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ABSTRACT 

Visualisation in the mathematics classroom has its own pedagogical value and plays a significant 

role in developing mathematical intuition, thought and ideas. Dynamic visualisation possibilities 

of current digital technologies afford new ways of teaching and learning mathematics. The freely 

available GeoGebra software package is highly interactive and makes use of powerful features to 

create objects that are dynamic, and which can be moved around on the computer screen for 

mathematical exploration. This research study was conceptualised within the GeoGebra Literacy 

Initiative Project (GLIP) – an ICT teacher development project in Mthatha in the Eastern Cape, 

South Africa. The focus of this study was on how GeoGebra could be used as a teaching tool by 

harnessing its powerful visualisation capacity. In the study, selected GLIP teachers collaboratively 

developed GeoGebra applets, then implemented and evaluated them. The research methodology 

took the form of action research cycles in which the design, implementation and evaluation of 

successive applets determined the data gathering and analysis process. My data consisted mainly 

of recorded observations and reflective interviews. The underlying theoretical foundation of this 

study lies in constructivism, which aligned well with the conceptual and analytical framework of 

Kilpatrick et al.’s (2001) description of teaching proficiency. 

An in-depth analysis of my classroom observations resulted in multiple narratives that illuminated 

how teachers harnessed the visualisation capabilities inherent in the software. My findings showed 

that dynamic visualisation and interactivity afforded by the use of technology are key enabling 

factors for teachers to enhance the visualisation of mathematical concepts. My analysis across 

participants also showed that technical difficulties often compromised the use of technology in the 

teaching of mathematics. The significance of this research is its contribution to the ongoing 

deliberations of visualisation and utilisation of technological resources, particularly through the 

empowerment of a community of teachers.  The findings recognised that the integration of 

technology required appropriate training, proper planning and continuous support and resources 

for the teaching of mathematics. This action research provided insightful information on 

integrating Dynamic Geometry Software (DGS) tools in mathematics classrooms that could be 

useful to teachers and curriculum planners.  

Keywords: Dynamic Geometry Software, Visualisation, Mathematical Teaching Proficiency, 

Constructivism.   
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CHAPTER ONE 

1 INTRODUCTION 

 

1.1 INTRODUCTION TO THE RESEARCH  

The ever-growing use of technology in all realms of life has also affected teaching styles around 

the globe. Research shows that ICT1 can have a positive influence on the teaching of mathematics , 

and has the potential for conceptually enabling many children to see and access a variety of 

mathematical ideas (Jones, 2000; Keong, Horani & Daniel, 2005).  

Alsina and Nelsen (2006, p. 121) argue that the interactive possibilities of technology may foster 

rich constructions of mathematical concepts and develop visual thinking.  Dynamic Geometric 

Software (DGS) is a technological tool that provides an opportunity for discovery and exploration, 

in particular opening up new possibilities for visual experiences in mathematics teaching (and 

learning). Alsina and Nelsen (2006) also suggest that visualisation in the classroom has its own 

pedagogical values. In the heuristic of mathematical discovery, internal visualisation (such as 

imagination and drawing pictures in the mind) and external visualisation (such as making use of 

sketches and drawings) plays a major role in developing intuition and problem-solving skills.   

The purpose of this research study is to: 

• analyse how teachers make use of technology-aided visualisation for effective teaching; 

• analyse the advantages and weaknesses of using DGS in the teaching and learning of  

mathematics; 

• interpret, through elements of an action research approach, the pedagogical practices and 

instructional fluencies of selected teachers when they employ visual features of 

technological tools in a constructivist classroom;  

 
1. I use the acronym ICT (Information and Communication Technology) referring to both hardware and software of 
computer technology.  
I use the word ‘‘technology’’ and computer technology synonymously with the same meaning.  
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• contribute to the growth of a community of proactive teachers in Mthatha collaborating in 

building ICT resources (applets), aligned with the South African curriculum content, within 

the context of a teacher intervention programme named GLIP. 

This research study analyses how DGS can enhance teaching by exploiting the power of 

visualisation in a constructivist classroom. The research study also examines critical aspects of 

this software that limits the usage of visualisation in the mathematics classroom. 

1.2 THE CONTEXT OF THE RESEARCH STUDY  

The National Council of Teachers of Mathematics (NCTM) (2000) recognises that “[t]echnology 

is essential in teaching and learning mathematics; it influences the mathematics that is taught and 

enhances students’ learning” (p. 24). Digital technologies afford new ways of teaching and 

learning mathematics. Besides the computational ability of ICT tools enabling teachers and 

learners to easily execute routine procedures, it also allows teachers to foster a learning 

environment for rich conceptual understanding in mathematics.  

The South African Department of Basic Education (DBE) Curriculum and Assessment Policy 

Statement [CAPS] (2011) identifies mathematics as a priority subject, as “it helps to develop 

mental processes that enhance logical and critical thinking” (p. 8). Mathematical problem solving 

also “enables us to understand the world around us”.  The DBE (2011) has implemented ICT based 

teaching and learning as part of the National Strategy of MST (Mathematics, Science and 

Technology). The Ministerial Committee (2013, p. 11) however reports that the Eastern Cape 

Province faces a serious shortage of qualified and proficient teachers who should be implementing 

this strategy, particularly in the mathematics classroom.  Further, the Ministerial Committee (2013) 

suggests that ICT resources in schools are not adequate, and where available, they are not used to 

their full potential.  It is thus of particular significance that this study speaks to this policy.  This 

research study, with its teacher intervention programme, will hopefully provide significant input 

into how teachers can harness interesting ICT resources for proficient teaching in mathematics.  

1.2.1 GLIP – GeoGebra Literacy Initiative Project 

GLIP is a teacher development project explicitly designed for interested teachers to use GeoGebra, 

a dynamic geometry software, as a teaching and learning tool for mathematics. GeoGebra is an 

open-source program that is freely available to anyone for the teaching and learning of 



3 
 

mathematics. GLIP trains teachers to not only use GeoGebra, but also to harness its interactive 

capacity to develop tailor-made applets for their teaching. Applets are small programs written in 

Java that can be easily embedded in web pages. Thus, with internet connectivity, teachers and 

learners can access these applets at any time and in any place.  

My fellow researcher and I drive the GLIP with the support of the NRF SARChI Chair in 

Mathematics Education at Rhodes University. We were also involved in training the GLIP teachers 

in GeoGebra skills. The project was launched in November 2015 with the participation of twelve 

mathematics teachers from one school in Mthatha, Eastern Cape.  

There were two phases in the GLIP initiative.  Phase 1 involved basic GeoGebra training of 

teachers and their learners while Phase 2 focussed particularly on the use of the GeoGebra in 

classrooms. The first phase of GLIP consisted of introductory training in GeoGebra. This training 

helped teachers to familiarise themselves with the software. During this phase, we encouraged the 

teachers to explore and play with different options available in GeoGebra to realise and appreciate 

its potential in mathematics classrooms. In Phase 1, teachers were introduced to existing applets 

and were encouraged to use them. Teachers also reflected on how they could use these applets in 

their classrooms. After this, in Phase 2, we trained teachers how to develop applets. The applets 

were then piloted and implemented in the classroom for learner engagement and exploration. We 

also trained learners in this phase before the teachers started using them in classrooms.  

The training materials for the first phase of this workshop were adapted from the website 

www.geogebra.org, downloaded on the 26th August 2015. We obtained the consent of Markus 

Hohenwarter (the founder of GeoGebra) to adapt and use these for our training purposes.  

The second phase consisted of the design and implementation of applets in classrooms, involving 

several cycles. In this phase, the participating teachers started developing and using GeoGebra 

applets in their classrooms. The development of these applets determined the sequence of the GLIP 

cycles. A GLIP cycle commenced with the selection of a topic or sub-topic, determined by the 

annual teaching plan. The next step of the cycle was the planning of pedagogical strategies to be 

considered while designing the applet. The teachers brainstormed on how to teach using the 

GeoGebra technology. One or two teachers developed the applet and drove a discussion about the 

applet. The applet would then be modified whenever required. Once the applet was developed, it 

was used by all the participant teachers in their classrooms. After teaching with applets, the 
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teachers would again come together to reflect on and evaluate their lessons. This reflection 

informed the development of the next cycle of applets. The flow of development and deployment 

of applets is discussed further under data collection, Section 3.4.1 (p. 60).   

This research process for this thesis ran parallel to the second phase of GLIP. GLIP was thus my 

empirical field. After the training in Phase 1, I assumed the role of a participant in the GLIP. 

My specific research focus was on the teachers implementing these applets, while my fellow 

researcher focussed on the learners as they engaged with these applets. Both studies foregrounded 

the harnessing of the visualisation opportunities of these applets, firstly, in the context of learning 

(my fellow researcher’s study) and, secondly, in the context of teaching (the focus of my study).  

The entire GLIP project plan is available on the Rhodes University website 

https://www.ru.ac.za/mathsedchair/communitydevelopment/. 

1.3 CONCEPTUAL LANDSCAPE – VISUALISATION 

This study focusses on the role of visualisation in teaching and learning mathematics through ICT, 

in particular on the use of GeoGebra. Visualisation is a critical aspect of any mathematical activity 

(Arcavi, 2003; Duval, 1999; Guzmán, 2002). Many mathematical ideas, such as number operations 

and pattern generalisation, are born from concrete and visualisable situations. Presmeg (1986a) 

recommends that “when a topic is first taught, a visual representation often aids understanding”(p. 

302)  . The popular “input-output diagram” that many teachers use in teaching functions is an 

example of how visualisation can contribute to the illumination and understanding of a 

mathematical concept, in this case, a function. Arcavi (2003) emphasises that the visual 

representation of information in a graph, for example, enables us to comprehend a scenario or 

relationship between two processes without reading sequentially and logically printed words.  

Nevertheless, Presmeg (2014, p. 153) warns that “visualization is not self-explanatory and is very 

important for teachers.” Guzmán (2002) concurs and cautions that mathematical images need to 

be interpreted and understood. The teacher plays a vital role in mediating mathematical meaning 

to its visual representation. Teachers should guide their learners to the underlying mathematical 

meanings contained in a given representation. The proper use of visualisation needs training in 

order to illustrate and mediate whole mathematical structures.  
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Some learners may attach irrelevant details to the visual images and do not necessarily see what 

teachers want them to see (Arcavi, 2003; Presmeg, 1986b). They face the difficulty of identifying 

the abstract relationships where vague images obscure mathematical meanings and they remain 

tied to the irrelevant details in the concrete imagery. My study thus emphasises the importance of 

the pedagogical role of instructions in the learning of mathematical concepts in a visual 

environment. I argue that DGS can play an important role in overcoming such difficulties. Arcavi 

(2003) asserts that technology may assist in developing visualisation skills so that learners can 

better ‘see’ mathematical concepts and ideas, helping to overcome the limitation of visual 

perception.  

I discuss at length a working definition of visualisation in the literature review chapter of this thesis. 

I argue in the next section that ICT can be used effectively to enhance the appreciation of 

mathematical ideas and concepts through its inherent visualisation capacity.  

1.4 TECHNOLOGY – DYNAMIC GEOMETRIC SOFTWARE 

Incorporating educational technology such as ‘dynamic geometry software’ (DGS) in mathematics 

education is gaining traction among researchers and curriculum planners. DGS was developed 

with educational purposes in mind (Ruthven, Hennessy & Deaney, 2008), to support the teaching 

and learning of mathematics (Hoyles & Noss, 2003). DGS is particularly suited to make use of 

other facilities such as dragging and sliding points and lines on the computer screen. These features 

in DGS allow a continuous reconstruction and transformation of figures on the computer screen 

by direct manipulation with the mouse (or by touch on a touchpad). One of the most powerful and 

widely recognized educational components of DGS is visualisation.  

There are many DGS packages available for teaching and learning. This particular research study 

focusses on GeoGebra, which is an open-source dynamic mathematics software that allows 

teachers and learners to use in any way they wish. This software requires only a Java plug-in, and 

therefore virtually runs on any operating system such as Windows, Mac OS or Android. 

Furthermore, the DBE (2013) also recommends the use of GeoGebra as a technological tool for 

teaching and learning mathematics.  

Multiple perspectives in GeoGebra allow the integration of dynamic representations, thus creating 

a conceptually rich learning environment. Therefore, in teaching mathematics, the software 

provides valuable opportunities for accessing and understanding different representations of 
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concepts. For instance, the dynamic visualisation possibilities of the software are made visible 

when a function graph, for example, is dragged around the screen, and the algebraic notation and 

table values change simultaneously and dynamically. Thus, GeoGebra provides a resourceful tool 

for mathematics teachers to integrate mathematical content and pedagogical strategies for fostering 

understanding (Bu et al., 2012, p. 91). Stols and Kriek (2011) also acknowledge that one of the 

potentials of a dynamic learning environment is the ability to focus on interlinked parts of a 

mathematical idea, thus enriching visualisation. 

1.5 TEACHING PROFICIENCY – AN ANALYTICAL FRAMEWORK  

The research study makes use of an adapted analytical model of mathematical teaching proficiency 

proposed by Kilpatrick, Swafford and Findell (2001). Proficiency in teaching is related to 

effectiveness, consistently helping learners to learn worthwhile mathematical content.  Kilpatrick 

et al. (2001) proposed a framework consisting of five interwoven and interdependent strands of 

teaching proficiency. Due to the limited scope of this research, I adapted Kilpatrick et al.’s two 

strands of teaching for mathematical proficiency to analyse teacher practice using DGS tools. They 

are:  

1) Conceptual understanding of core knowledge required in the practice of teaching.  

Kilpatrick et al. (2001) note the following:   

The kinds of knowledge that make a difference in teaching practice and in students’ learning 
are an elaborated, integrated knowledge of mathematics, a knowledge of how students’ 
mathematical understanding develops, and a repertoire of pedagogical practices that take into 
account the mathematics being taught and how students learn it (p. 381).  
 

An integrated and functional grasp of mathematical ideas and concepts is crucial in the teaching 

of mathematics.  A proficient teacher makes use of appropriate resources, including ICT tools, 

which can facilitate this integrated knowledge to develop learners’ mathematical proficiency.  

Kilpatrick et al. (2001) propose that three kinds of knowledge are crucial for teaching school 

mathematics: knowledge of mathematics, knowledge of learners and knowledge of instructional 

practice. Teachers’ mathematical knowledge and their capacity to use it in teaching is crucial in 

developing learner’s mathematical proficiency. Teachers need to know how learners think and be 

aware of their conceptions and misconceptions. 
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2) Instructional fluency in carrying out basic instructional routines.  

The second strand in teaching proficiency is the development of instructional routines. These 

routines, in the context of this study, are grounded in mathematical activity. Teachers, having 

acquired a repertoire of teaching approaches, can readily draw upon them as they interact with 

learners in teaching mathematics. Proficient teachers have a clear vision of the goals of instructions, 

and Kilpatrick et al. (2001) assert:  

They need to be able to use their knowledge flexibly in practice to appraise and adapt 
instructional materials, to represent the content in honest and accessible ways, to plan and 
conduct instruction, and to assess what students are learning. (p. 369) 
 

Many mathematical ideas are abstract and often appear to be rather obscure. Thus, proficiency in 

teaching entails a unique capacity to deconstruct highly abstract mathematical ideas and make 

them visible. Ball and Bass (2000) support the argument that teaching mathematics requires the 

ability to “deconstruct one’s own mathematical knowledge into less polished and final form, where 

elemental components are accessible and visible” (p. 98). 

1.6 RESEARCH PROBLEM AND SETTING  

Technology does however not replace a mathematics teacher. Instead, the teacher plays an 

important role in providing learning opportunities in a technology-rich learning environment. The 

NCTM (2000) emphasises that “[t]he effective use of technology in the mathematics classroom 

depends on the teacher” (p. 25). The effective use of DGS dramatically increases the possibilities 

of teaching mathematics that engages learners.  

Nevertheless, in the literature I find the use of ICT in developed countries or cities either for teacher 

training or for professional development courses (Stols, et al. (2008), Ndlovu et al. (2013).  In 

South Africa, Stols, Mji and Wessels (2008) report on intervention programmes on DGS for in-

service teachers from previously disadvantaged schools in the Pretoria region. They examined 

changes in teachers’ knowledge of geometry when using DGS and found that the perceived 

usefulness of the technology influenced teachers’ beliefs concerning the use of the software. In 

exploring the experiences of mathematics pre-service teachers using DGS, Ndlovu, Wessels and 

de Villiers (2013) reported challenges faced by the participants in their micro-teaching sessions. 

Even though GeoGebra is open-source software and available free of cost, there is little empirical 
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research in South Africa — especially in Eastern Cape — of its efficiency in teaching secondary 

school mathematics. Up to now, little is known about how teachers have used (or are using) DGS 

in actual classrooms in previously disadvantaged communities.   

Ndlovu et al. (2013) also recommend that “[t]eachers working in professional learning 

communities can develop common identities and overcome their lack of confidence if they work 

collaboratively together and constantly engage in reflective practice” (p. 241). In the South African 

context, little research has been conducted on teachers collaboratively developing technological 

resources and then implementing them in classrooms.  

Research by Gueudet and Trouche (2011) with French teachers evidenced that the collective work 

of the teachers contributed to the development of their teaching practices. I concur with them who 

observed that the use of DGS is not so widespread in schools.  Gueudet and Trouche (2011) say 

that “this use appears quite complex to a number of teachers, and the ‘ordinary’ teacher training 

programme seems helpless to change this situation” (p. 399). They addressed these issues by 

putting forward the notion of ‘teachers empowering teachers’, aiming to foster the use of 

technology, particularly DGS, in mathematics classrooms. They conceptualised collaborative 

work on developing ICT resources as a way of teacher training in technology., This has inspired 

my work within the GLIP community in empowering teachers to make use of DGS in their 

mathematics classrooms and conduct this research project. GLIP envisages the collaborative 

engagement among teachers as a way forward in closing the gap between having access to 

technology and adapting it for effective and practical use in mathematics classrooms. Thus, it is 

important to critically look at ways of integrating the use of DGS within classroom practice, and 

then analyse how teaching takes place. 

The overall goal of this research is to investigate whether and how dynamic software-aided 

visualisation can enhance the teaching of Grade 11 mathematics. 

In pursuance of this goal, the following specific research questions guided the study: 

 How can Dynamic Geometry Software such as GeoGebra be used as a visualisation tool 

to teach Grade 11 mathematics? 

 What enabling and constraining factors do Grade 11 teachers encounter when using 

GeoGebra as a visualisation tool to teach Grade 11 mathematics? 
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1.6.1 Significance of the research  

This action research study involves “teachers working together to improve educational practices” 

(Mertler, 2017). The significance of the study is to empower teachers with the dynamic 

mathematics software GeoGebra and enable them to incorporate its powerful visualisation 

capacity in their teaching of mathematics. In the GLIP, members generate new applets or modify 

available applets for teaching specific mathematical content. These applets are created in 

collaboration with all the teachers in GLIP. The teachers in GLIP brainstorm on innovative 

teaching techniques using these applets. During the implementation stage in the GLIP, my fellow 

researcher focussed his research on learners’ interactions with these GeoGebra applets, while I 

explored how teachers used GeoGebra as a visualisation tool in enhancing teaching proficiency. 

In the process of this study, a community of proactive teachers was formed, for creating and 

sharing applets relevant to the South African context. It is envisaged that this community will 

substantially contribute GeoGebra applets to the existing pool of online resources. I argue in this 

thesis that the teaching strategies using applets generated through my action research cycles, 

including implementation and reflection of instructional methods using ICT, will enrich the 

community of teaching practice. This research is a contribution to teacher training and teacher 

development programmes through effective integration of ICT into the mathematics classroom.  

Research (Cuban et al., 2001; Hohenwarter & Lavicza, 2007) indicates that despite the numerous 

benefits of using ICT in mathematics education, the process of embedding ICT in classrooms is 

slow and complicated. Ensuring access only to technology is insufficient for the successful 

integration of technology into teaching and learning mathematics. Access needs to be accompanied 

by meaningful teacher support and mentoring. This is because teachers often feel that their skills 

and knowledge are limited or inadequate, and thus often refrain from using technology in their 

teaching (Hennessy et al., 2005; Stols et al., 2015). It is therefore critical to be aware of the vital 

role of appropriate professional development programmes, like GLIP, to integrate ICT into 

teaching practices.  

Furthermore, it is hoped that this study speaks to the curriculum designers and policymakers who 

need to be informed of the importance and relevance of incorporating ICT as a pedagogical tool, 

in particular GeoGebra, into teacher in-service training courses.  
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Through this project, the participating teachers are empowered to use technology in teaching and 

learning mathematics. The research study thus contributes to an improved understanding of 

collaborative engagement among teachers in the context of using ICT as a teaching tool.    

1.7 CONSTRUCTIVISM - THEORETICAL FRAMEWORK 

A constructivist theoretical perspective informs this research study. There is a significant amount 

of research on the use of computer tools within a constructivist perspective (Bu et al., 2012; Hoyles 

& Noss, 2003). Technological environments can bring about pedagogical changes that involve 

practical application of new materials and methods. From a constructivist perspective, teachers 

design instructional activities to engage learners in doing things and as well as in thinking about 

what they are doing. Little emphasis is placed on transmitting information and more on developing 

learners’ understanding of concepts and their skills. Thus, the constructivist approach aligns well 

with teaching with ICT technologies as it requires hands-on teaching and learning strategies, where 

the teacher and learner are actively engaged in constructing knowledge. This approach underpins 

both the intervention in this study and assumptions about teaching proficiency. Furthermore, DGS 

is a powerful teaching and learning medium and appears to create opportunities for creative 

thinking (Stols & Kriek, 2011). 

In Chapter Two, I unpack and discuss more on each of these four perspectives, namely 

Visualisation, Technology, Teaching Proficiency and Constructivism.     

1.8 METHODOLOGY  

This research study employs a qualitative approach to data analysis and is oriented within the 

interpretive research paradigm. The interpretive paradigm enabled a rich understanding of 

situations (classroom and planning) where teachers utilised their teaching and technological skills 

and made decisions accordingly to understand their practices in a technology-based classroom.  

This study aimed ultimately to gain insights into the visualisation process in building mathematical 

ideas when teachers used co-developed applets in classrooms.  

This research also has elements of an action research process. The data collection and analysis 

occurred in three GLIP cycles. A variety of data collection techniques were utilised during the 

process – audio-video recordings, stimulated reflective interviews and field notes. The data were 

analysed with specific reference to a framework of teaching proficiency grounded in the Kilpatrick 
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et al. (2001) analytical framework. I found this model useful for analysing my data as it builds on 

several dimensions of general pedagogical models of teaching practice. This analysis process is 

presented in a sequence of vignettes that serve to characterise multiple perspectives of the research. 

A more detailed description of the research methodology is provided in Chapter Three.  

1.9 STRUCTURE OF THE THESIS 

There are seven chapters in this thesis, including this chapter.  

Chapter Two: Literature Review  

This chapter provides the conceptual and theoretical frameworks that underpin my research study. 

Firstly, several pertinent issues related to the conceptual background of visualisation in teaching 

and learning of mathematics are examined. This leads to the discussion on the role of technology 

and its visualisation capabilities in mathematics classrooms. Thirdly, I discuss the fundamental 

concepts of Kilpatrick et al.’s (2001) framework of mathematical teaching proficiency that form 

the analytical framework of my study. I conclude the chapter with a discussion on the theory of 

constructivism.   

Chapter Three: Methodology  

Chapter Three provides a detailed discussion of the action research process that was used in this 

study. Methods of data collection such as classroom observation and stimulated recall interviews 

are described. I then examine the methods of data analysis and discuss strategies to enhance the 

validity and reliability of the research study. I address ethical considerations that pertain to this 

research. The chapter concludes by examining some of the challenges that arose during the data 

collection process.  

Chapter Four, Five and Six: Analysis of teaching using DGS  

These three chapters of similar structure constitute my analysis of data for each mathematical topic 

taught. I briefly discuss the planning and designing of the applets and the lesson. I then analyse 

participants’ engagements with the co-developed applets and with the learners, by employing my 

analytical framework which I adapted from the literature. Thereafter, I present the findings 

concerning the research questions for every GLIP cycle. Each chapter concludes with an 

explanation and discussion of the results.  
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Chapter Seven: Conclusion and Implications  

In this concluding chapter, I summarise the findings, consolidating the discussions from the 

previous three chapters together. I examine issues and limitations and propose recommendations 

from the research. I also discuss the contributions to the field and suggest directions for future 

research.  
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CHAPTER TWO 

2 LITERATURE REVIEW 

2.1 INTRODUCTION  

In this chapter, I discuss the conceptual and theoretical frameworks that underpin my research 

study. Firstly, the conceptual background of visualisation and its relevance in teaching and learning 

are examined. Secondly, the role of technology and its effective use in mathematics classrooms is 

discussed. Thirdly, the fundamental concepts of Kilpatrick et al.’s (2001) framework of 

mathematical proficiency that forms the analytical framework of my study are deliberated upon. 

Finally, the theory of constructivism is characterised within the context of visualisation in a 

technological classroom. Refer to Figure 2.1 below.      

 

Figure 2.1:  Conceptual and theoretical frameworks 
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2.2 CONCEPTUAL LANDSCAPE – VISUALISATION 

This study focusses on the role of visualisation in teaching and learning mathematics through ICT, 

in particular, the use of GeoGebra. The importance of visualisation is gathering momentum among 

teachers and researchers.  

2.2.1 What is Visualisation?  

A Chinese proverb says, “a picture is worth ten thousand words”. Arcavi (2003) emphasises that 

the visual representation of information in a graph, for example, enables us to comprehend a 

scenario or relationship between two processes without reading sequentially and logically printed 

words.  He also sees mathematics as a subject which represents real-world scenarios, many of 

which appear to be visual. Mathematics makes use of a variety of visual imagery.  

2.2.1.1 Visual Imagery  

Presmeg (1986a)  defined visual imagery as a mental schema in the presence or absence of an 

object. For Presmeg, visualisation includes processes of constructing and transforming both visual 

mental imagery and all of the inscriptions of a spatial nature that may be implicated in doing 

mathematics. The ability to transform visual images mentally can be enhanced by external visual 

support (Dreyfus, 1993). Visualisation entails the coherent handling of an internal visual image 

and an external representation corresponding to the mathematical structure. However, Guzmán 

(2002) warns that “the degree of correspondence between the mathematical situation and the 

concrete way of representation, can be more or less closed, natural, symbolic, even more or less 

personal and perhaps incommunicable” (p. 5). Dreyfus (1993) surmises that when the images are 

associated with correct interpretations,  “it helps to structure and solve problems specifically and 

knowledge in general” (p. 10). Kosslyn and Koeing (1992, p. 148) contend that “[m]any of the 

uses of imagery in reasoning involve anticipating the consequences of an action or event, which 

rely on our ability to transform patterns in our images". Transforming representations implies a 

new perspective by rotation, translation, compression or even folding the image. Teaching about 

visual and spatial thinking is significant as it supports mathematical reasoning.  The role of imagery 

in problem solving is also highlighted in the works of Krutetskii (1976),  Presmeg (1986a) and 

Presmeg and Balderas-Cañas (2001). 
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In his study, Kurtetskii (1976) found that in problem-solving, pupils who lack the ability to use 

visual images, instead “use a harder and more complicated logical-analytical method of solution 

when relying on an image would give a much simpler solution” (p. 317).  A visual-pictorial 

approach to solving problems is a powerful tool when engaging with mathematical ideas and 

reasoning. In her study with 54 learners, Presmeg (1986b) found that the majority of her learners 

used mnemonic functions of imagery.  One form of memory imagery which was found to be 

particularly useful was the imagery of formulae – in the notebook, textbook or chalkboard. Vivid 

imagery, for instance a ‘fan diagram’ of trigonometric ratios of special angles 0°, 30°, 45°, 60° and 

90°, has mnemonic advantages in learning mathematics. In their research, Presmeg and Balderas-

Cañas (2001) reveal that the use of ‘pattern imagery’ and ‘dynamic imagery’ were effective in the 

learning of mathematics. Presmeg (2006) suggests imagery that serves an abstract function 

stripped of concrete details, significantly facilitates mathematical generalisation. Though visual 

imagery has potential strengths, Presmeg warns that ‘visualisation is not self-explanatory and is 

very important for teachers.’  

Lean and Clements (1981), agreeing with  Hebb (1972), define visual imagery as “the occurrence 

of mental activity corresponding to the perception of an object, but when the object is not present 

to the sense organ” (p. 267). They emphasise the significance of visual imagery in teaching and 

learning mathematics, by stating that “many highly original and significant creations of the human 

mind have been largely the result of nonverbal mental representations (mainly visual imagery)”. 

According to Lean and Clements (1981), mathematical ability generally comprises of general 

intelligence, visualisation and spatial ability to generate and formulate mental images. They 

distinguished the ability to form ‘memory’ images and the ability to form ‘abstract’ images, and if 

both these abilities exist, then the flexibility to switch between them (visual vs abstract), could be 

an essential factor in solving mathematical problems.   

2.2.1.2 Defining Visualisation 

Arcavi (2003) suggests that visualisation offers a method of seeing the unseen. For example, a 

graphical representation of tabular data helps us to see and understand some broad features of the 

data.  A graph assists us in visualising a particular mathematical relationship. It is crucial, however, 

to understand that visualisation as a process does not exclude the process of verbalisation. To the 

contrary, the two processes may well complement each other, although the focus of this study is 

on visualisation. 
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For the purpose of this study, the following definition of visualisation by Arcavi (2003) is adopted:  

Visualization is the ability, the process and the product of creation, interpretation, use of and 
reflection upon pictures, images, diagrams, in our minds, on paper or with technological 
tools, with the purpose of depicting and communicating information, thinking about and 
developing previously unknown ideas and advancing understandings. (p. 217) 

 

Duval (1999) observes that visual perception is complex, and at times, perplexing. Although we 

live in a three-dimensional world, many diagrammatic representations and images appear to be 

two dimensional, i.e. we can only see one side of an object.  For a complete understanding of the 

object, the observer should ‘move around’ the object and visualise the other sides of the object. In 

my experience, many of my learners find this type of visualisation difficult. Visual perception 

needs exploration through physical movements, whereas visualisation can fully comprehend the 

object at once. According to Duval “understanding involves grasping the whole structure and there 

is no understanding without visualisation” (p. 13).   

2.2.2 Visual Literacy  

Visual literacy (VL) is more than seeing images: it is the process of attributing meaning to the 

perceived images. Vermeersch and Vandenbroucke (2015) consider visual literacy as “a thinking 

process, one that implies specific cognitive actions like interpretation and reflection, understanding 

and comprehension, awareness,… “(p. 112). This concerns the use of perceived images with the 

intention of making something new out of that image information. It is a matter of visualising new 

images or reconstructing existing images. From a theoretical perspective, visual literacy 

“incorporates the philosophical, psychological, and physiological aspects of learning” (Avgerinou 

& Pettersson, 2011, p. 3). Acknowledging VL as a skill or an ability, Avgerinou and Pettersson 

indicate that critical viewing and thinking, imaging, visualising, inferring, constructing meaning 

and communicating must be learned for true comprehension. Thus, we can infer from the above 

arguments that VL, in a broader sense, resonates with Arcavi’s (2003) definition of visualisation 

in mathematics.     

A recent research study published by the National Research Council (US) (2006) believes that 

spatial thinking is a fundamental and necessary mode of thought applicable throughout  a life span 

in everyday life, in work situations, and science. Furthermore, this study recommends that we must 

foster a generation that is visually and spatially literate. While visual and spatial thinking is central 
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to mathematics and science, it is a “fundamental process skill that transcends the bounds of 

particular disciplines” (p. 134).   

Presmeg and Duval, who are researchers of visualisation, surmise that visualisation can be 

developed and taught in classrooms. Avgerinou and Pettersson (2011) concur: “  … VL skills are 

(a) learnable, (b) teachable, and (c) capable of development and improvement” (p. 4). Duval (1999, 

p. 14) argued that “visualisation (in mathematics) involves grasping directly the whole 

configuration of relations and in discriminating what is relevant in it.” However, Vermeersch and 

Vandenbroucke (2015) suggest that “[v]isual perception, like seeing the different graphic elements 

of an image on a canvas, needs training” (p. 112).    

2.2.3 Visualisation in Mathematics  

Mathematical concepts are rich in visual representations. Diagrams frequently accompany 

mathematical thinking  (Krutetskii, 1976).  In order to solve mathematical problems, one should 

perceive and use clear mental pictures. The ability to visualise abstract mathematical ideas helps 

to solve complicated problems quickly and accurately. Krutetskii (1976), however, found in his 

study of Soviet school children, that “mathematically able students have no need for visualising 

objects or patterns even when the mathematical relation ‘suggests’ visual concept” (p. 317). 

On the other hand, Guzmán (2002) considers visualisation to be a powerful communication and 

learning tool.  He argues that mathematical activities like analysing a problem, problem-solving, 

demonstration of a problem and handling theorems involve some form of visual activity. Guzmán 

further argues that “mathematical concepts, ideas, methods, have a great richness of visual 

relationships that are intuitively representable in a variety of ways” (p. 3). He emphasises that 

using different visual images to analyse, differentiate and manipulate concepts, enables one to 

solve problems in a versatile manner. Visualisation is therefore useful in teaching and learning 

mathematics. Underlying mathematical ideas are born from concrete and visualisable situations, 

because visualisation is a critical aspect in mathematical activity through which one can explore 

different structures of concrete reality. The initial perceptions of similarities in the real objects or 

situations can guide learners to abstraction and symbolic representation. Thus, for Guzmán (2002), 

visualisation in mathematics is the ability to relate and handle both concrete and corresponding 

abstract objects. Fischbein (1993) echoes that training in visualisation is aimed not only to organise 

data at hand into meaningful structures, but it is also an important factor guiding the analytical 
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development of a solution. Bishop (1980) also concurred on the effects of diagrammatic training 

with learners and showed that it encouraged pupils to visualise the mathematical problems and 

their solutions. 

Duval (2013) states that visualisation is the ability to discriminate what is irrelevant and what is 

relevant in a given context. For example, in Figure 2.2, AE, AF and BC are tangents to a circle. A 

question can be posed on whether the perimeter of the triangle ABC is equal, greater or smaller 

than the sum of the line segments AE and AF (adapted from (Duval, 1999, p. 19)).  

In the first instance, a learner may find it difficult to answer this, since the lengths are not given. 

However, the moment the sub-configuration of BC is considered as two segments, BC = BD + 

DC; it is easy to infer that BD and BE are congruent, by virtue of the behaviour of two tangents 

from a common point. Visualisation lies in discarding the irrelevant segments AB and AC, and 

focussing on the line segments BE and BD as shown in Figure 2.3. Thus BC = BE + CF, and so 

the perimeter of triangle ABC will be equal to the sum of AE and AF. Teachers thus need to 

organise appropriate learning sequences to help learners “to embrace the whole range of variations 

of the conditions of a problem and to bring out the various factors that make them clear” (Duval, 

1999, p. 19).  

 

Figure 2.2: Tangents to a circle 

 

Figure 2.3: Tangents to a circle focuisng on relevant segments 

 

Some topics in higher secondary mathematics need greater visualisation abilities than other topics. 

Consider the following function 𝑓(𝑥) =  𝑥 − 4𝑥 + 3, having the turning points at (2;-1).  If asked 

to find the turning point of 𝑓(𝑥 + 3) − 2, learners typically find a new equation and recalculate 

the turning points algebraically. However, having a clear mental image of the parabola can assist 

in translating the turning point by three units left and two units down, resulting in the point (-1;-
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3).  Although the question had no mention of graphs, strategic use of visualisation can simplify the 

problem and yield appropriate solutions.  Research and my own experience show that the following 

Grade 11 topics are found to be difficult for learners with poor visualisation practices:  

 Sketching of graphs (Lean & Clements, 1981); 

 Interpreting graphs (e.g. find the equation of a given graph, for which value of 𝑥 is 𝑓(𝑥)>0, 

for which value of 𝑥 is 𝑓(𝑥). 𝑔(𝑥) <0);  

 Translation and reflection of graphs;  

 Interpreting two-dimensional impacts of three-dimensional trigonometry/geometry 

situations (angle between two planes) (Lean & Clements, 1981); 

 Interpreting dimensions of three-dimensional geometric solids (to distinguish between 

height (h) and slant height (s). 

2.2.4 The Use of Visualisation in Teaching  

Krutetskii’s (1976) rich and diverse mathematical tasks that include problems on visualisation are 

a valuable resource for teachers. When a teacher does not include visual-pictorial aspects of 

mathematical concepts, it can lead learners to memorise analytic definitions and what Krutetskii 

fears: “apparently results in a certain one-sidedness in their mathematical development” (p. 321).  

Hence, Presmeg (1986a) recommends that “when a topic is first taught, a visual representation 

often aids understanding” (p. 302).  The tree diagrams that we use in probability exercises 

contribute to the understanding of concepts. Such diagrammatic visualisation is essential, for as 

Guzmán (2002) argues “[I]n this kind of visualisation our mental objects and their mutual 

relationships concerning the aspects which are of interest for us are merely represented by 

diagrams that constitute a useful help in our thinking processes” (p. 8)   

Presmeg (1986a) defined mathematical visualisation as “the extent to which a person prefers to 

use visual methods when attempting mathematical problems which may be solved by both visual 

and non-visual methods” (p. 298). She classified individuals concerning mathematical ‘visuality’ 

into three groups – namely non-visualisers, visualisers and a middle group.  It is thus vital for 

teachers to choose their teaching strategies carefully to suit these individual differences.  Invariably, 

teachers face different types (with respect to visuality) of learners in their classes.  Presmeg (2014) 

reveals that visualisers in a class of a nonvisual teacher are like fish out of water, and their learning 
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is compromised. Teachers therefore need to bring different teaching styles into their practice to 

accommodate all learners. I concur with Presmeg (1986a, 2014) that when teachers prefer non-

visual modes of teaching, visual learners encounter difficulties in abstracting and generalising 

mathematical ideas. Hence, teaching and learning are not always effective. Perceiving that learners 

need visual methods in learning, Presmeg and Balderas-Cañas (2001) recommend that teachers 

embed visual methods into their pedagogy. Presmeg (2014) also argues that visual thinking is 

fruitful in promoting creativity. Thus, there is a need for teachers to take advantage of visualisation 

for effective teaching and learning of mathematics. Lean and Clements (1981) also raise the 

following concern: “[w]hich is the best form of instruction for a person who prefers a visual mode 

of response (or, similarly, a verbal-logical mode)?” (p. 270).  

At the beginning of this chapter, I noted that “a picture is worth ten thousand words”, but Guzmán 

(2002) cautions that mathematical images need to be interpreted and understood. The teacher plays 

a vital role in lending mathematical meaning to its visual representation. Students may attach 

irrelevant details to the visual images and do not necessarily see what teachers want them to see 

(Arcavi, 2003; Presmeg, 1986b). As mentioned earlier, ‘visualisation’ is not self-explanatory; 

teachers should guide their students to the underlying mathematical meanings entailed in a given 

representation. Arcavi (2003) suggests that “the competence to disentangle contexts” (p. 234) 

enables us to ‘see the unseen’.  Dörfler (1991) argues that one of the main goals of teaching 

mathematics is to add meanings and concepts to the ‘image schemata’.        

Duval (2013) argues that words can only indicate visual representations of ideal objects.  The 

challenge in teaching, especially geometry, is the predominance of perceptual recognition of 

shapes and objects that blocks out the mathematical requirement of seeing things through words 

or symbolic notations. Duval (2013) contends that “geometrical activity involves at least two 

registers of semiotic representation… the two registers in question are natural language and non-

iconic figures” (p. 32). Thus it is essential to develop coordination between words (language) and 

configuration (visualisation), although this may require extended training. There are two kinds of 

tasks involved in geometric problem-solving. One is recognising the shape or figure, and the other 

is recognising the properties of the shape or figure. Duval surmises that “…visual recognition at a 

glance is the first cognitive condition for solving problems in elementary geometry” (p. 27). It is, 
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therefore, necessary to teach students to focus primarily on the relevant properties for problem-

solving.    

The essence of teaching that promotes the effective use of visualisation in mathematics classrooms 

is in making connections between visual and symbolic representations of the same mathematical 

notion (Presmeg, 2006). Presmeg emphasises that connection making includes bringing in 

relationships between mathematical ideas, making use of multiple representations and prior 

knowledge; and above all, making connections to the real world. One of the key elements of 

proficient teaching is the concept of seeing connections across mathematical topics and across 

grades (Ball et al., 2008; Schoenfeld & Kilpatrick, 2008).  When we make connections between 

mathematics topics and the real world in a classroom, we employ visualisation for effective 

learning. 

The use of multiple representations in classrooms is another strategy to make effective use of 

visualisation.  I believe that a teacher should have a thorough understanding of the use of multiple 

representations in mathematics. Teppo and Heuvel-Panhuizen (2014) propose that there are a 

variety of number line representations that can be employed in the school curriculum; nevertheless, 

each model serves different purposes. For example, a directed number line model supports the 

demonstration of operations with integers, a rational number line supports reasons of the density 

property of numbers. As teachers embed these different models in their classroom activities, Teppo 

and Heuvel-Panhuizen (2014) accentuate that they become “aware of the representational nuances 

and types of meaning that are both explicit and implicit within the contexts of specific number line 

tasks” (p. 56).  

2.2.5 Difficulties in Using Visualisation in Teaching 

According to Presmeg (1986b), when a topic is first taught, a visual presentation often aids 

understanding, but the practice of the procedure or formula may lead to habituation when an image 

is no longer necessary. Nonetheless, students may face difficulties in the generalisation of the 

mathematical ideas when they are unable to combine the concrete details and the abstract objects. 

They remain tied to the irrelevant details in the concrete imagery (Dreyfus, 1993). Aspinwall, 

Shaw and Presmeg (1997) note that “[a]n uncontrollable image, then, is one which is beyond the 

volition of the cognizing individual” (p. 303). Images are ‘uncontrollable’ in the sense that they 
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appear in an individual’s thought irrelevant to the context and can also persist in the face of 

contrary evidence. Aspinwall et al. (1997) demonstrate a case where ‘uncontrollable’ or 

involuntary images obscured meanings in calculus. The student’s difficulty was a result of his 

‘uncontrollable’ image of the graphic representation for parabolas becoming a ‘straight line up’ 

[𝑦 = 𝑥  𝑎𝑛𝑑 𝑦 = 2𝑥]. My experience in the geometry classroom also concurs with this difficulty, 

where learners are unable to identify the angle at the circumference subtended by an arc, thus 

failing to apply the angle at the centre theorem – another case of an ‘uncontrollable’ image of a 

standard diagram. It emphasises the importance of the pedagogical role of graphical instructions 

in the learning of mathematical concepts. I argue that dynamic geometry can play an important 

role in overcoming such difficulties and this will be discussed in detail in the sections below.        

Arcavi (2003) argues that when visualising ‘conceptually rich images’ (p. 235), the cognitive 

demand is high.  The students may have to put effort into switching flexibly between visual 

representations and analytical properties, which is at the core of understanding mathematics 

(Arcavi, 2003; Guzmán, 2002). Besides, students do not rely on visual methods on the grounds 

“that they are not always procedurally ‘safe’” (Arcavi, 2003, p. 235), and hence prefer formal 

analytical methods.   Here I discuss the reasons or factors that affect these difficulties related to 

visualisation. Firstly, the low status accorded to visual images in mathematics classrooms (Arcavi, 

2003; Dreyfus, 1991; Presmeg, 1986b, 2014).  Teachers prefer non-visual methods of teaching and 

learning, as Presmeg (1986a) notes “practice of the procedure or formula may lead to habituation 

when an image is no longer necessary” (p 302). Arcavi (2003) resonates that “many teachers may 

feel that analytic representations, which are sequential 

in nature, seem to be more pedagogically appropriate 

and efficient” (p 236).  The school curriculum 

assessment tasks favour the analytical mode where 

solutions in visual mode are discouraged. When I 

solved the inequality 𝑥 + 3𝑥 − 10 ≤ 0 as a diagram 

of the final solution, the learners asked “Do you think 

we will get full marks for only this diagram?”.  Refer 

to the adjacent Figure 2.4 

 

Figure 2.4:  Graphical solution  
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There is thus evidence that many teachers do not make use of visualisations in mathematics 

classrooms. Secondly, mathematics textbooks subscribe to a verbal-logical argument. Even if there 

are images, these images do not necessarily support the dynamic nature of visualisation (Guzmán, 

2002). I concur with Guzmán, as the textbooks that I use do not support the dynamic nature of 

visualisation. Let me illustrate with an appropriate example: Find the values of ‘𝑘’ for 𝑓(𝑥)  =  𝑘 

have unequal roots where 𝑓(𝑥) can be any cubic graph. One of the solution strategies is to sketch 

the straight line (𝑘– parallel to the 𝑥-axis), look for the intersection points with 𝑓(𝑥) which is a 

cubic graph, and dynamically move the line to visualise the solution. Very infrequently a hint of 

two graphs may be provided along with the answers in the textbooks and study guides.      

Arcavi (2003) asserts that technology may assist in developing visualisation skills so that students 

can better ‘see’ mathematical concepts and ideas, helping to overcome their limitation of visual 

perception. Thus, visualisation can sharpen our understanding. By hearing the description of a 

concept, our imagination creates an image which we attach to the description.  I argue in this study 

that seeing these concepts with the help of ICT technology, for example, could sharpen our 

imaginations and subsequent enjoyment, and develop a better understanding of the concept.  I will 

argue in the next section that ICT technologies can be used effectively to enhance the appreciation 

of mathematical ideas and concepts through their inherent visualisation capacity.  

2.3 TECHNOLOGY - A TEACHING TOOL 

Incorporating technology in mathematics education is gaining traction among researchers and 

curriculum planners. “Technology potentially opens up new observation possibilities for teachers, 

allowing them to focus on students’ investigations and thinking strategies while solving 

mathematical problems” (NCTM, 2000, p. 25). Technology brings in a repository of information 

materials that includes textbooks, audio-video files, online learning websites, simulation software, 

dynamic software and many more, into the classrooms.  These rich resources of information open 

doors for teachers to enhance and reflect on their mathematical teaching practises.  The National 

Curriculum Statement (Curriculum and Assessment Policy Statement [CAPS], 2011) recognises 

the potential that technology offers for curriculum delivery, and this is reflected in the teaching 

guidelines as follows: 

Generate as many graphs as necessary, initially by means of point-by-point plotting, 
supported by available technology, to make and test conjectures and hence generalise the 



24 
 

effects of the parameter which results in a horizontal shift and that which results in a 
horizontal stretch and/or reflection about the 𝑦-axis (p 12).  

  

Technology can enhance learning skills for teachers, as Bu et al. (2012) assert – a technological 

environment provides an opportunity for teachers to learn, reflect and relearn mathematics and 

pedagogical practices.  Technology can transform teaching practices by shifting the focus from 

a teacher-oriented, to a learner-centred classroom environment. 

There is a wealth of research reports that provide empirical evidence to indicate the different 

potentialities of technology (Bhagat & Chang, 2015; Cuban et al., 2001; Mariotti, 2000; Naidoo 

& Govender, 2014). These research papers are, in general, optimistic about the learning benefits 

of technology in mathematics. The identified potentials are: visualisation and stimulation (Arcavi, 

2003; Naidoo & Govender, 2014);   self-confidence and motivation (Cuban et al., 2001; Ruthven 

et al., 2008); and the development of deep understanding (Hollebrands, 2007).  

Kendal and Stacey (2001) maintain that technology can be used ‘functionally’ and ‘pedagogically’ 

in mathematics classrooms. The functional use of technology is to carry out complex and routine 

procedures for solving problems. The pedagogical use is to develop a conceptual understanding of 

mathematical ideas. Sherman (2012) underscores the importance of a teacher to sustain students’ 

mathematical engagement with technological tools. Healy and Hoyles (2001) are concerned about 

the use of technological tools without teacher intervention /instruction for it may  “lead students 

down into mathematical cul-de-sacs from which they can neither progress nor backtrack” (p. 237 ). 

Technology offers students an open world in which they can explore, nevertheless Balacheff and 

Kaput (1996) argue that technology “does not guarantee that specific learning will occur” (p. 483). 

Sherman (2012) concurs that the students’ engagement with the computer may result in the 

formulation of ‘shaky conjectures’. Inevitably, the student may focus on constructed objects or 

representations irrelevant to mathematics (Hoyles & Noss, 2003) and overlook the teacher’s 

intention (Hölzl, 2001). Thus, the role of a teacher in designing a mathematical task is decisive as 

it may have a direct impact on supporting students’ mathematical thinking. Hölzl suggests that in 

a guided discovery setting a teacher helps students to recognise the invariant properties, thus 

learning mathematical concepts by exploring. Teachers can leverage technology to support their 

instructions and illustrate to highlight some mathematical principles. Laborde (2001, p. 289) 
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ascertains  that it is important for teachers to see the  “role of  technology as a way to facilitate the 

making of conjectures rather than a part of solution of tasks.”         

The corpus of research studies on technology is focussed on student interaction with technology 

whereas the teacher dimension is rare (Hennessy, Ruthven & Brindley, 2005; Lagrange et al., 

2003).  The integration of technology into classrooms is a complex process combined with an 

already intricate teaching and learning process (Hennessy et al., 2005; Laborde, 2001).   

The technological innovation aimed to improve teaching techniques entails classroom 

modifications. For these modifications to be implemented, Cuban et al. (2001, p. 816) recognises 

that “few of these reforms noted the workplaces within which teachers laboured, involved teachers 

in the design itself, allocated sufficient resources to develop teachers’ capacity to implement the 

desired changes.” I concur with Hoyles and Noss (2003) and Laborde (2001) that for integrating 

technology into the classroom, tools need to be designed with the teachers and not for the teachers. 

Gueudet and Trouche (2011) recommend a teacher training programme for integrating technology 

where teachers collaboratively design lessons and reflect on feedback from the lesson.  Thus, 

development programmes like GLIP become essential for teachers to integrate technology into 

their teaching methods and broaden their instructional repertoires. 

2.3.1 Dynamic Geometry Software 

The type of educational technology used in this study is called ‘dynamic geometry software’ 

(DGS). Arcavi  (2003) asserts that there is a need for cognitive technologies that help transcend 

the limitations of the mind.  Such 'technologies' are those that use dynamic visual tools to better 

'visualise' mathematical concepts and ideas. DGS was developed with educational purposes in 

mind, providing a setting in which students can construct and experiment with mathematical 

objects and relationships (Ruthven et al., 2008). These systems have become increasingly common 

classroom tools to support the teaching and learning of geometry (Hoyles & Noss, 2003). Key to 

effective DGS is an interface that affords direct manipulation of artefacts that can be dragged 

around the computer screen using a mouse, but keeping its constructed properties and underlying 

mathematical relationships preserved  (Moreno-armella et al., 2008). DGS is particularly suited to 

making use of other facilities such as dragging and sliding points and lines on the computer screen. 

Dragging is a key feature of DGS. It allows a continuous reconstruction of figures on the computer 

screen by direct manipulation with the mouse (or by touch on a touchpad). The interface of DGS 
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provides an opportunity for students to conjecture and generalise by clicking and dragging objects, 

which dynamically re-draws and updates information on the screen (Hölzl, 2001). The system also 

provides feedback that encourages exploration and engagement with the mathematical concept 

(Moreno-armella et al., 2008; Sarama & Clements, 2009).  

Ruthven et al. (2008) argue that DGS helps to produce accurate figures and images, including their 

measurements such as angle and length. Accordingly, it offloads the tedious skill required for 

accurate drawing and measuring and enables students to focus attention on the mathematical 

properties of the constructed objects (Tall, 1993).  In their study, Ruthven et al. (2008) find that 

teachers value dynamic software for its contribution to guide students to discover mathematical 

properties. The following example alludes to the benefits of dynamic software in comparison with 

traditional discourses using static diagrams: in elementary calculus, for example, we teach our 

learners using symbolic notations that at stationary points, the first derivate is zero. The derivate 

of a function is the rate of change of 𝑦 = 𝑓(𝑥) (dependent variable) with respect to 𝑥 (independent 

variable), and is the gradient of the tangent to the function 𝑓 at 𝑥. Being allowed to explore this 

aspect using DGS may arouse the students’ curiosity, inviting mathematical reasoning. We can 

draw a cubic graph and plot two points on the graph. These two points are joined by a straight line, 

and DGS reads its gradient directly. As we drag these points closer to coincide and become a 

tangent to the graph at that point, the gradient of the straight line also changes dynamically. Having 

now established that the first derivative is the gradient of the tangent, we can now use another tool 

in DGS, ‘tangent to the function at a point’. The teacher can now motivate the learners to move 

the point around and focus on the gradient of the tangents at various points, including the turning 

points. This may lead them to formulate that the gradient of the tangent at turning points is zero, 

hence the symbolic notation 𝑓’(𝑥) = 0 , to find stationary points. Here, as Hölzl (2001) asserts, 

“drag mode develops in mutual dependence with the ability to grasp a mathematical situation – a 

learning process that is characterised by different layers of conceptions” (p. 83).  A teacher may 

find difficulty in demonstrating such multiple, dynamic visual representations using static 

diagrams.  By providing appropriate guidance, teachers not only lead students to convincing 

heuristic evidence in computer systems but also help them to understand why the proposition is 

true (de Villiers, 1998). This guided discovery conveys an insight that makes sense to students and 

they feel empowered.      
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2.3.2 GeoGebra as a DGS Tool 

There are many DGS packages available for teaching and learning such as Geometer’s Sketchpad, 

Cabri and GeoGebra (Bu et al., 2010; Ruthven et al., 2008). This study focusses on GeoGebra as 

a dynamic geometric software for two reasons. Firstly, GeoGebra is an open-source dynamic 

mathematics software which means it is available free of charge without any licensing issues. It 

allows teachers and learners to use it in any way they wish.  Secondly, it is a platform-independent 

software which means that it runs on virtually any operating system as it requires only a Java plug-

in.  As observed earlier, the South African Department of Education also recommends the use of 

GeoGebra as a technological tool for teaching and learning mathematics.   

Although this software was developed in the early 21st century to incorporate geometry, algebra 

and calculus, it has now been further developed incorporating other mathematical perspectives 

such as statistics, probability and three-dimensional graphics.  GeoGebra has rapidly gained 

popularity among teachers and researchers around the world, as it is easy to use and combines 

many aspects of different mathematical ideas (Hohenwarter & Lavicza, 2007). Multiple 

perspectives in GeoGebra allow the integration of dynamic representations for a conceptually rich 

learning environment that supports the exploration, construction, and evaluation of mathematical 

models and simulations (Jones et al., 2009).  It provides a resourceful, dynamic learning 

environment for mathematics teachers to integrate mathematical content and pedagogical 

strategies for the purpose of teaching mathematics for understanding (Bu et al., 2012, p. 91). It 

also offers a compelling opportunity for teachers to create interactive learning environments. It 

provides a learning environment where mathematics content and pedagogy are deeply intertwined 

in the practice of mathematics teaching and learning.  

GeoGebra, a non-commercial software package, having the potential to impact teaching and 

learning, has led to the formation of many self-supporting user communities (Hohenwarter & 

Lavicza, 2007). The users of these communities provide and get extensive support and guidance, 

especially to overcome technical and teaching difficulties. The GeoGebra community has a large 

number of international users and developers – from almost 200 countries – developing and 

sharing teaching materials. Bu et al. (2012) observe that participants of the GeoGebra community 

not only actively invent and experiment with new ways of teaching mathematics but are 

themselves learning or relearning mathematics through their applets and manipulatives (which will 
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be deliberated upon in the following section).  The technical advantage is that these applets can be 

easily embedded in a web-based application (Duffin, 2010), because of their small size and ability 

to run on any JavaScript-enabled browser.   GeoGebra applets are available online which can be 

accessed across the world by teachers, learners and researchers alike (GeoGebra, n.d.).  

Tasks in GeoGebra are useful when learners, for instance, are encouraged to uncover the hidden 

relationships (Hölzl & Schäfer, 2013). The interactive nature of dynamic applets have the potential 

to promote students’ understanding, which would have been difficult in a static environment.  With 

the help of GeoGebra, teachers can ask open-ended questions like ‘what-if’ and ‘what-if-not’, 

thereby supporting and guiding students to discover properties themselves. In GeoGebra, there are 

tools available that enable users to construct objects in many different ways.  

For example, the parallel line tool is used to construct parallel lines; the polygon tool is used to 

construct polygons, etcetera. GeoGebra allows the flexibility to enable or disable certain tools in 

a dynamic worksheet.  At one end we can create an applet with no tools available, while at the 

other, students can be given reasonably open-ended problems with tools to construct and solve 

them. Teachers need to consider the pedagogical implications and learning opportunities available 

when setting tasks using GeoGebra. Sherman (2010) suggests that students’ prior mathematical 

knowledge and their skill with GeoGebra must also be looked into when such tasks are given to 

students.  

With GeoGebra, abstract ideas may be reified not only by making connections between the real 

and abstract world, but also between different mathematical concepts.  When engaging with 

GeoGebra, students are able to move between representations fluently with understanding. 

Researchers (Naidoo & Govender, 2014; Ruthven et al., 2008; Sherman, 2010; Stols & Kriek, 

2011) concur that GeoGebra is a powerful teaching and learning tool that can help conceptual 

development and enhance mathematics teaching.  

2.3.3 GeoGebra Applets as Manipulatives and Visualisation Tools 

One of the important features of GeoGebra is that it provides a visual interface to create interactive 

applets. Applets offer a powerful platform for mathematics teachers to develop content-rich 

pedagogical strategies for mathematical instruction. These applets can be integrated into the 

mathematics classroom in the form of virtual manipulatives. Moyer et al. (2002) define virtual 

manipulatives as a web-based, visual, dynamic interactive environment which helps to construct 
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mathematical knowledge.  Virtual manipulatives take the form of applets’, ‘mathlets’, (Durmuş & 

Karakirik, 2006) or ‘dynamic worksheets’. The mere presence of dynamic software does, however, 

not guarantee the acquisition of knowledge. Moyer (2001) argues that teachers play a crucial role 

in creating interactive mathematics environments that provide students with representations that 

enhance thinking. Teachers need to be skilled in working with virtual manipulatives with 

interactive capabilities to facilitate opportunities for constructing knowledge in their classrooms.  

Rivera (2011) confirms that the conceptual content of the visual manipulatives matters as 

individuals need to establish a valid and consistent mapping between the visual representation and 

the corresponding concept. Sarama and Clements (2009, p. 147) argue on affordances of computer 

manipulatives as “embodying the processes children are to develop and internalise as mental 

actions.” The flexibility of virtual manipulatives allows learners to mirror mental ‘actions on 

objects’ thereby develop ‘integrated-concrete knowledge’. Sedig (2009) refers to this flexibility of 

computer representations as ‘malleable’ and ‘interactive’. We have already seen that visualisations 

in mathematics are hidden in the mathematical structures.  Sedig suggests that one of the ways of 

decoding the latent meaning and structures is “adjusting the visualisation to the needs of the users 

is by designing it to be malleable – i.e., interactive” (p. 344) by performing epistemic actions like 

“rearrange and reorganise it, add to it, look at it from different perspectives, focus on and look for 

specific elements within it” (p. 345). In concurrence, Villarreal (2000) suggests that “the computer 

has come to restore the value of the process of visualization in mathematics education” (p.3).  Thus, 

dynamic interactive applets make hidden mathematical properties visible (Arcavi, 2003) , 

providing opportunities for exploring relationships  (Duffin, 2010; Sedig, 2009). We have thus 

seen that GeoGebra applets can facilitate experimentation and hence create an interactive 

environment of ‘learning by doing’. Nevertheless, Sarama and Clements (2009) argue that these 

manipulatives are only useful when used in “comprehensive, well-planned, instructional settings.  

Their physicality is not important—their manipulability and meaningfulness make them 

educationally effective” (p. 148).      

In mathematics, these manipulatives can be used in a wide variety of topics. Figure 2.5 below, a 

typical applet, is an example of a dynamic GeoGebra visualisation that allows teachers to guide 

students to discover the relationship between the angle at the centre of a circle and the angle at the 

circumference of the circle subtended by the same arc𝐵𝐶. The learner can drag the slider 𝛼 to 
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change the size of angle 𝐵𝑂𝐶  and observe what happens to angle 𝐵𝐷𝐶 , hence verifying its 

relationship with angle 𝐵𝑂𝐶.  By engaging with this activity, learners may discover that in spite 

of changing the magnitude of the angles, the relationship between 𝐵𝑂𝐶  and 𝐵𝐷𝐶 is preserved i.e. 

that the angle at the centre of a circle is always twice the angle at the circumference of the circle. 

The above applet can be accessed online at http://ggbm.at/t2Qf2dDV.  Teachers can thus use 

dynamic visualisation features of geometric software to help students formulate mathematical 

ideas through discovery and experimentation (Freiman et al., 2010). The interactive and dynamic 

visualisation capabilities of technological devices may foster rich constructions and develop  visual 

thinking (Alsina & Nelsen, 2006).  The dynamic visual aspects of GeoGebra applets can also 

complement a discourse with a visual demonstration which would have been difficult to convey 

in a traditional manner of text and the static medium of teaching and learning (Gage, 2010).        

Figure 2.5: Angle at the centre applet 

Durmuş and Karakirik (2006) argue that the use of virtual manipulatives not only increase students’ 

conceptual understanding and problem-solving skills but also promotes their positive attitudes 

towards mathematics. Manipulatives can provide ‘concrete experiences’ that focus attention and 

increase motivation. Virtual manipulatives can provide an interactive environment for solving 

problems by making connections between mathematics concepts, operations and the real world. 

Teacher demonstration of manipulatives alone is, however, insufficient for conceptual 

understanding. Learners need to be allowed to work with these manipulatives and discover the 

mathematical concepts and relations themselves. Virtual manipulates are particularly well suited 

for an interactive environment where students can pause, reflect, experiment and solve problems 
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to make connections between mathematical concepts because the devices on which the 

manipulatives are operated can be stopped at any time. It cannot be overemphasised that every 

learner should get an opportunity to engage with manipulatives.  By doing so, they enrich their 

understanding of concepts and relations.  Giving credit to Norman (1993), Durmuş and Karakirik 

(2006, p. ) argue that computers “help us not only to make sense out of what we have experienced 

and what we know but also to compose new knowledge by adding new representations, modifying 

old ones, and comparing the two” (p 3).   

According to Duffin (2010), one the strengths of using applets is that visual representations can be 

linked to help draw attention to the relationships between two representations and thus deepen 

understanding. In a GeoGebra applet, we can link all the forms of an equation of a straight line 

(𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 ; 𝑦 = 𝑚𝑥 + 𝑐 ) and its graph on the same screen.  Thus, it supports and enhances 

the role of visual representations in learning with understanding.  Stols and  Kriek (2011) also 

recognise that one of the potentials of the dynamic environment is the ability to focus on interlinked 

parts of a geometric shape – thus enriching visualisation.    

2.3.4 Limitations of Technology  

2.3.4.1 Limited implementation  

For the majority of teachers, merely providing technology is insufficient for the successful 

integration of technology into their teaching (Cuban et al., 2001). Teachers generally have the 

optimistic attitude that technology-supported teaching is powerful, and that it will promote 

visualisation and student understanding of mathematics. Teachers are generally cautious that, 

“[t]echnology makes mathematics teaching easier” (Gueudet & Trouche, 2011, p. 400). Often they 

feel that their skills and knowledge about technology are limited or inadequate, and may refrain 

from using technology in their teaching (Hennessy et al., 2005; Stols et al., 2015). From my 

observations, many of today’s teachers and students have unlimited access to computers, laptops 

and tablets.  But despite technology becoming increasingly available to teachers, they often do not 

make optimal use of this technology for educational purposes (Stols et al., 2015). In particular, 

Stols et al. find that the use of GeoGebra in South African classrooms is not investigated at all. 

Technological devices are mostly used as for consumer purposes but not often for effective 

teaching and learning purposes. Teachers use them for administrative purposes and monitoring of 

students’ assessment, but not for teaching and learning.  As mentioned earlier, there is no dearth 
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of teaching and learning resources available on the information highway, but the effectiveness of 

these materials is a serious concern. Teachers do not always have the time and expertise to search 

and screen the millions of internet sources for suitable quality materials (Stols et al., 2015).  

2.3.4.2 Software Limitations  

DGS may not be suitable for all tasks, and its use depends on the teacher. Most DGS, including 

GeoGebra, have shortcomings. Berger (2011) warns that “opportunities for learning mathematics 

in a technological environment may be constrained if the design of the task is not appropriate” (p. 

111). Ruthven (2003) finds ‘approximation’ as a shortcoming in DGS, as he contends: “while it is 

possible to specify the degree of rounding with which measures are displayed, this rarely coincides 

exactly with the screen representation of objects” (p. 11). When calculating the area of a triangle, 

the lengths of the altitude and sides are displayed on the screen rounded off by two decimals, but 

the original values are preserved in the system. Consequently, when calculating the area of the 

triangle, the user value often varies from that of the system.   

Another instance where GeoGebra is limited is the plotting of graphs of discontinuous functions 

at a point(s), so  
( )

( )
   is sketched as a parabola without the ‘hole’ at 𝑥 = 1. However, it sketches 

appropriately 
( )

( )
  appropriately. Teachers may be aware of such situations in DGS where 

representations are inconsistent with our knowledge of mathematics. Hence, Berger (2011, p. 112) 

surmises “[i]t is thus desirable that teachers, researchers and task designers critically evaluate the 

affordances and constraints of computer-based tasks before they are implemented in the classroom.”     

A recent research project,  published at MIT by Carter, Greenberg, and Walker (2016)  found in 

their randomised experiment that computer devices can have a substantial negative effect on 

academic performance. This adverse effect may be due to the ineffective use of this technology by 

the teacher. It is thus critical to be aware of the vital role of technology in classrooms and 

appropriate professional development programmes like GLIP. Easily accessible and modifiable 

teaching materials are essential to integrate technology into teaching practices.  

2.4 TEACHING PROFICIENCY 

One of the general aims of the national curriculum of South Africa (Curriculum and Assessment 

Policy Statement [CAPS], 2011) is “[a]ctive and critical learning: encouraging an active and 

critical approach to learning, rather than rote and uncritical learning of given truths”, and 
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specifically the teaching and learning of mathematics aims to develop, “an appreciation of beauty 

and elegance of mathematics”, and “deep conceptual understandings in order to make sense of 

mathematics” (p. 12). Spillane (2000) also agrees that students need to appreciate mathematical 

activity as more than computation. For students to achieve the above-mentioned standards of 

performance, Simon (2001) suggests that “the teacher's role is to guide and afford students' direct 

apprehension of mathematics” (p. 163). In the following section, I will discuss some perspectives 

of proficient teaching approaches offered by different scholars and researchers, that could be used 

to guide teachers’ instructions enabling their students to make sense of mathematics.    

2.4.1 Perspectives of Proficient Teaching  

Teaching mathematics is not doing mathematics in front of the students on the chalkboard, it 

involves additional mathematics knowledge, competencies and skills (Hill, Sleep, Lewis, and Ball,  

2007).  Shulman (1986, 1987) propounded this as ‘pedagogical content knowledge’; Ball et al., 

(2008) refer to as ‘specialised content knowledge’; Ma (2010) offers ‘profound knowledge of 

mathematics’, and Kilpatrick et al. (2001) and Schoenfeld and Kilpatrick (2008) refer to as 

‘mathematical teaching proficiency’.         

For Shulman (1987) the knowledge base of a teacher represents “the blending of content and 

pedagogy into an understanding of how particular topics, problems or issues are organised, 

represented and adapted to the diverse interest and abilities of learners, and presented for 

instruction” (p. 8). Effective teaching takes place when a teacher can transform his or her content 

knowledge into pedagogically powerful teaching strategies. Shulman (1986) distinguishes three 

categories of content knowledge required for teaching: a) subject matter content knowledge; b) 

pedagogical content knowledge; and c) curricular knowledge. He proposes pedagogical content 

knowledge (PCK) as “the particular form of content knowledge that embodies the aspects of 

content most germane to its teachability” (p. 9). It is about representing ideas and formulating 

subject matter to make it comprehensible to high school students.  Here the teacher draws upon a 

variety of instructional approaches like examples, non-examples, manipulatives, simulations, or 

inquiry methods that can lead to the educational outcomes identified by the teacher. An important 

role of a teacher is to probe and provoke students’ creativity. Teaching includes a series of 

activities during which it provides opportunities for learning.  Shulman (1987) argues that a 

knowledge base lies in the capacity of a teacher to understand student representations and to 
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respond to their ideas. Thus, Kilpatrick et al. (2001) argue that what makes teachers proficient is 

the skilled use of knowledge in teaching and learning.     

Ball et al. (2008, p. 398) argue that “Teachers must know rationales for procedures, meanings for 

terms, and explanations for concepts.” Proficient teaching requires a special kind of skill or 

expertise for explaining to the learners what they do and why they do it. Teaching becomes 

effective when representing the meaning of the content that shows what the algorithm means and 

why the algorithm works. Ball et al. (2008) refers to this as ‘mathematical knowledge for teaching’, 

which has been identified, refined and rooted in the works of Shulman on the broader concept of 

content knowledge for teaching. It is the specialised knowledge of mathematics required to carry 

out the teaching of mathematics. Ma (2010, p. 18) agrees that “[s]pecial features of a teacher’s 

subject matter knowledge are derived from the task of promoting student learning.” Ball et al.’s 

(2008) analysis of teachers’ practice indicates that:  

The mathematical knowledge needed for teaching is not less than that needed by other adults. 
In fact, knowledge for teaching must be detailed in ways unnecessary for everyday functioning. 
In short, a teacher needs to know more, and different, mathematics – not less.  (p. 396)  

 

For example, arithmetic patterns and geometric patterns are used for teaching simple interest and 

compound interest. An accountant uses simple interest and compound interest formulae, quite 

oblivious of their links with these underlying patterns. This illustrates the unique mathematical 

processes and tasks that teachers must do in order to teach mathematics, “yet foreign to most well-

educated adults” (Ball et al. 2008, p. 398). To facilitate learning, teachers make explicit the 

connections between and among mathematical topics that remain hidden for non-teachers (Ma, 

2010). Thus, general mathematical knowledge or the ability of an educated adult may be 

insufficient for teaching mathematics. Hill et al. (2007) concur that mathematically literate people 

can solve real-life problems but formulating real-life situations to illustrate mathematical reasoning 

and insight is limited to teachers.  The domain of specialised content knowledge entails the 

unpacking of mathematical knowledge that is taught to students as they develop understanding. 

Thus, a teacher must understand the structures of the domain or idea being taught and the principle 

ideas and skills required in the domain, so that new ideas can be added (Shulman, 1987).  

In most countries of the world, teachers teach across numerous grades. Schoenfeld and Kilpatrick 

(2008) argue that this practice provides teachers with a sense of curricular continuity and 



35 
 

mathematical depth which shapes their lessons . It is essential that a teacher knows what aspects 

of the domain have been taught and where the content leads to. For example, drawing a graph to 

represent simple interest and compound interest growth over a period of time in earlier Grades 8 

or 9, will then provide a window to understanding functions and graphs that students will learn in 

Grade 10. Schoenfeld and Kilpatrick (2008) observe that the more advanced teacher’s 

mathematical knowledge is, the better the teacher can make connections between mathematical 

topics. This form of knowledge Ball et al. (2008, p. 403) refer to as horizon knowledge – “an 

awareness of how mathematical topics are related over the span of mathematics included in the 

curriculum.” Proficient teacher knowledge of school mathematics should be broad and deep 

(Schoenfeld & Kilpatrick, 2008). It is broad in the sense that proficient teachers can represent 

concepts in multiple ways and make appropriate and rich connections to other topics. The example 

of graphic representation of simple interest as a straight line graph and compound interest as an 

exponential graph to would enable students to distinguish easily the difference between these two 

types of interest, and also to provide an insight into the fact that book-value in compound decay 

(reducing balance depreciation) can be never be zero, an asymptote of the function. They suggest 

that the characteristics of proficient teachers are: 

• having a broad and connected mathematical content knowledge;  

• being aware of learner’s prior knowledge; 

• being aware of the entire curriculum sequence; 

• being able to introduce a new mathematical idea effectively; 

• being able to develop understanding in multiple ways; 

• help to work with misunderstanding to develop correct understanding. 

 

By adopting the above practice, a deeper and broader understanding of core mathematical ideas 

evolves.  This awareness allows teachers to plan for effective ways to introduce a new 

mathematical concept so that it fits with existing knowledge. Shulman (1987, p. 9) observes “this 

view of sources of content knowledge necessarily implies that the teacher must have not only depth 

of understanding with respect to the particular subjects taught, but also a broad liberal education 

that serves as a framework for old learning and as a facilitator for new understanding” (italics 

added for emphasis). Hennessey, Higley and Chesnut (2012) emphasise that links to prior 
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knowledge and multiple representations in teaching mathematics not only strengthens learning 

experiences but also increases retention and application.  

Proficiency in teaching is related to effectiveness, consistently helping students to learn 

worthwhile mathematical content.  Kilpatrick et al. (2001) propose five interwoven strands of 

teaching for mathematical proficiency, arguing that effective teaching practice can be developed 

and nurtured (p. 369). Teachers’ mathematical teaching proficiency is crucial in developing 

students’ mathematical proficiency. Teachers need to know mathematics in ways that enable them 

to help students learn. This specialised knowledge of mathematics includes conceptual 

underpinnings of ideas that help students learn mathematics with understanding.  

2.4.2 Strands of Teaching Proficiency 

In the context of proficient teaching, the five strands proposed by Kilpatrick et al. (2001) are: 

 conceptual understanding of the core knowledge required in the practice of teaching; 

 fluency in carrying out basic instructional routines; 

 strategic competence in planning effective instruction and solving problems that arise 

during instruction; 

 adaptive reasoning in justifying and explaining one’s instructional practices and in 

reflecting on those practices so as to improve them; and  

 productive disposition toward mathematics, teaching, learning, and the improvement of 

practice (p. 380). 

Due to the limited scope of this study, teaching proficiency with respect to using DGS will only 

be analysed against the first two strands articulated above.  

2.4.2.1 Conceptual Understanding of Core Knowledge (CU) 

Kilpatrick et al. propose that three kinds of knowledge are crucial for teaching school mathematics: 

knowledge of mathematics, knowledge of students and knowledge of instructional practice. 

Knowledge of mathematics includes knowledge of mathematical facts, concepts and procedures, 

and the relationships among them.  “Teachers certainly need to be able to understand concepts 

correctly and perform procedures accurately, but they also must be able to understand the 

conceptual foundations of that knowledge” (p. 371).   A teacher must be aware that mathematical 
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ideas can be represented in multiple ways.  Teachers’ mathematical knowledge and their capacity 

to use it in teaching are crucial in developing students’ mathematical proficiency.  Teachers need 

to know how students think and be aware of their conceptions and misconceptions. One of the  

common mistakes that students make in algebra, for example, is that  (𝑎 + 𝑏) =   𝑎 + 𝑏 . The  

learners overlook the binomial product of expressions, 

(𝑎 + 𝑏)(𝑎 + 𝑏), and confuse it with the laws of exponents, 

(𝑎. 𝑏) = 𝑎 . 𝑏 .  The teacher needs to identify such common 

errors and diagnose reasons as to why this mistake is so 

prevalent. The teacher may provide counterexamples to clarify 

and confirm that (2 + 5) ≠ 2 + 5 .  The teacher also needs 

to develop a set of responses for helping students in removing 

such misconceptions. An example of an appropriate response 

would be to use visualisation processes to represent (𝑎 +

𝑏)(𝑎 + 𝑏) as the area of a rectangle, as in Figure 2.6. 

Generating and testing examples and counterexamples in teaching involves mathematical 

reasoning (Hill et al., 2007; Shulman, 1987).  Knowledge must be connected so that it can be used 

intelligently. This integrated knowledge of mathematics has implications for teaching. Proficient 

teaching entails thinking and identifying multiple ways of representing concepts.  A proficient 

teacher needs to make use of all the resources, such as DGS, that can facilitate this integrated 

knowledge to develop students’ mathematical proficiency. A strong foundation of conceptual 

understanding of mathematics makes it possible for teachers to understand and use students’ 

mathematical solutions, explanations, and questions constructively. 

2.4.2.2 Instructional Fluency (IF) 

Instructional fluency refers to the knowledge and skills acquired by a teacher and also knowing 

when and how to use procedures accurately, efficiently and appropriately in a given situation. A 

teacher who has acquired a repertoire of teaching approaches can readily draw upon them as they 

interact with learners in teaching mathematics. Proficient teachers have a clear vision of the goals 

of instructions, Kilpatrick et al (2001) argue:   

 

Figure 2.6: Visualising the square of 
a binomial  
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They need to be able to use their knowledge flexibly in practice to appraise and adapt 
instructional materials, to represent the content in honest and accessible ways, to plan and 
conduct instruction, and to assess what students are learning. (p. 369) 

 

These routines help in developing mathematical behaviours, like how to respond to a learner with 

serious misconceptions or to deal with learners who lack basic skills. Teachers should be aware of 

common misconceptions and how to deal with them.  Teaching also entails an explanation of 

procedures, illuminating students’ misconceptions and addressing these misconceptions.  Often, 

students develop procedures of computation which may not be mathematically valid (Hill et al., 

2007). Teachers must be able to examine the procedure and judge whether the students’ methods 

are mathematically appropriate;  however, spotting an incorrect procedure or answer alone is 

insufficient: interpreting student errors and evaluating alternative algorithms is not all that teachers 

do (Ball et al., 2008).   A proficient teacher must be able to figure out what steps the student might 

have taken to produce this error, provide reasons and then determine an appropriate response. Hill 

et al. (2007, p. 123) surmise “[t]eaching requires making the content accessible, interpreting 

students’ questions and productions, and being able to explain or represent ideas and procedures 

in multiple ways.”  

Given that teachers have access to several approaches to teaching, if one does not work, they 

should be able to switch to another approach. According to Ball and Bass (2000), fluency in 

teaching mathematics is the ability of a teacher to “deconstruct mathematical knowledge where 

elemental components are accessible and visible” (p. 98). Although abstraction is central in 

mathematics, it may obscure the roots of the knowledge. Ball and Bass (2000) observe that a 

proficient teacher must be able to work backwards from abstract ideas and unpack their constituent 

elements. Thus, proficiency in teaching involves a unique capacity to understand and appreciate a 

student’s insight and deconstruct highly abstract knowledge, making hidden elements visible.       

Teaching requires mathematical knowledge and the design and sequence of mathematical tasks for 

instruction. Teachers should know which examples to start with and which examples to use to take 

students more deeply into the content, understanding, as Kilpatrick et al. (2001, p. 381) argue 

“what students understand about those ideas, or how they learn them.” The combined knowledge 

of teaching and mathematics enables a teacher to identify what different methods and procedures 

are appropriate to teach a specific idea (Ball et al., 2008). Teachers evaluate the instructional 
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advantages (and possibly are aware of the disadvantages) of representations to link the underlying 

mathematical structures. Thus, in describing the practise of a mathematics teacher, Ball et al. (2008, 

p. 401) suggest that “[d]uring a classroom discussion, a teacher must decide when to pause for 

more clarification when to use a student’s remark to make a mathematical point, and when to ask 

a new question or pose a new task to further students’ learning. Each of these decisions requires 

coordination between the mathematics at stake and the instructional options and purposes at play.”   

Ma (2010) accentuates that a teacher with a profound understanding of mathematics is not only 

aware of the conceptual structure and underlying attitudes of mathematics, but is also able to teach 

these to students. Teachers with weak a conceptual knowledge of mathematics tend to develop 

only procedural fluency of learners. A teacher whose knowledge is rooted in only procedures 

cannot “describe a conceptually directed teaching strategy” (p. 34). However, a teacher with a 

profound understanding of a topic knows not only alternative ways of calculation but also is aware 

of why these procedures make sense for calculation. Teachers’ comprehensive knowledge of a 

topic may contribute to students’ opportunities to learn it.   

2.4.3 Teaching Proficiency in Relation to Visualisation and the Use of ICT.  

Teaching is a complex activity with interrelated components (Kilpatrick et al., 2001), and 

visualisation is crucial in developing mathematical ideas. Proficient teachers are able to unpack 

mathematical content and make visible to students the ideas behind the procedures. Ball et al. 

(2008, p. 400) argue that “[t]eachers, however, must hold unpacked mathematical knowledge 

because teaching involves making features of particular content visible to and learnable by 

students.” Teaching entails decompressing mathematical knowledge for the students as they 

develop procedures with understanding. In the case of teaching the division of fractions, for 

example,  ÷  , (Hill et al., 2007) maintain that teaching the algorithm of ‘invert-and-multiply’ is 

the compressed knowledge while decompressing it involves an explanation of the mathematical 

reasons tacit in this method. One of the possible rationales would be the application of students’ 

understanding that when we multiply both the dividend and the divisor with the same number, the 

quotient remains unchanged. Thus:  



40 
 

5

6
÷

1

3
=

5
6
1
3

=  

5
6

×
3
1

1
3

×
3
1

=  

5
6

×
3
1

1
=  

5

6
×

3

1
= 2

1

2
  

The symbolic rationale of this procedure is simple and does not necessarily illuminate students 

(Arcavi, 2003). He formulates that visualisation can accompany symbolic development. Hence, 

we may prompt questions like ‘How many ’s are there in ?’ Or pose a story problem – ‘  of an 

oil bottle weighs  kg, then how much is the total weight of oil in the bottle?’ Figure 2.7 is the 

visual representation of ‘how many ’s in ’. Here in the number line, the area between 0 and 1 is 

divided into six equal parts, and two parts are 1/3. We see from the figure that two full jumps and 

half a jump of  make . Thus, there are two-and-a-half ’s in . Figure 2.8 is the representation of  

kg as the one-third of the bottle. Three one-thirds of five-sixths put together will give the full 

weight of oil in the bottle, which is 2  kg. Putting it differently, we have done this by adding five-

sixths thrice or  multiplied by 3, ie.  × . It is equivalent to the algorithm ‘invert-and-multiply’.  

https://www.geogebra.org/m/sxvvrnRw.    

  

Figure 2.7: Representing number of one-thirds in 
five-sixths on a number line 

Figure 2.8: Reprsenting five-sixths multiplied by three on 
a number line 

The concrete image of the problem and its solution can be “an essential factor for creating the 

feeling of self-evidence”, thus visualisation becomes necessary “to see the unseen in symbols and 

words” Arcavi (2003, p. 220). The deliberate use of ‘unpacked knowledge’ – as Presmeg (2006) 

argues – the inclusion of non-essential pictorial diagrams prompts students’ use of intuition to  

support their visual thinking. Relating a mathematical problem to a real-world situation, as seen in 

the above example, promotes visualisation according to Presmeg (2006). He observes that “the 

essence of teaching that promotes visualisation in classrooms is captured in the word connections” 

(p. 214) Again, Arcavi (2003), Presmeg (2006, 2014) and Schäfer (2016) have stressed the need 

for multiple representations for effective use of visualisation in mathematics classrooms. In their 
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teaching of mathematics, teachers must have knowledge of visual methods in mathematics in ways 

that allow them to unpack ideas. Shulman (1987, p. 7) surmises that ways of teaching by 

representing ideas are “so that unknowing come to known, those without understanding can 

comprehend and discern, and the unskilled can become adept.”            

Visualisation and simulation are the primary advantages of using dynamic software that supports 

the teaching and learning of abstract mathematics concepts (Naidoo & Govender, 2014). Teachers 

can play an essential and active role in analysing, designing and developing applets to be used by 

the learners effectively. Naidoo & Govender (2014) assert that teachers’ involvement in observing 

learners’ engagement with applets is essential, whether or not they are enthusiastic and critical in 

their use of tools. Teachers should be able to integrate dynamic mathematics software into their 

practice, thereby enabling learners to construct and visualise mathematical ideas. Bu et al. (2010) 

assert that engaging students in cognitive tasks with GeoGebra applets, for example, reinforces 

the importance of visualisation of mathematical concepts.  

Examining different teaching approaches using technology, Kendal and Stacey (2001) observe that 

teachers typically make their own pedagogical choices about how to incorporate technology into 

their classrooms. Some teachers embrace technology as it enables them to increase their repertoire 

of different ways of teaching rules and procedures for student academic achievement, while other 

teachers find the capabilities of technology superior for developing conceptual understanding of 

mathematical ideas. Bu et al. (2012) propose that the role of GeoGebra is a pedagogical tool to 

integrate content and pedagogy in mathematics teaching and learning. It provides an opportunity 

to critically reflect on teaching practices and, “we are relearning or even diagnosing our own 

understanding of mathematics” (p. 92).          

Proponents of DGS also suggest that it has the potential to promote a discovery method of teaching 

and learning.  Hoyles and Noss (2003) affirm that teachers should use DGS as a pedagogic tool 

for the exploration of mathematical concepts and ideas for any mathematical domain. However, I 

have argued earlier that for effective implementation, technological tools should be designed with 

teachers. Ruthven et al. (2008, p. 299) agree that “[t]eachers who have worked closely with the 

designers and advocates of these forms of geometrical software have developed approaches to 

teaching and learning which reflect this association of the technology with an exploratory 

pedagogical orientation.” Hennessy et al. (2005, p. 187) recommend, based on their research with 
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English teachers, “a coherent and supportive community of practice associated with using ICT 

effectively, regularly, and consistently.” The findings of Gueudet and Trouche (2011) corroborate 

that within the frame of the community of practice where teachers collectively work to prepare 

lessons using DGS tools, indicates an ‘evolution’ in teachers’ pedagogy. For Gueudet and Trouche, 

the perspective of ‘teacher empowering teacher’ as a way of teacher education about technology 

appeared powerful in bridging the gap between having access to resources and appropriating them 

for usage in the classroom. 

Thus GLIP is an important platform and forum that offers an opportunity for teachers to plan their 

technological lessons focussing on how technological-based tools can be implemented in 

classrooms that positively promotes the teaching and learning process of mathematics.    

2.5 THEORETICAL FRAMEWORK – CONSTRUCTIVISM  

A constructivist theoretical perspective informs this study. Boaler (2009) argues that a traditional 

approach to teaching is characterised by chalk and talk methods where the teacher typically 

explains and demonstrates the mathematical content of a lesson and the students watch, consume 

and practice the problems, mostly in silence. However, Jaworski (1994) argues that whereas this 

method of direct instruction develops only ‘lower-level mathematical skills’ like computation,  

deep conceptual understanding requires ‘higher-order skills’. The key idea of constructivism is 

that children construct their knowledge. Thus, Shulman (1987) argues that teaching involves an 

exchange of ideas and that students do not passively grasp ideas. Teachers need to present ideas in 

order to provoke the constructive process of the student.  Jaworski (1994) also asserts that learners 

do not only absorb ideas presented by their teacher but rather that they create their knowledge. 

When provided with opportunities, students can make their own discoveries and representations. 

Shulman suggests that the role of teacher is to then respond actively and creatively to those student 

representations. Habib (2012) argues that substituting traditional teaching methods with active 

approaches, which is inherent in a constructivist approach, exploits the intuitive and applied 

activities related to life.  This active approach aligns well with teaching with ICT technologies as 

it requires hands-on teaching and learning strategies, where the teacher and learner are actively 

engaged in constructing knowledge. 

Goldin (1990) states that in a constructivist classroom, learning involves a constructive processes. 

A constructive process is one in which an individual organises and restructures his/her own 
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experience through their construction of knowledge. The constructivist approach views that 

learners already have a certain amount of knowledge – they do not come to class as empty vessels 

to be filled.  The transfer of knowledge is therefore not one of filling empty vessels, but one of 

individual knowledge construction.  Understanding is acquired through the creation of knowledge 

and learners take ownership of their learning. My emphasis is on teachers’ understanding 

children’s development of mathematical knowledge, based on constructivist findings. As Wright 

(2000, p. 144) indicates “Teachers are viewed as active learners and are encouraged to examine 

their own teaching practices and to focus on the mathematics children can do and how they do it.” 

When teachers teach mathematics making more use of hands-on activities and promoting student 

autonomy and responsibility (Confrey, 1990), it may impact significantly on student learning.  

2.5.1 Key Ideas of Constructivism  

The literature on the theory of constructivism differentiates between radical constructivism and 

social constructivism (see for e.g. Hennessey et al., 2012; Jaworski, 1994).   

Based on Piaget’s cognitive adaptation, von Glasersfeld (1990) proposed two principles of radical 

constructivism:  

1) Knowledge is not passively received either through the senses or by way of communication. 

Knowledge is actively built up by the cognising subject.  

2) The function of cognition is adaptive, tending towards fit or viability. 

In simpler terms, the first principle says that we all construct our own knowledge (Jaworski, 1994). 

The learner’s new knowledge draws on prior knowledge and experiences – learners are not blank 

slates. Constructivism is a theory of knowing that attempts to show that knowledge can only be 

generated by experience. It implies that learners construct their knowledge by actively 

participating in a classroom situation. Wright (2000) agrees that knowledge is the result of learners’ 

activities rather than of the passive reception of instruction.  

The second principle says that an individual learns by adapting. From a constructivist point of 

view, mathematical concepts are constructed that ‘fit’ or are viable with our real-world experiences. 

Giving credit to Piaget, von Glasersfeld (1981, 2000) argues that an individual constructs 

knowledge as an adaption to their subjective experience. Knowledge construction and adaptation 

are results of cognitive structuring, acknowledged by Piaget’s genetic epistemology. Knowledge 
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results from individual construction by modification of experiences or ideas. This principle 

emphasises that it is only possible to know the world through experiences.  

However, Goldin (1990) disagrees with the above view of constructivism. He argues that “[t]he 

hypothesis that the construction of knowledge by human beings takes place possibly involving 

several developmental stages - when offered as part of a scientific theory of competence 

acquisition is logically independent of radical constructivist epistemology” (p 42). The above two 

principles do not, however, take into account the contextual influences on learning or recognise 

the individual differences in student understanding. Hardy and Taylor (1997) also argue that tenets 

of radical constructivism do not offer an adequate explanation of the influence of socio-cultural 

aspects of learning and the role of language in a classroom environment.     

Taylor and Williams (1993) evolve a constructivist related theory of learning based on three 

principles, where the third principle derives from social perspectives and linguistic influences on 

learning. They consider that “[t]his principle acknowledges the sociocultural and socioemotional 

contexts of learning, highlights the central role of language in learning and identifies the learner 

as an interactive co-constructor of knowledge” (p. 135). The negotiation of concepts influences 

the students’ mathematical development, and knowledge is constructed intersubjectively. 

Elaborating on intersubjectivity, Jaworski (1994, p. 211) considers that “[i]ntersubjective or 'taken-

as-shared' knowledge can be seen as a product of such interaction where participants seem to agree 

on certain interpretations represented through discourse and non-verbal communication.” Through 

negotiation and social interaction, individual knowledge may be challenged, and new knowledge 

constructed.  

Identifying social interaction as an essential component in the process of teaching and learning, 

von Glasersfeld (1990, p. 26) observes that the constructive approach of teaching “takes the form 

of encouraging and orienting students’ constructive effort rather than curtailing their autonomy by 

presenting ready-made results as the only permitted path.” Then the teaching “aims at the students 

conceptual fit with the consensual domain of the particular field, a fit which, from the teacher's 

perspective, constitutes understanding.”   

Vygotsky (1978) puts forward the notion of the zone of proximal development (ZPD) to explain 

human learning:    
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The distance between the actual developmental level as determined by independent problem 
solving and the level of potential development as determined through problem-solving under 
adult guidance, or in collaboration with more capable peers. (p. 86) 

 

Children are capable of doing much more in a collective activity or under the guidance of an adult 

but limited to their developmental level. The essential aim of school learning is to create these 

intellectual levels  

…learning awakens a variety of internal developmental processes that are able to operate only 
when the child is interacting with people in his environment and in cooperation with his peers. 
Once these processes are internalized, they become part of child’s independent developmental 
achievement. (Vygotsky, 1978, p. 90) 

 

Vygotsky implies that the role of a teacher, through appropriate instructions and classroom settings, 

is to provide learning opportunities for a child so that he or she can achieve higher conceptual 

levels than which would have been impossible to achieve otherwise. Shulman (1987) also 

maintains, as we have already observed in earlier paragraphs, that the teachers’ interest  in students’ 

constructions can throw light on their conceptual structures. Jaworski (1994) aligns with this 

theory, using the metaphor of scaffolding that could enhance students’ ability to handle problems 

without relying on the teacher. She interprets scaffolding “in terms of a teacher's offering of 

strategies for thinking and learning, rather than for grasping a particular skill or concept” (p. 31).       

I concur with Hardy and Taylor (1997, p. 140) that “it is worth realising that neither social nor the 

individual components of learning necessarily supersedes the other.” It is rather,  as Jaworski (1994, 

p. 212) perceives, “individual construction, within a community rich in socio-cultural influences.”’ 

The constructivist perspective on teaching and learning of mathematics envisions “both teacher 

and students in an ongoing collaborative endeavour” (Taylor & Williams, 1993, p. 136) that 

“contribute significantly to individual students’ construction of meaning” (Jaworski, 1994, p. 211). 

As teachers interact both with the learners and with the computer tools, they are involved in a 

mathematical experience and may make an important contribution to knowledge construction.    

2.5.2 Constructivism and Technology 

Technology provides an opportunity to do and teach mathematics. Sutherland (2007) states that 

many educational technologies such as GeoGebra have been developed for teaching and learning 

mathematics as they enables students to develop ‘symbolic tools’ for solving mathematical 
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problems.  Such tools become ‘internalised’ to the extent that they can be drawn upon later in other 

problem-solving situations.  The process of internalisation is central to constructivism (Marti, 1996, 

p. 60). Internalisation is the development of knowledge involving a simultaneous re-organisation 

of internal mental spaces and external forms of knowledge.  

Hoyles (2005), in the context of technological teaching and learning, suggests that mathematical 

concepts need to be inextricably interwoven with applets. When planning a task for the learner that 

facilitates the construction of mathematical ideas, a teacher should pay careful attention to include 

the two points mentioned below. First, the tools embedded must be ‘just enough’ to illuminate 

structures and relationships while not solving the task completely. Second, the tasks should be 

developed so that they foster students’ engagement with mathematical ideas. Drawing on 

constructivist ideas, Hoyles (2005, p. 141) observes that the student-computer interchange engages 

learners “in a dialectical relationship of action on the objects and thought.” Thus, dynamic software 

tools can provide insight into mathematical structures and relationships. When learners are active 

participants in learning using computer tools, they learn better and retain information longer. 

GeoGebra applets offer students an opportunity to do more than listen to the teacher during class. 

Hoyles (2005) also observes that virtual manipulatives are mediators and form a crucial part of 

internalising knowledge.  Mathematical meanings are inextricably interwoven with the computer 

tools which enable learners to identify mathematical invariants and make connections.  

Following on Vygotsky’s ideas on the use of tools, Noss and Hoyles (1996) synthesise that 

meaning in mathematics can be constructed and shared through interaction with computer tools. 

They argue, “[t]he computer is not only a set of tools which defines allowable actions and their 

expression; it plays a role in communicating the actions, sharing and re-negotiating mathematical 

expression and facilitating the (co-)construction of mathematical meanings” (p. 228). Furthermore, 

from Vygotsky’s perspective of the use of tools, Bu et al. (2012) argue that GeoGebra has 

gradually evolved from a technical tool that supports teaching and learning into a pedagogical tool 

that facilitates a mathematics teacher’s classroom practise.       

Noss and Hoyles (1996, p. 154) demonstrate in their research with teachers using computers 

(Microworld), “how meanings for the computer and mathematics were created by  teachers, and 

how these shaped the relationship between the computational media and the mathematical 

knowledge they were responsible for teaching.” In their research, the teachers interacted with the 
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computer tools and reconstructed the classroom settings before taking on board, with the students, 

those aspects of the mathematical meaning-making process. Noss and Holyes also note that 

teachers construct new ways of learnable and connected mathematics that the computer tools offer. 

Through active construction at the computer, conceptual learning of mathematical ideas occurs. 

Carpenter and Lehrer (1999) ascertain that when learners are given some control over the tasks 

they engage in and are allowed to reflect on their activity, learners develop a sense of ownership 

and have control over their learning.   Thus, from a constructivist perspective, activities designed 

in applets involve students in doing things as well as making them think about what they are doing.  

In a technology-based constructivist classroom, there is less emphasis on transmitting information, 

but more on developing students’ understanding of concepts and their skills. Recent research work 

of Jaworski (2015) confirms that DGS can engage students in a deeper understanding of 

mathematical meanings.  Instead of dispensing knowledge and focussing on the acquisition of 

established facts, technology enables teachers to design support programmes that can help students 

towards a greater depth of understanding of a concept. When applets and software programs like 

DGS are used in a classroom setting, teachers go beyond chalk and talk. However, Jaworski’s  

students provided mixed responses to GeoGebra. One group of students, for example, asserted that 

in-depth mathematical meaning is unnecessary – “just because I understand maths better doesn’t 

mean I’ll do better in the exam” (p. 268). Another group of students reflected that using GeoGebra 

provided a dynamic visual representation, helping them to ‘spot patterns and trends’ that would 

otherwise have been missed. Promoting active learning promotes mastery of content with 

reasoning and understanding.  

Dynamic mathematics software is a powerful teaching and learning medium and appears to create 

opportunities for creative thinking (Stols & Kriek, 2011). Stols (2007) further argues that new 

technologies can help learners to visualise difficult-to-understand concepts and also help teachers 

to create an active learning environment. In such environments, students do more than listen: they 

are encouraged to explore. When such technology is used in the classroom, the focus is on 

developing higher-order thinking skills where students are actively engaged in analysing and 

synthesising their knowledge.   

Teaching mathematics with technology opens up new questions about the teacher’s theory of 

learning and its impact on student learning (Kendal & Stacey, 2001). Their analysis of teachers 



48 
 

indicates that the pedagogical choices about working with technological tools are consistent with 

their teaching approaches. Different fundamental conceptions of mathematics associated with 

teaching approaches influence their particular choices while using technology – about what to 

emphasise, and how to incorporate the graphical, numerical and symbolic algebra capabilities of 

computer tools like DGS into their lessons. When a teacher focusses only on mathematical rules 

and procedures, he/she tends to ‘automatise’ computational procedures, demonstrating the use of 

technology by listing step-by-step routines and preferring symbolic representations. But when a 

teacher focusses on the conceptual understanding of mathematical ideas and student constructions 

of meaning, he/she encourages students to discover and develop their intuitive ideas. The teacher 

uses computer media to link different representations of mathematical ideas. The teacher arranges 

computer classrooms in which each student explores mathematical content and develops logical 

constructions of the concept as Kendal and Stacey (2001, p. 155) describe: “[e]ach student 

appeared to conjecture, analyse, negotiate meaning with other students in the class, make decisions, 

draw conclusions, and prove ideas”.      

Students’ engagement in learning involves cognitive tasks and the manipulation of conceptual 

ideas. When technological tools are used effectively, students can authenticate their 

understandings (Jonassen & Strobel, 2006).   The emerging technological tools, like DGS, with its 

inherent exploratory possibilities, may provide opportunities for a heuristic approach to 

constructing mathematical meaning. Thereby it may allow students to engage in active learning 

processes in which they build their own meanings and develop understanding. However, Khine 

(2003) cautions that students should not be left alone to explore; instead, teachers should provide 

guidance and facilitate students for learning to take place. Thus, in a constructivist classroom, the 

role of a teacher is to provide opportunities and facilitate learning.    

2.5.3 Constructivism and Visualisation 

Arcavi (2003) sees visualisation as a process of constructing knowledge that promotes 

understanding. Therefore, visualisation ‘as a process’ provokes intellectual activity and 

construction of knowledge. Presmeg (2006) stresses the need for visual representations in 

mathematics education. She also considers multiple representations of mathematical concepts as 

an integral part of a visualisation strategy of teaching and learning mathematics. In their research 

study on allowing learners to generate their own representations, Watson and Mason (2005) 
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emphasise that learners’ active engagement in constructing their own examples enables them to 

probe and generalise mathematical ideas more deeply than if they were merely provided with facts. 

In a constructivist classroom, abstract ideas that involve examples and counterexamples are built 

upon students’ representations. The construction of multiple examples by learners themselves, as 

Watson and Mason argue, not only facilitates conceptual learning but also enables learners to make 

links among concepts.           

However, Duval (2013) asserts that as understanding involves grasping the whole structure, there 

is no understanding without visualisation. While a single activity focusses on one or some units 

and properties of a mathematical concept, visualisation leads to “grasping directly the whole 

configuration of relation” (Duval, 1999, p. 14). For example, when an activity is confined to 

computation only, the learner may not look at the whole mathematical structure, but only one 

aspect thereof.  It is, therefore, essential to provide learning opportunities for learners to make 

connections and experience the whole mathematical structure of a particular problem. With an 

example, Duval argues that the construction to draw the graphs 𝑦 = 2𝑥 + 2 and 𝑦 = 𝑥 + 2 by 

computing (perhaps by using a table) may not lead learners to understand the representation as a 

whole and the fact that the two graphs only differ from each other by virtue of their gradients. The 

use of visualisation enables learners to discriminate between the equations conceptually.  

The scholarly works of Arcavi (2003), Presmeg (1986b, 2014), Duval  (1999, 2013) and other 

researchers have provided compelling empirical evidence of the vital role of visualisation in 

developing an understanding of mathematical concepts and knowledge. Their research found 

strong evidence that learners do employ visual strategies (though different) to construct 

meaningful conceptual ideas. In particular, Presmeg (1986a), in commending the use of visual 

imagery, claims that the embodiment of abstract ideas in a concrete image can be effective in 

learning mathematics, i.e. the use of visualisation can facilitate the learning of mathematical 

contents with understanding. The essence of Vygotsky’s ZPD shows that initial mastery of, for 

example, the four arithmetic operations, provides the basis for the subsequent development of a 

variety of complex processes of abstract algebra. Thus, concreteness is a necessary and inevitable 

step towards abstract thinking (Vygotsky, 1978).     

The applets designed in GLIP engage learners to explore and discover mathematical ideas and 

subtleties. Thus, technological tools like GeoGebra can provide visual learning experiences and 
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allow learners to take control of their own learning (Bransford et al., 2000).  This aligns well with 

the principles of constructivism.      

2.6 SUMMARY OF THE CHAPTER  

In this chapter, I have deliberated on the conceptual and theoretical framework that underpins the 

study. Firstly, several relevant issues related to visualisation within the context of teaching and 

learning mathematics were discussed. Secondly, the pros and cons of using a computer tool, DGS 

in particular, as a visualisation and teaching tool were discussed. This led to the discussion of 

teaching proficiency, focussing on Kilpatrick et al.’s model that informs the study. Finally, I 

discussed common features and ideas of the constructivist theory of teaching and learning and also 

highlighted its potential connections with the other elements that inform the study. Key issues 

established in this chapter will be employed to gather and analyse the data, which will be discussed 

in the following chapter on methodology.   
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CHAPTER THREE 

3 RESEARCH METHODOLOGY 

3.1 INTRODUCTION  

This research study is conceptualised within the GeoGebra Literacy Initiative Project (GLIP) – an 

ICT teacher development project in Mthatha, Eastern Cape. The focus of this research was on how 

teachers use DGS as a teaching tool in harnessing its powerful visualisation capacity. As 

visualisation plays a vital role in developing mathematical ideas, the focus in the design and 

implementation of selected applets was on their visual appeal and capacity to enhance teaching 

proficiency. My research aim was specifically to explore how teaching took place, concerning 

selected teachers’ interactions with the GeoGebra and with their learners. As the participating 

teachers implemented their applets in a teaching environment, their teaching practice was analysed 

in terms of the applets’ visualisation power, grounded on strands of teaching proficiency 

(Kilpatrick et al., 2001) such as teaching for conceptual understanding and  instructional fluency.  

The overall goal of this research was to investigate whether and how dynamic software as a 

visualisation tool aided and enhanced the teaching of Grade 11 mathematics. In pursuance of this 

goal, the following specific questions guided the research:  

 How can Dynamic Geometry Software such as GeoGebra be used as a visualisation tool to 

teach Grade 11 Mathematics?  

 What enabling and constraining factors do Grade 11 teachers encounter when using GeoGebra 

as a visualisation tool to teach Grade 11 Mathematics?  

This chapter presents the orientation of the research and the methods employed in conducting the 

research. I describe the analytical framework based on Kilpatrick et al.’s (2001) teaching 

proficiency in Table 3.3 (p.69). The sampling techniques and the participant selection procedures 

are elaborated upon. An account of procedures for the collection and analysis of the data is also 

provided. I discuss too, appropriate strategies to enhance the validity and reliability of the research 

study. Ethical considerations that pertain to this study are discussed. I also articulate some of the 

challenges and tensions that arose during the data collection process.  
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3.2 RESEARCH ORIENTATION  

The study is situated within an interpretive research paradigm and oriented within the qualitative 

research framework. The interpretative research paradigm that underpinned this study coheres with 

the nature of the research enquiry. Cohen, Manion and Morrison (2007) assert that “to understand 

the subjective world of human experience” (p. 21) is fundamental in the context of an interpretative 

paradigm. From this perspective, I observed from the inside and through the direct experiences of 

the teachers involved. The research examined situations through the eyes of the participant 

teachers rather than the researcher, and this is particularly important within an interpretative 

research paradigm (Cohen et al., 2007). This interpretative research study involved describing and 

analysing teachers’ interactions with GeoGebra and with the learners in selected mathematics 

lessons. For this research, the elements of interpretive research that resonated were that events and 

situations are unique. Thus, the essential characteristic underpinning the data collection and 

analysis of this research is the consideration of all responses and actions (by participants) with a 

genuine interest in understanding their perspectives of classroom interactions. My analyses are 

interpretative renderings of reality.          

Merriam (2009) suggests that in qualitative research, the emphasis is on “understanding how 

people interpret their experiences, how they construct their worlds, and what meaning they 

attribute to their experiences” (p. 14). The primary purpose of qualitative research is to know more 

about a phenomenon that could eventually inform teaching practice. The research focussed on 

participant teachers’ mathematical experiences using technological tools. Their classroom 

interactions with the GeoGebra applets were therefore observed and analysed to understand how 

participant teachers made use of technology-aided visualisation for effective teaching. Merriam 

(2009, p. 16) asserts that “the product of qualitative inquiry is richly descriptive” (italics in 

original).  There are accordingly descriptions of the context, the participants involved, and the 

activities of interest. 

Furthermore, Denzin and Lincoln (2005) assert that qualitative research involves interpretive 

approaches in natural conditions, attempting to gain a better understanding of the participants and 

their actions.  The preferred paradigm allowed me to interpret and understand participants’ 

experiences in the context of integrating GeoGebra in teaching in mathematics classrooms. 

Through observations and interactions with the selected teachers, I aimed to comprehend how they 
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integrated technological tools in teaching mathematical ideas and the development of their 

teaching proficiency. For a given lesson, I probed and researched the meanings they made of their 

teaching with GeoGebra. At this level, qualitative research involves an interpretative approach as  

Denzin and Lincoln (2005) underscore: “qualitative researchers study things in their natural 

settings, attempting to make sense of or interpret, phenomena in terms of the meanings people 

bring to them” (p. 3).  In concurrence, Stake (2010, p. 63) observes that qualitative research is 

about how things happen and “happenings are experiences, and the researcher needs to probe the 

assertions until the experience is credible.”   

3.3 RESEARCH METHODOLOGY  

3.3.1 Action Research Process  

An important objective of GLIP is to empower teachers and then inform teaching practice by 

incorporating technological tools in mathematics teaching. GLIP is comprised of teachers from 

different schools, my fellow researcher and myself. This study involved an intensive and a long 

period of interactions with three GLIP teachers from two different schools. I adopted an action 

research approach for this research. Such an approach enabled me to involve the participants in 

the design and implementation of the GeoGebra applets. Merriam (2009) says that individuals 

engage in an action research to understand subtleties in educational processes. In concurrence, 

Winter (1998) suggests that action research is relevant in education.  Winter observes that “in order 

to develop our practice we must seek to empower our students and thereby empower ourselves on 

a justifiable basis” (p. 55). Educational action research has the potential of engaging and 

empowering teachers in the process of teaching (Mertler, 2017). Thus, the participant teachers in 

this research followed the process of continuous learning. I collected rich, holistic information 

from the perspective of participants in a natural classroom environment during a sequence of 

teaching cycles. 

Educational researchers (Cohen et al., 2007; O’Leary, 2004; Scott & Usher, 2003) have stressed 

the situational and participatory nature of action research. O’Leary (2004) argues that the central 

feature of action research is a collaboration among the research participants, where there is 

minimal distinction between the researcher and researched, while seeking solutions to improve 

professional practice. Mertler (2017) argues that action research allows teachers to study and 

reflect on their own instructional methods in order to improve their quality of effective teaching. 
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Accordingly, action research is mainly about critically examining, in a collaborative manner, what 

teachers are doing, why they are doing it, and the effects of their actions.  

Mertler (2017) proposes a four-stage process of conducting action research: 1) the planning stage; 

2) the acting stage; 3) the developing stage; 4) the reflecting stage. The process of action research 

is cyclical and spiralling in nature and is portrayed in Figure 3.1. Whereas action research has a 

clear starting point, it does not have a clear finishing point. Generally, the central theme of the 

research would be implemented in termly or even annual cycles. A given research project may 

continue to go through a series of cycles of implementation, evaluation, and revision, spiralling 

from one semester or year to the next (Mertler, 2017).  In the GLIP project, a group of teachers 

came together intending to change and empower themselves by using GeoGebra in teaching 

mathematics. The empirical field of this study was thus the GLIP, which occurred in cycles defined 

by the applets that the teachers developed.  The action research cycles were therefore determined 

by when the participating teachers implemented the applets in their teaching.  

 

Figure 3.1: The cyclic and spiralling process of Action Research  
Source: Mertler, 2017 (p. 88). 
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Figure 3.2 below is a diagrammatic representation of the elements of action research adapted for 

this study as it overlaps with some of the GLIP cycles. In this research, I refer to GLIP cycles and 

Action Research steps.  The first step of the Action Research process is the planning step PLAN.  

Here the participating teachers discussed the pedagogical strategies to be used for implementing 

the designed applets in the classroom. The second step – ACT – is the implementation of the 

developed applets in the classrooms for teaching and learning. In this step, I gathered relevant data 

discussed in the section below. The third step – REFLECT – is the reflective step where the 

teachers shared their experiences of using applets in the classrooms. The fourth step – 

INTERVIEW – is an individual interview with the teachers using stimulated recall techniques 

discussed in the section below.  

 

Figure 3.2: Sketch of Action Research Steps  
 

3.3.2 Research Location 

The empirical field of the research was the GLIP initiative. The participants who were involved in 

the GLIP project (as described in the Section 1.2.1 on p. 2) were from two schools, namely School 

A and School B, in the Mthatha region.  Therefore, my research was located in these two schools.    

Firstly, I obtained approval for the research study from the Higher Degrees Committee of Rhodes 

University. My fellow researcher and I approached the principals of four schools in Mthatha where 
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functional computer laboratories were available and briefed them about the research project. All 

the schools’ principals commended us for the idea of using their technological resources for 

teaching and learning purposes. They agreed in principle to the conduction of research on their 

premises. Of these schools, two were independent schools and two were public schools. Secondly, 

I sought permission from the Eastern Cape Department of Basic Education (ECDBE) to conduct 

research in the two selected secondary schools in the Mthatha region (see Annexure I). The GLIP 

programme was already operational by the time my application to research in the two schools was 

under consideration with ECDBE. In parallel, ethical approval was sought by the Ethics 

Committee of my University. 

Meanwhile, interestingly, the governing body of an independent school did not provide us with 

permission to research in their school, stating that they were not willing to ‘share our secrets of 

success stories.’ A teacher from this school, nonetheless, continues to be an active member of the 

GLIP programme. Thirdly and finally, the principals of the other two schools permitted us to 

conduct training and workshops with the teachers and the learners. At the time of issuing the formal 

letter granting us permission, the principal of School B commented “We are glad that these 

computers are now used for learning purposes.”   

Thus, we ended up with two schools, namely School A and School B. Both schools offer the NCS 

– the South African national curriculum.  

School A is an independent mixed gender school, comprising of about 1350 leaners in 2017. The 

school practices a non-elitist admission policy and admits learners on ‘first-come-first-serve’ basis. 

The school offers classes from Grade 8 to 12 and is relatively well-resourced and well maintained. 

There are three functional computer laboratories with interactive whiteboard facilities and 

projectors. The regular maintenance of these computers (about 250) is outsourced. However, there 

are regular glitches in the efficient use of the interactive boards. The school offers two computer-

related courses, namely CAT (Computer Applications and Technology) and IT (Information 

Technology), with the computer labs being used mainly for these courses. Apart from the 

designated subjects, the school also provides computer literacy lessons for an hour a week for all 

learners from Grade 8 to Grade 10. There were twelve mathematics teachers in the school; six of 

whom were teaching Grade 11 in 2017.  The training of teachers in the context of this project in 
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the school on using GeoGebra, was started in November 2015 and extended to March 2016. We 

provided training to Grade 10 and Grade 11 learners during the second half of the year 2016.  

School B is a public senior secondary school, offering classes from Grade 8 to 12. During 2017, 

the learner population was about 1200 learners of mixed gender. Adequately resourced, the school 

has one computer laboratory with 80 computers and 20 laptops, equipped with a data projector and 

a makeshift white screen and a chalkboard. At the time of this research, the school offered only 

one computer course, namely CAT. In August 2016, we trained all the mathematics teachers in 

this school on GeoGebra. We trained Grade 10 learners of school B during the September and 

October 2016 period. Subsequently, in early Feb 2017, we further trained the learners, then in 

Grade 11, of the participating teachers.    

3.3.3 Participant selection and participants   

The selection of schools and participant teachers was interlinked. The research required teachers 

to be proficient at using computers, and the schools of the respective teachers also needed to have 

adequate technological resources to implement the GLIP programme. Our interactions with the 

teachers in Mthatha allowed us to identify the teachers proficient in computers. The research 

required purposeful sampling of the participants owing to the nature of participants, their 

proficiency in computers and the availability of resources at their schools. According to Patton 

(2002), “[t]he logic and power of purposeful sampling lie in selecting information-rich cases for 

study in depth” (p. 232). The adoption of a purposeful sampling technique ensures that the 

appropriate teachers generate information-rich data that illuminates the research questions. 

Merriam (2009) emphasises that “[p]urposeful sampling is based on the assumption that the 

investigator wants to discover, understand, and gain insight and therefore must select a sample 

from which the most can be learned” (p. 77). Thus, the sample selection in this qualitative research 

is small and purposeful.  

In GLIP, there were five teachers from three different schools. The training of the teachers at their 

schools enabled me to identify the potential candidates for this research project. At the initial stage 

of GLIP in 2016 and 2017, we invited only a few teachers who were proficient in computers, and 

they were willing to be participants in the research. Thus, two teachers, Antony and George from 

school A, and two teachers, Paul and John from school B, participated in the research project. 
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Abraham, though a GLIP member, could not participate in the research as his school declined our 

request to research in their premises, as discussed in the above section.   

3.3.4 Brief background of participant teachers  

In this section I introduce the research participants who volunteered their time and knowledge for 

the research project.  

Antony from School A is vibrant and passionate about mathematics. He claimed that he had 

completed his engineering degree, but due to a lack of adequate facilities in the university, the 

course was not approved by the Department of Higher Education. Thus, Antony ended up without 

a bachelor’s degree. However, in 2017, he enrolled for a BEd majoring in mathematics with a 

reputable university in South Africa. He started teaching in 2012 and has taught in two other 

schools around his hometown and Mthatha. Although Antony had undergone training in GeoGebra 

before the launch of GLIP and had used the software in preparing question papers, he had never 

thought of using it in his classroom. Prior to this project, Antony had used technological resources 

only once, when he had received a PowerPoint presentation from a teacher workshop. At school 

A, Antony is responsible for teaching mathematics from Grade 9 to 12.        

George, from School A, is a committed and passionate school mathematics teacher. He has a BEd 

in mathematics education. George was in the fourth year of teaching at a school. He believes that 

his role as a teacher is to emphasise learners’ divergent and creative thinking, and therefore he 

often coaches his learners to showcase their projects in maths and science fairs. George’s core 

responsibilities at the school are teaching mathematics from Grade 8 to 11. George considered his 

participation in the research as an opportunity to learn teaching strategies that would have a 

positive impact on learners.              

John expressed his desire to use the software for teaching and learning mathematics effectively 

after GLIP training. However, he was an irregular attender of GLIP meetings. John claimed that 

he was doing the final module of bachelor’s degree in mathematics education. Owing to his 

absence during GLIP meetings, I did not include him in the analysis.             

Paul, from school B, is an energetic mathematics teacher with a teaching experience of twelve 

years. Paul would refer to himself as an expert in the mathematical content and good at teaching 

it. At the time of this research, Paul held a diploma in education, and was pursuing a bachelor’s 
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degree in mathematics. His peers consider him as a techno-savvy teacher. He often uses ‘Graph’ 

software for assessment purposes and claims that he is versatile in it. Occasionally, Paul took his 

learners to the computer laboratory where there is a repository of past question papers. Paul had 

also previously attended training in GeoGebra but had never used it in classrooms. At school B, 

he is responsible for teaching mathematics from Grade 8 to 12. His additional responsibilities 

include providing teachers with strategies that shape effective teaching.     

A versatile and committed teacher, Abraham has a teaching experience of eight years. He holds a 

Higher Certificate in Education. Abraham believes that teaching mathematics requires some fun 

and laughter in classrooms. He offers extra mathematics lessons outside the school where he uses 

a projector and laptop to project past question papers or static images from different sources. GLIP 

meetings were held at his place where he held private lessons. However, Abraham’s school 

management refused to give us permission to conduct research in their school. Therefore, I could 

not observe and film his lessons. He continued to be a GLIP member and was enthusiastic in 

teaching and learning using technological tools. Abraham’s contribution to the GLIP is significant 

hence I included his profile in this section.  

3.4 RESEARCH DESIGN      

This research involved an in-depth study of practices of a group of teachers as they implemented 

technological resources in the form of GeoGebra applets in their classrooms. Therefore, I needed 

to establish a status of a ‘trusted person’ among the selected group of teachers. Mertler (2017) 

prescribes “[T]he act of becoming a trusted person in the setting actually makes the researcher a 

participant in that setting or group, as well” (p. 176). The GLIP meetings provided an opportunity 

to interact with each other, so within this context, I took an active role as a member of the team, 

involved in the discussions of pedagogical aspects and design of the applets. My participation as 

a team-member of GLIP provided me with two outcomes: one – I had the opportunity to learn 

first-hand what went on in that setting; and two – to establish an excellent rapport and trusted 

relationship with the participant teachers.          

Nonetheless, in the process of classroom data collection, I changed my role from a participant to 

act completely as an observer, i.e. as a typical researcher-observer, I had little interaction with the 

participant teacher.    
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The research took place when the GLIP teachers implemented their applets on different topics in 

their classrooms. The schools in the Mthatha district had a standard annual teaching plan which 

guided us in determining the topics of discussion in the GLIP sessions, and hence the data 

collection schedule. In this thesis, I report on three topics in Grade 11 that the teachers taught with 

GeoGebra, namely i) circle geometry, 2) equations and inequalities and 3) straight lines.   

The empirical field of the research is the GLIP programme, and in the following section, I discuss 

the GLIP model of implementation of technological resources in classrooms.   

3.4.1 The GLIP Cycles and Data Collection   

In Chapter One, I discussed the GLIP (GeoGebra Literacy Initiative Programme), which is a 

teacher development project explicitly designed for teachers to use GeoGebra. There were two 

phases in the GLIP – a training phase and an implementation phase. Data collection for this 

research lay in the implementation phase of GLIP, where teachers used GeoGebra applets as a 

pedagogical tool in classrooms. The GLIP cycles were iterative and comprised of six components: 

1) identifying the mathematical domain; 2) discussing the pedagogical imperative; 3) designing 

and planning; 4) implementation; 5) reflection and 6) refinement. The empirical field of this 

research was thus the GLIP program, which occurred in cycles defined by the applets that the 

teachers developed. In this thesis, I report on three GLIP cycles with the participating teachers.  

I primarily used two techniques for my data collection – classroom observation and ‘stimulated 

recall’ interview. Classroom observation, where field notes were taken, captured the data of the 

teachers’ implementation of applets in classrooms in the form of audio-video recordings. 

Stimulated recall interviews provided the setting to facilitate the reflective process (O’Brien, 1993). 

A stimulated recall interview technique was a reflective session where the teachers and I watched 

the videos of their teaching and interpreted the lessons. This method of stimulated recall prompted 

teachers to recollect and explain the strategies they used during the lesson.  

What follows is a description of the process of the GLIP cycles and data collection techniques for 

gathering data to answer the research questions.  Newby (2014) argues that “data are the material 

out of which we construct our research argument” (p. 146). 

Domain: The topics were selected based on the annual teaching plan that aligned with the CAPS 

document issued by the Department of Basic Education (2011). In the GLIP meetings, we 
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discussed how we could harness aspects of GeoGebra into the design of our lessons in order to 

make the concepts visible and develop conceptual understanding and procedural fluency. However, 

appropriate topics had to be carefully selected as “not all problems are best investigated with 

GeoGebra” (Bu et al., 2012).  

Pedagogy and Design: In the GLIP meetings, teachers discussed and designed the applets 

incorporating the relevant and appropriate pedagogy in the applets. These discussions were 

important to the preparation of the lessons. I audio recorded these discussions for my specific 

research purposes.  

Implementation and Classroom Observation: Each teacher taught his lessons with the co-

developed applets. For each mathematical domain, I observed two of the three lessons, and I thus 

observed eight lessons in total from four cycles. Due to the volume of the data generated, I present 

only six lessons from three cycles. During the classroom observations, I took the role of a non-

participant observer.  I collected the data in the form of audio-video recordings. I used an exclusive 

audio recording device placed inside each teacher’s pocket, to record the voices of the teachers. I 

used two cameras to capture the video of the lessons – firstly, a fixed camera on a tripod facing 

the projector screen and secondly a hand-held camera which followed the teacher as he taught. My 

fellow researcher volunteered to operate the moving camera and walked around the classroom. 

Throughout the observed and video-recorded lessons, we neither interfered nor interacted with the 

teacher or learners during their classroom activities. As Scott and Usher (2003) argue, “this 

detached stance allows observers to gain a more comprehensive view of what is being observed ” 

(p. 101). This dimension of a purely observational role during implementation allowed me to gain 

a more objective view of the classroom interactions. We had informed the classes beforehand, and 

they were accustomed to our presence in their space.       

Reflection and Stimulated Recall interview: After the lesson using the applets, the participant 

teachers reflected on the applets and the presentation of their lesson. This reflection took place in 

our GLIP meetings. These meetings offered an opportunity for the teachers to reflect in detail on 

the experiences of their lessons. They also provided critical insights into and data about the efficacy 

of the applets as a visualisation tool.    

Merriam (2009) argues that “[I]nterviewing is often the primary data collection strategy in 

qualitative studies” (p. 17). Within a span of three to four days after the classroom observation, I 
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arranged a meeting with the teacher concerned for a stimulated recall interview. Meanwhile, I 

watched and analysed the audio-video recording of the lesson before the interview. I interviewed 

the participating teachers individually to gather information and clarification about their 

experiences of the teaching using the applet, concerning how the use of the applets facilitated 

conceptual and instructional fluency. This stimulated recall interview allowed me to explore and 

analyse the teachers’ interactions and engagement with the applets against the first two strands of 

Kilpatrick et al.’s proficient teaching viz. conceptual understanding and instructional fluency. I 

asked open-ended questions that followed up with probing for further details.      

Refinement:  After each cycle of implementation and its respective reflection, I consolidated the 

data obtained in that cycle. The data informed me as to how far the teachers were able to create a 

learning environment using GeoGebra applets and whether the teachers were able to implement 

the intended pedagogical practices. This step also provided me with an opportunity to review and 

consolidate what was achieved in that particular cycle. This step of the GLIP cycle helped us (my 

fellow researcher and I) to plan and refine the next cycle. For instance, after the first cycle, teachers 

realised that their learners required more training in computers and GeoGebra in particular. 

Furthermore, the teachers’ reflections showed that learners’ very limited experience with the 

computer keyboards impeded the mathematics intended in the lesson. Therefore, we made sure 

that the applets that were developed for later cycles required minimal keyboard inputs from the 

learners.     

The following Table 3.1 indicates the components of the GLIP cycles where the action research 

took place.  
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The diagrammatic representation of data collection within the GLIP cycle is as given in Figure 3.3. 

Table 3.1: Table to show where data collection occurs 

Components within each GLIP cycle Action 

Research 

Data 

Collection 

1. Selection of Domain  

2. Pedagogical Imperative (GLIP 

meeting) 

 

3. Design of Applets (GLIP 

meeting) 

 

4.  Implementation (Classroom 

Observation) 

 

5. Reflection (GLIP meeting)  

6. Interview (Individual)  

7. Refinement (GLIP meeting)  
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Figure 3.3: GLIP Cycles – the empirical field  
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3.4.2 The Pilot Study  

After the first phase of the GLIP workshop training the teachers, the feedback which GLIP received 

was very encouraging and positive. The teachers were enthusiastic about GeoGebra as a teaching 

and learning tool in their mathematics classes. Two teachers, including one of the participant 

teachers – George from School A – used the pre-designed applets in his Grade 9 classes as a pilot 

to teach the area of a triangle. At the time, my analytical framework was not yet fully developed 

but the pilot of using GeoGebra assisted me in identifying and coding the teacher interactions with 

the applets and with the learners. These interactions are further discussed in Section 3.5.1.2 (p. 67) 

when I dealt with the full development of the analytical framework. 

Furthermore, after the approval of the framework by Rhodes University, I also piloted a lesson by 

George in Grade 10 where George and I designed the applets for teaching linear functions. After 

the lesson, we watched the recording of the lesson together and conducted a mock stimulated recall 

interview process. The second pilot further helped me to refine the data gathering techniques and 

the analytical framework, thus sharpening my data gathering and analysis protocols.   

3.5 DATA ANALYSIS  

The data analysis protocol involves organising and explaining the data in terms of the participants’ 

perspectives, accounting for categories, noting patterns, regularities and themes (Cohen et al., 

2007). Newby (2014) considers data analysis as a process through which we make sense of data 

and communicate the essence of what it reveals, and  “get our data to release the information we 

need to answer our research question” (p. 395).    

Merriam (2009) argues that “the much preferred way to analyse data in a qualitative study is to do 

it simultaneously with data collection” (p. 171). Data that have been analysed while being collected 

are likely to immediately illuminate the research questions. Following these recommended 

methods, I viewed and reviewed each classroom observation, made notes and reflected on the data, 

and identified things to pursue and ask the participants during the stimulated recall interview. 

Furthermore, I also recognised and became more conscious of observing or looking out for specific 

things in the subsequent cycle of data collection. Prior to the actual data collection with the 

participant teachers, I piloted each cycle of applets with my fellow researcher. He took a few of 

his learners and taught them using the co-developed applets, and I observed those lessons and 
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made notes of hunches, ideas and things to look out for in the classroom observation of the relevant 

cycle.  With the recursive process of data collection and analysis, I was able to bring greater focus 

to data collection, and thus, the analysis became more intense as the study progressed.  

3.5.1 The Step-by-Step Process of Data Analysis  

The process of data analysis involved four steps, namely 1) managing the data; 2) categorising the 

data and organising the data based on the categories identified; 3) reporting on the data in the form 

of narratives and horizontal analysis; and finally the last step 4) interpreting the data.  The 

following sections expand on this protocol of step-by-step data analysis. 

3.5.1.1 Managing Data    

The collection of qualitative data was done through multimedia recording. The multimedia 

recording of classroom observation comprised of two video- and one voice recorder, while 

stimulated recall interviews involved only a voice recorder. Researchers (for instance, Merriam, 

2009; Newby, 2014) have recommended that transcribing one’s own data is another means of 

engaging with the data and generating insights. I personally did all the transcriptions of the 

multimedia recordings. Firstly, I transcribed the recordings of the classroom observations into one 

lesson transcriptions and labelled them, followed by the transcriptions of the reflective interviews 

with the participant teachers. In the labelling of transcriptions, I observed the following protocol: 

each transcription label had four characters; the first two characters were CL or RI, where CL 

referred to classroom observation, and RI referred to stimulated recall interview. The third 

character in the label was a number that referred to the number of the action research cycle, and 

the last character was again an alphabet symbol that referred to the first letter of the name of the 

participant teacher. For instance, the transcription CL1A referred to the transcription of the 

classroom observation of Antony’s lesson in cycle one, while RI1A referred to the transcription of 

the reflective interview with Antony in cycle one. 

After converting the multimedia recordings to text, I read through the transcriptions along with the 

media source to ensure the accuracy of the transcriptions. This also enabled me to add the teachers’ 

non-verbal gestures that may be relevant to data analysis.  

For this research thesis, I report on three GLIP cycles. In each cycle, I observed and recorded two 

participant teachers. The quantum of data generated and analysed in three research cycles is 

summarised in Table 3.2. The analytical instrument, CUIF, is explained in the following section.  
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Table 3.2: Quantum of data per research cycle 

Data Sources 
Step of Empirical Action 
Research cycle  

Analytical 
Instruments 

Quantum of 
data  

Voice Memo (audio 
recording) 

1)   Pedagogical Imperative  1 × 3  

2)   Design of applets  1 × 3  

Multimedia Recording 
and Transcription 

1) Classroom Observation 
CUIF 2 × 3  

2) Reflective interview 
CUIF 2 × 3  

 

3.5.1.2 Organising the Data, Using an Analytical Framework CUIF 

As mentioned in the above section, I scrupulously reviewed and transcribed verbatim data from 

all sources. Thereafter, I organised the data by assigning codes using my analytical framework. 

Merriam (2009) defines coding in qualitative analysis as “[c]oding is nothing more than assigning 

some sort of shorthand designation to various aspects of your data so that you can easily retrieve 

specific pieces of the data” (p. 173). The objective of coding is to identify segments of data which 

is a potential answer or connected to the issue under scrutiny. According to Newby (2014), when 

we put codes together, we obtain insights into the research questions that may not be available 

from the raw data.  

I developed an analytical tool, entitled the CUIF – see Table 3.3.  It contains a framework of 

deductive codes and observable indicators, amalgamating Kilpatrick et al.’s (2001) model of 

teaching proficiency with concepts of visualisation derived from previous research by Arcavi 

(2003), Presmeg (1986b, 2006, 2014) and Duval (2013, 2014).  I used a colour coding system to 

assign each of the identified data segments to the observable indicators in order to look for 

similarities and differences as well as odd occurrences. The codes then enabled me to explore how 

participant teachers shaped their instructional practices while integrating technological tools in 

their mathematical classrooms, and the challenges they faced during the implementation of co-

developed applets. The analytical framework, CUIF, was refined as observable indicators emerged 

(or overlapped) from the analysis of pilot data. 

I coded the participant teachers’ interactions with the applets and responses to the learning 

situations according to the coding system given in the CUIF, as shown in Table 3.3. The teachers’ 
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mathematical teaching proficiency was analysed in relation to their interactions with the applets 

and with the learners, and the kinds of visualisation capabilities inherent in the applets that they 

demonstrated. In order to help me to recognise the two strands of mathematical teaching 

proficiency (Core Understanding and Instructional Fluency), I expanded the definitions and 

descriptions of what Kilpatrick et al. (2001) meant by these strands. I excluded the other three 

strands of Kilpatrick et al.’s teaching proficiency model from my analysis, owing to the limited 

scope of this research study. I therefore only analysed teaching proficiency with respect to using 

GeoGebra against the first two strands articulated above. It is recognised that these two strands 

are interwoven, and the combination thus represents a synthesis of mathematical teaching 

proficiency with visualisation.  
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The CU and IF strand of proficiency for teaching mathematics entails a set of interrelated above- 

mentioned ‘codes’ in Table 3.3. These codes are discussed briefly hereunder.  

Table 3.3: The CUIF Analytical Instrument 

The TWO strands of  
Kilpatrick et al.’s (2001) 

teaching proficiency 
Indicators of the TWO strands of teaching proficiency 

Conceptual Understanding 

(CU) - refers to knowledge of 

mathematics, knowledge of 

students and knowledge of 

instructional practices. 

CK: (Knowledge) demonstrates accurate explanations of mathematical concepts, 

operations, relations, terms and notations that are useful to learners.  

CMR: (Multiple representation) represents mathematical ideas in multiple ways.   

CC: (Connections) emphasizes relationships among concepts and makes 

connections, links to prior learning and references to real life situations. 

CD: (Discovery) encourages and engages leaners in tasks to explore and discover 

concepts.  

CM: (Mis-conceptions) .identifies common student misconceptions and is 

prepared to remove such misconceptions. 

Non-example: Explaining Mnemonic techniques is not a core knowledge of a 

teacher.  

CR: (Real-life) makes references to real life situations.  

CS: (Switch) Switches between abstract and concrete reification. 

Instructional Fluency (IF) is 

the ability to use knowledge 

flexibly in practice to appraise 

and adapt instructional 

materials (Kilpatrick et al. , 

2001, p. 369) 

FA: (Acquisition) a range of instructional materials which can be drawn from 

fluently as teachers interact with students.  

FM: (Mis-conception) responds to a learner with serious misconceptions.  

FL: (Literacy) able to deal with students who lack basic skills.  

FR: (Responsive) flexible and responsive to students’ queries and provides 

alternate methods or procedures to the same problem. 

FP: (Procedure) explains and encourages learners to use and select appropriate 

algorithms, formulae, procedures or conventions accurately, efficiently and 

flexibly.  

FF: Feedback to assure that the learners understand or are able to perform tasks, 

prompting answers. 
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CK (Knowledge): A teacher provides clear and efficient explanations of mathematical concepts, 

relations, notations and procedures that are useful to learners.  

CMR (Multiple representation):   A teacher represents mathematical situations in different ways 

or uses multiple representations, models or real objects. The use of multiple representations in 

classrooms is another strategy to make effective use of visualisation.  

CC (Connections): Making connections across mathematical topics and across the curriculum is 

one of the key elements of proficient teaching. When teachers make connections between 

mathematics topics and the real world in a classroom, they employ visualisation for effective 

teaching and learning.  

CD (Discovery): A teacher engages learners and encourages them to explore and discover 

concepts. Here, the teacher acknowledges constructivism as a theory that knowledge is the result 

of learners’ activities rather than the passive receipt of instruction. 

CM (Misconceptions): From their experiences, teachers have identified likely misconceptions 

around a mathematical idea and are able to unpack them in the classroom.  

CR (Real-life): This code relates to teaching activities where teachers devise a real-world context. 

Visualisation in teaching results in making connections with everyday or real-life situations. 

CS (Switch):  Switching between the abstract and concrete can be thought of as ways in which 

teachers direct mathematical generalisation combining the concrete details and the abstract ideas.  

Visualisation in mathematics is the ability to relate and handle both concrete and corresponding 

abstract objects. 

FA (Acquisition): Fluency in acquisition stands for those instances when teachers fluently draw 

from a range of acquired instructions as they interact with the applets and the learners. 

FM (Misconceptions): Fluency in handling misconceptions signifies a teacher’s responses to a 

learner who gives an answer that demonstrates serious misconceptions. (The misconceptions 

addressed here refer to individual learner’s misconceptions not identified by the teacher during the 

planning of the lesson).  

FL (Literacy): Fluency in basic computer skills corresponds to those interactions where teachers 

deal with learners who lack basic skills in using computers for learning purposes. The indicator 

FL was not initially planned; however, after piloting I realised that the teachers spent a lot of time 
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and energy helping learners to use computers correctly. I do not endeavour to identify specific 

skills or knowledge required by mathematics teachers.      

FR (Responsive): Fluency in response denotes teachers’ responses to situations or questions from 

learners that arise during their lessons. Responses could include providing alternate methods or 

procedures for the same problem. 

FP (Procedure): Fluency in procedures signifies how teachers not only carry out the routine 

procedure but also explain and encourage learners to use and select an appropriate algorithm that 

is efficient and effective.    

FF (Feedback): Fluency in soliciting feedback from learners helps a teacher to ensure that the 

learners understand or are able to perform a task. This is important when a teacher is working in a 

constructivist precept that encourages learners to observe and talk about mathematical view points.  

The classroom observation provided an idea of how the participant teachers engaged with the co-

developed GeoGebra applets. These were video recorded, and field notes were taken. I reviewed 

the videos and the video transcriptions to describe and document the unique or common patterns 

of the teaching practices. I identified the basic units of data, and then I coded. I categorised the 

data and tagged it by linking the teachers’ interactions with the applets and with the learners, using 

the indicators mentioned in the CUIF analytical framework, shown in Table 3.3. This level of 

analysis helped me to gain an in depth understanding of their teaching practices.  

3.5.1.3 Reporting the Data – Vertical and Horizontal Analysis  

There are three analysis chapters – Chapters Four, Five and Six – one for each cycle.  For each 

chapter, I first briefly present the development and design of the applets for that specific cycle. 

The GLIP meetings helped me to understand how teachers planned their lessons to develop 

conceptual understanding and procedural fluency in mathematical concepts. More importantly, the 

analysis of the audio recorded GLIP meetings (second and third steps of the empirical cycle) 

enabled me to uncover what happened during the planning sessions.  

I used a vertical (descriptive) analysis for each teacher to narrate their implementation of applets 

in classrooms. According to Newby (2014), narrative analysis enables a researcher to process the 

data in ways that extract the most relevant information in order to address the research question. 
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The narrative accounts enabled events and actions to be conveyed as they unfolded. The narrative 

approach allowed me an in depth understanding of my research questions.  

Nevertheless, individual observation and analysis of one participant cannot be considered in 

isolation (Cohen et al., 2007). I consolidated the data in my horizontal analysis as I put together 

all the main issues that arose amongst the participants. A horizontal analysis is a cross-referencing 

of what transpired from a vertical analysis (Merriam, 2009).  Consequently, in the horizontal 

analysis I looked for commonalities, different methods of teaching and recurring patterns across 

my participants.  

In this way, my vertical and horizontal analysis complemented each other. The vertical analysis 

enabled me to present a detailed and comprehensive picture of each participant teacher. In my 

horizontal analysis, cross-referencing of what transpired from the vertical analysis enabled me to 

understand teachers’ interactions and responses as they used applets for teaching and learning 

mathematics. I consider this blend of analysis an effective approach to grow my own insights into 

the participants’ worlds.  

3.5.1.4 Interpreting the Data (Answering the Research Questions) 

The above analysis protocol allowed me to interpret the data in order to answer the research 

questions. Using this technique, I could identify enabling and disabling aspects of using 

technological tools in mathematics classrooms. According to Newby (2014), in social science 

research it is only by examining the lives, actions and statements of people can we understand the 

world from their perspective. Thus, the interpretation of data underpins the qualitative approach to 

research. 

At the end of each cycle representing a particular mathematical domain, I then present a section to 

discuss the answers to my research questions.    

3.6 VALIDITY AND RELIABILITY  

Newby (2014) argues that validity in educational research means to “convince others that the 

processes we used to collect our data and the analysis we used to convert them into evidence are 

reasonable and, then, that the argument we construct to reach a conclusion is logical” (p. 97). From 

this perspective, the validity of research becomes intricate and multifaceted and thus requires 

careful consideration. Cohen et al. (2007) echo that validation and reliability of data is an essential 
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key to effective research that has a substantial effect on the interpretation of data and the 

authenticity of research. Reliability, as Merriam (2009) describes, is an essential consideration of 

any research and indicates the trustworthiness or quality of the research. I adopted different 

strategies to present my research study’s validly and reliability, and the following paragraphs are 

devoted to discussing these issues:      

Rigour in action research, Mertler  (2017) describes as “[t]he extent to which it reaches a standard 

of quality is directly related to the usefulness of the research findings for its intended audience” (p. 

68). In general, rigour refers to the validity, quality and credibility of the research. Maxwell (2009) 

suggests that rigour in action research is typically based on procedures of checking to ensure that 

the results are not biased. Mertler (2017) proposes that one of the strategies to deal with ‘bias’ 

validity threat is by reporting a situation revealing the views of the participants. I included multiple 

methods to ensure validity and reliability of the research findings. Reflective interviews and GLIP 

meetings gave me an opportunity to clarify meanings held by the participant teachers. Whenever 

any discord existed, such as coding of a teacher interaction as CU or IF, I took the conundrum to 

the GLIP meetings, and we discussed it and reached a consensus. I also asked the participant 

teachers to review the analyses and results from the action research process. The idea here was to 

solicit feedback on my analysis from the participant teachers, ensuring validity and credibility 

through ‘member checking’.  So  the strategy of ‘member checking’ was an important way of 

ruling out the possibility of misinterpreting the meaning of the participant teachers’ interactions 

and responses (Maxwell, 2009). It also provided an opportunity for the participant teachers to 

further explain, extend or curtail the information that had been reported on in the analysis.   

Furthermore, my fellow researcher and I discussed my preliminary analysis and I consulted with 

him about the validity of my findings.  His involvement was invaluable to me as it ensured that I 

remained consistent and rigorous in my analysis. Cohen et al. (2007) explain that triangulation in 

social sciences is an  “attempt to map out, or explain more fully, the richness and complexity of 

human behaviour by studying it from more than one standpoint” (p. 141). The involvement of my 

fellow researcher was a form of ‘triangulation’, which contributed to the validity and reliability of 

the findings. The triangulation of methods can assist the researcher in generating reliable evidence. 

In general, data collection techniques that have proved their worth to be valid and reliable include 

observations and interviews (Cohen et al., 2007; Newby, 2014). The use of multiple methods of 
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data collection is a powerful way of demonstrating the validity of research, especially qualitative 

research (Cohen et al., 2007). For this reason, the data collection techniques for this research 

include multimedia video recordings of classroom observations (in fact, I used two video cameras 

and an exclusive audio recording device), field notes and stimulated recall reflective interviews.  

Mertler (2017) suggests that “[p]rolonged engagement and persistent observation” helps 

participants fully understand the outcomes of an action research process. The sustained presence 

of the researcher with the participants therefore provides extended opportunities to share their 

experiences.  I interacted with the participating teachers for quite a long time before the actual data 

collection, and therefore I was ”close to reality” (Maxwell, 2009). The long-term interaction 

yielded considerable data which was rich, detailed, and varied enough to render an analysis process 

which was valid and reliable. 

I have discussed in Section 3.3.1 (p. 53) that an action research process is, by its nature, cyclical. 

In order to develop adequate credibility, it is critical to proceed through several cycles, where the 

earlier cycles inform the later cycles (Mertler, 2017). With three cycles reported on in this thesis, 

the GLIP team learned continuously, from one cycle to another, thus enhancing the validity and 

reliability of the research findings.  

In this section, I have examined the character and principles of research design that define the 

qualities of valid research. I am convinced that my data collection techniques are appropriate and 

the analysis protocol has a rigour that substantiates the claims that I have made.   

3.7 ETHICAL CONSIDERATIONS 

Maxwell (2009) believes that “ethical concerns should be involved in every aspect of design” (p. 

216). In agreement with him, Merriam (2009) argues that ensuring validity and reliability in 

qualitative research involves investigating in an ethical manner. I followed all of Rhodes 

University’s ethical protocols for conducting research. I obtained relevant permission from the 

Department of Basic Education, Eastern Cape, to conduct research in public schools.  The relevant 

documents are in Annexure I.  

The principle of informed consent implies a participant’s right to freedom and withdrawal from 

the study. Correspondingly, Newby (2014) clarifies that the participants should have a full 

understanding of their commitment. When my fellow researcher and I approached the schools and 
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the identified teachers, we explained our research agenda and the research process to them. We 

also informed them in writing that they were under no obligation to continue their involvement 

until the end of the project and guaranteed their confidentiality. In order to ensure that the 

participants’ consent was voluntary and informed, I obtained a signed consent from the school and 

from the participant teachers, in Annexure II.     

Moreover, I also obtained informed parental consent of the learners concerned, in the form of 

signed letters, as learners were recorded during my classroom observations. In Paul’s class, a 

learner did not return the signed consent letter and therefore did not attend the lessons during the 

classroom observations even though  this learner had participated in the introductory training in 

GeoGebra and the training interludes between the cycles.  

Disseminating findings can raise certain ethical issues. I ensured the anonymity of the schools and 

the participants to protect their identity. The audiovisual recordings, the stimulated recall interview 

recordings, the transcripts and other data are stored safely and secured on my password protected 

computer. I intend to store the data for five years, after which I will destroy the data sets.  

Cohen et al. (2007) assert that ethical researchers should behave towards their participants “...in 

such a way as to preserve their dignity as humans”(p. 58). The bottom line of ethical research is 

my own integrity and the participants’ welfare and dignity.  

3.8 CHALLENGES IN DATA COLLECTION  

The first challenge in the data collection process that I noticed was the erratic computer terminals 

and lack of maintenance of computer laboratories in schools. Teachers often took on the role of 

technical assistant in helping learners to overcome technical glitches rather than expounding on 

mathematical content. Even so, as the hardware problem persisted, learners’ incompetency in using 

computer input devices such as the keyboard and mouse posed a threat to the smooth interchange 

of mathematical ideas in the class.  

Nonetheless, we overcame the situation as we provided further training in GeoGebra before the 

implementation of each cycle. For this additional training, the participant teachers had to have 

flexible schedules, and it was not always feasible to arrange these training sessions. To a large 

extent, we addressed the challenge of learner incompetency in using computers by ensuring that 

the collaboratively designed applets required minimum input (by way of typing using keyboards) 
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from the learners. Interestingly, Antony, after a lesson using GeoGebra applets, informed his 

learners that using keyboards was equivalent to learning mathematics.  

Yet another challenge or drawback of the research is that sample selection did not include female 

teachers. Coincidentally all the participants were males. There were no female teachers in the GLIP 

project at the time of data collection, nonetheless, gender discrimination or gender-based analysis 

was not on my research agenda. As a woman, I wished to empower a few women through my 

research process. I approached a few female teachers in Mthatha to participate in our project; 

however, they were not willing to spend time and energy on the GLIP meetings owing to other 

commitments. Gender was not a factor in this research and the dominance of male teachers in the 

sampling was neither purposeful nor deliberate. 

3.9 CONCLUSION  

The empirical component of this study centres on an intervention programme that capitalises on 

the community of practice inherent in the GLIP. The study is situated within the qualitative 

research framework and oriented within an interpretive research paradigm. The research 

methodology took the form of action research cycles in which the design, implementation and 

evaluation of successive applets determined the data gathering and analysis process. I developed 

an analytical tool synthesising Kilpatrick et al.’s (2001) model of teaching proficiency and 

concepts of visualisation. I employed this analytical tool to understand teachers’ classroom 

practices and emerging patterns of interactions that surfaced during the implementation of applets. 

This methodology enabled me to interpret how participant teachers shaped their instructional 

practices while integrating technological tools in mathematical classrooms, and the challenges they 

faced during the implementation of co-developed applets.   

In the following Chapters Four, Five and Six, I present the data analysis of three GLIP cycles.         
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CHAPTER FOUR 

4 TEACHING MATHEMATICS USING DGS – DATA 

PRESENTATION AND ANALYSIS – CYCLE 1 

4.1  INTRODUCTION  

The overall goal of this study was to investigate whether, and how, DGS-aided visualisation can 

enhance the teaching of mathematics. The GLIP model of action research cycles, as discussed in 

Chapter Three, enabled me to gather data for three topics from the three participating teachers. The 

GLIP meeting started in December 2016, and the data collection of the first cycle commenced 

from January 2017, with the third cycle ending in August 2017.   

Table 4.1 below is a summary of the data capturing process that is discussed and analysed in this 

chapter and the following one - Chapter Five and Chapter Six (i.e. a chapter for a cycle). In these 

chapters, I structure and discuss the data gathered during each step of the action research cycle 

shown in Chapter Three in Figure 3.3 (p. 64)  (i.e. planning, implementation and reflective 

interview).  The GLIP meeting started in December 2016, and the data collection of the first cycle 

commenced from January 2017, with the third cycle ending in August 2017.   

Table 4.1: Summary of the data collection and analysis 
No. Topic Teacher 

  Antony Paul George 

1 Angle at the centre – 
Chapter Four 

Data available and 
analysed 

Data available and 
analysed 

Data available and not 
analysed 

2 Quadratic inequalities 
and nature of roots - 
Chapter Five 

Data available and 
analysed 

Data available and 
analysed 

Data not collected 

3 Equations of a straight 
line – Chapter Six  

Data not collected Data available and 
analysed 

Data available and 
analysed 

 Total of analysed 
lessons 

2 3 1 

 

In Chapters Four, Five and Six, I examine the data drawn from the video lessons and reflective 

interviews for two teachers (per cycle) and then provide an overall picture highlighting 

visualisation and teaching proficiency across the teachers for each cycle.  



78 
 

This research study generated several applets for each cycle. ‘Applet i.j’ refers to an applet where 

‘’ and ‘j’ denote the ‘’ th applet of the ‘j’ th GLIP cycle, for example, Applet 3.1 thus refers to the 

first applet in the third cycle.  

This chapter, Chapter Five and Chapter Six are similarly structured as follows:  

Section 4.2 – This section briefly describes the GLIP meeting where the planning and designing 

of the applets took place, and teachers implementing these applets in the observed lessons. For 

each selected topic, there was a discussion among GLIP members which is described in this 

subsection. The design sub-section elaborates upon some technical aspects of the software and 

pedagogical aspects that emerged during the construction of the applets.  

Section 4.3 – This section presents data and associated analysis in the form of narratives for each 

of the two participants. 

Section 4.4 – This section analyses data across participants, pulling together the indicators of 

visualisation and mathematical teaching proficiency, thus complimenting the narratives.   

Section 4.5 – This section answers the research questions.  

Section 4.6 – Concluding remarks are made in this final section.   

A synopsis of the methodology and analytical framework would be helpful for the reader at this 

stage of the thesis.  

4.1.1 Synopsis of the methodology  

The GLIP cycles which coincided with my action research, framed the research design. The 

narrative analysis that follows, unfolded in chronological order, i.e. as the events happened in real 

time. The narratives of each participating teacher describe how the selected teacher implemented 

the co-developed applets in his classroom, and his interaction with the applets and with the learners. 

The narratives for each teacher are in the form of a prose account, interspersed with figures for the 

relevant applets and excerpts of transcripts and analyses.  

This research study focussed on two strands of Kilpatrick et al.’s (2001) mathematical teaching 

proficiency model, namely Core Understanding (CU) and Instructional Fluency (IF). The 

analytical instrument CUIF in Table 3.3 on p. 69 was used to analyse the data. For instance, the 

indicator ‘Connections’ (CC) under Core Understanding indicates a teacher teaching new 
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mathematical concepts by bringing in connections between prior knowledge and real-life situations.  

On the other hand, the indicator ‘Responsive’ (FR) under Instructional Fluency indicates that while 

interacting with a learner, the teacher responds flexibly to a learner’s queries and may provide an 

alternative explanation or procedure. In Chapter Two, Section 2.4.3 (p. 39), I discussed teaching 

proficiency in relation to visualisation. Thus, the use and allocation of the indicators described in 

the CUIF enabled me to interrogate the proficiency of the teachers’ practices in terms of how they 

integrated the visualisation capabilities of GeoGebra into their classrooms.      

4.2 CYCLE 1: - Angle at the Centre theorem  

4.2.1 Discussion – GLIP Meeting  

The participant teachers met for the first time after the training on GeoGebra to discuss how to use 

the software in their classrooms. There were only three teachers, namely Antony, Paul and George, 

and two researchers, present in this meeting. George had managed to hire a venue for our meetings 

away from our schools but still accessible to all of us. The lighting of the classroom was not 

suitable for display on the projector, and there was significant noise from children in the adjacent 

classroom. Later, after our meeting, we learned from the venue manager that during non-school 

days, including Saturdays, parents leave younger children there to be supervised. Since the venue 

was not available during regular working days, we decided to look for another venue for the next 

round of discussions.         

4.2.1.1 Identification of concepts  

We decided to focus on only one theorem out of the seven circle geometry theorems in the Grade 

11 curriculum, which was the angle at the centre theorem. All the participants agreed that 

GeoGebra might be useful for their learners to first investigate the theorem before providing the 

formal proof of the theorem. We debated at length about whether the learners should construct 

geometric figures such as circles and line segments, and measure angles on their own during the 

lesson and then explore the theorem, or whether they should use a preset applet that containing 

circles and measured angles. The learners could then investigate the relationship between the angle 

at the centre and the angle on the circumference of the circle.  Other options also emerged – like 

Theorem: The angle subtended by an arc at the centre of a circle is twice the angle 

subtended by the same arc at the circumference. 
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using the ‘Navigation bar’ akin to the animation feature of the presentation software.  This option 

would be best suited for a classroom demonstration where we could do away with the ‘burden’ of 

repeated drawings. Without settling the discord, we moved on to designing the applets. All the 

participants were working on their computers, and one of the computers was connected to a 

projector that would display their constructions.        

4.2.1.2 Designing and Planning  

Antony suggested that we should encourage learners to remember the basic geometric concepts of 

circles like radius, chord, arc and circumference. He would draw a circle with a centre, the angle 

at the centre, the angle at the circumference, measure the angles and then would encourage learners 

to identify the relationships between them. George added that the learners must be able to 

understand the properties of a radius – that they are equal everywhere in a given circle. He 

suggested that as teachers, we have to guide some of the learners to identify the line from the centre 

to the circumference as a radius. We constructed a circle, an arc, line segments and angles using 

the GeoGebra tools. Alongside, in Figure 4.1, is the first applet 

that we designed to explore the angle-at-the centre theorem.  

Paul also suggested that with the applet, the learners could 

move the points around the circle and look for the ratio between 

the angles. Moving those points around was an essential part of 

the DGS and would help the learners to see that the angle at the 

circumference can be anywhere on the same side of the arc.  

Paul came forward with a common misunderstanding evident in many learners. He noticed that 

even when the angle is not at the centre of the circle, or the angle is not on the circumference of 

the same circle, many learners had the tendency to still 

apply the theorem. Antony then suggested that we could 

subtend angles inside and outside the circle from the 

same arc but not necessarily on the circumference or at 

the centre. The learners could then move the new point 

around the screen and verify whether these angles were 

related to the angle at the centre or the angle on the 

circumference. We could thus emphasise that the 

theorem holds only for the angle at the centre of a circle and the angle on the circumference of the 

Figure 4.2: Applet 1.2 

Figure 4.1: Applet 1.1 
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same circle, thereby addressing these misconceptions. The Applet 1.2, in  Figure 4.2 addressed 

these misconceptions. In this applet, ‘E’ is an independent point, implying that we can drag the 

point around the screen without any restrictions. Thus, the teachers established that the theorem 

holds only for the angle at the centre and the angle on the circumference of the same circle.      

Paul showed us on the projector that by constructing another 

angle at the circumference, we could relate this to the next 

theorem that the angles subtended by the same chord or arc 

are equal. Antony commented that it would be straightforward 

if we could do that so that the learners might be able to link 

these two theorems by themselves. Thus, we collaboratively 

developed the third applet of the day, Applet 1.3 (shown in 

Figure 4.3).  

Antony said that he would move the angle at the 

circumference to the other side of the arc to make learners 

understand which angles are referred to in the theorem. Paul 

pointed out that when we move the angle to the other side, 

the software measures the reflex angle, and therefore we 

would have to remeasure the angle at the circumference. 

George commented that too many angles might confuse the 

learners and suggested therefore that the reflex angle could 

be hidden, or else draw another point on the other side of the 

arc. However, we found a way out of the impasse by colouring the angles, resulting in Applet 1.4 

shown in Figure 4.4.  

George proposed that we could deploy the same applet to introduce the concept of the cyclic 

quadrilateral and its opposite angle property. This Applet 1.4 proves Figure 4.4 the cyclic 

quadrilateral theorem – opposite angles of a cyclic quadrilateral are supplementary).   

In this collaborative fashion, we designed four applets for the understanding of: 1) angle at the 

centre theorem; 2) angles subtended by the same chord; 3) misapprehensions; and 4) cyclic 

quadrilateral property. Nevertheless, Antony interrupted and said that we could add one more to 

Figure 4.3: Applet 1.3 

Figure 4.4: Applet 1.4 
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our list when we drag the arc to form a semi-circle. We could then guide learners to investigate a 

particular case of the angle at the centre theorem (i.e. an angle subtended by a diameter is 90°).  

George was unhappy when he dragged the chord to form a diameter. He said that due to rounding 

off, the angles were not showing as exactly 90°  and it was challenging to drag points to a desired 

angle at the centre. He brought to our attention that the angle at the centre might not be double the 

angle at the circumference due to a rounding off mistake in the software. All of us then realised 

the same and attempted to round off different decimal places which were not satisfactory. Paul 

suggested that we could draw a straight line passing through the centre of the circle to get a 

diameter and then draw the angle at the circumference. Paul’s idea functioned only for the semi-

circle issue; however, the rounding off errors existing in the previous applets was still a concern.                    

Antony proposed that we could change the angle at the centre to integer values. Then we could 

overcome the rounding off anomaly of the software.  The ‘slider’ tool allowed us to move the angle 

at the centre in integer values from 0°  to 360°,  and we began to construct a new applet. 

Nonetheless, as Antony was constructing, he commented that the point on the circumference could 

be dragged around the circle including the other side 

of the arc, and hence became distorted. The software 

calculated the reflex angle and could therefore 

confuse the learner. Paul suggested restricting the 

point within the desired arc. Thus, after a process of 

trial and error using different tools, we were able to 

design Applet 1.5 shown in Figure 4.5.  

The critical mathematical expression was the angle at 

the circumference on the same side of the arc. Then 

we simply needed to create an arc in the figure. All 

the participants were able to construct it and agreed 

that it was a useful learning tool. However, on the 

following day, George came back seeking 

clarification on using the slider as he was not 

successful in constructing the applet when he tried 

to do it again. He did not remove the default 45°  

Figure 4.5: Angle at the centre theorem in 
Applet 1.5 

Figure 4.6: Error creating the slider 
angle 
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while making an angle at the centre and instead added 𝛼 along with it, thus measuring an angle 

different from the slider angle, as in Figure 4.6. Later, when new teachers joined the GLIP 

community, another two teachers made the same error. 

The discussion moved on to providing a proof of the theorem. There was a consensus among the 

participants that a proof was required, and it would be done at the end of the lesson. Antony 

quipped that the learners should first understand the relationship between those two angles and 

then he would provide the proof explaining to them why the relationship existed. George observed 

that a step by step procedure for a proof was helpful for the learners to grasp the gist of mathematics. 

We all embarked on creating an applet explaining the proof for the angle at the centre theorem.  

Paul volunteered to demonstrate his constructions using the projector. All of us agreed that we 

might not use the actual values of the angles but generalise them as ‘𝑥’ and ‘𝑦’. But the applet 

looked cumbersome with diagrams and text, so we used the ‘Graphic 2’ option in GeoGebra to 

display the text, and in this way, we could clearly demarcate between figures and text. The ‘play’ 

tool of the software enhanced the applet as the teachers could present the applet as if they were 

drawing and writing one step after the other. [The play mode can be activated as follows: Select 

‘Options’ from the ‘Menu’ Bar, then select ‘Advanced’. A screen pops up. Select the ‘Graphics’ 

tab under ‘Navigation bar for Construction steps’ Click (check) ‘Show’ and the ‘Play’ button]. The 

navigation bar would enable us to display the diagrams and the text in the order of our 

(pre)constructions. Antony commented that the learners would then be able to appreciate the 

reasons behind the angle at the centre theorem. Applet 1.8 is thus the proof for the angle at the 

centre theorem shown in Figure 4.19 (p. 107).       

4.2.1.3 Practice Applets 

Moving ahead with the discussion, we decided on two particular questions for learners to practice. 

We all agreed that the problems shown by the learners involved the application of properties that 

they should be aware of such as the sum of interior angles of a triangle. The practice question 

applets are discussed in detail below under implementation.  Applet 1.6 and Applet 1.7 are the first  

and second practice applets, shown in Figure 4.12 (p. 92),  Figure 4.13 (p. 93). The preparation of 

these practice applets involved some knowledge of programming using Java script; consequently 

they were designed by the researchers themselves. However, Antony and Paul supplied us with 

the questions.    
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All three teachers then implemented the applets we had developed, in their classrooms. Due to the 

limited scope of this thesis and the volume of the data, I analysed only two lessons per cycle. In 

this cycle I analysed Antony’s and Paul’s lessons. The first vignette is that of Antony’s lesson, 

followed by a vignette of Paul’s lesson.    

4.2.2 Analysis of lesson by Antony 

4.2.2.1 Act 1 Scene 1 ~~ Teaching through Investigation 

There were 34 learners in the class, and the lesson schedule was for two hours. Being a novice in 

a technological classroom (computer lab), Antony faced several challenges during the class. Some 

desktops and keyboards were not working. Almost 25 minutes were lost in settling down the 

learners and overcoming initial technical glitches with the computer systems. Antony’s lesson 

focused on investigating the angle at the centre theorem using GeoGebra with the learners who 

had had a prior introduction to circle geometry theorems. The teacher helped the learners to 

construct geometrical figures in GeoGebra and attended to other technical issues. Figure 4.8 and 

Figure 4.7 are snapshots of Antony’s classroom and his interactions with the  learners.  

 

Figure 4.7: Antony interacting with learners 

 

Figure 4.8: Antony’s classroom 
 

4.2.2.2 Act 1 Scene 1 ~~ Applet 1  

The teacher started the lesson using GeoGebra and indicated that they would be investigating the 

angle at the centre theorem. The extract of the transcript below indicates how the teacher 

introduced the lesson. He asked his class to state the theorem, and a learner stated the theorem 
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(CC), relating it to his prior learning.  The teacher confirmed the theorem by repeating the 

definition of the theorem (CK) using appropriate mathematical terminology, in lines 12–13 in . 

Table 4.2. 

Table 4.2: Transcript (CL1A) – stating the theorem  
5- 7  Antony: Ladies and Gentlemen let us all open our GeoGebra files.  Here we want to investigate 

centre theorem.  Can anyone please state theorem 3 for us? 
10 L: The angle at the centre is double the angle at the circumference provided they are subtended by 

the same chord or arc. (Some learners are referring to the textbook as a learner states the theorem) 
12-13 Antony: The angle at the centre is double the angle at the circumference provided they are subtended 

by the same chord or arc CK.  

 

By adopting an exploratory approach, the teacher engaged the learners in the construction of circles, 

arcs and angles (CD).  He made explicit links between these concepts and the concrete construction 

on the computer screen.  The teacher also responded to learners (FL) who struggled to construct 

geometric shapes in GeoGebra. The teacher frequently ensured (FF) that the learners could follow 

his directions by providing step by step instructions and simultaneously displaying his 

constructions on the projector.   The learners engrossed themselves in the construction and 

manipulation of the applets they constructed, while following his directions.  

Antony presented geometric concepts, combining them with technological tools. When he asked 

the learners if they could remember what an arc was (CC), as evident in lines 39–44 in Table 4.3, 

he was reminding the learners of their prior knowledge of mathematical concepts. Guiding the 

learners to plot two points on the circumference of the circle, he encouraged the learners to see 

and visualise the arc (CS), thus concretising the concept of an arc.  Antony employed a similar 

strategy to construct and visualise the angle at the centre and the angle on the circumference (CS) 

of a circle.  

Table 4.3: Transcript (CL1A) – Encouraging learners in the construction of circles and angles  
15-17 Antony: Then, that is what we want to investigate using GeoGebra CD.  Now we go to the circles, 

you see there those icons, on the top, there is a circle with the centre through a point. You click there 
on the circle, then draw your circle with a centre.  Are we all there FF?  

24-25 Learner raising a concern and teacher attends to it. [inaudible] there is a technical problem here 
(with the desktop) FL.  

39-44 Antony: Then what we can do we can put 2 points along the circumference so that we create an arc 
CK.  Do you know an arc ne?   
L: Yes sir 
Antony: Then you put a point on the circumference, and that becomes point A and Point C and see 
that one is going to be our arc CS.    

48-55 Antony: You go to the line segment, and then you join A and the centre. Are we able to join those 
two? FF   Join again point C and O as you can see now we are having an angle at the centre CS. If 
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you struggling, then simply indicate by lifting up your hand right. Then now we want to have an angle 
which is going to be the angle at the circumference. And that is being subtended by the same chord 
or arc CK.  

58-61 (A learner raises a hand). Antony is now helping the learner on the desktop FR No… this is not at 
the circumference, we want on the circumference FM.   
(Some learners can construct angle at the centre diagram, drag the point on the circumference while 
a few learners struggle.) 

 

Antony asked the learners to raise their hands if they struggled with the construction (FF), and he 

moved around the classroom. He guided learners while constructing line segments and measuring 

angles: “Click the arrow”, “This point is on the circle.”  In GeoGebra, it is crucial to click the 

‘Move’ tool after a particular construction. If the ‘Move’ tool is not selected, then the diagrams 

will be bizarre and lose control over the figure. This excerpt highlighted that Antony had become 

adept at technology (CK).    

Antony then instructed his students to measure both angles, i.e. the angle at the centre and the 

angle at the circumference of the circle they had constructed on their screens using the measuring 

tool in GeoGebra. Most of the learners initially found this challenging because the tool to measure 

angles has to select points in an anti-clockwise direction. Despite this, they soon developed the 

appropriate techniques to construct and measure the required angles. The teacher encouraged the 

learners to take ownership of their constructions (CD).  Meanwhile, he corrected (FR) the learner 

who plotted the point near the circumference by emphasising that the ‘point should be on the 

circumference’, which helped the learner to overcome his misconception (FM).  Refer to lines 

101–103 in Table 4.4.  

The teacher proceeded by motivating the learners to compare the angle at the centre and the angle 

subtended at circumference (CD) and identified the relationship between these angles. In this way 

he also referred to their prior knowledge of comparisons of numbers such as less than and greater 

than, and ratio and proportion (CC). He encouraged learners to discover the theorem by asking 

questions like “What is it that we see?”, “Compare those angles”, “What can you say about the 

relationship between those two?”, exhibiting multiple questioning strategies (CMR & FA).  

Although one of the learners accurately stated that the angle at the centre is twice the angle at the 

circumference, the teacher verified this with values from a randomly selected learner (FP) and 

elaborated on the procedure, thereby reifying the theorem. In lines 119–120 in Table 4.4, he then 

concluded by adding that the “Angle at the circumference is half of the angle that is at the centre” 
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(CK, CMR & FA). This reverse statement of the theorem indicated that the teacher could represent 

the theorem in multiple ways. The teachers’ proficiency at presenting the theorem in different ways 

would enable the learners to select appropriate algorithms in problem-solving, i.e. in order to find 

the unknown angle between the angle at the centre and the angle at the circumference, they would 

need to double or halve the known angle.   

Table 4.4: Transcript (CL1A) – Measuring angles  
 67- 68 Antony: Go to line segment then join those points A and B and join C and B to construct angle at 

circumference. FR.  (Teacher is moving around helping the learners).  Go to line click there, click 
the arrow. The arrow. Then segment, then join from here to there FL. 

70-72 Antony: Do we all have a diagram of that nature. Anyway it won’t be like that…it is not a must it 
is like that  CS it can be any because you are able to move that point B along the circumference 
CD. 

80- 91 Antony: Let us measure those angles at the centre that is angle AOC. There is a symbol of that 
angle then you move in a clockwise direction. Ok, did you manage to measure that angle FF?  
L:  No, No.  
Antony: You are supposed to click 3 points to show the angle.  (Teacher attends to students having 
difficulty with this). 

101-103 L: Angle at the circumference is not half that of the middle one.  
Antony: Ok, [pause] How can that happen? now can you measure that angle at the circumference 
FP Your point was not on the circumference. FR. we want on the circumference” FM.   

109-120 Antony: Ok now after measuring those angles angle at the centre and the angle at the 
circumference, what is it that we see CD? Compare those angles FP and tell me what is the ratio 
that you can say about the relationship CC between those two angles CD.  
L:  The angle at the centre is double the angle at the circumference.  
Antony: What is the size of the angle at the centre one person? FF. 
L:  71,44  
Antony: Then what is the size of the angle at the circumference? FF. 
L:   35,72  
Antony: Then, what is the relationship between the two? CD  
L:  The angle at the centre is double the angle at the circumference.  
Antony: The angle at the centre is double the angle at the circumference CK. Or the angle at the 
circumference is the half of the angle that is at the centre. CMR & FA Angle at the centre is bigger 
than angle at the circumference, always. When you solve the angles you must know it FP Can you 
all see that? FF  

 

4.2.2.3 Act 1 Scene 1 ~~ Applet 2  

There is a common misunderstanding among some learners: applying the angle at the centre 

theorem even when the angle is not at the centre. In order to remove misconceptions (CM) such 

as this, Antony asked the learners to plot a point 𝐷 inside the circle and measure the angle 𝐴𝐷𝐶, 

as in Figure 4.9. He emphasised that the angle was subtended by the arc 𝐴𝐶(CK), demonstrating 

accurate mathematical relations and notations. The teacher ensured that the learners could follow 

his instructions and accordingly, construct the figure(FF), while he prompted them to ask questions 



88 
 

shown in  line 131 in Table 4.5. Antony motivated his learners to identify any relationships (CD) 

between angle A𝐷C and the angle at the centre or 

angle at the circumference.  One of the learners 

dragged the point around the screen within the circle, 

on the circumference, into the centre and outside the 

circle, and concluded that “the angle in the circle is 

not half the angle at the centre of the circle because 

the angle is not in the circumference”. Thanks to the 

dynamic nature of the virtual manipulative, the 

learner was able to make the discovery. 

 
 
 
 

Table 4.5: Transcript (CL1A) – Addressing the misconception   
128-131 Antony: (Giving instructions to plot a point D inside a circle and join then to arc AC) Then you 

measure that angle, measure the angle that is formed by that one. Measure that angle remember 
when you measure that angle we talk of an arc then the angle is always subtended the angle will 
be between A and C CK  between that arc. So that angle is ADC. When measuring that angle 
ADC then measure that angle.  Are we done? FF 

135-158 Antony: Ok, now is there any relationship now between the new angle and the angle at the centre? 
CD?  Can you relate now the new angle and the angle at the centre? Is there any relationship 
between those two? Is there any relationship between those two angles the new angle FA & CD? 
The angle at the centre or the angle at the circumference? yes 
L:( not audible) 
Antony: Can you say that to everyone who is here? FF 
L: I am saying the angle the angle in the circle is not half the angle at the centre of the circle 
because the angle is not in the circumference.  

 

The elaboration below of the theorem provided evidence of interplay between CK, CMR, FA and 

CM. The teacher removed the misconception (CM) and thereby threw more light onto the theorem, 

explicitly stating “One angle must be at the centre, and the other angle must be on the 

circumference” (CK).  By paraphrasing the theorem (CMR), as evident in lines 147–148 in Table 

4.6, he reinforced the concept and provided evidence of his range of instructional repertoire.  

Table 4.6: Transcript (CL1A) – Paraphrasing the theorem  
144-148 Antony: She says there is no relationship between those two angles because now the new angle 

is not in the circumference CM, but it is inside the circle. So there will be no relationship 
between those two angles. Because Theorem 3 specifically states that the angle must be at the 
centre and the other angle must be in the circumference CK & CM. So it proves that 
immediately the angle we are talking about is not on the circumference then you can’t relate 
those two angles CMR & FA. 

Figure 4.9: Addressing Misconceptions 
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Antony proceeded with the lesson, motivating learners to play with the points on the circumference 

𝐴, 𝐵 and 𝐶  (CD), allowing the learners to discover the variant and invariant properties.  This 

exploration by the learners, supported by the teacher’s instructions, concretised the concept (CS) 

that the angle at the circumference would be invariant if subtended by the same chord or arc (CK). 

Refer to line 172 in Table 4.7.  Further, the learners also established through exploration that the 

angles changed if the chord or arc was changed, but still maintained the ratio between the angle at 

the centre and the angle on the circumference (CD).  

Table 4.7: Transcript (CL1A) – Emphasising the invariant property  
152-172 Antony:  Then you go to that point which is on the circumference, and you move it along the 

circumference, and you see if there are any changes? CD & CM The angles…are there any 
changes? Don’t mind angle D…look at the angle at the centre and the circumference. Are there 
any changes between those two? CD & FF  
L: No no 
Antony: OK. There are no changes. It means even if you move that angle at the circumference as 
long as it is still subtended by the same chord or arc, then it means then those two angles remain 
the same. CS 
What happens now if we move the point of the arc. Let us move the arc and see what is going to 
happen between those two angles CD, the angle at the centre and the angle at the circumference. 
can you see? FF 
L: Yes,  
Antony: What is happening? 
L: The angles are changing. 
Antony: Which one is changing? 
L: All angles are changing. 
Antony: Both of them they are changing because they are being subtended by the same chord or 
arc. Both of them they are changing if you are moving that arc or you are changing that arc you 
are actually changing the size of those two angles because those two angles they depend on that 
arc. If you move that arc both angles, they are changing in size. Their ratio does not change CC 
But if you move the angle at the circumference, nothing is going to happen because it is still 
subtended by the same arc CK. Their ratio does not change 
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4.2.2.4 Act 1 Scene 1 ~~ Applet 3 ~~ Same side of the Arc 

The ensuing investigation revealed Antony’s knowledge of instructional practices (CU). Asking 

learners to plot a point ‘𝐹’ on the arc 𝐶𝐴 and to 

measure the angle 𝐶𝐹𝐴, as in Figure 4.10, he used 

accurate mathematical terminology (CK). Using 

the precise mathematical term ‘same segment’ 

(CK), he warned the learner that the angle at the 

centre theorem did not apply in that scenario (CM).  

Besides this, he used in multiple representations of 

the theorem when he stated “Both angles cannot be 

inside” (CM), as in lines 210–211 of Table 4.8. He 

also emphasised that the angle cannot be outside 

the circle. This notion of ‘inside, outside’ may not be mathematically appropriate terms, but 

provided   a clear procedure useful in problem solving (FP). He also reified the misconception by 

measuring and comparing the angles (CS).  He challenged the learners to measure the correct angle 

that could be related to angle 𝐶𝐹𝐴.  

Table 4.8: Transcript (CL1A) – Emphasising the same side of the arc 
 200-206 Antony: Now let us put a point F on the circumference, on arc CA. can we see that point? 

L: Yes sir 
Antony: Let us join AF and FC.  Listen those angles we always say that they should be subtended 
by the same chord or arc.  I am talking about the arc AC. Alright, then let us measure now that 
angle.  There is an angle that is formed there let us measure that inside angle CK.  

208-218 Antony: While measuring that angle, you are supposed to start from CFA, want to measure that 
angle CFA. If you can see now, this angle is subtended by the same chord or arc. But this angle 
is on the same segment CK therefore if you relate now this angle and this angle you can’t say 
angle at the centre now is twice angle at the circumference CM & CS. They must not both be 
inside CM.  You can see now if you consider polygon AFCO now both these angles they are now 
inside CS.  If we talk of Theorem 3, the other angle must be on the outside, and the other angle 
must be on the inside. Whenever you talk of the angle at the centre being twice as the angle at the 
circumference, you must check if the other angle is inside and the other angle is outside. Because 
immediately if both angles are inside, then that one is no longer theorem 3 CM. Because you say 
that theorem three the other angle must be inside the polygon and the other angle must be outside 
FP. Do we agree? 
L: Yes 

223-233 Antony: Ok, now can you please measure for me the outside angle, the correct angle we can relate 
to angle F, the correct angle CD measure that angle FP.  
I am saying you must measure the angle that you are going to relate to angle F. That is the angle 
we are talking about is the angle at the centre FR & FM. Measure the correct angle at the centre.  
Antony: You managed ne? Ok, then now what is the relationship between the new angle that you 
measure and that angle F FF? So what is the relationship? 
L: Angle at the centre is double the angle at the circumference. 

Figure 4.10: Emphasising the same side of 
the arc 
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Antony: Yes…that angle is double the angle at the circumference. So here what we are actually 
learning is that the angle that is at the centre and the angle that is at the circumference; the other 
one must be on the inside and the other one must be outside FP. You see, it is inside out. That is 
the easiest way to understand [this] theorem. 

 

4.2.2.5 Act 1 Scene 1 ~~ Applet 3 ~~ Cyclic Quadrilateral  

Antony continued with the same manipulative and sparked the learners’ curiosity by asking them 

(CD) to relate the two angles to cyclic quadrilaterals. A learner came up with an accurate definition 

of a cyclic quadrilateral. Nevertheless, he 

referred the learner to the properties of angles in 

a cyclic quadrilateral (FA). In other words, the 

teacher responded (FR) by guiding the learner to 

focus on the angle properties of a cyclic 

quadrilateral (FP). When the learner stated that 

the opposite angles are supplementary, Antony 

confirmed the concept using another 

mathematical term (CK & CMR). Thus, without 

using a formal proof, he linked the angle at the 

centre theorem to the properties of a cyclic 

quadrilateral (CC).   

The teacher asked the learners to identify a cyclic quadrilateral among the quadrilaterals in the 

diagram in Figure 4.11. Once again, a learner came up with a correct answer (𝐴𝐵𝐶𝐹), but the 

teacher responded (FR) by guiding the learner to focus on the angle properties of a cyclic 

quadrilateral (FP). This time, the teacher calculated the sum of the interior opposite angles and 

then explicitly stated the converse theorem of the cyclic quadrilateral in lines 264–266 of  Table 

4.9. Here the teacher proved not only the interior angle of cyclic quadrilateral theorem (FP), but 

also its converse (CMR & CK).         

Table 4.9: Transcript (CL1A) – Identifying cyclic quadrilaterals   
243-253 Antony: I want us to relate now these two angles CD that is angle F and angle B. What did we say 

about cyclic quadrilaterals? FF  
L:  All four points are on the circumference 
Antony: yeah, all for points are on the circumference. And if a quadrilateral is having all four vertices 
on the circumference, then we say that quadrilateral is cyclic. Then what about the angle CD & CMR? 
What did we say about the angles? We said... 
L: Opposite angles add up to 180 degree 

Figure 4.11: Identifying cyclic quadrilaterals 
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Antony: Opposite angles, they add up to 180° CK. Now can we add these two angles, angle F and 
angle B and see what is going to happen there, they give you 180 degrees. 

254-266 Antony: Between these quadrilaterals or else those polygons that are there, which one is a cyclic? FF  
Here I am having ADCF as a quadrilateral and am having AOCF that is another quadrilateral.  And 
having ABCF which is another quadrilateral. Then I am having three quadrilaterals there. Then which 
one is a cyclic quadrilateral?  CD Between those 3? 
L: ABCF 
Antony: ABCF Why? 
L: Because all the points are on the circumference.   
Antony: Let’s talk of angles FR 
L: Two opposite interior angles are supplementary. 
L: Opposite interior angles are supplementary 
Antony: opposite interior angles are supplementary. CK This one in my case is 124,86°, and the other 
one is 55,14°.  Which if you add them you get a what? 180° CMR. Thus that proves that one is a cyclic 
quadrilateral.  That one is a cyclic quadrilateral. 

 

4.2.2.6 Act 1 Scene 1 ~~ Practice Applets  

Antony provided the learners with two applets to practise on the questions related to the angle at 

the centre theorem. Figure 4.12, showing Applet 1.6, was the first practice question that the 

learners worked on with enthusiasm. Antony explained and clarified to the learners as he was 

moving around from desk to desk. He attended to the queries of the learners, and thus his words 

and actions indicated FR and FP. However, more often than not, he avoided providing direct 

answers and instead, guided the learners through strategic questioning. Before he asked learners 

to attempt the second practice applet – Applet 1.7 – he drew the attention of leaners. He clarified 

the angle in a semicircle theorem (FR & FP), demonstrating accurate explanations of mathematical 

Figure 4.12: First practice applet – Applet 1.6 
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concepts (CK) and justifying its links to the angle at the centre theorem (CC). When a learner 

sought assistance to solve angle 𝐵𝐴𝐸, Antony did not provide a direct solution but directed her 

(FP & FR) to the semicircle theorem using the different term ‘diameter’ (CMR) shown in Figure 

4.13.  Furthermore, he supplied an appropriate procedure to find the unknown angle (FP), but only 

provided an implied link to the sum of the angles property of a triangle (CC). He also used accurate 

mathematical term ‘corollary’, (CK) connecting the angle at the centre theorem with the angle 

subtended by a diameter. Nevertheless, he was flexible enough to use the layman’s description of 

the semicircle theorem by using the phrase ‘form a certain angle’(CMR), as in line 318 in Table 

4.10.                          

 

 

 

 

 

 

 

 

 

Table 4.10: Transcript (CL1A) – Establishing a corollary of the theorem  
303-323 Antony: (moving around and helps the learners in solving the questions)  The angle subtended by 

a diameter is 90 degrees. CK Because we say that subtended at the centre is twice the angle at 
the circumference and diameter is a straight line and angle subtended is therefore 90 degrees.  
CC & FA (pause) 
Antony: We said that the angles subtended by the same chord or arc are equal  CK, i.e. theorem, 
Theorem 4, i.e. Theorem 4. So whenever you deal with chords, you are supposed to check if the 
angles are not subtended by the same arc or chord. FP & CK If they are subtended by the same 
chord, then it means that they are supposed to be equal.  
L: What is angle BAE (practice 2 question)?  
Antony: What is the value of the angle that is subtended by the diameter?  FF (A pause). An angle 
subtended by a diameter? FR & FA & CMR 
Learners: 90 degrees.  
Antony: It is a right angle CMR.  Therefore, it means this angle is 90 (BEA), and you already 
know that one (B) and then you find this one (BAE). The angle subtended by a diameter is 90 
degrees FP & FF. You need to know that information. That is the converse, sorry, corollary, of 
theorem 3 CC, The angle subtended by a diameter is 90 degrees CK. If a diameter forms a certain 

Figure 4.13: Second practice applet – Applet 1.7 
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angle on the circumference, that angle is supposed to be 90 degrees CMR.    Do you have 
GeoGebra in our tablets, for those who have tablets?  
Learners: No, no. 
Antony: You don’t have GeoGebra. You are supposed to install GeoGebra so that we can be able 
to give you these applets, and then you play around on them for practice purposes. Then it means 
to install GeoGebra in our tablets so that it can be given these applets and then you play around.  

 

4.2.3 Analysis of the lesson by Paul  

4.2.3.1 Act 1 Scene 2 ~~ Teaching through Exploration  

There were 48 learners in the class, and the lesson was scheduled for one and a half hours. Paul 

faced several challenges during the class. Some desktops and monitors were not working; therefore, 

some learners had to share the computers. Some learners were working on their laptops, but these 

were not connected, so Paul had to share the files one by one. He did not anticipate this situation, 

and it took some time for all learners to access the applets. Those learners who were using desktops 

were using a shared folder to access the files. Paul’s desktop connected to the projector did not 

function, therefore, he set up his laptop and connected it to the projector. Almost 20 minutes were 

lost before he started to focus on the angle at the centre theorem using GeoGebra. Paul wanted to 

provide an overview of the angle at the centre theorem and the theorems that are linked to it. 

Throughout the lesson, he employed predesigned applets. While displaying the applets with a data 

projector, Paul instructed the learners to explore the different aspects of the theorem. He initially 

asked learners to do an investigative pen and paper task on the topic before this lesson. 

4.2.3.2 Act 1 Scene 2 ~~ Applet 1.5  

The teacher started the lesson using the GeoGebra applet and indicated that the lesson aimed to 

gain an overview of the angle at the centre theorem. The extract of the transcript below indicates 

how Paul introduced the lesson. He encouraged learners to remember the pen and paper 

investigation on circle geometry. Straight away, he started on the theorem and asked the learners 

to identify the angle at the centre and the angle at the circumference from the predesigned applet 

as in Figure 4.5 (p. 82), thereby linking the concepts with the figure (CC and CS). He encouraged 

the learners to identify the mathematical term for ‘𝐵𝐶’ (CD & CS) and used different terminology 

for a portion of the circle as an ‘arc’ and ‘segment’ as shown in lines 49–50 in Table 4.11. When 

asking the whole class to divide the angle at the centre by two and verify whether it measured the 

same as the angle at the circumference, one learner did not follow the instructions. Paul attended 
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specifically to that learner and showed him the angle at the centre, the angle at the circumference, 

and their relationship (FL).  

He then motivated the learners to drag the point ‘𝐷’ on the circumference (CD) and to verify 

whether it maintained the ratio of 2:1 between the angles. Some learners moved the entire circle 

instead of moving the point on the circle, but the teacher noticed this and help them to restore the 

applet, showing his skill in using the software (FR). He showed them that irrespective of the 

position of the angle at the circumference on the same side of the arc, the angle at the centre 

theorem holds (CS). He employed layman’s language such as ‘other side of the angle’ to visualise 

the positions of the angle at the centre and the angle at the circumference. After that, Paul 

accurately stated the theorem (CK), line 67 in  Table 4.11.            

            Table 4.11: Transcript (CL1P) – Exploring and stating the theorem 
29- 50 Paul: Right! We are logged in and opened applet 1.1  

L: Yes sir, Yes   
Paul: We have opened that applet 1.1? 
L: Yes  
Paul: Let us go to Applet 1.1.  Still open?  
L: Yes 
Paul: Right?  What we want to do here, you still remember the investigation that you did (referring 
to a previous class or task on an investigation using pen and paper) looking at Euclidean geometry. 
L: Yes  
Paul: Do you remember?   
L: Yes 
Paul:  We want to take an overview of all the theorems here. Today we can, and as you can see 
there, there are two angles. What is the angle O called? (CC, CS) 
L: That one is an angle at the centre  
Paul: And angle D is called?  (CC, CS) 
L: Circumference 
Paul: Angle on the circumference. Yes, D is on the circumference, and angle CDB is called angle 
on the circumference. What is BC called? (CC, CS, FF) 
L: Segment.  
L: Arc  
Paul: Here, BC is arc, or segment (CMR). If you can quickly check with your calculator or without 
calculator divide that the angle at the centre by two and can you see what you get?   

54-67 Paul: Select D and drag it along the circle. Just drag it. (CD) 
L:(inaudible).  
Paul: It must move. Is it moving? Let us see if the angle O at the centre divided by 2 is angle D at 
the circumference  
L: Yes. yes  
L: Mine is not. [inaudible].  
Paul: Don’t make it bigger. Right. (FR) (Inaudible sounds).  
Paul: No matter what position you are at as long as you are on the circumference (CMR)  and that 
one is standing from the centre (referring to the projector) and as long as its on the other side (CS), 
you see that that one D is on the other side. The angle subtended by an arc at the centre of a circle 
is twice the angle subtended by the same arc at the circumference (CK).  
L: Yes sir, Yes.  
Paul: As long as you move your D you will find (CD) that  
Paul and L: The angle at the centre is twice the angle at the circumference. (CK) 
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Next, the teacher wanted to change the angle at the centre and asked learners to ‘move alpha’ (see 

Table 4.12). Once the learners moved the angle at the centre, they discovered (CD), that the angles 

maintained their relationship according to the theorem (see  Table 4.12).  He also exhibited his 

mathematical knowledge as well as his ability to deal with learners’ lack of basic understanding 

(CK & FL), by correcting a learner who stated that it was the angle on the circumference that 

changed when the slider was dragged and not the circumference. Paul drew the learners’ attention 

to the fact that the arc ′𝐵𝐶′ also changed when he moved the slider. He emphasised and concretised 

the concept (CS & CD), by encouraging them to ‘move 𝐷’, the angle on the circumference, to 

different positions for a given angle at the centre.  

Table 4.12: Transcript (CL1P) – Exploring the theorem further 
68-100 Paul: Move that alpha and check it(CD). 

L: (Inaudible) 
L: (moving the text narration instead of moving the slider). Move it. Do you see what is happening? 
What is happening when you move?  
(Inaudible. There is some talk among some learners).  
Paul: Don’t move alpha. The dot there next to alpha. Click on it and drag. FR 
L: Ooh yeah. (Laugh)  
Paul: Now, do you see that?  
L: Yes sir.  
Paul: Move that alpha and check. Move it. Move It. And as you move it check the relationship (CD) 
between those two angles. Are they maintaining the relationships that you are saying.?  
L: ( moving the slider and exclaiming) Yes!  
Paul: Does that showthe angle at the centre is twice the angle at the circumference (CS)?  
L: Yes yes I see that (excited) 
(Inaudible).  
Paul: You can play around by moving the slider alpha and then move D. See what is happening? I 
want you to check for different values of alpha which is the angle at the centre (CD). Move the 
slider from one end to the other. Check what is happening?  
L: The angle at the centre is changing.  
Paul: Ok. What else is changing (CD)?  
L: Circumference.  
Paul: Angle on the circumference (CK). What else?  
L: (Talking inaudible).       
L: (After moving the slider from one end to another, he brings to 𝛼 = 180° (more than twice he 
comes to this angle 180°) 
Paul: Who is calling me?  
(Inaudible).  
Paul: Arc is also changing (CC). You can see that. This is the theorem that you were investigating 
in your investigation (task). That you were investigating the theorem that state that angle at the 
centre is twice the angle at the circumference (CK). Are we together?  
L: No response.  
Paul: You can move that or just, move your alpha see what is happening? I want you to check for 
different values of alpha (CD). Say 60°, 90°, 150°, 180°.  Move your D. It may turn the same (CS). 
No matter what you do or move. Even if you move C, is C moving? No. It’s only that D is moving. 
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4.2.3.3 Act 1 Scene 2 ~~  Applet 1.5 ~~ Angle on a Semi-Circle  

Paul continued to encourage learners to move the slider to different values (CD) of the angle at the 

centre. He asked learners to conjecture (CD) about the angle on the circumference when the angle 

at the centre was 180°. He then motivated them to move the angle at the centre to 180° (CS) and 

verify for themselves their conjectures. This is recorded in lines 116–123 in Table 4.13. Paul 

sparked the learners’ interest by asking them to identify 

the line ‘𝐵𝐶′ (FF & CC) shown in Figure 4.14. The 

learners correctly recognised ‘𝐵𝐶’ as a hypotenuse, but 

the teacher directed their attention to the line ‘𝐵𝐶’ as 

part of the circle. He specified that the semi-circle 

theorem was a special case of the angle at the centre 

theorem (CC). He stated the semi-circle theorem 

accurately(CK), in two different ways and using 

mathematical terminology. (CMR). Although he 

encouraged learners to generalise what they observed 

(CD), ended the lesson by linking (CC & CMR) the 

hypotenuse of a right-angled triangle to the diameter of a circle.      

  Table 4.13 Transcript (CL1P) – Linking hypotenuse and diameter  
116-135 Paul: What will be angle D if our alpha is at 180° (CD)? I want you to calculate. CC 

L: I’ts 90°  
Paul:  Yeah Now move alpha to 180 (CS) 
L: [inaudible]  
Paul: What is the angle at the centre ( FF)?  
L: 180° 
Paul: And what is the angle at the circumference?  
L: 90° 
Paul: So there would be so many questions that will be linked to angle 90°. You can see that angle 
at the centre is now 180 (CS). Therefore, line segment BC is called, what? (FF CC) 
L: Hypotenuse 
Paul: Yeah, its hypotenuse when you see the triangle. What is BC called when you see the circle? 
(FF, CC) 
L: Diameter.  
Paul: Yes,  BC is also a diameter (CC, CMR). Are we together? CS 
L: Yes sir 
Paul: So there would be so many questions that will be linked to this (FP). You can be asked to 
prove that it is a diameter(FA). Is that ok? BC can be diameter of a circle if BC can form 90° 
(CMR). This a special theorem of angle at the centre (CC). You can also say it as an angle 
subtended by diameter on the circumference or angle formed by a semicircle is 90° (CK, CMR) 
L: Semicircle is 90°   

Figure 4.14: Angle on a semicircle 
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140-147 Paul: all of them come from the angle at the centre is twice the angle at the circumference.  CC 
Paul: Are we together?  
Paul: Can we conclude anything else? (CD) 
L: The angle at the centre is twice  
Paul: Yes we already investigated that 
L: Angle made by the semicircle is 90 degrees. 
Paul: We also have seen that angle subtended by a diameter is 90° (CMR). Anything else?   
L: [Talking inaudibly]  
Paul: Hypotenuse of a right-angled triangle will be the diameter of a circle. (CC, CMR) 

 

4.2.3.4 Act 1 Scene 2 ~~ Applet 1.2  

Paul dealt with two common misconceptions using the 

second applet. Firstly, he explained to the learners that 

the angle at the centre theorem did not hold if the angles 

were not at the centre or on the circumference 

respectively, as shown in Figure 4.15.  Referring to 

angles 𝐴𝐶𝐵  and 𝐴𝐹𝐵  on the applet, he reiterated that 

if the angles were on the same side of the circumference, 

the angle at the centre would be twice their value (CK).  

Paul asked the learners to check whether two times the 

value of angle 𝐴𝐷𝐵  (a point inside the circle) would 

yield the value of the angle at the centre (CS).  He also used the procedure of half the angle at the 

centre to verify whether it would give the value of angle 𝐴𝐸𝐵 (a point outside the circle). He 

showed learners to use ‘half’ and ‘double’ appropriately (CS, CMR & FA). He emphasised that 

the theorem holds only for the angle at the centre and other angles on the circumference (CK & 

CM) and not anywhere else (lines 173-174 in Table 4.14). Paul encouraged the learners to drag 

the points to change the angle at the centre. He convinced them that only angles on the 

circumference 𝐴𝐶𝐵  and 𝐴𝐹𝐵  were half the angle at the centre, but not  𝐴𝐷𝐵  and  𝐴𝐸𝐵  (CM & 

CS), even though they are formed by the same arc BA.  

Figure 4.15: Addressing 
misconceptions A 
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In dealing with the second misconception related to the 

same side of the arc of the angle at the centre theorem, 

Paul asked the learners to drag one of the points on the 

circumference around the circle (CD) as in  Figure 4.16.  

He linked the figure to their prior knowledge on reflex 

angles (CC & CD) and encouraged them to calculate the 

remaining angle (CC) using the appropriate procedure 

(FA). In this way, he proved to them that the revolutionary 

angle of 𝐶, which in this case was 118,5° was certainly 

was not half of 123° (the angle at the centre) (CS & CM).  

He drew the attention of the learners to the fact that 𝐹, at 61,5° was still half of 123° (CK). Paul 

asked the learners to identify the applicable angle at the centre (FR & CD) with respect to 𝐶 on the 

circumference. Purposefully avoiding rounding-off errors, he then asked them to find the 

revolutionary angle of 𝑂, and verified that half of its value (237°)  would be 𝐶 (118,5°) (FA & 

CK).. He used two concrete examples to match up the appropriate angle at the centre with the 

angle on the circumference in order to apply the angle at the centre theorem correctly – thus 

addressing the second misconception. This is recorded in lines 213–214 of Table 4.14. He 

concluded by restating the angle at the centre theorem with emphasis on the same side of the arc 

(CK & CM).         

               Table 4.14: Transcript (CL1P) – Addressing misconceptions 
154-
189 

Paul: Just close Applet 1.1. Then you go Applet 1.2  
L:  (talking) 
Paul: Applet 1.2 you must see that diagram once you opened.  
L: Yes 
Paul: Right. So you can see here. Angle C and angle F.  No matter how many angles we have as long as it’s 
on the circumference, it will twice the angle at the centre (CK, CMR).  
L: (confused) 
Paul: Now, can you see angle D. Can you see angle D? 
L: Yes 
Paul: Is [it] on the circle or inside or outside the circle? (FF)  
L: Inside 
Paul: If you multiply that angle, do you get angle O? (CS, CM) 
L: (after a pause) No.  
Paul: Look at angle E. Look at angle E. 
L: Yes 
Paul: Is it inside, outside or on the circumference (FF)?  
L: Outside 
Paul: Is it half the angle at O? (CS, CM, CMR) 
L: No.  

Figure 4.16: Addressing 
misconceptions B 
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Paul: It is just to for you understand that it is only the angle at the circumference not anywhere else that 
holds the theorem. (FA,CK,CM). Are we together?  
L: Yes 
Paul: Is that clear? 
L: Yes 
Paul: So if you can check and you can play around with B (CD)and if you check, B.  
L: [inaudible murmur] 
Paul: Can you say what is happening (FF)?  
L: (no response)  
Paul: Yes, of course, angle D and E are changing, and both come from the same arc BA, but the change is 
not the half that one of at the centre (CM, CS). Are we together?  
L: Yes 
Paul: So please its only angle at the circumference that will be half the angle at the centre. And normally 
we say that in the same segment (CK). Because all the angles there and we are looking at all the angles that 
are either above you notice (CMR) 

191-
214 

Paul: Right. Move C to go below just as I have done there. Right. What is happening? (CD)  
L: The angle is reflex now. 
Paul: Right but is it related to the angle at the centre?(FA, CC, CD)  
L: [inaudible] 
Paul: Let us calculate the revolution angle of C (CC). (pause) Can you now see that angle is no longer 
related to that angle at the centre (CC CK) which is 123 on the projector? (learners are busy with their 
calculations using values on their computer). And my angle C is 241,5. Please look at the projector. So what 
is the value of the remaining angle of C(CC)?  
L: 118,5.  
Paul: Right. Is it related to 123°? 
L: No. No. 
Paul: So it is no longer related to angle 123. It will be related to which angle(FR, CD)?  
L: [inaudible].  
Paul: We see that 118,5 is not half of angle 123 (CM). Look at the projector there. Can you see this angle 
C is no longer half this one at the centre (CM?. It will be half of the other one, Reflex O(CK). Can you see 
reflex angle O? Calculate the reflex of O?  
L: 236 
Paul: So It will be 360-123, i.e. 237 (FA) 
L: Yes 
Paul: Let us take another example. Move B. Ok That will be 140 at the centre. So this angle will be 250 not 
related to 140. 140 is related to just F only, which is 70. Are we together?  So that is we say it will be on the 
same side of your chord or arc (CK, CM), (pause) angle of the centre is twice the angle subtended by the 
arc on the same side of the arc on the circumference.    
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4.2.3.5 Act 1 Scene 2 ~~ Applet 1.3 

In the third applet of the lesson (Figure 4.17), Paul showed the learners how the theorem ‘angles 

on the circumference subtended by the same segment or arc are equal’ is linked to the ‘angle at 

the centre theorem’. Paul asked them to notice that the angles 

𝐴𝐷𝐵 and  𝐴𝐶𝐵  coming from the same arc 𝐴𝐵  were equal 

(CK & CS), and then he stated the theorem, (lines 235–236 

in Table 4.15). He repeatedly reminded them that the angles 

on the circumference must originate from the same arc in 

order to be equal (CM & FA).   He also linked this to the 

angle at the centre theorem and applied it to prove that   𝐷  =

 𝐶 (CC & CK). Further, Paul encouraged learners to move 

the points around to confirm that the angles from the same 

segment were equal (CD).  

 Table 4.15: Transcript (CL1P) – Establishing a corollary of the theorem  
222-240 Paul: This is just the same thing that we are talking about. That the angle …  

Paul & L: … at the centre is twice the angle at the circumference.  
Paul: And as you can see D and C because they are all coming from AB, they become equal (CK, CS). 
And that theorem that we say that angles in the same … 
Paul & L: … segment are equal.  
Paul: The angles subtended by the same segment on the same side of the circumference of the chord 
are equal (CK). Can you see that?  
L: Yes  
Paul: As long as they start from the same what? ( does not seem to wait for the response) Arc or chord 
(CM & FA). If we check if I use mine AB, it goes to O and O is related to D.  Its twice the D? But at 
the same time, O is twice C (CC). Therefore, C and D are equal (CK) 
L: Equal 
Paul: That is proof that we are going to use that the angles in the same segment are … 
Paul & L: … equal 
Paul: Are we together?  
L: Yes. 
Paul: Right. You can now play around and whatever you can and move around. (Pause) You can move 
any point whatever you want to move (CD). It won’t change. Those angles C and D would just be the 
same. Can you see that? 

 

4.2.3.6 Act 1 Scene 2 ~~ Applet 1.4 

Paul moved on to the next applet, shown in Figure 4.18. This applet was refined a day before the 

lesson by Paul, consequently, this fourth applet presented by Paul was different from the previous 

on  in Figure 4.4. He requested that there should be text in the applet to prove the opposite angles 

of a cyclic quadrilateral theorem. It is therefore a five-step applet, allowing learners to make 

Figure 4.17: Angles subtended by the 
same arc 
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conjectures and then verify them. However, Paul went straight to the last step of the applet to 

display the proof of the theorem, as shown in Step 5 of  Figure 4.18. Later, he admitted that a time 

factor that did not allow him to involve learners in that applet.     

Paul asked the learners to focus on the relevant arc and the angles it subtended at the centre and 

on the circumference. He relied on colour to connect to the angle at the centre theorem (CC & 

CS). The learners were encouraged to move the points around on the circumference and verify 

whether the opposite angles added up to 180° (CD & CMR). The discussion is recorded in lines 

252–253, Table 4.16. After that, he stated the theorem using apt mathematical terms (CK). He used 

both the terms 180°  and ‘supplementary’, thereby coding CMR.     

 
Table 4.16: Transcript (CL1P) – Opposite angles of a cyclic quadrilateral  

245-259 Paul: Open that one 1.4. Here we are now looking at both sides. If you notice C, angle C. Can you see 
angle C?  
L: Yes  
Paul: It is half of that angle 𝜃, the big angle here, different colours. Can you see that angle? Look at 
the arc AB. It subtends an angle O at the centre and C and D on the circumference. They are 
highlighted as the same colour. This angle O, green colour, is twice that of angle C. and this one reflex 
O, orange colour, is twice that of angle D(CC).  
L: Yes 
Paul: If you can move, you can move, that is why it is already there for yourself to move. It is changing 
what is happening? (CD) [Inaudible]. Right. Opposite angles add up to 180°. (CMR) Is it clear now?  
L: Yes  
Paul: This is the proof of the theorem that states the opposite angles of a cyclic quadrilateral are 
supplementary (CK). It comes from the angle at the centre theorem (CC).   
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4.2.3.7 Act 1 Scene 2 ~~ Unknown applet  

Extending the theorems on cyclic quadrilaterals, Paul asked his learners to open another applet 

which he had found on the internet. The GLIP teachers did not generate this applet. This applet on 

the exterior angle of a cyclic quadrilateral displayed all the four exterior angles and their 

equivalent interior opposite angles in a cyclic quadrilateral. Paul claimed that he downloaded it 

from a website and thought it would be useful. He reminded his learners how an exterior angle 

was formed (CC) as the learners engaged with the applet. He asked the learners to click the 

checkboxes on the applet one after the other and encouraged them to relate the exterior angle so 

Step  1 Step  2 

Step  3 
Step  4 

Step  1 

Figure 4.18: Opposite angles of a cyclic quadrilateral  
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produced with its corresponding interior angle in the cyclic quadrilateral (CD & CS). Refer to lines 

274–282 in Table 4.17. He then stated the theorem (CK) – ‘The exterior angle of a cyclic 

quadrilateral is equal to its interior opposite angle’. After showing all the four exterior angles in 

the applet, Paul focussed on one pair of exterior and interior opposite angles. At the projector, he 

explained the reason why they are equal by placing a ruler on the line 𝐷𝐶 (Set 3 of the figure), so 

producing an exterior angle. Paul reminded the learners about the adjacent angles of a straight line 

property (CC), in this case, 𝑒𝑥𝑡. 𝐶 + 𝑖𝑛𝑡. 𝐶 = 180°. He then linked this to the interior angles of 

the cyclic quadrilateral property (CC), i.e. 𝑖𝑛𝑡. 𝐸 + 𝑖𝑛𝑡. 𝐶 = 180°. In this way, he proved that 

𝑒𝑥𝑡. 𝐶 = 𝑖𝑛𝑡. 𝐸  (CS). He concluded the lesson by stating that theorem once again (CK).   

Table 4.17: Transcript (CL1P) –Exterior angle property of cyclic quadrilaterals  
266-294 Paul: Go to GeoGebra. Applet 2. Then you look for the exterior angle of a cyclic quad. Are we there? 

L: Yes sir. 
Paul: If you click that Set one. Can you see what’s happening? Please take note of exterior angle that 
will be formed by producing existing sides of a cyclic quad (CC) 
L: Cyclic quad 
Paul: Are we together? Click the set one. Now click on set two. And see what is happening there(CD). 
Can you see it? 
L: Yes 
Paul: And can you see how they are related(CD)? The exterior angle is equal to (pause) opposite 
interior angle (CK). 
L: Interior angle     
Paul: Are we together?  
L: Yes 
Paul: Look at set 3. Just click at set 3. Can you see what is happening? (Pause, helps a learner on the 
computer ). Look at set 4. [Pause] And once we are there. If you check your angle C interior angle C 
and interior angle E. they add up to 180° (CK). 
Paul & L: 180 
Paul: Let us just try to make it. But it is not coming to 90° now. But you can quickly check that they 
are supplementary (CMR). Is that clear? (a pause) Let me do this. (go to the projector and showing 
with a ruler) This angle (pointing to C) and this angle (pointing to E) are supplementary add up to 
180° (CC). Reason Opposite angles of a cyclic quad. Then this angle (exterior angle C) and this angle 
(pointing to interior angle C) because they are on a straight line add up to 180° (CC)  
L:  180 
Paul & L : 180  
Paul: So if these two add to 180°. But this one int. C and this one (int E) are 180. Therefore, this one 
(ext C) must be equal to this one (int E) (CS). This theorem we are looking at Exterior angle of a cyclic 
quadrilateral is equal to interior opposite angle (CK). 
Paul & L: Interior opposite angle 

 

4.2.3.8 Act 1 Scene 2 ~~ Practice Applets  

Paul provided learners with two applets to practice on the circle geometry theorems starting with 

the first practice applet, Applet 1.6. He encouraged the learners to look at the angle at the centre 

and he moved the angles on the circumference. He then answered a question (FA) and informed 
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learners that the applet would not respond when inputting a wrong answer but would indicate a 

correct answer.  The learners soon became engrossed with the first one (Figure 4.12). Paul 

encouraged them to move the points on the circumference if they were not sure and learn by 

themselves whenever they made mistakes (CD). He moved around the classroom, helping learners 

who had difficulty in solving the questions. He did not solve the problems for them; instead,  he 

asked questions, such as “Where is the angle at the centre?” and “What do you know about angles 

around a point?”(FF & FL). This is shown in the transcript in Table 4.18.  When a learner answered 

that ‘𝑐’ was 50°, the teacher pointed out her mistake (FM & FR). He also corrected another 

learner’s mistake (FL & FP) and told him how opposite angles of a cyclic quadrilateral (FP & FA) 

were related to the angle at the centre theorem (FL & CC). In another instance, Paul addressed a 

learner who wrongly connected the angle at the centre to the angle on the circumference (FM),, 

by instructing the learner on how to link and apply the angle at the centre theorem (FR, FP & FA), 

and also reminded the learner about the angles around a point (FL & CC).  

Table 4.18: Transcript (CL1P) – Attending learners in solving practise questions 
361-371 Paul: Why are you saying c=50 (FM)? Opposite angles of a cyclic quad are not equal, but they are 

supplementary. You are supposed to subtract from 180 (FR, FP,  FL). You remember, ne? Most of these 
theorem starts from the angle at the centre(FL, CC). Ne?  That is why we say opposite angles of cyclic 
quadrilaterals are supplementary (FP FA). Please do as many questions as possible. You also link it 
to your investigation. You link it to the investigation that you are doing. Guys if you are done with that 
there is also practice 2. 
L: Oh ! 
Paul: If you can do questions on one, then you can do more questions from two. You just minimise it.  
Why are you saying b= 110° (FM)?. Is angle b at the centre? Learn to relate angles with chords and 
arcs (FR, FA). Look at the arc or rotate it and then apply the theorem. The angle at the centre must be 
on the other side of the angle on the circumference. (FA)  
L: So this is 220, am I correct?  

 

Meanwhile, some learners embarked upon the next practice question, Applet 1.7 shown in Figure 

4.13. Paul’s strategy was to ask leading questions, such as “What is the sum of the angles in a 

triangle? and “What can you say about an angle in a semicircle?”. The transcript in Table 4.19 

shows this (FL & FR). He responded to learners’ queries and led them to basic ideas. Besides this, 

he provided methods with explanations on where to focus and identify the related angles (FL & 

FM), and then apply the theorem (FP) as in the transcript in Table 4.19.     

Table 4.19: Transcript (CL1P) – Responding to learners’ methods 
397-400 Paul: Can you see AE let us look at all the angles that are formed by AE(FM).  First one is what G1 

we have O1 at the centre (FL). We have B also subtended (CMR) by AE, which is given there(B=36°) 
(FL). Are we together? Remember angle at the centre is twice angle at the circumference. Can you see 
that? So this angle O1 would be twice this B (FP). 



106 
 

Paul also asked for reasons when a learner answered correctly. When a learner replied with the 

value of 𝐺𝐸𝑂, he sought the reason behind the procedure (FF). The learner provided a rationale 

for the method he had chosen, i.e. the sum of the angles of a triangle property; however, Paul 

provided an alternative method – using the exterior angle of a triangle (CMR & CC) to solve the 

required angle as in the transcript in Table 4.20. He thus exhibited a blend of conceptual and 

procedural knowledge.   

 

  Table 4.20: Transcript (CL1P) – Providing alternate methods  
405-413 Paul: You got the answer to GEO. What is the reason? (FF) 

L: Can we see a right triangle there (referring to triangle OE intersection of AB and GE)? We already 
know this angle (referring to o1 the other is 90 degree). Is that ok?  And say the sum of angles of a 
triangle is 180°, ne? 
Paul: 180. Or can we see this one?  
L: Yes  
Paul: So this angle  O1+ GEO is equal to what?  
L: 90 
Paul: What is the reason? The exterior angle of a triangle (CMR, CC). 

 

Even when he was seeking help to solve 𝐵𝐴𝐸,Paul prompted the learner to identify the relevant 

chord, angle and triangle. He first asked the learner to identify the chord 𝐴𝐵 (FF & FP) as in the 

transcript in Table 4.21, then, after recognising 𝐴𝐵 as diameter, Paul reminded him of the angle 

subtended by a diameter (FP). Another question followed to locate the 90 ° angle on the 

circumference. He encouraged the learner to focus on the triangle and apply the properties of a 

triangle (FP). The learner was unable to recognise 𝐵𝐸 �̂� as 90° until the teacher guided him to see 

it. Thus, in this episode, Paul demonstrated his range of instructional repository (FA).                  

 Table 4.21: Transcript (CL1P) – Guiding learners to solve  
415-
424 

Paul: What sort of a line is AB (FM, FF)? 
L: Diameter 
Paul: Diameter and that diameter is giving you an angle at the circumference. Which angle is made 
by AB? (FP)  
L: It’s 90°.  
Paul: Where is that 90°? (FF) Where will you get that 90°?  AB is what? The diameter, of course. 
Diameter subtends 90°at the circumference (FM).  Where are you going to get that 90°? 
L: E 
Paul: At E.  Can you see? The whole of E this this this is all together 90°. Can you see that? And can 
you see that ABE is a triangle?  Can you use those concepts to answer this question to find BAE? 
(FP) 
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4.2.3.9 Act 1 Scene 2 ~~ Applet 6 ~~ Proof of the theorem 

In the last lap of the lesson, Paul elaborated on the formal proof of the theorem (CK). Figure 4.19 

below is the pre-designed applet displaying the step by step procedure for the formal proof of the 

angle at the centre theorem. This applet has a ‘play’ button that allows a user to proceed manually 

one step after the other, providing time for instructions and explanations wherever required.  

Paul asked the learners (CC), to identify the properties of triangle ∆AOC and ∆AOB (CD), which 

the learners correctly identified as isosceles triangles. He continued to display the proof as seen in 

Figure 4.19 (can be accessed online at https://ggbm.at/Umua9XrU). To provide further insight into 

the theorem, he asked the learners to reopen the earlier applet in Figure 4.3 and reiterated the fact, 

established earlier, that the angle subtended inside or outside the circle by the arc is not half the 

Figure 4.19: Justifying angle at the centre theorem in Applet 1.8 
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angle at the centre (CK). Though he asked them (CD) for a reason, there was hardly any response 

amongst the learners, except for some whispering. He toggled back to the proof applet (Figure 

4.19), and then he plotted an additional point 𝐸 (Figure 4.20) inside the circle and joined it with 

the centre, 𝑂𝐸, and to the arc, 𝐴𝐸 and 𝐵𝐸. He brought the attention of the learners to the additional 

point 𝐸  and that triangles ∆𝐴𝑂𝐸  and ∆𝐵𝑂𝐸  did not form isosceles triangles (CK, CC). He 

emphasised this by dragging point 𝐸 around the screen (CS).  

4.3  HORIZONTAL ANALYSIS ACROSS THE LESSONS 

The above narrative analysis shows how the two teachers implemented the applets that they had 

collaboratively designed, in their classrooms. In this section, the discussion is on the insights 

gleaned from the above narratives across the participants. The horizontal analysis helps to look for 

commonalities and differences across the lessons. Furthermore, it enhances the research analysis 

to understand how the participant teachers implemented GeoGebra applets as a visualisation tool 

for teaching mathematics.  

As the analysis unfolded, different characteristics of teaching proficiency in relation to 

visualisation were evident. The analysis of data in Cycle 1 suggested that there were similarities 

and differences across the participants in their indicators of CU and IF.  

Here, the analysis is interspersed with a few instances from each lesson which validates the 

evidence of visualisation and teaching proficiency.     

Figure 4.20: Highlighting the role of the radius 
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4.3.1 The unfolding of core understanding (CU)  

Kilpatrick et al. (2001) argue that possessing proficiency in core understanding when teaching 

mathematics enables teachers to integrate their knowledge of content and knowledge of processes 

to increase their learners’ mathematical understanding. 

4.3.1.1 Emphasis on teaching for core knowledge (CK)   

In both classrooms, the teachers engaged learners with applets that featured important circle 

geometry theorems, such as the angle at the centre theorem, corollaries of this theorem, the 

opposite angles of a cyclic quadrilateral theorem, and others. Both Antony and Paul provided 

opportunities for learners to engage with the applets, so that they could better understand and 

visualise circle geometry theorems. I put forward two similar instances from the observed lessons, 

where teachers encouraged learners to drag the points and grasp several aspects of the angle at the 

centre theorem. Firstly, the subtended angle on the circumference was dragged and showed 

visually that the size of the angles remained invariant. Secondly, dragging the arc altered the sizes 

of the angle at the centre and the angle at the circumference dynamically, but the ratio between 

them remained unchanged. They complemented the applets by articulating definitions of the 

theorems using appropriate mathematical terminology.  

Kilpatrick et al. (2001) argue that “In the course of their work as teachers, they must understand 

mathematics in ways that allow them to explain and unpack ideas in ways not needed in ordinary 

adult life” (p. 371). Thus, knowledge of mathematics for teaching includes the knowledge of ways 

that mathematical ideas can be represented. The analysis of the lessons showed that the teachers 

gave careful attention to identifying the concepts that they needed to teach effectively and provided 

instructions that provided opportunities for learning mathematics. Knowing the mathematics for 

teaching, including considering the objectives of the lesson, the teachers were able to facilitate the 

conceptual foundations of theorems. Guided by their proficiency in teaching mathematical 

knowledge, they facilitated their learners’ development of mathematical ideas.     

4.3.1.2 Emphasis on representing multiple ideas (CMR) 

Research indicates that representing mathematical ideas and solving a problem in multiple ways 

is an attitude of proficient teachers (Kilpatrick et al., 2001).  Antony and Paul generated multiple 

examples and diagrams through dragging the points in the applet. Evidently, the dynamic, multiple 

figures allowed different entry points for learners to engage with geometrical ideas. The teachers, 
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thus, simplified the properties of circle geometry before arguing and proving the theorems. 

Together with rich, dynamic aspects in the applets, they provided learning opportunities that 

promoted mathematical proficiency.  

I put forward three facets of the lessons where the teachers employed different perspectives to 

develop a conceptual and procedural understanding of circle geometry concepts.  Antony 

paraphrased the angle at the centre theorem (in lines 119–120 in Table 4.4 on p. 87), and thus 

provided a different perspective of the theorem. Secondly, both teachers used the perspective of 

ratio and proportion to relate the angle at the centre to the angle at the circumference. This sort of 

cross-curricular understanding between geometry and arithmetic is central to the role of teaching, 

as it provides teachers with mathematical knowledge useful for teaching. Thirdly, both teachers 

used different terms for supplementary angles and right angles during their interactions with the 

learners. Teachers encouraging a geometrical conceptual understanding from various perspectives, 

expand learners’ mathematical ideas and thus develop their mathematical proficiency and connect 

relate several concepts in mathematics.   

While engaging with practice applets, (Applet 1.6 in Figure 4.12 on p. 92;  Applet 1.7 in Figure 

4.13 on p. 93), both the teachers encouraged learners to solve the problems in multiple ways. With 

practice applets, they motivated learners to apply different methods to determine the angles. Paul,  

especially, (for instance in lines 405–413 in Table 4.20 on p. 106) provided an alternative method 

to one of the learners – calculating the angle at the centre without applying the angle at the centre 

theorem (he used the exterior angle of a triangle property). His explanation of the solution from a 

different viewpoint led his learners towards a more flexible understanding of geometric concepts. 

I concur with Kilpatrick et al. (2001) who argue that proficient mathematics teachers understand 

that there is not a fixed method for learning mathematics, but rather, multiple ways to approach a 

mathematical concept. 

4.3.1.3 Emphasis on connecting concepts (CC) 

In lessons on circle geometry, I observed that the teachers expounded different aspects of geometry 

while dealing with the angle at the centre theorem. My participant teachers invoked prior learning 

of aspects of geometry, such as the sum of angles in a triangle and angles around a point, as they 

interacted with the applets and the learners. Antony set the stage for additional considerations of 

fundamental aspects of geometry such as the arc of a circle and a vertex of an angle when he 
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motivated his learners to construct circles, chords and angles. While discussing the special case of 

the angle at the centre, Paul linked it to a right-angled triangle (transcript in Table 4.13 on p. 97). 

Furthermore, Paul emphasised that when applying the exterior angle of an isosceles triangle 

property,  it formed the angle at the centre theorem (in lines 89–97 of Table 4.23, p. 120). Both 

teachers appreciated a teaching strategy that revisited and reinforced basic geometric ideas. Such 

connections are crucial aspects of meaningful mathematical teaching and learning. Nevertheless, 

in the context of teaching, Presmeg (2014, p. 153) warns that “visualization is not self-explanatory 

and is very important for teachers”. Therefore, it is incumbent for teachers to unpack mathematical 

ideas and make abstract ideas visualisable to learners.  

Furthermore, the teachers’ instructions suggested how they linked the opposite-angles of cyclic 

quadrilateral theorem with the angle at the centre theorem. Ma (2010) notes that a teacher with 

profound understanding “has a general intention to make connections among mathematical 

concepts and procedures, from simple and superficial connections between individual pieces of 

knowledge to complicated and underlying connections among different mathematical operations 

and subdomains.” (p. 104). Thus, these participant teachers composed interconnected knowledge 

packages which formed a solid network of different properties and theorems in geometry.   

4.3.1.4 Emphasis on teaching for exploring and discovering concepts (CD) 

From the perspective of constructivism, learners do not merely absorb what the teacher instructs 

them to do; instead, they interpret and generate meanings in their own way (Boaler, 2009; 

Jaworski, 1994). Contextually, the participant teachers offered opportunities for their learners to 

manipulate and explore with the applets. Antony allowed geometric constructions in software; 

thus, encouraging the learners to take ownership of their learning. He motivated learners to identify 

any relationships between an angle inside the circle and an angle at the centre or at the 

circumference. A learner was able to make the discovery, through dragging the points, that “[t]he 

angle in the circle is not half the angle at the centre of the circle because the angle is not on the 

circumference”. Antony’s lesson was intellectually demanding and challenging for learners (and 

exciting too). He allowed learners to generate and discover various viewpoints, and the interactions 

that ensued showed that he presented a coherent picture of geometrical properties. His lesson went 

beyond the articulation and manifestation of mathematical facts. The analysis of Antony’s lesson 

supports a technology-based constructivist classroom, where there is more emphasis on developing 

learners’ mathematical proficiency. I concur with Mariotti (2000) who concludes that the 
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experience of geometrical constructions in a computer environment “provides a context in which 

the development of the meaning of Geometry theorem may be achieved” (p. 48). 

Interestingly, learners in both classes established through exploration, that the angles changed if 

the chord or arc was changed, but that the relationship between the angle at the centre and the 

angle at the circumference did not change. Mariotti (2000) also emphasises the importance of 

‘dynamic exploration’ in learning geometrical concepts and mathematical proofs.  

The interactions showed that the properties of circle geometry were made explicit by the teacher, 

using the tools of the software.  The role of the teacher is crucial in order to direct the objectives 

of the lesson and to guide learners towards the geometrical meaning of the figures.  

4.3.1.5 Emphasis on tackling common misconceptions (CM) 

Both Antony and Paul addressed the misconceptions as discussed and identified at the GLIP 

meetings (Section 4.2.1.2 on p. 80). Employing the relevant applets, they addressed the 

misconceptions i) applying the angle at the centre theorem for angles not at the centre or the 

circumference of a circle; and ii) thinking that the angle at the centre is twice the angle at the 

circumference even if the angles are not subtended by the same segment. The participants were 

fluent in mathematics, but in this context, they also exhibited their knowledge of learners and how 

they learned. Kilpatrick et al. (2001) maintain that core understanding of a proficient teacher relates 

to knowledge of learners and “the approaches that are typical for students of a given age and 

background, their common conceptions and misconceptions” (p. 378). The participant teachers 

could engage their learners in meaningful mathematical learning. Antony and Paul were aware of 

their learners’ mathematical thinking and common misconceptions to which they were sensitive 

and able to address. A striking feature was that both the teachers addressed the misconceptions, 

albeit using different approaches. 

Antony allowed learners time and opportunity to explore and discover the misconceptions as 

mentioned above, related to the angle at the centre theorem. He made the learners aware of these 

misconceptions through their own constructions and discoveries (lines 21–32 of  Table 4.22 on p. 

119). Antony prompted his learners to discover and encouraged them to share their findings (see 

the transcript in Table 4.5 on p. 88 and the discussion in Section 4.3.1.4 on p. 111). From a 

constructivist perspective, these instances also illustrate the assertion by  Jaworski (1994) that 

learners do not only absorb ideas presented by their teacher but rather that they create their own 
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knowledge. When provided with opportunities, the learners in Antony’s class made their 

discoveries and representations. Thus, the role of a teacher is to respond actively and creatively to 

these student representations (Shulman, 1987).  

Paul also held the view that learners should explore and construct their own mathematical 

knowledge; however, he did not provide enough time and opportunity for them to explore and 

come up with their own ideas. He managed to address the two misconceptions related to the 

theorem by showing the learners these misconceptions using concrete examples and 

counterexamples (transcript in Table 4.14 on p. 99).  

4.3.1.6 Emphasis on teaching which relates to real-life situations (CR) 

When involved in giving instructions and emphasising the theorems, the teachers did not make 

real-life references or connect the theorems today-to-day realities. I will discuss, along with the 

other cycles, the absence of this code as I consolidate my findings in my last chapter.    

4.3.1.7 Emphasis on switching between abstract and concrete (CS) 

Any representation of geometrical concepts remains abstract in the sketch, and it is lost when 

looking at the final product of the construction (Kokol-Voljc, 2007). Axioms of geometry such as 

‘two points determine a line’, ‘three points determine an angle’ and other facts were practised in 

Antony’s class using GeoGebra. Using the appropriate GeoGebra tools, Antony guided learners 

to learn and visualise the characteristics of circles, arcs and angles, and they learned the importance 

of direction in measuring the value of an angle (for instance, in lines 80–91 in Table 4.4 on p. 87). 

He made explicit links between these concepts and the concrete constructions in GeoGebra. 

Through activities performed with the applets, this teacher supported the development of 

geometrical concepts and thus made the main characteristic features of angle at the centre theorem 

visualisable. The use of GeoGebra the process of construction of the geometric figures concretised 

the respective concepts.  

There are significant advantages of using ‘pre-designed’ applets, as seen in the analysis of Paul’s 

lesson. Paul considered that allowing his learners to do the constructions using software tools 

might not pay off. He believed that many learners were from families with scarce computer access. 

He felt that the learners might get bogged down by certain intricacies of the software and he feared 

that this might cloud the learning objective. Nonetheless, for the learners, an essential part of the 

construction of geometric figures were be lost. Antony argues in his reflective interview that the 
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concrete constructing activities are crucial for the process of developing  abstract concepts, (see 

lines 45–53 in Table 4.22 on p. 119).  

4.3.2 The unfolding of instructional fluency (IF)  

The second strand in Kilpatrick et al. (2001)’s framework of mathematical teaching proficiency is 

instructional fluency. In this section, I consolidate different pertinent indicators of IF (instructional 

fluency) that were made evident in this cycle.  

4.3.2.1 Emphasis on acquiring an instructional repertoire (FA) 

Mavani, Mavani and Schäfer (2018) report on “how pedagogical styles and personal theories 

influenced the use of technology in mathematical classrooms” (p. 9). The applets and the lessons 

were designed collaboratively with the teachers, however, Paul and Antony had their own reasons 

for integrating technology into the milieu of classroom activity. Both believed that applets could 

enhance the grasp of the circle geometry theorems, but they adopted different approaches when 

implementing these applets. Antony favoured learners constructing geometric figures in order to 

help them build a more profound and basic understanding of geometric ideas. He enacted the 

geometric essentials through well-structured use of GeoGebra. Antony’s instruction provoked 

learner engagement and allowed exploration of these artefacts to attain conceptual understanding 

(see the dicussion in Section 4.3.1.4 on p. 111).   

Pre-designed applets were desirable for Paul to avoid the computer intricacies that might mask the 

relevant objectives of the lesson. He led the class straight away into the investigation, amplifying 

and visualising the circle geometry theorems. This was similar to the theme “focusing on 

overarching issues and accentuating important features” identified by Ruthven et al. (2009), 

highlighting the contribution of digital tools in teaching and learning. Paul facilitated mathematical 

understanding among learners by motivating exploration with the use of pre-designed applets as 

he felt that learners might have come with irrelevant ideas (see transcript in Table 4.23 on p. 120). 

Accordingly, this practice supports the idea that learners may focus on constructed objects or 

representations irrelevant to mathematics (Hoyles & Noss, 2003) and overlook the teacher’s 

intention (Hölzl, 2001). Furthermore, Hölzl (2001) asserts that in a guided discovery setting a 

teacher helps learners to recognise the mathematical properties, thus teaching mathematical 

concepts by allowing exploration. As Hölzl (2001) highlights, in this episode, Paul employed 
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applets in the empirical confirmation of theorems. It is thus evident that GeoGebra rendered a 

pedagogical space for teachers that allows learners to engage in geometrical explorations. 

In a DGS environment, the pedagogical challenge is to design activities that involve learners, either 

to construct geometric objects or to manipulate pre-designed geometric objects (Leung, 2011). 

Pedagogical complexity arises from the need to develop new ways of teaching effectively. Further 

scrutiny of the lessons across the participants, thus highlighted how pedagogical styles and 

acquired instructional routines influenced the use of technology in these mathematical classrooms. 

The pedagogical practices of the teachers determine the implementation of technological tools. 

Nonetheless, Mason (2013) stipulates that appropriate instructional routines are required when a 

teacher directs an activity using an applet, to maximise the learning potential for learners. 

4.3.2.2 Emphasis on tackling a learner’s misconception (FM) 

The practice applets reinforced the concepts discussed about the angle at the centre theorem. These 

applets also provided opportunities for the teachers to ponder over the learning of their learners. 

Managing learners, when they make mistakes and have misconceptions in real contexts of practice, 

demanded a sort of in-depth knowledge and skill from the participant teachers. Both Antony and 

Paul attended to learners’ mistakes individually and corrected them. When a learner wrongly 

construed that the opposite angles of a cyclic quadrilateral are equal, Paul corrected him: “Opposite 

angles of a cyclic quad are not equal, but they are supplementary... most of these theorems start 

from the angle at the centre [theorem].” (lines 361–362 of the transcript CL1P). The teacher not 

only corrected the learner, but also explained why the opposite angles of a cyclic theorem worked. 

Antony also moved around the classroom as the learners engaged with the practice applets. When 

some learners could not identify the diameter and then apply the semi-circle theorem in practice 

Applet 2 (see Figure 4.13 on p. 93), Antony set out to expound on the angle subtended by a 

diameter theorem and convincingly connected it to its root – the angle at the centre theorem. The 

teachers, nevertheless, reflected that the learners were occupied with the practice applets and 

enjoyed doing them (see the transcript in Table 4.22 on p. 119 and Table 4.23 on p. 120). There 

was learning in the process.  

These theorems are not enough by themselves. Teachers are required to instruct learners on how 

to use them to apply them in different situations. Merely identifying an inaccurate procedure or 

answer is not what the participant teachers did, as discussed in the above paragraph; they not only 



116 
 

corrected the learners, but also explained why the theorems worked.  Ball et al. (2008) surmise 

that a proficient teacher figures out what procedure the learner might have taken to produce this 

particular error, provides reasons and then determines an appropriate response.  According to Ball 

and Bass (2000), instructional fluency in mathematics is the ability of a teacher to “deconstruct 

mathematical knowledge where elemental components are accessible and visible” (p. 88). Even 

though the theorems are known by different names and definitions, their roots are common. The 

participant teachers unpacked knowledge, making mathematical content accessible to learners. 

Thus, the findings from the first cycle show that proficiency in teaching involves a unique capacity 

to understand and appreciate learners’ insights and deconstruct abstract knowledge, making 

obscure elements visible. 

4.3.2.3 Emphasis on teaching basic skills (FL) 

I observed that for many a learner, computers were a challenge. In Antony’s lesson, while he was 

busy providing instructions to learners on the computer (transcript in Table 4.4, p. 87), the circles, 

chords and the angles looked bizarre on some of the learner’s screens as they could not manipulate 

the mouse competently. Lines 34–41 in Table 4.22 on p. 119, show Antony’s concern about the 

learners’ lack of computer competence. In one instance, a learner could not plot a point exactly on 

the circumference of the circle and therefore, did not agree with the teacher that the angles 

subtended by the same chord were equal. At first, the teacher was confused, but later realised that 

the mistake made by the learner (lines 101–103 in Table 4.4 on p. 87). This unexpected challenge 

from the learners highlights the research showing that a teacher has to become adept at technology. 

Despite Paul not allowing geometric constructions in the software, his learners still faced 

challenges in controlling the movement of the mouse and the keyboard, throwing the figure out of 

proportion. Many a time, the teacher had to intervene and fix the applet. In lines 68–73 in Table 

4.12 (p. 96), learners moved the text ‘alpha’ instead of moving the angle ‘alpha’ –  which created 

confusion for a while.  However, Paul noticed the mistake and immediately corrected this by telling 

them to move the slider by clicking on the dot, showing his technical expertise in responding to 

the learners’ unexpected actions. Interestingly, Paul also highlighted the lack of basic computer 

skills of learners in lines 123–128 of Table 4.23 (p. 120). 

Interestingly, at the closure of the lesson, Antony recommended that the learners install GeoGebra 

on their tablets or phones so that they could learn on how to use the software (lines 320–323 in 
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Table 4.10 on p. 93). Learners have to be competent in handling computers for the purpose of 

learning mathematics.  

4.3.2.4 Emphasis on responding to learners’ thinking (FR) 

Kilpatrick et al.’s (2001) framework considers teacher’s actions to trigger learners’ thinking and 

calls for the proficient teacher to respond to learners’ actions on mathematical concepts or tasks. 

While learners were interacting with the practice applets, the teachers moved around the laboratory, 

attending to the learners’ queries. Antony scaffolded his learners through deliberate questioning, 

while Paul provided procedures with explanations on how to identify and relate the angles.   

Antony’s responses to a learner’s observation on cyclic quadrilaterals showed several interesting 

features where there was a subtle interweaving of procedures and concepts. He asked the learners 

to distinguish a cyclic quadrilateral among the quadrilaterals in the diagram (Figure 4.11 and lines 

243–266 in Table 4.9 on p. 91). In response to a learner’s answer, he started with the procedure of 

calculating the sum of the opposite angles. After a discussion on various perspectives related to 

the concept of a cyclic quadrilateral, he concluded by explicitly stating the converse theorem of a 

cyclic quadrilateral. His thoughtful responses showed his ability to intertwine knowledge of a 

specific geometric concept related to the procedure.  

Paul’s response, in lines 361–371 in Table 4.18 (p. 105), also revealed interesting features. A 

learner appeared to not recognise the angle at the centre related to the angle at the circumference 

in the practice applet. Paul’s response indicated the importance of the rotation of the arc to see the 

angle. He provided the learner with a relevant experience to visualise “The angle at the centre must 

be on the other side of the angle on the circumference”. I found that the teacher’s response was 

rooted in building the learners’ conceptual and procedural knowledge.         

Thus, the teachers’ attention and responses to the learners showed justifications and explanations 

about applications of properties or strategies to be considered in solving problems. I concur with 

Kilpatrick et al. (2001), who argue that through interactions with learners, proficient teachers take 

responsibility for the mathematical actions that occur in response to learners’ mathematical ideas.   

4.3.2.5 Emphasis on understanding procedures (FP) 

Kilpatrick et al. (2001) argue that instructional activity should be able to provide a satisfactory 

explanation and justify the reason behind the procedure, so that learners make sense of the problem 
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situation. I found that both teachers provided explanations and justifications for the procedures 

while interacting with the practice applets.  

However, interestingly, Antony favoured blending procedures along with the discussion of the 

theorems, i.e. even before learners started solving the practice applets. Discussing theorems and 

concepts on circle geometry using the applets, Antony highlighted certain procedures that are 

useful for solving angles in the applets to follow. Throughout the discussion about applets, he 

consistently explained how to solve problems. For instance, in lines 119–120 and 231–233 in Table 

4.8 (p. 90), he directed the learners to a strategy of relating angles while applying the theorem to 

determine the angles. This notion of ‘inside, outside’, ‘angle at the centre bigger’ gave a clear 

procedure useful in problem-solving. Lines 311–314 in Table 4.10 (p. 93) record Antony solving 

an angle in the practice Applet 1.7, where he gave an accurate explanation of a procedure and 

justified its linkage to the angle at the centre theorem. Rittle-Johnson and Alibali (1999) find that 

“[w]hen children are empowered with fundamental concepts, they are able to solve novel problems 

on their own” (p. 189).  

Paul, on the other hand, provided explanations and justifications for the procedures while solving 

problems in the practice applets. For instance, see lines 405–413 and 415–424 in Table 4.21 (p. 

107), where he provided his learners with relevant concepts to solve an angle in the practice applet. 

Paul believed that practice leads to understanding, as he reflected “put more questions to practise. 

More they practise more they understand” (line 117, RI1P, my original transcript). This finding is 

in concurrence with Kilpatrick et al. (2001, p. 168) who provide an example to ascertain how 

learners build on practice in extending their mathematical proficiency to include new concepts.        

The analysis of the lesson shows that the teachers possessed a mathematical proficiency for 

teaching that helped them identify the essential components of geometrical concepts that were 

useful for learners in using and connecting these essential ideas. 

4.3.2.6 Emphasis on inviting feedback (FF) 

Antony used effective questioning that invoked the learners’ responses and allowed them to 

develop their mathematical thinking.  He deliberately elicited responses from a range of learners 

so that individual learner’s ideas contributed to further discussions on geometrical concepts. Paul, 

in contrast, did virtually all the talking, offering only a few opportunities for responses. He did ask 

questions but did not wait for his learners to respond. It would have been interesting to see how 
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the learners would have answered his questions, had he waited. Ball and Bass (2000) affirm that 

invoking learner’s responses plays a pivotal role in the teaching and learning of mathematics. The 

emphasis is on instructional activities that are relevant and invite responses, to lead learners to 

observe and make conjectures.     

 

Table 4.22: Transcript (RI1A) – Antony’s reflection on the first lesson 
21-32 R: What are a few things that you liked most in the lesson?  

Antony: I also liked that when the angles subtended by the same chord inside or outside the circle. 
Even if it is subtended by the same chord or arc if it is not on the circumference then, therefore we 
cannot relate the angle at the centre with the angles, not on the circumference. They were exploring 
with the angles inside the circle, what is happening with the angle from the same arc outside the 
circle. They were comparing those angles, and they were able to find out that there is no relationship. 
The relationship is only when the angle is subtended by the arc or chord on the circumference and 
the angle at the centre subtended by the same chord or arc. You cannot relate the angles subtended 
by the same chord or arc that are not on the circumference. If we permit them to explore, they can 
do wonders. When the point on the circumference was dragged to other segments, the measures of 
the angle changed.  Surprisingly, many learners were able to measure the angle at the centre and 
were helping others who could not do it. 

34-41 Antony: Some of the learners are not computer literate. If we can maybe if we can make them use 
computers in general and then the software. Maybe some of them even lack the basic skills, cannot 
open the GeoGebra file, and use of a mouse is worse. A learner could not plot points properly and 
was saying that the angles in the same segment are not equal. When I noticed his screen, the point 
on the circumference was not exactly on the circle and later, I saw his drawings had become 
disfigured. The same learner could not drag properly as if he was using the mouse for the first time. 
Some did not know what is a right-click or a left-click. It means that they did not take those computer 
classes seriously. They must get used to it.  

45-53 R: So you think you would not allow them to construct the circles and line segments in your next 
lesson on this topic?  
Antony: It is time-consuming if we allow them (referring to learners) to construct circles, segments 
and measure angles in the software. They do not understand that an angle comprises of three points 
or two lines and is measured in the anti-clockwise direction. Hence many struggled to measure them 
in the computer. But most of them were catching up, there was learning in the process. They struggled 
to measure the angles. But they must know that its middle point where the angles are measured. In 
the software, it depends on the order of points you select, clockwise or anticlockwise. So it is 
important for them to learn how to measure those angles.      

55-57 Antony: I like that part of software most where it was possible to move the angles around the 
circumference and see that the measure of the angle did not change. It was not possible on a 
chalkboard classroom, and we talk, talk and talk and they do not understand. But they can now see 
what we are talking about. 

58-67 R: What differences did you find between the chalkboard and GeoGebra in your lesson delivery?  
Antony: Numerical values of the angles change dynamically with the change in an arc, I could see 
that most of them in class could actually relate and see by themselves that the angle at the centre is 
twice that angle at the circumference.  
… So when they are using GeoGebra, they can better visualise which angles to relate, and they can 
see the inside angle at the centre will not be double that of on the circumference, they can measure 
and see now what we are talking about.   

71-78 R: How do you think those practice questions were useful or successful?  
Antony: It was successful in the sense that kids were keen to use it, and they were talking about it for 
a long time. Even during the practice questions, some learners were still trying to move the points 
around the circumference to relate the angles. But I wonder what if the question was in hard copy. 
However, they were enjoying those questions and excited to share their correct answers. While in 
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notebooks, they would not even show me, perhaps they were not confident. But now, here they know 
it is a correct answer because the computer tells them that it is correct. I think it will boost their 
confidence and they now understand better those theorems.  

 
 

 

 
Table 4.23: Transcript (RI1P) – Paul’s reflection on Cycle 1 

14-17 R: you choose to use the pre-designed applets in the class, what made you decide to do this?  
Paul: pre-designed applets the advantage is that though the learners, you know, some of them 
may appear to be technologically ahead, but it will take time for them to draw and measure. So 
pre-designed applets will save time. I should say it is a time factor.     

43-48 R: How do you think that collaboration among the teachers helped you with the lesson? What 
was the influence?  
Paul: It was helpful. Now we know what the important thing is to do. And already the pre-
designed applets will not now take time. If we allow learners to draw circles, segments etcetera, 
themselves they may be drawing angles in the opposite segment, maybe they are drawing on the 
same segment. There is always a danger that they will speak of things that might not be relevant.         

56-64 R: How effectively was the concept conveyed? Especially when you compare it with the 
investigation that you gave.  
Paul: Yeah, with investigation some of them they could not understand the concept. Measuring 
the angles. One concept was to measure the angle at the centre and suppose to fold it and then 
compare the angles, I mean angles on the circumference and angle at the centre, they were not 
getting it. But with this applet, it was correctly visualised. They could see what we are talking 
about.  And I can see when they were doing those exercise applets, they could pick it up. Only a 
few struggled, but a push made them do it. Those exercises were useful as it reinforced the 
concepts that were discussed in the class.   

73-82 R: How did GeoGebra help or did not help your teaching?  
Paul: Oh no, it helps a lot.  
R: Was it a barrier?  
Paul: No, no, it was not a barrier. Actually, the learners can see what we are talking about.  We 
can manipulate so many things, I mean we ask them what would happen if it is like this, ok then 
let us check it, like that. You see some of the learners are used to or recognise only if it is at the 
top. So with this, you can shift those angles, it remains the same. So no matter where you are as 
long as you are on the same side of the segment, it still holds the theorem. Yeah, the dynamic 
feature of the software. It is like this whenever you ask to draw a right-angled triangle they 
recognise only the standard form but if we twist it, its something else.  

89-97 R: What are the common mistakes that the learners were making or what misconceptions did they 
have while you were interacting with them?   
Paul: Some of the learners were failing to see the relationship of angles, you know, once they 
start circle geometry, they divorce lines, triangles likewise saying, ‘this is not my cup of tea.’ So 
if you put a triangle in a circle, oh oh.   
R: They do not see the triangle.  
Paul: They still think of circle geometry. Some of them could not see the exterior angle of a 
triangle. These are some of the mistakes. They are not linking with previous learning. That is the 
thing. That linkage is broken. They don’t link that as I see.  

123-128 Paul: The learners require more exposure to computers. They come from places where there is 
no electricity. These learners require more training in using computers. You know, some of them 
couldn’t handle a mouse. That child couldn’t control the mouse as she moved the point, the figure 
was becoming large, and then it became very small. Very often, I have to tell her to close the file 
and reopen without saving. I mean they don’t know how to minimise or maximise a window. 
Many of them lack basic computer skills.  

      



121 
 

4.4 DISCUSSION ON THE RESEARCH QUESTIONS  

In this section, I set out to answer the two research questions. The first one concerns the teaching 

of mathematics integrating DGS as a visualisation tool. Specifically, the first research question is:  

4.4.1 How can Dynamic Geometry Software such as GeoGebra be used as a 

visualisation tool to teach Grade 11 Mathematics?  

The analysis of the lessons in Cycle 1 of the two participant teachers, shows that the participant 

teachers adopted different teaching approaches as they implemented co-developed GeoGebra 

applets in mathematics classrooms.  

In his first lesson, Antony directed his learners to geometric principles through the process of 

construction, using the software before establishing the specified outcomes. The discussion in 

Section 4.3.1.7 (p. 113), describes his instructions guiding the learners to learn and visualise 

geometric properties through concrete constructions. Indeed, Antony was overly optimistic about 

the ease with which learners were able to use GeoGebra. Instead, learners encountered difficulties 

in constructing and measuring angles in GeoGebra. Despite these difficulties, Antony engaged 

with them. During the reflective interview, he emphasised that the learners visualised the 

geometric concepts as they constructed them. Echoing Duval (2014), evidence shows that  

visualisation based on the construction of configurations aid in identifying and understanding 

specific geometric properties. An alternative approach in the teaching of geometry, that promotes 

learners to construct and draw figures using conventional tools or computer tools, becomes 

essential. The teaching instructions during the initial stages of introducing geometry at school must 

focus on the development of ‘geometric visualisation’ (Duval, 2013) before aiming at the 

acquisition of theorems.           

Paul considered the software a valuable tool for learners to visualise several features of the theorem. 

I discussed in Section 4.3.1.3 (p. 110) how Paul brought in connections between ‘diameter’ and 

‘hypotenuse’ while discussing the semi-circle theorem using the Applet 1.4. Such connections 

between a new idea and an existing idea are crucial when learning geometric concepts. When we 

make connections between mathematical topics, we employ visualisation (Presmeg, 

2006).Significantly , by utilising the dynamic visualisation power of technology, Paul provided 
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opportunities for learners to make connections and experience the whole mathematical structure 

of a particular theorem.  

Neither of the teachers conceived of GeoGebra as an efficient tool to produce static figures but 

used it instead to generate figures; and using its measurement facility, to highlight invariant 

properties by dragging points. The two teachers successfully designed their lessons, capitalising 

on the dynamic visualisation capabilities of DGS, guiding learners to generate multiple examples 

which were enabled through the dragging of points. The teachers inspired their learners to observe 

and take note of the measurements of the angles provided by the software as they dragged the 

points, thus enabling them to see the variant and invariant features of the angle at the centre 

theorem in different situations (see the discussion in Section 4.3.1.1 on p. 109). With static 

diagrams, it is more difficult to convey this message, but by dragging their constructions, learners 

learned to distinguish, as  Gawlick (2002, p. 85) expands:  “diagrams drawn in an empirical way 

from diagrams resulting from the use of geometric primitives.” Laborde (2001, p. 293), one of the 

key developers of Cabri (the first generation DGS),  highlighted the role of visualisation through 

dragging as a “visual amplifier where it was easier to observe the variant and invariant properties 

during the deformation of the diagram by the drag mode than in a static paper-and-pencil diagram.”  

Participant teachers tapped into the dynamic visualisation capabilities of GeoGebra, aiming at 

deepening their learners’ conceptual understanding. Thus, the findings are consistent with Stols 

and Kriek (2011), who recognised that one of the potentials of a dynamic environment is its ability 

to focus on interlinked parts of a geometric shape, thus enriching visualisation.  

The following discussion is on the second research question.   

4.4.2 What enabling and constraining factors do Grade 11 teachers encounter 

when using GeoGebra as a visualisation tool to teach Grade 11 

Mathematics?  

4.4.2.1 Constraints  

There were two sets of constraints that the teachers encountered during the integration of 

GeoGebra in mathematics classrooms, namely: i) software constraints and ii) technical challenges.   
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Software Constraints 

There were two software features in GeoGebra that posed challenges to the teachers as they 

implemented applets in classrooms. First, as we discussed in the GLIP meetings the rounding-off 

feature in GeoGebra can lead to inadequate precision in the display of the measured values of 

angles, and thus lead to unconvincing results e.g. ½ x 123,23 =61,62 and not the expected value 

of 61,615. It was therefore a challenge for the teachers when the rounded-off values obscured the 

actual relationships between the angles. Paul overcame the constraints with his ready-made applets 

and provided learners with these applets to explore further on their computers. With the pre-

designed circles and angles measured, Paul made the properties more discernible and convincing 

to learners. The slider tool the tool allowed him to move the angle at the centre in integer values 

and in this way he tackled this limitation of GeoGebra.       

The second software constraint is that GeoGebra measures angles in a particular direction, 

clockwise or anti-clockwise. Hence, when the angle at the circumference was dragged to the other 

side of the arc, the software measured its reflex angle. Ruthven et al. (2008) also report on  this 

issue (for any DGS) in their research.  Their participant teachers were thus restricted to 

purposefully dragging to the same side of the arc. Antony prompted his learners to identify and 

measure the angle at the centre that would be twice the angle at the circumference on a minor arc, 

and thus overcame the problem.  He reflected that most of his learners were able to identify and 

measure the angle at the centre related to the angle at the circumference on the minor arc ( see lines 

29–32 in Table 4.22 on p. 119).      

Technical Challenges  

The teachers also encountered challenges owing to the lack of their learners’ computer proficiency. 

In the reflective interviews, the participant teachers raised their concerns that learners struggled to 

control the figures on their screen (see the discussion in Section 4.3.2.3,  p. 116). Both Antony and 

Paul believed that learners might get bogged down by certain intricacies of the computer, and 

feared that this could mask the teaching and learning objectives of the lessons. However, despite  

software tools sometimes being challenging for new users,  the learners struggling to do geometric 

constructions or control geometric figures in GeoGebra, they still learned in the process.  

There were other technical issues related to the use of technological resources in classrooms. In 

both lessons, teachers experienced a delay in kicking off the lesson straight away, as the learners 
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took time to settle down. Technological glitches were inevitable such as faulty input and output 

devices and non-operating terminals. A teacher thus needs to be flexible in dealing with faulty 

computers in classrooms. Teaching and learning time was definitely affected by technical issues 

raised by the learners. Allowing learners to manipulate the applets creates a meaningful learning 

experience; nevertheless, it may be a constraint when a teacher is not proficient in the software.          

4.4.2.2 Enabling factors  

The critical enabling factor in GeoGebra that adds pedagogical value, is that the software makes 

it possible to create a dynamic construction and simultaneously retain its defined characteristics 

under manipulation by dragging with the computer mouse. Dragging is a key feature of GeoGebra. 

It allows a continuous reconstruction of figures on the computer screen by direct manipulation 

with the mouse (or by touch on a touchpad). Hölzl (2001, p. 83) asserts that the “drag mode 

develops in mutual dependence with the ability to grasp a mathematical situation – a learning 

process that is characterised by different layers of conceptions.” The pedagogical utility of the drag 

facility, as evident in this research study (see the discussion in Section 4.3.2.1, p. 114), vindicates 

the above assertion made by Hölzl (2001).  

Furthermore, I concur with Mariotti (2000) that the intrinsic logic of a DGS, “expressed by its 

reaction to the dragging test, induces learners to shift the focus onto the procedure, and in doing 

so, it opens up to a theoretical perspective”. (p. 32).    

Of further significance is the interactive facility of Geogebra. The software responds to 

instructions given by the user. The measurement of an angle, the length of line segments, etc. are 

considered as the responses provided by the software. The interactive quality of working with a 

computer allowed the teachers to secure learners in actively engaging with the geometric ideas. 

The teachers capitalised on the interactivity capability of the software to drive away any 

misconceptions related to the theorem. They engaged their learners in measuring the angles and 

seeing what happened when they dragged points on the circumference to the other side of the arc. 

Research by  Deaney, Ruthven, and Hennessy (2006) has also shown that “interactivity and the 

immediate visual feedback afforded by the use of technology” (p. 475) and was seen by the 

teachers as playing a significant role in contributing towards enhancing learners’ conceptual 

understanding. Paul admitted that dynamic features of the software enable a learner to see and 

apply the angle at the centre theorem in the non-standard diagram (lines 70–79 of the transcript in  
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Table 4.23, p. 120). Presmeg (1986b), in her study on ‘visualisers’, observes a sort of difficulty 

experienced by learners: “An image of a standard figure may induce inflexible thinking which 

prevents the recognition of a concept in a non-standard diagram” (p. 44). In this case, the teacher 

(Paul) acknowledges such inflexible thinking by learners where the learners could not recognise 

the angle at the centre theorem when the diagram did not conform to a standard diagram (the angle 

at the circumference above the angle at the centre). Nonetheless, the dynamic manipulation 

enabled in the software may aid to preclude ‘inflexible thinking’.  

4.5 CONCLUSION  

The main objective of this chapter was to present the data through in-depth narratives of the 

participating teachers’ use of technological tools in the teaching of circle geometry theorems. A 

detailed analysis of the teachers’ lessons, vertically (individually) and then horizontally (in relation 

to each other), indicated that there were similarities and differences across the participants in their 

teaching approaches as they implemented GeoGebra applets in their classrooms. As the analysis 

unfolded, different characteristics of teaching proficiency in relation to visualisation were evident. 

Furthermore, the analysis of their responses during the reflective interviews identified interesting 

pedagogical strategies for the visualisation of mathematical concepts. However, these components 

of teaching proficiency and visualisation revealed pedagogical tensions between the teachers’ 

knowledge of mathematics and the knowledge of their learners.  

The next chapter presents an in-depth analysis of Cycle 2, which is on the topic of Quadratic 

Equations and Inequalities.      
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CHAPTER FIVE 

5 TEACHING MATHEMATICS USING DGS – DATA 

PRESENTATION AND ANALYSIS – CYCLE 2 

5.1 INTRODUCTION  

In the previous chapter, I recorded in a narrative style and analysed the participant teachers’ 

implementation of applets on circle geometry in their classrooms.  This chapter aims to analyse 

and answer the research questions on the topic ‘Quadratic Inequalities and the Nature of Roots’. I 

recommend that the reader to browse through the recap methodology in Section 4.1.1 (p. 78) of 

the previous chapter, in order to be reminded of the methodological processes that guided my 

analysis. This chapter follows a similar structure to Chapter 4, (see p. 77).      

5.2 Cycle 2: - Quadratic Inequalities and the Nature of Roots  

The next topic in the sequence of the teaching plan was quadratic equations and inequalities. In 

the discussion that follows, the quadratic equation is represented by 𝑎𝑥 + 𝑏𝑥 + 𝑐 = 0 and its 

roots are given by the quadratic formula  𝑥 =  
±√  

 . The expression under the surd 𝑏 −

4𝑎𝑐 (generally represented as ∆) is called the discriminant.  

5.2.1 GLIP Meeting  

By the time we reviewed Cycle 1 of the GLIP, two more teachers had joined our group – John and 

Abraham. There were thus seven members that participated in the meeting focussing on the second 

cycle. John was already a participating teacher in my research study’, however, Abraham was not 

a formal participant teacher in my research, but a member of GLIP. Abraham has a facility in town 

where he conducts extra lessons, and our meeting on Cycle 2 was held there. All the teachers used 

their laptops during this meeting, while Abraham connected his laptop to a projector and displayed 

his work onto the screen. 

There are many windows to GeoGebra, such as algebra, geometry and others. We found the 

Computer Algebra System (CAS) window of GeoGebra suitable for teaching and learning 

quadratic equations and inequalities. Primarily, the CAS window of GeoGebra is used for 

symbolic computations, such as factorisation and solutions to equations in one variable. An 
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important feature of GeoGebra is that the same equations and expressions can be used and shared 

between the different windows. For example, an equation f(x) = 2𝑥 + 3𝑥 − 5 is defined and 

solved for 𝑥 in one window, then the same equation is considered as a function, and its graph is 

displayed in the graphics window. Furthermore, the solutions are indicated in coordinate form and 

plotted on the graph, as shown in Figure 5.1.  

  

One of the recommendations of the GLIP teachers after the first cycle was to train the learners on 

using GeoGebra specific to the topic that was being taught. My fellow researcher and I designed 

an hour-long training programme on using CAS within GeoGebra. The handout we produced for 

training learners can be accessed in the Annexure III under the heading ‘Training Interlude - CAS’. 

However, the planned training could not be accommodated in both schools because of the full 

timetable of the learners and teachers, and the non-availability of the computer lab. Our 

 
Figure 5.1: The CAS and Graphics window in GeoGebra 
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observation calendar was planned at the beginning of the year and could not be altered. The 

teachers therefore issued the training handout during their lessons.  

5.2.1.1 Identification of concepts  

We discussed the sub-topics we could use with GeoGebra and decided on the following concepts: 

 Solutions to quadratic equations  
 Nature of roots 
 Simultaneous equations 
 Quadratic Inequalities 

Since all these concepts were seen as important by the teachers, we decided that they would be 

formally introduced in class and GeoGebra would then serve to reinforce the concepts through 

visualising the underlying mathematical ideas.  

5.2.1.2 Planning and Designing  

It is important to note that the software does not provide a direct step-by-step procedure to solve 

the equations, but instead only displays the solutions once the equations have been entered. Antony 

felt that it was key for learners’ conceptual understanding to observe that the 𝑥 −intercepts of a 

particular graph are also the solutions to the given equation. The other teachers were more 

interested in the procedures of how to solve a quadratic equation. They advocated for designing 

an applet that would take the learners through a step-by-step procedure in solving a quadratic 

equation, using the quadratic formula. After arguments and counterarguments on the design of the 

applet, we agreed that providing a procedure alone to solve a quadratic equation would not harness 

the visualisation capabilities of the software.   

George then put forward the idea of a worksheet that would reinforce the different types of 

equations. The roots of these equations would include real or non-real roots, equal or unequal roots, 

and rational or irrational roots. The teachers would initially provide the necessary instructions in 

class to solve quadratic equations using pen and paper. The following day, the learners would 

explore the same quadratic equations in the worksheet, using GeoGebra in the computer lab. We 

entrusted George to prepare such a worksheet on quadratic equations. 

Antony suggested that the same equations that appeared on the quadratic equations worksheet be 

used to solve quadratic inequalities at a later stage. He demonstrated on the screen how he used 

the software to solve the quadratic inequality 3𝑥 + 2𝑥 − 1 < 0.  All the teachers agreed that 
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solving inequalities was easier to visualise and understand when graphs were used to determine 

the solutions.  Therefore, we expected learners to visualise inequalities, as in Figure 5.2  and Figure 

5.3. Furthermore, solutions in algebraic notation and graphical representation were shown in 

GeoGebra. The teachers believed that this could lead to the idea that the critical values of any 

quadratic inequality coincide with the roots of its equation or the 𝑥 −intercepts of its graph.  

 

Abraham then suggested that such a worksheet could be extended to discuss the nature of roots of 

quadratic equations. He proposed a layout of the worksheet, and after a discussion, we agreed on 

the final design of the worksheet. The final version of the worksheet can be accessed at WS-1 

Annexure-IV. Teachers would instruct learners to type the quadratic equations into GeoGebra, 

solve the equations and then obtain their corresponding graphs. The learners were expected to fill 

in the columns 4, 5 and 6 on the worksheet, based on their observations in GeoGebra.  Columns 3 

and 4 would have been filled in during the previous lesson in the classroom.          

GeoGebra can be used effectively to visualise the concept of classification of roots of quadratic 

equations. Thus, Applet 2.1 was designed for the purposes of visualising the nature of quadratic 

roots and for engaging the learners (see Figure 5.4). In this applet, we used sliders for the 

parameters ‘a’, ‘b’ and ‘c’, for the standard coefficients of a quadratic equation. We expected that 

learners would be able to relate the values of the discriminant with the numerical values of the 

𝑥 −intercepts of the graph. This is shown in Figure 5.4, with the answers in columns 5 and 6 on 

worksheet WS-1).  

 
 

 
 

Figure 5.2: Inequality less than zero Figure 5.3:  Inequality greater than or equal to 
zero 
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The Applet 2.1 provided the value of the discriminant, the solutions of the equation (in the CAS 

window) and the graphical representation of the equation (in the graphics window). The emphasis 

of this applet was to:  i) classify the roots of a quadratic equation into real and non-real (imaginary) 

roots; and ii) distinguish between rational and irrational roots. Table 5.1 summarises the 

classification of roots of a quadratic equation. When the value of the discriminant is less than zero, 

roots are non-real (or imaginary), and there will be no 𝑥-intercepts on the graph, as in Figure 5.5.  

When the value of the discriminant is equal to zero, roots are real, rational and equal, and there 

will be only 𝑥 −intercepts in the graph, as in Figure 5.6.  When the value of the discriminant is 

greater than zero and a perfect square, roots are real, rational and unequal, and there will be two 

𝑥-intercepts in the graph, as in Figure 5.7.  When the value of the discriminant is greater than zero, 

roots are real, irrational and unequal, and there will be two 𝑥-intercepts in the graph, as in Figure 

5.8.     

  

Figure 5.4: Exploring the nature of quadratic roots Applet 2.1 
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Table 5.1: Summary of the nature of roots of a quadratic equation  
Discriminant  
∆= 𝑏 − 4𝑎𝑐 

Nature of roots Graphical representation in Applet 2.1 

∆ <  0 Non-real 

 

Figure 5.5:  Non-real roots 
∆= 0 Real, rational 

and equal 

 

Figure 5.6: Real rational and equal roots 
∆ > 0, a perfect 
square 

Real, rational 
and unequal 

 

Figure 5.7: Real rational and unequal roots 
∆ > 0, not a perfect 
square 

Real, irrational 
and unequal 

  

Figure 5.8: Real and irrational roots 
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5.2.1.3 Practice Applets 

The second applet – Applet 2.2 – we developed, was for practising the nature of roots of a quadratic 

equation based on its graph, shown in Figure 5.9. The premise behind this applet was that the 

absolute value of the leading term of the quadratic expression is a prime number.  The quadratic 

expression is also displayed on the graphics window.  

 

All the teachers implemented the applets in their classrooms. Due to the limited scope of this thesis, 

I recorded and analysed only two classes – Antony’s and Paul’s lessons. A vignette of Antony’s 

class is presented first, followed by a vignette of Paul’s lesson.    

The learners were aware of the procedures to solve quadratic equations and inequalities prior to 

the observed lessons. In previous grades they had learned about the parabola of the form 𝑓(𝑥) =

 𝑎𝑥 + 𝑏. 

5.2.2 Analysis of the lesson by Antony 

There were 34 learners in the class, and the lesson was scheduled for one hour; however, it lasted 

for 70 minutes. The learners appeared to be very excited at the beginning of the session, as they 

entered the computer lab. The desktops that were not working had been marked, thanks to the lab 

technicians and the learners could easily identify those that were working and those that were not. 

Figure 5.9: Practice question on the nature of roots in Applet 2.2 
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There were, as a consequence, fewer computer–hardware related glitches in this lesson compared 

to Antony’s earlier lesson.  

Antony had issued worksheet WS-1 to the learners one day ahead of this lesson. The quadratic 

equations were solved in the class, and the columns 2 and 3 were filled in before this recorded 

lesson. He had also briefed the learners on what he expected from them with this worksheet. He 

mentioned what was meant by the value of 𝑏 − 4𝑎𝑐 , a surd in the quadratic formula, as the 

determining factor for roots of a quadratic equation. He distributed the handout (Annexure III) as 

they entered the lab.  

5.2.2.1 Act 2 Scene 1 ~~ Linking equations and graphs  

Antony started the lesson by introducing the CAS window in GeoGebra. He provided clear 

instructions to his learners on how to choose the CAS window and went through ‘the commands’ 

in the software as laid out in the handout. He often repeated his instructions and reminded the 

learners to follow them accurately. However, some learners struggled to use the keyboards. A 

combination of keys were required to type symbols such as * (for multiplication), ^ (for exponent), 

and < (for less than).  For typing the linear equation, 2𝑥 + 5, the learners were required to use 2, 

*, 𝑥, + and then 5. When learners were not able to type the equation successfully, Antony repeated 

his instructions, shown in lines 22–24 in Table 5.2. It was very evident to me that Antony had to 

teach basic computer literacy skills to the learners (see the transcript). To his credit, Antony often 

checked whether the learners were on track during the lesson (FF). Antony used a linear function 

to link its equation to its graph (CC).  

Once learners were able to construct the straight line, Antony proceeded to solve the equation, as 

shown in lines 32–33 of Table 5.2. Line 39 records Antony using different mathematical 

expressions such as ′𝑥 −values’ and ‘solve for 𝑥′, to demonstrate different terminologies for the 

solutions to the equation (CMR). He then demonstrated to his learners the relevant tool in the 

software to find the solution. Antony made references to the graph on the screen and showed them 

where the solution to the equation appeared on the graph as the 𝑥 −intercept, thus making the 

solution visual. (CS & CC). It was thus evident that the visual aspect of an equation in the form of 

a graph provided a rich and powerful resource to generate understanding. Furthermore, Antony 

encouraged the learners to write the 𝑥 −intercepts in coordinate form, thus linking algebra to 

coordinate geometry, as in lines 47–50 in Table 5.2 (CC and CMR).     
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Table 5.2: Transcript (CL2A) – Linking equations and graphs 
22 - 24 Antony: I said 2, shift 8 Press shift same time as eight don’t press shift then 8 (FR) 

L: Oh! (Laughing) 
Antony: I said shift 8, I didn’t say shift then 8, then the symbol * will appear 

26-27 Antony: Can you see the equation 2x+5?  Now there is a white dot. Can you see that white dot? Click 
there. Then a straight line will appear.  This is a straight line. A function (CS, CC). 2x+5 is a linear 
function (CMR).  

29-31 Antony: Are you still struggling to show that line? FF 
L: Yes.  (Inaudible Helping learners) 
Antony: Click the white dot the straight line will come indicating that it is a straight line. 

32-33 Antony: Right, I hope you are all there (FF). Then after that, you should turn the page.  We are interested 
in finding the values of x as we are using this to solve for the values for x. 

37- 43 Antony: Here is tool x= Click on the tool x=. There keep your cursor here in front of x= and solve for x. 
That x = -5/2. First, type the equation and click on the white button to show the graph of the equation. 
After then, we want to find the value of x, that is we need to solve (CMR). So, we put the cursor in front 
of the last typed equation then press x= which stands for solve. Now you want to know where exactly the 
point is (CS). This will give you the value of the 𝑥 − intercept (CC). The x-intercept is x= -5/2 (CC).  if 
you are not sure you again click there that white button and it shows the coordinate and where exactly 
it is.  

44 - 46 L: I don’t see it.  
Antony: Where is x=-5/2 is? Does it show you the point?  Are you now able to show the point? (FR) 
L: Yes 

47 - 50 Antony: if you can show the point, that is how you solve for x? ne. That is how we solve for 𝑥 even if 
(isiXhosa inaudible) 𝑥 = -5/2;   2𝑥+5=0;  take 5 to another side of the equation 2𝑥=-5 we divide by 2 
to get exactly the same solution 𝑥= -5/2 (FP).  Then that one we write as a coordinate (-5/2;0) (CC, 
CMR). 

 

In the remaining part of the lesson, Antony shifted his focus from linear equations to quadratic 

equations and inequalities. As is evident in lines 54–57 in Table 5.3, Antony provided clear 

instructions on how to type in a quadratic equation. He immediately linked it to its graph (CK & 

CC). Meanwhile, Antony also had to attend the learners’ inadvertent use of the ‘caps’ and ‘num 

lock’ keys (FR). His ability to respond to his learners’ errors was evident here: he had to repeat 

the instructions to the class to ensure that the ‘caps’ key was off in lines 61–62 and 78–80 in Table 

5.3. Antony continued with his explanation of the connection between solutions and 𝑥 −intercepts 

(CC & CMR), as evident in lines 63–66 (in Table 5.3). However, his explanation of an interesting 

piece of mathematics was hindered and bogged down by the learners’ lack of the required 

computer illiteracy skills. They struggled to type 𝑥 , which required a combination of keys ‘shift’ 

and ‘6’ to write the superscript (lines 67–71 of the transcript below). This further confirmed 

Antony’s ability to deal with learners who lacked the necessary computer skills (FL). The 

interaction in lines 72–76 (in Table 5.3) showed the development of learners’ conceptual 

understanding of the interconnectedness of roots of an equation and the 𝑥 −intercepts (CK).   
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Table 5.3: Transcript (CL2A) – Quadratic equations 
54-59 Antony: ….Can we now open a new file? Go to file, new file, do not save. File new is to open a new 

file. I want us to input a quadratic equation, this quadratic equation of ours let it be 2𝑥  you press 2, 
press shift 8 for multiplication, x squared is going to be shift 6 and 2.  That one is 2𝑥 . Then -𝑥 and -
1. (pause. Learners murmur inaudibly).   
2𝑥 − 𝑥 − 1that is the equation now if you want to see the graph there is that white dot there. You 
click then it will show the graph. It will show the quadratic function, a parabola graph. (CK CC).    

60 - 62 L: [Mr Antony] I do not see the graph here.  
Antony: (Helping learners) Some of us used capital letter X you will have to use small letter x (FR). 
Capital letter X will not give the correct result. You are forced to use small letter x.   

63 - 66 Antony: I hope all of us are having that quadratic function, the graph is there (CS). Now if you want 
to know the x-intercepts of that graph, again take your cursor there, and we go to solve which is x= 
this will give you the x co-ordinate or the x-intercepts (CC, CMR). The solutions of the equations are? 
Now, are you all having those values? What are the values of x? (FF).  

67 - 71 L: Sir, I am not getting it  
Antony: (Helping learners) You must use shift 6 and 2 for x squared. I repeat, x squared is going to be 
shift 6 and 2.  
L: No. 
Antony: Press x then shift 6 together and then 2.   

72-76 Antony: Immediately you put the cursor on tool x= it shows that solve. So we are getting those x co-
ordinates (CMR). 
L: 𝑥=-1/2 and 𝑥=1  
L: 𝑦-intercept is -1 (IsiXhosa)  
L: Yeah! a parabola graph     

78-80 Antony: you have capital letter X. (isiXhosa listen carefully. I have been repeating. See here). The caps 
lock key is blinking so, it will always be capital letters (FR). Caps lock must be off. Yes, now type small 
letter x. then shift 6 together. Yeah, you got it. 

 

Antony focused on the solutions to a quadratic equation that demanded learners to think critically 

and discover the salient features in the quadratic formula. He strengthened learning experiences 

through asking probing questions and encouraging the learners to explore mathematical concepts. 

Antony explained different methods to solve a quadratic equation lines 81–83 of Table 5.4 (CC & 

FP). He then asked them to think of a situation when they would not be able to solve a quadratic 

equation (CD). Antony did not explain his answer to the question until he received some responses 

from the learners.  

Meanwhile, he also engaged with different terminologies for solutions to provoke the learners’ 

interest (CMR). Antony tactfully asked, “When will you have non-real values?”, another 

expression for no solutions – thereby displaying his ability to switch between different 

mathematical ideas that would help learners to deepen their mathematical proficiency. In this way 

Antony was introduced the nature of roots of a quadratic equation. When a learner used the word 

‘negative’, he highlighted the expression under the surd in the quadratic formula that determined 
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if the roots were real or non-real (CK). As the learners engaged with different equations in the 

worksheet, Antony moved around the classroom, helping learners wherever required.  

Conscious of using GeoGebra for teaching and learning, Antony also incorporated his own 

knowledge and his teaching expertise into the mathematics classroom. He provided opportunities 

for learners to develop conjectures and encouraged them to make connections to the acquired 

knowledge on real and non-real values of solutions of a quadratic equation. He provided the 

necessary instructions about writing down the observations from the software into the worksheet 

in lines 94–98 of Table 5.4.  Antony elaborated on the solutions and salient features of the graph, 

using appropriate mathematical language. In lines 104–105 in Table 5.4, he emphasised conceptual 

links between the real roots of a quadratic equation and the 𝑥 −intercepts of its parabola (CC & 

CMR). Some of the learners appeared to be confused about the equation 𝑦 =  2𝑥 + 3𝑥 + 2, as it 

did not have real roots. Therefore, he repeated his explanations of the relationship between roots 

and the 𝑥 −intercepts (FP & CK), emphasising key mathematical concepts and procedures (lines 

110–113 in Table 5.4). Furthermore, he encouraged the learners to switch between abstract algebra 

and the concrete graph (CS).                     

Table 5.4: Transcript (CL2A) – Roots of the quadratic equation 
81-93 Antony: Ok, now let us see. That one is f(x) this is how we solve for x immediately you start solving 

for x we will be able to factorise, and in some cases, we won’t be able to factorise and then you are 
going to use the quadratic formula or solve for x by completing the square (CC, FP). The quadratic 

formula is 
±  

. Also, in some extreme cases you will not be solved, isn’t it?  

Antony: I am waiting for the response. When will I not be able to solve? FA  CD 
L: Don’t know.  
Antony: When will you have non-real values? (CD CMR) 
L: It is negative.  
Antony: What is negative?  
L: That thing.  
Antony: When we use the quadratic formula to solve, if  𝑏 − 4𝑎𝑐 is negative; we will not find the 
real values of x (CK). Are we together? In other words, the roots are said to be non-real and will 
discuss further later.  Now let us refer to the worksheet that we did in the class yesterday. (pause).     

94-98  Antony: Ok. Now let use the equations from the worksheet, and I want you to write down the 𝑥-
intercepts column 3. Verify solutions in the computer and your answer in column 1.   
L: Which equation, sir? 
Antony: Look, the worksheet. The first equation is 2𝑥 − 5𝑥 + 3, use that and then observe in CAS 
what’s the solutions and the 𝑥 −intercept. Put that in column 3. Verify your solutions with column 1.  

101- 105 L: Sir, here I don’t see any x-intercepts.  
Antony: What is the equation? You started from the bottom (of the worksheet). 
L: Yeah. 
Antony: doesn’t matter. You see now; there are no solutions and hence no x-intercepts (CC). So now 
when there are no real values of x, the parabola does not intersect the x-axis (CC, CMR).    

109 - 113 L: why the graph does touch the x-axis for this equation?  
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Antony: Listen here (IsiXhosa). Look at the last equation, (2𝑥 + 3𝑥 + 2) you can see that there are 
no solutions, and there are no x-intercepts (FP CS). We can, therefore, say that for no real values of 
x of a quadratic equation, its graphs also do not have the x-intercepts (CMR). (IsiXhosa Remember) 
the solutions are the x-intercepts (CK). I can now see so many hands.  

 

5.2.2.2 Act 2 scene 1 ~~ Quadratic Inequalities  

Antony moved to the next agenda of the lesson, i.e. quadratic inequalities. He continued with the 

quadratic equation y = 2𝑥 − 5𝑥 + 3 with its graph and its solutions already on the projector 

screen. He then provided step by step instructions on how to type the inequality into the CAS 

window. He often ensured that learners followed his instructions (FF). Antony gestured the 

‘greater than’ and ‘less than’ symbols with his fingers, emphasising mathematical terms and 

notations (CK). He then typed 𝑓(𝑥) ≥ 0 in row 3 of the CAS window. Learners found it difficult 

to type the inequality symbol ‘≥ ′; and some of them typed ‘.’, while others typed ‘+’ instead of 

‘=’. Antony explained to the learners how to use the appropriate keys on the keyboard, thus 

responding to their lack of the necessary computer literacy skills (FL). This is shown in lines 135–

136 and 148–149 of Table 5.5.     

As Antony expounded on inequalities, a few learners were murmuring. Apparently, they did not 

follow what the teacher was explaining. Nevertheless, when Antony solved the inequality, he 

asked his learners to articulate the solution, thereby encouraging learners to take ownership of their 

knowledge (CD). In lines 150–151 (in Table 5.5), he corrected a learner in the use of precise 

mathematical terms and notations (CK & FA).  

Antony was always willing to help learners to clarify their doubts, exhibiting his skill in responding 

to the learners’ queries (FR). In lines 154–158 (in Table 5.5), he used alternative methods to 

explain the solutions of the inequality from the graph. He claimed, however, that he wanted to 

address a certain misconception related to inequalities. Antony used GeoGebra as a visualisation 

tool and showed the learners how the graph could be highlighted for 𝑓(𝑥) ≥ 0, thus concretising 

the concept (CS). Referring to the graph, he also used terms like ‘left of −  ‘for the solution 𝑥 ≤

 −  (CMR). This indicates that Antony employed different strategies to elaborate on the solutions 

to the inequality.   
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Table 5.5: Transcript (CL2A) – Quadratic inequalities greater than zero 
119- 125 Antony: Then, after that, as it says equations and inequality, we need to solve for the inequality. Let us 

solve the inequality. We at (row) 3 we simply say f(x) f, shift 9, x, shift 0. Are we all having f(x)? my 
equation, i.e. f(x) here it is 2𝑥 − 𝑥 − 1 
L: Yes, then, sir.  
T:  Press f, shift 9, x, shift 0 then it will be f(x). (Pause). Now if you do have f(x) let us say shift, we all 
know the sign of greater than or equal to? It is greater than and this less than (making gestures with 
fingers). CK CM 

127-136 Antony: If you check your keyboard, there is greater > do you see greater there?  
L:  Yes 
Antony: Greater? 
L: No. 
Antony: [Here] You press shift and full stop. There is a full stop there or a dot in your keyboard, 
whatever that you call it. Then it is press shift and full stop (FL). It will give you > and then press equal 
to and 0. Now that one will be 𝑓(𝑥) ≥ 0.  Are we all there? 
L: Yes 
Antony: (Helping learners) Press equal to, then 0, then you press enter. It will show you the inequality 
symbol FL. Does it show the inequality equation? 

142 - 149 Antony: Then now if you say it must solve. Let us start by solving.  I guess now we are all able to solve. 
Are you able to solve?  There is inequality 2𝑥 − 𝑥 − 1 ≥ 0 are you all having that 
L: Yes 
L: in IsiXhosa - What is this about? 
L: (murmuring inaudibly).  
Antony: Do you have a solution? Are we all having the solution to that inequality?  
(Helping learners). What have you pressed? It’s a plus symbol; we want equal to symbol. No. you must 
not use shift (FL).  Alright. (pause) Can someone tell me the solution? (CD) 

150 - 151 L: That x is greater than one and less than the negative half.    
Antony: Yes, here x is less than or equal to negative half and x is greater than or equal to 1 (CK FA) 

154 - 158  L: Sir, I do not see it.  

Antony: That is 𝑥 ≤ −  and 𝑥 ≥ 1. Left of 𝑥 = −  and right of 𝑥 =1. (CMR). Immediately to do that 

one, you will press in that white button. It will highlight your solution.  If you click that button, it will 
highlight your solutions (CS). Then the highlighted part is going to be the one that gives the values of 
𝑥 when  𝑓(𝑥) ≥ 0.   

 

Antony further explained the inequality 𝑓(𝑥) < 0  using the software. This explanation 

demonstrated evidence of CK as he used accurate mathematical terms and notations (lines 170–

171 in Table 5.6). Switching between graphs and solutions (CS), he encouraged learners to link 

the solutions to the highlighted part of the graph. Another instance of tapping into visual and 

algebraic representations in GeoGebra (CS) that struck me, was when he emphasised the 

differences between the solutions of the ‘less than’ and ‘less than or equal to’ inequality. He asked 

probing questions to identify the differences between ‘less than’ (<) and ‘less than or equal to’ 

(≤)  and encouraged the learners to make inferences from the graph. As is evident in lines 179–

193 in Table 5.6, the learners engaged with the task of identifying the differences. They 

immediately identified the differences in GeoGebra, as the software sketched vertical lines at the 

boundary values. GeoGebra draws a broken line to indicate exclusion and a solid line to indicate 
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the inclusion, of the boundary values of an interval, as shown in Figure 5.2 and Figure 5.3 on p.130.   

Indeed, to enhance conceptual understanding, Antony furnished the implication, in mathematical 

terms, of the learner’s response (CS & CK). Accurate terms were used to explain the concepts of 

inclusion and exclusion of the boundary values of the inequality.    

Table 5.6: Transcript (CL2A) – Quadratic inequalities less than zero  
164 – 171 Antony: Now if we can do the same thing now say 𝑓(𝑥) <0 f(x) less than 0 as question 4 [row 

4]. Then after that, you will solve for that. Press enter then solve, and after that, you show now 
where exactly is f(x) less than zero (CS).  And solve for that one. If you want to solve for that 
one, it will show a different colour. If it is not clear, you can hide that one of  𝑓(𝑥) ≥ 0.  You 
go back to that of  𝑓(𝑥) ≥ 0 and you hide that one by pressing that dot, then it will hide the one 
for  𝑓(𝑥) ≥ 0 and show only the one 𝑓(𝑥) <0.  Only the highlighted part of the graph is the 

solution of 𝑓(𝑥) <0  that is− < 𝑥 < 1,  x lies between −  and 1 (CK). Only the highlighted 

part. 
174 – 176 Antony: But then, if you are vigilant enough, then you will see that there is a difference between 

≤ and <. Is there anyone who can tell me what is it that they see between the solution of 
𝑓(𝑥) ≤and 𝑓(𝑥) <? There is a solution for 𝑓(𝑥) ≤ 0 and there is a solution for  𝑓(𝑥) < 0 
(CD). 

179 – 193 L: The inequality and the x-intercepts (isiXhosa inaudible)  
Antony: Anyone?  I am waiting for a response. Anyone? There are vertical lines that are drawn 
there at first we were looking for 𝑓(𝑥) ≤ 0 and there were vertical lines. Now we are looking 
for 𝑓(𝑥) < 0 there are still vertical lines (CD, CMR). What is the difference between those two 
lines? 
L: There is no ‘equal to’ sign.    
L: f(x) >=0 is that first solution, there is a separation (IsiXhosa)     
L:(inaudible) 
Antony: That one is, Tell them. Tell the whole class 
Antony: The one is? The one is a  
L: Broken line  
Antony: Broken line and the other is a  
L:Ssolid line  
Antony: The other is a solid line.  That solid line indicates that there is also an equal sign (CS). 
The solid line indicates that the boundary values are included in the solution, Immediately, 
there is no equal sign then the line will only be a broken line to indicate that the (boundary 
values) are excluded (CS, CK).   

 

As the lesson progressed, Antony also underscored the distinguishing features between 𝑓(𝑥) ≥ 0 

and 𝑓(𝑥) ≤ 0, (lines 194–207 in Table 5.7). He expounded on the differences in the solutions 

using precise mathematical terms and notations that were useful to learners. He often made 

references to the graph and moved between 𝑓(𝑥) ≥ 0 and 𝑓(𝑥) ≤ 0. His explanation focussed on 

the boundary values and demonstrated how these values were critical in solving the inequalities. 

Nevertheless, he also employed different terms (CMR) such as ‘left of (line 201 in Table 5.7) and 

from ‘negative infinity’ (line 206 in Table 5.7) to convey the concept of inequality. Furthermore, 

he emphasised the significance of the visual representation, i.e. the parabola graph of the quadratic 
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function. I argue that technologies such as DGS that use visual tools may enable learners to 

‘visualise’ the mathematical concepts and ideas in a more meaningful way.   

Lines 208–213 (in Table 5.7) capture the evidence of Antony developing mathematical ideas and 

practising the interweaving of CU and IF so that learners could grasp the underlying concepts and 

the procedures connected to these concepts. He explained that the boundary values are the 

𝑥 −intercepts of the graph when solving the quadratic inequality for ‘less than’ or ‘greater than’ 

zero. Kilpatrick et al. (2001) argue that understanding the rules that underlie ideas “makes it 

possible for learners to use mathematics reliably” (p. 162).   

Meanwhile, Antony proceeded to the next agenda planned for the day, i.e. the nature of roots. 

However, a pair of learners were still discussing inequalities. I deviate for a moment to relate 

something interesting from this pair of learners. When Antony noticed this pair of learners, he 

reiterated his explanation on solving the inequality (lines 243–250 in Table 5.7). This exchange 

suggested that the learners required more time to engage with the inequalities as they internalised 

the concepts. The screen recording of these learners (the data of my fellow researcher) showed that 

these two learners discussed at great length, using the equations provided in the worksheet, even 

as the teacher moved on to discuss the nature of roots. Seemingly, the interactive environment 

provided by Antony was an opportunity for learners to explore and engage with mathematical 

concepts, which is CD. 

Table 5.7: Transcript (CL2A) – Distinguishing ‘greater than’ and ‘less than’ zero  
194 - 202 Antony: Now, let us look at the difference between f(x) greater than zero and f(x) less than zero. 

There are two points to indicate now the solution. You can even name those points; there is no 
problem you can name them. That is why now we find out that we are saying for less than, the solution 
will be restricted between two points (CK). You can see that it is between the first and second point. 
And for greater than it will be separated (CK). There will be a separation.  Now if you observe here, 
these highlighted parts are bounded between two lines for less (CS). But for greater, there is a 
separation between those highlighted parts. There is a part that is highlighted on the left, and there 
is a part that is highlighted on the right.   
L: (murmuring inaudibly)  

203 - 207 L: What is this separation?  
Antony: Let me show you that one. That one is for greater. Can you see that between these highlighted 
parts there is a separation for greater? (CD) The solution is x less than or x greater than, i.e. look at 
the x-axis it is negative infinity to this boundary value which is -1/2 here, which is less than -1/2. The 
second part is from 1 to positive infinity which is greater than 1(CK CMR).   

208 - 213 L:(murmuring inaudibly) It’s from infinity to negative half. How about less than zero?  
Antony: But when we talk of less than zero, those points the highlight is bounded by two points (CK 
FR, FP). (pause). Remember, when you solve an inequality such as less than zero you give the 
boundaries within which the solutions lie (CK, FA) and boundary values are given by the 
𝑥 −intercepts of the graph (FP). When you solve an inequality for greater than zero, you give the 
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separation from the boundary values (CK, FA) and again boundary values are provided by the 
𝑥 −intercepts of the graph (FP).   

243 - 250 L: Greater than is from here to here.  
L: Less than 0 is from here to here  
Antony: Negative half to positive one, greater than is from there to negative half and from there to 
positive one.  
L: You mean from infinity to negative half.  
Antony: For greater than zero, it is from infinity to negative half.  
L: It’s from negative infinity to negative half and from one to infinity.  
Antony: Look its x element of between negative infinity and negative half and one to positive infinity.  

 

5.2.2.3 Act 2 Scene 1 ~~ Applet Nature of Roots 

Having a lesson on a Friday afternoon, Antony made some humorous comments that attracted 

some laughter among learners, in lines 218–223 of Table 5.8. He wittily used the opportunity to 

bring some smiles to the faces of the learners as well as alert them to their lack of computer literacy 

skills.  

Antony balanced procedures and concepts quite well, when he asked his learners to recall the 

formula for the discriminant and then explained how the formula worked. He provided step by 

step instructions in constructing sliders for the parameters of a quadratic equation. Thereafter, in 

the CAS window, he typed the quadratic equation in standard form in the first row and the formula 

for the discriminant in the second row. Despite this, the learners misinterpreted his instructions, 

and many of them could not synchronise the equation or the discriminant with the appropriate 

parameters.  

Antony wanted to encourage his learners to make conjectures about the graphical interpretation of 

the relation between the discriminant and the roots of a quadratic equation. His mathematical 

instructions did, however, not receive much attention as the learners were weighed down by the 

intricacies of the software ( in lines 266–271 and 289–294 of Table 5.8) . It appeared that he gave 

up correcting the mistakes that the learners were making on the computers, as he asked learners to 

share computers with other more skilled learners and who were able to synchronise sliders of the 

parameters and the quadratic functions successfully.   

Shown in lines 104–105 and 344 and 347 (in Table 5.8), Antony emphasised conceptual links 

between the nature of roots of a quadratic equation and the 𝑥 −intercepts of its parabola (CC & 

CMR). In lines 352–353 (in Table 5.8), he exemplified the strand of conceptual understanding, 

when he made visual the situation where the roots were equal and connected to the parabola, 
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having only one 𝑥 −intercept (CS). In fact, he inspired his learners to drag the sliders representing 

the parameters of a quadratic equation, to have different values of the discriminant, and then asked 

them to compare this with the 𝑥 − intercepts of the graph (CD). In this way he established 

mathematical relationships between the algebraic expression and the graph. His interactions with 

his learners using GeoGebra led to mathematical abstractions through emphasising relationships 

among and between concepts (CK and CMR). 

In his interactions with the learners, Antony further demonstrated solid links between the value of 

the discriminant and the properties of numbers. Specifically, he drew on learners’ prior knowledge 

on square numbers (CC) to enhance the knowledge on the nature of roots of a quadratic equation 

(CK).  Antony used probing questions in lines 329–345 in Table 5.8, that required learners to think 

critically to establish conceptual links among mathematical ideas (CD). He also invited feedback 

from the learners. He intervened effectively with ideas that structured the learning process, when 

he stated, ‘listen to her, she is linking to the properties of natural numbers’. Antony also displayed 

a sound skill in procedures and making links to other mathematical ideas, refer to lines 354-371 in 

Table 5.8, which were essential for developing learners’ mathematical proficiency (FP). Thus, my 

analysis complements Ruthven et al.’s (2009)  study which emphasised that “the teachers still 

played an important role in inducting and supporting students in the use of the software for 

mathematical purposes” (p.291).  

Table 5.8: Transcript (CL2A) – Discussing the nature of roots 
104-105 Antony You see now; there are no solutions and hence no x-intercepts (CC). So now when there are 

no real values of x, the parabola does not intersect the x-axis (CC, CMR). 
218-223 Antony: No question because you are rushing to go home? Or no question because you understand 

what we are doing? 
L: Aha! Understand. Both, both.  
Antony: I can see that some of you are afraid of these computers. 
L: (laughing). 
Antony: Maybe you think that this is a real mouse 

263-265 L: It is not like that on the screen.  
Antony: I think you must undo. Yes, undo, and now click on the ‘Move’ tool. You see that arrow 
symbol, the first one. Yeah.  

266-271 Antony: Then now let us press  𝑑 =  𝑏 − 4𝑎𝑐, the discriminant because now we are determining the 
nature of roots. Remember, we discussed earlier that in the quadratic formula, inside the square root 
is   𝑏 − 4𝑎𝑐 which we call it as the discriminant.  (CK) 
Antony: What is your problem? Look, your equation is not changing (Helping learners).  
Antony: We said that, so many hands. Ok. What do you mean by roots? So many problems with the 
computer. The roots are the x values (CC, CK). 

276-277 Antony: I can see that many of you are still struggling to have the sliders and the equation. Please 
share with your neighbour who has done it.   



143 
 

289-294 Antony: Ok, I move now ‘a’. We all managed to get   𝑏 − 4𝑎𝑐 . Now let us see what is going to 
happen if we change ‘a’ as it is can you see   𝑏 − 4𝑎𝑐  the value of   𝑏 − 4𝑎𝑐.  What is the value of 
  𝑏 − 4𝑎𝑐?  
L: -3 
L: Why the discriminant is 99/5 whereas for others its -3.  
Antony: Type again.  It’s the same result.  We can find that later, now share the computer with []. 

332-336 Antony: Yes, therefore, when the discriminant is equal to zero, then the 𝑥 −intercepts coincide (CK, 
CC). Helping learners (inaudible) as you move c you can see that the graph is moving up or down.  
And when our 𝑏 − 4𝑎𝑐   is equal to zero; the two 𝑥 −intercepts of the quadratic equation or function 
are also equal (CK, FP). For those who did not understand how to drag your ‘a’ to 1, ‘b’ to 2 and 
‘c’ to 1. What is the value of ‘d’ (CD, FA)? 

344 The roots are non -real that is the roots do not exist, or the graph does not cut the x-axis (CC, CMR). 
347-353 Antony: The roots are real, and that is the roots exist, and the graph intersects the x-axis (CC, CMR).  

What else have we seen? (CD) 
L: When d = 0 the roots are equal 
Antony: Yes and then the graph? (CD)How many roots or x-intercepts we have when 𝑏 − 4𝑎𝑐 is 
zero (FA)?  
L: One  
Antony: Yes. So, we can say that when 𝑏 − 4𝑎𝑐 is zero, the roots are equal (FP). And the graph has 
only one 𝑥 −value on the x-axis (CC, CMR).  Ok, Are there any questions? (a pause). 

354 - 371 Antony: Ok. For real roots, we further classify equal unequal and rational and irrational roots. We 
have seen 𝑏 − 4𝑎𝑐 = 0 we say roots are equal. When we say 𝑏 − 4𝑎𝑐 > 0 the roots are unequal 
(FP). Let me show with an example. I take the equation from the worksheet. Drag the points. Drag 
the points to a = -3 , b = 5 and c = 1. Look at the second one on the worksheet −3𝑥 + 5𝑥 + 1 = 0. 
The roots are? (FF) 
L: Real unequal 
Antony: 𝑏 − 4𝑎𝑐 > 0 The roots are real and that if the roots exist and the graph intersects the 
𝑥 −axis (CC). Here the roots are real unequal and irrational. Why irrational? (FF) 
L: d is not a square number.  
Antony: Yes.  
L: (isiXhosa inaudibly)   
Antony: Yes, listen to her. She is linking to the properties of natural numbers (CC). 
L: I am saying that the roots are irrational because 𝑑 = 13 is not a square number.  
Antony: In conclusion, we say that when d is greater than zero roots are unequal (FP). When d is not 
a square number (CC), roots are irrational (FP). When d is a square number, the roots are (a pause) 
(FF) 
L: Rational.  
Antony: Roots are rational. Any questions?  

392 - 399 Antony: This is like mathematics as it is mathematics. Now we are doing mathematics using 
computers. But what is happening is some of us are unable to use computers. So we have to first 
teach how to use the computers before you go to the actual use of mathematics. But if you can keep 
on doing this. How to do such programs using GeoGebra. Then we will become perfect and then we 
will enjoy more of this. Otherwise for today unless there are some more questions we can call it is a 
L: day 
Antony and L : Thank you 

 

By the time Antony asked his learners to use the practise applet, the lesson already exceeded the 

allotted time. He motivated his learners to apply their understanding to answer questions in the 
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applet and ended the lesson by emphasising the importance of using computers in learning 

mathematics. 

5.2.3 Analysis of lesson by Paul    

Paul’s lesson was held on the following day. Antony had cautioned him to confine the lesson to 

only one topic owing to time constrains. Therefore, Paul chose the topic of inequalities during the 

planned, recorded session. The nature of roots was scheduled for the next day but was not recorded.  

There were 48 learners in this class. However, a few had to share the computers due to the 

malfunctioning of some computer terminals. Some laptops were also made available. This time 

the desktops and the laptops were switched on before the lesson, thus saving some time and there 

were fewer computer-hardware related glitches compared to the earlier lesson. The lesson was 

scheduled outside regular school hours for 40 minutes, and it lasted for 35 minutes.   

We incorporated a change in the handout to include a word of caution:  to ‘use the small letter ‘𝑥’ 

and not capital letter ′𝑋′ while keying in the equation’.  However, the new handout could not be 

printed in time due to technical problems at Paul’s school. Once the learners settled down, Paul 

distributed the worksheet WS-1.  Prior to this lesson, Paul had discussed solving quadratic 

equations and inequalities with his learners. 

5.2.3.1 Act 2 Scene 2 ~~ Quadratic equations and graphs 

Paul started the lesson with the quadratic equation y = 𝑥 − 𝑥 − 6, giving clear instructions on 

how to enter the equation in GeoGebra in lines 4–5 and 7–8 in Table 5.9. His computer screen was 

simultaneously projected onto a screen as he typed in the quadratic equation.  As with Antony’s 

class, the learners struggled to key in the quadratic equation in GeoGebra. In lines 10–13 (in Table 

5.9), Paul demonstrated his proficiency in computers, as he quickly responded to a learner’s 

misapprehension in using the keys. The learners’ computer illiteracy was prevalent throughout the 

lesson and affected the smooth flow of teaching and learning. When Paul wanted to unpack the 

relationship between a quadratic equation and its graph, he was interrupted on several occasions 

by the learners who became bogged down by the technical intricacies of using the computer 

keyboards, shown in lines 24–25, 30–31 and 58–63 in Table 5.9. On the video, I observed that he 

was moving around the learners quite briskly, helping them with the keys and the software tools, 

and at the same time explaining relevant mathematical concepts to the learners.   
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The interaction with the learners using GeoGebra, that emerged in lines  50–52 in Table 5.9 

revealed the learners were developing conceptual understanding . I observed that Paul built on the 

learners’ prior knowledge (CC) to facilitate the connections between algebra and graphs (CC). As 

he solved the equation in GeoGebra using the ‘solve’ tool, Paul directed them to generalise the 

number of solutions to a quadratic equation (CS), (maximum of two solutions) as evident in lines 

58 and 62 in Table 5.9. He carefully chose words such as ′𝑥 −values’ and ‘solutions’ to represent 

ideas in multiple ways (CMR), as evident in lines 62–63 of Table 5.9.  

Besides this, in line 89 in Table 5.9, Paul emphasised the connections between the algebraic 

solutions and the 𝑥 −intercepts of the graph (CC). Here, a learner suggested that the solutions were 

the intercepts of the graph; however, Paul responded, amending it to ′𝑥 −intercepts’, to be more 

specific (FR).  

In this episode, Paul was able to draw on the capabilities of GeoGebra to engage learners with 

conceptual links between algebra and graphs. The activities and explanations of the concepts were 

mathematically appropriate and useful for learners to understand the ideas involved.                       

Table 5.9: Transcript (CL2P) – Quadratic equations  
1 - 8 Paul: Today, we are focussing on quadratic equations and inequalities. We will discuss the nature 

of roots tomorrow. Now, open GeoGebra those who have not opened. I see some of us have already 
opened it. Go to the extreme right; there is an arrow there; I want you to choose the option written 
CAS. Can you see it? It is the CAS ne. Now what you want to do?  We want to look at solving. 
There is one equation that I want us to punch quickly. I want us to punch 𝑥 − 𝑥 − 6.     
L: Yes sir, select CAS then?  
Paul: Right. Let us use the equation 𝑥 − 𝑥 − 6 How do you punch 𝑥 ?  You press your x ne then 
you press shift and six then you press two can you see that? 

10 - 13 Paul: Press shift and six aha! This six on top here look, or this pattern (showing cap ‘^’) it is on 
top of six, is that ok? Have you seen it?  
L: Sir, I do not get it. How do we type squared?  
Paul: If you press shift and six the one on top, not six on the number lock. FL 

24 - 31 Paul: There is a circle which is open. Click that one and see what happens? CD  
L: Sir, I don’t get it.  
Paul: Your laptop is not responding. Let us restart and meanwhile share with other pupils.  
L: What’s happening here?  
Paul: Go to the right and select CAS then type 𝑥 − 𝑥 − 6. The x is a shift and six ne then two and 
then -x -6 then press enter. Can you click on that open circle? Just highlight it and see what will 
happen?   
L: Sir. (Inaudible isiXhosa) There is no…  
Paul: There is no what? Can’t you see it under 1?  Yeah, you did not press enter. FL 

47 - 52 Paul: Once you press your  x shift and six, then two to get your 𝑥 ,  then you press -x-6  then you 
say (inaudible) once you do that you press enter ne? It must give you that equation. Then if you 
click the open circle, you get the what? FF 
L: Graph 
Paul: The graph ne? What is the shape called? CC 
L:  Parabola, sir.  
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Paul: Parabola ne. Which means that that is the graph of that equation ne? CC 
56 - 63 Paul: It’s[Computer] slow. Ok. Once you highlight that you select x=. can you see x=. It must give 

you answers.  
L: yes 
Paul: How many solutions does a quadratic equation have? CD How many solutions do you notice 
here? FF 
L: Yes.  
L: No 
Paul: You click x=. Highlight that here, and you get your answers. Yeah! Highlight there and click 
x=.  Two values of x ne. So once you highlight you must get your solutions ne?? Two solutions ne, 
(CMR) can you see them?  

68 - 76 L: How do you get two numbers, sir?  
Paul:  You highlight here then you press this, so you get your answer.  So did you get your two 
answers? 
L: Yes 
Paul: Where can we see those answers can be indicated on your graph (CD). Just click that open 
circle again; you will see what will happen. Have you seen that? CD CS 
L: No.  
L: Yes 
Paul: How do you solve in GeoGebra? Highlight it; then you click, did you see where it is written 
x= on your toolbar on top there. 

84 - 89 Paul: So, what did you notice? CD And want to solve. So, you can see that the solutions are x=-3 
and x=2. So now look again there is a circle. Can you click on that circle? Just highlight it and see 
what will happen? CD 
L: Yes, sir.   
Paul: Click that one. Just click on that circle. And see what will happen? CD You see that x-
intercepts ne? FR So solutions are the x-intercepts of the parabola graph. CC CS 

 

Paul then took the learners to the next level of mathematical understanding as he asked his learners 

to engage further with the equations in the worksheet. He encouraged and motivated his learners 

to do hands-on activities in GeoGebra, as evident in lines 91 and 101–104 in Table 5.10. Paul 

guided the learners (CD) to comprehend the graphical implication of a quadratic equation with one 

real root, as shown in lines 110–120 in Table 5.10, thus enriching their understanding through 

concepts and relations (CC). This shows that Paul enabled the learners to reach a higher level of 

conceptual understanding (CK). The analysis of the lesson, thus, affirms that the interactive nature 

of dynamic applets has the potential to ‘interweave content and pedagogy’ (Ball & Bass, 2000), 

which would have been difficult in a static environment.    

Table 5.10: Transcript (CL2P) – Quadratic roots and intercepts 
91- 93 Paul: You can now type new equations from the worksheet and check the intercepts. CD 

L: Sir, which equation? 
Paul: This one on the worksheet (inaudible).  

99- 104 Paul: Write down the observations in your worksheet ne?  
L: Where, sir?  
Paul: I want you to write on the third column – observe the graph and write the x-intercepts. Is 
that ok? I tell you it is going very interesting to know these equations and it’s the shape of the 
graph.   
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L: Yes, sir.  
Paul: Don’t do in another row you can retype in row 1. The graph and intercepts will change 
automatically.  CD 

110- 
120 

L: Here, there is one solution.  
Paul: What is the equation?  
L: this equation 𝑥 + 2𝑥 + 1 
Paul: For the equation 𝑥 + 2𝑥 + 1, there is only one solution.  
L: yeah! I can see that.  
Paul: Ok you don’t worry you see when you type this equation ne? Now listen.  You get only one 
solution, and what do you see in the graph? CD 
L: (-1, 0).  
Paul: Yes, its solution is x= -1, and there is only one intercept, as you said. Look at that graph it’s 
intercepted on the x-axis and is the turning point ne? CK CC  
L: Yeah! Wow! I can see that now.     

 

5.2.4 Act 2 Scene 2 ~~ Quadratic inequalities and graphs   

Paul moved on to the next session of the lesson, i.e. quadratic inequalities. He continued with the 

equation on the screen, 𝑦 = 𝑥 − 𝑥 − 6 , retaining the solutions and the graph. He used the 

following row in the CAS to get the inequality as 𝑓(𝑥) > 0 (where 𝑓(𝑥) =  𝑥 − 𝑥 − 6). He 

provided clear instructions on how to enter the inequality, shown in lines 125–126 and 134–135 

in Table 5.11. He repeated the instructions regarding the keyboards when he realised that the 

learners were fumbling with the keys. Paul guided (CD) his learners to recognise the inequality as 

the shaded part of the existing graph. However, his directions to link the graphs did not receive 

much attention as the learners were still weighed down by the intricacies of the computer, as 

evident in lines 129–131 and 176–179 in Table 5.11. The learners’ idiosyncratic ways of using the 

keyboards continued to hinder the teacher from mediating the mathematical content smoothly. 

Once the learners settled on the correct inequality, Paul guided them to visualise the algebraic 

notation of the inequality and the equivalent highlighted region of the graph (CC). Lines 137–140 

(in Table 5.11) bear evidence to the fact that Paul used accurate mathematical terms and notations 

that were useful to the learners (CK).           

When he dealt with the ‘less than’ inequality, he made use of different terminologies such as 

‘middle region’, ‘below 𝑥 −axis’, in lines 162 and 165 of Table 5.11. His proficiency was 

demonstrated by his use of multiple ways (CMR) to make the ideas comprehensible to learners. 

Furthermore, he showed them the region of the graph that was below the 𝑥 −axis for 𝑓(𝑥) ≥ 0, 

recorded in line 165 in Table 5.11; thus, he effectively switched  between the abstract and concrete , 

which is CS. In my view, toggling between ‘greater than’ and ‘less than’ inequality allowed 
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learners to develop useful procedural fluency to solve inequalities; hence I coded line 167 (in Table 

5.11) as FA.     

In lines 185–192 (in Table 5.11), Paul expounded on the differences between less than (<) and less 

than or equal to (≤) and made visual references (CS) to the dotted vertical lines. He thus explained 

the exclusion of the critical values of the inequality, using appropriate mathematical terms (CK). 

However, it is evident in lines 201–210 in Table 5.11, that he could not explain as he wanted to 

since his laptop was not responding. It took a while before his computer provided the expected 

graph.       

Meanwhile, a learner raised a concern that the graph did not highlight the solution to the inequality  

2𝑥 + 3𝑥 + 2 ≤ 0, the last equation in the worksheet WS-1. Lines 193–199 (in Table 5.11) are an 

interesting excerpt that testify to the fact that learners can work on their own in a technological 

environment, and a teacher might need to scaffold them on the mathematical concepts that enhance 

their knowledge. Here, Paul displayed his flexibility in responding to a learner’s concern, (FR), 

and he confirmed the conclusions made by the learner with an added accurate explanation (CK). 

Furthermore, as he explained to the learner, he made visual reference to the mathematical concept 

of non-real roots, i.e. that there were no 𝑥 −intercepts of the graph for that instance.              

Table 5.11: Transcript (CL2P) – Quadratic inequalities  
123-126 Paul: Next thing that you want to do is to make that one an inequality. Ok if you are using CAS 3 go to 

4. Click here, and your cursor should flash like that ne. So we want to make that one an inequality. Can 
you see it is already written f(x)=? Press f, open bracket, we use shift and nine then x. This key, zero 
with shift, to close the bracket. And greater than 0. For greater than symbol use shift full stop and then 
press 0.    

127- 135 Paul: So, you click f(x) or type f(x) then you select >0, and press enter. It should be like that. Every time 
you punch ne there will be nothing then you click the circle you click this one it will give you the answers. 
And it is shaded now that is greater than 0.   
L: [Mr Paul], look here.  
Paul: (Helping learners).  What! You typed capital letter F FM.  Small letter there. When we say f(x), 
we will be using this one. Ahha! Just type f(x) there. Open bracket, what are you doing? Start f, open 
bracket again, shift 9 then x, then close bracket shift 0, and finally greater than shift full stop and then 
0.  

137- 140 Paul: Now, enter. So the shaded region is the set of your solution. CC Can you see that? That will be x 
less than what? x<-2 and x> CK  
L:3 
Paul: x>3. Is that ok? FF 

162- 167 Paul: Now click your circle there. It will shade the middle one. CMR Can you see now that what we 
were talking about that if it is inequality it says <= ne.   
L: Yes 
Paul: We want the part which is below the x-axis. CS And you can see that is the one which is shaded.  
L: Yes, sir. 
Paul: So if you unclick and go back to the previous one you see where it will shade CD FA 
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176- 179 Paul: Something that you don’t see that. f(x)<=0, press enter. Why is not capturing? Oh! There we are. 
There we are. Oh! you pressed <+, you need to press <= FR 
L: Oh! Oh! Ok Ok. Thanks (giggling).  
Paul: Press <=, equal to sign. You don’t have to press shift. Simply press equal to sign. 

185- 192 Paul: Can you see something? Unclick the other one. What can you see about the lines? Those vertical 
lines. What can you say about vertical lines? 
L: (inaudible) 
Paul: They are dotted meaning that we don’t need those solutions CK CS 
L: oh! Yes. 
Paul: We don’t need the values of  -2 and 3. Then if you go to number 5 and click and also check there 
the part of the graph that is shaded is the one above the x-axis. (CMR) Are we together? The solution is 
x < -2 or x > 3.  

193- 199 L: Teacher, why it doesn’t highlight?  
Paul: What you notice here, ne? What’s the inequality? 
L: It's ≤0 This equation, last one from this worksheet.   
Paul: So you see the graph is always above the x-axis, so for all values of x. And here it's different it's 
greater than zero, So you see the graph is always positive, (CMR) so for all values of x. 
L: So, no solutions am I ok here.  
Paul: Yes, you can also say here that there no real values of x because there are no x-intercepts. FR CK 

201- 210 T: We are now previously greater than zero go and unclick there you might see this one. And click this 
one <=0. You must not have a situation like this ne (showing two equations showing together) FR 
L: Yes 
Paul: Unclick the first one, and you see that we have dotted lines meaning that we don’t need -2 and 3 
in our solution. CK FA. And your answers will be you can even click less than or equal to and say solve. 
Is it going to solve? Let me check. Where is my answer now? It is not giving me the answers. It will just 
show only your graph ne? Right, what I am emphasising is that once you have less than zero, it will 
shade below the x-axis. CMR. Some problem, so it is not solving less than or equal to the graph. But 
still, you can click on your computer it will show you. (Focussing on his system rather than learners) 

224- 226 Paul: Now you see that graph is shaded below the x-axis, ne. (CS)   
L: And the lines are not dotted 
Paul: Yes the lines are not dotted as we are looking for <=  

 

5.3 HORIZONTAL ANALYSIS ACROSS LESSONS 

In the previous section, the descriptions of the classroom integration of the applets in Cycle 2 

revealed how the participant teachers made use of the potential of GeoGebra. This section presents 

a horizontal analysis that interprets the findings from the preceding section. The horizontal analysis 

of the data, strand-wise, showed that the participants demonstrated traits of core understanding 

(CU) and evidenced their instructional fluency (IF).  This discussion takes the form of presenting 

instances that best illustrate the pertinent strand of mathematical teaching proficiency. This form 

of analysis enabled me to gain deeper insights to obtain answers to my research questions.   

The CUIF framework in Table 3.3 in Chapter Three (p. 69), serves as a reminder of the observable 

indicators used to analyse the data. 
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Paul did not include the ‘nature of roots’ section of the topic in his observed lesson. He arranged 

that particular lesson on the following day – this was however not recorded. Despite this, he shared 

his experiences on the lesson on the ‘nature of roots’ during the reflective interview, and I thus 

included this in the current horizontal analysis.      

5.3.1 The unfolding of core understanding (CU)  

In this section, I consolidate different pertinent indicators of CU (core understanding) evidenced 

in this cycle.  

5.3.1.1 Emphasis on teaching for core knowledge (CK)   

In order to solve the given inequalities, both my participating teachers adopted two conceptual 

ideas: 1) every inequality comes from an equality (Alsina & Nelsen, 2009); and 2) expressing the 

conclusion using inequality notations. They both made use of the tools available in GeoGebra to 

explain the solutions to the inequality, using appropriate mathematical terms (lines  194–207 in 

Table 5.7 on p. 140 and lines 137–140 in Table 5.11 on p. 148). Thus, the intended mathematical 

knowledge of solving an inequality, which has been referred to as ‘mathematical knowledge for 

teaching’ by (Ball et al., 2008, p. 394), was evident among the participant teachers. 

By treating equations as algebraic functions first, and then providing a graphical representation of 

these functions using GeoGebra, my participant teachers provided learners with a rich and 

comprehensive learning environment and opportunity. Their instructions illustrate that the lessons 

did more than teaching mathematical terms and notations. Their interactions with the applets and 

with the learners developed a classroom environment that supported “teaching for understanding” 

(Schoenfeld & Kilpatrick, 2008, p. 19).   

5.3.1.2 Emphasis on representing multiple ideas (CMR) 

Kilpatrick et al. (2001) argue that “mathematical ideas are enhanced through multiple 

representations” (p. 95). The classical algebra-graph approach to functions is an illustration of 

multiple representations. Teachers designed GeoGebra applets that dynamically linked algebraic 

expressions and graphical representations (in Figure 5.2 on p. 129 and Figure 5.6  on p. 131). As 

the learners engaged with the different equations in the worksheet, the teachers encouraged them 

to connect algebraic equation and graphs, for instance, see Table 5.4 (p. 136).  
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Schäfer (2016) considers that one of the key elements of proficient teaching is making use of 

multiple representations that include bringing in causal relationships between mathematical ideas. 

I noted that both teachers capitalised on the dynamic graphing capabilities of algebraic equations 

in GeoGebra.  Specifically, they distinguished between graphical situations of i) equal and unequal 

roots and ii) real and non-real roots. Using the Applet 2.1, Antony allowed learners to think 

critically and relate different representations to each other, such as the roots of the equation, the 

discriminant and the 𝑥 −intercepts of the parabola, shown in lines 347–353 of Table 5.8 (p. 142) 

and in lines 88–99 in Table 5.12 (p. 157).  

I thus concur with Hennessey et al.  (2012) that multiple representations in teaching mathematics 

not only strengthens learning experiences but also increases retention and application.  

5.3.1.3 Emphasis on connecting concepts (CC) 

Owing to the participant teachers “ … knowing school mathematics in-depth and breadth” 

(Schoenfeld & Kilpatrick, 2008), they were able to make effective connections to other topics. The 

teachers structured their lesson instructions and equations so that it would allow them to connect 

certain concepts such as equivalence of equal roots and the turning point. They were aware that 

the mathematics they were engaging in would lead learners into certain concepts required for 

interpreting graphs in Grade 12 calculus.  

Furthermore, Antony made an instructional decision to start his lesson with a linear equation in 

GeoGebra. He stated “I always prefer to move from known to unknown. This would make them to 

understand easier.” (line 125, RI2A, my original transcripts). Paul started with a quadratic 

equation; however, in his reflection he decided “Before using a quadratic, I will begin with a linear 

inequality. In our next meeting, we must discuss on an applet linear inequality” (Table 5.13, lines 

35–36, p. 158).  One important consideration regarding their interactions was that the teachers 

considered what their learners were familiar with and how their learners made progress in learning 

content. This connection concurs with a study by Schoenfeld and Kilpatrick (2008) who record 

“[t]hat practice provides the teachers with a sense of curricular and mathematical depth, which 

shapes the ways in which they orient their current instruction” (p. 6).        
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5.3.1.4 Emphasis on teaching for exploring and discovering concepts (CD) 

The role of a teacher is to probe and provoke a learner’s creativity (Shulman, 1987). In a 

technology-based classroom, there is less emphasis on transmitting information, and more on 

developing learners’ conceptual understanding and skills through exploration and engagement.  

In Antony’s reflection (lines 35–47 in Table 5.12 on p. 157), where he highlighted the excitement 

of learners when they understood how the 𝑥 −intercepts of the graph related to the roots of the 

algebraic equation. It is evident here, that the learners came up with their own ideas when they 

were provided with an opportunity to engage with the tasks.  This implies that the learners 

constructed their knowledge by actively participating in a classroom situation. Wright (2000) 

agrees that knowledge is the result of learners’ activities rather than of the passive reception of 

instruction.  

With Applet 2.1, Antony encouraged his learners to explore different equations and observe their 

graphs. He prompted them to make conjectures on the nature of roots and waited until he received 

the appropriate response from the learners. Here Antony leveraged GeoGebra to support his 

instructions and stimulated the learners’ creativity to highlight mathematical principles. I therefore 

find that technology enables teachers to design tasks that can support learners to explore and make 

sense of mathematical ideas. In agreement,  Laborde (2001) ascertains  that it is important for 

teachers to see the  “role of  technology as a way to facilitate the making of conjectures rather than 

a part of solution of tasks” (p. 289).           

Paul also motivated his learners to explore different equations in the worksheet and observe their 

respective graphs Table 5.9 on p. 145, in lines 84–89 show him motivating learners to draw 

comparisons between the CAS window and the graphics window. Although he prompted the 

learners to respond, he did not receive an immediate response; he then provided the mathematical 

concept, in this case that solutions to the equation are the 𝑥 −intercepts of its graph.    

Furthermore, GeoGebra is considered as a pedagogical tool, as Khine (2003) observes – that in a 

constructivist classroom, the role of a teacher is to provide opportunities and facilitate learning.  

5.3.1.5 Emphasis on tackling common misconceptions (CM) 

Ball et al. (2008) identify “knowledge of content and students” (p. 401), which is “knowledge of 

common student conceptions and misconceptions about particular mathematical content”. In our 

GLIP meetings, when reflecting on the lesson implementation, we identified three common 



153 
 

misconceptions related to inequalities. One is the notational error when learners are often confused 

with the ‘greater than’ or ‘less than’ symbol. The second misconception lies in the conclusion 

when representing the solution to quadratic inequalities, especially the inequality notation. The 

third misconception is the procedure of solving inequalities: learners apply the rule of equivalent 

equations, multiplying an equation by any (positive or negative) number, which leads to incorrect 

results when applied to inequalities. This third misconception was, however, not addressed by the 

teachers during the lesson observation, and neither of the applets addressed this misconception.  

During Antony’s lesson, he attempted to address the first misconception by making gestures with 

his fingers, recorded in lines 123–125 in Table 5.5 (p. 138). He addressed the second 

misconception in the inequality notation of the solution, in lines 154–158 (in Table 5.5), by 

referring to the algebraic solution and the highlighted part of the graph. Referring to the graph, he 

also used terms like ‘left of − ′  for the solution 𝑥 ≤  − . In the stimulated recall interview, (lines 

100–104 in Table 5.12 on p. 157), Antony observed that learners found it difficult to represent the 

solution to inequalities and he showed his learners how to interpret the solution from the graph. It 

is evident that Antony identified his learners’ difficulties and discussed them in an effort to make 

learners aware of them. I concur with Kilpatrick et al. (2001) and Ball et al. (2008) that teachers 

need to be sensitive to the misconceptions that learners that bring to mathematics. Proficient 

teaching demands knowledge of the junction between content and the learners.      

5.3.1.6 Emphasis on teaching which relates to real-life situations (CR) 

This code relates to teaching activities that refer to real-life situations. I found little evidence of 

teachers making references to day-to-day realities or illustrating the application of inequalities. I 

will discuss this further when I summarise my findings in my last chapter.    

5.3.1.7 Emphasis on switching between abstract and concrete (CS) 

Appropriate to the abstract nature of a mathematical idea, each concept has several concrete images 

(Kilpatrick et al., 2001). In lines 185-192 (of Table 5.11, p. 148), Paul expounded on the 

differences between ‘less than’ and ‘less than or equal to’ by making visual references to the 

‘dotted’ vertical lines on the graph. Antony asked his learners to identify the differences between 

‘less than’ and ‘less than or equal to’ and make inferences from the graph, as is evident in lines 

179–193 of Table 5.6 (p. 139). Furthermore, Antony used multiple terms for the 𝑥 −values of the 

inequality, such as critical values, boundary values and 𝑥 −intercepts, making references to the 
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graphs, thus affording his learners a deeper understanding. The flexibility to switch between visual 

and abstract images could be a significant factor in understanding concepts and useful for solving 

mathematical problems. This argument is in consistent with Sarama and Clements (2009) findings 

that virtual manipulatives facilitate learners to develop “integrated-concrete knowledge” (p. 146).   

5.3.2 The unfolding of instructional fluency (IF)  

In this section, I consolidate the different pertinent indicators of IF (instructional fluency) evident 

in this cycle.  

5.3.2.1 Emphasis on acquiring an instructional repertoire (FA)    

Kilpatrick et al. (2001) consider instructional routines as one of the basic components in teaching 

as “teachers who have acquired a repertoire of instructional routines can readily draw upon them 

as they interact with students in teaching mathematics” (p. 382). Teachers have access to a range 

of pedagogical strategies in developing conceptual and procedural understanding and know when 

they are appropriate in different situations. Here I found two different strategies adopted by the 

teachers:  

Paul provided additional equations apart from the worksheet for the learners to practise in 

GeoGebra. He reflected: “More equations were required [than] in the worksheet” (Table 5.13, 

line 31, p. 158). This implies that more equations in the worksheet could reveal the underlying 

concepts useful for solving problems. This practice is consistent with the observation by Rittle-

Johnson and Alibali (1999) that “[p]rocedural knowledge may only lead to greater conceptual 

knowledge under certain circumstances, such as after extensive experience using the procedure, or 

when the relationship between the procedure and the underlying concepts is relatively transparent” 

(p. 177).   

By questioning critically, Antony led the learners towards identifying non-real roots of quadratic 

equations. He guided them in reasoning about the properties of numbers and the nature of roots 

and revealed the underlying concept by linking with the 𝑥 − intercepts of the graph. Here, 

conceptual instruction occurred prior to working with the different equations. Researchers 

(Carpenter & Lehrer, 1999; Kilpatrick et al., 2001) have shown that instructions that emphasise 

understanding procedures before using them enhance both conceptual and procedural knowledge       
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Nevertheless, the overriding goal of these differing strategies was the development of 

mathematical proficiency.       

5.3.2.2 Emphasis on tackling a learner’s misconception (FM) 

This indicator refers to a learner with serious misconceptions which were not anticipated by the 

teacher. In my observation, I could not locate any episode where the teachers intervened to address 

a particular misconception of a learner. However, in Section 5.3.1.5 (p. 152), I have discussed 

teachers addressing the common misconceptions.      

5.3.2.3 Emphasis on teaching basic skills (FL) 

This indicator within IF deals with a teacher’s knowledge of how to deal with learners who lack 

critical prerequisite skills in using computers for learning purposes. Recent research (Hennessy et 

al., 2005; Stols et al., 2015) reports that teachers are confident in using technological tools but not 

so confident in using them with learners. Nonetheless, my participant teachers gained confidence 

after their first lesson, and GLIP meetings supported them in building up their confidence.       

Antony and Paul were very vigilant with their learners’ use of computers. They noticed learners’ 

errors such as typing a capital letter 𝑋 instead of small letter 𝑥; ‘6’ instead of ‘^’; ‘=’ instead of 

‘+’; (owing to an inability to use a combination of keys), to name a few. In a GLIP meeting, Antony 

reflected that “For a minute I was lost. I could not understand what was happening when a learner 

claimed that he could not see any graphs, but his equation was correct. Then I saw it was capital 

letter 𝑋.”  It requires expertise to identify such nuances in typed equations. During the lesson, I 

saw Paul briskly moving around to replace mouse and keyboard, signifying the teacher’s role as a 

‘technical assistant’.   

However, when Antony realised that he was losing focus on the ‘mathematics’ while dealing with 

his learners’ computer illiteracy skills, he no longer provided technical assistance and asked his 

learners to share with other learners who were doing it correctly.               

Antony made a closing remark to the class: “This is like mathematics as it is mathematics. Now 

we are doing mathematics using computers. But what is happening is some of us are unable to use 

computers. So we have to first teach how to use the computers before you go to the actual use of 

mathematics” (line 392–395, L2A in Table 5.8, p. 142).  
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It suggested that using computers in a mathematics classroom itself is learning mathematics. 

Technical knowhow such as skills in using keyboards for mathematical equations becomes 

necessary for effective integration of technology.     

5.3.2.4 Emphasis on responding to learners’ thinking (FR) 

Ball et al. (2008) recognise that good teaching entails responding to learners’ questions. I put 

forward two instances in the data that revealed how teachers responded to learners’ queries. This 

resulted in a productive classroom discussion among learners and teachers. The discussion, in lines 

203–213 in Table 5.7 (p. 140), shows that Antony responded to a concern from a learner who could 

not locate the ‘separation’ in the graph. He manipulated GeoGebra to generate different graphs, 

instantly representing the different situations necessitated by the learner’s concern. He provided 

alternative methods of interpreting the inequality from the graph that involved terms such as ‘ −∞′ 

and ′∞′ , ′𝑥 − intercepts’ and ‘interval’. Antony made appropriate responses to the learner’s 

questions that reflected the promotion of understanding of mathematical procedures in solving 

inequalities.  

In Paul’s lesson, in lines 110–120 of Table 5.10 (p. 146), a learner could not understand the 

situation where a quadratic equation had only a single solution (remember, the teacher had said to 

the class that there were two solutions for quadratic equations). The interaction between the teacher 

and the learner provided evidence that he convincingly guided the learner through using different 

representations in the applet. He exploited the opportunity to visualise the special mathematical 

situation and thus enhanced the knowledge of the learner.    

Here, teachers acknowledged and appreciated learners’ critical thinking. They were responsive to 

learners’ questions and provided alternative methods or explanations, exploiting GeoGebra to 

visualise the mathematical idea. They tackled the situations that arose during the lesson and 

capitalised on the opportunities that would be beneficial to the learners in solving equations and 

inequalities. I concur with the observations of Schoenfeld and Kilpatrick  (2008) that “[t]he more 

that teachers are attuned to their students’ understanding, the more they can create learning 

environments that are responsive to them ” (p. 15).  

5.3.2.5 Emphasis on understanding procedures (FP) 

Ball et al. (2008) inform us that “being able to carry out [a] procedure is necessary, but not 

sufficient, for teaching” (p. 396). Inequalities are often easier to understand if we use graphs to 
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determine the solution. There was evidence that the teachers focussed on the procedure of 

interpreting inequalities from the graph generated in the applet. They corresponded between 

algebraic inequalities and graphical representation, and thus effectively developed visual 

procedures in solving inequalities. 

Interestingly, while explaining ‘greater than’ and ‘less than’, both teachers efficiently switched 

between the graphs and the algebraic solutions. They developed mathematical ideas and 

procedures intertwining CU and IF, allowing the learners an opportunity to grasp the underlying 

concepts. Thus, the analysis suggests that toggling between the graphs allowed learners to 

understand the underlying concepts and procedures. Teachers successfully capitalised on the 

interactive potentials of GeoGebra to represent the meaning of the procedure “every inequality 

comes from equality” (Alsina & Nelsen, 2009), discussed in Section 5.3.1.5 on p. 152). These 

findings on teaching for the understanding of procedures highlight what Kilpatrick et al. (2001) 

propose, of proficient teachers as “be[ing] able to unpack mathematical content and make visible 

to students the ideas behind the concepts and procedures” (p. 428).  

5.3.2.6 Emphasis on inviting feedback (FF) 

Kilpatrick et al.  (2001) consider that a proficient teacher sets a routine that encourages learners to 

observe and talk about the mathematical situation. The routine practice of soliciting feedback from 

learners helps a teacher to assure that the learners understand or are able to perform a task. Antony 

asked questions such as “What is the value of x?”, “Are you still struggling to show that line?”, 

thereby monitoring the progress of the class. Similarly, Paul asked questions such as “Anyone with 

a question so far?” “How many solutions do you notice here?”, thereby prompting responses from 

learners.  

These sets of routines aided teachers to check on the progress of the learners. It served as an 

opportunity for the learners to open up and respond or ask questions.      

Table 5.12: Transcript (RI2A) – Antony reflecting on the second cycle   
37-42 R: Let us see this part of video recording. They are speaking in isiXhosa. What is happening?  I 

can see that they are excited.  
Antony: As I said earlier, they explore themselves. They are excited because that one saw the x-
intercept and is sharing with her friend. Otherwise, what I hear and see on the recording, I see in 
the background that they are getting something. They are learning (pause) they can pick up 
something. I can see that [they] are excited yoo this is straight-line see this is x-intercept. I think 
that one is helping them. 

88-99 R: Ok. What was the best one that worked?  
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Antony: hmm hmm, the algebraic expression and its graph, solution and x-intercepts are that I 
think it worked. It was supposed to be effective.   
R: You mean graph and the solution? 
Antony: They use like GeoGebra they can punch in the equations, and you see everything there, 
like that, is what we mean when we say the point of intersection. This is what is nature of roots 
when roots are undefined or non-real that what it looks like non-intersection with the x-axis. 𝑏 −
4𝑎𝑐  < 0 is non-real now they don’t know what are talking about. Now when we show them in 
computer practically that they can see, “yeah ok ok this why roots are not real because the graph 
is not intersecting x-axis.” So when they change the values of a, b and c they can see how the graph 
is moving above (or below) the x-axis and that the discriminant becomes negative. In that manner, 
it is helping them a lot. 

100- 
104 

R: So. How do you think this program GeoGebra helped you in the lesson, like delivering the 
content? Like preparation and presentation of the lesson?  
Antony: learners have difficulties in writing the correct notations when they write the final answer. 
Now they can see that x is less than 1 mean that graph, is highlighted on the left of x=1. If they 
read from the graph, they will be to answer the inequality correctly.      

 
 
 

 Table 5.13: Transcript (RI2P) – Paul’s reflection on Cycle 2  
25-27 Paul: Yeah! I think that learner picked it up. Now, they can see what will happen when roots are 

equal. Even my Grade 12 find it difficult to understand that part. I think I must use them in their 
lesson. Well, it will be good if these learners remember what they see and learn here next year 
also.     

28 - 31 R: What did not work during the lesson?  
Paul: I spent a lot of time in assisting learners using the greater than less than symbols. So I was 
trying to explain that they were supposed to do and what not. Otherwise, the lesson went fine.  I 
think challenges that learners face is the use of computers. More equations were required in the 
worksheet.  

47-55 Paul: I used the applet that we have designed. They were playing around with those a, b and c. 
What do you call them? 
R: You mean sliders  
Paul Yeah! Sliders. It was useful for them; they could even see that when a = -1 it’s a frown and a 
=1 it’s a smile concave up. It saves us a lot of time explaining. They see what we are talking about. 
It must make them understand those concepts.  
R: So, what worked well with that lesson? 
Paul: I see that learners were excited as they see the graphs. They can now see what we mean by 
non-real roots when the discriminant is less than zero. 

 

5.4 DISCUSSION ON THE RESEARCH QUESTIONS 

In this section, I set out to answer the two research questions. The first one concerns the teaching 

of mathematics integrating DGS as a visualisation tool.  

5.4.1 How can Dynamic Geometry Software such as GeoGebra be used as a 

visualisation tool to teach Grade 11 Mathematics?  

Guzmán (2002) considers visualisation to be a powerful teaching and learning tool of mathematics. 

My analysis of my participants teaching in Cycle 2 undoubtedly confirms Guzmán’s view.  
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The use of multiple representations is a strategy to capitalise on the power of visualisation. The 

data analysis shows how the mathematical discourse was developing to incorporate multiple 

representations of equations and inequalities. In DGS, mathematical representations are inherently 

dynamic, and the participating teachers designed applets that dynamically linked algebraic 

expressions and graphical representations, as mentioned in the discussion in Section 5.3.1.2 (p. 

150). The teachers thus effectively integrated learning tools that allowed learners to visually 

engage mathematically relevant features of quadratic equations and inequalities. I concur with 

Drijvers (2012) who recognise the importance of “dynamic phenomena that invite mathematical 

reasoning, in many cases concerning the relationships between multiple representations of the 

same mathematical object” (p. 489).  

The essence of the teaching that promotes the effective use of visualisation in mathematics 

classrooms is ‘making connections’ (Presmeg, 2006). The participant teachers triggered (or 

intended to trigger) previously learned concepts and also connected to other future topics, thus 

employing visualisation for enhanced teaching and learning (discussion in Section 5.3.1.3 on p. 

151). The ease with which the equations could simply be typed (or by dragging the sliders in 

Applet 2.1) to generate graphs in GeoGebra, contributed to this connection-making. The more 

equations and graphs that were used, the richer the connections and more meaningful opportunities 

the teacher provided for learners to make sense of mathematical concepts.   

Guzmán (2002) underscores that underlying mathematical ideas are born from concrete and 

visualisable situations. Visualisation is a critical aspect in mathematical activity, through which 

one can explore different structures of concrete reality. My analysis implies that the visualisation 

of algebraic equations and inequalities affords teachers to make abstract concepts visual ( see 

Section 5.3.1.7, p. 153). In accord, Presmeg (1986a) claims that the embodiment of abstract ideas 

in a concrete image can facilitate teaching and learning mathematical content with understanding. 

Rivera (2011) characterised the graphical solution process as a synthesis of symbolic and visual 

approaches in solving inequalities. The goal of instruction in solving inequalities showed that the 

teachers focussed on the procedure of interpreting inequalities from the graph generated in the 

applet. Thus, the essence of teaching visual thinking is evident in these observed lessons using 

GeoGebra applets. The facilitation of making these kinds of visual connections in the teaching and 
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learning of mathematics, thus made “optimal use of the strengths of visual processing” (Presmeg, 

1986b, p. 46), by using GeoGebra.   

5.4.2 What enabling and constraining factors do Grade 11 teachers encounter 

when using GeoGebra as a visualisation tool to teach Grade 11 

Mathematics?  

5.4.2.1 Constraining factors  

The graphs in Applet 2.1 provided a clear understanding of real and non-real roots as intersections 

and non-intersections of the graphs with the 𝑥 −axis. Likewise, for equal roots, the turning point 

of the parabola was on the 𝑥 −axis, and for unequal roots, the turning point was elsewhere in the 

plane. These values were visually discernible in the applet on the cartesian plane. The classification 

of roots of a quadratic equation however includes rational and irrational values but it was not 

possible to discriminate irrational numbers from decimal numbers on the 𝑥 −axis. GeoGebra 

rounds off any number to the specified degree of precision. The point, for instance ‘1+√2, 1 − √2 ’ 

is displayed as ‘2.41, 0.41’ rounded off to two decimal places. Thus, visual evidence of the 

𝑥 −intercept of the graph does not show as a rational or irrational number. It was not possible to 

make out an irrational number on the x-axis with Applet 2.1. Antony, however, overcame this 

situation. He guided learners to make use of the worksheet and link the value of the discriminant 

with the roots of the equation. Thereafter, he prompted learners through probing questions to link 

the value of the discriminant with the square numbers.  

In solving inequalities as in Figure 5.10, by default GeoGebra highlights the region on the cartesian 

plane where the inequality holds true. The participant teachers used the same procedure in their 

classrooms. While we were reflecting after the lessons (an essential step of GLIP cycles), we 

realised that the software was not highlighting the solutions on the 𝑥 −axis. We discovered later, 

thanks to the GeoGebra user community, the use of ‘object properties’ in GeoGebra. With this 

realisation, we were able to highlight the solution of inequalities on the 𝑥 −axis as equivalent to 

the visual representation of inequalities on a number line (Figure 5.11). Researchers such as Berger 

(2011) and Bu et al. (2012), have noted that GeoGebra is a user-friendly software package. 

However, there are subtle technicalities that could pose challenges to the teachers.  
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Figure 5.10: Graph of an inequality highlighted vertically 

 

Figure 5.11: Graph of an inequality highlighting the 

solution on 𝑥 −axis 

 

Interestingly, both teachers exploited the default inequality representation in the graph. Referring 

to the graph, they used the terms ‘broken lines’ or ‘dotted lines’ to reinforce the inclusion or 

exclusion of critical values of the inequality.   

As in other cycles, the lack of good computer literacy constrained the flow of the lessons 

substantially.  This is an important factor to consider when introducing new technologies into one’s 

teaching repertoire.       

5.4.2.2 Enabling factors 

By using tools in GeoGebra such as ‘Graphics’ and ‘Solve’, enabled both Antony and Paul were 

enabled to visually demonstrate the key concepts and procedures in solving quadratic inequality.  

GeoGebra allowed a meaningful environment to obtain the graph of any equation and its solution. 

It is tedious to generate multiple graphs and solve the equations by hand on the chalk board or on 

paper. Thus, this elimination of the cognitive workload allowed an opportunity for the teachers to 

engage immediately with their learners in developing mathematical concepts. In Applet 2.1, by 

moving the slider of a parameter (𝑎, 𝑏 and 𝑐, the coefficients of a quadratic equation), the function, 

the graph, the solutions, the intercepts and the discriminant are all updated dynamically. Thus, 

GeoGebra potentially allows for developing insights into variant and invariant properties. This is 

not the case with the images in mathematics textbooks – they are static and by their very nature  

do not support the dynamic nature of visualisation (Guzmán, 2002), enacted by the teachers using 

the Applet 2.1. 

Researchers such as Drijvers (2012) and Jones et al. (2009) argue for the potential of dynamic 

geometry software to move between multiple representations. With easy-to-use tools, GeoGebra 
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allows the user to see the algebraic solution of an equation or an inequality and its graph 

representations on a screen simultaneously, thus allowing the teachers to switch flexibly between 

algebraic notations and graphs. In Applet 2.1, various representations were automatically linked, 

which were dynamically manipulated with the help of sliders, to inform and scaffold learners to 

build a coherent network of mathematical connections. Thus, GeoGebra serves to illuminate 

mathematical ideas. In alignment, Bu et al. (2012) recognise that “GeoGebra enhances the learning 

environment with its multiple representations and computational abilities” (p. 98). A teacher may 

find it difficult to demonstrate such multiple, dynamic visual representations using static diagrams.  

A further enabling feature of GeoGebra that was evident in this study was how it facilitated the 

construction of knowledge through active engagement.  Learners had to take responsibility for 

their own learning by engaging with the software as instructed. 

Further, the use of GeoGebra in this study encouraged learners to interact with each other.  This 

was evident when small groups interacted with each other and when the more computer literate 

learners assisted those who were struggling with their keyboards. 

5.5 CONCLUSION  

With the help of GeoGebra and the co-developed worksheet, participant teachers engaged learners 

with different quadratic equations and inequalities, supporting and guiding them to understand 

their properties. The analysis of the lessons showed evidence of how the teachers used the software 

to make visible various mathematical properties associated with quadratic equations and 

inequalities. Using GeoGebra, teachers facilitated visual connections in the teaching and learning 

of mathematics. They each considered the pedagogical implications and learning opportunities 

available while engaging learners using GeoGebra and implemented these in their own unique 

ways.  Showing the solutions of inequalities, GeoGebra by default highlighted the region on the 

cartesian plane where the inequality held true. It would have been better however, if it had 

highlighted the solution on the 𝑥 − axis. Nevertheless, the benefit of multiple dynamic 

representations afforded in GeoGebra, enhanced teaching and learning experiences in algebraic 

expressions and equations.  

In the following chapter, I present an in-depth narrative analysis of the next topic – equations of 

parallel and perpendicular lines.    
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CHAPTER SIX 

6 TEACHING MATHEMATICS USING DGS – DATA 

PRESENTATION AND ANALYSIS – CYCLE 3 

6.1 INTRODUCTION  

In the previous chapter, I narrated and analysed the participant teachers’ implementation of applets 

on quadratic inequalities and the nature of roots in their classrooms. This chapter aims to analyse 

and answer the research questions on the topic equations of parallel and perpendicular lines.  

The recap methodology (Section 4.1.1 on p. 78) of Chapter Four. This chapter follows a similar 

structure to Chapter 4, as is described on p. 77.    

6.2 CYCLE 3 – EQUATIONS OF PARALLEL AND PERPENDICULAR 

LINES  

The next topic that the participating teachers selected was analytical geometry.  It included how to 

determine the equations of parallel and perpendicular lines and the angle of inclination of a straight 

line. This chapter covers the last cycle that I analysed for this research; however, the GLIP teachers 

continued to meet after this cycle, improving the existing applets and designing new ones.  

6.2.1 GLIP Discussion  

Again, as in the previous discussion, the teachers strongly recommended training for the learners, 

not necessarily only on GeoGebra but on general aspects of computer usage and literacy. We thus 

designed an hour-long training programme on using coordinates and straight lines in GeoGebra. 

The handout for training the learners can be accessed in the Annexure V under the heading 

‘Training Interlude – Coordinates and Straight Lines’. Prior to the observed lessons, the 

participating teachers, my and fellow researcher and I engaged learners with GeoGebra for an hour, 

using the abovementioned handout.  

The teachers also felt they needed a whiteboard to write on during the lessons. Paul usually uses a 

chalkboard in his lesson, but he claimed that his hands would become dusty and hence not 

appropriate for using a laptop or projector. In Antony’s school computer laboratory, there were no 

writing boards (chalkboard or whiteboard), but only one smartboard which required a smart pen 
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to write on. Unfortunately, the smart pen was faulty, and Antony had to recalibrate it now and then. 

He was regrettably unsuccessful at calibrating the smart pen and the board and gave up using the 

smartboard. Abraham, though not a research participant, also raised a concern that his learners 

complained that they could not see what was projected on the screen clearly due to the bright 

reflection. He arranged to put dark curtains up to cover the windows and changed the lighting.        

The GLIP discussion on this topic and design of applets was spread over two days, and there was 

subsequent communication through emails among the participants.   

6.2.1.1 Identification of concepts  

During their earlier phases of schooling, learners had learned how to sketch straight lines of the 

form 𝑦 = 𝑚𝑥 + 𝑐,  the gradient-intercept form. The teachers acknowledged that their learners 

preferred to use the gradient formula 𝑚 =  , to determine the gradient between two points 

(𝑥 , 𝑦 ) and (𝑥 , 𝑦 ). Nonetheless, they unanimously raised the concern that most of their learners 

found it challenging to understand the concept of slope of a line as a ratio of vertical change to 

horizontal change. Again, all of us agreed that for effective instruction to happen, it was better to 

use pre-designed applets. We decided on the following topics to be incorporated in the applets: i) 

concept of a gradient of a line; ii) interpretation of gradient from a given line; iii) relation of 

gradients of parallel lines; iv) relation of gradients of perpendicular lines; v) equations of parallel 

and perpendicular lines; and vi) relation between gradient and angle of inclination. The angle of 

inclination is defined as the angle that a line makes with the positive axis, where angle is measured 

in an anti-clockwise direction.   

6.2.1.2 Designing and Planning  

Abraham put forward the suggestion of reinforcing the concept of gradient as a ‘rise over run’ (a 

colloquial terminology for the ratio of vertical change to horizontal change). Abraham, meanwhile, 

searched on the internet and found an applet by Tim Brsenenki 

(https://www.geogebra.org/m/gV9GRCRN) which we all accepted for implementation in our 

classrooms. Shown in Figure 6.1 and Figure 6.2, the Applet 3.1 is a cartesian grid devoid of axes, 

where a gradient or slope can be randomly generated. A slope and a gradient in this thesis are 

synonymous and are used interchangeably. On successfully dragging the line using the points, to 

the given gradient, the applet indicates the slope accordingly. The teachers believed that this applet 

would thus further engage the learner with the concept of ‘rise over run’.      
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Figure 6.1: Applet 3.1  

 

Figure 6.2: Dragging the line for a given 
gradient in Applet 3.1 

 

Paul put forward the idea of replicating the slider model (as in Applet 2.1) for straight lines. He 

argued that using GeoGebra would be enlightening to learners to show how the change in 

parameters affected a straight line.  The movement of straight line graphs would help the learners 

to discover the relationship between the parameters of the equation and graphs. However, George 

also believed that learners in Grade 11 required more engagement where they played around with 

gradients and intercepts. Paul thus suggested another applet where the equation of a straight line 

was provided. The learners would then identify the gradient from this given equation and then 

sketch the line accordingly. Paul and Antony worked together in generating the applet with input 

from the researchers as some basic programming skills in using logical operators were required. 

Thus, the second applet, Applet 3.2, in Figure 6.3 and Figure 6.4, was generated. Antony quipped 

that this applet would help the learners to get a better grasp of parameters in the straight lines.  
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Figure 6.3: Applet 3.2  

 

Figure 6.4: Sketching the line for a given 
gradient in Applet 3.2 

 

The third applet, Applet 3.3 was designed to identify the gradient from a straight line (Figure 6.5 

and Figure 6.6).  Teachers held the view that this reverse process was necessary in order to 

comprehend the concepts involved in straight lines. The equation was not provided, nor any points 

on the line which was drawn on a cartesian grid. In the first version of the applet, axes were un-

graduated (numbers on the axes were hidden). Later, however, Paul felt that the learners might 

struggle to identify the gradient without any points; hence, in the final output, we graduated axes.  

The learners were expected to identify the gradient of randomly generated lines and put the ratio 

into the input box provided. Abraham felt that a learner must be able to recognise the slope as a 

positive or negative without using the formula. He explained (as if in a classroom) that a positive 

slope was looking up (mimicking as he lifted his head) and a negative slope as looking down (again 

mimicking as he put his head down).  

 
Figure 6.5: Applet 3.3 

 
Figure 6.6: Identifying the gradient in Applet 3.3 
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Antony believed that only three structured applets should be used in a lesson. Paul suggested that 

as he may not get the opportunity to use computer the lab on consecutive days, he wanted to cover 

parallel and perpendicular lines and the angle of inclination on the same day. Abraham suggested 

using a worksheet model in investigating parallel and perpendicular lines, so teachers quickly 

developed the worksheet WS-2, which can be accessed in Annexure VI.  The Applet 3.4 was also 

designed, incorporating both parallel and perpendicular lines on the same applet. Applet 3.4 

(Figure 6.7 and Figure 6.8) was meant for investigating the relationships between the ‘gradient 

and intercept’ of the given line and with that of parallel and perpendicular lines. The learners would 

work in conjunction with the paper-based worksheet WS-2, in which they were expected to make 

conclusions based on their observations in the applet.  

 

Figure 6.7: Investigating gradients of parallel lines in Applet 3.4 
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Figure 6.8: Investigating gradients of perpendicular lines in Applet 3.4 
 

Paul also believed that concepts built through the applets might not be enough to develop the 

procedures for determining the equations of parallel and perpendicular lines. The teachers agreed 

on an applet that would aid learners with step-by-step procedures in finding the equation for 

straight lines. It was entrusted upon the researchers to design the applet as it required some 

advanced programming skills. Thus, the Applet 3.5, as shown in Figure 6.9, provided procedures 

for finding the equations for parallel or perpendicular lines and then displaying the required parallel 

or perpendicular lines. Paul joined us in designing the applet as he was keen on learning the 

advanced scripting used in GeoGebra. Later on, we also developed another applet, Applet 3.6 

(Figure 6.10), that allowed learners to sketch parallel and perpendicular lines. The learners were 

expected to determine the slope of the given line and then sketch parallel or perpendicular lines 

accordingly.  
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Figure 6.9: Step by step procedure in finding the equations of parallel and perpendicular lines and the 
required line sketched in Applet 3.5 

 
However, the Applet 3.6, intended for learners to put into practice their understanding of slopes 

and equations for parallel and perpendicular lines, was prone to errors, and it did not function as 

intended on the desktops of both the schools. This was first identified in Paul’s lesson, but we 

could only rectify the bug after both lessons were recorded. The issue was compatibility of the 

teachers’ version of GeoGebra with that of the computers at the schools. Apparently, Paul’s 

computer had been updated to a newer version of GeoGebra while the internet at school worked 

with an older version.     

 

Figure 6.10: Sketching the parallel and perpendicular line through a given point in Applet 3.6 
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The last concept in this topic was the angle of inclination of a straight line. The inclination of a 

line is the anti-clockwise angle which it makes with the positive direction of the 𝑥 −axis. Abraham 

proposed to design an applet that would establish connections with trigonometric ratios, thus, 

Applet, 3.7 was designed to highlight the relationship between the angle of a straight line and its 

gradient. The applet would allow a learner to explore and visualise that both tangent and gradient 

are the same ratio, as displayed in Figure 6.11 and Figure 6.12.  As the ensuing discussion on using 

the applet in the classroom, many interesting potential pedagogical practices and opportunities 

became evident. Abraham maintained that this applet might also emphasise that an acute angle 

would have a positive gradient while an obtuse angle would have a negative gradient. George held 

that it could also explain gradients for horizontal and vertical straight lines. Antony suggested that 

we could also prove that angles of inclination of parallel lines are equal (i.e. corresponding angles 

equal) and thus their gradients would be equal too.    

 

Figure 6.11: Applet 3.7 

 

Figure 6.12: Exploring the  relationship between 
slope and tangent of the angle of inclination in 

Applet 3.7  
 

In this following section, I analyse the lessons of two teachers, Paul and George. Antony could not 

attend school for two weeks during the scheduled lessons due to personal reasons, and hence I 

could not record and analyse his classes. Prior to the observed lessons, both the teachers conducted 

training for the learners for an hour on coordinates of the graph and straight lines using GeoGebra. 

The training resource can be accessed in Appendix V.  
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6.2.2 Analysis of Paul’s lesson  

Paul arranged two lessons using these applets. Applets 3.1 to 3.3 were used during the first lesson, 

and applets 3.4 to 3.7 were used in the second lesson; the second lesson being held three days after 

the first lesson. On both days, 46 learners attended the lessons (two learners were absent). There 

were no delays, and once the learners found their seats and desktops, the lesson started promptly. 

Most of the computer systems were up and running prior to the learners entering the lab.  They 

simply needed to log in to the computers and access the required files. By then, the learners knew 

which computers were working, but some of them still had to share desktops. On the first day, 

Paul was obligated to attend a meeting, so the lesson only lasted for 30 minutes instead of the 

scheduled 40 minutes.  Paul moved around the computer lab from learner to learner to clarify any 

questions they had.  Figure 6.13 is a snapshot of Paul’s classroom, showing the projector and a 

chalkboard adjacent to each other.  

At the beginning of the second lesson, Paul handed out the worksheet WS-2, for investigating 

parallel and perpendicular lines. Unfortunately, Paul could not use Applet 3.6 as the desktops were 

not compatible with the new version of GeoGebra in which this applet was designed. Learners 

were more inclined to play around with the points on the applet rather than writing down the 

observations. 

 

Figure 6.13: Paul’s classroom 
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6.2.2.1 Act 3 Scene 1 ~~ Applet 3.1  

 Paul began the lesson by mentioning the objective of the activity for this particular lesson. He 

wanted to foster a precise and richer understanding of gradients and equations of lines. From Lines 

8–12 in Table 6.1, we see that he began with Applet 3.1 and reminded his learners about the 

definition of a gradient. I classified this as CK.  As he encouraged his learners to recollect and 

connect to prior knowledge (CC) on properties of rational numbers, he also demonstrated how to 

do the activity in the applet (FP). For the next few minutes, he paused and watched how learners 

they were working on the applet. He helped those learners who could not sketch the line.  

He demonstrated only one strategy in Applet 3.1 – of dragging the horizontal movement towards 

the right and the vertical movement up for positive gradient, and down for the negative gradient. I 

classified this as FP. Paul illustrated the concept of gradient using multiple representations and 

terminologies (CMR) such as ‘vertical change’ and ‘horizontal change’. Thus, the sequence of 

interactions suggested that Paul employed a range of instructions, (FA), to address the 

mathematical proficiency of learners. Furthermore, he showed flexibility in his interactions with 

his learners (FL), who lacked the basic skills of moving the grid, as shown in lines 35–42 of Table 

6.1.       

As the learners progressed in successfully sketching lines in the applet, he directed their attention 

to the sign of the gradient and its slope. In lines 57–58 (in Table 6.1), he encouraged the learners 

to explore and visualise the lines of negative and positive gradients. He encouraged learners to 

explore (CD) and switch between concrete lines and abstract ideas (CS). Once the learners were 

familiar with the sketched lines, he explained how the vertical change affected the sign of the 

gradient (lines 61–62 in Table 6.1). He thus led the learners to estimate the gradient for a given 

line. Lines 61–62 also illustrate that Paul offered learners an opportunity to make sense of 

mathematical ideas and develop a richer understanding of the concept of a gradient of a line, that 

would be useful to them in solving future problems.                

Table 6.1: Transcript (CL3P1) – Interaction with Applet 3.1 
1-7 Paul: Good morning, I was delayed at the meeting. Let us settle down quickly.  

(Learners are moving around).  
T: Ok, what is wrong with you? Are you scared of computers ne? 
L: Ahha  
Paul: Basically, what we to do today, boys and girls, is to summarise that we were doing in class. 
The exercise that is designed for you. Right so once (pause) once have you opened that? Once you 
do that, start with the exercise that is there. We will relearn gradients and equations of straight 
lines so that we have precise knowledge. Right! 
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8-21 Paul: Right open the first one, you see 3-slope-run-rise. Right with this one now it is giving us 
slope. Remember slope is your gradient ne? I will come (a learner asking for help) 
L: Yes 
Paul: Right. What we are going to do here you see the gradient that you are given. The gradient 
what you are given is, say -6. Remember when you say -6 our gradient comes from.  CK So if you 
got a whole number like -6 it means that your change in y is -6 and change in x is 1. Are we 
together? It means that your change in x is what?  
L: 1 
Paul: That answer that we can use the one on the board is  CC (he writes - n the chalkboard but 
refrains further and walk back to projector and then to his laptop). So, what you can do you see 
these two points here this one and this one 
L: Yes 
Paul:  this one moves along the x-axis I said along the x-axis is 1. Then because it is negative, I 
will go down. And from there I have to move six units. FP 

35-42 Paul: yes your numerator is your change in y FL 
L: Oh oh  
Paul: change in y means you either go up or down. So if it is negative, give it to the numerator FP. 
Change in x means you move right.  
L: When I called you, you did not respond 
Paul: Ok, baba. Your gradient is 7/6  move six right say 1 2 3 4 5 6 . then up 1 2 3 4 5 6 7 see FL 
L: Yeah ! Wow.  

43-45 Paul: The numerator is change in y and denominator change in x. So guys look here at the screen 
once again. Here the slope is -5/3 ,ne? So I move three right make it straight line horizontal ne 
CMR. Negative -5 ne I move 5 down vertical CMR ne. Look its correct. Right. Are we together?  

54-62 Paul: So please the denominator is your change in x ne. So you count. Here, for example, you count 
five units 1 2 3 4 5 then you go down six units is that ok. Please ensure that you sign the register. 
(Pause)  
L: I did not get it . 
Paul: Please also check the slope if your gradient is negative. That will tell you how to move your 
points. Is that ok? You check ne; you know slope if it is negative you must know how it is slanted 
CMR FM.  Once again, if it was positive move right then up. Remember the denominator move 
right then you see the way the lines are sloping with your gradient.?   
L: Yes. 
Paul: Ok. Once you see that your gradient is negative, you should have a picture of how your line 
should be slanting FM. As x moves to the right, if y moves down, then gradient is negative. CMR 
CK Are we together? 

 

6.2.2.2 Act 3 Scene 1 ~~ Applet 3.2 

Paul scrupulously sequenced the applets to support the learners’ construction of mathematical 

ideas around the equation of straight lines. Next in the sequence he used Applet 3.2 to give the 

learners an opportunity to put into practise the concept of straight lines. Lines 65–74 in Table 6.2 

exemplify the evidence of CU. Paul solicited previously learned concepts of straight lines, (CD 

and CC), and thus made links with learners’ prior knowledge. He used mathematically appropriate 

language when he discussed horizontal and vertical lines. Furthermore, Paul made use of his 

experience in dealing with these situations, which is classified as FA. Applet 3.2 randomly 

generated lines and the first equation appeared on the teacher’s screen. Paul made a general 

statement of the mathematical fact that lines of the type where is 𝑦 = 𝑘 is a horizontal line, and 
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lines of the type 𝑥 = 𝑘 is a vertical line, where 𝑘 is a constant. I argue that these kinds of abstract 

statements while referring to the lines on the computer screen helps learners to enhance their 

understanding of these types of lines.        

It was apparent that not all learners were able to sketch horizontal and vertical lines successfully. 

Lines 104–108 in Table 6.2 show where Paul had to repeat his explanations on horizontal and 

vertical lines, and this time, he provided related concepts in detail: “all y-values on the line will be 

-3” (CMR) as a reason for having horizontal lines.. Besides this, Paul drew fluently on his range 

of instructions to unpack the ideas that made the basic underlying concepts visible, which is 

classified as FA. It is interesting to note that a learner came up with a valid explanation for the line 

to be vertical, as evident in lines 124–126 of Table 6.2. This aligns well with Kilpatrick et al.’s 

(2001) assertion that all learners could comprehend mathematical concepts if instructions are 

presented with the relevant underlying principles.           

His interaction with the learners revealed that Paul emphasised the intercept-point method of 

sketching a line of the form in Applet 3.2. He provided accurate explanations such as ‘intercept’ 

and a ‘point on the line’, which was useful for learners when they engaged with the applet. In lines 

97–99 (Table 6.2), Paul made connections between expressions and their graphical representation, 

which is classified as CC. In lines 92–94 (Table 6.2), Paul demonstrated knowledge of 

mathematical procedures (FP), as he explained the sketching of the line using the substitution 

method in determining a point on the line.  

Paul interacted with the learners as they engaged with the applets. I could see in the video that he 

was moving around and clarifying their questions. His voice was inaudible, but I could hear words 

such as ‘vertical’, ‘horizontal’, ‘intercept’, ‘substitution’, etcetera. As he was explaining to a 

learner on using the substitution method to find another point on the line, a learner quipped, “how 

can be x =1?” (lines 122–124 in Table 6.2). I saw elements of CU and IF at play in this instance. 

Paul made use of the situation and displayed his range if instructions (FA), as he addressed the 

whole class to emphasise a mathematical concept, which is classified as CK. He unpacked a 

fundamental idea on the classification of variables as independent and dependent variables. This 

classification of variables could be very crucial in understanding ‘functions’, another topic in 

mathematics, hence also coded as CC. The extract below clearly shows how Paul addressed the 
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development of mathematical proficiency among learners, which is at the core of teaching 

proficiency.     

Table 6.2: Transcript (CL3P1) – Interactions with learners and Applet 3.2 
65-74 Paul: You go to the next one which 4-line-sketch. If you open what is it saying? Drag point A and B 

to the given equation. For example, you are given y=1. Remember from what you did y= 1 is a what? 
CC Is it a vertical line or a horizontal line?  CD It must cut at y= if it is given as y=1 for example. 
The one on the screen is written y=1 he?  
L: Yes sir 
Paul: so, you drag you take your A you also take your B is that ok? Once you have moved there, it 
should say correct. Please just use the two points that you are given. Please remember x= a constant 
is a vertical line; FA y= a constant is a what? A horizontal line. CK 

76-82 Paul: yes, a horizontal line. Drag a point A to y = 1 see it should be on the y-axis. And then B drag 
it. But why it is not correct on the screen.  
L: he points on y = 0. 
Paul: is it? That means I must see a doctor. 
L: Yes, you are getting old. 
Paul: Alright, so you see ne it a horizontal line. CS Please follow the equation. (Helping learners). 
Let me explain once again. You will be moving the points ne. (Background murmuring inaudibly.) 
Paul: What I was explaining ne. x= constant is a vertical line and y = constant a horizontal line CK 
CM (Pause helping learners inaudible).  

90-94 Please follow the equation. The easiest way to do that once you are given with an equation that says, 
for example, y=4x-1 take your A or B to -1 because it will pass there ne -1 on the y-axis. The y-
intercept there CK. Then try to substitute if you put one there (for x) you will get 3. Take B to 3 sorry 
(1;3). Go to (1,3) and at y=3. Move again, move again to point (1,3). My B is at -1 and then A I am 
moving to (1,3). FP (Pause). See the line is correct ne.  

97-100 Paul: Why can’t you drag. Control your mouse. (Pause). So I am saying if you are given an equation 
y=x+3, for example, you start by taking your A to y = 3. Remember, your constant is your y-intercept. 
CC  Is that clear? Then you take the other point you check now by substituting. Is that ok? Are we 
together? And then click the new line. 

104-108 L: No, no.  How you do this?  
Paul: your line y = -3. Drag the point to -3. And also drag B to anywhere -3. No, like that. Listen 
here, Listen. When the equation is y= -3, remember it’s a horizontal line. All the values on the lines 
will have y-values equal to 3 CMR. Therefore, you first drag to y-intercept at y = -3 and then drag 
the other point where y = -3, and it becomes a horizontal line. FA  

114-124 Paul: …the best way is if you are given y=-x-2 ne FL take your A to -2 on the y-axis, -2 on the y-axis 
the intercept. Take another point one value which is not 0 for x. for example, -1 if you put x = -1 there 
once you move there you will get your y = -1, FP. This one I am sure people are getting some 
problems he? I see some people must familiarise with this concept.   
L: Can I put x= 1? 
Paul: yes any value other x = 0 
L: How can be x = 1?   
Paul: x can any value? CK for x= 1 y = -3 FP. (speaking loudly) Listen carefully, x can take any 
value ne. Remember y = mx + c, y is dependent on the value of x. and x is called an independent and 
y is dependent. Are we together? Right. CC (lowering his voice) Now here So drag your B to (1,-3), 
and A is already at y = -2. FR 

125-127 L: [name] do all the values on the line x= -1 have x-values equal to -1.    
Paul: Yes. Yes. You already have A at and now drag B anywhere here to become a vertical line. Yeah, 
you see. There you are? Continue to the next line.  
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6.2.2.3 Act 3 Scene 1 ~~ Applet 3.3  

Paul proceeded to the final applet of the day – Applet 3.3. He reiterated the definition of a gradient 

of a straight line (line 142 in Table 6.3). However, he adopted a procedural approach to encourage 

the learners to use accurate techniques in finding the gradient, as evident in lines 142–143 in Table 

6.3. I coded the lines as FP. Paul did not provide a mathematical explanation for the signs of 

gradients. Instead, he offered a visual procedure in identifying the sign of a gradient of a line – 

looking at the direction of the line. He repeated the visual ideas that he had discussed regarding 

the gradient of lines, while interacting with Applet 3.3. In lines 145–146 in Table 6.3, Paul 

encouraged the learners to see the right-angled triangle (CS) made by the line when it intersected 

the axes.  

Throughout the lesson, I found that learners did not struggle with the computers, except for a few 

instances. The notable instance was when the learners could not input the fraction symbol ‘forward 

slash’, and the teacher had to intervene and help them, as in lines 147–149 in Table 6.3.    

Table 6.3: Transcript (CL3P1) – Interactions with learners and Applet 3.3  
138-144 Paul: Close that one and take the next one from here. Yeah, that one 5-slope-linear-equation. 

Right.  
L: (inaudible).  
Paul: This one will give you a line. You find the gradient. You type and press enter.  Once it is 
correct, it will give the correct message. Then click Next for the new line. Please sign the register 
ne. (Pause) Please you punch in the gradient that is shown and press enter. Remember, the 
gradient is. CK Please the best way is just to count. From the origin, you count along the x-axis, 
and you count along the y-axis. FP (Moving around helping learners). 

145-146 Paul: Make a right-angle triangle every time. FA You check where it is cutting the y-axis and 
then check where it is cutting the x-axis. CS 

147-149 L: How do I input the fraction?  
Paul: you see the question mark symbol. You press that one. No. don’t use the shift key. Simply 
press that one. Listen ne, all of you. For a fraction two over three, press two then slash then three 
ne. FL 

151-153 Paul: Please remember the slope of the line will give you the sign of the gradient.  Always treat 
the x-axis as your positive value. Is that ok? It is y that change from -ve to +ve. Is that ok? FP 
Your x always move to the right. Make sure that you see where it is cutting ne? 

156-159 Paul: Please, today we are ending here. You check on that question on the slope and make sure 
that you master that. We will find another lesson so that we proceed. There are other things that 
we need to do there. Parallel lines, perpendicular lines as well as quadrilaterals. So I will tell 
you when. We are going to give you an investigation of parallel lines and perpendicular lines 
ne? I am just going to print it and give you now But for now we are done. 

 

6.2.2.4 Act 3 Scene 2 ~~ Applet 3.4  

At the opening of this lesson, Paul reminded the learners about their previous lesson about the 

slope of a line using GeoGebra. He engaged the learners with Applet 3.4 that encouraged learners 



177 
 

to explore and discover concepts related to ‘gradients and intercepts’ of parallel and perpendicular 

lines. He suggested that learners drag point 𝐴  (in Applet 3.4) at different points and then 

understand the variant and invariant properties of parallel and perpendicular lines. Lines 21–22 

and 35–37 in Table 6.4 suggest that he specifically directed the attention of the learners to the 

gradient properties of parallel and perpendicular lines, which is coded CD, thereby promoting the 

development of conceptual understanding among the learners. Paul encouraged the learners to 

explore (lines 17–19 in Table 6.4), prompting them to make connections between the applets and 

the intended mathematical concepts.       

The worksheet was designed for the learners to write down their observations and then draw 

appropriate mathematical conclusions. Paul reminded them to write the equations of parallel and 

perpendicular lines in the worksheet (lines 35–37). Interestingly, Paul provided an idea on how the 

worksheet was going to help them in making conclusions by saying “you can see the whole 

picture”.  

He did not wait or ask for the learners to come up with their observations. Instead, he made 

mathematically appropriate conclusions using apt terminology, such as ‘the product of gradients 

is -1’ in lines 51–52 in Table 6.4 . Initially, I coded this statement as CK, which is a demonstration 

of a mathematical concept. After discussions with my fellow researcher and the GLIP teachers, 

however, I re-coded as a combination of CK and FP, where FP is the selection of an appropriate 

formula. Later, in lines 69–71, he repeated his conclusions. In the second instance of making 

mathematically appropriate statements, Paul explained to learners that the gradient of a 

perpendicular line would be the negative reciprocal of the given line. He changed the perspective 

to gradients of perpendicular lines, and I thus coded it as CMR.        
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Table 6.4: Transcript (CL3P2) – Discovering with Applet 3.4 using the worksheet 
1-6 Paul: Good Morning. We have to finish where we left on Saturday.  The password is there on the 

board. Please make sure you switch the user. Someone can use this system. (Helping learners to 
login). Anyone having a problem? Where are the other people?  They are delaying us.  Right, can 
we be settled, please? If you still remember we left, we were investigating slope of line. Then we 
said the next thing we investigate parallel lines and perpendicular lines. Can we go and open applet 
number 6? Can you see it? Not the one with Word programme. Check the one with GeoGebra icon 

17-24 Paul: Right, what should you do?  You follow drag point A and verify the new line. What varies, 
and what does not? CD Can you see that one? If you drag point A, you must see something. Go to 
point A. Why did you use this computer again, which does not show? You ended up using this one 
because this does not give you the option of other users here.  You share this one. Right, what is 
happening? I want you to check as you check to move that point move it slowly. As you will be 
moving that point check what is happening to your gradient of the parallel line and the 
perpendicular line CD. Is that ok? 
L: Yes 
T: Check what is changing there. Can you see the changes?  

30-32 Paul: You can insert a new equation there. You can punch y = 2x+3, the first equation on the 
worksheet. Can you see that?  Just go there, you click and type the new equation. And you will see 
what will happen. Is it not working there? Can you see that?  

35-37 Paul: So if you go to the blue one you can insert any equation that you want. And you investigate 
what happened to the parallel line and what happened to the perpendicular line CD. Please write 
down the observations in your worksheet so that you can see the whole picture. Is that ok? 

43-52 Paul: There are three lines that you see there. Don’t you see that? The gradient of the parallel line 
is not changing ne?  
L: What do we write? 
Paul: (IsiXhosa - Look) ne? When you drag A to (3,1). You see that changes in pink and green 
lines. Write down the point (3,1) and the equations of parallel lines and perpendicular lines. 
(pause- seemingly waiting for the learner to write down the equation.)  
L: Yes sir 
Paul: Right. Drag to A to different points, and you write down the parallel lines and perpendicular 
lines. Write your observation in the worksheet that I gave you. (Pause and then louder) And this is 
for you to understand that parallel lines have the same gradient CK and perpendicular line the 
product of the gradients is equal to -1. CK FP 

66-71 Paul: Once you finished all the lines that are given in the worksheet, make appropriate conclusions 
on the other side. Is that ok?  
L: What do we write, sir? 
Paul: Just recheck the gradient of the parallel line and the perpendicular line. CD. Which means 
that as long as you got parallel lines, the gradients are always the same. Then as long as you have 
perpendicular lines, the gradient will always be the negative reciprocal CK CMR. Are we together? 

 

As the interactions with Applet 3.4 unfolded, Paul encouraged his learners further, to go beyond 

the equations on the worksheet, and to explore and discover concepts for themselves concerning 

gradients of different types of straight lines. The interactions, as shown in the transcript in Table 

6.5, testifies evidence of CU and IF. He made the most of the situation to take the opportunity to 

motivate learners to enhance their knowledge on the gradients of vertical and horizontal lines. He 

used the original line and then asked the learners to identify the gradients of its parallel and 

perpendicular lines. Learners were keen and eager to respond. He then used the equation of a 

vertical line and then asked the learners to identify the gradients of lines that were parallel and 
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perpendicular to it. After that, he asked them to generalise about the relationship of gradients of 

parallel and perpendicular lines, from the concrete ideas CS (lines 102–105 in Table 6.5). He thus 

allowed the learners to deepen their understanding of gradients of different kinds of straight lines 

through exploring the Applet 3.4.  Apart from gradients, Paul also established the mathematical 

fact that vertical and horizontal lines are complementary lines, as shown in lines 82–85 of Table 

6.5. The excerpt in Table 6.5 is also coded as FA as it exhibited his range of instructions to include 

vertical and horizontal lines in the explorations of parallel and perpendicular lines.    

Table 6.5: Transcript (CL3P2) – Exploring gradients of vertical and horizontal lines with Applet 3.4 
77-90 Paul: Your line is cutting y-axis some people did not put that. Can you input there just say y=4? 

So you must see it will tell you the gradient of the perpendicular line. CD What is it? FA 
L: It is undefined CK 
Paul: It is undefined.  Can you see that? Then put x=0 or x=2 
L: Where? 
Paul: Where did you input your equation. Remove that y = 4 and put x=2 what are you getting. 
CD (Helping a learner). So, if you put x=2 what are you getting?  You see that you still get your 
three lines. Our point A (1,3) and this line at x= 1 is a vertical line that is parallel to it. Another 
one y = 3 is horizontal and perpendicular to it CK CS Are we together? 
L:  Yes sir 
Paul: So now, can you check what is the gradient of the line that is parallel to that one? 
L: Undefined 
Paul: Undefined. CK What is the gradient of the perpendicular one?  
L: Zero CK   

99-105 Paul: Which one will have a 0 gradient, and which one will have undefined? With your x=0, x=8 
what is the gradient there is a question mark ne, which means that is undefined ne.  
L: Yes 
Paul: So all vertical lines, the gradient is undefined. CK All horizontal line the gradient is what 
CK 
L: Zero 
Paul: Zero is that ok? You can check with y=4 again. You see that your gradient will be zero. CS 
Then the gradient of its perpendicular one can you see is undefined, and that of a line parallel to 
it will be zero.   

 

6.2.2.5 Act 3 scene 2 ~~ Applet 3.5  

Paul then focussed the learners’ attention on determining the equations of parallel and 

perpendicular lines by using the Applet 3.5. It is evident from the following transcript in Table 6.6, 

that the interaction with the learners using the applet reinforced mathematical procedures in 

determining the equations of parallel and perpendicular lines. Initially, when interacting with the 

Applet 3.5, Paul provided specific technical instructions on how to use the applet such as “Click 

the parallel line, there is a box for the parallel line”, “click there that icon step…. Move it [slider] 

up slowly slowly slowly move it step by step”. He did not, however, provide mathematical 

explanations on how to find the required equations. Instead, he allowed the learners to explore the 



180 
 

procedures, as evident in lines 136 and 139 in Table 6.6. He evidently wanted them to understand 

the procedures by themselves, and hence he emphasised moving the slider ‘slowly’.  This helped 

to make the required procedure clear.  

However, it was evident from lines 141–153 in Table 6.6 that Paul was flexible and responsive to 

a learners’ concerns, particularly those who did not comprehend the procedure described in the 

applet.  This is classified as FR. He provided an accurate explanation and encouraged the learner 

who was struggling, to select the most efficient method. As he explained the procedure, he also 

encouraged the learner by explaining the concepts that lay behind the procedure  (learners were 

asked to write down the procedures in a notebook, but most of them did not have one). It was 

evident that Paul provided fluent instructions as he interacted with the learners.  This I classified 

as FA.   

 Table 6.6: Transcript (CL3P2) – Interactions in Applet 3.5 exploring and explaining procedures  
120-127 Paul: Move just go there and say step and click there that icon step. There should be a tick on that box 

parallel line. Move it [slider] up slowly slowly slowly move it step by step you should see something. 
Yeah. I am very sorry for these people here you are first of all click. (helping learner). As you go up, 
it is telling you all the steps that you need to follow. Please take note of what is written there. That is 
the procedure that we follow when you are finding the equation.  When you are done, you also go and 
check the perpendicular lines. And you check what will be happening. The procedure, look at the 
procedure step by step, then it will give you the equation, and it will draw the line. So, if you go to the 
perpendicular line, it will end up drawing a perpendicular line. Is that ok? 

133-139 L: What is happening here?  
Paul: Yoo! What are these ones doing? Have you done the parallel line? 
L: Yes sir 
Paul: Right, please take note of the steps. Is that ok? CD 
L: Yes sir 
Paul: Right after this one you can even change. I am sure the equation of the straight line.  You can 
change the equation there and put any and see what will happen. CD 

140-155 L: I do not know what is happening?  
Paul: We need a gradient of the line and a point to find the line FP.  We know parallel lines  
L: are equal.  
Paul: Yeah, their gradients are equal FP . Are we together? 
L: yes 
Paul: Ok. Right. Here, you see the gradient is 2. Therefore the equation is y=2x+c, and now put the 
point (2,-1) into this equation, and find the value of c which is -5 FP. Look at parallel drawn here. Ok.  
L: When do you use this equation? (Paul recollects that the equation learner wrote was).  
Paul: We can also use that method. FA Look, generally, given a fixed point (𝑥 ,𝑦 ), then any point 
(x,y) on the line, we know that gradient 𝑚 equals the ratio of 𝑚 = . So we get this formula making 

𝑦 − 𝑦 = 𝑚(𝑥 − 𝑥 ) Here it is shown a different method. Be open to this alternative 𝑦 = 𝑚𝑥 + 𝑐. You 
chose anyone that you feel quicker; you get the same equation FR 
L: Ok, sir.     
Paul: Look at the line drawn here, sketch the situation and think. Do not blindly follow the formulae. 
Is that ok?  
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6.2.2.6 Act 3 scene 2 ~~ Applet 3.7  

As mentioned, there were some glitches the Applet 3.6, as the computers in the school laboratory 

were not updated. Paul immediately recognised these problems in the applet and proceeded to the 

next applet, i.e. Applet 3.7. It is evident from his interactions with the learners throughout this 

episode (captured in Table 6.7) that he motivated and involved the learners in tasks to explore 

mathematical concepts.  This is classified as CD. Paul engaged learners in a discussion about 

exploring the relationship between the slope and angle of inclination of a straight line by using the 

Applet 3.7. In lines 187–189 (in Table 6.7), he pointed out for the learners the salient features of a 

straight line when a point on the plane is dragged around the screen.  

The excerpt of the interaction in Table 6.7 suggests that Paul focussed on developing mathematical 

concepts through exploration, using the Applet 3.7.  For instance, in lines 237–238, he was 

encouraging his learners to drag the point and investigate different scenarios. These different 

scenarios would be useful to learners while solving problems. Through appropriate guidance, he 

drove home concepts relating to the gradient and angle of inclination of a straight line. For instance, 

in lines 232–235, he was guiding a learner to see the connection between the gradient and the angle 

of inclination of a vertical line. He then showed how the gradient is undefined and the angle is 90° 

for a vertical line. I have thus coded this as a combination of CS and CK. Interestingly in line 235: 

“its gradient is also undefined, remember the earlier applet.” as Paul connected the gradients of 

these lines to the concepts already explained in an earlier applet CC.  Similarly, in the applet he 

also showed the learners how the gradient and angle of horizontal lines become zero (lines 198–

203 and 248–250).     

I have also coded the interactions in lines 187–192 and 194–208 in Table 6.7, as FA, since Paul 

encouraged the learners to see the relevant properties in a mathematical task and made connections 

with the concepts discussed in earlier applets.    

Apart from teaching the learners about simple equations and linking slope and angle of inclination 

in graphs, Paul provided an opportunity for the learners to look beyond the formula, which I 

classified as CK. He connected the sign of the gradient with a range of value(s) for the angle of 

inclination in lines 228–229 in Table 6.7. Furthermore, he also drew the attention of the learners 

to the fact that the angle of inclination is restricted to between 0° and 180° (line 246 in Table 6.7). 
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My analysis allows me to concur with Kendal and Stacey (2001) that in mathematics classrooms, 

pedagogical use of technology can develop conceptual understanding of mathematical ideas.             

Table 6.7: Transcript (CL3P2) – Interactions with Applet 3.7 
181-185 Paul: Right now, listen, can we close that applet the one that you have opened number 8. Let us go to 

number 9. Because number 8 there are some glitches somewhere. Click on nine slope tan exploration. 
With this one, we need to find our gradient, and we are linking it to our tangent. Is that ok? 
L: Yeah, there are some messages. What does it mean?  

187-192 Paul: Can you go to that blue point where it is written (5:3) right. Move that one and see what is 
happening. Move it even change the sign of the slope. Move the point, and you will see the changes in 
the slope and the angle. CD Are we together? You must see which angle we are talking about CM  
Learners: Move the blue point slowly slowly slowly (and then giggling).   
Paul: Do what I am saying wanna. Take that blue point to the x-axis take it to the x-axis straight away. 
There is a blue point that you are moving to.  

194-208 Paul: Move that one so that it [line] is a negative gradient. You see when your gradient is negative 
what is happening, play around with it and see CD. What happens when your point is along the x-axis? 
Just take that to the x-axis and see that point. Take it along the x-axis make it fly along the x-axis and 
see, can you see? What are your gradient and your angle? Yeah it depends where you have taken your 
line to 
L: Yes  
Paul: It must go to the positive x-axis. Take it to the other side, yes. What is your gradient? Is it shown 
there? Your gradient is zero. Is that ok? 
L: Yes yes 
Paul: What is your angle? Is it showing? 
L: No 
Paul: Must show somewhere. It will be at 0. 
L: Yes sir 
Paul:  So the angle we are looking is with the positive axis. FA Are we together? In this (applet), you 
see the angle between the line and the positive x-axis.  

222-225 Paul: Now, can you change I want us to look at what happens when you take that line along the y-axis. 
Go and move that original point of yours the (5;3) move it so that it goes along the y-axis. Along y-
axis. What is your angle? CD Can you see that? 
L: Oh oh 90  

226-236 Paul: Can you see that? If it is a perpendicular if your line is perpendicular to the x-axis, the angle 
will be 90. Is that ok? Can you see 90 there? You see that gradient is undefined and tan90 CD is also 
undefined. Right. (Pause). Play around with the point. Please can you link the sign of the gradient with 
your angle CD. If your gradient is negative, your angle is more than 90 CK. Is that ok?  
L: Yes sir 
L: What sir?  
Paul: What is your problem? I see. When your angle is 90, the gradient is undefined. Is that ok? Please 
take note of what is happening to your gradient to your tan ratio. Is that ok? Can you play around with 
that one and see what is happening to gradient and tan ratio? No matter where you are vertical lines 
is always 90 CK CS Right FR. And its gradient is also undefined, remember the earlier applet. CC Is 
that ok?  
L; yes sir 

237-241 Paul: Move it around all the quadrants and see what is happening? Here just check and investigate, 
please. Investigate what happens when the gradient is negative. CD 
L: Now, what sir? 
Paul: So, if you take it to the other side to the negative side, it will show gradient -1. Look your angle 
is greater than 90. Obtuse angle. Ok. Can you see that angle is 135? Tan135 is -1. Is that ok? CM 

243-250 Paul: Move the point on the x-axis, and you will see the angle 180. And see the slope is zero. Are we 
together? A horizontal line is having a gradient of zero. The angle formed is 180. You can see that. Is 
that ok?  
L: Yes, I can see it now. Tan180 is also zero. 
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Paul: The size of your angle and also note that you will never exceed 180 CK. Your angle will be from 
0 to 180, is that ok? No matter where you are horizontal straight line is always equal to 180 CK CS, 
and the gradient is zero. Is that ok? 

252-253 Paul: I give you some more time to investigate a little more. Move and move what is going on? Move 
it. Move that point across the screen.CD 

 

6.2.3 Analysis of George’s lessons  

This was George’s third lesson using GeoGebra. He had implemented the applets from the 

previous two cycles; however, his lessons were not recorded. George’s class comprised of 35 

learners and lasted for one hour and thirty minutes. The computer laboratory was more compact 

in size, and the learners complained about the blurred images on the projector screen. Either the 

teacher or a learner frequently switched the lights on and off to make clearer the images on the 

screen. George moved around the classroom, giving instructions and helping the learners who were 

struggling with the activity on the computers. The computers and their peripherals functioned well.  

George drew conclusions after the activity with Applet 3.4, as the scheduled lesson ended. With a 

few minutes available, he asked his learners to engage with the Applet 3.5.  However, some of the 

learners remained idle. George claimed that he organised another day for the learners to engage 

learners with Applet 3.7, but this was not recorded. Figure 6.14 shows the layout of George’s 

classroom and Figure 6.15 shows the effect of lighting in the classroom as he switches off the light 

to make gestures during the lesson.   

 
Figure 6.14: Layout of George’s classroom 

 

 
Figure 6.15: The effect of 
lighting in the classroom 
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6.2.3.1 Act 3 scene 3 ~~Applet 3.1 

The introductory conversation with the learners in lines 5–16 in Table 6.8 showed evidence of CC 

as George prompted the learners’ previously learned ideas on analytical geometry. He encouraged 

the learners to express the mathematical concepts that they already knew. He did not venture into 

Applet 3.1 straight away; but opened a new GeoGebra file and plotted a point (3;5), thus reminding 

learners about cartesian coordinates.    

Thereafter, he opened the Applet 3.1 and asked his learners about the ratio of rise and run of a line. 

Initially, the learners did not follow him at all. Nonetheless, George engaged them in thinking and 

doing the activity in Applet 3.1, which is classified as CD. I argue that searching for a solution is 

essential in learning mathematics, and here the teacher challenged the learners to find the solution. 

The interaction showed evidence of CK and CC as George encouraged the learners to interact with 

the applets and realise the concept of the slope of a line. When a learner mentioned that slope was 

related to its steepness, he agreed with the answer, connecting the slope to the concept of ‘rise over 

run’.  

When the learners sketched a straight line for a given slope using the applet, the concept became 

clear and concrete. It is evident from the interactions that the learners appreciated the mathematical 

ideas and there were ‘wow moments’ during the lesson, as shown in lines 41–65 of Table 6.8. 

George’s explanations and engagement with the applet enabled his learners to internalise the 

concept of slope of a line. Accurate definitions of a gradient of a line were fully explained by 

George.  He engaged the learners with the applet rather than simply providing them with the 

formula required to find the gradient of a straight line. Furthermore, when the learners understood 

that the ratio of ‘rise over run’ was the same as the gradient of a line, they retorted with the required 

formula, as evident in lines 66–74 in Table 6.8. As the learners became familiar with the concept, 

George then introduced them to the practicality of using the formula to determine the gradient of 

a line (lines in 95–100 in Table 6.8).     

Table 6.8: Transcript (CL3G) – Interaction with Applet 3.1  
5-16 George: Ok, the topic that we are going to look at today is analytical geometry. There are so many 

things that I like you to learn from GeoGebra. Before we start anything, I want you to go to the 
lower grade. You all know the cartesian plane isn’t it. When you talk about the cartesian plane, we 
always talk about the point. If I plot a point on the cartesian plane, what comes to your mind when 
you hear the word point. There is a point on the cartesian plane. 
L: It is[has] got coordinates. 
George: It is [has] got the coordinates; which coordinates are they? CC 
L: x and y 
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George: x and y. Here on the screen the point, as you can see, it is (3,5). How are they arranged 
first one is x coordinate and the second one is the y coordinate, CC alright?  Those two combined 
will form what you call a coordinate. (Pause). What is x and what is y for the coordinate (3,5)?  
L: x is three and y is 5.  

22-24 George: It is a straight line, isn’t it. That is a straight line that I have drawn, isn’t it? A linear 
graph. A linear function CMR. Now from the lower grade there is something that you are talking 
about? Run and rise. 
L: No.  

33-34 George: What is that? Ok, how do you explain the slope of that line to me? FF 
L: It is the steepness. 

46-50 George: But you are just telling me about the steepness [making guestures]. The steepness of a 
line. Look at this slope and that line formed there? Can you see that line and the triangle that is 
formed there?  (clicks on the hint of the applet) Now I have given a slope of. The triangle is formed 
on the sides of the line, isn’t it? Can you see it? I got this vertical side and that horizontal side. CS 
Can you see it? 
L: The line is the hypotenuse of the triangle.  

51-65 L: No, I can’t see the lines. The lights are too much. 
George: You mean, you cannot see the lines because of the lights.   
L: Yes 
George: (moves himself to the switch to put the lights off and talking) Now if you count the units 
from that horizontal one to the end how many are they? Only on those lines.  
L: 5 
George:  Five, do you agree? 
L: Yes, agreed  
George:  What about those vertical … 
L: Eight 
George: Still, nothing comes to your mind? CS The slope of the line remember I was talking about 
isn’t it? CK 
L: Wow! oh!  

66-74 George: The slope is vertical change over horizontal change CK CMR 
L: Yes yes 
George:(gestures) picture this as a cartesian plane you understand what I am saying? Picture this 
whole diagram as it is on a cartesian diagram. CS Now what comes to your mind when you talk 
about the slope of a line? The slope of a line is the gradient of that line.  
L: Oh. Oh  
George: It is the gradient of that line. Now how do you calculate the gradient of a line? How do 
you calculate the gradient of a straight line? CMR CK 

95-100 George:  If you are using the formula in grade 10, what will that formula be? The one that you 
were using in grade 10 to substitute gradient of a straight line, what is that? The formula for 
calculating the gradient. 
L: (inaudible) 
George: FP so in that case you see that the change is definitely is change in y that will be the rise 
moving up. Do you get it? Alright.  

    

George explained to his learners how a horizontal and a vertical change of points of a line formed 

a right-angled triangle (refer to Figure 6.2 p. 165). He linked the concept of the gradient of a line 

to a right-angled triangle in lines 46–50 in Table 6.8, which would prove useful for the learners to 

understand the relationship between the gradient and the tangent ratio. Interestingly, one of the 

learners in his class related the line to the hypotenuse of a triangle. 
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With Applet 3.1, George unpacked the basic concepts such as the gradient of a line and increasing 

and decreasing lines that were meaningful for the learners. As the lesson progressed, he further 

developed the concept of slope of a line. He challenged the learners to observe and identify the 

difference between lines having a positive or a negative slope.  This I classified as CD. He used 

strategic questioning and encouraged the learners to explore, using the applet. Interestingly, the 

learners were intrigued by the challenge and came up with different responses. One of the 

responses can be accessed in the transcript in Table 6.9. That particular learner conjectured that a 

line with a positive slope increases to the right and a line with negative slope increases to the left. 

George was thus able to highlight an essential feature of a function graph by engaging learners in 

conjecturing and exploring the applet. He built on the ideas of the learners and provided an accurate 

explanation of increasing and decreasing straight line functions and their relation to its gradient. 

George’s approach aligned well with Laborde (2001) who proposed that it was important for 

teachers to see the role of technology as a way to facilitate the making of conjectures.  

The interactions with the learners and the applet as evident in the extract in Table 6.9, enabled the 

learners to enhance their conceptual understanding, which in turn developed their mathematical 

thinking and reasoning.  

Table 6.9: Transcript (CL3G) – Discussion on increasing and decreasing lines with Applet 3.1 
140-167 George: …from your observation when slope has a negative sign somewhere and when the slope is all 

positive what is the difference that you are noticing in those two lines? A line that is formed by a 
negative slope and a line that is formed by a positive slope what is the difference between those two? 
Try it out quickly and give me an answer CD  
L: (inaudible)  
George: It is what? I want you to refer to the lines. 
L: (inaudible)  
George: Can you please listen to what she is saying here? 
L: When there is a negative number, the slope the line changes to the left side. 
George: Can you stand up and show the direction that you are showing here? 
L: when there is a negative number there the slope changes to the left side and when there is a positive 
number. 
George: Which direction? Are you also checking? CD What is the difference? Can you come up again 
and say a bit louder? Others keep quiet and listen. There is no reason that you are using the computer 
and talking. Listen to her. 
L: when the slope is positive, it is increasing to the right. 
George: increasing to the right. (gestures) That line I am having, can you see it? What kind of slope is 
that? 
L: Negative slope.  
George: So if it is a positive slope, what is it supposed to be like? 
L It is increasing to the left.  
George: it is supposed to be in the other direction, isn’t it. (gestures) 
L: Yes, yes.  
George: So when a slope is increasing the gradient that you always find is that is going to be a positive 
gradient (gestures) CC. The gradient of that line is positive if it is increasing. If it is decreasing, we 
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say the gradient is going to be a negative gradient; you understand that ne? CK We are talking 
increasing and decreasing functions based on x and y values. As x increases, if y values are also 
increasing, then we say its an increasing function. CC So when a slope is increasing the gradient that 
you always find is that is going to be a positive gradient. CK FR Alright.  

 

6.2.3.2 Act 3 Scene 3 ~~ Applet 3.2 

The Applet 3.2 focussed on sketching a straight line, and George demonstrated on the screen how 

different lines were drawn using the applet. Initially, he drew a vertical line and a horizontal line 

and then chose the lines of the gradient-intercept form. He asked questions, proposed solutions 

and guided the learners to sketch the line,  as in the conversation in lines 199–217 in Table 6.10. 

Thus, he provided a detailed explanation of the procedures of sketching the straight line, which I 

classified as FP. I was interested to see traces of conceptual understanding intertwined within his 

description of procedures on drawing a line. In line 204 (in Table 6.10), as he was explaining the 

𝑦-intercept, he pointed out that the 𝑦 −intercept was the point on the line that cut the 𝑦 −axis. In 

fact, to emphasise the point on the axis, he explained using different terms and concepts, such as 

‘ 𝑦 cut’ and ‘crossing the 𝑦 −axis’. This I coded as CMR.   

After working out three equations on the projector with explanations, he then asked the learners to 

sketch the different lines on their own. George moved around the class, attending to and guiding 

learners individually. He did not do the work for them but encouraged the learners to suggest their 

own methods of sketching the line. Some learners appeared to rapidly in carry out the task 

efficiently. When he explained, using the projector for sketching the line of the form 𝑦 = 𝑚𝑥 + 𝑐 , 

he chose the gradient-intercept method; Nonetheless, the learners preferred to use the dual-

intercept method to draw the lines. They were not able to sketch the line when the 𝑥 −intercept 

could not be plotted in the applet (in the applet, points could be dragged only to integer values).  

The interactions in lines 227–240 in Table 6.10 show a learner who could not follow the gradient-

intercept approach. George resorted to explaining the substitution method to determine the second 

point (the first point being the 𝑦 −intercept). Lines 227–240, capture the evidence of George 

responding to the learners’ queries and his flexibility to provide alternative methods of sketching 

the line.  This I classified as FR. The excerpt also throws light on the range of instructions that he 

employed fluently as he interacted with learners.  
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Table 6.10: Transcript (CL3G) – Interactions with the learners and engaging with Applet 3.2 
170-193 George: Now go to applet four quickly. We are using a gradient for this can you see that I have 

written and equation there? It is written x=-2 what do you do to draw a graph? A line which is 
given in that equation. How do you do that? Where do I find that line? It is a straight line, 
right? x=-2 where do I find it? Can someone help me? Or can someone describe the line?  FF 
By showing a sign from where you are. Is it like this vertical line, or is it like this horizontal 
line? (showing vertical and horizontal lines) Or something else? FF Is it going in that direction 
or in that direction or something else? 
L: Something else 
George: that direction we have there? A graph with a positive gradient 
L: No no 
George: So it is this direction? FF 
L: yes 
George: this direction, this direction or something else? (gestures) What will be its gradient? 
Why? CD 
L: Something else 
George: Where is x on that cartesian plane is it one point? Now if you check there x=-2 where 
do I find it? Now when I go to this point there what is the value of x at this point.  
L: (inaudible) 
George: What if I go to that point there? All x-values are -2 on the line. It is a vertical line 
parallel to the y-axis.  
L: Parallel to the y-axis.  
George: What about gradient? A line has a gradient. But you can see now there is no change 
in x-value; therefore, anything divided by zero is undefined and has a gradient that is undefined. 
(Pause) 
George: A vertical line parallel to the y-axis. So, the graph is supposed to be that along that 
line? That is. 
Alright. (He skips two or three lines to a get desired one) go to the next one y=1 where is it? 
L: On the y-axis 
George: on the y-axis, how? Say it like this – passing through y-axis at y =1. FP 

199-217 George: Ok, some questions are coming up. The equations of the form y=mx+c. I think you 
have met them in grade 10. What does m stand for? FF CC 
L: (inaudible) 
George: m is the gradient, isn’t it? 
L: yes  
George: then c is what? What is c? c is the y-intercept. Where the graph crosses the y-axis. CS, 
CMR You need to use the graph and y-intercept to sketch a graph like that. Like this one, can 
you see it? 
L: y= 3x+4 
George: y= 3x+4. So the y-intercept is going to be four the graph will cut y-axis at that point. 
Then now I move I now use the gradient to get the line. What is the gradient of that line? FF        
L: 3. 
George: what is that? 3? So using that takes how many units are you supposed to rise? FF        
L: 3  
George: it is three and how many run and which direction? FF         
L: Right  
George: How many units, right?   
L: (silence) …3GeorgeT: I move one-unit right. And see that it is correct. Let me get another 
one. FP.   

227-240 L: I can’t do this?  
George: Your y-intercept is correct at 3. Then look at your gradient it is -2, right? 
L: it is -2, but I not able to plot on the x-axis.  
George: Your gradient is -2 so move two down from 3 and remember -2 is -2/1. So move after 
two units down move one unit right.  
L: I do not understand. How can I plot x-intercept here?  
George: let us another method. You can substitute any point. Say x= 1 FR 
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L: I put x= one into the equation, and then 
George: What is your y?  
L: 1  
George: so we have (1,1) a point and drag it to there and see. FA   
L: Yeah, I see.       
George: So you can determine any point of the line and then sketch the line. FP 

241-245 L: Yeah, I see.       
George: [louder to the class] Any point on the line will satisfy the equation. Remember 𝑦 =
𝑚𝑥 + 𝑐 represents a relation between 𝑦 and 𝑥. Here on my board its 𝑦 = 3𝑥 + 4 so any point 
on the line will have that relation when 𝑥 = −1 then (-1, 1) is a point on the line. [drags the 
point on the line] Alright FP [pause]. FP 

 

6.2.3.3  Act 3 scene 3 ~~ Applet 3.4      

Prior to interacting with the pre-designed applet on investigating the effect of the gradient and 

intercept of a straight line on parallel and perpendicular lines, George thought of encouraging 

learners to recollect their previously learned properties of these lines. In Table 6.11, I present the 

transcript that unfolded during the lesson, where the learners recalled concepts on parallel and 

perpendicular lines which they had learned previously. He drew three lines, of which two were 

parallel to each other, and the third perpendicular to the other two. It is interesting to observe the 

nature of interactions that George had with the learners. He asked learners to mention the known 

facts of parallel and perpendicular lines in lines 245–261 of Table 6.11. He added to the suggested 

ideas and provided an accurate mathematical concept of parallel lines. While doing so, he also 

brought in different ideas to emphasise the concept. For instance, George used phrases such as 

“same distance throughout”, and “always apart by the equal distance”.  It endorsed George’s 

ability to represent ideas in different ways, and hence I coded this as CMR. In my opinion, such 

ideas helped the learners to not only deepen their understanding of these lines but also help them 

to comprehend other related concepts. There was a clear opportunity for the teacher to bring in 

real-life connections about these lines, but unfortunately this did not happen. Nonetheless, this 

excerpt of the interaction using GeoGebra demonstrated that he intended to induce learners to 

make sense of these lines.       

Table 6.11: Transcript (CL3G) – Recollecting prior knowledge  
245-261 George: Now if I want to draw a parallel line to AB using GeoGebra, let me draw a parallel line first. 

I will draw a parallel line of AB through this point C. the way I supposed to do it is I go to that tool, 
and then I click the parallel line. I need to draw the line through C but is supposed to be parallel to 
this line there. There comes the parallel line. Now from what you can see there, what do you think 
parallel lines are?  What do you mean by parallel lines? FF CC 
L: (inaudible)  
George: They are? What are the parallel lines? If I say, two lines are parallel, what does it mean? 
L: They are equal 
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George: Are they equal? 
L: They are apart 
George: they are apart from each other? Definition of parallel lines yes [name] 
L: (inaudible)  
George: Can you listen to [name] yes can you come again? 
L: They will never meet 
George: Ok. Parallel lines are lines that move in the same direction but never meet CK. (gestures)  
They are equidistant from one another. Same distance throughout. They are always apart by the equal 
distance CK CMR. They will never meet, and they are moving in the same direction, alright? 

262 - 279 George: Then, I also want to introduce another type of line. That line that I have drawn there. I am not 
sure if you can see from there? I measure the angle there. I draw two lines there. 
L: Yes 
George: Can someone read the angle I have measured there? Can you just come here? Readout that 
angle that is drawn there. Now can you see? Come and read it out? 
L: 90° 
George:  That symbol you know if you see that symbol what does it mean? How many degrees are 
those? CK 
L: 90° 
George: So I am saying that those two angles are meeting at an angle of 90. What other word can I 
use instead of 90°? And English word a mathematical word FF 
L: At the right angle 
George: At right angle CC another word FF 
L: Perpendicular 
George: Those lines are perpendicular to one another, isn’t it?  CMR (gestures) 
L: yes 
George: So when lines are perpendicular they meet at an angle of  
L: 90. 
George: 90°, isn’t it.? 

 

After a brief recap of parallel and perpendicular lines, George engaged the learners with the Applet 

3.4 to explore and comprehend the properties of these lines. He distributed the worksheet WS-2 to 

every learner. George demonstrated on the projector how to input the equation, check the required 

line (parallel or perpendicular) and drag the points in the applet. The transcript of his step-by-step 

instructions consisted of 60 lines; however, he summarised the instructions which I have extracted 

in lines 349-355 in Table 6.12. He asked the learners to record their observations on the worksheet 

and encouraged them to make inferences from their interactions with the applet (lines 376–415 in 

Table 6.12). He challenged learners to articulate their mathematical ideas and inferences, which I 

classified as CD. The interaction among leaners and George using the applet establish that he 

helped learners to formulate mathematical ideas through discovery and experimentation.    

Interestingly, when George engaged with the learners, they could identify the variant and invariant 

properties of parallel lines (lines 422–425 in Table 6.13). When dealing with perpendicular lines, 

George was repeatedly seen urging learners to establish the relationship between the gradients of 

these lines.  The learners could however only identify them as different and were not able to 
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articulate the negative reciprocal relationship of the gradients. George continued to persuade the 

learners to find  conclusions from their observations, thus giving the learners an opportunity to 

explore their mathematical ideas, as evident in lines 459–468 in Table 6.13. Learners were hesitant 

to articulate their mathematical ideas; nonetheless, George offered strategies for thinking and 

learning that could enhance their ability to handle mathematical situations. The excerpt thus aligns 

well with the notion of using ‘scaffolding’ for teaching as articulated by Jaworski (1994), who 

interprets scaffolding “in terms of a teacher's offering of strategies for thinking and learning, rather 

than for grasping a particular skill or concept” (p. 31). The GLIP teachers considered “the product 

of gradients of perpendicular lines is -1”, as an algorithm useful for solving problems. Therefore, 

I have coded line 466 in Table 6.13 as FP.  In lines 515–517, George alluded to this negative 

reciprocal relationship, and this endorsed his ability to represent mathematical ideas in different 

ways.  I coded this CMR.  

Furthermore, in line 468 (in Table 6.13), he drew attention to the perpendicular lines in the applet. 

I argue that he demonstrated elements of CS, as sketches are essential tools to think logically before 

applying the formulae directly.  

He spent approximately 45 minutes on this applet alone. He evidently wanted to ensure that every 

learner grasped the underlying mathematical ideas of properties of parallel and perpendicular lines. 

By the time the learners made conclusions of their inferences, the lesson was over.       

Table 6.12: Transcript (CL3G) –Interaction with learners engaging with Applet 3.4 to investigate  
342-348 L: why the gradient is 2? There is only one point given.  

George: Gradient is the coefficient of  What is the equation of a straight line?  
T: Alright. It is the slope-intercept form of an equation. CK Alright. You compare it with the standard 
form which is y=mx+c FP So what is the gradient? FF 
L: Is it not m.  
George: Here it is 2. Alright 

349-355 George: …now what you need to do is put in the equation. What is the equation/ where is the equation? 
This one you don’t have to y=2x+3, so that is the line. The first one is this point (3;3).  You move this 
point to that point. That is the parallel line. You need to write the equation of the parallel line. What is 
its slope write it? Then you click there again for the perpendicular line. This is the equation. Record 
the equation. What is the slope? Write it down. Same equation but different points now. Drag the point 
the equations will change. Record at least for three points for a given equation. Then you move to the 
next equation. 

360-368 George: look your equation is not in standard form. The gradient is not equal to one.    
L: So we have to rearrange the equation.  
George: make y as the subject of the formula, the standard form of a straight line function.  
L: (calculates) y = -x + 2 whole over 3’. 
George: So now this can be rewritten as y equals negative one over three x plus two over three. What’s 
the gradient?  
L: It’s negative one over three.  
George: Type this equation here and see what is the slope? (pause) So in this case what is the slope? 



192 
 

L: Yeah, I agree FM 
385-416 George: You are looking at the paper now, y=2x+3 when you move the point through those 3 points. 

The first passing through (3 ;3) what is the first equation? 
L: y=2x-3 
George: y=2x-3 did you all get that? 
L: Yes 
George: For the second point, what is the equation of the parallel line?  
L: y= 2x-7 
George: y = 2x-7 then for the last point? What is the equation? 
L: y=2x+5 
George: y=2x+5. Now on this side, there is a no change in the slope. What is the slope of the original 
equation? 
L: 2 
George: 1st one? 
L:2 
George: 2nd one? 
L: 2 
George L:2 
George: it doesn’t change, isn’t it? 
L: Yes 
George: What is the slope of the first parallel line? y=2x-3 
L: 2 
George: equation of its perpendicular line? 
L: y= 
George: Then, what is its slope? 
L:( (Silence)  
George: next equation we got is y=2x-7 what is the slope? 
L: 2 
George: Equation of its perpendicular line 
L: (no response) 
George: Then the slope of that? 
L: 
George: Then the final one y=2x+5. What is the slope? 
L: 2 
George: then the equation of its perpendicular 
L: y= 
George: will you write that 0? 
L: No 
George: you write y=x. What is the slope of that line? 
L: (inaudible) 
George: So I wanted to analyse those three and write down your suggestion on the paper. You write 
down now. CD 
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Table 6.13: Transcript (CL3G) – Interaction with learners drawing inferences from their interaction with 
Applet 3.4 

422-425 George: ook at those different parallel lines. How does the slope relate to the slope of their original 
equation? [name] speak loudly. CD 
L: The parallel line the slope remains the same. The slope of parallel lines and the original line is 
also the same. The only thing that changes is the y-intercept. 

442-449 George: what else do you observe? Now let’s look at you got an idea. CD What did you observe? 
L: the slopes of perpendicular lines are the same. 
George: They are all the same? What is that slope? 
L: (silence) 
George: What about the original one? What can you say about the slope there?  You said it is same 
for all parallel lines it is same for all perpendicular line. Can you tell me the relationship of the slope 
with the original one and the parallel one? CD Check the slope of the original one and check the 
slope of any parallel line and perpendicular line. 

459-468 George: what about the original and the perpendicular? For instance, the slope of the original 
equation there is two the gradient of its perpendicular is. So how do you compare that with the first 
slope 2? How do you compare those 2? They are not the same. One is  half, and the other is 2 
L: Yes 
George: So how do you compare them? Those are not the same, isn’t it? So how do you compare 
them? What is the product of the gradients?  FF 
L: -1  
George: For perpendicular lines, the product is -1. FP 
L: (inaudible) 
George: Look at those lines on the applet. 

510-517 George: Then if you are comparing the two the perpendicular one and the original one, what did we 
say the first time? We say if we the product of the gradients, what do we get? 
L: -1 
George: If you those two again, what are you getting? If you multiply x 3, what do you get? FF  
L: -1 
George: Their product is -1. FP Or we can say the perpendicular line has a gradient of negative 
reciprocal. CK, CMR So what conclusion can you come up with? The conclusion is one related to 
parallel one and another related to perpendicular one. Separately yes.  

528-532 George: did you hear what she said?  
L: No 
L: Slopes of parallel lines are always equal. Then the product slopes of two perpendicular lines equal 
to -1 
L:-1 -1  
George: so those are rules you need to remember always 

 

6.3 HORIZONTAL ANALYSIS ACROSS LESSONS 

In the previous section, the vertical analysis of the classroom implementation of GeoGebra applets 

in Cycle 3 revealed how the participant teachers made use of the co-developed applets to develop 

mathematical proficiency. This section presents a horizontal analysis that interprets the findings 

from the preceding section. The horizontal analysis of the data, strand-wise, shows that the 

participants demonstrated their core understanding (CU) and displayed traits of instructional 

fluency (IF).  Horizontal analysis requires pulling codes together across the participants. However, 

the above analysis was dense, and therefore, my goal in this horizontal analysis is to compress 
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numerous instances into a few succinct expressions that best illustrate the pertinent strand of 

teaching proficiency. This form of analysis would enable me to gain deeper insights to obtain 

answers to my research questions.   

The CUIF framework (Table 3.3 in Chapter Three on p. 69), serves as a reminder of the observable 

indicators used to analyse the data. 

George arranged another lesson the following day for Applets 3.5, 3.6 and 3.7; however, the lesson 

not recorded. He shared his experiences of the lesson on the remaining applets during the reflective 

interview, and I thus included this in the current horizontal analysis.      

6.3.1 The unfolding of core understanding (CU)  

Kilpatrick et al. (2001) argue that possessing proficiency in core understanding in teaching 

mathematics enables teachers to integrate their knowledge of content and knowledge of processes 

to increase their learners’ mathematical understanding. 

6.3.1.1 Emphasis on teaching for core knowledge (CK)   

Applet 3.1 served the purpose of engaging learners in understanding the gradient as a ratio of 

change. While sketching the line in the applet, Paul used only one approach, whilst George built 

upon individual learner’s initial input. Their focus was not on applying the formula to determine 

the gradient of a line; instead, they led learners to link the formula. Both teachers motivated their 

learners to comprehend the concept of gradient as a ratio of change. Mathematical concepts were 

embedded in the applet that illuminated structures and relationships of straight lines and their 

gradients. With Applet 3.4, both teachers involved their learners with the applet and then 

established properties of parallel lines and perpendicular lines. They made mathematically 

appropriate conclusions while using apt terminology.  

Spillane (2000) viewed that learners appreciate mathematical activity as more than computation. 

Owing to the visual and dynamic nature of the applets the participant teachers were able to engage 

their learners in order to focus on the teaching and learning goals of exploring and connecting the 

relationship between the gradient of a linear equation and its straight-line graph. The participant 

teachers of my research project know and do mathematics themselves, so their teaching 

proficiency in mathematics prepared them to facilitate their learners’ development of mathematical 

ideas. Success in integrating technological tools requires, as Ball and Bass (2000) argue, “teachers 
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being able to use mathematical knowledge bridging the divide between content and pedagogy” (p. 

99).  

6.3.1.2 Emphasis on representing multiple ideas (CMR) 

Kilpatrick et al. (2001) argue that proficient mathematics teachers understand that there is not a 

fixed method for learning mathematics but rather multiple ways to approach a mathematical 

concept. Teachers designed GeoGebra applets that dynamically linked linear equations and 

straight-line graphs (Applet 3,2, Applet 3.4). Notably, applet 3.7 represented geometrical 

properties of lines apart from algebra and graphs. The teachers guided their learners to appreciate 

the properties of straight lines as they correlated the equations, graphs and angles.   

While engaging learners with Applet 3.1, the teachers used multiple ideas in explaining the 

gradient of a line, such as a formula, as a ratio of change in 𝑦 over change in 𝑥, or as a ratio of 

vertical change over horizontal change. Specifically, George used terms such as ‘rise over run’ to 

emphasise the concept of the gradient of a straight line. In sketching the line in Applet 3.2, Paul 

and George both used two strategies; however, their strategies were different. Paul initially asked 

learners to use the dual-intercept method of sketching the line, while George initially explained 

the gradient-intercept method. The second strategy was the same – determining two points on the 

line and then sketching the line. Interestingly, both teachers explained two approaches in 

determining the gradient of a perpendicular line, while engaging with Applet 3.4. Specifically, 

George involved his learners with the Applet 3.4 in mathematical reasoning, in the context of 

conjecturing and generalising properties of lines, from multiple instances in the worksheet.   

GeoGebra applets designed by the teachers provided dynamic graphing of linear equations, 

thereby benefitting teaching and learning mathematics, with the teachers using computer media to 

link different representations of mathematical ideas. I assert that mathematical software, supported 

by the instructions of the teacher, helps to provide better multiple and dynamic representations of 

abstract ideas and the links between symbols, variables and graphs. 

6.3.1.3 Emphasis on connecting concepts (CC) 

Mathematical knowledge of proficient teachers includes in-depth knowledge of where the content 

comes from and where it leads to (Schoenfeld & Kilpatrick, 2008). The participant teachers 

unpacked their mathematics knowledge for teaching that would allow learners to deepen their 

understanding of mathematical ideas. Discussing the gradient of a line, George and Paul motivated 
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learners to see the triangle formed in the applets owing to the change in values. The reference to a 

triangle while engaging with the concept of the slope would allow learners to make sense of the 

slope-tangent equation, and it would also lead them into the direction of mathematics of change. 

Teachers were aware that it might be useful for the learners to understand the notion of change in 

any curve when they encounter calculus in the following grade.  

George and Paul developed the idea of ‘increasing and decreasing lines’ relying upon observations 

and exploration with the applets. George used the term ‘function’ to provide accurate explanations 

on ‘increasing and decreasing functions’ in relation to the gradient of the linear equation and the 

direction of the graph (line 23 in Table 6.8 on p. 184 and lines 166–167 in Table 6.9 on p. 186). 

Furthermore, Paul explained about dependent and independent variables, treating 𝑦 as dependent 

on 𝑥 , which is independent (lines 122–124 in Table 6.2, p. 175) – yet another fundamental aspect 

of ‘functions’. The teachers were able to extract the specific characteristics and structure of linear 

equations and guide the learners to similar mathematical structures in other areas of mathematics 

(functions and calculus, in this case). I concur with Kilpatrick et al. (2001) that proficient teachers 

use the curriculum to help learners connect mathematical ideas and progress to more in-depth and 

better-grounded mathematics.   

While designing the Applet 3.7, we discussed how different mathematical concepts could be 

connected in Section 6.2.1.2 (p. 170 below the discussion on Applet 3.7).  George and Paul 

leveraged the applet to support their instructions and thus highlighted several mathematical 

principles.  An in-depth analysis of the lesson showed that these teachers did not connect the 

‘angles of inclination’ concept with parallel and perpendicular lines, neither did they emphasise 

the relation of gradients of parallel lines by linking to the corresponding angles property of parallel 

lines, as discussed in the GLIP meeting. Possibly, more structured planning is required while 

integrating new tools in classrooms.  

6.3.1.4 Emphasis on teaching for exploring and discovering concepts (CD) 

Jonassen and Strobel (2006) argue that when technological tools are used effectively, learners can 

authenticate their understandings. The emerging technological tools, like DGS, with their inherent 

exploratory possibilities, provide opportunities for a heuristic approach to constructing 

mathematical meaning. Analysis of George’s interaction with the learners using the applets gave 

rise to some interesting insights. For instance, by using mathematical inferences like ‘positive and 
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negative slope’ in Applet 3.1; ‘variant and invariant properties of parallel and perpendicular lines’ 

in Applet 3.4, showed that George was desirous of crafting an environment for learners to 

experience and share their mathematical ideas. When learners came forward with their ideas and 

observations, George did not affirm whether they were correct or incorrect. He built upon their 

responses as opportunities to raise mathematical concepts. In fact, unlike Paul, a significant 

mathematical outcome of his lesson went beyond the articulation and manifestation of 

mathematical facts. He allowed and challenged learners thinking to generate and discover different 

perspectives through exploration. This analysis confirms that the interaction between George and 

his learners was a way of developing reasoning, as well as placing a firm emphasis on exploring 

mathematical understandings.     

The analysis of George’s lesson aligns with a typical technology-based constructivist classroom, 

where there is less emphasis on transmitting information, but more on developing learners’ 

understanding of concepts and their skills. I concur with Noss and Hoyles (1996),  who note that 

teachers construct new ways of learnable and connected mathematics than the computer tools offer. 

Through active interaction with the computer teaching and learning, mathematical ideas occur. 

6.3.1.5 Emphasis on tackling common misconceptions (CM) 

Paul addressed two common misconceptions in considering the angle of inclination of a straight 

line, as shown in Table 6.15, lines 75–84 in (p. 204). For a negative gradient line, learners tend to 

identify the acute angle between the line and the negative 𝑥 −axis instead of the obtuse angle 

between the line and the positive 𝑥 −axis. In lines 237–241 in Table 6.7 (p. 182), Paul occupied 

his learners in exploring the angle for a negative gradient line with Applet 3.7. He directed them 

to generalise the fact that a negative gradient would have an obtuse angle of inclination.  

Yet another common error that the teachers identified, included the gradients of vertical and 

horizontal lines. According to the participant teachers, learners misinterpret the gradient of a 

vertical line as 1 and that of the horizontal line as undefined, (see George’s reflection in in Table 

6.14, lines 96–105 (p. 204).  Paul, in his lesson, in lines 233–236 and 249–250 in Table 6.7 (p. 

182), emphasised the gradient in relation to its tangent ratio of vertical and horizontal lines. George 

claimed that he also engaged his learners with the applet to overcome such common errors. He 

specified such mistakes to the learners and instructed them to remember the applet when they were 

asked to interpret the gradient of vertical and horizontal lines. 
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Schoenfeld and Kilpatrick (2008) argue that a proficient teacher uncovers learners’ mathematical 

ideas in a way that helps them see the mathematics from a learner’s perspective. The analysis of 

the lessons suggests that proficiency requires understanding and recognising nuances of the 

learners’ thinking as well as features of their thinking that lead them to misconceptions. Achieving 

such a balance requires, as Ball and Bass (2000) argue, “a teacher to be sensitive to learners’ ideas, 

nature of mathematical reasoning and the need for the steps in argument to be developed” (p. 95). 

Thus, primarily, teachers would need to understand the ideas behind learners’ thinking and be able 

to engage them in certain tasks that might help them to develop appropriate mathematical ideas.     

6.3.1.6 Emphasis on teaching which relates to real-life situations (CR) 

There is little evidence that teachers made real-life references or connected to day-to-day realities 

with the concept of gradient. I will discuss, along with the other cycles, this absence of code as I 

consolidate my findings in my last chapter.    

6.3.1.7 Emphasis on switching between abstract and concrete (CS) 

Ironically, Ball et al. (2008) argue that “[s]ome representations are especially powerful; others, 

although technically correct, do not open the ideas effectively to learners” (p. 392). In the following 

paragraphs, I discuss how the participant teachers could not achieve their teaching goal: the 

concrete idea of the relation between a pair of perpendicular lines.  

In our GLIP discussion, we considered the negative reciprocal relationship between gradients of 

pair of perpendicular lines as an abstract concept. When the teachers prepared the worksheet, we 

anticipated that learners would write down the gradients of pair of perpendicular lines and then 

from multiple instances they would be able to generalise or relate this to the negative reciprocal 

relationship between the gradients. However, George lamented that “they did not see the negative 

reciprocal relationship and product of gradients as -1” (line 81 in Table 6.14, p. 204). The Applet 

3.4 indicated the equations of a pair of perpendicular lines; nonetheless, learners did not appreciate 

the numerical association. The dynamic representation of perpendicular lines and the use of the 

worksheet proved to be insufficient in concretising the numerical association of gradients of a pair 

of perpendicular lines. It appeared that the teachers did not invoke the learners’ previously learned 

concept of reciprocals of rational numbers before exploring the properties of perpendicular lines. 

The comprehension of the negative reciprocal relationship of gradients of perpendicular lines 

demanded higher-order thinking – understanding and linking the rational numbers.  
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Nonetheless, without much ado, Paul instructed his learners to verify the product of gradients of a 

pair of perpendicular lines. For Paul, learners simply need to plug in the values of gradients and 

thus verify the formula – ‘product of gradients is −1′  – or verify if negative reciprocal 

relationships hold for gradients of perpendicular lines.    

Kilpatrick et al. (2001) argue that each abstract concept has several concrete images appropriate 

to the nature of a mathematical idea. In agreement, Presmeg (1986b) refers ‘concretising’ to the 

embodiment of an abstract idea as an image. The straight-line graph makes the abstract linear 

equation more concrete; however, the concept of gradient remains abstract in the line. For an 

analytical approach in sketching the line, it requires no more than determining two points on the 

line, obscuring the gradient of the line. The gradient-intercept approach in sketching the line directs 

our attention to the notion of gradient as a ratio of change. George expected that his learners would 

be able to sketch the line (in Applet 3.2) successfully, using this gradient-intercept method. 

However, he reflected that “it was again a challenge because they could not use the slope to find 

another point on the graph” (lines 73–74 in Table 6.14, p. 204). Neither the applet, nor the 

instructions from the teacher could lead the learners to concretise (or apply) the concept of gradient 

while sketching a line.      

6.3.2 The unfolding of instructional fluency (IF)  

In this section, I consolidate different pertinent indicators of IF (instructional fluency) that are 

evidenced in this cycle.  

6.3.2.1 Emphasis on acquiring an instructional repertoire (FA)   

Paul discussed vertical and horizontal lines using three applets. Firstly, he developed ideas on 

sketching the lines. Secondly, he explained parallel and perpendicular lines, such as the 𝑥 −axis 

being parallel to horizontal lines and perpendicular to vertical lines. Thirdly, Paul engaged the 

learners in understanding the relationship between the gradient and the angle of inclination of these 

lines. He repeatedly yet scrupulously engaged with these concepts in three applets; meanwhile, 

George used only one applet to engage with the concepts relating to vertical and horizontal lines. 

Paul, however, also made abstract statements about these lines that would help learners to enhance 

their understanding of the concept. Effective teaching took place when he transformed his content 

knowledge into pedagogically, powerful teaching strategies. Here Paul drew upon a variety of 

instructional approaches using the applets, that led to the educational outcomes identified by him. 
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Thus, Kilpatrick et al. (2001) argue that what makes teachers proficient is the skilled use of 

knowledge in teaching and learning. Teaching includes a series of activities during which it 

provides opportunities for learning. Kendal and Stacey (2001) concur that in mathematics 

classrooms, the pedagogical use of technology is important to develop an understanding of 

mathematical ideas.  

George introduced the gradient-intercept method of sketching the line of the form 𝑦 = 𝑚𝑥 + 𝑐 in 

Applet 3.2. As learners became involved in sketching the line as per his instructions, he realised 

that they did not understand the procedure that he wanted them to adopt. He therefore changed his 

strategy: he instructed them to determine another point on the line and then join the line with the 

𝑦 −intercept (lines 227–240, Table 6.10, p. 188). George was disappointed that the learners did 

not follow the gradient-intercept method, as reflected during the stimulated recall interview (also 

discussed in Section 6.3.1.7 (p. 198). Nonetheless, this instance showed his flexibility in his 

repertoire of instructions that he could fluently employ as he interacted with learners. Kilpatrick 

et al. (2001) consider instructional routine as one of the essential components in teaching as 

“teachers who have acquired a repertoire of instructional routines can readily draw upon them as 

they interact with students in teaching mathematics” (p. 382). 

6.3.2.2 Emphasis on tackling a learner’s misconception (FM) 

Kilpatrick et al. (2001) argue that a teacher interacting with learners must be sensitive to 

“misconceptions that students have about the mathematical ideas, the difficulties they have in 

learning it” (p. 384). Both teachers moved from one learner to another and assisting them in 

engaging with the applets. They also provided explanations that directly addressed the learners’ 

misconceptions.  

Lines 54–62 in Table 6.1 (p. 172), reflect Paul’s interaction with a learner while engaged with 

Applet 3.1; he used different terms and approaches in addressing the learner’s misunderstanding. 

Evidently the learner was confused by the movement of the points that matched the required 

gradient of the line. Paul provided different explanations such as “move right then down” for 

negative gradient; “denominator move right” “picture of how your line is slanting”, that prepared 

the learner to sketch the line. These instructions allowed the learner to engage with the applet and 

verify his mathematical learning.   
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In an interaction with a learner in Table 6.12 (p. 191), lines 360–368, George found that a learner 

misinterpreted the conventions of notations of equations: the learner had inadequately identified 

the gradient of a straight line in the worksheet. For the learner ‘the coefficient of 𝑥 in the equation’, 

always represented the gradient of the line, irrespective of the form of the equation. George guided 

the learner to write the equation in 𝑦 = 𝑚𝑥 + 𝑐 form, and thereafter the learner identified the 

gradient accurately.  Furthermore, he encouraged the learner to cross-check the equation in the 

software. In this way, the learner’s misconception was corrected (in fact, the worksheet WS-2 

directed learners to rearrange any equation to the 𝑦 = 𝑚𝑥 + 𝑐 form).   

A focus on the above instances acknowledges that particular interest in learner misconceptions is 

a key feature of a proficient teacher. Technical tools may support learning, but more is required 

from a teacher than merely watching learners working on their computers. A proficient teacher 

works with learners and engages them with the tools (applets in this case). My participant teachers 

proved to be sensitive to misconceptions held by individual learners. Concurring, Schoenfeld 

(2007) observes that “[r]ecognizing misconceptions is crucial if a teacher is to target instruction 

so that students can clarify their thinking and gain understanding” (p. 163).        

6.3.2.3 Emphasis on teaching basic skills (FL) 

Unlike in previous cycles, teachers did not face many computer illiteracy issues with the learners. 

Most of the applets required minimum input from the learners in the form of dragging and clicking. 

Applet 3.3 and Applet 3.4 required learners to input rational numbers for gradients and a few 

learners struggled in typing the forward slash on the computer. In Paul’s class, especially during 

the second lesson, some desktops were not functioning, and therefore more learners had to share 

systems. I discuss this issue of malfunctioning again when answering the research question in 

Section 6.4.2 (p. 208).              

6.3.2.4 Emphasis on responding to learners’ thinking (FR) 

Kilpatrick et al. (2001) observe that a proficient teacher “interprets students’ written work, 

analyses their reasoning, and responds to the different methods they might use in solving a problem” 

(p. 370). Applet 3.5 explained a procedure in determining the equation of a line by using the 

standard form 𝑦 = 𝑚𝑥 + 𝑐; however, a learner was confused, and he could not follow that method. 

Instead, he had a different method in determining the equation of a straight line – the equation 𝑦 −

𝑦 = 𝑚(𝑥 − 𝑥 ) (lines 140–155 in Table 6.6 (p. 180)). The learner’s procedure was correct but 
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was emphasised neither by the teacher nor the applet; hence he raised his concern with the teacher. 

Paul, when he realised that the learner was using a different method, provided the learner with the 

reason behind the procedure. He made use of the applet to reassure the learner that his procedure 

was correct. In this way, Paul proficiently responded when he asked the learner to think of the 

situation before blindly following the procedure.  He was therefore able to show flexibility in 

dealing with a method not included in the applet.  

In lines 155–167 (Table 6.9, p. 186), George responded to a learner’s observation on increasing 

and decreasing lines. To the learners, all lines were increasing, either to the right or the left of 

𝑦 −axis. Interestingly, he did not disagree with the observations made by the learner, although the 

learner’s observation was logical and sensible. Nonetheless, George was aware that mathematical 

conventions speak of increasing and decreasing lines with respect to the 𝑥 −axis and not 𝑦 −axis; 

and he therefore tactfully responded to the situation. As discussed in Section 6.3.1.3 (p. 195), 

George connected the straight lines to functions and provided appropriate mathematical 

explanations and terms.  

Here, teachers interpreted learners’ imprecise explanations, guided them to focus on essential 

mathematical points, and in this case, helped them to learn conventional terms. This reflects the 

teacher’s underlying belief that resonates with a “knowledge of students” as Kilpatrick et al. (2001) 

affirm. They argue that a proficient teacher is sensitive to the unique ways of learners’ thinking, 

learning and doing mathematics. ‘Knowledge of students’ overlaps substantially with ‘knowing 

students as thinkers’ a category of teaching proficiency identified by Schoenfeld and Kilpatrick 

(2008),  but it encompasses many other ways of being proficient. Schoenfeld and Kilpatrick argue 

that classroom activities and interactions with individual learners are, by and large, a function of a 

teacher’s view of learners as thinkers. Thus, “[t]he more that teachers are attuned to their students’ 

understanding, the more they can create learning environments that are responsive to them” (p. 

15).  

6.3.2.5 Emphasis on understanding procedures (FP) 

Ma (2010) describes what she calls “profound understanding of fundamental mathematics”’, in 

terms of teaching for understanding procedures. According to Ma (2010), teaching for 

understanding procedures “lead[s] students to an understanding of the rationale of the procedure 

as well as the associated mathematical concepts” (p. 41). This emphasis on teaching allows 
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teachers to illustrate the rationale of the algorithm by their explanations and demonstration. The 

analysis of these lessons shows that the teachers used the applets to represent the mathematical 

concepts underlying the procedures. For instance, both teachers explained the procedure for 

sketching a line in Applet 3.2 and provided a reason for the procedure, as in lines 242–245 in Table 

6.10 on p. 188 (George) and lines 114–124, Table 6.2 on p. 175 (Paul). Making use of the applet, 

George dragged a point on the line to establish the fact that coordinates of the point on the line 

satisfy the equation, thus revealing the underlying mathematical concept for the procedure of 

‘substitution’ in sketching the line. Interestingly, Paul used phrases such as “y is dependent on the 

value of x”, while George used “relation between 𝑦 and 𝑥”, implying that they believed in similar 

strategies of teaching for understanding the procedures.        

“Mathematical knowledge usable for teaching” (italics in original p. 97), according to Ball and 

Bass (2000), refers to how a teacher is able to understand mathematics in order to weave content-

related ideas into a coherent whole. Thus, teaching proficiency entails a special capacity to unpack 

one’s knowledge whilst interacting with applets and provide a comprehensible explanation to 

make sense for the learners.                

6.3.2.6 Emphasise on inviting feedback (FF) 

Inviting feedback is a powerful strategy for improving teaching instructions, especially in a 

technological environment. The routine practice of soliciting responses from learners helps a 

teacher to assure that the learners understand or are able to perform a task. The learners were 

interacting with the applets, therefore, teachers often sought responses from them. For instance, 

George asked questions such as “Is it like this vertical line, or is it like this horizontal line?”; 

“What does 𝑚 stand for?”; “What do you see here?”, thereby ensuring their involvement in the 

learning of mathematical ideas. George initiated the interactions soliciting (tirelessly) information 

from the learners. Paul, too prompted learners for responses such as “what is happening?’; “y= a 

constant is a what?: However, Paul did not wait for responses from his learners and often instead 

made relevant conclusions to the task by himself, while George waited patiently for the responses 

from the learners and then made appropriate mathematical conclusions.       

Furthermore, these sets of routines served the purpose of constantly engaging the learners with the 

applets and thus aided teachers to check on the progress of the learners. It served as an opportunity 

for the learners to open up and respond or ask questions. I concur with Kilpatrick et al.  (2001) 
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who consider that a proficient teacher sets a routine that encourages learners to observe and talk 

about the mathematical situation.      

Table 6.14: RI3G George’s reflection on Cycle 3 
73-74 George: With the other applet, it was again a challenge because they could not use the slope to 

find another point on the graph.  
80-83 R: what other challenge did you face?  You already mentioned time was a factor for you. Anything 

else? 
George :  They did not see the negative reciprocal relationship or the product of gradients as -1. I 
think I should have written down on the board as they did. I think we should have a writing board. 
Doing maths, we always want to write so that we can emphasis what we are talking about.  

84-89 R: How did the technology help to support your teaching style? Or teaching Instruction? 
George: I keep on telling this thing of the gradient of the parallel line and perpendicular lines. That 
concept I don’t think if I explain it to them, they would understand it. The way they got it using the 
applets, it helped me in telling about these concepts. Many of them visualised the changes and that 
it is increasing or decreasing. It would have been difficult to guess unless we draw a quite number 
of accurate straight lines on the chalkboard. 

90-95 R: I hear that it helped in visualizing for the learners the relation between graph and gradient. 
What else worked in your favour or against your teaching plan?   
George: In this particular case, it helped. What happened now they talk about it in the class. They 
talked about the movement of lines and getting that or this correct. They talked about right-angled 
triangles that have seen in the computer and considered straight line as a hypotenuse. They could 
easily comprehend the concept of angle of inclination when I used the applet.     

96-105 R: I could not record your lesson for the last applet. How did it go?  
George: I believe they could now comprehend how tan ratio is related to the slope of the line. I 
could see that after that lesson learners do interpret the gradients of vertical and horizontal lines 
correctly. Otherwise, they were so confused with those lines.  
R: Can you expand on those confusion that they have? How did the applet helped you?  
George: They wrongly interpret the gradient of line 𝑥 = 2 as either 2 or 1. For the line 𝑦 = 2, they 
consider as unidentified, as they there is no 𝑥. I asked them to see what usually mistakes they make.  
So I believe with this applet they could now see why the gradients are zero and undefined. They 
have to see the line. It will help them a lot as they have seen it and they can relate to tan ratio. I 
told them they must remember them whatever they have done in the class.        

 

Table 6.15: RI3P Paul’s reflection on cycle 3 
29-36 R: Which applet do you think +worked best for you? You have already taken this topic with other 

classes. How do you feel about the lessons?    
Paul: There are certain concepts learners will quickly see on the computer. The first applet where 
we drag to form a line that would help them to see the difference between negative and positive 
gradient. With a computer, if something is captured, it is quite fast to convey your message. They 
can reopen the applet and practice once again. So, technology makes life easy if they want to learn. 
Chalkboard is limited we rub what we write, and they also rub it away from their minds (laughs). In 
computer, since they do it and see it will stay in mind. 

75-84 R: I see that you were keen on vertical and horizontal lines in the Applet [3.7] tangent slope. What 
was your experience?  
Paul: That one was favourite. I tried to make one before, but I could not restrict between 0 and 180. 
Our meetings helped me to do it. It would tell them about the gradient and the angle, and they can 
move those lines and verify those values. It saves time for us. These computers make our life easy. 
Very often I have seen learners making mistakes in writing the angle of inclination for a negative 
gradient. So I emphasised here why we subtract from 180°.   
R: What other mistakes did you find among learners?  
Paul: Other common mistakes they make is gradient of line say 𝑥 = 3, either they write gradient as 
3 or 1. I believe those applets will help to make correct conclusions.            
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6.4 DISCUSSION ON RESEARCH QUESTIONS 

6.4.1 How can Dynamic Geometry Software such as GeoGebra be used as a 

visualisation tool to teach Grade 11 Mathematics?  

Teaching learners to visualise straight lines was a significant contribution in this cycle. Teachers, 

with the aid of their applets, successfully drew the attention of the learners to the formation of a 

triangle indicating the horizontal change and the vertical change. Teachers represented the 

geometrical properties of lines, allowing their learners to reason why the sign of the gradient 

affected the value of its angle of inclination. The teachers thus effectively integrated co-developed 

applets that allowed learners to comprehend the properties of straight lines as they visually related 

to the equations, graphs and angles shown in the discussion in Section 6.3.1.2 (p. 196). I concur 

with Drijvers (2012) who defines: “dynamic phenomena that invite mathematical reasoning, in 

many cases concerning the relationships between multiple representations of the same 

mathematical object” (p. 489).      

Presmeg (2006) characterised the practices of visualisation in teaching: “[t]he visual teachers 

constantly made connections between the subject matter and other areas of thought, such as other 

sections of the syllabus” (p. 210). While introducing parallel and perpendicular lines,  George 

prompted his learners to recollect mathematical facts about these lines, in the transcript in Table 

6.11 (p. 189). He connected to the geometrical aspects of lines prior to embarking on analytical 

properties of lines. He brought in connections between different ideas, making use of prior 

knowledge. Presmeg considers that the word ‘connections’ captures the essence of teaching 

visualisation. Invoking of prior knowledge is a crucial aspect of meaningful mathematical teaching 

and learning, and in this way, visualisation in mathematics enables connections of a new concept 

with an existing concept.    

Visualisation as a critical aspect of mathematical activity was demonstrated as the teachers 

emphasised relationships between mathematical ideas, making use of the co-developed applets. 

They linked the concept of slope of a line to a right-angled triangle, which would enhance the 

mathematical concepts related to the gradient of a line. If ‘seeing’ a triangle in the applets for the 

understanding of the concept of slope of a line was apparent, the concept of ‘increasing or 
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decreasing’ remained latent. The mere presence of an applet did not guarantee that understanding 

of a concept would take place. George and Paul made use of the Applet 3.1 to engage with the 

concept of ‘increasing or decreasing function’, as discussed in Section 6.3.1.3 (p. 195). The 

teachers allowed their learners to visualise a positive or negative gradient of a straight line. I concur 

with Moyer (2001), who argues that teachers play a crucial role in creating interactive mathematics 

environments that provide learners with visual representations that enhance thinking.  

Interestingly, both teachers commented on visualising the increasing or decreasing lines during the 

reflective interview, shown in lines 84–85 of Table 6.14 on p. 204 (George) and lines 31-33 in 

Table 6.15 on p. 204 (Paul). They considered the several dynamic lines sketched by the learners, 

(with the aid of the computers) as standing out as fundamental support in teaching and learning. A 

visual approach thus enhances the learning of straight lines. Researchers (Arcavi, 2003; Ruthven 

et al., 2008) accentuate that the visual trajectory in mathematics education is linked to the use of 

computers.  Hence, Villarreal’s (2000) verbalisation that “the computer has come to restore the 

value of the process of visualization in mathematics education” (p. 3) cannot be over-emphasised.         

Rivera (2011) argues that in mathematics that the focus is on the transition from concrete situations 

to abstract ideas through a process of visualisation. Visual thinking takes one a step further from 

perception, to understanding and adding meaning to the images or concrete objects. From the 

perspective of the participant teachers, the dynamic movement of lines as the learners dragged the 

points, was enough to visualise the properties of parallel lines and perpendicular lines. Discussing 

gradients of perpendicular lines, both the teachers switched between the visual or functional 

relationship between gradients as the negative reciprocal and the numerical product of gradients 

as a negative one. However, as discussed in Section 6.3.1.7 (p. 198), the teachers’ reflections on 

the lessons showed that their learners did not appreciate the relationship between a pair of 

perpendicular lines. Using an applet with a dynamic line and its rotated line at 90° about a point 

(say origin) and then exploring their gradients could be a feasible way to visualise the relationships 

of gradients of perpendicular lines.  

Furthermore, the visually rich method of sketching a line did not receive much attention from the 

learners (in Section 6.3.1.7, CS, p. 199).  Presmeg (1992) discusses several instances in which 

visualisation is a hindrance to mathematical understanding and solving problems. She describes 

how difficulties arise as a result of ‘uncontrollable’ images, or images that appear in students’ 
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thoughts involuntarily that are inappropriate and prevent mathematical generalisation. The visual 

trajectory gradient of a line, introduced in the Applet 3.1 requires to be further developed and 

applied in different situations, as Applet 3.2 and Applet 3.3 did. Again, the visualisation related to 

the gradient of a line may be introduced to the learners at an earlier stage; it would provide 

opportunities to internalise the concept that could then be applied to the visual methods of 

sketching the lines.   

The teachers preferred to construct straight line graphs that required only the computation of some 

coordinates, and then plotting the line. Duval (1999) notes that the construction of graphs is not 

visualisation in mathematics: “[c]onstructing a graph requires only to compute some coordinates 

and to plot a straight line” (p. 16). Visualisation in sketching lines entails the estimation of the 

direction of the line, based on salient characteristics such as gradient and intercepts. Both teachers 

succeeded in constructing the lines but did not allow learners to visualise the final representation 

of the linear equation.         

Similarly, the visually salient property of parallel lines as a vertical displacement from one line to 

the other was not discussed by the teachers. Discussing visualisation as a process, Arcavi (2003) 

demonstrates how to “re-direct the attention from the notion of distance between parallel lines (as 

the length of a segment perpendicular to both) towards the notion of the vertical displacement from 

one line to the other” (p. 233). Visualisation refers to the development and use of the intervening 

conceptual structure – vertical displacement – that enables us to see the change of the 𝑦 −intercept 

in parallel lines.      

Summing up, from my point of view, applets were not a self-explanatory tool for identifying all 

potential mathematical understandings. Researchers (Presmeg, 2006; Duval, 1999) surmise that 

teachers who put a conscious effort into promoting visualisation, strive for a deeper understanding 

of mathematical ideas. George and Paul guided the students to the underlying mathematical 

meanings hidden in the given representations in the applets. The teachers initiated a productive 

discussion and interaction on the important mathematical characteristics of straight lines. The 

applets as visual aids supplement teaching and learning of mathematical concepts and procedures 

so the potential role of visualisation was recognised in these lessons using applets. The teachers 

played a vital role in lending mathematical meaning to visual representation. The analysis of the 

lessons demonstrates that the dynamic visual aspects of GeoGebra applets can also complement a 
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teaching and learning environment, that would have been difficult to convey in the traditional 

manner of text and the static media of teaching and learning. In agreeing, (Heid & Blume, 2008, 

p. 67), argue “a dynamical graphical model highlights aspects of the situation that were not as 

salient had we investigated it alone or even by modelling it symbolically.” 

6.4.2 What enabling and constraining factors do Grade 11 teachers encounter 

when using GeoGebra as a visualisation tool to teach Grade 11 

Mathematics?  

6.4.2.1 Constraints  

It was in this third cycle that the participant teachers encountered the most technical challenges.  

Technical Challenges  

The Applet 3.6 (on practising parallel and perpendicular lines) did not function properly during 

Paul’s lesson because the GeoGebra version on his laptop was not compatible with the computer 

desktops at school. If a computer lab is connected to the internet then the systems are automatically 

updated, however, in both schools, the authorities claimed that the internet was not working owing 

to various reasons. GeoGebra software is being continuously updated, and hence it is important 

for teachers to ensure the compatibility of the software on different devices.   

Paul found the lack of computer literacy skills amongst his learners constraining.  On several 

occasions, he said that the learners’ lack of computer skills hampered progress in the lesson. 

“Sharing computer and fighting to type. If they do not get used to it, I don’t think we will make 

progress in making use of the lab” (lines 42–43 RI3P, my original transcript).  

Berger (2011) notes that in the context of using GeoGebra, “the syntactical and mathematical 

knowledge required to plot a graph in an appropriate window is less complex” (p. 116). However, 

the participant teachers’ experiences highlight that integrating technology in classrooms is 

demanding as the learners face ‘syntactical difficulties’ in inputting a simple equation.    

George’s major constraint was ‘time’. He interacted with the learners and encouraged them to 

come up with ideas rather than him providing the ideas. He was guiding them to reach the 

mathematical outcomes of the lesson. He apparently wanted to cover the concepts related to the 

topic on a single day within two hours, but as he reflected “Unlike the proper teaching time, these 

needs time. Too many applets and concepts to be done at the same time.” (line 11, RI3G, my 
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original transcript). Nonetheless, he arranged extra lessons to complete the topic with the 

remaining applets. The major constraint that George faced was the difficulty in adequately 

covering the assigned content within the limited availability of class and laboratory time.  However, 

this constraint can be successfully overcome through meticulous and thoughtful planning.  

Kilpatrick et al. (2001) also warn that one of the critical resources was time: “[i]f teachers are 

going to engage in inquiry, they need repeated opportunities to try out ideas and approaches with 

their students” (p. 399).  

Nonetheless, Gordon  (2009) has shown that more time spent on instructional sequences and 

activities promote the development of concepts and skills in mathematics.  

6.4.2.2 Enabling Factors 

As discussed earlier, Applet 3.1 was downloaded from the online resources, 

https://www.geogebra.org/m/gV9GRCRN, developed by Tim Bresenseki. The vibrant and active 

GeoGebra community provided an anchor for the teachers to seek support from the users of the 

software for teaching and learning purposes. The ability of the software to display a certain object 

– straight lines in this case – on satisfying a given condition, proved to be useful in Applet 3.1. 

Such capabilities of the software were exposed to the GLIP teachers, owing to the user community 

that supports the teachers.  Hohenwarter and Lavicza (2007) suggest that “there is an extensive 

self-supporting user community that shares free interactive teaching materials on the GeoGebra 

Wiki website and supports fellow users through the user forum” (p.  51).  

Researchers (Berger, 2011; Kilpatrick et al., 2001; Schäfer, 2016) have written about the value of 

technology to move between different representations of mathematical ideas, such as between 

algebra and graphs, that enhance conceptual understanding. Thus, teaching for developing 

mathematical proficiency is all about using multiple representations, i.e. looking at mathematical 

concepts from different perspectives. Furthermore, Berger (2011) underscores different 

pedagogical opportunities offered by multiple views of the same mathematical object in a DGS. 

Participant teachers tapped into this ability of GeoGebra and engaged learners in moving between 

different representations of a linear equation, that allowed the learners to see the same 

mathematical object in different ways, illuminating the properties of the straight line.  

A static representation of a straight line is a snapshot of a certain instance of a gradient and 

intercept. In contrast, the dynamic representation of lines provides opportunities to see how the 
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parameters change (or do not change) by dragging. Paul explained this affordance of the software 

to address this perspective of teaching and learning:  “In chalkboard, I may draw a line or two, but 

on the computer, I can move the lines and the equations changed. They can now see what is 

happening and why the gradients have a rule for parallel lines and perpendicular lines” (lines 68-

70 RIP3). In his explanation, Paul identified an invaluable constituent of the software: the dynamic 

representation of objects such as straight lines, that permits one to observe the effects of the 

changing parameters of a straight line. George also agreed: “I mean the computer makes it easier, 

drawing lines instantly. It would have been a tedious task in other classes where we have to 

calculate and draw different lines, and there would little time to reflect on important things” (lines 

38-40 RI3G, my original transcript). 

Manually sketching different straight-line graphs may be cumbersome using algebraic 

computations, and hence, prone to mistakes. The use of GeoGebra eliminated the need for tedious 

hand sketching of graphs of different linear equations. The software was used in the lessons by the 

participant teachers to generate graphs of functions, allowing them to focus on the mathematical 

concepts. Agreeing Berger (2011) highlights, “this [dynamic representation] may give insight into 

invariant or variant properties of families of functions” (p. 114).  The use of GeoGebra to represent 

linear equations graphically and dynamically potentially affords new ways of teaching and 

learning about straight-line properties. Related to this, Hoyles (2005) underscores how the 

constructivist ideas of using virtual manipulatives (applets) in classrooms can provide insight into 

mathematical relationships and thus form a crucial part of internalising knowledge.                

I concur with Alsina & Nelsen (2006), who inform us that the interactive and dynamic visualisation 

capabilities of technological devices may foster rich constructions and develop visual thinking. 

Thus, GeoGebra stands out as a fundamental pedagogical tool that facilitates a mathematics 

teacher’s classroom practice. 

6.5 CONCLUSION 

This chapter dealt with the data presentation and gave an in-depth analysis of participant teachers’ 

interactions with the applets on equations of parallel and perpendicular lines, and insights gleaned 

from the reflective interviews with the teachers. In general, a detailed analysis of the video 

recordings indicated that there were similarities and differences between the participant teachers’ 

pedagogical practices and teaching proficiency. Furthermore, as the analysis unfolded, it showed 
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that GeoGebra, as a visualisation tool, enabled teaching and learning. Using the inherent 

visualisation capabilities of a DGS in the classroom is an effective strategy to enhance 

mathematical teaching for understanding concepts.   

In the following concluding chapter, I mention certain implications and recommendations of using 

DGS in mathematics classrooms, as I summarise and reflect on the complete GLIP cycles.          
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CHAPTER SEVEN 

7 CONCLUSION AND IMPLICATIONS 

7.1 INTRODUCTION  

This chapter aims to summarise the key findings gleaned from an action research process involving 

three cycles of teaching various Grade 11 topics in mathematics. I explore the implications of this 

research, the significance of the research, the new knowledge generated, and the limitations of this 

study. I also make recommendations that are relevant to the use of visualisation and technology in 

a mathematics education context and identify some areas for further research. 

Three teachers from two schools in the Mthatha district took part in this action research project 

and implemented co-developed applets in their classrooms. In this context, my research aimed to 

answer the following two questions:  

1) How can Dynamic Geometry Software such as GeoGebra be used as a visualisation tool 

to teach Grade 11 Mathematics? 

2) What enabling and constraining factors do Grade 11 teachers encounter when using 

GeoGebra as a visualisation tool to teach Grade 11 Mathematics? 

These questions demanded different conceptual and theoretical deliberations, considerations and 

understandings of mathematics education research. In the literature review (Chapter Two), I 

worked with following concepts fundamental to my research project, namely: i) visualisation as 

an overarching concept; ii) technology with DGS (GeoGebra) as a pedagogical and visualisation 

tool; iii) mathematical teaching proficiency as an analytical framework; and iv) constructivism, as 

a theoretical underpinning. Figure 7.1 portrays these conceptual elements that framed my research 

project.        
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Figure 7.1: The conceptual framework of my research  
   

7.2 REFLECTIONS ON THE KEY FINDINGS 

Below is a synopsis of the findings relative to the research questions garnered from three cycles of 

technological integration in the selected mathematics classrooms.  

7.2.1 Synopsis of Findings Related to Research Question 1  

There were several features of visualisation that had a practical bearing on the teaching of 

mathematics. To summarise the discussion, I have grouped them into five different categories.   

Conceptual Connections  

An aspect of teaching that promotes the effective use of visualisation in mathematics classrooms 

is ‘making connections’ (Presmeg, 2006). We often employ visualisation when we make 

connections between mathematical topics. Connections between different representations play a 

crucial role in teaching and learning mathematics with understanding (Hiebert & Carpenter, 1992). 

While discussing theorems in circle geometry, the participating teachers made use of their 

developed applets and built their lessons by making connections with different aspects of 

mathematics. In some instances, the participants connected the semi-circle theorem to the 

mathematical properties of a right-angled triangle. In other instance, the teacher combined 

different properties of triangles to justify the angle at the centre theorem. Furthermore, the teachers’ 

instructions suggested how they linked the opposite angles of cyclic quadrilateral theorem with 



214 
 

the angle at the centre theorem.  Importantly, by utilising the dynamic visualisation power of 

technology, the teachers provided opportunities for learners to make connections and experience 

the whole mathematical structure of the angle at the centre theorem.  

While introducing parallel and perpendicular lines on a cartesian plane, for example, George 

prompted learners to recollect geometrical facts about these lines. He brought in relationships 

between different ideas making use of his learners’ prior knowledge. In some instances, as the 

teachers engaged with applets on straight lines, they also encouraged their learners to link the 

concept of rise over run with the sides of a right-angled triangle. Additionally, the right-angled 

triangle enabled the participant teachers to associate the concept of the gradient with the 

trigonometric ratio, another facet of mathematics. The teachers exploited their applets to extract 

the structure of linear equations and guided their learners to similar mathematical structures in 

other areas of mathematics, such as functions and calculus.  

These episodes of making connections with different topics in mathematics characterise Presmeg’s 

(2006) practices of visualisation. “The visual teachers constantly made connections between the 

subject matter and other areas of thought, such as other sections of the syllabus, and above all, the 

real world” (p. 210). Visualisation in mathematics enables the teacher to discover connections that 

a new concept has, with other existing concepts. The teachers all made a conscious effort in their 

classrooms to make connections across numerous mathematical topics. 

Absence of real-life connections (indicator CR)  

Presmeg (2006; 1992) believes that visualisation in teaching enables learners to start from a 

problem that they encounter in everyday life and solve it with the help of a mathematical situation. 

There was however a lack of evidence in the observed lessons that the participating teachers made 

connections with everyday or real-life situations. For instance, while dealing with the slope of a 

line, the use of stairs at school (or any other building) as a realistic example would have helped to 

understand slope, i.e. the rise of a step, in relation to the run. This real-life model would have 

reinforced the understanding of gradient, calculated by dividing the vertical height by the 

horizontal distance. Similarly, while dealing with circle geometry, a realistic situation in 

cinematography where the ‘viewing angle’ describes the angle of a scene, say a building being 

captured, could have been exploited. A cinematographer can capture the same building on film 

from different viewpoints, with the viewing angle unaltered. This is possible when the camera is 
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placed on the circumference of the circle and moved along the circular arc. The teachers could 

have connected this situation to the angles subtended by the same arc on the circumference and 

facilitated further discussion on its related theorems. Visualisation requires the coherent handling 

of internal image and external representation corresponding to the mathematical structure.  

The analysis of lessons on integrating GeoGebra illuminated how teachers did harness the 

visualisation capabilities inherent in the software, but not for handling everyday life situations.    

Geometric Constructions  

Duval (2013) favours the teaching of geometry through the construction of figures using computer 

tools or conventional tools that promote visualisation in geometry. Visualisation based on the 

construction of shapes and figures helps to identify and understand specific geometric properties. 

The teachers highlighted how the software supported constructions of geometric shapes and 

figures. A sound understanding of geometric principles becomes necessary to use the tools in the 

software, and the use of tools reinforces the related geometric properties. If the learners are 

however not technically proficient, as was the case in my study, many learners would not have 

been bogged down by the intricacies of the software tools. Nonetheless, with the underlying belief 

that learners visualise the geometric concepts as they construct, one of my teachers – Antony – 

favoured the constructions of geometric shapes and figures despite experiencing these difficulties.  

Visual Process  

Research (Arcavi, 2003; Avgerinou & Pettersson, 2011) indicates that visualisation is a thinking 

process of creation, interpretation and reflection upon images.  

Intriguingly, Duval (1999) discloses that the construction of graphs from a given equation is not 

enough to learn visualisation in mathematics. Visualisation in sketching straight lines enables the 

estimation of the direction of the line based on salient characteristics such as gradient. Exploring 

with the applets, the teachers leveraged technology to support their instructions to see how the 

change in the sign of the gradient affected the direction of the graph of a linear equation. In an 

interaction with another applet, George, for example, encouraged his learners to adopt the gradient-

intercept approach in sketching the straight line for a given equation (here he relied on the visual 

elements of vertical and horizontal movement). From a pedagogical standpoint, the teachers’ 

strategy illustrates that instructional routine is also about teaching ways of ‘visual analysis’ and 
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‘visual reasoning’ (Vermeersch & Vandenbroucke, 2015). From the perspective of constructivism, 

Moyer (2001) argues that teachers play a crucial role in creating interactive mathematics 

environments that provide learners with visual representations which enhance thinking.   

In sum, there was strong evidence that the participating teachers promoted and facilitated visual 

thinking in their lessons using our co-developed applets. Research studies (Arcavi, 2003; Duval, 

2013; Presmeg, 1986b) emphasise that teachers should employ visually oriented instructions in 

the classroom. The participant teachers designed the lessons and the applets that guided and 

allowed the learners to experience and develop their visual thoughts. The efforts put into this kind 

of visual teaching and learning reinforces the idea that mathematics is more than simply doing 

calculations, but also involves thinking and understanding. 

Multiple Representations 

The use of multiple representations in classrooms is another strategy which capitalises on the 

visualisation processes. Researchers (Presmeg, 2006); Schäfer, 2016)) inform us that multiple 

representations of mathematical concepts is an integral part of a visualisation strategy of teaching 

and learning mathematics. My participating teachers collaboratively developed applets that linked 

symbolic and visual representations and guided their learners to draw attention to the relationships 

between two and more representations. This aspect of visualisation corroborates with one of the 

powerful potentials of DGS, which Drijvers (2012) identifies as the “dynamic phenomena that 

invite mathematical reasoning, in many cases concerning the relationships between multiple 

representations of the same mathematical object” (p. 489).  I discuss more on the multi-

representational potential of GeoGebra in the following section as I summarise the key enabling 

factors, in section  7.2.2.2 (p. 218) below.  

7.2.2 Synopsis of Findings Relative to Research Question 2 

7.2.2.1 Key disabling factors 

Software issues  

In displaying non-integer numerical values,  GeoGebra rounds off a number to the specified degree 

of precision. The rounding off in GeoGebra can lead to an inadequate precision of display of 

measured values which can lead to unconvincing results e.g. ½ x 123,23 = 61,62 and not the 

expected value of 61,615. Thus it was a challenge for the teachers when rounding off values (in 
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the applet for exploring circle geometry theorems), which then obscured the actual relationships 

between the angle at the centre and the angle at the circumference.  

When a point on the circumference, subtended from an arc, was dragged to the other side of the 

arc, the software then measured its reflex angle. In such situations, the applet did not reveal the 

actual relationship between the angles under investigation.   However, the teachers overcame the 

above two constraints with their ready-made applets and provided learners with these applets to 

further explore on their computers.  

Again, in the nature of roots applet, an irrational number was rounded off to a decimal number. 

Therefore, it was difficult to distinguish between a rational and an irrational number from the 

𝑥 −intercept of the graph. Thus, in the discussion on the nature of roots of a quadratic equation, 

the applet did not represent an irrational number visually, and the issue remained unresolved.     

Lack of technical expertise  

In solving inequalities,  GeoGebra, by default, highlights the 𝑦 −values of the graph. When 

discussing solutions to inequalities during the lesson, the software did not highlight the solutions 

on the 𝑥 −axis. We noticed this confusion while we were reflecting in one of our GLIP meetings.   

Similarly, one of the pre-designed applets on the topic of straight lines, did not function properly 

during the lesson. Two teachers designed the said applet on their personal laptops and shared them 

with the learners; however, the computers in the school laboratory were not updated with the latest 

GeoGebra version. GeoGebra is generally a user-friendly software package, but there are subtle 

technicalities that posed challenges to the teachers during their teaching.  

Time Management  

All the participating teachers in this action research project struggled with time management and 

found it difficult to cover the intended curriculum topics in their lessons. There are two reasons 

for this apparent mismanagement of time: 

Firstly, the teachers encountered challenges owing to the low level of the learners’ proficiency 

with computers. During the GLIP meetings and reflective interviews, the teachers raised their 

concerns that learners struggled to control the figures in the applets. The learners also faced 

difficulties in keying in mathematical expressions. Although the teachers had a plan to divide the 

activity for each applet over the stipulated time in a lesson, they ended up spending too much time 
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explaining basic computer literacy technicalities before they were able to teach. Berger (2011) 

raises similar concerns that technical difficulties may exacerbate the use of technology in the 

learning of mathematics.  

Secondly, in both schools, the computer laboratory was shared with the computer department, and 

hence there was a conflict of resources. On the timetable, mathematics classes were not allocated 

computer laboratory time, and therefore teachers had to negotiate with the computer department 

for using their computer resources. Consequently, the teachers squeezed as many concepts as 

possible into one session when they were using the computer laboratory, They invariably ended 

up not completing the intended teaching. For instance, Antony could not deal with the geometric 

proofs that he had planned for discussion in circle geometry.  In another instance, Paul cut short 

the lesson on inequalities and the nature of roots when he realised that the learners might not keep 

pace with the curriculum. In a third instance, on the topic of straight lines, Paul decided to split the 

concepts (he extended a lesson to a Saturday) while George extended the lesson beyond the 

stipulated time by almost 30 minutes and still did not complete the planned applets. It is thus 

important that when teachers are trained in the use of computer technology, that time management 

issues form an integral aspect of this training. It is also important that both teachers and learners 

have developed basic computer literacy skills when embarking on operating in a technology rich 

environment.  I make concrete suggestions in this regard in the sections below.  

7.2.2.2 Key enabling factors 

Multiple Representations  

Researchers (e.g. Drijvers, 2012; Jones et al., 2009) agree on the potential of DGS that allows users 

to create dynamically connected multiple representations of mathematical problems. With easy-

to-use tools, the teachers designed applets that enabled their learners to see the equations and their 

graphs on adjacent windows of computer screens, thus allowing them to switch flexibly between 

algebraic notations and graphical representations. In the applet designed for discussing the nature 

of roots, various representations were automatically linked. With the slider tool, the teachers 

dynamically manipulated these representations. Thus, they built a coherent network of 

mathematical ideas – equations, graphs, roots, 𝑥 −intercepts, and properties of numbers. Evidently, 

the benefit of dynamic multiple representations is in making algebraic objects such as expressions 

and equations more real and meaningful in teaching and learning.  
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Another instance of the developed applets that exploited multiple representations, was the applet 

designed to make sense of gradient-tangent relation of a straight line. The teachers saw 

opportunities to focus on developing mathematical ideas through manipulating linear graphs in 

multiple forms of representation – symbolic, graphical and numerical. The mathematical ideas that 

the teachers engaged in with their learners included acute angles and positive gradients, obtuse 

angles and negative gradients, and gradients and angles of vertical and horizontal lines. Participant 

teachers made use of this ability of the software by engaging learners in moving between different 

representations of a linear equation, that allowed the learners to see the same mathematical object 

in different ways, illuminating geometric and algebraic insights.  

A key potential of GeoGebra is its capacity to assimilate geometric properties into an algebraic 

graph. The findings underscored different pedagogical opportunities offered by multiple views of 

the same mathematical object in the software. Ruthven (2003) values the use of technology to 

move between different representations, and emphasises “ [a] key potential of DGS is to construct 

geometric tools to support the analysis of function graphs” (p. 31). Very much in line with this, 

Heid and Blume (2008) conclude that technological tools that enable multiple representations 

“contribute to the improvement of visual reasoning skills” (p. 72).   

Dynamic Representation  

It is generally agreed that dragging is a key feature of any DGS (Hölzl, 2001; Hoyles & Noss, 

2003). Dragging allows a continuous reconstruction of figures or graphs on the computer screen 

by direct manipulation with the mouse or with the ‘slider’ tool. Sliders allow users to manipulate 

the values of variables or parameters such as angles.  

The manipulative ease of GeoGebra enabled mathematical exploration of circle geometry 

theorems in this study. The dynamic variation of dragging the points on the circumference made 

it easier to appreciate the mathematical relationship between the angles under investigation. The 

teachers designed their lessons, exploiting the dynamic representations inherent in GeoGebra, 

guiding learners to generate multiple examples. Even though GeoGebra is an efficient tool to 

produce static figures, it is a convenient tool to generate dynamic figures and their measurements 

that may help teachers to highlight variant and invariant properties under dragging. Laborde (2001, 

p. 293) agrees, underscoring the role of drag mode in DGS as an “amplifier where it was easier to 



220 
 

observe the variant and invariant properties during the deformation of the diagram by the drag 

mode than in a static paper-and-pencil diagram.”  

Again, the applets on straight lines afforded dynamic representations of lines and their equations, 

providing opportunities to explore what happens when a certain parameter is changed by the 

dragging of lines. In one instance, the teachers exploited the potential of the software in exploring 

by scaffolding their learners to establish the gradient properties of parallel and perpendicular lines. 

Dragging of the line graphs changed the equations of the straight lines dynamically. Intriguingly, 

in another applet on the nature of roots, it was the opposite that happened. By changing a parameter 

of an equation with the help of sliders, teachers encouraged learners to observe the effects of the 

changes in the features of its graph. These applets illuminated the properties of an equation and its 

graph that are variant, and those that are not. I argue that DGS provides interesting tools that assist 

teaching and learning in a disciplined framework of mathematical reasoning.  

By their very nature, textbooks make exclusive use of static diagrams and images, which do not 

support the dynamic nature of visualisation (Guzmán, 2002) that was enacted by my participating 

teachers using the co-developed applets.  

Interactive facility  

Any DGS interface has the potential for users to interact with the software. The use of GeoGebra 

allowed interactivity and provided immediate responses. The participating teachers all encouraged 

and directed learners to make explicit constructions or change certain parameters that could help 

them in making conjectures or explore certain mathematical ideas.  My participants, in agreement 

with research by  Deaney et al. (2006), also recognised that the “interactivity and the immediate 

visual feedback afforded by the use of technology” (p. 475) plays a significant role in contributing 

towards enhancing learners’ mathematical proficiency. 

The practice applets allowed the learners to solve extra problems and the teachers reported that 

they were enthusiastic about attempting those questions. The applets validated the learners’ input, 

providing feedback messages accordingly and the learners were excited to share their methods and 

answers. This exchange provided opportunities for the learners to reflect on and learn from their 

mistakes, thus enhancing their mathematical proficiency. The visual and immediate response from 

the software allowed the learners to progress at their own pace and thus supported learners in their 

learning. In this way, teachers were able to address those learners who lacked basic skills. 
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Furthermore, this facility allowed the learners to test their knowledge with little guidance from a 

teacher.  

On reflection, these applets however received only minimum input from the learners in the form 

of numbers, checkboxes or dragging. Often the learners simply engaged in trial and error methods 

and guessing the answer without making proper mathematical procedures or geometrical reasons. 

Teachers were aware of this pitfall.  

User community 

When working with software, it is natural to encounter difficulties unique to that software. An 

extensive and vibrant user community has developed around GeoGebra, which shares free 

interactive teaching and learning resource materials on the GeoGebra website, 

http://www.geogbera.org. Volunteers from this user community support fellow users through the 

user forum. Bu et al. (2012) observe that participants of their GeoGebra community, like my 

community of teachers, not only actively invent and experiment with new ways of teaching 

mathematics but are themselves learning or relearning mathematics through their applets.  

When designing applets on straight lines, we adapted an applet from the user community. In 

another applet, we were unable to restrict the movement of points to have only integer values. A 

user suggested to use the tool ‘snap to grid’. While reflecting on the inequalities applet, we looked 

for applets in the user community forum. It was a learning curve for all of us when, on selecting 

‘show on 𝑥 −axis’ checkbox in ‘object properties’, the graphical solution of inequalities on the 

𝑥 −axis would be represented. We realised that we had a missed a rather easy-to-use tool.  

Dynamism  

The term ‘dynamic’ seems to have permeated throughout the analysis of the teachers’ lessons. The 

teachers interacted with the applets to engage learners to make various mathematical properties, 

geometrical or algebraic, apprehensible. When a dynamic figure or graph was dragged, the 

teachers encouraged their learners to observe invariant or variant properties. The analysis shows 

that dynamic representation facilitates at least three things. Firstly, it enables the user to focus 

attention on the continuous dynamic variation of figures or graphs; secondly, it enables the user to 

generate discrete examples more efficiently than manual constructions; and thirdly, it prompts 

learner exploration and the formulation of conjectures. These three abilities of the software are 
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however, interdependent and positioned on a continuum. It must be stressed, however, that the 

ability of the software to prompt exploration is often dependent on the teacher’s guidance and 

support. 

7.3 SIGNIFICANCE AND CONTRIBUTION TO NEW KNOWLEDGE  

The significance of this research contributes to the ongoing deliberations of visualisation and 

utilisation of technological resources, particularly through the empowerment of a community of 

teachers.  

In reviewing pertinent literature relating to the integration of ICT tools in classrooms, there was 

little evidence of empirical research that had been carried out in previously disadvantaged 

communities such as in Mthatha, Eastern Cape. Thus, the knowledge gap that this research 

addresses, lies in its context of understanding the building of technological resources (applets) 

aligned with the South African curriculum content in areas where resources such as computers, are 

still novel and unreliable. 

7.3.1 Utilising computer resources  

Researchers (Hennessy et al., 2005; Stols et al., 2015) indicate that despite the numerous benefits 

of using ICT, teachers in general, do not make use of these resources as a teaching tool. Also, 

access alone to technology is insufficient for the integration of technology into classrooms. This 

action research project demonstrated that through a community of teachers (GLIP), it is however 

possible to make effective use of ICT in the available computer laboratories with carefully planned 

support mechanisms from teachers.  It is thus crucial for teachers and school management to be 

aware of the resources and possibilities at their disposal for the successful integration of ICT 

resources into their teaching programme.    

7.3.2 Pedagogical Beliefs  

Examining different teaching approaches using technology, Kendal and Stacey (2001) observe that 

teachers typically make their own pedagogical choices about how to incorporate technology into 

their classrooms. The action research process of my study enabled my participating teachers to 

develop their own pedagogy in a computer environment. The findings showed that one teacher, 

for example, was keen on pre-producing applets on his own, whereas another teacher made use of 

the shared experiences with the software.  Some of the teachers totally embraced technology as it 
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enabled them to increase their repertoire of different ways of teaching rules and procedures, while 

other teachers found the capabilities of technology superior for developing conceptual 

understanding of mathematical ideas. From my findings, it is thus significant for practising 

teachers to note, that the effectiveness of mathematics software in classrooms largely depends on 

the teachers’ pedagogical motivation and beliefs, and their willingness to embrace this technology. 

7.3.3 Significance in Mathematics Education  

The insights gleaned from the analysis suggest that DGS has the potential to change the dynamics 

of a mathematics classroom. I argue that my research findings on teaching with DGS tools as 

revealed in the analysis, can inform all the stakeholders in mathematics education in South Africa 

about the enabling and constraining factors of implementing DGS in mathematics classrooms. The 

integration of technology requires proper planning, support, resources, and training for the 

teaching of mathematics.  

My review of relevant research on visualisation indicates that the power of visualisation in 

interactive computer technology is pedagogically highly recommendable. The findings of my 

research confirm this and thus encourages teaching practice that incorporates the use of 

visualisation. I hope that teachers and researchers who read this thesis may gain insight into how 

GeoGebra can be used as a visualisation tool for the teaching and learning of mathematics. 

Visualisation is inherent in GeoGebra; nonetheless, it is incumbent on the teachers to unpack the 

mathematical ideas and make abstract ideas visible to learners. The dynamic aspects of technology, 

through the use of applets, in my case, stand out as key enabling factors for enhancing the 

visualisation of mathematical concepts. Hence, the integration of applets significantly reinforces 

the value of the process of visualisation in mathematics education. 

7.3.4 Beneficiaries of the research  

The participants and the GLIP members were direct beneficiaries of this action research project. 

Although they were aware of technological tools prior to the GLIP, they confined its use to 

administrative purposes only. This action research provided an opportunity for them to embrace 

technological tools and resources for their own teaching and learning purposes.  Further 

beneficiaries were the two schools whose laboratories and computers we used. It is through our 

intervention that these resources were put to the use that they were originally intended for. 
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7.3.5 Enhancing teacher professional development through GLIP  

My teachers were initially reluctant to use digitals tools for one reason or another.  This reluctance 

was also observed by Cuban et al.  (2001) and Stols et al.  (2015) in their work. GLIP meetings 

and discussions, however, motivated and inspired my participants to use GeoGebra in their 

classrooms. Collaboration among teachers empowered them to master the technical aspects of the 

software. GLIP offered them an opportunity to interact and share ideas, which in turn supported 

them to improve their teaching strategies in implementing applets into their mathematics lessons. 

Thus, this action research significantly contributed to the growth of a community of proactive 

teachers in Mthatha collaborating in designing, planning, and implementing ICT resources (as 

applets) for teaching and learning mathematics. The knowledge gleaned from the findings suggests 

that for the effective integration of technological tools in mathematics classrooms, collaboration 

among teachers can be very beneficial and in some instances is very necessary.   

Mavani et al. (2018), reporting on the GLIP model of teacher development, acknowledge the 

collaborative teamwork among the teachers, that bridged the gap between having access to 

technology and adapting it for effective use in classrooms. The findings of my research concur 

with the perspective of ‘teacher empowering teacher’ as a way forward for teacher education on 

technology. The GLIP model testifies that a pragmatic approach, i.e. a sensible and realistic 

approach in harnessing technology for teaching and learning mathematics, is highly desirable. I 

hope that the research will be of interest to important stakeholders in mathematics education, 

teachers and curriculum planners on integrating DGS into mathematics classrooms.  

7.3.6 Four perspectives of the research 

Of further significance, is that this study provides insights into interwoven issues relating to four 

key educational perspectives: visualisation, ICT resources, mathematical teaching proficiency and 

the pedagogical significance of constructivism. Following on Vygotsky’s ideas on the metaphor 

of scaffolding, Jaworski (1994) writes about scaffolding “in terms of a teacher's offering of 

strategies for thinking and learning, rather than for grasping a particular skill or concept” (p. 31). 

This study found that the empowerment of teachers with appropriate ICT tools and visualisation 

strategies, created a pedagogical environment that allowed learners to construct their own 

knowledge. It is thus a strength of this study, that through using DGS, the selected teachers 



225 
 

developed their own pedagogies that enabled them to scaffold the learning process by offering 

strategies for thinking and learning in a dynamic ICT teaching and learning environment.  

7.4 LIMITATIONS OF THE STUDY  

Despite the initial intention and purpose not to generalise, it can be argued that the limitation of 

the study is its small sample size, and therefore findings cannot be generalised. The study occurred 

only in one town, two schools and involved only three teachers.  The small sample size, however, 

enabled a unique and in-depth opportunity to understand and interpret the subtleties of teaching 

using technological tools.  

The duration of data collection was also a limitation of the research. The small number of 

classrooms, relatively few lessons and the limited period of twelve months may have impacted the 

findings of the research. In the analysis, I considered only three cycles of GLIP due to the vast 

amount of data gathered from the four cycles of GLIP, that involved nine classroom observations. 

Nevertheless, one of the strengths of the GLIP model of a community of practice approach, is that 

it can be replicated in a wide range of classroom settings.  

7.5 RECOMMENDATIONS 

This action research provided insightful information on integrating DGS tools in mathematics 

classrooms that could be useful to teachers and curriculum planners.  

Against the background of my research findings, I believe that for teachers, strategic and proper 

planning is required for integrating DGS as an effective teaching and learning resource in the 

mathematics classroom.  

7.5.1 Curriculum planning for schools 

The research findings relative to the learners’ technical struggles with the computers suggest that 

the use of ICT in mathematics education be introduced in earlier grades. In his research, my fellow 

researcher, whose specific research focus was on learners in a DGS environment, made similar 

recommendations. He recommended:   

In general, learners struggled to control graphs and figures in the screen. It is important to note 
that computer use per se does not necessarily improve learners’ knowledge.  It needs to be 
supported by guidance of an expert or a knowledgeable person. As Klien, Nir-Gal and Darom 
(1998) conclude that young children’s interaction with the computers alone does not 
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necessarily benefit children’s development of higher thinking processes  (Mavani, 2019, p. 
253).   
 

It is thus incumbent on curriculum planners to ensure that basic computers skills are mastered in 

the primary grades if learners are to make full use of complex and sophisticated educational 

software in secondary schools. 

7.5.2 Curriculum Planning for Teacher Education  

In order for teachers to integrate technological tools into their everyday teaching, they need to be 

effectively trained on the use of these tools and be able to critically evaluate the efficacy of these 

tools. I thus recommend that tertiary teacher training institutions make this training mandatory in 

their teacher education courses.  

Mishra and Koehler (2006) note that “teachers need to know not just the subject matter they teach 

but also the manner in which the subject matter can be changed by the application of technology” 

(p. 1028). My participant teachers believed that they faced impediments owing to their own lack 

of knowledge of teaching practices using technological tools. Technological environments require 

that teachers adapt their instruction and teaching methods. Adequate training and collegial support 

may develop teachers’ proficiency to integrate technology into their teaching practices. We need 

a clear curriculum for a teacher training programme, with innovative pedagogies fostering 

technological use in classrooms. I see a case for further research on the integration of technology 

into the curriculum of teacher training programmes. The findings from such empirical studies 

would further open up the complexities and subtleties of a technology-based pedagogy.  

7.5.3 Professional development programmes 

Time and again, research has called for more in-service computer training courses in teacher 

development programmes. Ongoing teacher development programmes are required to continue to 

develop teachers’ skills in integrating technological tools in mathematics classrooms. Based on 

my empirical research results about the use of DGS tools, I advocate a collaborative model of 

teacher empowerment, very much in line with Gueudet and Trouche's (2011) ‘teacher empowering 

teacher’ model for the effective use of technology for mathematics teaching.        
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7.5.4 Timetable  

As indicated in my findings, time management is often an underestimated element of an ICT 

pedagogy. Assude (2005) argues that “[t]he question of time management in integrating ICT is a 

key issue” (p. 184). As I have discussed in Section 7.2.2.1 (p. 217) on the issue of time management, 

I make recommendations on improving the teaching time of a mathematics class. Ideally, a 

dedicated computer classroom for the department of mathematics should be set up. This 

arrangement would aid mathematics teachers to engage their learners across grades in the computer 

classroom during their lessons without having a conflict with the other subjects, and spending too 

much time in setting up the guest laboratory for the specific purpose of the mathematics lesson.  If 

this is not possible, then regular dedicated mathematics lessons need to be factored into the 

timetabling of the existing computer laboratory.     

7.6  RECOMMENDATIONS FOR FURTHER RESEARCH 

A rewarding feature of this research process has been its generation of avenues for further research 

which would include other mathematical topics and grades. My research model could well be 

replicated with other ICT clusters of teachers.  This could apply to other school subjects as well.  

A further research opportunity that has arisen out of my research project is an exploration of how 

other collaborative in-service teacher models have contributed to effective pedagogies, also in 

other subjects.   

Our existing GLIP teachers continue to interact with each other, sharing applets and pedagogical 

approaches that worked in their classes. We are exploring possibilities to provide online applets to 

learners. Remote or online teaching and learning approaches are becoming a feasible and necessary 

alternative to face-to-face classroom pedagogy, particularly in the context of the current COVID-

19 pandemic and social distancing paradigm. This has opened up a huge research arena that could 

yield far-reaching findings as we are globally rethinking the way we teach and reach out to learners.  

The Java-based applets that we used could easily be migrated to any online platform. I recognise 

that online or remote teaching and learning is more than uploading educational resources on a 

cloud or a website in a digital format. Research into appropriate pedagogical strategies that are 

appropriate in this regard, would thus be desirable.  
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7.7 WAY FORWARD  

Our GLIP program, with its associated research activities, has gained traction in the teaching 

community in the Mthatha region. The DBE district office in Mthatha involved us in empowering 

teachers with DGS tools in 2018-2019. In this teacher development programme, we trained 40 

teachers for 20 hours from different schools in the district.  

Of late, we are conducting an exclusive training for twelve mathematics teachers in a school for 

the implementation of DGS in the classroom. In this programme, we are endeavouring to use DGS 

tools across the mathematics curriculum in secondary schools, i.e. from Grade 8 to Grade 12.  

An upcoming project is planned for training BEd students from Walter Sisulu University (WSU) 

Mthatha, on using technology tools in mathematics classrooms. The agenda is to design lessons 

incorporating DGS tools into their micro-teaching sessions.  

7.8 CONCLUDING REMARKS  

Most of the applets that we have generated are accessible on www.visual-maths.com and are freely 

downloadable materials for anybody to use in their classrooms 

Antony and George are still in schools, using GeoGebra applets across the grades. Paul was 

promoted to a higher post in the department; however, he continues to encourage teachers to use 

GeoGebra applets in classrooms. Abraham negotiated with his school management to share the 

computer laboratory for his Grade 11 and Grade 12 mathematics lessons. 

This research has afforded me the most rewarding experience in understanding pedagogical issues 

relating to mathematics teaching in general and integrating technology into teaching in particular.  

I have become acutely aware of the diverse visualisation processes made possible by the dynamic 

aspects of DGS.  This dynamic visualisation has significantly contributed to my own pedagogical 

discourse and practice as an enthusiastic and committed mathematics teacher and researcher.  

 

 

I tried to write in such way that a learner could always see the inner foundation 
of things he is learning, that he could find the source of the discovery and, 
consequently, understand everything as if he invented that by himself - G.W. 
Leibnitz 
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Annexure I – Continued Approval Letter from School A  
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Annexure I – Continued Approval Letter from School B  
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Annexure II – Letter to Teachers and Participant Consent Form  

 

Beena Mavani       email: beenasivaram@yahoo.com 
PhD. Candidate, Rhodes University                 Cell : 0840502615   
         
Subject: Information for participation in the PhD research project and request for 
participation consent  
 
Dear colleague, 
 
1. Introduction  
I am a PhD. student in mathematics education in the Faculty of Education at Rhodes University. I 
humbly request your participation in an exciting research project titled ‘integrating technology in 
mathematics classroom’. The research is a critical analysis of how the potential of technological 
tools may enhance teaching of mathematics.  
 
2. Background  
This study is part of the requirements for the completion of my PhD degree in mathematics 
education. One of the objectives of the research is to develop the appropriate ICT skills and use it 
effectively and strategically as both a teaching and learning tool of mathematics. For the purpose 
of research, we will be using dynamic geometry software, GeoGebra, an open source software.   
The purpose of this research study is to: 

o analyse how teachers make use of ICT technology-aided visualisation for proficient 
teaching, 

o analyse the advantages and weaknesses of using Dynamic Geometry Software (DGS) in 
teaching and learning of mathematics,  

o to interpret, the pedagogical practices and instructional fluencies when visual aspects of 
technological tools are employed in a classroom,  

o contribute to the growth of a community of practice collaborating in building IT resources 
(applets) aligned with the South African curriculum content.  

 
More specifically, I am looking at teachers’ teaching for mathematical proficiency in relation to 
their classroom instructional practices using DGS. To accomplish the objectives of the research I 
need to observe you in practice. The focus will be on classroom teaching using GeoGebra applets 
in grade 10 and 11 classes. Further, I will video-record your lessons, since this will provide us with 
a more comprehensive recording of the lessons for a detailed analysis. This PhD study, with a 
focus on teaching, is paired with another PhD study, that focuses on aspects of learning with 
GeoGebra applets in mathematics education.   
  
3. Description and Invitation  
The study will take place during 2017. The data collection involves meetings among teachers 
deliberating on how to use DGS. At least three (3) of your lessons will be audio-video recorded as 
you go about teaching integrating technology. You will be also engaged in a post lesson reflection 
interview, during which we will reflect and evaluate on each of your lessons in order to gain insights 
into your lessons and discuss in-depth evidences of your effective instructional practices. The 
ultimate research objective is not to evaluate your teaching or your compliance to the curriculum 
as a mathematics teacher, but rather to analyse and discuss enabling and constraining factors that 
you encountered when using DGS as a teaching resource to teach mathematics. Your participation 
in this study will not affect your regular teaching in any way as observations are being planned in 
during normal class times, and interviews will be conducted at conveniently arranged times. The 
data will be strictly confidential and only you, the researchers, my supervisor and other 
participating teachers will have access to it.  
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4. Risks and Benefits  
There are no foreseeable risks involved in participating in the study. Participating in this study will 
give you an opportunity to study and contribute to knowledge and understanding of effective 
teaching practices, and share your valuable experience with others. The study results will be used 
for informing and improving mathematics teachers’ teaching practices integrating technology, 
GeoGebra in particular, within the South African education system.  
 

5. Time involvement  
There will a short induction programme on introducing the key concepts of the research study for 
about thirty minutes. There will be meetings to discuss on how to use the GeoGebra applets. The 
lesson observations will be conducted during normal class times. I also anticipate that the reflective
interviews might last for about an hour, and the timings will be negotiated with you. Due to 
complexity of the study, your involvement and commitment is very essential. You may also be 
contacted over phone or email to discuss any matter related to this study.       
 
6. Participants’ rights  
Participating in this research is absolutely voluntary. That is, your participation is strictly optional 
and at your personal discretion. Hence, after acquainting yourself with this information, you may 
decide whether or not to take part in the study and give consent to that effect. You also have the 
right to withdraw from any part of the study at any time. Your identity will be confidential and 
pseudonyms or codes will be substituted for the names of the participants and the school.    
 
7. Audio-video recordings  
All aspects of the study will be strictly confidential. On completion of the project, all data collected 
will be archived and securely stored with only research team having access to it. The findings of 
my study may be communicated to you upon completion of my study. However, should you have 
any concerns about your participation or the conduct of this research project, please feel free to 
contact me (see my contact details above) or my research project supervisor Prof Marc Schäfer at 
M.Schafer@ru.ac.za.  
 

8. Consent  

Please complete, sign the attached consent form and return it to me at your earliest convenience. I 
will be happy to answer any questions or queries that you might have. Hoping for a favourable 
response!   
 
Yours Sincerely,  
 
 
Beena Mavani 
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Appendix: Participant consent form  
 
I, ……………………………..., mathematics teacher of …………………….. agree to participate 

in the PhD research project entitled: Integrating Technology in mathematical classroom.  

In giving my consent I acknowledge that:  

1. The procedures required for the project and the time involved have been spelled out to me, and 

any questions I had about this project have been answered to my satisfaction and expectation.  

2. I have read the Information and Participant Consent Forms and have been given the opportunity 

to discuss the information and my involvement and level of participation in the research project 

with the researcher and other participating mathematics teachers who will analyse the recorded 

lesson videos with me.  

3. I understand that I can withdraw from the study at any time at no cost without affecting my 

relationship with the researcher now and/or in the future.  

4. I understand that the researcher will observe and record at least three of my lessons using 

GeoGebra applets, and involve me in post lesson reflective session, and that only the research team, 

their supervisor and other teachers involved in this study will have access to these data.I agree to:  

 

o I agree to participate in meetings for discussing the pedagogical practices using GeoGebra 

applets.   

 

o I give consent to observe and audio-video record them my lessons using DGS.  

 

o I agree to be engaged in a reflective interview, after each lesson in order to have an in depth 

discussion and analysis on my teaching practice.   

 

o I also give consent to audio-video record such interviews conducted, for the purpose of 

providing an accurate record of the interviews for later analysis and interpretations.  

 

I understand that my involvement is strictly confidential and that no information about me or my 

school will be used in any way that reveals my identity or that of my school.  

 

Name (participating teacher): ………………………………  

 

Signed (participating teacher): …………………………… Date: …………………..  
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Annexure III– Training Interlude – CAS    
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Annexure IV - WS-1 Worksheet Equations, Inequalities and Nature 

of Roots  
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Annexure V -   Training interlude – Coordinates and Straight Lines 
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Annexure VI - WS-2 Worksheet Parallel and Perpendicular Lines  

 

  

Investigating Parallel and Perpendicular lines 

Equation of a straight line : 𝑦 = 𝑚𝑥 + 𝑐 ; 𝑚 is the slope and 𝑐 is the y-intercept. A line of the form 

𝑎𝑥 + 𝑏𝑦 = 𝑐, its slope will be determined by making y as the subject of the formula ie 𝑦 =  −
𝑎

𝑏
𝑥 +

𝑐

𝑏
 

Open the applet ‘6_parallel_prependiclar_lines_investigate’. Note: This applet will generate the parallel and the 

perpendicular lines for you. You may input the equation in the blue colour ‘input box’ and press enter. You are required 

to fill in the table below (next page) and your conclusions. You can drag the point ‘A’ anywhere around the screen, but 

fill up the table for at least three points for a line.   

 

Conclusions from the observations  

 

Parallel Lines ( || ) what changes you observed? What changed and what did not? How are the slopes related?     

………………….. ……………………………… …………………………………….. ………………………………. ……………………… ……. 

………………….. ……………………………… …………………………………….. ………………………………. ……………………… ……. 

………………….. ……………………………… …………………………………….. ………………………………. ……………………… ……. 

………………….. ……………………………… …………………………………….. ………………………………. ……………………… ……. 

………………….. ……………………………… …………………………………….. ………………………………. ……………………… ……. 

 

 

  Perpendicular Lines ( ⊥ ) what changes you observed? What changed and what did not? How are the slopes 
related?     

………………….. ……………………………… …………………………………….. ………………………………. ……………………… ……. 

………………….. ……………………………… …………………………………….. ………………………………. ……………………… ……. 

………………….. ……………………………… …………………………………….. ………………………………. ……………………… ……. 

………………….. ……………………………… …………………………………….. ………………………………. ……………………… ……. 

………………….. ……………………………… …………………………………….. ………………………………. ……………………… ……. 
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