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*e nonclassical symmetries method is a powerful extension of the classical symmetries method for finding exact solutions of
differential equations. *rough this method, one is able to arrive at new exact solutions of a given differential equation, i.e.,
solutions that are not obtainable directly as invariant solutions from classical symmetries of the equation. *e challenge with the
nonclassical symmetries method, however, is that governing equations for the admitted nonclassical symmetries are typically
coupled and nonlinear and therefore difficult to solve. In instances where a given equation is related to a simpler one via an
equivalent transformation, we propose that nonclassical symmetries of the given equation may be obtained by transforming
nonclassical symmetries of the simpler equation using the equivalence transformation. *is is what we illustrate in this paper. We
construct four nontrivial nonclassical symmetries of the Black–Scholes equation by transforming nonclassical symmetries of the
heat equation. For completeness, we also construct invariant solutions of the Black–Scholes equation associated with the de-
termined nonclassical symmetries.

1. Introduction

*ere is a lot of interest in the search for nonclassical
symmetries of differential equations. *is is because non-
classical symmetries lead to new solutions of differential
equations, solutions not obtainable directly from classical
Lie point symmetries of the equation. Nonclassical sym-
metries are however not easy to find due to the complex
nature of the governing equations that define the associated
infinitesimals.

In the search for nonclassical symmetries, we typically
make assumptions on the nature of the associated infini-
tesimals to simplify the governing equations. *is approach
is complemented by the use of Heir-equations [1–5]. *ese
are nonlinear equations that result from iterations of the
nonclassical symmetries method and inherit the Lie algebra
of symmetry generators of the given equation. Similarity
solutions of Heir-equations yield nonclassical symmetries of
the original equation. Other approaches for finding non-
classical symmetries of differential equations have been
proposed [6–8].

*e primary aim of this paper is to propose the use of
equivalent transformations to augment methods for finding
nonclassical symmetries of differential equations. We il-
lustrate that when a given differential equation is equivalent
to another (target) differential equation through an in-
vertible point transformation, one can construct nonclas-
sical symmetries of the given equation from those of the
target equation through the point transformation. We use
this routine to construct nontrivial nonclassical symmetries
of the famous Black–Scholes equation [9]:

ut +
1
2
σ2x2

uxx + rxux − ru � 0. (1)

*e nonclassical symmetries method was devised by
Bluman and Cole in 1969 [10] to find new exact solutions of
the heat equation. *e method has since been applied to
many different types of problems involving partial differ-
ential equations (see, for example, [11–13]). Under the
nonclassical symmetries method, we seek invariance of a
given partial differential equation (PDE) considered together
with the invariant surface condition. *e method is an
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extension (among other extensions [14–16]) of the classical
symmetries method [17–23] for finding exact and special
solutions of PDEs.

We shall, in this paper, restrict our discussion to second-
order (1 + 1) PDEs of the form

Δ x, t, u, ux, ut, uxx, uxt, utt( 􏼁 � 0, (2)

where (x, t) ∈ R2 are independent variables and u ∈ R is the
dependent variable.

To apply the classical symmetries method to (2), we
consider a one-parameter group action on the (x, t, u) space
given by its infinitesimals

􏽥x � x + εξ(x, t, u) + O ε2􏼐 􏼑,

􏽥t � t + ετ(x, t, u) + O ε2􏼐 􏼑,

􏽥u � u + εη(x, t, u) + O ε2􏼐 􏼑,

(3)

depending on a continuous parameter ε. *is transforma-
tion is characterised by its infinitesimal generator:

X � ξ(x, t, u)zx + τ(x, t, u)zt + η(x, t, u)zu. (4)

Equation (2) is invariant under (3) if and only if

X
(2)Δ|Δ�0 � 0, (5)

where X(2) is the second extension of the infinitesimal
generator (4). *e invariance condition (5) yields governing
equations for the infinitesimals ξ, τ, and η. *ese equations
are necessarily an overdetermined system of linear PDEs, the
general solution of which provides the infinitesimals.

*e nonclassical symmetries method differs from the
classical symmetries method in that we now seek invariance
of equation (2) augmented with the invariant surface
condition:

ψ � τ(x, t, u)ut + ξ(x, t, u)ux − η(x, t, u) � 0, (6)

i.e.,
X

(2)Δ|Δ�0,ψ�0 � 0,

X
(1)ψ|Δ�0,ψ�0 � 0.

(7)

It can easily be shown that equation (6) is trivially in-
variant under (3), i.e., the second equation in (7) vanishes
identically without imposing any conditions upon τ, ξ, and
η. *erefore, the pair of conditions in (7) reduces to the
singular condition:

X
(2)Δ|Δ�0,ψ�0 � 0, (8)

which is the invariance condition for nonclassical symme-
tries of equation (2). Equation (8) leads to a set of nonlinear,
coupled governing equations for the infinitesimals ξ, τ, and
η. In instances where these equations can be solved, we
obtain nonclassical symmetries of equation (2). *e in-
variance surface condition (6) then leads to a solution ansatz
which, when substituted into equation (2), leads to a re-
duction of the equation, and ultimately invariant solutions of
the equation.

*e rest of the paper is organised as follows. In Section 2,
we present an invertible point transformation that is sub-
sequently used to map the Black–Scholes equation to the
heat equation. We also discuss some routines for deriving
such transformations. *is is followed by derivation of
nonclassical symmetries of the heat equation, which we
perform in Section 3. In Section 4, we perform transfor-
mations of the determined nonclassical symmetries of the
heat equation into corresponding nonclassical symmetries of
the Black–Scholes equation. *e construction of new so-
lutions of the Black–Scholes equation from the determined
nonclassical symmetries is carried out in Section 5. Finally,
we give concluding remarks in Section 6.

2. Equivalence Transformation between the
Black–Scholes and Heat Equations

It is well known (see [17, 18, 24–27] and the references
therein) that if a mapping from a given differential equation
to another (target) differential equation is an invertible point
transformation, then the mapping establishes a one-to-one
correspondence between symmetries of the given and target
equations. Such mappings are realisable as equivalence
transformations between equations that have similar sym-
metry Lie algebras. An equivalence transformation is es-
sentially a change of variables that maps a differential
equation in a given class to another differential equation in
the same class.

According to Lie’s result of group classification of linear
second-order PDEs with two independent variables, the
Black–Scholes equation can be reduced to the heat equation,

wy � wzz, (9)

by a point transformation, Lie’s equivalence transformation,

z � α(x, t),

y � β(t),

w � φ(x, t)u,

(10)

for some functions α, β, and φ, with αx ≠ 0 and βt ≠ 0 (see
[24]). *erefore, an equivalence transformation that relates
the Black–Scholes equation and the heat equation may be
determined by using (10) to write the heat equation in terms
of the Black–Scholes equation variables and then comparing
the resulting equation with the Black–Scholes equation (see
[24]). *e functions α, β, and φ follow from the resulting set
of determining equations, and we obtain (as in [9])

z � δ1 +
2κ(ln x − κt)

σ2
,

y �
δ2 − 2κ2t

σ2
,

w(z, y) � δ3u(x, t)e
− rt

,

(11)

2 Mathematical Problems in Engineering



where

κ � r −
1
2
σ2, (12)

and δi are arbitrary constants.
An equivalence transformation between two equations

may also be derived by using Lie point (or contact) trans-
formations admitted by the equations. *ese provide a
means by which to identify equivalent differential equations
and to construct equivalent transformations between them
when such transformations exist [17–19, 25, 26, 28, 29].
*ere are other practical criteria that involve characterising
equivalence transformations between partial differential
equations in terms of coefficients of the equations [30, 31].

Under transformation (11), properties of the heat equation
and corresponding properties of the Black–Scholes equation
can be mapped back and forth. It turns out that nonclassical
symmetries are among the properties that are mapped back
and forth between the heat and Black–Scholes equations.

3. Nonclassical Symmetries of the
Heat Equation

Consider the heat equation

Δ � ut − uxx � 0, (13)

and the associated invariance surface condition
ψ � τut + ξux − η � 0. (14)

*e invariance condition (8) is used to derive governing
equations for nonclassical symmetries of the heat equation.
If we adopt the usual notation ui � zu/zxi, ui1i2

� z2u/
zxi1zxi2 , i, ij � 1, 2, (x1, x2) � (x, t), and (ξ1, ξ2) � (ξ, τ),
and let Di denote the total differential operator with respect
to xi:

Di �
z

zx
i
+ ui

z

zu
+ uij

z

zuj

+ uijk

z

zujk

+ · · · . (15)

*en, X(2) is given by

X
(2)

� X + η(1)
i zui

+ η(2)
i1i2

zui1 i2
, i1, i2 � 1, 2, (16)

where

η(1)
i � Diη − Diξ

j
􏼐 􏼑uj, η

(2)
i1i2

� Di2
η(1)

i1
− Di2

ξj
􏼐 􏼑ui1j, i, ik, j � 1, 2.

(17)

*e use of a symbolic manipulation program to execute
(8) and perform other algebraic manipulations is imperative
in view of the involved nature of the attendant calculations.
In this connection, we used MATHEMATICA [32]. *e
following system of governing equations for nonclassical
symmetries of the heat equation was obtained:

ξτ2τuu − ξuuτ
3

� 0, (18)

3ξuuτ
2η − 2ξuξ

2τ + 2ξxuξτ
2

− 2ξττuuη

− 2ξ2ττxu − ξτ2ηuu � 0,
(19)

ξ2ττu � 0, (20)

ξtξ
2τ − 4ξxuξτη − 3ξuuτη

2
− ξxxξ

2τ + 2ξuξ
2η

+ 2ξxξ
3

+ 2ξ2τxuη + ξτuuη
2

+ ξ3τxx − ξ3τt

+ 2ξ2τηxu + 2ξτηηuu � 0,

(21)

ξ2τuη + ξ3τx � 0, (22)

ξxxξ
2η − ξtξ

2η + 2ξxuξη
2

+ ξuuη
3

+ ξ3ηt − ξ3ηxx

− 2ξ2ηηxu − ξη2ηuu � 0.
(23)

A solution of this system leads to a nontrivial non-
classical symmetry of equation (13) if the invariant surface
condition (14) is a necessary condition in the invariance
condition (8). Furthermore, the obtained infinitesimals must
lead to a reduction of the heat equation (13) to an ordinary
differential equation (ODE) via the usual reduction method.

To simplify the determining equations, we typically
make assumptions on the nature of the infinitesimals ξ, τ,
and η. Mansfield [33], one of the first to consider non-
classical symmetries of the heat equation, simplified the
determining equations by considering two cases, when τ ≠ 0
(in which we can set τ � 1, without loss of generality) and
when τ � 0. *e thrust of this paper, however, is not about
determination of nonclassical symmetries of the heat
equation. Rather, it is about obtaining nonclassical sym-
metries of the Black–Scholes equation from nonclassical
symmetries of the heat equation. So, we simply consider a
number of arbitrary cases to obtain four nonclassical
symmetries of the heat equation.

Case 1. ξ � w(x), τ � 1, and η � 0.

In this case, all the governing equations (18)–(23) are
satisfied except (21), which is reduced to the second-order
ODE:

w
2 2ww′ − w″( 􏼁 � 0. (24)

*e general solution of (24) is

w �
k1 k2 − e

2k1x
􏼐 􏼑

k2 + e
2k1x

, (25)

where k1 and k2 are arbitrary constants. We therefore have
that a nonclassical symmetry arising from this case is

X1 �
k1 k2 − e

2k1x
􏼐 􏼑

k2 + e
2k1x

zx + zt, (26)

provided k1k2 ≠ 0.

Case 2. ξ � 0, τ � w(x), and η � 1.

For this nature of infinitesimals, the governing equations
(18)–(23) are satisfied for an arbitrary function w. However,
the heat equation (13) is reduced to an ODE via the re-
duction method only if w solves the ODE
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w″ −
2w′

2

w
� 0. (27)

*e general solution of which is

w �
k1

x + k2
, (28)

where k1 and k2 are arbitrary constants. *erefore, a non-
classical symmetry arising from this case is

X2 �
k1

x + k2
zt + zu, (29)

provided k1 ≠ 0.

Case 3. ξ � 1, τ � 0, and η � w(x).

In this case, the governing equations (18)–(23) are sat-
isfied provided the function w satisfies w″ � 0, which leads
to the nonclassical symmetry:

X3 � zx + k1 + k2x( 􏼁zu, (30)

where k1 and k2 are arbitrary constants, with k2
1 + k2

2 ≠ 0.

Case 4. ξ � 􏽐
1
0 aix

i, τ � 􏽐
1
0 bit

i, and η � 􏽐
1
0 ciu

i, ai, bi, ci

arbitrary.

In this case, all the governing equations (18)–(23) are
satisfied except (21), which is reduced to the algebraic
equation

2a1 − b1( 􏼁 a0 + a1x( 􏼁
3

� 0. (31)

Different classical and nonclassical symmetries of the
heat equation may be derived from this case depending on
choices of the parameters. If we set a1 � b1/2, for example, we
obtain

X4 � a0 +
1
2

b1􏼒 􏼓zx + b0 + b1y( 􏼁zt + c0 + c1u( 􏼁zu, (32)

which is a nontrivial nonclassical symmetry of the heat
equation provided b21 + c20 ≠ 0.

4. Derivation of Nonclassical Symmetries of the
Black–Scholes Equation

For simplicity, we suitably fix parameters in the nonclassical
symmetries (26), (29), (30) and (32) and revert back to the
original variables z, y, andw of the heat equation (9) to
obtain

X1 �
1 − e

2z

1 + e
2z􏼠 􏼡zz + zy, (33)

X2 �
1
z

􏼒 􏼓zy + zw, (34)

X3 � zz + zzw, (35)

X4 � 2zz + zy + zw. (36)

Each of these nonclassical symmetries of the heat
equation is now mapped to a corresponding nonclassical
symmetry of the Black–Scholes equation by the
transformation

x � exp
σ2(z − y)

2κ
􏼨 􏼩,

t � −
σ2y
2κ2

,

u � w exp −
rσ2y
2κ2

􏼨 􏼩,

(37)

which is the inversion of (11) with (w.l.o.g.) δ1 � δ2 � 0 and
δ3 � 1.

Under (37), any (classical or nonclassical) symmetry,

X � ξ(z, y, w)zz + τ(z, y, w)zy + η(z, y, w)zw, (38)

of the heat equation (9) is transformed into a corresponding
symmetry of the Black–Scholes equation (1):

X � ξ(x, t, u)zx + τ(x, t, u)zt + η(x, t, u)zu, (39)

where

ξ(x, t, u) � X(x)|(11),

τ(x, t, u) � X(t)|(11),

η(x, t, u) � X(u)|(11),

(40)

with δ1 � δ2 � 0 and δ3 � 1. We take the liberty to normalise
the resulting vector fields when necessary in light of the
property that X and 􏽥X are equivalent nonclassical sym-
metries if 􏽥X � Λ(x, t, u)X, provided Λ(x, t, u) is a non-
vanishing smooth function of its arguments (see [14], for
example).

We obtain the following nonclassical symmetries of the
Black–Scholes equation:

Z1 � 2κx
4κ/σ2+1

zx + e
4κ2t/σ2

+ x
4κ/σ2

􏼒 􏼓zt + ru e
4κ2t/σ2

+ x
4κ/σ2

􏼒 􏼓zu,

(41)

Z2 � κxzx + zt + ru −
4κ3ert

(lnx − κt)

σ4
􏼠 􏼡zu, (42)

Z3 �
σ2

2κ
xzx +

2κe
rt

(lnx − κt)

σ2
zu, (43)

Z4 � κxzx − zt +
2κ2ert

σ2
− ru􏼠 􏼡zu, (44)

from the heat equation symmetries (33)–(36), respectively.
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5. Invariant Solutions of the Black–Scholes
Equation Obtained from the
Nonclassical Symmetries

Each of the nonclassical symmetries admitted by the
Black–Scholes equation may be used to construct solutions
of the equation. *ese will be new solutions of the Black-
–Scholes equation in the sense that they are not obtainable
directly as invariant solutions associated with classical Lie
point symmetries of the Black–Scholes equation. *e con-
struction of such solutions parallels the usual reduction
method for classical Lie point symmetries. For each non-
classical symmetry X of equation (2), one determines from
solutions of the associated characteristic system,

dx

ξ
�
dt

τ
�
du

η
, (45)

two independent invariants r � r(x, t, u) and v � v(x, t, u)

(with vu ≠ 0) of the associated group. *e form of the in-
variant solution of equation (2) arising from X is now
obtained from v � φ(r) for some unknown function φ, or

u � Θ(x, t), (46)

if we solve for u. Upon substitution of (46) into (2), we
obtain an ODE that defines Θ. *e solution of this ODE
completes the process.

Invariant solutions of the Black–Scholes equation ob-
tained from the constructed nonclassical symmetries of the
equation are presented below.

Solution 1. ξ � 2κ x4κ/σ2+1, τ � e4κ
2t/σ2 + x4κ/σ2 , and η � ru

(e4κ
2t/σ2 + x4κ/σ2).

*e solution of equation (1) arising from the nonclassical
symmetry (41) is

u(x, t) � e
rt

w(ζ), ζ �
1
κ
lnx −

σ2

2κ2
ln e

4κ2t/σ2
− x

4κ/σ2
􏼒 􏼓 + 2t,

(47)

where w satisfies the ODE

2κ2w′ + σ2w″ � 0. (48)

*e general solution of (48) is

w � k1 + k2 exp −
2κ2ζ
σ2

􏼠 􏼡, (49)

where k1 and k2 are arbitrary constants so that (47) and (49)
constitute the invariant solution of the Black–Scholes
equation associated with the nonclassical symmetry (41).

Solution 2. ξ � κx, τ � 1, and η � ru − 4κ3ert(lnx − κt)/σ4.
*e solution of equation (1) arising from the nonclassical

symmetry (42) is

u(x, t) �
4κ3tert

(κt − lnx)

σ4
+ e

rt
w(ζ), ζ � xe

− κt
, (50)

where w satisfies the ODE

ζ2w″ + ζw′ −
2r − σ2􏼐 􏼑

3

σ6
ln ζ � 0. (51)

*e general solution of (51) is

w � k1 + k2 ln ζ −
σ2 − 2r􏼐 􏼑

3

6σ6
ln3 ζ, (52)

where k1 and k2 are arbitrary constants so that (50) and (52)
constitute the invariant solution of the Black–Scholes
equation associated with the nonclassical symmetry (42).

Solution 3. ξ � σ2x/(2κ), τ � 0, and η � 2κert(lnx − κt)/σ2.
*e solution of equation (1) arising from the nonclassical

symmetry (43) is

u(x, t) � w(t) −
2κ2ert

(2κt − lnx)ln x

σ4
, (53)

where w satisfies the first-order ODE

w′ − rw + e
rt 2κ3

σ2
−
4κ3r
σ4

􏼠 􏼡t +
2κ2

σ2
􏼢 􏼣 � 0. (54)

*e general solution of (54) is

w � e
rt

k1 +
κ3 2r − σ2􏼐 􏼑t

2

σ4
−
2κ2t
σ2

⎛⎝ ⎞⎠, (55)

where k1 is an arbitrary constant so that (53) and (55)
constitute the invariant solution of the Black–Scholes
equation associated with the nonclassical symmetry (43).

Solution 4. ξ � κx, τ � −1, and η � 2κ2ert/σ2 − ru.
*e solution of equation (1) arising from the nonclassical

symmetry (44) is

u(x, t) � e
rt

w(ζ) −
2κ2t
σ2

􏼠 􏼡, ζ � xe
κt

, (56)

where w satisfies the ODE

ζ2w″ +
2(κ + r)

σ2
ζw′ −

4κ2

σ4
� 0. (57)

*e general solution of (57) is

w � k1 + k2ζ
2 σ2− 2r( )/σ2 −

σ2 − 2r􏼐 􏼑

2σ2
ln ζ, (58)

where k1 and k2 are arbitrary constants so that (56) and (58)
constitute the invariant solution of the Black–Scholes
equation associated with the nonclassical symmetry (44).

6. Concluding Remarks

In this paper, we sought to illustrate how equivalent
transformations may be used to find nonclassical symme-
tries of differential equations. We have constructed new
bonafide nonclassical symmetries of the Black–Scholes
equation by using the well-established equivalence between
this equation and the heat equation. A particular invertible
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point transformation between the Black–Scholes equation
and the heat equation was exploited.

Nonclassical symmetries of the heat equation were firstly
derived in the usual way, starting with determining equa-
tions generated from the invariance condition for non-
classical symmetries and then solving the equations in
specific instances by making assumptions on the nature of
the infinitesimals.

Four nonclassical symmetries of the heat equation were
determined and transformed into four nontrivial nonclas-
sical symmetries of the Black–Scholes equation. Clearly,
additional ones may be constructed in a similar fashion. For
completeness the constructed nonclassical symmetries were
used to find solutions of the Black–Scholes equation via the
reduction method. *e solutions of the Black–Scholes
equation communicated in this article are new in that they
have not been reported before and cannot be constructed
directly as invariant solutions from classical Lie point
symmetries of the Black–Scholes equation.
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