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Abstract

The aim of this research was to conduct a review of the current state and extent of surreptitious

crypto mining software and its prevalence as a means for income generation. Income is generated

through the use of a viewer’s browser to execute custom JavaScript code to mine cryptocurrencies

such as Monero and Bitcoin. The research aimed to measure the prevalence of illicit mining

scripts being utilised for “in-browser” cryptojacking while further analysing the ecosystems that

support the cryptomining environment. The extent of the research covers aspects such as the

content (or type) of the sites hosting malicious “in-browser” cryptomining software as well as the

occurrences of currencies utilised in the cryptographic mining and the analysis of cryptographic

mining code samples. This research aims to compare the results of previous work with the

current state of affairs since the closure of Coinhive in March 2018. Coinhive were at the time

the market leader in such web based mining services.

Beyond the analysis of the prevalence of cryptomining on the web today, research into the

methodologies and techniques used to detect and counteract cryptomining are also conducted.

This includes the most recent developments in malicious JavaScript de-obfuscation as well as

cryptomining signature creation and detection. Methodologies for heuristic JavaScript behaviour

identification and subsequent identification of potential malicious out-liars are also included

within the research of the countermeasure analysis.

The research revealed that although no longer functional, Coinhive remained as the most

prevalent script being used for “in-browser” cryptomining services. While remaining the most

prevalent, there was however a significant decline in overall occurrences compared to when

coinhive.com was operational. Analysis of the ecosystem hosting “in-browser” mining websites

was found to be distributed both geographically as well as in terms of domain categorisations.
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Chapter 1

Introduction

1.1 Background

Since the emergence of the Bitcoin open source cryptocurrency project in 2009, the cryptocur-

rency sector had collectively capitalised over 500 billion US dollars by 2017 (Eskandari et al.,

2018). The process of mining cryptocurrencies is a technical process used to incentivize par-

ticipating nodes to assist in transaction verification as the transactions are recorded in the

blockchain (Nakamoto, 2008). During the early years of Bitcoin (2010-2011), users could effi-

ciently mine the cryptocurrency on personal computers using the CPU. Although technically

mining Bitcoin using CPU power is still possible, it is no longer efficient (Reddy, 2019).

The second wave of mining utilised improved technology whereby users supplemented com-

puter CPU power with that of GPU processing capability. The usage of JavaScript code on

websites that utilised the CPU’s of visitors to the site for the purpose of cryptomining was

first noted by (Kroll et al., 2013). Cryptomining is the process of solving computational math

problems for cryptographic currency reward. This computational requirement is known as the

“proof of work”. The process is responsible for ensuring information authenticity each time a

cryptocurrency transaction is processed. The actual process of mining involves competing with

other cryptocurrency miners to solve the computational problems around cryptographic hash

functions associated with the relevant block containing the actual cryptocurrency transaction

data. This large increase in the processing power required to mine Bitcoin was mainly due

to the emergence of ASICs (Application-Specific Integrated Circuits) as well as the increase in

collective mining pools (Narayanan et al., 2016). Occurrences of cryptomining scripts on web-

sites were often implemented without the knowledge of the site visitors. This is made possible

using embedded JavaScript within the websites source code that utilise the browser’s resources
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to mine cryptocurrency. Both the usage of cryptomining JavaScript embedded on sites as well

as the second wave of mining capability using personal computing hardware became unfeasible

in profit generation due to the rapid growth in processing power required to mine Bitcoin cryp-

tocurrency. This is primarily due to the large increase in mining participants, increasing the

mining difficulty. This grew to over 1021 hashes per second (Rauchberger et al., 2018). This

rate is the measurement of mining difficulty.

The first recorded mined Bitcoin block occurred on the 18th of July 2010 by the user Art-

Forz (BitcoinWiki, 2009). This block was deemed to have been mined by code developed by

the aforementioned user. By mid 2011 various open source GPU based mining tools such as

guiminer1 were released and were being widely utilised by individuals. Such tools drastically

increased the efficiency of cryptocurrency mining due to the hashing power of GPU’s and in par-

ticular to the introduction of mining rigs. These rigs take advantage of the massively increased

parallelizing made possible with multiple GPUs. By 2012 ASIC’s specifically designed for the

mining of Bitcoin were being manufactured and sold. This transition from GPU to ASIC based

mining is where the current state of cryptocurrency mining remains today. As a consequence to

the advancements in the state of Bitcoin mining, the hashing power of the Bitcoin network sub-

sequently increased as did the mining difficulty (Huang et al., 2014). As the technology utilised

for mining advanced, so did the emergence of mining pools. A mining pool is a collective and

collaborative group of individual cryptocurrency miners. Each participant receives a pro rata

reward based on the proportion of work performed. The first recorded pool mined Bitcoin block

was from the 16th of December 2010 (Rosenfeld, 2011). Mining pools do not amplify earnings,

but they provide a steady stream of income as opposed to the ad-hoc large dumps of earnings

from individual mining.

The concept of in-browser cryptocurrency mining started with Bitcoin in its first few years

of adoption. This rise in JavaScript based Bitcoin miners revealed the use of the JSMiner2 and

MineCrunch3 miners (Kauthamy et al., 2017). Although optimised for JavaScript, MineCrunch

was claimed to be one and a half times slower than contemporary CPU based mining applications

(Kroll et al., 2013). Although CPU mining had since become no longer competitive due to

advances in GPU and ASIC based mining, it remains prevalent for botnet operators with vast

swathes of CPU processing power at their disposal (Tahir et al., 2017). As well as being relatively

1GuiMiner - GUI Miner for Bitcoin. https://guiminer.org/
2JSminer - JavaScript Bitcoin miner. https://github.com/jwhitehorn/jsMiner
3MineCrunch - Configurable cryptocurrency JavaScript miner. https://github.com/Kukunin/webminer
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unprofitable, in-browser mining was adjudicated as being illegal by the New Jersey Attorney

General’s office in May 2015. This ruling was passed in accordance with the developers of the

Tidbit browser based Bitcoin miner. The attorney general stated that no website can legally

utilise an individuals computational resources without the basis for opting out (Hoffman, 2015).

Tidbit agreed to cease operation via the terms of the settlement.

As various cryptocurrencies such as Monero, Ethereum and Bitcoin emerged as leaders within

the market, browser based mining as a concept became less and less prevalent. The most com-

mon method of acquiring cryptocurrencies became purchasing them. There has since been a

revival in the noted occurrences of browser based cryptomining of Monero and Bitcoin since

2017. This was due to increases in the value of various cryptocurrencies from mid 2017 into

2018. The Pirate Bay torrent search engine was seen to have experimented with browser based

cryptomining as an alternate revenue stream (Hruska, 2017). The website for Showtime enter-

tainment, showtime.com, was also discovered to be using browser based cryptomining JavaScript

code. Showtime claimed the code was injected via a third party advertisement provider (Liao,

2017).

The term cryptojacking is used to describe this technique of surreptitiously mining cryp-

tocurrency via a user’s browser while that user visits a website. This is achieved with JavaScript

code that is embedded within the websites source code that utilises the user’s computational

resources. Browser based cryptomining can cause noticeable computational performance degra-

dation by utilising between 25 and 100 percent of the user’s CPU. Other terms for this are

coinjacking and drive-by mining. Browser based mining is technically a subset of cryptojacking

(Dev, 2014). Most uses of cryptojacking apply to mining via an unwitting users browser, how-

ever, cryptojacking also applies to binary malware that mines a particular cryptocurrency. Such

scenarios are indicative on compromised machines that have cryptomining malware unknowingly

installed. The malware utilises the machine’s CPU or GPU hardware for the purposes of min-

ing cryptocurrency (Pastrana and Suarez-Tangil, 2019). The research conducted by Eskandari

et al. (2018) in the the published paper “A first First Look at Browser-Based Cryptojacking” is

related research and was used as a starting point for many of the research goals.

1.2 Problem statement

The rise of cryptocurrency value coupled with its intended design to isolate itself from the global

financial system has given rise in attempts at accumulating it through illegitimate means. In-
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browser cryptojacking (see Section 1.3) is one such means that has been utilised by malicious

actors to obtain cryptocurrencies illegitimately. Assessing the extent of web pages utilising il-

licit cryptomining scripts will provide insight into the prevalence and variances of cryptominig

scripts being utilised to accumulate cryptocurrencies. Such analysis will provide insight into the

countries and Internet Service Providers that host the majority of websites containing crypto-

mining scripts, as well as the data around domain categorisation classifications of the identified

websites.

1.3 Research Goals

The popularity of adblocking extensions installed in user’s web browsers is indicative of the

dissatisfaction with both the extent and intrusiveness of website advertising. The ease of its

monetisation and invisibility has led to cryptomining being used as an alternative to advertising.

These factors have further contributed to abusive implementations of cryptomining on websites,

“cryptojacking” where users do not give explicit permission for their resources to be utilised for

mining while visiting the website in question. Due to the lack of large-scale detection mechanism

for cryptojacking and its infrastructure, technical characteristics and proliferation rate are not

widely known (Caviglione et al., 2016). As so little is actually known about the threat, the

following are questions that require deeper analysis:

• How prevalent is illicit cryptomining throughout the Internet ?

• Which cryptocurrencies are preferred for cryptojacking ?

• Which Internet Service Providers and countries contain the most servers hosting crypto-

mining websites ?

1.4 Research Limitations

As a relatively new and rapidly evolving topic, a limited number of academic papers on the

current state of cryptojacking prevalence were discovered. As such, there is a tendency towards

web based references utilised in the research. It must be noted that the work done is at a given

snapshot in time.
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1.5 Document Conventions

The conventions that are adhered to within the remainder of the body of this document are as

follows:

• Where mention is made of an application or service the URL for the associated website

shall be noted at the bottom of the page as a footnote.

• Where any of the following variant names are quoted, they shall be referenced in the set

font.

– Filenames

– Filetypes

– DNS names

– System paths

– System commands

– System components

– System permissions

– Malware variant names

– Referenced strings

1.6 Document Structure

The remainder of the document is comprised of the following chapters:

• Chapter 2 (Literature Review) examines previous research related to the cryptojack-

ing ecosystem, various documented cryptojacking attacks and previous research around

its prevalence on the Internet.

• Chapter 3 (Data Collection) provides detail on the data collection process via the use

of a source code repository, accessed via an API.

• Chapter 4 (Data Enrichment and Analysis) details the method used for enriching

and analysing the research data. This study used various online repositories with Python

Pandas and Graph Database tools to analyse and illustrate the research.

• Chapter 5 (Conclusions) concludes the paper with a summary of findings in relation

to the research goals
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Chapter 2

Literature Review

2.1 Introduction

This chapter provides the relevant background and insight into the current state of cryptojacking.

The technical fundamentals of cryptocurrency mining are explained with particular regard to the

illicit cryptomining threat. This includes context around JavaScript, Monero and the Coinhive

cryptomining infrastructure and how it fits into the current threat model for both end users

and web site administrators. Prior research into the prevalence of sites hosting JavaScript

mining scripts is reviewed and discussed. The cryptomining threat for mobile Android devices

is analysed as well as current detection strategies for web based cryptomining.

2.2 Cryptocurrency Mining Basics

Cryptocurrencies that are blockchain based rely on the embedding of transactions in series of

blocks that are are both public and tamper proof. The continued working of the system requires

new blocks to be constantly generated and appended in order to store transactions that are

pending. This process of generating new blocks is mining. Those performing the mining are

miners. The task of the miners is to solve a cryptographic puzzle. This puzzle solving is known as

a “proof of work”. The difficulty of a “proof of work” is adjusted dynamically in order to ensure

that new blocks are produced at a constant rate (Romano and Schmid, 2017). This constant

block rate ensures both tamper resistance and predictability. Due to this requirement, the

difficulty for mining and solving the puzzles increases as more miners participate and compete

with each other for finding blocks. When the “proof of work” meets the required difficulty, the

newly mined block is linked to the previous block, resulting in a cryptocurrency reward to the

miner in exchange for the computational power contribution (Anjum et al., 2017).
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The recent rise in popularity with regard to cryptocurrencies has led to a significant increase

in mining difficulty. The consequence of the difficulty increase is a need for even faster hardware

to effectively mine blocks. The economic challenge of mining profitability requires analysis of

not only the hardware expense but also the energy costs required to run the hardware (Raikos,

2019). Increases to the hardware requirements for earning capability has led to various hard-

ware solutions being utilised in order to increase speed and computational power, these include

(Draghicescu et al., 2018) GPUs, FPGAs and ASICs. An alternative consensus mechanism to

“proof of work” is “proof of state”. The “proof of stake” implementation addresses the issue of

resource intensive mining requirements by aligning mining capacity to the proportion of coins

held by the proposed forger. As no block reward is awarded in “proof of state”, the transaction

fee is awarded to the successfull validator (Bentov et al., 2014).

2.2.1 Mining Pools

Combining the mining resources of individuals into mining pools has also proved to be a popular

method to reduce expenses by sharing the hardware and its running costs and consequently

sharing the revenue earned for each block that has been newly mined (Berecz and Czibula,

2019).

The computational power of computers running web browsers can be utilised to perform

cryptocurrency mining. This provides an alternate stream for web site owners to monetise visits

to their site. Via the inclusion of embedded code within the pages of a website, the site visitors

CPU resources can be utilised for mining upon visiting the site. This mechanism for an alternate

revenue stream for site owners can be implemented either with or without the consent of the

user visiting the site. The later being illicit cryptomining or “cryptojacking” (O’Gorman, 2018).

Bitcoin browser miners do exist, however, the large imbalance from a performance perspective

results in Bitcoin based browser mining as being highly inefficient. This is mainly due to the large

disparity between ASICs, CPUs and GPUs in terms of mining. Browser based cryptocurrency

mining requires currencies with “proof of work” functions that are computable on CPUs and not

GPUs or ASICs (Krishnan et al., 2015). These are memory-hard “proof of work” computations

and require frequent reading and writing from memory and are therefore suited for low latency

memory on chip traditional CPU’s and not GPUs or ASICs. These memory-hard “proof of

work” computations are well suited for the micro computations that take place in a web browser

and therefore are ideal for “in-browser” cryptojacking.
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2.2.2 Monero

The privacy centric cryptocurrency Monero is an ideal candidate for browser based mining. Its

“proof of work” is by design ASIC resistant due its periodic redesign and intensive memory

requirements, thus perfect for CPU’s where RAM is available. Its mining is thus CPU enabled,

as is the requirement for browser based mining. Using the “Cryptonight”4 hash function in its

“proof of work”, a new block is mined with a two minute block rate average (Bijmans et al.,

2019). The following steps illustrate the Monero blockchain and “proof of work” with mining

input.

1. A Merkle tree5 of the transactions that are to be included in the new block are constructed

by the miner. It requires at a minimum the “Coinbase” transaction that is paying the miner

with the block reward.

2. Nodes within the tree are constructed of the hashes of the child nodes with the hashes of

the transactions making up leaves on the tree.

3. The root links of the tree, the final block and the transactions to the “proof of work” are

included in the tree leaves.

4. The goal of the miner is then to locate a nonce6 where the “proof of work” output matches

the global difficulty.

5. The miner is required to re-draw a new nonce and continue recomputing the hash until

the goal is achieved.

6. Verification of the proof can be verified by the network with a single round of hashing.

7. By the block being included in the blockchain, the miner is rewarded via the Coinbase

transaction with the block reward.

This process is illustrated in figure 2.1. When mining pools are being utilised, the pool pushes

out jobs that contain the “proof of work” inputs while requesting that participating miners find

4CryptoNight is a “proof of work” algorithm. It is designed to be suitable for ordinary PC CPUs. https:

//en.bitcoin.it/wiki/CryptoNight/
5Merkle tree is a tree in which every leaf node is labelled with the hash of a data block, and every non-leaf

node is labelled with the cryptographic hash of the labels of its child nodes. https://en.wikipedia.org/wiki/

Merkle\_tree/
6Nonce is an arbitrary number that can be used just once in a cryptographic communication. https://en.

wikipedia.org/wiki/Cryptographic\_nonce
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Figure 2.1: Monero blockchain and “proof of work” with mining input

(Rüth et al., 2018)

a nonce that satisfies a difficulty lower than the total network’s. Once this lower difficulty is

satisfied, the share is awarded to the miner. The share being of the final block reward.

2.3 The Monero and Coinhive infrastructure

Coinhive’s mining services provided the platform for the mining of Monero7. As such, it is

of particular relevance in this research. Part of Monero’s allure is the supposed increased pri-

vacy facilitated by the total obfuscation of all participants in a transaction and the transaction

amounts. This extended privacy capability differs from the other leading cryptocurrencies such

as Bitcoin and Ethereum where a complete transactional graph can be reconstructed via the

public blockchain (Musch et al., 2018). Monero continued to grow and gain popularity during its

early years after launch. This growth lead to the redevelopment of browser mining amongst the

community of developers. September 2017 saw the launch of Coinhive8 (Meland et al., 2019).

Coinhive established itself as the market leader for both illegitimate and legitimate browser

based mining services by releasing additional services such as short-links and CAPTCHAs used

to prevent illicit use while mining Monero. Various other competitors have joined the market

as legitimate API providers to developers for the purpose of monetising browser based CPU

mining for users who visit their sites. A percentage of the mined cryptocurrency is kept by the

API provider while the rest is kept by the website owner (Kshetri and Voas, 2017). Without

explicit user consent, in-browser mining is considered abuse.

7Open source cryptocurrency that focuses on privacy and decentralisation. https://www.getmonero.org/
8JavaScript miner for the Monero Blockchain. https://coinhive.com/
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2.4 Ethical Discussions

The concept of cryptojacking and its variety of deployment scenarios raises various ethical

questions around its use. The deployment of in-browser cryptojacking scripts on a web site is

most likely due to one of three different scenarios (Razali and Shariff, 2019):

1. The deployment of cryptojacking scripts following a breach of the system.

2. Deployment by the webmaster without any consent requests to the users of the site

3. Deployment by the webmaster followed by in-browsing consent request to users of the site

While item number one is certainly unethical, point three is debatable from an ethical perspective

as even though a user may consent to the mining, they may not understand the implications of

their consent. It is extremely complicated to deduce whether or not a user understands or not

what exactly he or she is consenting to. Furthermore, it is as unclear if the user then understands

what exactly they receive in return and whether or not it is therefore a fair exchange. The

following are examples of what users may receive in return for allowing in-browser cryptomining

are (Zhao et al., 2014):

• Video streams with improve quality, such as High Definition

• Content that would otherwise only be available to Premium subscribers

• The removal of advertisements

Research conducted by the technology web site Bleeping Computer in 2017 (Cimpanu, 2017)

revealed that a large percentage of users accept web sites using their resources to mine cryp-

tocurrency in the background if advertisements are no longer displayed to them. The Pirate

Bay9 torrent search engine was caught out using cryptomining scripts without any amendments

to their privacy policy. After these details were publicly released, site administrators ultimately

removed the code with the caveat response of “do you want ads to display or do you want to

give up a few CPU cycles?” (Hruska, 2017). In both the keyword and auction based models

of online advertising, the advertisement publisher is paid by the advertiser to distribute the

advertising content. The owner of the website on which the content was displayed is paid a

fee by the advertising publisher. As a replacement monetization strategy, in-browser mining is

a more direct compensation system with fewer intermediaries, thus potentially benefiting site

owners as well as end users (Edelman et al., 2005).

9ThePirateBay https://www.thepiratebay.org
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The trade off in terms of not being subjected to advertisements on the website versus harm

to the end users taking part in cryptojacking include the following (Darabian et al., 2020):

• Poor system performance

• Slow substandard web experience caused by the heavy utilisation of system resources

diverted to cryptocurrency mining

• Higher electricity bills

• Accelerated hardware degradation from continued high utilisation during cryptocurrency

mining

Even if consent is obtained for in-browser cryptomining from the end-user, it is unclear if the

user is exactly aware of how they paying. Although, the same can be questioned with regard to

users consenting to tracking cookies via a display banner (European Commission, 2011).

2.5 Threat Modelling

The attack surface to implement such abuse is vast due to the varying attack vectors that could

implement mining scripts within hosted web sites (Hajri et al., 2019). These five attack vectors

are summarised as the following:

1. Third Party Services: Third party providers serve JavaScript to many websites in the

form of tracking tools, analytic services and advertisement syndication. These third parties

could knowingly inject mining JavaScript code or themselves be targeted and breached with

the intention of deploying such mining code across their clients. Various instances of such

mining has occurred across clients such as Movistar, Youtube and others (Liu and Chen,

2018).

2. Breaches: Should an attacker be able to breach the servers hosting an Internet facing web

site, they could inject cryptomining scripts that mine a cryptocurrency such as Monero

from users who visit the site. Such attacks were noted on the websites for both Tesla and

the Los Angeles times (Dunn, 2018).

3. Man-in-the-middle: Any clear text traffic routed through intermediaries such as wireless

routers or upstream network hardware could have malicious JavaScript injected into the

non-HTTPS traffic. This was discovered at certain free Wi-Fi access points at Starbucks in

Argentina as well as at the Marriot Courtyard hotel in Times Square New York (Hollister,

2012).
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4. Webmaster initiated: An insider attack whereby as a website administrator, a mining

script could be added to the web site without the knowledge or consent of the site’s users.

This is often implemented to supplement revenue streams.

5. Browser extensions: The concept of cryptojacking is not limited to websites. A chrome

extension named Archive Poster surreptitiously mined cryptocurrency from thousands of

their user’s who had installed the extension (Hackett, 2018).

2.5.1 Malicious mining infrastructure

The research by Hong et al. (2018) noted that at least four components are required in the

distribution of malicious mining scripts.

1. Attacker: These are the malicious actors who utilised client systems as mining infrastruc-

ture to generate profit. The scripts running on the client systems are configured with their

unique wallet identification numbers so that they are rewarded for the mining activity.

2. Miner Deployer: Are the servers or domains that host the actual scripts that perform

the cryptocurrency mining. The scripts are either custom written or commonly available

from public sources.

3. Mining Pool: Are servers or domains that participate in distributed mining tasks. These

include tasks such as verifying hashes.

4. Distributor: The intermediate domains that perform redirection to the destination con-

taining the actual mining scripts are the distributors. These domains are typically changed

frequently as to avoid downtime due to blacklisting. A proxy server is a valid example of

a distributor.

A working example of these parties can be portrayed in the scenario whereby a victim browsing

a page containing a malicious mining script would as follows:

1. The actual mining script containing the malicious code to implement mining would be

obtained from the Miner Deployer configured by the Attacker.

2. Distributors could be utilised through domain redirection so that the URL of the Miner

Deployed can be changed at any point. This aides in detection avoidance.

3. The actual mining tasks are assigned by the Mining Pools. These pools generate the actual

revenue that is then paid to that attacker.
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2.6 Browser Mining Prevalence

The research conducted by Rüth et al. (2018) utilised zone file databases in order to conduct

analysis on the prevalence of sites hosting JavaScript that conduct cryptocurrency mining. The

dataset included the Alexa top one million sites and the zone file databases for the .com, .org

and .net top level domains. By downloading a pre-determined size of each homepage (256

kilobytes) of each site within each of the zone file databases, the retrieved output was then

analysed for known cryptomining URLs using the adblock nocoin list as an input. The results

provide detail as to which mining services have the largest share of sites using mining code as

well as categorisation of all sites that include the mining code.

The aim of this research is to build on the work done by Rüth et al. (2018) in order to

ascertain the current state of cryptomining within browsers. It is of particular relevance as

Coinhive is no longer operational, as per section 2.2. As Coinhive was up until its closure, the

largest Monero mining service (Varlioglu et al., 2020). This research aims to uncover how the

market has since changed and which if any services have filled the void left by Coinhive.

Coinhive ran the most widely utilised mining service. The service was provisioned via an

optimised JavaScript miner for Monero. The monetisation of this service was in the form of a

30% fee of all the mined Monero. The Coinhive process for user registration and subsequent

usage of the service was as follows:

1. A user who requires access to the Coinhive mining service registers on the Coinhive site.

2. Upon successfull registration, the user is provided with a token that is unique.

3. The unique token is used in configuring the necessary API calls used for the mined shares.

4. Upon a user visiting the website containing the Coinhive JavaScript miner, the miner

is loaded when the page renders, connecting back to the Coinhive pool. This process

authorises the Coinhive user‘s token for receiving input for hashing.

5. Once a hash has been found, it is then committed to Coinhive‘s pool.

6. Coinhive then pay their registered users 70% of the block reward. The remaining 30% is

kept by Coinhive as payment for the service.

Figure 2.2 illustrates the dominance of Coinhive as the leading provider of mining services. The

blue bar clearly indicating the large usage of the Coinhive service across the .com\.net\.org
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and Alexa top one million datasets. The Authedmine10 service was operated by Coinhive in

addition to their primary mining service. The addition of the authedmine service provided a

mining service for cryptomining with end user permission (Kharraz et al., 2019).

Figure 2.2: Coinhive prevalence in browser mining

(Rüth et al., 2018)

Apart from the API services offered, Coinhive provided two additional services. Namely, a

service for short link domain forwarding as well as a Captcha service.

2.6.1 The Coinhive Captcha service

The Coinhive Captcha service was shorted lived as it was blocked at both a DNS and ISP level

soon after launching (Hohlfeld, 2018). The Captcha service behaved similarly to the Captcha

service offered by Google, “reCaptcha” whereby the user is prompted to tick a box confirming

that they are not a robot. Coinhive‘s Captcha required a few seconds of the user’s computer

resources to be utilised for Monero mining. The rewards for the mining would be paid to the

Coinhive user who utilised the Captcha service on their web site.

2.6.2 The Coinhive short link forwarding service

The short link forwarding service was similar in functionality with other short link forwarding

services such as as “bit.ly”11. Other short link services delay the redirection in order to display

advertisements as the monetisation strategy. Coinhive‘s short link service operated in a similar

fashion, but instead of the delay to display advertisements, the delay was used for the local

computer to compute a number of hashes before the link was ultimately resolved (Varlioglu

10Authedmine - Consensual Coinhive mining script https://authedmine.com/
11Bitly - link shortering and sharing service. https://bitly.com/
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et al., 2020). The number of required hashes for completion was entirely configurable and

determined by the creator of the short link. From a user‘s perspective a progress bar would

be visible indicating the progression of hashes that have been successfully computed. Once all

the hashes had been successfully computed, they would be sent to the upstream service as the

progress bar visible to the user illustrates that it is complete. The user would then be redirected

to the intended link (Sato et al., 2019). The creator of this short link would then receive a share

of the mined block reward from all users who visit the site and utilise the short link forwarding

service.

The Coinhive short links followed a distinctive alphanumeric pattern of “[a-z0-9]” directly

after the URL of “https://cnhv.co”. It was further noted by Rüth et al. (2018) that the links

were increasing incrementally as new short links were created. This created a scenario whereby

all created short links could be discovered and subsequently downloaded as HTML for further

analysis. Analysis of the short link service was conducted in February 2018. Four characters

were used in fuzzing the distinctive alphanumeric pattern, resulting in 1 709 203 valid short

links. By collecting the HTML code from all the enumerated Coinhive short links, analysis of

the code was used to extract the following:

• The Coinhive tokens from all the individual link creators.

• The configured number of required hash computations set by the link creator that are

required by the user to solve in order to access the link redirection.

The resulting analysis uncovered that a few users had created a large numbers of links. One

third of all the created links had been created by a single user. Furthermore, 85% of all created

links had been created by ten users. A graphical representation of the “heavy users” can be

seen in Figure 2.3.

Figure 2.3: Tokens by number of links

(Rüth et al., 2018)
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In order to resolve the short link and be redirected the destination URL, the user is required

to compute the pre-configured number of hashes that were set by the creator of the link (Allix

et al., 2016). Most of the links (85%) could be resolved in under 51 seconds, that being 1024

hashes. The heaviest user bias is 512 hashes, even when the user bias is removed, over two thirds

of the hashes could be resolved in less than one minute.

A large number of the configured links required large amounts of time to resolve. Various

users had configured the hash links to the maximum of 1019. The network hash rate for the

Monero network can be inferred from the difficulty combined with the rate at which blocks are

found. Such a configuration would require billions of years to resolve.

Resolving all links was required to ascertain what kind of links are most commonly used

as destination links for the Coinhive short link service. For this to be feasible, all links that

required less and 10K hashes were computed. A random sampling of a thousand links for each

of the top 10 users was extracted. This sample represents 80% of all the link destinations. As

can be seen in table 2.1 (Rüth et al., 2018), most of the links point to file sharing and streaming

links.

Table 2.1: Destination URL classifications

Domain Category Frequency

youtube.be Entertainment 20%

zippyshare.com Filesharing 10%

icerbox.com Filesharing 10%

hq-mirror.de Ent and Music 10%

andyspeedracing.com Automotive 10%

ftbucket.info Msg Board 9.9%

getcoinfree Finance 9.2%

ul.to Filesharing 4.2%

share-online.biz Filesharing 2.9%

oboom.com Filesharing 2.8%

Detailed analysis of the Monero blockchain revealed which blocks were mined through the

Coinhive service. Analysis over three months in 2018 (May to July) revealed that Coinhive

mined 8.5 blocks a day in the median. This equates to 1.18% of the 720 blocks a day. Based on
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these calculations, Coinhive earned 1,271XMR (Monero) per month. At the current exchange

rate12 of 96 US dollars for 1 XMR of Monero, Coinhive would have mined approximately 122

000 US Dollars worth a month (Nikiforakis et al., 2014). Seventy percent of that revenue paid

would have been paid to their users.

2.7 Detecting and Countering Web Based Cryptomining

Static and dynamic analysis can both be used in attempting to detect web based cryptomining.

Both these techniques are detailed further in terms of application in the following subsections.

2.7.1 Static Analysis

The prevalence of Coinhive being the most widely used in-browser mining endpoint is corrobo-

rated by the search results for coinhive.min.js on PublicWWW22, a search engine that indexes

source code of publicly available websites. The existence of the term coinhive.min.js within

the source code of a web site is indicative of it mining Monero cryptocurrency via the com-

putational resources of visitors to the site, either consensually or not. Upon the initial release

of the Coinhive JavaScript script, occurrences of it spiked but soon decreased as malware and

organisations implemented measure for blocking access to the Coinhive website (Mursch, 2017).

As a response to the blocking of its domain by enterprise organisations, Coinhive introduced

an additional service domain name called Authedmine23. Authedmine requires users to consent

before the in-browser mining is allowed. Although not receiving the same attention as the Coin-

hive service, Authedmine was seen to be gradually increasing its prevalence within the top one

millions sites on Alexa. Other mining services such as Minr have employed randomised URL’s

in conjunction with obfuscated JavaScript to evade detection.

2.7.2 Dynamic Analysis

The majority of the discovered cryptojacking scripts have been noted by Sompolinsky and Zohar

(2015) as using about 25% of the user’s CPU resources. Such usage will be under the threshold

of degrading performance and therefore unlikely to be discovered by the unsuspecting user.

During the first few days after the Coinhive launch there were numerous reports of users CPU’s

reaching 100 percent utilisation (McCarthy, 2017). A factor in these high utilisation reports

12August 2019: 1XMR = 96USD
22PublicWWW - Online source code search engine. https://publicwww.com/
23Authedmine - Consentual Coinhive mining script https://authedmine.com/
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is due to the Coinhive JavaScript library utilising all available CPU resources by default. The

script throttling needs to be configured before being deployed to the web site in order to prevent

occurrences of overly high user CPU usage.

The estimated revenue from in-browser cryptomining according to Coinhive developers is that

of a monthly revenue of around 0.3 XMR (Monero), 46 US Dollars at the time of this writing, for

a site with about 10 to 20 active miners. One of the biggest Coinhive script operators includes

a domain parking with over eleven thousand parked domains (Bickford et al., 2010). Visits to

parked domains are generally short, resulting in approximately one hundred five thousand five

hundred and eighty sessions at an average of 24 seconds a session over a period of three months.

The in-browser mining for this period accumulated Monero to the amount of 0.02417 XMR in

total (1.67 US Dollars as of March 2020) (Eskandari et al., 2018).

Various cryptojacking tools have attempted to legitimise the action by obtaining user consent

before commencing with mining. The Authedmine service from Coinhive is a legitimate example

of such. There have been reports of abuse during the consenting process. As the consent is

usually given via confirmation with a mouse click, reports have emerged of this process being

vulnerable to clickjacking (Rydstedt et al., 2010) attacks whereby users unknowingly consent.

Various discussions amongst browser developers have produced a variety of possible mitiga-

tions for in-browser cryptojacking, these include but are not limited to:

• Alerting users when client side scripts consume resources extensively.

• Throttling system resources used by client side scripts.

• Blocking known host names associated with cryptojacking via blacklisting.

The determination of the thresholds that classify processor usage as sufficiently high for the

operation of legitimate applications is a problem open for research as is the threshold for pro-

cessor usage low enough to dissuade in browser cryptojacking. The Opera browser has taken

technical steps against the use of in-browser cryptojacking scripts by blocking them with via a

blacklist they named NoCoin (Kolondra, 2018). In contrast, some browsers may promote the

use of consensual in-browser mining, such as CryptoTab24. Its potential to monetise web sites

independent of tracking cookies and advertisements make it a potential avenue of interest for

browser development.

24CryptoTab - Web browser with builtin mining functionality. https://cryptotab.net/en/
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The extensive research conducted by Saad et al. (2018) not only provides detailed analysis

of cryptojacking code, both from a static and dynamic view point, but also an analysis of cryp-

tojacking from an economic perspective in terms of viability when compared with advertising.

This same economic analysis can be utilised as an indication as to the financial viability of cryp-

tojacking from a criminal perspective. The analysis conducted by Saad et al. (2018) provides

insight into:

• Content - In terms of the content of sites that were found to be hosting cryptomining

software. This was noted as being widespread across various differing website genres and

as such indicates a vast threat landscape.

• Currency - The currency analysis revealed various affinities between the cryptographic

currencies and mining platforms. Coinhive was found to be the most widely used mining

platform while Monero was the most widely mined cryptographic currency.

• Code - The code analysis revealed unique complexity features within the code of the

cryptographic scripts. These same complexities were then used to identify cryptojacking

code embedded within malicious and benign code samples.

The dynamic analysis highlighted the impact on system resources caused by cryptojacking.

This includes CPU usage as well as battery usage on devices with a battery (Desnitsky and

Kotenko, 2018). As a legitimate means for generating income instead instead of utilising online

advertising, “in-browser” cryptojacking was not deemed feasible from a financial perspective

(Saad et al., 2018). The findings into both long and short term countermeasures for cryptojacking

provided a platform for further reading and analysis of research in the field of cryptojacking

detection. Although a vast amount of the research is countermeasure centric, the required

detailed analysis of signatures, indicators of compromise and de-obfuscation techniques required

for countermeasure research provides a great deal of data regarding the inner workings and

behaviour of various cryptojacking instances.

The research conducted by Cova et al. (2010) presents a unique and novel method of detecting

and subsequently analysing malicious JavaScript code. Their defined approach uses machine

learning to provide a method to automatically identify the malicious JavaScript code via a

systematic comparison of non-malicious JavaScript. The identified non-malicious characteristics

are used as comparison benchmark allowing for the rapid detection of malicious JavaScript (Cova

et al., 2010). The research provides further insight into the capability of analysing obfuscated

code as well as signature generation and detection for malicious code samples.
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“MineSweeper: An In-depth Look into Drive-by Cryptocurrency Mining and Its Defense”

by Konoth et al. (2018) is the research output of a comprehensive comparison of Alexa’s top

one million websites. The comparison details the profitability and prevalence of cryptojacking

payloads delivered through “drive-by” mining. The “drive-by” mining attack utilise malicious

JavaScript or web assembly modules to secretly induce a users browser to mine cryptocurrency

unbeknown to the user visiting the site. The results of the comparison reveal multiple online

services that cryptomining campaigns can utilise to generate funds from the nefarious crypto-

jacking payloads. The research further explores the techniques deployed to evade detection as

well as how the latest web technologies are being utilised to effectively mine cryptocurrencies.

These findings are subsequently utilised to discuss an array of ineffective countermeasures that

include blacklisting and CPU usage heuristics. Their research introduces a novel technique used

for the detection of silent browser based cryptomining by examining the intrinsic behaviour of

cryptomining code.

Mineguard is the output of the research by Tahir et al. (2017). Its goal is the cessation of

covert cryptomining software that causes large financial losses to organisations via substantial

increases in power and cooling bills due to the constant GPU and CPU usage caused by con-

sistent cryptomining. The findings from the research culminated in the release of the software.

The output is the capability to create discernible signatures for the variety of crypto mining

signatures. These signatures indicate the uniqueness of each algorithm and provide the software

the ability to detect them effectively.

2.7.3 Deeper Analysis with CMTracker

Previous work by Cova et al. (2010) using static lists and the premise that 100% CPU utilisation

is caused by cryptomining as shown by Carlin et al. (2018) does not uncover all instance of mining

scripts. Such detective measures can be evaded by:

1. Code obfuscation - This will prevent keyword searches via static lists

2. Throttling - Miners configured to stay under or at a certain resource usage limitation

could invariably evade detection that pursues resource usage as an indicator.

The research by Hong et al. (2018) resulted in the release of CMTracker. Its purpose is to

automatically detect sites hosting cryptojacking mining scripts via a combination of a “hash

based profiler” as well as a “Stack structure based profiler”. These design inclusions were

intended to provide a deeper level of robustness in detection that allow for more cryptojacking
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scripts to be detected when compared with static based keyword searches. The premise of these

two included profilers is to identify two common characteristics in cryptojacking scripts. That

being that their workload includes are repeated and regular and include the computation of a

hash based function.

2.7.3.1 The Hash based profiler

The “Hash Based Profiler” focuses entirely on monitoring for the core functionality of cryp-

tocurrency miners, the proof of work system. By focusing on low level hash functions, various

interfaces for hashing libraries were identified. In total nine of these libraries were identified from

fixed set signatures from various commercial and open sourced cryptomining services. By then

calculating the time that websites spend cumulatively hashing, the out-liars can be identified.

An average site within the Alexa top 100 sites utilises less than 0.47% of its entire execution for

hashing. Whereby cryptocurrency mining scripts utilise most of their time on hashing. As such,

should a website spend more than 10% of its execution time on hash computations, CMTracker

designates it as a cryptocurrency miner.

2.7.3.2 The Stack based profiler

The “Stack Structure Based Profiler” was implemented as an additional detection mechanism

for the identification of cryptocurrency miners that employ a high level of code obfuscation

techniques. As cryptocurrency miners execute heavy workloads repetitively, such a behavioural

pattern if constantly repeated could provide for as an identifying factor within their execution

stack. An average web site page is noted as rarely repeating the same call stack beyond 5.60%

of its total execution time. As cryptocurrency mining is resource intensive, mining tasks are

not usually placed at the main thread for execution upon the initial loading of a page, this is to

avoid notice by the end-user. It is more likely that a single or even various dedicated threads

will be created. CMTracker will therefore flag as a cryptocurrency any thread that periodically

repeats its call chain and utilises more than 30% of the entire execution period in this particular

thread.

This functionality provides a means for automatic identification of which scripts contain

cryptocurrency mining payloads. Such a discovery does not automatically qualify the pages

as malicious as certain websites commence mining after user consent. In order to differenti-

ate between malicious and consensual pages hosting mining scripts, pre-defined keywords were

searched for from extracted web page text. This included search for phrases such as ”mining

agreement”. The analysis revealed that only 35 of the web pages discovered as hosting malicious
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scripts were identified as consensual whereas the rest of the 85 3936 web pages were noted as

containing non consensual mining scripts.

2.7.4 Sample Collection - for CMTracker

In order for the analysis to cover a large scale real world dataset, the Alexa top 100 000 websites

and their sub domains were crawled by Hong et al. (2018)) in May 2018. As clandestine mining

scripts require as much user browsing time as possible to be profitable, the assumption was that

malicious payload injection tends to target the pages that would be most frequently accessed

by visitors to the site in question. Additionally, external links from the homepages were also

crawled for mining scripts as mining perpetrators tend to utilise the highly ranked pages to

advertise the malicious pages containing the mining scripts thereby negating the need to embed

the malicious scripts on the top ranked pages themselves. Visitors to the higher ranked sites

are then lured to access the malicious pages by clicking links to the pages hosting the mining

code. Time and resource limitations allowed for 20% of both the internal and external links to

be followed. The sample collection process acquired 85 3936 unique web pages for the dataset

used to locate pages containing cryptojacking code.

The CMTracker tool identified 2770 domains that contained cryptocurrency mining scripts

from the aforementioned dataset. Of the identified domains, 868 of them were within the Alexa

top one hundred thousand websites. The remaining 1902 domains were external links to sites

other than the Alexa top one hundred thousand websites. This identification incorporated the

traversal of 44 8660 unique domains linked to the top 100 hundred thousand. The highest ranked

page within the Alex top one hundred thousand noted as hosting cryptocurrency mining code

was thepiratebay.org that ranked at number 125.

Categories and Categorisation of the 2770 domains hosting cryptocurrency mining scripts

by Hong et al. (2018) revealed that the “Art and Entertainment” and “Adult” categorised sites

are the most prevalent, as can be seen in table 2.5. This supports the premise of extended

user browsing time as a requirement for profitability. As these sites are primarily resources for

downloaded pirated material as well as those hosting adult material, user engagement is generally

longer due to the user searching for resources to download or view. This is in contrast to sites

hosting the mining scripts on a landing page where a user is far less likely to be engaged for

periods of time as long as when viewing “Art and Entertainment” as well as “Adult” categorised

sites. In total, these two site categories combined accounted for 49% of all the discovered sites
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(Hong et al., 2018)

Table 2.2: Cryptojacking domains based on website categorisations

Website Category # Websites with Scripts Percentage(%)

Art and Entertainment 752 27.1

Adult 360 13.0

Internet and Telecom 323 11.7

Business 182 6.6

Game 180 6.5

Others 973 35.1

Total 2770 100

hosting cryptocurrency mining scripts.

2.7.5 Evasion Techniques

Three evasion techniques were noted by Hong et al. (2018) as being commonly applied. They

are the following:

1. Limiting CPU usage: Although maximising CPU usage would increase profitability

for the actor who has implemented the mining script, exhausting CPU resources would

increase the likelihood of detection via automated means. Many cryptomining scripts con-

tain functionality for throttling CPU usage. As varying CPU’s run on various systems run

at differing levels of CPU utilisation, identifying cryptomining scripts via CPU utilisation

is difficult. Nonetheless, throttling is commonly configured to ensure that both automated

detection mechanisms and overly poor user performance are avoided.

2. Obfuscated code within mining scripts: Various mining scripts use code obfuscation

to hide their malicious intent. Code obfuscation techniques can aide in hindering both

manual and static analysis. Varying degrees of obfuscation can be applied. The entire

mining payload could be obfuscated or only the logic that performs the the mining.

3. Payload Hiding: Attackers have been noted hiding their malicious payloads within the

libraries of third parties as opposed to injecting the payloads directly into web page source

code. An example of such is when attackers use their own version of a widely used well
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known JavaScript library, such as JQuery.js26. By appending the malicious code to the

original code, the mining commences when JQuery.js is loaded.

2.8 Summary

Although various tools have been released to detect and prevent web based cryptomining, a

mature infrastructure coupled with an ASIC resistant cryptographic currency has resulted in

the web spread embedding of cryptomining JavaScript code within web sites. This has been

implemented as both a method for supplementing income from web traffic, as well as a post

exploitation means for generating income from compromised systems. The actual extent of

web based cryptojacking in terms of number of systems and variants used remains an under

researched area. This serves as the primary motivation for the research conducted.

26JQuery - JavaScript library designed to simplify HTML DOM tree traversal and manipulation. https:

//jquery.com//
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Chapter 3

Data Collection and Enrichment

This chapter details the steps and techniques used to acquire and process the dataset used for

analysis. This includes the commands used to access the PublicWWW27 API endpoint for the

initial dataset acquisition. The resulting dataset includes the counts of all cryptomining variants

within the source code indexed on PublicWWW.

3.1 Research Method

The proposed data gathering process involves a two phased approach. The first phase being data

accumulation via an online source code repository. The primary purpose of the accumulation is

to search through the source code repository for all sites containing known cryptomining scripts.

The accumulated list of sites containing cryptomining scripts will be the initial dataset.

The second phase of the data collection process involves data enrichment whereby the accu-

mulated list of sites containing cryptomining scripts will be enriched with data such as:

• Geographic location

• Internet Service Provider details

• Website classification categorisations

• Historical data retrieved from VirusTotal

27PublicWWW - Online source code search engine. https://publicwww.com/
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3.2 Initial Dataset Aquisition

PublicWWW was searched between the 7th and 11th of August 2019 for the existence of do-

mains containing cryptomining scripts by utilising the Adblock nocoin block list28 list of known

cryptomining domains. The raw data was obtained from PublicWWW between the 7th and

11th of August 2019. The collected data was acquired to provide the initial dataset for analysis

of empirical real world data.

The Adblock nocoin list was downloaded along with the purchase of a months‘ worth of API

access from PublicWWW in order to access the data required for the data acquisition. Each

entry of the Adblock nocoin 587 entries was systematically searched in PublicWWW via the

API. The API endpoint was queried using a for loop that called the curl command to access

and extract the raw data. The command and endpoint can be found in listing 3.1 with the API

key redacted.

Listing 3.1: PublicWWW API curl loop

1 for url in $(cat noicoin.txt);

2 do curl -OJ https://publicwww.com/websites/%22/$url/%22/?export=csvu

3 &key=<redacted>

4 ; done

The PublicWWW database contained the source code for 556 116 024 web pages at the time

of research during August 2019. The output of the initial research revealed 27 981 instances of

cryptomining strings from the nocoin block list discovered within the PublicWWW database of

web site source code. This does not indicate unique website occurrence as numerous websites

were discovered to contain more than one instance of a known cryptomining script. In total 25

204 unique sites were flagged as containing a malicious cryptomining script listed in the nocoin

block list. The collection process took around 20 hours over the course of 5 days. This collection

process resulted in the accumulation of approximately 10MB of raw data for analysis.

The output resulted in a file in csv format for each searched nocoin entry. The file contained

all websites that included the searched nocoin entry within its source code, as well as the sites

rank according to PublicWWW. A raw output example can be seen in listing 3.2 containing the

resultant output for the searched nocoin entry of analytics.blue. The pages containing the

28Adblock-nocoin-list - Block lists to prevent JavaScript miners. https://github.com/hoshsadiq/adblock-

nocoin-list
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string in its source code and the rank can be seen separated by a comma.

Listing 3.2: PublicWWW API output sample: analytics.blue

1 https://www.logo.com.tr/,127895

2 https://www.allaboutthejersey.com/,220859

3 https://www.gosquared.com/,228612

4 http://analytics.blue/,290742

5 https://www.blueport.com/,299475

6 https://kameleon.pics/,741306

7 https://clubdemo.com/,952365

8 https://www.nowherelan.com/,2102620

9 https://damgoodadmin.com/,2525094

10 http://vvolve.com/,4691722

11 http://expertnaya-ocenka.ru/,5002875

12 http://xn----7sbbdaxmh6bxb8ei.xn--p1ai/,5410329

13 http://www.hamradiooutlet.it/,5524475

14 http://nash-izberbash.ru/,5832607

15 http://seriesmegahd720p.blogspot.com/,6176947

16 http://hairstylemagz.net/,7105930

17 https://globas-i.ru/ru-RU/Home/Auth,7223001

18 http://www.happy-women.ru/,7698452

Of the 587 entries within the utilised nocoin block list from August 7th-11th 2019, 305

unique entries were noted in the collected dataset. The top 10 most prevalent entries are listed

in table 3.1. These entries totalling 19 223 account for 76.81% of the total dataset of 25 204 sites

containing cryptomining scripts. The entries are those of the domains hosting the cryptomining

scripts that were discovered within the source code of the sites contained in the PublicWWW

database.

Of the top 10 most prevalent cryptomining scripts, coinhive.com and authedmine.com

make up a combined percentage total of 38,53% of the top 10.
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Table 3.1: Top 10 encountered mining scripts

Rank Mining Script Instance Count Percentage

1 coinhive.com 6164 32.06

2 feesocrald.com 3578 18.61

3 jsecoin.com 1708 8.89

4 exdynsrv.com 1655 8.61

5 hostingcloud.racing 1287 6.70

6 coin-hive.com 1232 6.41

7 authedmine.com 1223 6.36

8 monero-miner 832 4.33

9 coinpot.co 815 4.24

10 freecontent.date 729 3.79

Total 19223 76.88

N=25 204

This is of particular relevance as the Coinhive mining service (which was also responsible

for the running authedmine.com) is no longer operational as of March 2019. This is however

a noted decrease in Coinhive’s prevalence from January 2018. The sites containing scripts

that point to coinhive.com and authedmine.com will function without hindrance, regardless

of the embedded scripts failing to load. Although it is still the most noted entry, its total

percentage of 38.53% is down from previous years when it was operational. The combination

of coinhive.com and authedmine.com recorded a combined prevalence of between 75%-80% of

all discovered cryptomining scripts from January 2018 to May 2018 (Rüth et al., 2018). Their

research was also conducted using the nocoin list.

My analysis of the discovered sites containing cryptomining scripts revealed that 390 of them

were listed as being included in the Alexa top 1 million sites from August 7th-11th 2019. The

Alexa rankings of the sites included ranged from 465 to 62 9452. The top 10 ranked URL’s and

their respective Alexa rank are shown in table 3.2.

The full list of 25 204 unique URLs with cryptomining scripts obtained from PublicWWW

was processed on the 12th of August 2019 using Massdns29 for DNS resolution from host names

29Massdns - High-performance DNS stub resolver for bulk lookups. https://github.com/blechschmidt/

massdns
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Table 3.2: Top 10 Alexa rank sites with cryptomining scripts

Rank URL Alexa Rank

1 thewhizproducts.com 465

2 thewhizmarketing.com 929

3 katfile.com 2536

4 ed-protect.org 5168

5 tudohd.com 6932

6 gamatotv.co 10796

7 pharmeasy.in 25194

8 songspk.mobi 25495

9 highestpayingfaucets.com 28794

10 megafilmeshdplus.org 30075

to IP addresses. The IP address resolution process took approximately 25 minutes to complete.

This process resulted in the accumulation of 21 984 IP addresses. 3220 of the host names were

unable to be resolved due to two noted errors, this accounted for 15% of the hostnames.

• 2064, 10% failed with NXDOMAIN, indicating the domain no longer exists

• 1156, 5% failed with SERVFAIL, indicating errors connecting to the relevant DNS server.

Retries at resolving were attempted, resulting in the same number of failed lookup at-

tempts.

The resolved IP addresses were then mapped to geographic locations using the MaxMind Ge-

olite2 database30. The geographic location mapping of the 21 984 IP addresses revealed that

servers hosting cryptomining scripts were physically located in 91 different countries. South

Africa was noted as having 106 IP addresses hosting cryptomining scripts, ranking 25th of the

countries hosting cryptomining scripts by IP address count.

The IP address count for each of the identified countries was tabulated to determine total

numbers of IP address per country identified. Twelve countries were identified as having just

one IP address hosting cryptomining scripts. The bulk of the IP addresses hosting cryptomining

scripts were noted as being from a relatively small pool of countries. The top 10 countries with

IP addresses hosting cryptomining scripts can be seen in the following figure. The United States

of America is top of the list with more than the sum of the remaining top 10 countries and

30MaxMind Geolite2 - Free IP geolocation databases. https://dev.maxmind.com/geoip/geoip2/geolite2/
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four times more IP addresses than the next country, Iran. The geographic determination of

hosted IP addresses includes only the resolvable domain names. The percentage allocations of

IP addresses to host country can be seen in table 3.3. These percentages are calculated from

the entire dataset of resolved IP addresses, and not a percentage of the top 10.

Table 3.3: Top 10 counties hosting cryptomining scripts by IP address count

Rank Country Count Percentage

1 United States 9256 42.10

2 Iran 2832 12.88

3 Germany 1583 7.20

4 Russia 1364 6.20

5 France 920 4.18

6 Netherlands 745 3.38

7 United Kingdom 524 2.38

8 Singapore 287 1.30

9 Sweden 285 1.29

10 China 271 1.23

Sum 18076 82

N=21 984

The top 10 countries for hosting IP addresses with cryptomining scripts account for 82%

of the dataset. In total, the top 10 countries account for 18 076 IP addresses in total. The

remaining countries account for 1 337 IP addresses accumulatively whereas 2 580 IP addresses

where not able to be mapped to a geographic location using the MaxMind Geolite2 database.

This can be seen in table 3.4.

Table 3.4: IP address geolocation data compilation

Category IP address Count Percentage of Dataset

Top 10 Countries 18076 82

No Geolocation 2580 12

Remaining Countries 1337 6
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3.3 Data Enrichment

The accumulated dataset of domains hosting cryptomining scripts from PublicWWW was fur-

ther enriched via the use of the API service offered by VirusTotal for academic research. Each of

the domains found to be hosting cryptomining scripts was queried against the VirusTotal API

from the 16th of August 2019 until the 19th of August 2019. The results from the API provided

an array of varying information per domain. This included but was not limited to:

• Domain categorisations

• Confirmation whether or not the domain exists in the VirusTotal dataset

• Known malware samples associated with the domain

• DNS and whois information

The API endpoint was queried using a for loop that called the curl command to access and

extract the raw data. The command and endpoint can be found in listing 3.3 with the API key

redacted.

Listing 3.3: VirusTotal API curl loop

1 for url in $(cat domains.txt);

2 do curl -OJ https://www.virustotal.com/vtapi/v2/domain/report?

3 apikey=<redacted>domain=$url; done

Whereas the output from the PublicWWW API provided a csv file containing all entries

containing the searched phrase. The output from the VirusTotal API results in a single json file

per searched domain. An example of such can be seen in listing 3.4 and 3.5.
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Listing 3.4: VirusTotal sample JSON output - Example 1

1 "resolutions": [

2 {

3 "last_resolved": "2019-08-12 19:40:42",

4 "ip_address": "104.31.86.134"

5 },

6 {

7 "last_resolved": "2019-08-12 19:40:42",

8 "ip_address": "104.31.87.134"

9 }

10 ],

11 "subdomains": [

12 "webdisk.films-list.com",

13 "www.films-list.com",

14 "mail.films-list.com"

The resulting accumulation of over 20 000 nested json files provided for both a rich and

complex dataset. In order to effectively extract targeted data from each json file, the script in

listing 3.6 was run against the entire raw dataset. The script parses all the json files in the current

directory searching for the “id” and “ThreatSeeker” tags. A newline is then inserted between

each discovered entry. All tabs are removed and only the lines containing “ThreatSeeker” are

kept.
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Listing 3.5: VirusTotal sample JSON output - Example 2

1 "whois_timestamp": 1551499708,

2 "response_code": 1,

3 "verbose_msg": "Domain found in dataset",

4 "Forcepoint ThreatSeeker category":

5 "potentially unwanted software. compromised websites",

6 "resolutions": [

7 {

8 "last_resolved": "2019-03-02 04:08:28",

9 "ip_address": "154.220.38.203"

10 }

11 ],

12 "detected_urls": [],

13 "categories": [

14 "parked",

15 "potentially unwanted software. compromised websites"

16 ]

17 }

Listing 3.6: JSON data enrichment script

1 for f in *.json;do grep -e ThreatSeeker -e id $f |tail -2 | tr -d

2 ’\n’| awk ’{print $0,"\n"}’ >> results.csv ; done

3 cat results.csv | tr -d " \t" > results2.csv

4 sed -n ’/^"Forcepoint/p’ results2.csv > results3.csv

5 cat results3.csv |cut -f1,2,3 -d":" > results4.csv

This results in a workable data set matching the queried domain to the ForcePoint Threat-

Seeker31 domain categorisation group. The script was then rerun with “ThreatSeeker” amended

to “BitDefender” in order to accumulate domain categorisations from both vendors for compar-

ison. After the same sanitisation process, an additional dataset matching the queried domain

to the BitDefender32 domain categorisation group was created. These resulting datasets were

merged with the PublicWWW dataset to create a dataframe containing data points listed in

table 3.5.

31ForcePoint ThreatSeeker - Domain categorisation service. https://www.forcepoint.com/
32BitDefender - Domain categorisation service. https://www.bitdefender.com/
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Table 3.5: Data points for enrichment

Data Points

Domain

URL

IP Address

ForcePoint Threatseeker categorisation

BitDefender categorisation

Miner in use

Geolocation

This data will be used to map domain categorisations to mining variants and geolocations in

Chapter 4. A segment of the newly created enriched dataset, using Python Pandas and Jupyter

Notebook can be seen in figure 3.1.

Figure 3.1: Example of content from enriched dataset

3.4 Summary

The data acquired in this chapter provided the platform for the analysis and interpretation per-

formed in chapter 4. This includes the geographic data with the most IP addresses hosting cryp-

tomining scripts and domain categorisations of sites hosting cryptomining scripts. The enriched

dataset aligns the domain categorisation and geographic location data with the most preva-

lent cryptomining scripts. The finalised dataset, compromised of merging numerous individual

datasets totalled 2.8MB. The dataset is available for download as a Python Pandas Dataframe

from https://www.dropbox.com/sh/ggbo2x1wc60l3ah/AAD6zMjktnTdDPNN2yM_feJMa?dl=0. It

is comprised of 24 528 rows and 10 columns.
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Chapter 4

Data Analysis

This chapter discusses the outcomes of the data analysis and details the analytical steps per-

formed on the data acquired and enriched in the previous chapter. The analysis included a

geographic, domain categorisation as well as an ISP and subnet analysis of the top 10 mining

variants. The chapter further includes graph network analysis and finally, a financial analysis of

a mining variant.

4.1 Geographic analysis by mining variant

Analysis of the primary geographic locations of the top 10 discovered mining scripts revealed

a similar pattern to the combined total. That being the United States of America being the

country with the most IP addresses hosting the individual cryptomining scripts. Outliers to this

pattern are:

4.1.1 feesocrald.com

2715 IP addresses are geolocated to Iran. Only 9 IP addresses were geolocated to the United

States of America. This can be seen in table 4.1.

4.1.2 jsecoin.com

Sweden is second to the United States of America in terms of addresses that are able to geolo-

cated. This can be seen in table 4.2.
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4.1.3 freecontent.date

Both Turkey and Germany are second to the United States of America in terms of addresses

that are able to geolocated. This can be seen in table 4.3.

Table 4.1: Top 10 countries hosting feesocrald.com cryptomining scripts

Rank Country IP Address Count Percentage

1 Iran 2715 99.05

2 United States 9 0.33

3 Germany 5 0.18

4 France 4 0.14

5 Indonesia 2 0.06

6 United Kingdom 1 0.04

7 Poland 1 0.04

8 South Africa 1 0.04

9 Ukraine 1 0.04

10 Netherlands 1 0.04

Sum 2740 99.96

N=2741
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Table 4.2: Top 10 countries hosting jsecoin.com cryptomining scripts

Rank Country IP Address Count Percentage

1 United States 716 49.96

2 Sweden 241 16.81

3 Germany 75 10.47

4 Russia 54 3.76

5 France 48 3.34

6 Hungary 43 3.00

7 Netherlands 40 2.79

8 United Kingdom 27 1.88

9 Canada 19 1.32

10 Singapore 16 1.11

Sum 1279 89.25

N=1433

Table 4.3: Top 10 countries hosting freecontent.date cryptomining scripts

Rank Country IP Address Count Percentage

1 United States 211 37.61

2 Turkey 53 9.44

3 Germany 52 9.26

4 Finland 50 8.91

5 Slovakia 40 7.13

6 Italy 26 4.63

7 Russia 24 4.27

8 United Kingdom 12 2.13

9 Netherlands 12 2.13

10 France 11 1.96

Sum 491 87.47

N=561
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4.2 Domain Categorisation Analysis

The dataset enriched with domain categorisation data was analysed to determine the prevalent

domain categorisations across the domains identified as hosting cryptomining scripts. This was

achieved by counting the occurrence of each categorisation type for each entry of the enriched

dataset. Both the “ForcePoint” and “BitDefender” categorisations were analysed by counting

each domain categorisation occurrence in the dataset. The “BitDefender” categorisation column

was considerably less populated than the “ForcePoint” column with 21 514 compared to 4724

null entries. Although the “ForcePoint” column had far fewer null entries, its “uncategorised”

group was by far the largest of all the listed categories, as can be seen in table 4.4.

The combined null entries and “uncategorised” domains totalled 17 038 “ForcePoint” do-

mains without categorisation, 4476 less uncategorised domains than the considerably smaller

“BitDefender” dataset. The “ForcePoint” categorisations counts with the uncategorised group

removed as well as the “BitDefender” categorisation counts can be seen in figures 4.1 and 4.2.

Figure 4.1: ForcePoint domain categorisations with uncategorised removed

As the large disparity in categorisation dataset sizes between “ForcePoint” and “BitDe-

fender” is apparent, comparison based on categorisation counts alone is not sufficient. Various

similarities between the categotisation datasets were noted in table 4.5 where categorisation

percentages are compared.

Although the “ForcePoint” and “BitDefender” datasets are disparate. The categorisation
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Table 4.4: Domain categorisations - ForcePoint

Rank Category Occurrence Count Percentage

1 Uncategorised 12314 62.17

2 Potentially Unwanted Software 978 4.93

3 Business and Economy 829 4.18

4 Newly Registered Websites 817 4.12

5 Information Technology 442 2.23

6 Compromised Websites 342 1.72

7 Shopping 325 1.64

8 Dynamic Content 263 1.32

9 Entertainment 221 1.11

10 Blogs and Personal Sites 200 1.00

11 Sex 188 0.94

12 Elevated Exposure 166 0.83

13 Financial Data and Services 139 0.70

14 Travel 125 0.63

15 News and Media 118 0.59

Sum 17 467 88.11

N=19 804

Table 4.5: ForcePoint and BitDefender correlations

BitDefender BitDefender % ForcePoint ForcePoint %

Parked 18 Newly Registered Domains 16

Computers and Software 6 Information Technology 9

Porn 3 Sex 4

Travel 2 Travel 2

News 2 News and Media 2

classifications between datasets show similarities in the percentage classifications of each cat-

egory. This serves to validate the domain classifications of the sites identified to be hosting

cryptomining scripts.

• The “parked” and “newly registered websites” are a similar categorisation comparison
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Figure 4.2: BitDefender domain categorisations

with similar percentages across both datasets at 18% and 16% respectively

• The “computers and software” and “information technology” are similar categorisation

comparisons and also share similar percentages across the datasets at 6% and 9% respec-

tively.

• Both the “sex” and “porn” categories are similar categorisation comparisons and have

similar percentages across both datasets at 3% and 4% respectively.

• The “travel” category is at 2% across both datasets.

• The “news” and “news and media” are at a very similar 1% and 2% in both respective

datasets.

4.3 ISP and subnet Analysis

Analysis of the dataset revealed the top 10 endpoints that the collected domains hosting cryp-

tomining scripts are resolved to. Table 4.6 shows the most resolved endpoints based on a count

of the resolved IP addresses (the list includes two google hostnames due to CNAME records

pointing to other domains). CNAME records are DNS records that resolve a domain to an-

other domain name, as opposed to resolving the domain name to an IP address. The CNAME

records in positions 4 and 7 in table 4.6 are hostname entries for “Content Delivery Networks”,

or CDN’s. These networks consist of geographically distributed servers that deliver web pages
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and content to users. CDN’s tend to service users from servers that are geographically located

close to the user in order to facilitate faster delivery speeds. As these two hosts are part of the

Google CDN network, the IP address endpoints cannot be determined by reverse lookups on

the DNS name.

The counts were determined by counting the number of each IP occurrence in the dataset.

The IP addresses were accumulated via the process of data enrichment using Massdns for DNS

resolution of the collected URLs with known cryptomining scripts.

Table 4.6: Top 10 endpoints of cryptomining domains

Rank Host Count Percentage

1 213.232.126.134 2709 11.04

2 66.96.161.196 238 0.97

3 81.231.232.61 228 0.92

4 ghs.google.com 216 0.88

5 109.108.145.100 116 0.47

6 62.210.16.62 111 0.45

7 blogspot.l.googleusercontent.com 108 0.44

8 159.65.245.16 92 0.37

9 178.128.243.171 92 0.37

10 206.189.153.135 92 0.37

Sum 4002 16.28

N=24 522

Utilising the accumulated VirusTotal data, whois detail for each domain was collected and

analysed. Table 4.7 illustrates the top 10 ISP’s hosting IP addresses with cryptomining scripts.

The table includes both the ISP name and the number of IP addresses as well as the percentage

make up of the top 10.
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Table 4.7: Top 10 IPS’s hosting cryptomining domains

Rank Name Count Percentage

1 Clouflare Inc 2565 21.03

2 GoDaddy LLC 713 5.84

3 Websitewelcome.com 399 3.27

4 Hetzner Online Gmbh 302 2.47

5 Namecheap Inc 222 1.82

6 Unified Layer 220 1.80

7 Africa Network Info Center 215 1.76

8 OVH SAS 192 1.57

9 Amazon Technologie 185 1.51

10 Asia Pacific Network Info Center 181 1.48

Sum 5194 42.55

N=12 192

The results show Cloudflare33 as the ISP with the most IP addresses containing cryptomining

scripts with 21.03%. Cloudflare is a content delivery network designed to provide its clients

application and network level security as well as the functionality to hide the IP address of the

server hosting the client website. The remaining nine ISP’s share the remaining 21.52%. Table

4.8 details the subnet count as well as the ISP that owns the subnet. ISP analysis allows for the

identification of a potentially favoured ISP for sites with cryptomining scripts. This could be

due to various factors, such as weak controls that allow mining code to be embedded without

the ISP identifying it. It could also point to the potential breach of an ISP, whereby mining

code could have been inserted into multiple sites at the ISP.

The intention of the subnet analysis is to determine whether any of the subnets contain a

disproportionately large amount of endpoints containing cryptomining scripts. Such a scenario

could indicate a breach at an ISP whereby servers on a subnet have been compromised and

subsequently used to host cryptomining code.

Besides for OVH SAS, none of the top 10 ISP’s hosting cryptomining domains contain a

subnet within the top 10 most prevalent subnets in table 4.8. As discussed in section 4.3, the

33Cloudflare - Infrastructure and web site security provider https://www.cloudflare.com/
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Table 4.8: Top 10 most prevalent subnets (/24)

Rank Subnet (/24) Number of IPs on subnet ISP

1 217.160.0.0 102 1&1 Internet AG

2 46.30.215.0 69 One.com A/S

3 74.208.236.0 64 1&1 Ionos Inc.

4 87.236.16.0 56 Beget Ltd

5 92.53.96.0 45 Timeweb

6 81.169.145.0 45 Strato AG

7 90.156.201.0 44 MasterHost

8 192.0.78.0 42 Automattic Inc

9 31.31.196.0 41 Reg.Ru

10 213.186.33.0 39 OVH SAS

identified pattern between tables 4.7 and 4.8 appear to illustrate that the IP addresses hosted at

the top 10 ISP’s are somewhat sporadic and not within subnets populated with other systems

hosting cryptomining scripts. This is in contrast to the smaller ISP’s where various subnets that

are largely populated with other systems hosting cryptomining scripts were noted. Two possible

reasons for this discovery are proposed, namely:

1. Smaller ISP’s were chosen by webmasters to host multiple sites all containing cryptomining

scripts on the same segment network. This is due to the relative ease in obtaining an entire

subnet from smaller ISP’s.

2. The compromise of individual systems at the smaller ISP’s led to further compromise of

additional systems hosted on the same subnet. This allowed for malicious cryptomining

content to be embedded across systems on the same subnet.

4.4 Graph Network Analysis

In order to further analyse the top 10 IP addresses and their relationships with cryptomining

domains and the kind of miners being implemented, the dataset was imported into a Neo4j34

instance. An example of a configured Neo4j node can be seen in listing 4.1. These properties are

required as they will be used to match nodes to each other based on these included properties,

thereby creating the graph database output that illustrates the relationships between nodes.

34Neo4j - Graph database management system. https://neo4j.com/
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The blue nodes represent the IP address of the host being analysed. The green nodes represent

the mining script variants whilst the red nodes represent the domains hosted on the IP address.

Listing 4.1: Neoj4 node example

1 {"country": "United States",

2 "bitdefender_cat": "parked",

3 "forcepoint_cat": "newly registered websites",

4 "ip": "159.65.245.16",

5 "domain": "comparegoodshoes.com",

6 "url": "http://comparegoodshoes.com/",

7 "miner": "hashing.win"}

Utilising the Cypher35 query language, queries were written that detailed the association

between country of origin and type of miner implemented for each of the top 10 endpoints listed in

table 2.8. The reason for graphically analysing these cases is to determine and visually illustrate

patterns in the strategies utilised to host either single or multiple variants of cryptomining scripts

on the assessed infrastructure.

4.4.1 Case 1 - 213.232.126.134

Figure 4.3 illustrates the highest ranking IP address in terms of domain resolutions with 2

709 domains resolving to 213.232.126.134. All of the domains associated to the IP address

implemented the feesocrald.com mining script. This is indicative of a targeted campaign

whereby multiple sites are configured on a server implementing the same cryptomining script,

potentially a web server that was compromised.

Figures 4.4 and 4.5 show a zoomed in view of both the blue and green nodes. This indicates

a single IP address and single mining variant across all 2709 domains.

35Cypher - Neo4j’s graph query language that allows users to store and retrieve data from the graph database.

https://neo4j.com/developer/cypher-query-language/
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Figure 4.3: 213.232.126.134 endpoint analysis

Figure 4.4: IP node analysis

4.4.2 Case 2 - 66.96.161.196

Figure 4.6 illustrates the graphic analysis of endpoint with the second most domain resolutions

attributed to it, IP address 66.96.161.196. The IP address is geolocated to the United States

of America and has a considerably less amount of domains that resolve to it compared to

213.232.126.134 with 238. Unlike 213.232.126.134 that has one specific cryptomining variant

across all domains, 66.96.161.196 includes two different cryptomining variants, namely:
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Figure 4.5: Mining variant node analysis

• exdynsrv.com

• traffic.tc-clicks.com

The green nodes represent the mining variants while the blue node represents the IP address of

the endpoint. Each red node represents an individual domain hosted on the IP address.
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Figure 4.6: 66.96.161.196 endpoint analysis

4.4.3 Case 3 - 81.231.232.61

Analysis of 81.231.232.61, the third highest resolution endpoint with 216 domains also revealed a

singular cryptomining script implementation, that of jsecoin.com hosted on a server in Sweden.

This can be seen in figure 4.7. The single miner (blue node) used across multiple domains

resolving to one IP address is indicative of a web server compromise. Everyone single domain

node (red) is associated and thereby visually connected with both the blue and green nodes,

representing the IP address and mining variant respectively.
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Figure 4.7: 81.231.232.61 endpoint analysis

4.4.4 Case 4 - ghs.google.com

The Google hosting services domain are hosted as opposed to one or two. This is expected as

the ghs.google.com has 216 domains using it as a CNAME resolver, as discussed in section 4.3.

As a CDN36, the service masks the endpoint domain by using are hosted as opposed to one or

two. This is expected as the ghs.google.com as the resolved address with the target site being

included in the HTTP host header. As a result of this masquerading functionality that a CDN

36Content delivery network -geographically distributed network of proxy servers and their data centres. The

goal is to provide high availability and high performance by distributing the service spatially relative to end-users.

https://en.wikipedia.org/wiki/Content_delivery_network/
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service offers, a vast array of different cryptomining scripts were discovered on a variety of dif-

ferent domains across the Google hosting services. This can be seen figure 4.8, a vastly different

graph database compared to the first three analysed endpoints whereby multiple cryptomining

scripts are hosted as opposed to one or two. This is expected as the ghs.google.com endpoint

represents more than one single endpoint.

Figure 4.8: ghs.google.com endpoint Analysis
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4.4.5 Case 5 - blogspot.l.googleusercontent.com

The Neo4j database graph for the blogspot.l.googleusercontent.com endpoint shares a com-

mon pattern to that of the ghs.google.com endpoint. It is the seventh most resolved endpoint

with 108 domains that resolve to it via a CNAME resolver. It is also a Google owned domain

that offers CDN services. An array of varying cryptomining scripts across the domains can be

seen in figure 4.9. The large number of green nodes representing multiple mining code variants

is expected due to the endpoint (blue) being a CDN hostname. The hostname endpoint is in

fact masquerading for multiple web sites across varying geographic locations that are hosting

differing mining scripts.

Figure 4.9: blogspot.l.googleusercontent.com endpoint analysis
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4.4.6 Case 6 - 62.210.16.62

The remaining five endpoints in the top 10 list all follow the same pattern of one crypto-

mining variant for all domains that resolve to the IP, with the exception of 62.210.16.62, an

IP address located in France with 111 domains that resolve to it. The majority of the do-

mains utilise the datasecu.download cryptomining variant where a small number of other

domains that resolved to the same IP address implemented the coinhive.com,coin-hive.com

and hostingcloud.racing mining scripts, as can be seen in figure 4.10.

Figure 4.10: 62.210.16.62 endpoint analysis
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4.5 Domain Categorisation Graph Analysis

The domain categorisation analysis serves to visually illustrate the domain categorisations of

various sites hosting cryptomining scripts on two selected endpoints. Analysis on the IP address

endpoints that contained a single cryptomining variant revealed a similar pattern across five of

the six instances, that being that the majority of domains were uncategorised by ForcePoint

except for a few outliers. This can be seen in figure 4.11 where a segment of the ForcePoint

categorisations for the domains hosted on 206.189.153.135 are illustrated. This outcome is not

unexpected due to the transient nature of domains hosting malicious scripts. The domains are

often temporary and not in existence long enough to be categorised.

Figure 4.11: 206.189.153.135 domain categorisation analysis
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This is in contrast to the domains hosted on 109.108.145.100 where the majority of domains

are categorised as “shopping” by ForcePoint. This is notable as the cryptomining variant on

109.108.145.100 was noted as being authedmine.com, a consensual based cryptominer. The

categorisations for the domains on 109.108.145.100 can be seen in figure 4.12. These domains

mine cryptocurrency in the visitors browser only with explicit permission, therefore the large

number of categorised domains in not unexpected as the sites are most likely established and

not serving malicious content.

Figure 4.12: 109.108.145.100 domain categorisation analysis

This domain categorisation analysis shows a visual representation of the difference in domain

categorisations of sites containing a non-consensual cryptomining variant as opposed to the sites

using a mining script requiring user consent. The pattern in figure 4.11 illustrates the non-

consensual mining variant including various sites with varying domain categorisations. This is

in contrast to figure 4.12 where the consensual mining script is hosted on sites with a far smaller

range of varying domain categorisations. This suggests an intentional process was followed to
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establish legitimate reputationally sound shopping sites supplemented with consensual mining

scripts as opposed to haphazard domain categorisations across an array of sites.

4.6 VirusTotal Graph Analysis

In order to analyse the top 10 IP addresses used for hosting mining scripts in the VirusTotal

database, Maltego37 was used to both incorporate the VirusTotal database and visualise the

mined data effectively. The IP addresses where discussed in section 4.3. The previously ac-

quired VirusTotal API key was integrated with Maltego in order to access the VirusTotal API.

VirusTotal categorises detected samples under various conditions, two of these categories were

noted amongst the top 10 IP addresses. They are the following:

• Detected communicating samples - these are detected files that have communicated

with the specific domain or IP address.

• Detected downloaded samples - these are detected files that were downloaded from

the domain or IP address, not from VirusTotal.

Figure 4.13 illustrates the associated detected communicating samples with each of the top 10

resolved hosts, examples are illustrated by the black arrows. Although some of the top 10 hosts

utilise the same mining scripts as other hosts, none of the detected communicating sample hashes

associated with any of the top 10 hosts are common to any of the other hosts. As per figure 4.10,

the host with IP address 62.210.16.62 was noted as hosting four different mining scripts across

111 domains. During the VirusTotal analysis of the top 10 hosts in September 2019, the host

with IP address 62.210.16.62 had 12 detected communicating samples associated with it, the

same number of detected communicating samples as both the CDN hosts in the top 10 resolved

hosts.

An IP address with the equivalent number of detected communicating samples as Google

CDN endpoints is deemed to be high. As the functionality of Content Delivery Networks allows

for multiple systems to be accessible via a single CNAME record, it is most likely that the

12 detected communicating samples access varying systems via the CDN’s CNAME record as

opposed to the 12 detected communicating samples that directly access the host with IP address

62.210.16.62.

37Maltego https://paterva.com/
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Figure 4.13: Detected VirusTotal communicating samples from the top 10 IP addresses

Figures 4.14 and 4.15 illustrate the associated detected downloaded samples with each of

the top 10 resolved hosts. This analysis was conducted in September 2019 using Maltego and

an associated VirusTotal API key. As was the case with the detected communicating samples,

no overlap of the detected samples was noted across the hosts. The host with IP address

62.210.16.62 had 12 hashes of detected downloaded samples associated with it. This was more
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than any other of the top 10 hosts. Neither of the CDN hosts had any hashes associated with

it. This was expected as any associated detected downloaded samples would be associated with

the root domain and not that of the CDN’s CNAME record. The two other hosts from the top

10, each with two associated detected download samples are:

1. 66.96.161.196 - Both the exdynsrv.com and traffic.tc-clicks.com mining scripts were

associated with this host.

2. 109.108.145.100 - The consent requiring authedmine.com mining script was associated

with this host.

Table 4.9 details specific data points around each of the 3 discussed IP addresses.

Table 4.9: Assessed VirusTotal IP Addresses

IP Address Reverse DNS ASN Whois Detail AbuseDB Entries

62.210.16.62 pointer pf-lb-2.online.net. AS12876 ONLINE SAS 1

66.96.161.196 196.161.96.66.static.eigbox.net. AS29873 Endurance Group 0

109.108.145.100 109.108.145.100.srvlist.ukfast.net. AS34934 Ukfast.net Limited 5

The host with IP address 62.210.16.62 is the outlier in terms of suspected malicious activity.

Four different cryptomining scripts on the host is higher than any other individual IP address

within the top 10 hosts. The same can be said for detected samples with 12 detected hashes for

both the downloaded and the communicating samples. This is the highest number amongst the

top 10 hosts for both the VirusTotal downloaded and communicating samples.

Figure 4.14: Detected VirusTotal downloaded samples from the top 10 IP addresses -

62.210.16.62
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Each of the individual hashes illustrated in figure 4.14 represents code that VirusTotal has

identified as being malicious. They are samples that were identified as being downloaded from

the 62.210.10.62 IP address as opposed to being identified as samples that communicated with

62.210.10.62. The likelihood is that these hashes were not cryptomining scripts, but rather other

kinds of malicious code hosted and potentially distributed by 62.210.10.62.

Figure 4.15: Detected VirusTotal downloaded samples from the top 10 IP addresses -

Remaining top 9 hosts

4.7 JSECoin Analysis

The JSECoin38 cryptocurrency was selected for dedicated analysis. This case study of a specific

cryptocurrency was conducted due to the noted prevalence of the JSECoin cryptocurrency in

the observed results of the data analysis.

JSECoin was noted in section 3.1 in table 3.1 as being the third most prevalent cryptomining

script in use. As Coinhive is no longer operational and the feesocrald.com campaign no longer

active, JSEcoin was selected for further detailed analysis as the most prevalent and currently

active cryptomining script. The enriched dataset from figure 3.1 was queried using the Pandas

Python library to create a new dataframe containing only sites embedded with the JSECoin

mining script, this command can be found in listing 4.2.

38JSECoin - JavaScript embedded cryptocurrency https://jsecoin.com/
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Listing 4.2: JSECoin dataframe creation

1 df_jsecoin=df[df["miner"] == "jsecoin.com"]

The newly created dataframe was exported as a csv file. All the domains were extracted

from the file, which in turn was fed through a curl loop that downloaded the HTML source code

for each page within the JSECoin dataframe. The HTML source code was downloaded during

October 2019. The code for the download loop is included in listing 4.3.

Listing 4.3: JSECoin HTML download loop

1 for url in $(cat jsecoin_urls.txt);

2 do curl -OJ $url; done

Listing 4.4 details the initialisation configuration of the JSECoin mining script. The param-

eters are used as follows:

1. AccountNo - This is the publishers account number. It is the account that will be paid

the reward for the cryptomining.

2. PublisherSite - This is the domain where the mining script is located.

3. optionalSubID - Is used for reference purposes. It will default to ’optionalSubID’ if left

unconfigured.

Listing 4.4: JSECoin mining script parameters

1 https://load.jsecoin.com/load/{:AccountNo}/

2 {:PublisherSite}/{:optionalSubID}/0/

The resulting HTML output from the curl loop in listing 4.3 was searched for all instances

of “load.jsecoin.com”. A sample of the output is included in listing 4.5. The numerical values

following “load” are those of user accounts.
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Listing 4.5: JSECoin initialisation code sample

1 https://load.jsecoin.com/load/108434/gold-indian.pro/gold/0/

2 https://load.jsecoin.com/load/108441/thejapanesesex.com/0/0/

3 https://load.jsecoin.com/load/109532/equipejob.com/optionalSubID/0/

4 https://load.jsecoin.com/load/110426/tourtiranabytaxi.com/0/0/

5 https://load.jsecoin.com/load/110849/itintroducer.fi/0/0/

6 https://load.jsecoin.com/load/110859/pornobox.cz/0/0/

7 https://load.jsecoin.com/load/112173/freevideobacks.com/0/0/

8 https://load.jsecoin.com/load/112173/livewallpaper.net/0/0/

9 https://load.jsecoin.com/load/112173/mywebprice.net/0/0/

10 https://load.jsecoin.com/load/112173/redboxjobs.com/0/0/

Analysis of the collected HTML source code revealed 376 unique account numbers. The

top 5 user account numbers and their noted number of occurences in the HTML source code is

displayed in table 4.10.

Table 4.10: Top 5 JSECoin user account prevalence

Rank Account Number Account Number Occurrences

1 15838 228

2 112173 8

3 274 6

4 12971 6

5 57168 6

Analysis of the user account ranked first with a count of 228 occurences revealed that all

sites were hosted on the same server. That being the server with IP address 81.231.232.16, as

illustrated in figure 4.7. Each site hosted on 81.231.232.16 was configured with an identical

landing page offering the domain name for sale. An example of a site hosted on 81.231.232.16 is

displayed in figure 4.16. The landing page includes the embedded JSECoin mining initialisation

script, an advertising banner and an affiliate link to a Bitcoin exchange. It is apparent that the

webmaster is attempting to diversify the monetisation strategy of each site on the server via a

combination of three differing mechanisms.
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Figure 4.16: 81.231.232.16 landing page example

4.7.1 JSECoin financial analysis

In order to determine to ascertain how much those implementing the jsecoin.com script were

earning and whether the income correlated to the sites Alexa ranking, access to the ledger

and account balances for JSECoin users was required. A JSECoin API key was obtained via

registration on https://platform.jsecoin.com/. The JSECoin developer API provides access

to user account balances via the endpoint in the listing 4.6.

Listing 4.6: JSECoin developer API user balance endpoint

1 https://api.jsecoin.com/v1.7/checkuserid/123/auth/ \

2 -H "Content-Type: application/json" \

3 -H "Authorization: <redacted>"

The list of unique JSECoin account ids obtained from the HTML code collection loop in

listing 4.3 was combined with a curl loop to access the API endpoint in listing 4.6. The resulting

code obtained the JSECoin balance for all collected unique JSECoin user ids. The curl loop

used to obtain the balances during October 2019 can be found in listing 4.7.

Listing 4.7: JSECoin developer API user balance curl loop

1 for id in $(cat jsecoin_ids.txt);

2 do curl -v -X GET https://api.jsecoin.com/v1.7/checkuserid/$id/auth/

3 -H "Content-Type: application/json" \

4 -H "Authorization: <redacted>"

5 > jsecoin_balances ; done

A sample of the output file containing account balances can be seen in listing 4.8. The
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JSECoin balance values equate to 0,09 and 32,79 US Dollars respectively.

Listing 4.8: JSECoin account balance output file

1 {

2 "success": 1,

3 "uid": 101497,

4 "publicKey": "0459c3035ad3eb7698c2e8cb3a5292e97bb72648a3a64393e747

5 ee7962a928e1404931103f6ba2aa7921fc7e939c9c2dad0b1a7e682b1cde921506

6 c1c6e009e293",

7 "balance": 555.17

8 }

9 {

10 "success": 1,

11 "uid": 10210,

12 "publicKey": "04f7aa0e57f3e1427181af55c3c03af54dfb7cd1cd72a667d1d9f

13 cecdd9135d1427302046b8d481c708c066c48e9e76b355cc89bf7a2c0dc1b0d1996

14 324aed2763",

15 "balance": 191763.94541743

16 }

The associated uid and balance fields were extracted for each response and combined into a

single csv file for analysis. The resulting csv file was imported as a dataframe using the Python

Pandas library.

As of the 1st of November 2019, 1 JSECoin was valued at 0,00028006 USD. Analysis of the

376 unique JSECoin user account balances revealed the following details:

• The sum of the combined user balances amounts to 22 647 154 JSECoin, 5795,40 US

Dollars at the quoted exchange rate.

• The average user balance across the 376 unique users ids is 60 232 JSECoin. The average

balance in US dollars equates to 15,40 US Dollars.

• The lowest balance was noted as -42 894 JSECoin. Three user accounts with negative

balances exist within the dataset.

• The highest balance was noted as 93 813 15 JSECoin, that equates to 2475,82 US Dollars.

Table 4.11 details the top five JSECoin user accounts in terms of their counted occurrences

across different websites, with the inclusion of their JSECoin and USD account balances. The
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top five was chosen as opposed to the top 10 due to the low occurrence count of users outside

the top 5.

Table 4.11: Top 5 JSECoin user account prevalence with balances

Rank User account Count JSECoin balance USD balance

1 15838 228 2292 0.55

2 112173 8 -271 -0.06

3 274 6 50485 12.22

4 12971 6 4493 1.89

5 57168 6 100300 26.55

Both tables 4.11 and table 4.12 indicate that user account prevalence does not appear to have

an impact on increasing the user’s JSECoin account balance. In contrast to table 4.11, table 4.12

shows all but one account of the top 10 accounts was noted as having more than one occurrence,

account 7076. All of the remaining top nine accounts in terms of highest balances were counted

only once within the sites listed as including the JSECoin mining script. The following however

must be noted when analysing user account balances associated with JSECoin mining:

• The age of the user account cannot be determined and therefore there could be vast

disparities of mining time between accounts.

• Other sources of JSECoin income may be included within the balances, such as purchasing

of JSECoin.

• JSECoin may have been accumulated and subsequently sold or transferred out from an

account in question.

Analysis of the sites associated with the top 10 user accounts in table 4.13 includes the Pub-

licWWW rank for each of the eleven sites. The PublicWWW ranking of each site was included

in the original during the initial dataset acquisition from PublicWWW. The PublicWWW rank-

ing does not appear to have a notable influence of the underlying user accounts balance. Of the

eleven sites associated with the top user account balances:

• Four of the sites do not have a ranking at all.

• Four of the sites have a ranking higher than 30 million

• Of the three sites with a ranking, the lower the sites ranking (the closer to number 1) the

higher the user account balance.
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Table 4.12: Top 10 JSECoin user account balances

Rank User account Count JSECoin balance USD balance

1 9250 1 9381315 2627.42

2 20490 1 1037387 290.80

3 97582 1 1028446 288.30

4 142434 1 704357 197.44

5 40622 1 680666 195.60

6 54635 1 498712 143.34

7 7076 2 406953 116.97

8 13778 1 358501 103.04

9 83980 1 332111 95.45

10 3431 1 328489 94.41

Table 4.13: Ranking of sites associated with top 10 user accounts by value

Rank User account Domain PublicWWW Rank USD balance

1 9250 thebrandmoneycantbuy.com >30M 2627.42

2 20490 bagsracing.com N\A 290.80

3 97582 agrande.pl >30M 288.30

4 142434 sellingvps.site >30M 197.44

5 40622 csubakka.hu 72725 195.60

6 54635 digitaldredger.com >30M 143.34

7 7076 pokemongotoolkit.com N\A 116.97

langolonerd.it N\A

8 13778 webmailad.com 1784119 103.04

9 83980 tarot-cartas.com 2253724 95.45

10 3431 delphisources.ru N\A 94.41

4.8 Discussion of Results

The data analysis revealed that although Coinhive is no longer operational, it (including Authed-

mine) continues to maintain the largest percentage of discovered cryptomining scripts amongst

searched source code. It’s total percentage has however declined since Rüth et al. (2018) mea-
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sured the prevalence of cryptomining variants in 2018 with the Adblock nocoin list, while Coin-

hive was still operational. The fact that the most prevalent cryptomining script is that of the

now defunct Coinhive is indicative of the decline in popularity of cryptojacking. The fact that

no competitive services have emerged to fill the vacuum left by Coinhive is a clear indicator of

the decline in demand for browser based cryptomining services.

In terms of geographic analysis, the vast majority of systems hosting cryptominig scripts were

geolocated to the United States of America. There were however some outliers whereby some

cryptomining variants had the majority of systems geolocated to Iran and Sweden, these were

feesocrald.com and jsecoin.com respectively, as discussed in Section 4.2. The geographic

analysis revealed that the United States of America remains very much the global centre of

hosting cryptomining scripts. The geographic footprint of hosted cryptomining scripts is there-

fore relatively small in terms of coverage with no widespread international coverage except for

the outliers previously mentioned.

Although most domains were unsurprisingly not categorised according to various domain

categorisation services (due to the transient nature of hosting malicious content), many domains

were identified as having domain categorisations, as per Section 4.3. The majority of these

categorised domains were highlighted as “newly registered” or “parked”, however, porn,sex and

IT related categories accounted for the second largest segment of sites containing cryptomining

scripts. The high volume of sites containing cryptoming scripts categorised as pornographic

indicates a somewhat traditional approach for the hosting of malware\malicious content. The

hosting of porn has the potential to acquire large amounts of browser traffic, coupled with hosted

video or streaming content designed to keep sites users on the site for long periods of time, thus

generating more income via the embedded cryptomining scripts.

While Cloudflare was noted as the Internet Service Provider with the most systems hosting

cryptomining scripts, the IP addresses of the identified systems at Cloudflare were noted as

being on different subnets. Section 4.4 explains that the Internet Service Providers with smaller

numbers of identified systems were more likely to have these systems on related subnets. One

such Internet Service Provider had 102 IP addresses found with cryptomining scripts, all of these

were discovered on the same subnet. The prevalence of Cloudflare as the most widely used ISP

for hosting cryptomining scripts is an indicator that the individuals hosting the cryptomining

scripts are seeking the security and privacy services offered by Cloudflare. The use of Cloudflare

offers a protective layer between the server containing the malicious code and the end user. This
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hides the real IP address of the server hosting the cryptomining code.

Integration with VirusTotal in Section 4.7 showed that the top 10 servers containing the

most cryptomining scripts were present within the VirusTotal dataset. These IP addresses had

previously been recorded as having either hosted or been contacted by previously identified

malware. In some cases up to 12 different malware hashes were associated with a server. These

included both strains that had communicated with the server as well as samples downloaded from

it. This indicates that the most prevalent servers in terms of hosting cryptomining scripts were

previously involved in other nefarious cyber related activities. This correlation between hosted

cryptomining scripts and other kinds of malicious code gives insight into the use of cryptojacking

as an individual element in an ecosystem. It does not appear to be used in isolation by malicious

participants but rather as part of a variety of malicious vectors.

As the largest active cryptomining variant, a detailed analysis on jsecoin.com was per-

formed in Section 4.8. The analysis revealed no direct correlation between the number of sites a

mining account holder runs and the their JSEcoin account balance. An individual user with 228

sites running cryptomining code had a noted balance equating to 0.55 USD. This is in contrast

to the user with the highest JSEcoin balance of 2 627 USD, only having one site linked to their

mining account. This aligns with high volume traffic being a key requirement for accumulating

cryptocurreny through based cryptomining. Numerous low volume traffic sites will not be as

profitable as a single site hosting cryptomining code with high volume traffic.
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Chapter 5

Conclusion

5.1 Introduction

This chapter concludes the research by recapping the work done in the previous chapters. It

further discusses the research objectives and whether or not they were achieved. Finally, the

chapter concludes with the closing statement and discussion around future work in the field that

should be researched.

5.2 Summary of Previous Chapters

• Chapter 2 Provided the relevant background information regarding the basics of cryp-

tocurrency mining as well as the introduction into how the cryptojacking infrastructure

operates. It includes reviews of previous work around cryptojacking prevalence as well as

technologies around cryptojacking detection and prevention.

• Chapter 3 Discusses the acquisition of the initial dataset as well as the steps and require-

ments required to enrich it with the necessary data. Theses steps are documented and

illustrated resulting in the enriched dataset required for the analysis.

• Chapter 4 Details the analysis process whereby the enriched dataset is processed us-

ing various data analysis tools. The output of the analysis is discussed and interpreted

accordingly.

5.3 Review of Research Objectives

The research objectives for this paper were declared in section 1.6. These objectives are further

discussed in this section to determine whether each of the individual objectives were achieved
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or not.

• How prevalent is illicit cryptomining throughout the Internet ? This question was suf-

ficiently answered by the research. Section 4.1 details the prevalence of all encountered

mining variants.

• Which cryptocurrencies are preferred for cryptojacking ? This was question was sufficiently

answered. Sections 4.1 and 4.7 illustrate the top cryptocurrencies in use as well as the

financial viability of the most widely used current cryptocurrency.

• Which Internet Service Providers and countries contain the most servers hosting crypto-

mining websites ? This question was sufficiently answered. Sections 4.1 and 4.3 provide

the context into which ISP’s and countries are most prevalent for hosting cryptomining

scripts.

5.4 Closing Statement

The research conducted revealed that cryptojacking remains highly prevalent on the Internet

today. Thousands of websites, hosted around the world are hosting websites with various cryp-

tomining scripts hidden within their source code. These scripts illicitly mine cryptocurrencies

for account holders by utilising the web user’s computer resources. In most cases the web user

is totally unaware of this process taking place. The research methodology should be continu-

ally repeated to continuously monitor the prevalence and trends of illicit cryptojacking on the

Internet.

Despite the closure of the largest player in the browser based Monero mining infrastructure,

cryptojacking remains widespread. The closure of Coinhive has not brought an end to crpy-

tojacking but instead opened the market for new cryptographic currencies offering the means

to mine in-browser. While block lists are continually updated to aide in the detection of site

hosting mining scripts, their prevalence remains widespread. Operationally, both end users and

organisations need to be cognisant of the cryptomining threat and look to utilise technology

built to detect and counter cryptomining, as previously discussed in Section 2.8.4.

5.5 Future Work

There is much scope for future work and development in the area of cryptojacking analysis:
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The methods in this research should be expanded upon to include the monitoring and discov-

ery of Web Assembly cryptojacking being used on the Internet, previously discussed in Section

2.8.2.

Further analysis in the comparison of consensual cryptomining versus banner advertisements

on websites should be conducted. This serves as a means to determine the validity of consensual

cryptomining as a legitimate form of web based revenue, introduced in Section 2.4. Whether

current detection and mitigation solutions are effective or not is a suggested area for further

research as well as the categorisations of domains primarily used by websites hosting embedded

cryptojacking code.
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