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a b s t r a c t

2(3),9(10),16(17),23(24)-Tetrakis-(4-aminophenoxy)phthalocyaninato indium (III) chloride (ClInTAPPc, 3)
was first conjugated to two different polymers: polystyrene (PS) and polyacrylonitrile (PAN) to form 3-PS
and 3-PAN. The conjugates were cast into the corresponding polymers to form membranes represented
as 3-PS-membrane and 3-PAN-membrane, respectively. The prepared membranes were characterized
using various techniques including scanning electron microscopy and solid state UV/Vis spectroscopy.
Singlet oxygen quantum yields were higher for the 3-PS-membrane at 0.51 compared to 3-PAN-mem-
brane at 0.35. The larger singlet oxygen also applies to 3-PS (0.63) compared to 3-PAN (0.38) when in
solution.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Many methods and techniques used for water purification
involve the physical separation of pollutants or contaminates and
hence are relatively ineffective against most chemical pollutants
[1e4]. One of the approaches for water purification has been to
reduce the size of particles to be removed using nanoporous ma-
terials [1e4]. However such systems still prove limited when it
comes to small molecule pollutants. Adsorption technology pro-
vides a good contribution towards solving this problem [5,6]. Due
to limited reuse of adsorbents, adsorption technology may prove to
be cost-ineffective. The materials for consideration must then be
functionally effective, reusable and produced at relatively low cost.

Research on metallophthalocyanines (MPcs) and their ana-
logues continues to grow due to their interesting optical properties
which may be exploited for different applications [7,8]. These
properties include efficient singlet oxygen generation, photo-
stability and flexible structural modification [9e12]. These prop-
erties make Pcs potential photosensitizes for photodegradation of
organic pollutants. In addition to these properties, Pcs have strong
absorbance in the biological optical window region (600-800 nm)
andmany do not have dark toxicity [10e12], making them potential
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candidates for application in photodynamic therapy (PDT) and
photodynamic antimicrobial therapy (PACT). The photoactivity
properties of Pcs have resulted in the extension of their application
to photocatalytic purification of water [13e17].

In this work, 2(3),9(10),16(17),23(24)-tetrakis-(4-aminophen
oxy)phthalocyaninato indium (III) chloride (ClInTAPPc, 3) was
conjugated (via an amide bond) to COOH substituted poly-
acrylonitrile (PAN, 2A) and polystyrene (PS, 2B) polymers (Schemes
1 and 2), to form 3-PAN and 3-PS, respectively. 3-PAN and 3-PS
were further embedded (through casting) in corresponding pristine
PAN (1A) and unfunctionalized PS (different from functionalized 1B
or 2B in Scheme 1) polymers to formmembranes represented as 3-
PAN-membrane and 3-PS-membrane. The choice of the unfunc-
tionalized polymers for casting was based on availability and ease
of casting as will be discussed below. In preliminary experiments,
we observed leaching of the Pc from the membrane when the Pc
was simply mixed with the polymer solution (without prior
conjugation) before membrane casting. Hence, the Pc was cova-
lently linked to each polymer to form 3-PAN and 3-PS, before the
formation of the membranes (represented as 3-PAN-membrane
and 3-PS-membrane) in this work. This is the first time that Pcs are
embedded in polymer membranes. The membranes employed in
this work are termed asymmetrical due to the method of synthesis
which results in an asymmetrical cross-section (the membranes
consist of bulk and thin skin). In earlier work we have embedded
phthalocyanines in electrospun fibres, with the phthalocyanines
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