 3.2. The recommended process
parameters are given in the ASM Handbook of Machining that is attached in Appendix B.

Table 3. 2: Process Parameters with associated levels

Parameters Levels

1 2 3
Spindle Speed (rpm)-A 1250 1750 2500
Feed (mm/min)-B 75 15 22.5
Depth of Cut (um)-C 5 15 25

3.3.2 Selection of Orthogonal Arrays (Taguchi Design)

Orthogonal arrays enable the determination of parameter effects on a response using the least
number of experimental runs. Before selecting an orthogonal array, the minimum number of

experiments to be conducted is to be fixed based on equation (3.1).
N Taguchi =1+ NV(L—1) (3.1)
Where N Taguchi= Number of experiments to be conducted
NV= Number of parameters
L= Number of levels
The pre-condition for equation (3.1) is that L > 4. Hence, in this research, NV=3 and L=4.
Substituting NV and L in equation (3.1);

N Taguchi=1+3(4—-1)=9
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According to this result, at least 9 experimental runs (L9 Taguchi orthogonal array) are to be

conducted.

3.3.3 Assigning the independent variables to each column

The independent variables and their respective levels are expressed in tables (see Table 3.3 and

Table 3.4).

Table 3. 3: Levels of process parameters used in Taguchi (L9) Orthogonal Array

Experiment Number Levels

A B C
1 1 1 1
2 1 2 2
3 1 3 3
4 2 1 2
5 2 2 3
6 2 3 1
7 3 1 3
8 3 2 1
9 3 3 2
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Table 3. 4: Experimental design using L9 Taguchi orthogonal array

Experiment Number Levels
Spindle Speed Feed (mm/min) Depth of Cut (um)
(rpm)
1 1250 7.5 5)
2 1250 15 15
3 1250 22.5 25
4 1750 7.5 15
5 1750 15 25
6 1750 22.5 )
7 2500 7.5 25
8 2500 15 5
9 2500 22.5 15

3.3.4 Tool Centering and Spindle Balancing

Prior to executing the experiment, the cutting tool is centered (see Figure 3.3), and the spindle is
balanced (see Figure 3.4) to eliminate unwanted oscillations that negatively impact on the ultra-

high precision diamond turning results. In this research, spindle balancing was carried out at 2 500
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rpm, 2 000 rpm and 1 000 rpm. These selected balancing values cover all speed levels, that is, low,

medium and high speeds that are used in this research.

Figure 3. 3: Diamond Cutting Tool Centering
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Figure 3. 4: Spindle balancing platform DIFFSYS

3.3.4 Ultra-High Precision Diamond Turning Setup

The ultra-high precision diamond turning process was performed on an ultra-grind Nanoform 250
Computer Numerical Control (CNC) machine with the machining setup shown (see Figure 3.5).
The features of the CNC machine include a foolproof human machine interface, a natural built-in
granite base for machine stability and an FEA optimized dual frame for protection against adverse
environmental conditions. The cutting conditions of the ultra-high precision diamond turning
experiments are summarized in Table 3.5.
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Figure 3. 5: Ultra-High Precision Diamond Turning Setup

Table 3. 5: RSA 443 Cutting conditions

Cutting Condition Specification

Workpiece RSA 443

Rake angle -5°

Nose radius 0.5 mm

Tool Single crystal natural diamond
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3.3.4.1 Experimental Procedure

e The Piezotron sensor is secured to the spindle mount by means of a magnetic clamp at 4cm
from workpiece to detect acoustic emission signals generated during the ultra-high
precision diamond turning of RSA 443.

e A Kistler Piezotron coupler (5125B) is directly connected to the Piezotron sensor. Its
purpose is to amplify, filter and RMS conversion of the acquired acoustic emission signal.

e Tool centering and balancing using gauge indicator and spindle balancing platform was
done.

e Machine G-codes for the turning operation were entered.

e Facing of workpiece surface was done before actual tests were run.

e The acoustic emission data of each experimental run was acquired. The LabVIEW software
(front panel) showing AE signal during RSA 443 machining is shown in Figure 3.6.

e The surface roughness of each experimental run was determined using a Taylor Hobson

Profilometer, prior to the subsequent experimental run.

[ retvelCarmarer Do oo R ey e e T T . . . - ——
File Edit View Project Operate Tools Window Help
e o = =
> @ 11 [15pt Application Font ~ | o Tov #E« G« +| Search A ?

MEREEEE P00 |

Wiite to File?

Physical Channel

Sample Rate (Hz) % px1siot2/ai0 =l

£J10000.00 Minimum Value
-01-} ] f e

anit=ialad 02:33:08.10 PM 02:33:08.20 PM| 1000
oo Maximum Value

buffer size (in samples per channel) 410,00

100000000

STOP

Pxuisiot2/ai0 RN | PR Gy Pisior2/ai0 GG

02:23:08.206
2018/10/3¢

m wo  0220PM | |
= 2018710730

Figure 3. 6: LabVIEW Software (front panel) showing AE signal during RSA 443 Machining
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3.3.5 Surface Roughness Measurement Setup

A contact-type Taylor-Hobson profilometer (see Figure 3.7) was used to measure the surface
roughness of machined workpieces since it can be used with a wide variety of surface types.
Transverse direction surface roughness measurements of the machined workpiece are made and

recorded in a table. The description of the profilometer used is represented by Table 3.6.

Figure 3. 7: Taylor Hobson Profilometer

76




Master of Engineering (Mechatronics) Thesis Nelson Mandela University

Table 3. 6: Taylor Hobson Profilometer Description

Feature Specification
Repeatability 50 nm
Diameter of optics measuring possibility <2 mm
Maximum measured diameter 300 mm
Maximum surface sag 20 mm

3.3.6 Acoustic Emission Signal Acquisition Experiment Process Flow

The acoustic emission signal data acquisition process has three segments namely, sensing, signal
processing and storage and display (see Figure 3.7). The Piezotron sensor is a transducer that
converts force into an electrical signal which is magnified by an amplifier. The in-built filter
eliminates the noise components of the signal that is interfaced to the storage and display unit by
the data acquisition card. The acoustic emission signal circuit components specifications for this
research are given (see Table 3.7). The components used are active components that require power

supply to work.
| Amplifier | | 50-700kHz Filter | | 100kH=z-1 MH= Filter|— Amplifier
RSA-443
AFE Sensor
1 NI PCI-6110E
SFDT Tool Holder Data Acquisition

;

i |

Figure 3. 8: Acoustic Emission Signal Acquisition Experiment Process Flow
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Table 3. 7: Acoustic Emission Signal Circuit Components Specifications.

COMPONENT SPECIFICATION IMAGE
Piezotron Sensor Kistler 8152B

Piezotron Coupler | Kistler 5125B

Connector BNC-2110
Power Source Input/output Voltage

(220V/24V)
High Pass Filter 50 kHz to 700 kHz In-built
Low Pass Filter 100 kHz to 1 MHZ In-built
Data Acquisition NI PCI-6110E
Card
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3.3.7 Acoustic Emission Signal Feature Extraction

Once the acoustic emission signal has been captured, a systematic approach is utilized to extract
signal features of interest. In this case, peak rate, AErms and peak frequency are determined for

the captured acoustic emission signals.

3.3.5.1 Acoustic Emission Peak Rate Determination

Figure 3.9 is a flow chart for the MATLAB algorithm that was developed to determine the peak
rate of the acoustic emission signals in time domain. The algorithm is shown in Appendix C. In
this thesis, a peak is defined as a point whose value is greater than 0.04 and greater than its adjacent
points. The value of 0.04 was judiciously chosen by the student as a way of dealing with well

pronounced peaks. Below the value, the peaks are not distinct.

| Initialize Peak Count (k=07 |

| if code

else code

l

Increment Pealk Count (k+1)

-

Pealc rate Computatiorn

l
| )

Figure 3. 9: Acoustic Emission Peak Rate Determination Flow Chart
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3.3.5.2 Acoustic Emission Root Mean Square Determination
Acoustic emission Root Mean Square is determined according to equation (3.2).
1
RMS = |~ [ZI(X))?] (32)

Where N = total number of events
X; = amplitude vibration signal

i = order of event

3.3.5.3 Peak Frequency Determination

The signal peak frequency was extracted from the Fourier transformed signal in the EXCEL

platform. Figure 3.10 represents the steps that were taken to achieve the task:

* IMPORT SIGNAL DATA INTO EXCEL

« COMPUTE FFT COMPLEX

« COMPUTE FFT MAGNITUDE AND FREQUENCY

* PLOT FFT TRANSFORMED DATA

* EXTRACT PEAK FREQUENCY

) L-C-C-C -4

Figure 3. 10: Peak Frequency Determination Flow Chart
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3.3.6 Adaptive Neuro-Fuzzy Inference System Modelling

In this investigative research, a two-layered feed-forward ANFIS architecture with six inputs is

used to predict the surface roughness of single point diamond turned RSA 443. Use is made of the

Sugeno-style Fuzzy Inference and gaussian membership functions. Three (3) membership

functions will be used and they will divide the range into 3 equal portions. The ANFIS model

process flow followed in this thesis is presented in Figure 3.11. Use is made of ANFIS toolbox in

MATLAB environment.

[

Start MATLAB :|

>

Load Training amd
Testing Data

]

/

Furzy Swysterm
Initialization

+*

FIS Generation

+

ANFIS Traimimng

+

A MNFIS Testing

e L]

Are Results Accurate?

Figure 3. 11: ANFIS Model Process Flow

e Fuzzy System Initialization: At this stage, both training data sets and checking data sets

are loaded from storage file to the workspace and subsequently to the ANFIS graphical

user interface. The used data has six input parameters namely, feed rate, cutting speed,

depth of cut, AErms, peak frequency and peak rate. Surface roughness parameter (Ra) is

the output from the model. The loaded data is in numeric matrix format with the first
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columns representing inputs while the output is represented by the last column. The ANFIS
Editor display in Fig. 3.12 shows the loading sub-display.

e Generation of Fuzzy Inference System: This stage follows the loading of data into the
system. The Inference System is generated by FIS command in the ANFIS editor graphical
user interface. The Sugeno-style Fuzzy Inference is used in this research. At this stage, the
number and type of membership functions used is specified. The gaussian membership
functions will divide the range into 3 equal portions.

e |Initiate Learning Process: Since a complete fit is not achievable, the default tolerance of 0
is changed, hence a tolerance of 0.001 is used in this research. The default number of
epochs in MATLAB is 3. This value is not enough for training, hence 20 epochs are used
in this research. The epochs are the number of iterations that must be carried out until the
data begins to overfit.

e Validation of Results: Once the training process has been completed, the results are tested
by comparison with testing data. In this thesis, three additional experimental runs are
carried out to provide testing data. Seven data sets are used as training data while the

remaining five data sets are used as testing data.
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Figure 3. 12: ANFIS Editor Display

3.4 Conclusion

This chapter has managed to explain the major components and stages used in ultra-high precision
diamond turning of RSA-443. The next chapter is aimed at investigating the surface roughness
prediction accuracy of ANFIS. Comparison is made of ANFIS prediction accuracy to RSM. Use
is made of the Mean Absolute Percentage Error.
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CHAPTER FOUR

4.0 RESULTS AND DISCUSSION

4.1 Introduction

This section presents results obtained during Ultra-High Precision Diamond Turning (UHPDT) of

RSA 443 under different coolants (kerosene and water). A comparison is made between surface

finishes for water and kerosene coolants. For both coolants, the surface profile charts for the worst

and best surface roughness finishes are presented. Acoustic emission signal features (AErms, peak

rate and prominent frequency) are acquired from the captured signals. Using cutting parameters

(spindle speed, depth of cut and feed rate) and signal parameters, Regression and ANFIS models

are utilized in predicting the surface roughness of the machined components. The model accuracy

for both coolants is determined using the Mean Absolute Percentage Error (MAPE) method.

MATLAB software is utilized in surface roughness prediction in this chapter.

4.2 Surface Roughness Experimental Results

The Surface Roughness Experimental Results using kerosene and water coolants are tabulated in

Table 4.1. The series plots of measured surface roughness for both coolants are shown in Figure

4.1.
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Table 4. 1: Surface Roughness Experimental Results

Experiment Spindle Feed Depth of Ra (nm)
Number Speed (rpm) | (mm/min) Cut (um) Kerosene Water
Coolant Coolant
1 1250 7.5 5 21 16
2 1250 15 15 33 21
3 1250 22.5 25 38 29
4 1750 7.5 15 17 14
5 1750 15 25 23 20
6 1750 225 5 26 21
7 2500 7.5 25 12 11
8 2500 15 5 18 14
9 2500 22.5 15 19 17
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Figure 4. 1: Series Plots of Experimental Surface Roughness

The results indicate that the surface roughness values obtained using water as a coolant are better
when compared to kerosene results. For either of the coolants, the lowest roughness values (12nm
for kerosene and 11nm for water) occurred at a high spindle speed of 2500rpm, low feed of
7.5mm/min and depth of 25um. Better surface finishes during ultra-high precision diamond
turning of RSA 443 can be obtained at high speed and low feed. The worst surface roughness
values for either coolants (38nm for kerosene and 29nm for water) occurred at low spindle speed
of 1250rpm, high feed of 22.5mm/min and cutting depth of 25um. These findings indicate that
larger feed rate and lower spindle speed negatively impact on surface roughness. In this
investigative research, both data sets will be used for prediction purposes. The percentage
difference between surface roughness values is expressed as ARa. Spindle speed, feed rate and
depth of cut are denoted by X1, X2 and X3 respectively while the surface roughness parameters
for kerosene and water are denoted by Rk and Rw respectively. Table 4.2 presents the percentage

differences between water and kerosene surface roughness values.
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ARa is calculated using equation 4.1:
ARy (%) = (FE2) x 100. (4.1)
K

Where Rx = Kerosene-based surface finish parameter

Ry, = Water-based surface finish parameter

Table 4. 2: Percentage Difference Between Water and Kerosene Surface Roughness Values

X1 X2 X3 Ra (nm) ARa (%)
Rk Rw

1250 7.5 5 21 16 -23.81
1250 15 15 33 21 -36.36
1250 22.5 25 38 29 -23.68
1750 7.5 15 17 14 -17.65
1750 15 25 23 20 -13.04
1750 22.5 5 26 21 -19.23
2500 7.5 25 12 11 -8.33
2500 15 5 18 14 -22.22
2500 22.5 15 19 17 -10.53
Delta-Mean -19.43

The mean percentage change from kerosene to water-based results is -19.43%. The negative sign
depicts a decrease in surface roughness. The largest change in surface roughness occurs at the
second experiment run with a value of -36.36%. The lowest change in surface roughness occurs at
the seventh experiment run with a value of -8.33%. The best and the poor surface roughness profile
charts from the Surface Profilometer for RSA 443 are given in Figure 4.2 and Figure 4.3.
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Modified Profile RSA 443 Water Exp 03 - R/5x0.25mm/G/10/LS Line 28/11/2018 12:40:24
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Figure 4. 2: a) Surface Profile Chart for Worst Water Ra value (29 nm) and b) Surface Profile

Chart for Worst Kerosene Ra value (38 nm)
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Figure 4. 3: a) Surface Profile Chart for Best Water Ra value (11 nm) and b) Surface Profile

Chart for Best Kerosene Ra value (12 nm)

4.3 Determination of Acoustic Emission Signal Parameters

Acoustic emission root mean square (AEms), prominent frequency and peak rate are determined

from the emitted AE signal. The acoustic emission signal amplitude variation with time and
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corresponding prominent frequency for experimental runs 3 and 7 for either coolant is shown in
Figures 4.4 and 4.5. The acoustic emission signal count rate for all signals are determined. In this
research, a peak is defined as a sample greater than its two nearest neighbors and greater than 0.04.

the MATLAB code for peak rate determination is included in Appendix B. All determined acoustic

emission signal parameters are presented in Table 4.3 and Table 4.4.
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Figure 4. 4: a) Time domain signal for R.=38nm (kerosene) and b) Frequency domain signal for

Ra = 38nm (kerosene)
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Figure 4. 5: a) Time domain signal for Ra =12nm (kerosene) and b) Frequency domain signal for

Ra = 12nm (kerosene)
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Table 4. 3: Acoustic Emission Signal Analysis Results (Kerosene Coolant)

Experiment | Spindle Feed Depth | AErms | Prominent | Peak Rate Ra
Number Speed | (mm/min) | of Cut (V) Frequency (mint) (nm)
(rpm) (um) (Hz)
1 1250 7.5 5 2.968e-2 566.973 | 4.1914e+04 | 21
2 1250 15 15 2.750e-2 645.176 1.14e+04 33
3 1250 22.5 25 2.825e-2 2003.955 3.8e+04 38
4 1750 7.5 15 2.781e-2 674.502 4.215e+04 17
5 1750 15 25 2.786e-2 1133.945 2.49e+04 23
6 1750 22.5 5 2.837e-2 2003.955 4.56e+04 26
7 2500 7.5 25 2.786e-2 1280.576 3.6e+04 12
8 2500 15 5 3.432e-2 2003.955 3.1e+04 18
9 2500 22.5 15 2.831e-2 1309.902 4.2e+04 19
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Table 4. 4: Acoustic Emission Signal Analysis Results (Water Coolant)

Experiment | Spindle Feed Depth | AErms Prominent Peak Rate Ra
Number Speed | (mm/min) | of Cut (V) Frequency (min) (nm)
(rpm) (Hm) (Hz)
1 1250 7.5 5 3.090e-2 | 2003.955 6.102e+04 16
2 1250 15 15 2.746e-2 | 1300.127 4.002e+04 21
3 1250 22.5 25 3.140e-2 | 2003.955 6.710e+04 29
4 1750 7.5 15 2.696e-2 1407.656 3.227e+04 14
5 1750 15 25 2.661e-2 | 1407.656 3.234e+04 20
6 1750 22.5 5 2.63%-2 527.871 3.198e+04 21
7 2500 7.5 25 2.627e-2 | 1261.025 2.920e+04 11
8 2500 15 5 2.151e-2 469.219 1.397e+04 14
9 2500 22.5 15 2.721e-2 | 1397.881 3.513e+04 17

4.4 Regression Model Prediction of Surface Roughness

The regression model is formulated from the combination of different operating conditions and the

measured surface roughness values at every experiment stage. The regression equation is

calculated using Excel statistics analysis software. The Regression model computation results are

presented in Table 4.5.
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4.4.1 Water-Based Results Surface Roughness Prediction using Regression Model

The null hypothesis Ho and the alternative hypothesis Hi are formulated as follows:
Ho: R, = bo (4.2)

Hl: Ra = bo + b1x1 + -+ bpxp (43)

Table 4. 5: Regression Model Computation Results

SUMMARY QUTPUT I
Regression Statistics
Multiple R 0.997660035
R Square (0.995325545
Adjusted R Square 0981302179
Standard Error 0731413314
Observations g
ANOVA
df 55 MS F Significance F

Regression 6 227.818958 379698 709762 (.0139579
Residual 2 1068993087 053497
Total 3 2288883839

Coefficients  Stondard Eror t5tat | P-value  lower 95% Upper95%  Llower 95.0%  Upper 95.0%
Intercept 4233799131 B.44437388| 5.01375 003755 6.004783 786712 6.004783 7867119962
X1 -0.005560501 0.00080933 -7.3648 001794 -0.009443 -D.002478 -0.00944275 -0.002478254
X2 0.519925346 0.05651983 9.19399 001161 02767401 07631106 0.27674013 0.76311056
X3 0.201290757 004114564 489203 003534 0024251 03783305 002425104 0378330472
X4 -1169.440491 38599107 -2.9986 0.09554 -2847.437 50855565 -2847.43663 508.5556491
X5 -0.00110596 000162793 -0.6794 0.56699 -0.00811 0.00583985 -D.00811037 0.005898453
X6 0.000239473 7.8301E-05 305837 009234 -974E-05 00005764 -9.7428E-05 0000576373

The regression model developed is given by equation 4.4:

R, = 42.338 — 0.005961C + 0.520F + 0.201D — 1169.4404, — 1.106 X 1073P; + 2.395 x
10~4P, (4.4)

Where

R, = surface roughness (nm)
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C = Spindle Speed (rpm)

F = Feed (mm/min)

D = Depth of cut (um)

A, = Acoustic emission root mean square (V)
Py = Prominent Frequency (Hz)

P. = Peak rate (min™)

Table 4.6 shows the predicted surface roughness values and the corresponding absolute errors.

Table 4. 6: Regression Model Prediction Results

Exp. No. Observed Ra Predicted Ra Residuals Absolute Error
(nm) (nm) (%)
1 16 16.06 -0.06 0.38
2 21 21.74 -0.74 3.52
3 29 28.75 0.32 1.10
4 14 13.47 0.25 1.79
5 20 19.80 0.20 1.00
6 21 20.83 0.17 0.81
7 11 11.25 -0.25 2.27
8 14 13.91 0.09 0.64
9 17 17.20 -0.20 1.18
MAPE 1.41
Prediction Accuracy 98.59

From regression, R square (R?) equals 0.995. It means that 99.5% of the variance of Y is explained
by x. The adjusted R? value equals 0.981 while the multiple correlation (R) equals 0.998. This R
value means that there is very strong direct relationship between the predicted data (¥) and the
observed data (Y).

The overall regression is right tailed, F(1,6)= 70.98 and p-value is 0.01396. Since p-value <
a(0.05), HO is rejected. The linear regression model given by H1 therefore provides a better fit
than the model without the independent variables. The MAPE value for water coolant-based results

is 1.41%. This means that the prediction accuracy of the model is 98.59%.
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4.4.1.1 Validation of Surface Roughness Prediction Model for Water Coolant Based Results

Table 4.7 is a presentation of validation results for water coolant-based results. During the
validation of regression model, cutting and AE signal parameters not used in DOE are input into
the model and compared with actual experimental results. For simplicity, the 3 extra data sets in
ANFIS training have been utilized for this purpose. The MAPE method has been employed to

gauge the regression model accuracy.

Table 4. 7: Validation Results for Water Coolant-based Model

Exp. | C F D AErms Pt(Hz) |Pr(min?') | Exp. | Predicted | Abs.
No. | (rpm) | (mm/ | (um) V) Ra (F\;]am) (I,E/:; ror
min) (nm)
10 1250 7.5 15 3.089e-2 | 2003.955 | 6.102e+04 | 17.48 | 18.1 3.54
11 1750 15 5 2.761e-2 | 1410.656 | 3.234e+04 | 17.14 | 14.6 14.81
12 2500 22.5 25 2.721e-2 | 1397.881 | 3.513e+04 | 19.71 | 19.2 2.58
MAPE 6.97
Prediction Accuracy 93.03

The MAPE value for validation of water coolant-based model is 6.97%. This means that the
prediction accuracy of the model is 93.03%. The high prediction accuracy indicates the validity of
the model.

4.4.2 Surface Roughness Prediction Regression Model for Kerosene Coolant Based Results

The null hypothesis Ho and the alternative hypothesis Hy are formulated as follows:
HO: Ra = bO (45)
Hl: Ra = bO + b1x1 + -+ bpxp (46)

The Excel based statistical regression analysis results are shown in Table 4.7.
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Table 4. 8: Regression Model Computation Results

SUMMARY QUTPUT
Regression Statistics

MultipleR 0.835111926
R Square (0.570445507
Adjusted R Square 0.381782007
Standard Error 13143567594
Observations 9
ANOVA

df 55 Ms F Significance F
Regression § 5201587317  B3A.693131%% 1034526758 008606238
Residual 2 1584120832 7.920804181
Total i 538

Coefficients Standard Error thtat Pvalue Lower 85% Upper 85% Lower 33.0% Upper 33.0%
Intercept 2545083303 1853608054 0.861RBR201 0479673344 -101e326R45  152.5343308 -101.6326645 152.5343308
Kl 0011814521 0002172058 -5.43%320453 003217707 0021160134 D.00246830% 0021180134 {.00246350%
k2 0622659308 0.271704757  2.291A78348 0.148597056  -0.54R331305 178171112 0546391305 178171112
k3 013843823 0187119297 (0.73%044753 0536452161 DGBRETOIZS  0.943h4B586 {.666670125 0943548586
k4 3631627534 9297408934 0.35060G415 0733767817 -3R37.188458  43R3.514478 -3637.13945% 4383.5148728
K5 0002147002 0003629634  (0.581511961 0614130818 0013470288 0.017784272 0013470268 0.017764272
k6 0000157281 0000118234 -133033101 0314824733 0000RERO12 0000351431 000666012 0.000351431

The regression model developed is given by equation 4.7:

R, =25.451 —1.182 X 1072C + 6.227 X 107*F + 1.384 x 107D + 363.163 A, + 2.147 X
10‘3Pf — 1.573 X 107*P.

Where

R, = Surface Roughness (nm)

C = Spindle Speed (rpm)

F = Feed (mm/min)

D = Depth of cut (um)

A, = Acoustic emission root mean square (V)

(4.7)
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Py = Prominent Frequency (Hz)

P. = Peak rate (min™)

Table 4.9 shows the predicted surface roughness values and the corresponding absolute errors.

Table 4. 9: Regression Model Prediction Results

Exp. No. Observed Ra Predicted Ra Residuals Absolute Error
(hm) (nm) (%)
1 21 21.45 -0.45 2.14
2 33 31.68 1.32 4.00
3 38 36.74 1.26 3.32
4 17 16.44 0.56 3.29
5 23 26.21 -3.21 13.96
6 26 26.91 -0.91 3.50
7 12 11.25 0.75 6.25
8 18 17.84 0.16 0.89
9 19 18.49 0.51 2.68
MAPE (%) 4.45
Prediction accuracy 95.55

The R square (R?) value equals 0.97. It means that 97.0% of the variance of Y is explained by x.

The adjusted R square value equals 0.88 while the multiple correlation (R) equals 0.985. The high

value of the multiple correlation (R) signifies a strong direct relationship between the predicted
data (¥) and the observed data (Y).

The overall regression model is right tailed, F(1,6)=10.945 and the p-value is 0.086. Since p-value

< a (0.05); HO is rejected. Therefore, the linear regression model given by equation 4.6 provides a

better fit than the model without the independent variables. The mean absolute percentage error

for the model is 4.45%. This means that the model’s prediction accuracy is 95.55%. Figure 4.6
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presents series plots of Absolute Error Values for either coolant. It is seen that the absolute errors

for water-based experiments are lower than Kerosene based results.

15

Absolute Error (%)
(=]

Exp. No.

w—\ater_Based Results  ===Kerosene_Based Results

Figure 4. 6: Series Plots of Absolute Error Values

4.4.2.1 Validation of Surface Roughness Prediction Model for Kerosene Coolant Based Results

Table 4.10 is a presentation of validation results for kerosene coolant-based results. During the
validation of regression model, cutting and AE signal parameters not used in DOE are input into
the model and compared with actual experimental results. For simplicity, the 3 extra data sets in
ANFIS training have been utilized for this purpose. The MAPE method has been employed to
gauge the regression model accuracy.
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Table 4. 10: Validation Results for Kerosene Coolant-based Model

Exp.| C F D AErms Pt (Hz) |Pr Exp. | Pred. | Abs.
(mm/min) | (um) | (V) . v | Ra Ra Error
No. (min™) (nm) | (nm) | %
(rpm)

10 1250 | 7.5 15 3.089%-2 | 2003.955 | 61017 |24 23.34 | 2.75
11 1750 |15 5 2.761e-2 | 1410.656 | 32340 23 22.77 | 1.00
12 2500 | 225 25 2.721e-2 | 1397.881 | 35129 | 22 20.73 | 5.77
MAPE 3.17

Prediction Accuracy 96.83

The MAPE value for validation of water coolant-based model is 3.17%. This means that the
prediction accuracy of the model is 96.83%. The high prediction accuracy indicates the validity of
the model.

4.5 ANFIS Prediction of Surface Roughness

The input parameters to the ANFIS model are three cutting parameters and three signal parameters
represented in Table 4.3 and Table 4.4. For either coolant, L9 orthogonal array has been used.
However, for the purpose of improving the accuracy of the ANFIS model, 3 extra data sets have
been included for either coolant. It should be noted that the extra data sets were not part of the L9
orthogonal array used in this research but were obtained from interpolation. In this research, the
12 data sets were divided into 6 training data sets and 6 testing data sets. It is crucial to ensure that
the selected testing data set is representative of the present total data as well as all future data. This
selection was very difficult, particularly for the small data sets used in this research. The approach
taken in this research in selecting training data set was to choose the data with the largest range of
surface roughness from the highest to the lowest. The other concern was the selection of the proper
size of training and testing data sets. Ideally, neural networks perform better with larger training

data sets. This is not possible with the small data set available.
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Prior to ANFIS modelling, the data is normalized by min-max normalization method. This method
performs a linear alteration on the original data. The values are normalized in the range [0, 1]. The

computation is given by equation 4.8.

7 = Y™ (4.8)

maxg—ming
Where Z = normalized value
y = new value in the required range
min, = minimum value in the required range

max, = maximum value in the required range

4.5.1 ANFIS Modelling of Water Coolant Based Results

Table 4.11 is a presentation of 3 extra data sets introduced for the purposes of increasing the
accuracy of the ANFIS model during training. The experiment numbers of the extra data sets are
named 10, 11, and 12. Results at each modelling stage are presented. Experimental data was
normalized before it was imported into the MATLAB environment from Notepad. Table 4.12 isa

presentation of the normalized data.

Table 4. 11: Extra Data Sets for ANFIS Training (Water Coolant Based Results)

Experiment | Spindle | Feed Depth | AErms Peak Peak Rate | Ra

Number Speed | (mm/min) | of Cut | (V) Frequency | (min'?) (nm)
(rpm) (Hm) (Hz)

10 1250 7.5 15 3.089e-2 | 2003.955 6.102e+04 | 17.48

11 1750 15 5 2.761e-2 | 1410.656 3.234e+04 | 17.14

12 2500 22.5 25 2.721e-2 | 1397.881 3.513e+04 | 19.71
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Table 4. 12: Normalized ANFIS Data (Water Coolant Based Results)

Experiment | Spindle Feed Depth | AErms (V) Peak Peak Ra
Number Speed | (mm/min) of Frequency Rate (nm)
(rpm) Cut (Hz) (min-1)
(um)
1 0.00 0.00 0.00 0.95 1.00 8.86E-01 | 0.28
2 0.00 0.50 0.50 0.60 0.54 4.90E-01 | 0.56
3 0.00 1.00 1.00 1.00 1.00 1.00E+00 | 1.00
4 -0.40 0.00 0.50 0.55 0.61 3.44E-01 | 0.17
5 -0.40 0.50 1.00 0.52 0.61 3.46E-01 | 0.50
6 -0.40 1.00 0.00 0.49 0.04 3.39E-01 | 0.56
7 0.00 0.00 1.00 0.48 0.52 2.87E-01 | 0.00
8 -1.00 0.50 0.00 0.00 0.00 0.00E+00 | 0.17
9 -1.00 1.00 0.50 0.58 0.61 3.98E-01 | 0.33
10 0.00 0.00 0.50 0.95 1.00 8.86E-01 | 0.36
11 -0.40 0.50 0.00 0.62 0.61 3.46E-01 | 0.34
12 -1.00 1.00 1.00 0.58 0.61 3.98E-01 | 0.48
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Once the imported data was in the MATLAB workspace, it was loaded to the ANFIS graphical
user interface. Figure 4.7 shows the screen shot of the data loading stage from the MATLAB
workspace to the ANFIS graphical user interface. The following experiment numbers were used
during the model training stage: 2,3,9,10,11 and 12.

[ tew J [ cose ]

Figure 4. 7: ANFIS Model Training Data Loading Stage

During the FIS generating stage, the dsigmf membership function with the number [2 2 2 2 2 2]
was selected as it yielded the least error after trying different membership function shapes. Figure

4.8 shows the Fuzzy Inference System (FIS) generating stage.
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Figure 4. 8: Fuzzy Inference System (FIS) Generating Stage

The FIS training stage screen shot is shown in Figure 4.9. It is observed that epoch 91 error is
3.3006e-05. The curve shows the error reduction of each epoch for the 100 epochs used in this
study. It is observed that the minimum error target was reached at epoch 90, after which there was

no further error reduction.
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Figure 4. 9: Fuzzy Inference System Training Stage

The FIS test plot against training data is shown in Figure 4.10. The experimental values of surface
roughness are shown by the blue dots while predicted values are shown by red dots. The
overlapping of plots depicts high prediction accuracy. It is observed from this figure that all

predicted outputs for training data are very close to the experimental outputs of training data.
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[ res | [ cose |

Figure 4. 10: Training Set Stage Results (Water Coolant)

The FIS test plot against testing data is shown in Figure 4.11. This is done to validate the ANFIS

model. The experimental values of surface roughness are shown by the blue dots while predicted

values are shown by red dots. The slight divergence of the blue dots from the red dots indicates

the presence of some marginal error in the ANFIS prediction model.
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Figure 4. 11: Testing Set Sample Results (Water Coolant)

The surface plot of the predicted results is shown in Figure 4.12. It is evident that the surface
occupies the entire area of the decision space. In the 3D ANFIS Surface Viewer, low (better)
surface roughness values are represented by the blue color close to the floor. The yellow color
represents high surface roughness values. Overall, the 3D surface plots show that the surface

roughness values are low in the speed range of -0.5 to -1 and the feed range of 010 0.5.
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Figure 4. 12: ANFIS Surface Viewer

The rule viewer in Figure 4.13 shows the ANFIS results for the training set using normalized data.

It shows that the surface roughness value is 0.0405 nm for the following set of parameters (-0.5;
0.5; 0.5; 0.788; 0.771; 0.673).
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Figure 4. 13: ANFIS Rule Viewer

The ANFIS learning information is shown in Table 4.13.
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Table 4. 13: ANFIS Learning Information

Learning Scenario Value
Number of Nodes 161
Number of linear Parameters 64
Number of Non-Linear Parameters 48

Total Number of Parameters 112
Number of Training Data Pairs 6
Minimal Training RSME 0.000001
Number of Fuzzy Rules 64

The membership function that gave the best results was the dsigmf, hence its use during the
prediction stage. The minimum number of membership functions used was two as a way of
reducing the complexity of the ANFIS model. The results of the ANFIS model prediction for
surface roughness using water as a coolant are represented by Table 4.14. The training stage results
are validated by comparison to testing stage results.
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Table 4. 14: Comparison of ANFIS results with experimental findings (Water Coolant)

Training Data Set

Experiment Measured Ra (nm) Predicted Ra (nm) | Absolute Error (%)
Number

2 0.56 0.55 1.79

3 1.00 1.00 0.00

9 0.33 0.34 3.03

10 0.36 0.36 0.00

11 0.34 0.34 0.00

12 0.48 0.48 0.00
Average Absolute Error (%) 0.80

Prediction Accuracy (%) 99.20

Testing Data Set

Experiment Measured Ra (nm) Predicted Ra (nm) | Absolute Error (%)
Number

1 0.28 0.36 28.57

4 0.17 0.15 11.76

5 0.50 0.30 40.00

6 0.56 0.45 19.64

7 0.00 0.00 0.00

8 0.17 0.21 23.53
Average Absolute Error (%0) 20.58

Prediction Accuracy 79.42

The low percentage errors in the ANFIS results are very good. The ANFIS model’s prediction
accuracy for training and testing data is 99.20% and 79.42% respectively. This indicates a high

prediction accuracy of ANFIS model in predicting surface roughness of small data sets.
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4.5.2 ANFIS Modelling of Kerosene Coolant Based Results

Table 4.15 is a presentation of 3 extra data sets introduced for the purposes of increasing the
accuracy of the ANFIS model during training using kerosene coolant-based results. Table 4.16 is

a representation of the normalized data obtained using kerosene coolant.

Table 4. 15: Extra Data Sets for ANFIS Training (Kerosene Coolant Based Results)

Experiment | Spindle Feed Depth AErms Peak Peak | Ra(nm)
Number Speed | (mm/min) | of Cut V) Frequency | Rate
(rpm) (um) (Hz) (min-)
10 1250 7.5 15 3.089%-2 | 2003.955 | 61017 24
11 1750 15 5 2.761e-2 | 1410.656 | 32340 23
12 2500 22.5 25 2.721e-2 | 1397.881 | 35129 22
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Table 4. 16: Normalized Data (Kerosene Coolant Based Results)

Experiment | Spindle Feed Depth AErms Peak Peak Ra
Number Speed | (mm/min) | of Cut (V) Frequency Rate (nm)
(rpm) (um) (H2) (min-)
1 0.00 0.00 0.00 0.32 0.00 0.90 0.35
2 0.00 0.50 0.50 0.00 0.05 0.00 0.81
3 0.00 1.00 1.00 0.11 1.00 0.78 1.00
4 0.40 0.00 0.50 0.04 0.07 0.90 0.19
5 0.40 0.50 1.00 0.05 0.39 0.40 0.42
6 0.40 1.00 0.00 0.13 1.00 1.00 0.54
7 1.00 0.00 1.00 0.05 0.50 0.72 0.00
8 1.00 0.50 0.00 1.00 1.00 0.57 0.23
9 1.00 1.00 0.50 0.12 0.52 0.90 0.27
10 0.00 0.00 0.50 0.95 1.00 0.89 0.22
11 0.40 0.50 0.00 0.62 0.61 0.35 0.67
12 1.00 1.00 1.00 0.58 0.61 0.40 0.61

113




Master of Engineering (Mechatronics) Thesis Nelson Mandela University

Once the imported data was in the MATLAB workspace, it was loaded to the ANFIS graphical
user interface. Figure 4.14 shows the screen shot of the data loading stage from the MATLAB
workspace to the ANFIS graphical user interface. The following experiment numbers were used
during the model training stage: 1,2,3,10,11 and 12.

Figure 4. 14: ANFIS Model Data Loading Stage
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The FIS generation stage is shown by Figure 4.15. At this stage, a gbellmf is utilized at it has the
least errors after trying different membership function shapes. The ANFIS is trained using a
tolerance of 0.001 and 120 epochs.

Figure 4. 15: FIS Generation Stage
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The FIS training stage screen shot is shown in Figure 4.16. It is observed that epoch 120 error is
0.0062858. The curve shows the error reduction of each epoch for the 120 epochs used in this
study. It is observed that the minimum error target was reached at epoch 92, after which there was

no further error reduction.

Figure 4. 16: ANFIS Training Stage
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The FIS test plot against training data is shown in Figure 4.17. The experimental values of surface

roughness are shown by the blue dots while predicted values are shown by red dots. The

overlapping of plots depicts high prediction accuracy. It is observed from this figure that all

predicted outputs for training data are very close to the experimental outputs of training data.

Figure 4. 17: Training Set Stage Results (Kerosene Coolant)
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The FIS test plot against testing data is shown in Figure 4.18. This is done to validate the ANFIS
model. The experimental values of surface roughness are shown by the blue dots while predicted
values are shown by red dots. The slight divergence of the blue dots from the red dots indicates

the presence of some marginal error in the ANFIS prediction model.

Figure 4. 18: Testing Set Stage Results (Water Coolant)
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The rule viewer in Figure 4.19 shows the ANFIS results for the training set using normalized data.
It shows that the surface roughness value is 0.177 nm for the following set of parameters (0.5; 0.5;
0.5; 0.475; 0.5; 0.45).
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Figure 4. 19: ANFIS Rule Viewer

The surface plot of the predicted results is shown in Figure 4.20. It is evident that the surface
occupies the entire area of the decision space. In the 3D ANFIS Surface Viewer, low (better)
surface roughness values are represented by the blue color close to the floor. The yellow color
represents high surface roughness values. Overall, the 3D surface plots show that the surface

roughness values are low in the speed range of 0 to 1 and the feed range of 0 to 0.5.
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Figure 4. 20: ANFIS Surface Viewer

The results of the ANFIS model prediction for surface roughness using water as a coolant are

represented by Table 4.17. The training stage results are validated by comparison to testing stage

results.
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Table 4. 17: Comparison of ANFIS results with experimental findings (Kerosene Coolant)

Training Data Set

Experiment Number | Measured Ra (nm) Predicted Ra (nm) | Absolute Error (%)
1 0.35 0.35 0.00
2 0.81 0.81 0.00
3 1.00 1.01 1.00
10 0.22 0.22 0.00
11 0.67 0.67 0.00
12 0.61 0.61 0.00
Mean Absolute Error (%0) 0.17
Prediction Accuracy (%o) 99.83
Testing Data Set
Experiment Number | Measured Ra (nm) Predicted Ra (nm) Error (%)
7 0.00 0.03 291
8 0.23 0.20 13.04
9 0.27 0.22 18.52
4 0.19 0.07 63.16
5 0.42 0.47 11.90
6 0.54 0.14 74.07
Mean Absolute Error (%0) 30.60
Prediction accuracy (%) 69.40
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The low percentage errors in the ANFIS results are very good. The training error is 0.17% while
the testing error is 30.60%. The values indicate prediction accuracies of 99.83% and 69.40% on
training and testing data respectively. These values are as expected, that is, the training error is
lower than the testing error. The obtained error values indicate the high accuracy of ANFIS model
in predicting surface roughness of small data sets. The slightly higher error value in testing data
may be due to the unavailability of data to sufficiently train the ANFIS model.

4.6 Comparison of Regression and ANFIS Models for Water and Kerosene Surface

Roughness Results

The Mean Absolute Percentage Error has been used as the performance indicator. It has been
computed for both ANFIS and Regression results. The MAPE is calculated by Equation 4.2. Both
coolants’ modelling results are pictorially represented by Figure 4.22. It is seen that the regression
model has a higher accuracy compared to ANFIS model in predicting the surface roughness of
single point diamond turned RSA-443.
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Figure 4. 21: Comparison of Regression and ANFIS Models in Predicting Surface Roughness
(Water Coolant)
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4.7 Impact of Acoustic Emission Signal Parameters on Prediction Accuracy

The regression model linking the critical machining parameters (cutting speed (C1), feed (C2) and
depth of cut (C3) is given by Equation (4.9). Table 18 shows that the use of critical machining
parameters alone in the RSM prediction model has a prediction accuracy of 96.35%.

R, = 18.8377 — 0.006351C; + 0.5778C, + 0.1500C; (4.9)

Table 4. 18: Surface Roughness Values Based on Critical Machining Parameters

Ci[rpm] Cz2[mm/min] | Cs[um] Measured Predicted Ra | Absolute
Ra [nm] [nm] Error (%)

1250 7.5 5 16 15.98 0.13
1250 15.0 15 21 21.82 3.90
1250 22.5 25 29 27.65 4.66
1750 7.5 15 14 14.31 2.21
1750 15.0 25 20 20.14 0.70
1750 22.5 5 21 21.47 2.24
2500 7.5 25 11 11.04 0.36
2500 15.0 5 14 12.38 11.57
2500 22.5 15 17 18.21 7.12
MAPE 3.65
Prediction Accuracy 96.35

Equation 4.10 is a regression model that utilized both critical machining parameters and AE signal
parameters in surface roughness prediction. The parameters are C1 (cutting speed), C2 (feed), C3
(depth of cut), X1 (AErms), X2 (prominent frequency) and X3 (peak rate). It is evident from the
tabulated results (refer with: Table 4.19) that the use of both critical machining parameters and AE
signal parameters has a high prediction accuracy of 97.32%.

R, = 42.393 — 0.006C, + 0.523C, + 0.179C; — 1142.378X, — 0.00021X, + 0.000199X
(4.10)
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Table 4. 19: Surface Roughness Values Based on Both AE Signal Parameters and Critical
Machining Parameters

Ci C2 Cs X1 X2 [Hz] | X3 Measured | Predicted | Absolute
[rom] | [mm/min] | [um] | [V] [min] Ra [nm] Ra[nm] | Error
(%)
1250 | 7.5 5 0.031 | 2003.96 | 6.10e+04 | 16 15.91 0.56
1250 | 15.0 15 0.027 | 1300.13 | 4.00e+04 | 21 22.16 5.52
1250 | 225 25 0.031 | 2003.96 | 6.71e+04 | 29 28.55 1.55
1750 | 7.5 15 0.027 | 1407.66 | 3.23e+04 | 14 13.65 2.50
1750 | 15.0 25 0.027 | 1407.66 | 3.23e+04 | 20 19.36 3.20
1750 | 225 5 0.026 | 527.87 | 3.20e+04 | 21 20.96 0.19
2500 |7.5 25 0.026 | 1261.03 | 2.92e+04 | 11 11.44 4.00
2500 |15.0 5 0.022 | 469.22 | 1.40e+04 | 14 13.48 3.71
2500 | 225 15 0.027 | 1397.88 | 3.51e+04 | 17 17.49 2.88
MAPE 2.68
Prediction Accuracy 97.32

From the study, it can be concluded that the use of AE signal parameters in conjunction with
critical machining parameters enhances surface roughness prediction accuracy of a model that
solely employs critical machining parameters by 0.97%. The use of a composite model is
recommended to enhance prediction accuracy. This result is a confirmation of the reviewed
literature which has demonstrated that the effectiveness of soft computing models is dependent on
the size of the experimental dataset, and it can be lower compared to that of the regression models
for a small-sized dataset. The lower prediction accuracy of ANFIS is due to the small and
insufficient data sets available for the ANFIS model training.

4.8 Summary of results

The objectives of this research work were aimed at investigating the accuracy of the ANFIS model
in surface roughness prediction during single point diamond turning of RSA-443. Prediction

accuracy on training data sets was compared with prediction accuracy on testing data sets for either
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coolant (water and kerosene). While both training and testing results were considerably good, the
training results for ANFIS model were more accurate than testing results as expected. For water
coolant, the training results have a mean absolute error of 0.80%; that is, a prediction accuracy of
99.20%. The mean absolute error for testing results is 20.58%; that is, a prediction accuracy of
79.42%. For kerosene coolant, the training results mean absolute error is 0.17%, that is a prediction
accuracy of 99.83%. The mean absolute error for kerosene testing results is 30.60% and a
prediction accuracy of 69.40%. The slightly higher values of testing error may be due to the small

data sets available for the ANFIS model training.

The Mean Absolute Percentage Error (MAPE) was also used to evaluate ANFIS model relative
accuracy to Regression model. For either coolant, it was observed that while both models are
accurate, the Regression model is relatively more accurate than the ANFIS model when using
small data sets. This result is a confirmation of the reviewed literature which has demonstrated that
the effectiveness of soft computing models is dependent on the size of the experimental dataset,
and it can be lower compared to that of the regression models for a small-sized dataset. The lower
prediction accuracy of ANFIS is due to the small and insufficient data sets available for the ANFIS

model training.
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CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATIONS

5.1 Introduction

The overall aim of this research was to investigate the accuracy of ANFIS model in predicting
surface roughness of single point diamond turned RSA443. This chapter presents the conclusion
of the investigative research. Suggested recommendations for further study are also highlighted in
this chapter.

5.2 Conclusions

In this research, ANFIS and Regression models have been successfully used to predict the surface
roughness of single point diamond turned RSA443 using small data sets. A comparison of
Regression results and ANFIS results using MAPE suggests that Regression model prediction has
produced better results than ANFIS model using small data sets. In this study, the mean absolute
percentage error of ANFIS was 19.17% greater than Regression’s when using water as a coolant.
When using kerosene as a coolant, the mean absolute percentage error of ANFIS was 26.15%
greater than Regression’s. However, a comparison of ANFIS prediction error in training data sets
against testing data sets error reveals that the error is slightly higher in training data sets. This is
due to the small data that is not good enough for ANFIS model learning.

Despite the ANFIS model being less accurate than the regression model when using small data
sets, its prediction accuracy of above 65% for either coolant is accurate. Due to its capability to be
incorporated in online prediction processes, ANFIS can be reliably used to predict the surface

roughness of RSA 443 using small data sets.

The result of this study has confirmed what is in the reviewed literature, that is, the effectiveness
of soft computing models is dependent on the size of the experimental dataset, and it can be lower
compared to that of the regression models for a small-sized dataset. The lower prediction accuracy

of ANFIS is due to the small and insufficient data sets available for the ANFIS model training.
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5.3 Recommendations

In this research, only Regression model performance has been compared to ANFIS model.
Alternative methods such as RSM and GA-ANN can be tried to predict the surface roughness of
single point diamond turned RSA443 with the overall goal of reducing production cost and
shortening production time. The effectiveness of using only acoustic emission signal parameters,
without turning parameters such as spindle speed, feed rate and depth of cut can be investigated.
The effect of varying rake angle can be investigated to achieve optimum surface roughness of
RSA443. Only three signal parameters have been used in this research, leaving a sea of other

parameters that can be included in future studies.
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APPENDIX A: KISTLER 8152B DATA

Table A- 1: Kistler 8152B Data

Technical Data
Type Unit 81528111121  8152811/12sp B152B211/221  8152B21/22sp
Sensitivity dBret 1V/(m/s) |57 &7 48 48
Frequency Range +10dB kHz 50 ... 400 50 ... 400 100... 900 100 ... 900
Ground lsolation Ml > »1 >1 »1
Environmental:
Shock Limit (0.5ms pulse) gnk 2000 2000 2000 2000
Temperature Range Operating °f -40.... 140 40 ... 140 40 ... 140 <40 ... 140
OQutput:
Bias nom. VDC 11 11 15 15
Impedance { <10 <10 <10 <10
Voltage full scale Vv 1 12 2 1
Current A 2 2 4 4
Source:
Voltage (Coupler) VDC 5..36 5..36 5..36 5..36
Constant Current mA 3.6 3.6 3.6 1.6
Construction:
Sensing Element type Ceramic ceramic ceramic ceramic
Housing/Base material stainkess steel | stainless steel | stainless steel | shainless steel
Sealing-housing/connector type hermetic hermetic hermetic hermetic
Viton Cable Bend Radius, max. in 0.6 06 06 06
Weight (without cable) grams P P i p]
Mounting Torgue Ibf-in 8010 80£10 B0£10 80110
1= 9.B0GES /e, 1 inch = 25.4 mm, 1 gram = 0.03527 oz, 1 Ibf-in = 0.1129 Nm
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APPENDIX B: ASM HANDBOOK, VOLUME 16: MACHINING,

p761-804

Table B- 1: Machining Parameters

Speed, Depeh,
Operation Tl ma nin (fm) bred na (n) Coolant
TUmng.,..coooovioe. Tuagsten carhide, with J polh 019 0.13:0.51 mavrey 0135) Soluble od (:1)
(SPG 422 msent) (100-500) (0.0050.02 in Jrev) 0.008-0 )
Diamond (SPG 422 msert) 310-910 0.08-0.38 mav'rev 01338 Soluble od (20:1)
(1000-3000) 0,003,015 in rev) 10.0080.19)
Milling ............. Tungsten cartude, C-2 o C.3, S-10° B8 0.10-0 30 mentoots 01351 Soluble o (15:1) or dry
rake, 119" shear (25579) (0.004-0,012 i tooth) 0,0050.20)
Damond, $-10" rake, 7-15" shear 400-% 0.100.20 mmtooth 02010 Soluble ool (15:1) or dry
(1300-2600) 0,004.0,008 i, Nooth) (0.008-0.040)
o — High-speed steel, high helix X 151 ma'min 6 x dum Soluble ool (20:1), 19 Lmin (§
) (15 1n/min) gal fmin) ot 170 kPa (25 pui)
Tungsten carbide tipped, coolant fed % S08 man'min 6 X dum Soluble ol (20:1), 4 Limin (9
(30) (N in/min) gal Jmin) at 3.4 MPa (500 psi)
Topping ......ovvnn, Form taps, with four kobes b By pitch b x dam Sobable ool (20:1), 19 L'min (§
() fal min) at 170 kP (26 py)
Broaching .......... Tungyten carbede, 0" shear, §* rake (] 19 mm/min 0N Sohuble od (20:1) or dey
(1% 9 m./min) 0,005)
Source: el )
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APPENDIX C: PEAK RATE ALGORITHM

§ Program &0 determine PEM of signal

§ Count the dominant peaks in the signal
t Peaks are defined as point greater than their neighbours and
$ 1
Peak_count=0;
-lfor k=2 : length (VarNamel)-1

tdisp('I have found a peak');
Kk
Peak count=Peak countél;
eénd
end

% Divide the peaks counted by signal duration (minutes).
1s=100;

N=length (VarNamel) ;

duration_in seccnds=N/fs;

duration_in minutés=duration in_seconds/60:

PPM=Peak _count/duration in minutes;

if (VarNamel(k) > VarNamel(k-1) & VarNamel(k) > VarNamel(k+1) & VarNamel [k)>1)

greater than

Figure C- 1: MATLAB Algorithm for Peak Rate Determination
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APPENDIX D: INPUTS MEMBERSHIP FUNCTIONS

Figure D- 1: Initial membership function plot for the input variable ‘cutting speed’

Figure D- 2: Initial membership function plot for the input variable ‘Feed’
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[4.247 5]

=

Figure D- 3: Initial membership function plot for the input variable ‘Depth of Cut’
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Figure D- 4: Initial membership function plot for the input variable ‘AEms’
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Figure D- 5: Initial membership function plot for the input variable ‘Prominent Frequency’
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Figure D- 6: Initial membership function plot for the input variable ‘Peak Rate’
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