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ABSTRACT 

 
Coastal mangrove vegetation at Mngazana continues to be threatened and reduced 

periodically due to unmonitored harvesting. Covering an area of 148ha, the 

Mngazana mangrove forest remains unreserved, thus, research on the Mngazana 

mangroves is essential in order to monitor their state and sustainable management. 

Since in-situ monitoring of mangrove areas is both challenging and time-consuming, 

remote sensing technologies have been used to monitor these ecosystems. This 

study was carried out to monitor the impact of deforestation using ASTER satellite 

images over ten years: from 2008 - 2018. Validation was carried out by comparing 

classification results with the ground-referenced data, which yielded satisfactory 

agreement, with an overall accuracy of 94.64% and Kappa coefficient of 0.93 for 

2008; and in 2009, the overall accuracy was 88.62% and a Kappa coefficient of 0.85. 

While the overall accuracy of 95.08% and a Kappa coefficient of 0.92 for 2016 and 

2018 were observed, the overall accuracy of 93.58% and a Kappa coefficient of 0.91 

was yielded. NDVI and SAVI indices were used as monitoring indicators. The results 

obtained in the study indicated that the canopy density of the mangrove forest 

remained unchanged in the years under investigation. However, insignificant 

changes in canopy density were identified between 2009 and 2016.  

 

KEYWORDS 
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1. CHAPTER 1 

1.1. INTRODUCTION 

Mangroves are considered one of many tropical, sub-tropic and temperate 

regions that play a significant role in occupying a variety of settings inclusive of 

estuarine environments, inlets, and islands  (Alongi, 2008). In contrast, Duke and 

Larkum (2019) defined mangroves as a diverse group of predominantly tropical 

trees and shrubs that grow in half of the intertidal zones of coastal areas 

worldwide. Mangroves serve an essential role within the ecosystems at which 

they exist; they stabilize the coastline by rapid colonization of substrates, thereby 

trapping subsequent sediments with their roots, which in turn leads to mud and 

or sand formation in areas, which makes further colonization to take place.  

 

According to Quoc Vo et al. (2015), mangrove forests can dominate estuaries' 

intertidal zones together with shorelines along many of the world‟s tropical and 

subtropical coastlines. They are also dependant on the shorelines, which are 

sheltered by coral reef structures, which protect the sediment-sensitive corals 

against materials received which are not wanted to be flushed downstream from 

the surrounding land catchment. (Pastor-Guzman et al., 2018) illustrated that 

mangroves are ecosystems that are taxonomically diverse in the assemblage of 

tree species which have common morphological, biochemical, physiological and 

reproductive adaptions that allow them to colonize and develop in environments 

of high saline hypoxia. 

 

Within an estuary environment, mangrove forests are distributed in inter-tidal 

regions between the sea and the land, and, they grow in tropical and subtropical 

latitudes, which is the region between the 30°N and 30°S latitudes. Their 

distribution is limited by significant ocean currents and isotherms of seawater in 

winter having 20°C temperatures, and, their distribution is from the mean sea 

level to the higher spring tide (Giri et al., 2011; Alongi, 2009).  

 

There are nine orders, twenty families, twenty-seven general families and 

seventy species of mangroves. They grow in harsh environments comprised of 

high tides, muddy anaerobic soils, and an element between terrestrial and 

marine ecosystems. 
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Mangroves are crucial because they serve as the most productive carbon marine 

ecosystem by contributing to carbon found in the coastal ocean, although they 

constitute a small percentage of the land cover compared to the global coverage 

(Alongi et al., 2012; Lavieren et al., 2012.) The global scope of mangrove forests 

mapped from tropical and sub-tropical regions is estimated to be about 

150 000km2. . This is 1% less than all the tropical forests globally, which is also 

less than 0.4% of the total global forests. 

  

In South Africa, mangrove forests are mostly distributed in estuaries from Kosi 

Bay in KwaZulu Natal (KZN) to Nahoon estuary, located in the Eastern Cape. 

(Rajkaran, 2011), (Figure 1.) The Mngazana estuary is an essential source of 

mangrove litter and particulate organic carbon for the marine environment 

adjacent to it, which is suitable for sustaining the nearshore's food webs 

(Rajkaran & Adams 2007). Mangroves offer many functions to both marine and 

land animals. Fishes, prawns, shrimps, crabs, oysters, mussels and cockles use 

mangroves as nurseries and breeding grounds.  

 

The local population use mangrove forests as their source of firewood, building 

material for recreational activities such as boating, canoeing, fishing and 

collecting molluscs (Ghosh et al., 2016); whilst, birds use these tree‟s canopy for 

roosting; shellfish use the roots to attach themselves; fish use mangroves as a 

breeding ground and bats and honeybees use them as their source of nectar 

(Lavieren et al., 2012). They are ecological and economically viable offering 

goods and services; such as coastal protection to communities, food security 

and they are rich in biodiversity. 
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Figure 1: Distribution of mangroves along the East Coast of South Africa, from Kosi Bay to 
Nahoon Including the Study Area, Mngazana Estuary 

Since mangrove forests are a highly effective world‟s carbon storage and sink; 

along with their living biomass, the mangrove soils are carbon-rich because 

mangroves sequestrate carbon for a thousand timescales. Lavieren et al. (2012) 

found that mangroves are ecosystems that shape, build and maintain the legacy 

of their surrounding‟s physical environment. When observing mangroves, the 

most striking feature is that they grow in harsh environments characterized by 

extreme saline conditions and flooding on the one side and aridity with lowland 

vegetation on the other side (Lavieren et al., 2012). 

 

Sediments where mangroves are comprised of soft waterlogged and unstable 

physical factors such as chemical composition, salinity, soil acidity, substratum 

and climatic conditions, shape their development, growth, and productivity. 

Deforestation, especially in the tropics and subtropical areas, is the second 

largest recorded source of Carbon Dioxide (CO2) following fossil fuels and 

contributing to about 12-20% of the total deforestation (Hutchison et al., 2014).   

 

Demand for mangrove forest resources has led to a decrease in mangrove 

species over the past century. Aquaculture, agriculture and urbanization are the 

main factors contributing to the deforestation of mangroves. Recent estimations 

of mangrove deforestation, according to Lagomasino et al., (2019) indicate that 

they range between 0.16% to 0.39% per year at regional and global scales. In 
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this regard, mangroves are highly threatened species; about a third of the 

world‟s mangroves have declined over the past five decades, the rates estimated 

for annual deforestation were at 0.7% from 2000-2005; higher than or similar to 

those tropical forests which are three times higher than the mean rates for forest 

loss globally (Alongi, 2002). 

 

Despite the declining rates combined with high carbon values, mangroves may 

contribute 10% of the total carbon emission from deforestation (Donato et al., 

2011). Loss of mangroves is continuing in most areas; and, regardless of their 

declining rate, mangroves are still endangered at about 3 to 5 times as faster as 

overall global forest losses. Some countries have lost more than 40% of their 

mangrove area over a 25-year period, and only degraded areas have remained 

(Lavieren et al., 2012). If this trend continues, mangrove forests will have an 

ecological and socio-economic impact, especially in communities dependent on 

mangrove for resources such as food, fuel or coastal protection. 

 

Research has indicated that the global population of mangroves is declining over 

the years, yet they play a vital role in both the marine environment and the local 

communities in which they exist.  It is therefore essential to monitor mangrove 

forest spatial distribution and dynamics over time. However, researching in line 

with mapping and monitoring mangrove forests can be challenging when 

collecting field data.  It is not easy to determine the distribution of mangroves, 

however abundant they are in the field, due to their inaccessibility within their 

communities; therefore, Remote Sensing is the technology that provides the 

means to address this challenge as it allows for methods proven efficient for 

mapping and monitoring mangrove forest (Zhang et al., 2017). 

 

Remote Sensing is a technology based on satellites used to gain knowledge of 

an object's features or properties without making physical contact with those 

features or items of interest. Such technology is not limited to mapping 

vegetation covering large areas because it can also focus on areas underwater, 

thereby mapping aquatic vegetation, which is the decisive indicator of marine 

and freshwater ecosystems (Blanco, 2013).  

Nevertheless, remote sensing does have limitations, especially when used for 

aquatic mapping of vegetation, unlike detecting terrestrial vegetation. These 

limitations are due to dominant water reflectance and differentiation of 
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submerged species (Blanco, 2013). On the other hand, Jung et al., (2012) 

argues that cases associated with aquatic remote sensing result in a situation 

where the total signal received by the Satellite Sensor is dominated by radiance 

contributed by atmospheric scattering and only about 8% to 10%. 

 

1.2. PROBLEM STATEMENT 

In South Africa, threats to mangroves involve wood harvesting, altered water flow 

patterns coupled with salinity changes, and conditions associated with prolonged 

closed-mouth and subsequent modifications to the intertidal habitat (Rajkaran, 

2011). At Mngazana estuary, wood harvesting is the main reason the mangrove 

density is on the decline. Rajkaran and Adams., (2007) estimated that wood 

harvesting is happening at a rate of 1 ha per year and if this trend continues with 

no regrowth, after 118 years, there will be no mangrove forest in Mangazana.  

Hoppe-Speer et al., (2015) argued that the Mngazana mangrove forest is 

decreasing over the years. Observation indicated that the forest was 150 ha in 

1982, 145 ha in 1999 and 118 ha in 2012. Therefore, this suggests a 27 ha or a 

19% decrease in Mngazana forest in three decades.  

 

 This research study will therefore assess the spatial and temporal changes at the 

Mngazana mangrove forest using remote sensing techniques by using vegetation 

indices as indicators. These indices will be calculated and studied to provide a 

long-term account of the change dynamics driving the spatial decline observed in 

the forest over the years. As a result, the investigation will focus on ten years, 

from 2008 to 2018.  

 

1.3. HYPOTHESIS 

Mngazana mangrove forest has been declining over the past four decades and 

the rate of change has been accelerating exponentially due to anthropogenic 

activities.  

 

1.4. OBJECTIVES 

1. Identification of mangroves from surrounding landcover at Mngazana 

mangrove forest using ASTER data. 

2. Mapping and monitoring the rate of change at the Mngazana mangrove forest 

from 2008 to 2018. 
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3. To investigate whether deforestation has taken place at Mngazana mangrove 

forest using NDVI, LAI & SAVI. 

 

1.5. STUDY AREA 

This study was conducted at Mngazana, a permanently open estuary situated in 

the Eastern Cape Province, 18kms south of Port St Johns; surrounded by three 

communities: Cwebeni, Thekweni, and Mquleni (Figure 2). The Mngazana area 

has a warm subtropical climate characterized by air masses usually unstable, 

and these are the main reason for the rainfall all year out. Annual rainfall 

averages range from 75-150 cm, while thunderstorms during summer and 

precipitation caused by frontal rain are expected. In summer, mean monthly 

temperatures range around 27°C, and during winter, they range around 5°-12°C; 

this is a small daily range of temperatures (Peter sen et al., 2010). The 

Mngazana area receives an average of 1200 mm of rain per year, and about 

70% of the rainfall occurs in summer (Traynor, C H, and R, 2008).   

 

The minimum and maximum air temperatures range from 16–20°C and 23–26°C 

per annum respectively, whereas wind velocities were notably uniform over fifty-

four years ranging between 4 and 5m s–1 (Rajkaran. & Adams., 2007). The 

Mngazana mangroves are the third-largest in the country, and are found within 

the Mngazana estuary. It covers 118ha, which is 67% of the Mngazana plant 

community (Colloty 2000). There are three mangrove species found within the 

estuary: Avicennia Marina (Forssk. Vierh.), Bruguiera Gymnorrhiza (L.) Lam and 

Rhizophora Mucronata Lam (Rajkaran. & Adams., 2007).  The estuary is 

estimated to be 5.3km in length, situated at the Mngazana river's mouth, which 

stretches for 150km within a catchment area of 275km2 (Branch & Grindley, 

1979). In the middle reaches of the estuary (1 085m from the mouth) and the 

lower reaches (300m from the mouth), there are two creeks fringed by large 

populations of mangroves (Branch & Grindley, 1979). 
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Figure 2: Mngazana Estuary, Port St Johns, Eastern Cape. 

 

1.6. RESEARCH QUESTION 

Can remote sensing using ASTER satellite imagery be capable of mapping and 

monitoring the deforestation occurring at Mngazana mangrove forest? 

 

2. CHAPTER 2: LITERATURE REVIEW 

2.1. INTRODUCTION TO REMOTE SENSING OF MANGROVES 

Remote Sensing has been used to map and monitor the earth‟s surface because 

of its capability to map areas that are not physically accessible. Scholars and 

researchers alike have used such capabilities in different disciplines such as 

environmental studies, hydrological mapping, mineral exploration; and cause 

marine studies, including mangrove mapping and monitoring. The use of remote 

sensing technology in mangrove mapping started as far back as the 1980s where 

Terchunian et al., (1986) was conducted a study to create historical maps of the 

mangrove‟s ecosystem in Ecuador. Though the technology was relatively basic at 

the time, the outcomes of the study indicated that Landsat, airborne MSS, radar 

and aerial photographs, managed to map the mangroves.  
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As the number of earth observation satellites increased in space, this 

subsequently provided a wide range of data available to researchers to develop 

and investigate a range of techniques in studying mangroves. In 1992 (Gang & 

Agatsiva, 1992) conducted a study in Mida Creeks, Kenya, using SPOT 

multispectral satellite imagery to map the mangroves covering an area of 890 ha, 

which was 15.9% of that forest, while Pasqualini et al., (1999) used SPOT-XS 

data, to map the alterations of aquaculture farming in mangroves in the coastal 

marsh of Mahajamba (North-Western Madagascar). In 1997 Venkataratnam et al., 

(1997) used Landsat to map mangroves in the coastal areas of Andhra Pradesh, 

India, while L. Wang et al., (2004) used a combination of IKONOS 1m 

panchromatic and 4m multispectral images to map mangroves in a study located 

at Punta Galeta on the Caribbean coast of Panama. Therefore, the 

aforementioned is evidence that scholars realized the importance of using remote 

sensing techniques in studying mangroves hence different sensors and algorithms 

have been used to map and monitor mangroves in other parts of the world. 

Furthermore, this also proved the potential and importance of utilizing satellite-

based information mangroves studies.  

 
Further, remote sensing has also been used in canopy distribution, biomass, 

extent and classification. A few studies have used remote sensing to map and 

monitor mangrove forests using different remote sensing data types. Some 

studies have used hyperspectral and optical data with medium to high spatial 

resolution for mapping mangroves (Green et al., 1998; Held et al., 2003; Le Wang 

et al., 2004; Neukermans et al., 2003), while other studies have demonstrated the 

potential of mangrove mapping using radar data (Kuenzer et al., 2011; Lucas et 

al., 2007). SAR data has also shown successes in mapping mangroves 

(Fatoyinbo & Simard, 2013; Held et al., 2003; Lucas et al., 2009; Mougin et al., 

1999; Proisy et al., 2000; Proisy et al., 2002; Simard et al., 2006). Shuttle Radar 

Topographic Mission (SRTM) has proved to be capable of estimating canopy 

height and mangroves' biomass (Fatoyinbo et al., 2008; Fatoyinbo & Simard, 

2013; Simard et al., 2006; Simard et al., 2008). Some studies have applied a 

hybrid approach by combining SAR and optical remote sensing data for mangrove 

mapping with promising results (Aschbacher et al., 1995; Held et al., 2003). 
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2.2. SPATIAL DISTRIBUTION OF MANGROVES IN SOUTH AFRICA 

Mangroves are an intertidal zone of woody plants located in the world's tropical 

and subtropical regions. They are by far the most productive forest ecosystem, 

having a marine and being terrestrial unique in the world. In South Africa (SA), 

mangroves' spatial distribution is limited to the protection of estuaries having low 

energy from those that are high in energy in the coastline and where embayment 

has diluted freshwater from the rivers (Rajkaran & Adams., 2007). The total 

coverage of mangroves in South Africa was estimated to be about 1 631 ha, with 

less than 1% covering the total land area and the most minor and rare forest type 

in the country (Rajkaran et al., 2010). Mangroves are limited to the country's East 

Coast between the Great Kei River and Kosi Bay in the North Coast Figure 3. 

 

Figure 3: Mangrove distribution along the East Coast (Adam et al. 2003) 

Mangroves in South Africa stretch from Kosi Bay's forest in KwaZulu-Natal to 

Nahoon Estuary in the Eastern Cape, as indicated in Figure 3 above. These 

mangroves vary in sizes; the largest is Mhlathuze with 652.1 ha, followed by St 

Lucia with 571.0 ha and the third-largest being Mngazana mangroves forest with 

150 ha (Rajkaran & Adams, 2012). According to Traynor et al., (2008), the Wild 

Coast in the Eastern Cape is covered by dynamic mangroves, and it has been 

reported that the loss of mangroves in that area was about 6.5% over a 

seventeen-year period. Rajkaran et al. (2004) highlighted that only six types of 

mangroves species were found in the country, with Lumnitzera Racemosa Willd, 

Ceriops Tagal Perr, C.B. Robinson and Xylocarpus Granatum Koen found only in 

Kosi Bay, the southern distribution limit of tropical species. 
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Avicennia Marina (Forsk. Vierh.) and Bruguiera Gymnorrhiza (L.) Lam is 

commonly found in most South African estuaries where there is a presence of 

mangroves, while Rhizophora Mucronata occasionally occurs from Kosi to the 

Bulungula River in the Eastern Cape. The Rhizophora Mucronata species are 

found in ten of the thirty-seven mangrove estuaries along the eastern coastline, of 

which four of those places are in the Eastern Cape (Yang et al., 2018).  

South Africa consists of 0.05% of Africa‟s total mangrove coverage area, an 

almost insignificant amount, however this particular type of forest in South Africa 

contributes to the country's rich biodiversity (Rajkaran & Adams, 2010). The 

extent of mangroves on the eastern coastline decreases from the northern parts to 

the south; hence northern estuaries have the largest estuaries compared to 

mangroves based in the south, with the Mhlathuze estuary having 80% coverage 

of the total mangrove area (Rajkaran et al., 2004).  

 

From the above discussions, the spatial distribution of mangroves in South Africa 

evidently leans towards the country's eastern area. One has to ask a question, 

“What are the driving factors that contribute to such an occurrence? Why are there 

no mangroves on the West Coast”? Could it be climatic conditions between these 

two areas of the country, as it is well known and document that the east enjoys a 

tropical climate while the west is characterized by a Mediterranean kind of climate 

(Naidoo, 2016)?  Further studies have to be conducted to understand such a 

phenomenon fully.   

 

2.3. SOCIO-ECONOMIC IMPORTANCE OF MANGROVES ECOSYSTEM 

Mangroves contribute both socially and economically to livelihoods in the 

communities in which they are found. They provide them with building material for 

dwellings, building kraals, as well as fuel. Although most mangrove species are 

under the threat of extinction due to being over logged and deforestation, there is 

still a need to protect this essential marine and bio-sensitive ecosystem. 

Mangroves play a critical role in stabilizing near-shore sediments that help prevent 

coastal erosion, and they also act as nurseries for numerous marine species such 

as shrimp and fish in their early life stages (IUCN 2017). On the other hand, 

mangroves also have a social benefit as well; they provide the communities with 

wood as a building material, which is also resistant to insects and decay.   
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Many coastal indigenous communities rely on this wood for construction material, 

fuel and use the mangrove trees for medicinal purposes. Recently, the forests 

have also been harvested commercially for pulp, wood chips, and charcoal 

production to build houses and firewood (Duke 2019). Since mangroves are a 

habitat to many fish species that use them as breeding grounds and nurseries for 

many fish species, it is easier for coastal communities to go fishing and provide 

themselves with food. Legal (commercial) fishing contributes to the economy, 

unlike illegal (subsistence) fishing, where people do not have permits for fishing. 

In addition, about 75% of commercially caught fish may inhabit mangroves at 

some point in their life (Bangman, 2007).  

 

The role of mangroves in many communities is filtering and trapping sediments 

such as heavy metals and other pollutants in water using their dense roots and 

vegetation. This prevention of contaminated sediments flowing upstream can help 

waterways downstream (Commission, 2017). Mangroves also act as a coastal 

defence mechanism for many communities, as they act as buffer zones against 

erosion, storm surges, sea-level rise as well as other climate change events 

occurring along the coast, and in turn protect communities.  

 

Salem & Mercer (2012; Kovacs et al., (2008) highlighted how mangroves help 

fisheries by acting as a nursery and spawning grounds habitat for fishing. This 

commercially supports fisheries and marine productivity; furthermore, they are 

tourist attraction sites as their services, such as recreational hiking, commercial 

fishing, commercial hunting, and bird watching, provides a source of income. 

Eleanya et al., (2015) outlined the importance of the mangrove ecosystem 

indicating that their rattan, bamboo, fibres and wood are used for making furniture 

and fuelwood essential for food processing and honey production. 

 

2.4. IDENTIFICATION OF MANGROVES USING REMOTE SENSING 
TECHNIQUES 

The use of satellites in studying different vegetation, including forest 

phenomenon, has been done since the early days of remote sensing. Such 

studies had limited access to satellite data back then, and it came at a cost. 

However, as more data gradually became freely available from the different 

sensors, more research on forest and vegetation began to occur. One sensor 

whose data was made available at no cost was the Advanced Spaceborne 
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Thermal Emission and Reflection Radiometer (ASTER) satellite system. This 

satellite provides a wide range of spectral coverage with fourteen spectral bands 

ranging from visible to thermal infrared bands with medium spatial, spectral and 

radiometric resolution.  

 

The spatial resolution of ASTER makes it possible to distinguish diverse surface 

resources, minimizing problems while interpreting some lower resolution data 

resulting from mixed pixels (Crocetto & Tarantino, 2009). ASTER is a Japanese 

multispectral sensor system launched on-board the Terra satellite in December 

1999 by NASA. 

 

Vaiphasa et al., (2006) investigated the relationships for improved mangrove 

mapping using ancillary data (i.e. soil pH) as a post-classifier in a GIS map 

format and chose the geo-statistics interpolation for soil pH for map production. 

Using soil ph. as a post classifier was because mangrove species have a 

likelihood to be found in a particular variety of pH ratios and used the ordinary 

kriging method as an interpolation method based on a spherical model. The 

satellite imagery used ASTER for the dry season on 6 March 2002 and used a 

maximum likelihood classifier (MLC) in which the classifier had training samples 

of 260 plots. There were 263 independent samples used to test the confusion 

matrix calculation, which was executed using ENVI v.3.6, this is commercial 

software. MLC produced seven-rule maps, which contained information that can 

be converted to Chi-square likelihood based on mangrove species and a 

classified image. The overall accuracy achieved from the method was between 

76.04% and 88.21%.  

 

On the other hand,  Giri & Muhlhausen (2008) used GeoCover images for 1975 

and ASTER images for 2005, respectively. The GeoCover data acquired for the 

Multispectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic 

Mapper Plus (ETM+) was to delineate cloud-covered areas from Earth 

Resources Observation and Science (EROS). The study used 39 ASTER VNIR, 

13 MSS, 14 TM and 16 ETM scenes, which change detection was generated by 

subtracting the classification maps 1975s–the 1990s, 1975s–2000s, 1975s–

2005s, 1990s–2000s, 1990s–2005s, and 2000s–2005s. The areas of change 

detected were visually interpreted for identification of factors that may be 

responsible for such changes. The study used a hybrid supervised and 
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unsupervised classification approach to calculate mangrove and non-mangrove 

areas utilizing the rate of change for each period rate of change using the 

following formula: 

 

Rate of change R = {1/t2-t1}1n {Ai2/Ai1} 

 

R = rate of deforestation (area/year), A1= area at an initial time t1 and A2= area 

at a later time t2. Accuracy Assessment for the classified mangrove map of 2005 

(ASTER) was performed using selected random points of 176, consisting of 88 

sample points for mangrove classes and 88 sample points for non-mangrove 

classes. Their results showed that Madagascar had lost about 7% of mangrove 

forests from 1975 to 2005, to the extent of ~2,797 km2.  The causes and 

deforestation rates varied both spatially and temporally. There was a 5.6% (212 

km2) forest increase from 1975 to 1990, a decrease of 14.3% (455 km2) from 

1990 to 2000, and a decrease of 2.6% (73 km2) from 2000 to 2005. 

 

An example of a relationship between a biophysical variable to a spectral index 

is demonstrated by Jean-Baptiste & Jensen (2006); the study used ASTER 

imagery by correlating measurements of canopy closer taken in-situ and leaf 

area index (LAI) with that of the Normalized Difference Vegetation Index (NDVI) 

and the Soil Adjusted Vegetation Index (SAVI). The study discovered that 

spectral indices were positively correlated (0.851 and 0.908) with both 

biophysical variables. However, the study‟s main drawback was using a single 

date image. Using a single image gives limited results and fails in demonstrating 

if there is an established relationship with spectral indices over time. On the 

other hand, the advantage of using multiple date images is that if there is a 

relationship between biophysical variables and spectral indices, it can be verified 

using different dates and different study sites. 

 

2.5. CLASSIFICATION METHODS FROM ASTER 

2.5.1. Unsupervised classification 

Unsupervised classification is the type of image classification where pixels are 

grouped into “clusters” based on their properties. After that each cluster is 

classified with a land cover class. In this classification, the analyst must not have 

samples to classify; the analysts generate clusters and assign classes before 
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classification.  Many studies have applied this primary type of image classification, 

such as Marçal et al., (2005); the study used the ASTER sensor to produce 

updated land cover maps for the Vale do Sousa region in Brazil to segmented 

objects. Several classification methods used were carried out using a set of 

validation sites. Hierarchical clustering is a technique used on unsupervised 

classification data to evaluate the similarities between the land cover classes' 

spectral signatures. The results showed that unsupervised classification with 

hierarchical clustering in most classes was of several clusters in the multispectral 

space and that some of the classes shared the same clusters.  

 

 Koch et al., (2003) applied the same method based on the ISODATA algorithm 

on ASTER images; the study also used Spectral Angle Mapper (SAM), a 

supervised classification method. However, the ISODATA was still more useful for 

a generalized classification than the SAM. SAM measures the likelihood between 

image pixel vectors and reference vectors defined by the user, while the 

unsupervised classification was the most convenient method since not much 

required input from the user, and this could be used in cases where there was 

insufficient field data to be supported. This was evidence that unsupervised 

classification was the preferred method to be used, more especially if there was 

no prior knowledge of the area's characteristics under investigation and that raw 

image data could be converted into useful information, thus achieving higher 

accuracy. 

 

2.5.2. Supervised classification 

Supervised classification is the type of image classification where the analyst of 

an image creates training samples for each land cover class first and then the 

software uses these “training sites” and applies them to the entire image. This 

method is more suitable than the above-mentioned method, “unsupervised 

classification”, because this method is flexible in such a way that the training 

datasets contain predictor variables that measure each sampling unit, and this 

assigns prior classes. Even if there is the addition of new data to the classes there 

is no impact on the classifier. Many studies have applied supervised classification 

techniques on ASTER data to map and monitor vegetation in many parts of the 

world.  
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Some studies used ASTER data only, while other studies used a hybrid approach 

of ASTER and different satellite images. An example of such a study conducted 

by Barakat et al., (2018), where ASTER and Sentinel-2A images were acquired 

for 2001 and 2015 to monitor and analyze forest cover's spatial and temporal 

dynamics in the eastern area of Beni-Mellal Province in Morocco. The study 

applied the supervised classification method to multi-temporal images to map the 

different types of forest stands. The study outcomes achieved an overall 

classification accuracy of 97.76 and 95.80% in 2001 and 2015 images, 

respectively. Their results showed that an overall forest cover change had an 

increase in the forested area and that all species stands indicated expansion at 

the expense of the bare ground and crops & other classes. The use of ASTER 

images in mapping and monitoring vegetation, including mangroves, is a 

secondary objective of the ASTER sensor built for geological application, hence 

the number of bands in the SWIR. However, such capabilities also benefited 

scholars in understanding vegetation phenology within the SWIR region. 

  

Gao & Liu (2008) used both Landsat ETM+ and ASTER data and supervised 

classification to compare the role of spectral and spatial resolutions in mapping 

land degradation (in the form of salinization and waterlogging). The results 

showed that the accuracy achieved was 56.8% and higher for moderately 

degraded (e.g., salinized) farmland and over 80% for severely degraded land 

(e.g., barren) from both ASTER and ETM+ data. The study also showed that the 

eight bands 30m ETM+ outperformed the 14-band ASTER image of 15m and 30m 

resolution, consistently generating a higher overall accuracy. This researcher 

questions the outcomes of the study based on the following, “How did the authors 

come to such a conclusion where an eight-band lower spatial resolution sensor 

could outperform a fourteen-band higher spatial resolution”?  

 

Another study by Akumu et al., (2010) used ASTER and Landsat ETM+ and 

Landsat TM satellite imageries to map and monitor the coastal wetland 

communities in north-eastern New South Wales (NSW) Australia.  The study used 

supervised classification by employing the maximum likelihood standard 

algorithm. The study successfully classified wetlands with an overall accuracy of 

72.65%. However, the study was not specific on which sensor achieved better 

accuracy in delineating the wetlands; it could only be an assumption that a higher 

resolution sensor gave the better results and, in this case being ASTER.  
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2.6. DIFFERENTIATION TECHNIQUES USING VEGETATION INDICES 

2.6.1. Normalized Difference Vegetation Index 

Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation 

Index (SAVI) have been used to monitor and map vegetation cover, biomass 

cover and vegetation extent. NDVI has helped in drought monitoring and 

agricultural production as it helps with green vegetation, while SAVI minimizes 

soil brightness influence using the soil-brightness correction factor to see 

vegetation coverage. Many studies have adapted these techniques, and they 

successfully worked and produced favourable results.  Among those studies 

done by Rouse et al. (1974) it was established that NDVI was capable of 

monitoring vegetation cover and is the ratio of the difference in the Near Infrared 

and Red light, respectively. This index behaved so that green vegetation has 

strong reflectance in the NIR and strong absorption in the red band in the visible 

region with values ranging between -1 and +1. The positive value then 

corresponds to vegetated areas, while the negative values correspond to non-

vegetated areas (Yengoh et al., 2014). Such a discovery has led to many studies 

where different vegetation species identified and discriminated from 

neighbouring land cover using this exact method.  

 

As much as NDVI had earlier proven to be successful in vegetation 

discrimination studies, it became apparent that it did have background noise and 

saturation limitations. Therefore, the development of the Soil Adjusted 

Vegetation Index (SAVI) was to improve such constraints. It was first reported by 

Huete (1988) that SAVI minimized the effects of soil brightness and was less 

affected by the types of soil background (Panda et al., 2010).  

 

While Maryantika & Lin (2017) supported these findings by confirming that SAVI 

was an index designed to compensate for soil background effects on NDVI, 

these effects showed linearly related red and infrared reflectance values and 

could be moderately controlled by a correction factor L. This factor had three 

values representing different canopy backgrounds: L = 0.25 for higher vegetation 

density in the field, L = 0.5 for intermediate vegetation density and L = 1 for the 

low vegetation density. Huete (1988) recommended that SAVI L = 0.5 
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successfully decreased the influence of soil differences in green vegetation 

compared to NDVI. 

Maryantika & Lin (2017) in Sidoarjo District in East Java Province, used multi-

temporal Landsat images for deriving information in the LULC (Land Use Land 

Cover) maps by using indices such as GNDVI (Green Normalized Difference 

Vegetation Index), NDVI and SAVI due to mangrove change distribution in the 

area. From 1995 to 2015, 25% of cropland and 15% of bare land changed to 

become built-up areas, 8% of wetland and 22% of mangroves changed to 

cropland, which led to mangroves remarkably decreasing in the district. The 

accuracies of the indices were close to one another, and the average GNDVI 

performance for the LULC type for five images had a kappa of 0.33 ± 0.10 for the 

specific five images, and NDVI and GNDVI were very close to each other by 

NDVI at 0.29 ± 0.12, while SAVI was at 0.31 ± 0.12. Therefore, the study 

demonstrated that SAVI produced better results than NDVI, even though the 

height of vegetation was not mentioned in the study because, NDVI tends to 

saturate in dense vegetation canopies. SAVI works well in low vegetation areas 

with less dense vegetation. 

 

Sari & Rosalina (2016) did another study, mapped and monitored mangrove 

density changes due to the tin mining area of Bangka Belitung. The study used 

Landsat image data for the years 1997, 2009 and 2014; and used NDVI for 

mangrove analysis. The results showed that the overage mangrove area 

dropped from 2,807.79 ha in 1997 to 1,596.38 ha in 2014. Overall, percentages 

of the mangrove coverage area showed a decline over the timeframe, overall 

accuracies of 86.8% to 34.3% from sparse class, a slight drop in the middle 

class from 13% in 1997 to 10.7% in 2014 with an increase in dense class with a 

percentage from 0.29% to 55.0% in 2014. However, the study did not use other 

indices to monitor the density or correlate NDVI to other indices for more detailed 

analysis. 

 

Another application of multispectral satellite data is evident in (Ibharim et al., 

2015; Roslani et al., 2014); both studies used three multispectral satellite data: 

Landsat TM 1993, Landsat ETM+ 1999 and RapidEye 2011. The study 

generated a false colour composite of the Matang Mangrove Forest using 5, 4, 3 

for RapidEye and 4, 5 and 3 for Landsat band combinations (Ibharim et al., 
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2015), together with supervised classification and Normalized Difference 

Vegetation Index (NDVI) to map vegetated and non-vegetated areas.   

 

While (Roslani et al., 2014) integrated the Normalized Difference Vegetation 

Index (NDVI) by using NDVIRed and NDVIRed Edge with Maximum likelihood 

Classifier (MLC) for classifying mangrove vegetation. However, the study found 

out that there was a decline in the mangrove area due to conversions of water 

bodies at 2490.6 ha (31.1%), dryland forest at 2456.6 ha (30.6%), Oil plantation 

at 1518.6 ha (18.9%), aquaculture at 890.7 ha (11.1%), paddy plantation at 

391.1 ha (4.9%), horticulture at 245.6 ha (3.1%), and urban settlement area at 

24.1 ha (0.3%). 

 

Spatiotemporal changes and distribution in mangrove forest are investigated by 

(Chen et al., 2013; Dan et al., 2016); both studies used Landsat imagery to map 

the extent of the current mangrove forest in the Sundarbans Delta, and in the 

West and Central Africa (Dan et al., 2016) and Honduras (Chen et al., 2013). 

Both studies found out that there was a rapid loss in the mangrove forests. The 

28-year period (1985-2013) in Honduran lost approximately 11.9%, while in West 

and Central Africa, mangrove loss from 1988 to 2014 was about 16.9%, and in 

the Sundarbans Delta, there was a remarkable increase of approximately by 

15.3%. 

 

(Kanniah et al., 2015; Omar et al., 2018) successfully mapped mangrove 

deforestation rates in Malaysia. Both authors utilized Landsat imagery for 

different periods; Omar et al., (2018) used the Random Forest classifier with 

vegetation indices like Green Atmospherically Resistant Index (GARI), 

Normalized Different Vegetation Index (NDVI), and Normalized Difference 

Infrared Index (NDII) for the years 1990, 2000 and 2017. The study found out 

that mangroves shrunk from 1990 to 2017 by about 793 ha yr-1 or 0.13% yr-1. 

While Kanniah et al., (2015) used Maximum Likelihood Classification (MLC) and 

the Support Vector Machine (SVM) technique from 1989 to 2014 period and the 

results yielded that there was indeed a rapid decrease of 33%. 

 

The ability of CASI-2 hyperspectral data was assessed by Kamal & Phinn (2011) 

to map mangrove vegetation using pixel-based and object-based approaches in 

South East Queensland, Australia, at the mouth of the Brisbane River area. They 
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used multi-scale segmentation for the object-based image analysis (OBIA) while 

using spectral angle mapper (SAM) and linear spectral unmixing (LSU) for the 

pixel-based approaches. The results showed an accuracy of 69% for SAM, 56% 

for LSU and 76% for OBIA. However, the study does not reveal the extent of 

mangroves and whether they are increasing or decreasing. Meanwhile Phinn & 

Duke (2007) compared the time series analysis using NDVI on Landsat imagery 

and aerial photographs for Pioneer River Estuary near Mackay, Queensland, 

Australia, to map changes caused by natural and anthropogenic changes in 

mangrove area between 1948 and 2002. The results indicated that there was a 

loss of 137 ha (22%). However, the study does not detail what is better at 

documenting mangroves changes between aerial photographs and Landsat 

imagery. 

 

An example of how the tidal effect can influence mangrove mapping is evident in 

Zhang et al. (2017). They used the Decision Tree algorithm and Multitidal 

Landsat 5 Thematic Mapper (TM) data and a Digital Elevation Model (DEM), 

With Normalized Difference Moisture Index (NDMI), the Normalized Difference 

Vegetation Index (NDVI) and NDVIL·NDMIH (the multiplication of NDVIL by 

NDMIH, L: low tide level, H: high tide level) to map mangroves collected at a 

single-tidal event in Fang Chenggang City, China. The results demonstrated that 

spectral signatures of mangrove forests influence image acquisition at different 

tide levels; thus, it could not yield any accuracy if a single-tidal event is used to 

map mangrove forests, particularly those acquired at high tide. 

 

Suwanprasit (2018) compared five vegetation indices: Normalized Different 

Vegetation Index (NDVI), Simple Ratio (SR), Soil Adjusted Vegetation Index 

(SAVI), Perpendicular Vegetation Index (PVI) and Triangular Vegetation Index 

(TVI), for 2010; to explore which one would be ideal in delineating mangrove 

areas in Pa Khlok sub-district, Phuket, Thailand, using THEOS (Thailand‟s first 

Earth Observation Satellite). The study outcomes indicated that the optimum 

obtained results of 96.78%. The reason for this is because the indices we 

merged with the four spectral bands of the sensor to increase classification 

information, Figure 2. However, the authors did not discard each index's 

performance; they indicated that the individual indices performed well, as seen in 

(Table 1) below. 
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Table 1: Performance of individual indices and when merged with satellite THEOS, spectral 
bands.

 

The results as indicated in (Table 1) above show that the indices achieved 

higher accuracies when merged with satellite, and the merged best indices that 

achieved high accuracies were THEOS 4 Bands + NDVI, THEOS 4 Bands + SR 

and THEOS 4 Bands + SAVI, while these bands also performed better even 

when not merged with the satellite bands. This is a clear indication that for 

mapping exercises performed better with satellite data. 

 

2.6.2. Leaf Area Index 

The leaf area index (LAI) is a mathematical equation used to quantify plant 

canopy. It has been used in several remote sensing studies involving biomass 

monitoring and prediction, net primary production, aboveground biomass, and 

canopy height.  Aboelghar (2011) termed LAI as the overall one-sided foliage 

extent per unit surface area, and it is the most significant biophysical parameter 

in distinguishing canopy. While Scurlock et al., (2001) defined LAI as the amount 

of leaf area in a vegetation canopy per unit land area. Like net primary, LAI is a 

key structural characteristic of vegetation and land cover because of the role of 

green leaves in a wide range of biological and physical processes. Fei et al., 

(2011), defined LAI as a quantitative variable that can be used to analyze energy 

exchange in the mangrove ecosystem and be used in mangrove biomass 

estimation and pest evaluation. Kovacs et al., (2005) estimated LAI based on an 

NDVI map using IKONOS and in-situ LAI-2000 sensor data for the Agua Brava 

Lagoon, Mexican Pacific. The results showed that the combination of IKONOS 

satellite data and the LAI-2000 could be used to map LAI at the species level. 
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However, the study only used in-situ data without comparing LAI measured from 

the satellite, but that depends on the author‟s objectives and preferences.  

 

The use of UAV image to map mangrove LAI is described in Tian et al., (2017). 

They used WorldView-2 image (WV2) and compared it with UAV together with 

three representatives NDVIs, average NDVI (AvNDVI), vegetated specific NDVI 

(VsNDVI), and scaled NDVI (ScNDVI), were acquired with UAV and WV2 to 

predict the plot level (10×10 m) LAI. The results showed that AvNDVI was the 

most accurate with WV2, while ScNDVI obtained the best UAV accuracy. The 

comparison suggested that UAV received a higher accuracy than WV2, the 

RMSE of WV2 was 0.753, whereas UAV was 0.835. The reason for such 

outcomes was that UAV could effectively eliminate background influences and 

vegetation species because of its very high spatial resolution, as shown in 

(Figure 4) below. 

Figure 4: Comparison of pixel-level NDVI from UAV and WV2. The NDVI value is represented by 
an image with 256 levels of gradation, in which NDVI increased with increasing grayscale values. 
The red box is the boundary of plot A, and the red point is the centre of plot A. (adopted from 
Tian et al., 2017). 

Kamal et al., (2015) investigated different mangroves effect on environmental 

settings using satellite image spatial resolutions, spectral vegetation indices 

(SVIs) and the mapping approach for LAI estimation. They compared 

WorldView-2 (WV-2), ALOS AVNIR-2 (AVNIR-2) and Landsat TM (TM) image 

data (2m, 10m and 30m pixel sizes for estimating LAI by using regression 

analysis at sites found in Moreton Bay (Australia) and Karimunjawa Island 
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(Indonesia). The results showed that LAI estimated from remote sensing data is 

site-specific, some mangrove habitats (i.e., homogenous versus heterogeneous 

stands) and that leads to LAI values having different distribution patterns, and 

that LAI values are not dependant on mangrove formation (i.e., scrub, low-closed 

forest and closed forest) instead they depend on canopy cover and mangrove 

phenological stages. 

 

Flores-Verdugo investigated LAI estimation (2009); the study used the handheld 

AccuPAR LP-80 Ceptometer and QuickBird very high-resolution optical satellite 

data with 300 indirect in-situ LAI measurements obtained at various sites. 

Regression analyses (derived from QuickBird) of the in-situ LAI with both the 

normalized difference vegetation index (NDVI) and the simple ration (SR) 

vegetation index showed positive relationships [LAI versus NDVI (R2 = 0.63), LAI 

versus SR (R2 = 0.68)]. As much as the direct use of NDVI is for characterizing 

plant vigour, canopy spectral characteristics, canopy growth and changes of 

green leaves in plants, it is also compatible with LAI; hence studies, directly and 

indirectly, correlated NDVI and LAI. This also suggests that these two indices 

can be used to complement vegetation or forest mapping and monitoring studies 

such as this one.  

 

3. CHAPTER 3: METHODS AND METHODOLOGY 

3.1. DATA SOURCE AND SETS 

3.1.1. ASTER Image Acquisition 

 

ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) is 

a multispectral medium spatial, spectral and radiometric resolution on-board the 

Terra satellite of NASA‟s Earth Observing System (EOS) in collaboration with the 

Japan Resources Observation System Organization (JAROS). It was launched on 

18 December 1999 with a sun-synchronous orbit at a local time of 10:30 am and 

16-days of recurrent. ASTER was initially targeted at mapping or investigating 

geological interactions such as geology and soil, volcano monitoring, hydrology, 

etc. (Abrams, 2010; Chrysoulakis et al., 2010).  

 

ASTER satellite imagery was selected for the study over other satellites, which 

are freely available such as Landsat, Sentinel and MODIS, because it possesses 



30 
 

higher spatial resolution properties over these satellites as mentioned above. 

ASTER has fourteen spectral bands, of which four bands are in the visible and 

near-infrared (VNIR) region at 15m resolution, while the shortwave infrared 

(SWIR) sensor has six bands at 30m resolution, and finally, the thermal infrared 

(TIR) sensor has five bands with 90m resolution. ASTER Level 1B images of 

Mngazana mangrove forest, acquired for 2008, 2009, 2016 and 2018; were used 

in this research because these were the only images available for the study area 

within the investigation period (Table 2).  

 

Level-1B (L1B) is a Level-1A (L1A) data (ASTER acquires data around the whole 

globe with 8% average duty cycles per orbit. This means that acquisitions of 650 

scenes per day are processed to Level-1A; about 150 are processed to Level-1B), 

with applied radiometric calibration and geometric resampled coefficients, while 

data in L1A is unprocessed, reconstructed, and used without the coefficients to 

the imagery; hence original data values are maintained (Abrams, 2010). 

ASTER L1B was chosen over L1A as aforementioned because L1A has 

unprocessed and reconstructed data at full resolution with coefficients appended 

not applied, while L1B data is stored in the metadata simultaneously as  an HDF 

file and images are radiometrically corrected. 

 

All images were acquired with 0% cloud cover and were obtained from the USGS 

online data portal (http://earthexplorer.usgs.gov//). Only the VINR region with band 

1, 2 and 3 where green ranges between 520–600 nm, red 630–690 nm and near-

infrared between 790–860 nm respectively in the electromagnetic spectrum (Table 

1). The short-wave infrared (SWIR) channels of ASTER stopped operating in April 

2008 due to the cryocooler's failure (Chrysoulakis et al., 2010).  

Table 2: ASTER satellite band information (Yamaguchi et al., 1998) 

Spectral Region Band No. Spectral Range (µm) Spatial Resolution (m) 

VNIR 

1 0.52-0.60 

15 
2 0.63-0.69 

3N 0.78-0.86 

3B 0.78-086 

SWIR 

4 1.60-1.70 

30 
5 2.145-2.185 

6 2.185-2.225 

7 2.235-2.285 

about:blank
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8 2.295-2.365 

9 2.360-2.430 

TIR 

10 8.125-8.475 

90 

11 8.475-8.825 

12 8.925-9.275 

13 10.25-10.95 

14 10.95-11.65 

     

3.1.2. Field Data Collection 

Field sampling was carried out to collect information on the composition of 

vegetation types/classes. The sampling points were pinned on the map using a 

„placemark‟ in Google Earth Pro (version 7.1.2.2041). A stratified random 

sampling method was used for locating the sampling plots. The GPS was used to 

locate field sample plots, gather location attributes of plant species and provide 

field-points for assessing the classification accuracy of the vegetation type map. 

The field validation data was collected at the Mngazana mangrove forest in 

November of 2018, where 139 points were selected based on accessibility and 

availability of mangroves. Figure 1 shows the location where the points were 

taken. For every point captured, the following properties were recorded on each 

point; Global Positioning Systems (GPS) coordinates of the survey location, the 

types of mangroves, saltmarshes, presence or absence of the harvested 

mangrove stands, open water, terrestrial vegetation, soil and bare ground.  
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Figure 5: Control points used in the field data collection 

3.2 DATA ANALYSIS AND INTERPRETATION 

3.2.1 Softwares 

There were two software packages used to analyze data; one was Quantum GIS, 

popularly known as QGIS, and the other software was ENVI. A plugin in QGIS 

called Semi-Automatic Classification was used for pre-processing the images, 

which included atmospheric correction Dark Object Subtraction 1 (DOS1), layer 

stacking and subsetting of the study area. At the same time, ENVI was used for 

performing information extraction post-processing. This included selecting the 

Region of Interest (ROI), classification of land-cover classes and calculating the 

vegetation indices used in this study. 

 

3.2.2. IMAGE PREPROCESSING 

As data was acquired in Level 1B, it means that the data was in irradiance. 

Therefore, it was critical to convert the data to Top of the Atmosphere reflectance 

(TOA). TOA is the combination of atmospheric and surface reflectance applied to 

reduce the variability of the in-between-scene by normalizing solar irradiance or 

correction using the DOS1 (Dark Object Subtraction 1) (Congedo, 2018). This 

technique assumes that some of the pixels are incomplete shadows due to the 
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radiance received by satellite and atmospheric scattering or path radiance 

(Congedo, 2018). The process was also done using the “Semi-Automatic 

Classification plugin” (SCP). The plugin provided numerous easy to follow 

systematic pre-processing tools, including that of atmospheric correction, as 

shown in (Figure 6). Once the images were atmospherically corrected, a 

composite image was created by stacking all individual spectral bands. this 

process was also done using the Semi-Automatic Classification Plugin (Figure 6) 

Figure 6: Graphic user interface of the Semi-Automatic Classification plugin 

The QGIS software simplified this process because the entire pre-processing 

chain was embedded within the plugging, unlike in ENVI, where the same 

procedure would have been done separately, which would have increased human 

errors. However, ENVI software was nonetheless used for post-processing of the 

data. As the mangroves covered a fraction of the entire ASTER scene, the study 

area was extracted to maximize the processing time and focus on the mangroves' 

analysis and not the surrounding land cover. The Region of Interest (ROI) tool 

was used to subset the mangroves from the stacked images to achieve this. The 

methodological framework applied in this study for mapping and monitoring the 

mangroves of Mngazana is presented in Figure 7.  
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Figure 7: Methodological flowchart of the procedure used in the study 

 

3.2.3. NDVI and SAVI Vegetation Indices 

Vegetation indices attempt to minimize the impact of sources of environmental 

effects: soil colour, soil brightness, moisture, shadow, and upgrade the vegetation 

response (Ozbakir & Bannari, 2008). According to Jensen & Hardin (2005), 

vegetation indices are considered dimensionless radiometric measures 

demonstrating how abundant green vegetation activity is. In contrast, Jung et al. 

(2012) referred to VI as critical satellite-derived data for retrieving information on 

monitoring and assessing the earth‟s vegetation cover. Nowadays, most maps of 

mangrove forests are derived from remotely sensed data and represent changes 

in the extent and land cover. The vast majority of studies use remote sensing 

technologies to identify mangrove forests and measure their spatial extent.  

 

Many methodologies have been developed to discriminate mangrove from non-

mangrove vegetation. Vegetation indices are used in remote sensing studies and 

applications for various reasons such as; maximizing the vegetation 

characteristics' sensitivity and minimizing the variations in soil background 
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reflectance‟s, atmospheric effects, and illumination conditions. The functionality of 

the vegetation indices such as NDVI is to remunerate the impact of factors such 

as the spectral reflectance connection between vegetation. It is evident in the 

characteristics of crops, such as Leaf Area Index (LAI) and unpleasant aspects 

such as soil background and atmospheric effects. Distance-based vegetation 

indices such as SAVI reduce the soil background's impact, especially in areas 

where there is sparse vegetation cover; this means that the information in the 

image pixel contains a combination of soil and vegetation (Panda et al., 2010). 

 

As a result, the following indices were computed in this study: the Normalized 

Difference Vegetation Index (NDVI) and the Soil Adjusted Vegetation Index (SAVI) 

as illustrated in equation 1 and 2, respectively. The affiliation is because the 

physiological chlorophyll a and b inside the palisade layer of healthy green 

vegetation leaves absorbs mostly red incident radiant flux. In contrast, the spongy 

mesophyll leaf layer of the near-infrared radiant flux reflects. These wavelengths 

bands are employed in many vegetation studies. After all, they can correlate with 

quantity and healthy green vegetation (Jensen & Hardin, 2005). Moreover, these 

can be used to monitor and access the vegetation vigour, meaning healthy 

vegetation can be distinguished from unhealthy plants. 

 

NDVI was utilized to identify the mangroves' presence and absence and 

distinguish between the mangrove forest's vegetation types. NDVI values range 

from -1 (non-vegetated areas) +1 (for green, healthy vegetated areas) Barakat et 

al., (2018). The range of NDVI values extracted from the study area from 2008 to 

2018 was from -0.29 to +0.79. The problem that NDVI has when it comes to 

dense aquatic vegetation is saturation; NDVI quickly reaches saturation because 

of its non-linearity (Brecht, 2018). The equation for calculating NDVI from remotely 

sensed images is represented below. 

NDVI= 
         

         
                     (1) 

 Where:      is the near-infrared band 

                    is the near red band 

 

As discussed in Chapter 2, it was evident that SAVI plays a vital role when it 

comes to suppressing soil brightness, more especially in areas where there is low 

vegetation cover. The background of soil reflectance is easily influenced in NDVI; 
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thus, SAVI therefore normalizes that influence by using soil brightness correction 

factor. The correction factor L is adjusted depending on the quantity of vegetation, 

L=1; for analyzing shallow vegetation, L=0.5; for analyzing intermediate vegetation 

canopies and L=0.25; for high vegetation densities (Pettorelli et al., 2005). The 

mangrove canopy at Mngazana could be characterized as intermediate; therefore, 

0.5 was used as the L factor in this study, which in most cases SAVI L=0.5) has 

successfully decreased the effects of soil background, as compared to NDVI 

(Panda et al., 2010). The selection of SAVI for this study was because it can 

determine plant and minimize soil effects in the study area's image. 

  

SAVI= 
         

           
                                              (2) 

 

Where:      is the brightness value from the red band 

                is the soil calibration factor 

 

In a mangrove environment, as mangroves are constantly inundated with water, 

the tidal height under the mangrove canopy needs attention, as an image is 

acquired during a high tide, the water would influence the spectral signatures of 

the mangroves and further compromise the classification results (Younes 

Cárdenas et al., 2017).  

 

3.3. CLASSIFICATION TECHNIQUES 

3.3.1. K-Means  

K-means classification is a type of unsupervised classification method; this 

classification method was used in this study because of its computational 

efficiency and performance (Fang et al., 2013). This algorithm was simple as it 

required a specified number of classes, and in this study, since a stratified random 

sampling method was used for locating sample points, only ten clusters within the 

mangrove class were recorded using a k-means classification algorithm. These 

were grouped according to low, medium and high mangrove density. No sampling 

station plots were recorded. 

 

3.3.2. Maximum Likelihood 

Maximum Likelihood Classification (MLC) is a supervised classification method 

that was also used in this study because it uses parametric logic that assumes 
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data is typically distributed. The classes are trained based on the probability 

density function and use that probability to calculate each pixel that may belong to 

any particular class, and each pixel is assigned to the highest density (Lee & Yeh, 

2009; Kanniah et al., 2015; Otukei & Blaschke, 2010). In this study, the land cover 

classes identified during field data collection were used as representative 

signatures for various land cover types specified.  

 

Four ASTER visible near-infrared (VNIR) were used to develop the seven land 

cover types acknowledged in the Mngazana mangrove forest. The classification 

was executed in ENVI version 5.3 software using ROI (Region of Interest), a 

supervised classification prerequisite. For a supervised classification to be 

conducted, ROI (Training areas) must be selected by the user, and, it is only 

possible to get accurate results only if the user selects one or more ROIs of that 

particular land cover class identified in an image. The reason for choosing the 

“supervised classification technique” is that it is applied in known classes to 

classify the unknown regions or pixels in the image to be classified and enables 

the user to decide on the classes and specify the training areas, whereas the 

software uses these training sites to classify the images.  

 

For this research, eight land use classes were identified. The land cover classes 

identified were: bare soil, mangroves, mud-banks, open water, terrestrial 

vegetation, salt marshes and sand, and mangroves; the focus was to classify land 

cover classes at Mngazana then focus only on mangroves afterwards. The 

purpose of field data was first to assign pixels as training samples to the image to 

be classified and secondly to validate the classified image. This was done so that 

we can be sure that what is on the image is what is on the ground, to make 

classification easy. This was accomplished by using the original image and the 

support of field data to assist the visual interpretation process for allocating each 

pixel type to the correct land cover class.  

The natural colour was considered the best colour composite because it showed 

clearly land cover class units. Table 3 shows the overview of land cover classes 

identified during the field data collection. Supervised classification method and 

Maximum Likelihood Classification (MLC) were adopted in this study. The reason 

for using ENVI and choosing this method is because it has been the most used 

classification technique and delineates classes successfully with high accuracies.  
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For this study, a confusion matric (error matrix) was implemented to connect the 

ROI on the pixels used as reference using ENVI software. The matrix accurately 

computes each class directly, Ghebrezgabher et al., (2016a), as it assumes that 

samples for each class introduced to the classifier in the training stage are in a 

normal distribution (kavzlov 2017). According to Otukei & Blaschke (2010), the 

MLC works in the following way; the Maximum Likelihood Classifier calculates the 

following discriminant function for each pixel in the image: 

 

gi(x) = -1nCOVi-(x-mi)
 t *(sum over i of all (x-mi))                

(3) 

 

Where i is the class, x is the pixel, COVi is the covariance matrix of class i, mi is 

the mean spectrum for class i (Richards 1993). ENVI calculates for each pixel the 

probability that the pixel belongs to a given class as probability=gi(x)/ (sum over i 

of all gi(x). ENVI then assigns the pixel to the class with the highest probability. If 

the highest probability is smaller than the threshold value that the user enters, the 

pixel remains unclassified. The rule images are images of the probability 

calculated for each class. It is important to stress that ENVI's „probabilities‟ 

calculated are not actual probabilities, but normalized discriminant function values  

Saito et al., 2003). 

 

Table 3: Land cover classes and their description 

Land cover Class Description of Each Class 

Bare soil Areas that have no vegetation only exposed soil 

Terrestrial 

vegetation 
Areas that do not have mangroves species or coastal vegetation 

Mangroves Areas with dense mangrove tree species juvenile and adult 

Saltmarsh Areas with vegetation that is less than 1 meters tall. 

Sand Areas with no vegetation or soil, most have little or no water 

Open water Estuary main channel, rivers, streams 

Mud banks Areas of moist soils and swamps. 
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3.4. ACCURACY ASSESSMENT 

Validation of the landcover was done by profiling each of the 139 field data points 

for its landcover. This process was done during the field data collection process. 

Furthermore, validation of the classification results is an essential step at this 

stage of the analysis. The process to quantify the classification accuracy was 

carried out using the 139 field data points sampled from the mangrove location. 

The overall accuracy and confusion matrix, which shows the kappa statistics, 

user‟s accuracy, and producer‟s accuracy, were used to evaluate the accuracy of 

the supervised classification carried in this study. As a result, the statistical 

values of the overall accuracy, kappa coefficient, omission error (producer‟s 

accuracy) and commission error (user‟s accuracy), were then calculated for the 

years at which the data was acquired, which was: 2008 2009, 2016 and 2018. 

The kappa statistics agree, which shows the probability values ranging from +1 to 

-1, respectively, representing the strongest to the most deficient agreement 

(Barakat et al., 2018). 

 

4. CHAPTER 4: RESULTS AND DISCUSSION 

4.1. RESULTS 

4.1.1. Classification Techniques 

4.1.1.1. K Means 

The unsupervised k-means an algorithm was applied to SAVI and NDVI 

mangrove data results. This type of classification was chosen to classify the 

ASTER image into seven classes, as shown in Figure 8. One of those classes 

was the mangrove class, which was then grouped into three categories: high, 

moderate and low canopy density for the years 2008, 2009, 2016 and 2018.  

 

4.1.1.2. Maximum Likelihood 

The field survey conducted identified seven major land cover classes at 

Mngazana mangrove forest, and they were as follows: bare soil, terrestrial 

vegetation, mangroves, salt marshes, sand, open water and mud banks. The 

Maximum Likelihood (ML) classifier was used for classifying the land cover 

classes found at the Mngazana mangrove forest from the ASTER satellite 

image. The classification outcomes indicated that the Maximum Likelihood 

Classifier performed reasonably well with some classes; however, it did 

misclassify some classes such as salt marshes, bare soil and mud banks. 
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However, these outcomes were not out of the ordinary as the results from a 

study done by (Ha et al., 2018) showed similar results where MLC misclassified 

barren lands classes out of water bodies classes. Table 4 below shows how the 

land cover changed over ten years for the classes mapped. 

 

 

Table 4: The estimates area of the land cover area for Years 2008, 2009, 2016, 2018 

Years Land cover Classes 

 Bare Soil 
Terrestrial 
Vegetation 

Mangroves Salt Marshes Sand 
Open 
Water 

Mud 
banks 

2008 0.80 0.81 0.57 0.30 0.05 0.3 4 

2009 0.18 0.99 0.09 1.71 3.60 0.45 2.7 

2016 0.9 1.44 0.54 0.63 3.24 0.81 0.18 

2018 0.9 0.18 0.81 1.53 89.82 0.63 2.97 

Overall, the classification results were acceptable in mapping the mangrove 
species from 2008 to 2018. The maps produced provided information on how 
the mangrove forest hanged over the ten years. These changes are reflected in 
Figure 8.   

Figure 8: Shows land cover classification of the Mngazana estuary in 2008, 2009, 2016 and 2018. 
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4.1.1.3. Accuracy Assessment 

The results obtained for the study were validated by comparing the user versus 

the producer's accuracies, which produced the overall accuracy and kappa 

coefficients. A random sampling method was adopted in this study for the 

accuracy assessment. A total of 139 points were randomly selected, and the 

outcomes for this are summarised in Table 5. 

Table 5: Classified images accuracy assessment in 2008, 2009, 2016, and 2018 

Years 2008 2009 2016 2018 

Overall accuracy (%) 94.64 88.62 95.08 93.58 

Overall kappa 0.93 0.85 0.93 0.91 

Mangroves in all the years were significantly discriminated, and lower accuracies 

were found in the year 2009 as compared to the other years. 

 

4.2.2. Vegetation Indices 

4.2.2.1. Soil Adjusted Vegetation Index 

Canopy density results for SAVI are shown in Figure 9. SAVI was used in this 

study to lessen the effects of soil background effects in the Mngazana mangrove 

forest using the soil brightness correction factor of L= 0.5, which was ideal for 

intermediate vegetation canopies. This index's outcomes have demonstrated 

that the soil brightness correction of L=0.5 was successful in minimizing the 

effects of soil background, which was also consistent with the study done by 

Panda et al., (2010).  
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Figure 9: SAVI for mangrove density change for the years 2008, 2009, 2016 and 2018. 

 

Figure 9 above shows the mangrove canopy density for SAVI fluctuated between 

the years under investigation. These changes in canopy density are well 

presented in Table 7 below. It is evident from the outcomes that the overall 

changes in the low-density canopy between 2008 and 2018 increased by 3.2% 

(17.3ha to 20.5ha), while the medium canopy reduced by 4.3% (60.5ha to 

56.2ha) and the high-density canopy increased by 0.9% (70.4ha to 71.3ha). 

Interestingly, the total canopy cover between 2008 and 2018 remained at 148ha, 

except for a 0.2ha change. A T-test was done to evaluate whether the difference 

was statistically significant or not, and the outcomes indicated that the p-value 

was 0.33, which confirms that the total canopy changes as mapped by SAVI 

between 2008 and 2018 were statistically insignificant. However, this suggests 

that the changes in canopy density were only experienced between the canopy 

classes.   

  

Table 6: Mangrove density change for SAVI and the percentages for each year 

Mangrove Density Change for SAVI (ha) 

Year Low Medium High Total 
Percentage (%) 

Low         Medium     High 

2008 17.3 60.5 70.4 148.2 11.5 40.9 47.6 

2009 16.9 60.4 70.9 148.2 11.4 40.9 47.3 
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2016 27.7 59.4 61.4 148.5 18.7 40.1 41.4 

2018 20.5 56.2 71.3 148 13.8 38 48.1 

 

4.2.2.2. Normalized Difference Vegetation Index 

The classified NDVI images from 2008 to 2018 show fluctuations in the 

mangroves' area (Figure 11). From 2008 to 2016, in the low canopy density, 

there was an increase of 10.2% (17.4ha to 27.4ha), and between 2016 to 2018, 

there was a decrease of 6.9% (27.4ha to 20.5ha). During the ten years of 2008 

to 2018 there was an increase of 3.3% (17.2ha to 20.5ha). A decline of 4.4% 

(60.2ha to 55.8ha) in the moderate density canopy from 2008 to 2018 was 

observed, while in the high-density canopy, it increased by an increase of 1.3% 

(70.6ha) 71.9ha). However, the total mangrove cover over the years from 2008 

to 2018 remains unchanged at 148ha, except for 0.13ha (Table 8). The test 

showed statistical insignificance with a p-value of 0.41, which suggests that the 

changes were experienced in the canopy densities rather than in the total 

mangrove coverage. 

 
Figure 10: NDVI mangrove density change for the years 2008, 2009, 2016 & 2018 

 

Table 7: Mangrove density change for NDVI 

Mangrove Density Change for NDVI (ha) 
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Year Low Medium High Total 
Percentage (%) 

Low      Medium         High 

2008 17.2 60.2 70.6 148 11.6 40.7 47.7 

2009 16.8 61.0 69.9 147.7 11.3 41.2 47.2 

2016 27.4 60.1 60.9 148.4 18.5 40.6 41.1 

2018 20.5 55.8 71.9 148.2 13.9 37.8 48.5 

 

4.3. DISCUSSION 

Mangrove density changes in the Mngazana mangrove forest are mainly caused 

by harvesting. Overall, the mangrove coverage area remained the same 148ha 

throughout the ten years of this study, with the exception of 0.13ha (Table 9).  

However, the low-density canopy mangrove coverage in 2016 was the highest 

compared to 2008, 2009 and 2018.  

 

Besides, three villages, as explained in Section 3, surround the mangrove area 

in Mngazana, and these villages are responsible for the decline in the mangrove 

density. The decline of the Mngazana mangroves could be attributed to the 

many years of harvesting by the locals. This was evident during the field survey 

where visible patches within the forest at times with mangrove stumps were 

seen. These observations were consistent with the mangrove poles seen left 

along the estuary banks (Figure 11) and some being sold as alongside the road. 

Fluctuations for the mangrove forest for SAVI and NDVI are shown in Figure 12 

and Figure 13.  



45 
 

 

Figure 11: Mangrove poles along the river bed. 

 

Table 9 illustrates how the total mangrove has not changed but instead, the 

dense canopy of mangroves for ten years (from 2008 to 2018) has changed. 

This change is mainly more observable in the low and high-density canopies. 

The reason for this is that the mangrove stands during harvesting are not cut the 

same because it is not monitored harvesting. Some mangrove stands are 

cleared adequately while others are not, this leads to those stands being 

categorised as low density or moderate and high density.  

 

Apart from the mangrove stands, the mangrove seeds can regenerate and 

produce new mangrove trees without any form of regeneration (Geldenhuys et 

al., 2016). During the field trip visits, these were noticed, and during mapping, 

the indices picked them up but depending on their height, which will determine 

whether they would be classified as low, moderate or high density.  

 

The other reason that can cause the decline observed between 2016 and 2018 

is that the harvesting occurred again in the same area, and the area was big 

enough to be picked up by the satellite. If harvesting occurs at different places 

within the various densities, it cannot be easily detected, as removing for 
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example fifty trees at other points cannot be readily noticeable compared to the 

removal of 300 trees in the same area. The 0.13ha exception could be caused 

by the growth of mangroves in places that were cleared due to harvesting. This 

was confirmed by Rajkaran et al., (2004) study, which showed that the decline in 

mangroves at Mngazana is caused by anthropogenic activities, mainly 

harvesting and firewood collection which leads to the harvesting of 

approximately 550 trees per month which is about 1ha per year. 

 

 

Table 8: Mngazana total mangrove area from 2008 to 2018 

 

Overall, mangrove canopy coverage fluctuated over the period under 

investigation (2008 to 2018). There was a decrease in the moderate density 

canopy cover (Figure 11 and Figure 12) between 2016 and 2018 of 4.3ha. The 

same phenomena were also observed within the low-density canopy, where 10.2 

ha were also lost. However, an increase of 11ha was observed in these indices 

in the high-density canopy in the same period (2016 to 2018). Percentages for 

moderate mangrove density canopy dipped slightly from 60.2ha in 2008 to 

55.8ha in 2018. However, the high-density canopy rate rose sharply from 60.9ha 

in 2016 to 71.9ha in 2018, whereas there was a dip between 2008 and 2016 of 

70.6ha to 60.9ha. The low-density canopy experienced a sharp rise between 

2008 and 2016 of 17.2 ha to 27.4ha, and there was a sharp decrease between 

2016 and 2018 of 27.4ha to 20.5ha. (Figure 12 and Figure 13). 
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Figure 12: NDVI mangrove density cover for the years 2008, 2009, 2016 and 2018 

 

The correlation analysis was done to determine the relationship between SAVI 

and NDVI for the ten years under investigation. The calculated p-value was 0.70, 

and based on this result, and it was evident that SAVI and NDVI were strongly 

correlated. As a result, these two vegetation indices were thus able to map and 

monitor the mangrove forest changes. These findings were consistent with a 

study conducted by Rhyma et al.,( 2020) who obtained a p-value of 0.69 and a 

correlation coefficient of 0.991. At the same time, Jean-Baptiste & Jensen (2006) 

concluded that SAVI and NDVI were positively correlated with in-situ vegetation 

parameters with a correlation value of 0.908. These outcomes also confirm that 

SAVI and NDVI were ideal indices for distinguishing vegetated and non-

vegetated areas in the area under investigation.  

 

Figure 113: SAVI mangrove density cover for the years 2008, 2009, 2016 and 2018 
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The results indicated that the combination of biophysical variables NDVI and 

SAVI indices produced interesting results on mapping and monitoring mangrove 

canopy cover and estimating their densities. This research, like other studies, 

used remote sensing techniques to map and monitor mangroves, but the 

difference is that this research did not map and monitor mangroves at the 

species level as the objective of the study was not to identify the species that 

were declining within the forest. However, mangroves were all mapped and 

monitored without being discriminated amongst each other. Unlike Maryantika & 

Lin (2017), who used the multi-temporal Landsat TM/ETM/OLI multispectral 

image to compare which index between SAVI and NDVI would delineate 

mangroves and found out that SAVI outweighed NDVI and produced an overall 

accuracy of 74% and a kappa coefficient of 0.70.  

 

Similarly Sari & Rosalina, (2016) conducted a study to monitor and measure the 

mangrove density changes in a tin mining area. Their research used Landsat 

data acquisition from the year 1997, 2009 and 2014 through NDVI analysis, and 

they found out that the overall percentage of mangrove coverage area declined 

over the timeframe. There was a significant decreased in sparse class from 

86.75% to 34.31%; less change was seen in the moderate class. The 

percentage of moderate mangrove dipped slightly from 12.97% in 1997 to 

10.66% in 2014. However, the percentage of dense mangrove rose sharply from 

0.29% to 55.04% in 2014. Their study's difference is that they used only NDVI 

while this study used both NDVI and SAVI to map and monitor mangrove 

changes at the Mngazana mangrove forest.  

 

Although the indices were able to map the mangrove change, this research's 

limitation would have been selecting indices that were unable to map and 

monitor deforestation at the Mngazana mangrove forest. This would have been a 

challenge, but since each method was thoroughly reviewed before it was 

chosen, this research had no difficulties achieving its aim. However, the 

deviation of this research with regards to others is aforementioned, but as 

mentioned before, this research extracted the mangroves from the rest of the 

other land cover types that are found at Mngazana mangrove forest. This was 

the aim because the interest was the decline in the mangrove species, not the 

other species found with the mangrove forest. Nonetheless, the study did not 

use change detection to see the rate of change in the mangroves over the years, 
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but it instead used the densities of the mangrove class and subdivided them into 

low, moderate and high. It was then within these classes that we were able to 

see the changes in the mangroves, that is, whether they were declining or not.  

 

Furthermore, the changes were not due to climatic or land use but may have 

been influenced by the methodological consideration. However, the 

methodology's choice delivered valuable results, and the study did not compare 

which methodology amongst the others would map and monitor mangroves 

more than others. The obtained results established the use of remote sensing to 

be used for mapping and monitoring mangrove forest cover in Mngazana 

mangroves. The study showed that satellite-based monitoring is reliable in 

delineating vegetation changes when assessing the mangroves' change 

dynamics. Hence, the study confirms that remote sensing methodologies can 

provide improved forest management solutions, mainly due to the fact that 

satellite data is increasingly becoming freely available such as the ASTER data 

used in this research, which has relatively medium spatial resolution sufficient for 

vegetation mapping and monitoring. 

 

 

5. CHAPTER 5: CONCLUSION 
 

As the world is facing mangrove decline, more detailed, regular information on 

mangroves distribution and condition is required. The harvesting of mangroves at 

Mngazana estuary is altering the size of the forest and the population structure of 

the mangroves by decreasing the number of trees. If this trend continues without 

being monitored there will be no mangroves in the Mngazana forest in the future, it 

will just be bare land with stumps of cut poles and grazing field for cows.  Our results 

illustrated how mangroves' increase or decrease could be detected and mapped 

using satellite-based information to guide management action and educate the local 

communities. This, alongside the need to assign sufficient legislative protection for 

ecosystems, can help slow the rate of ecosystem decline and move towards a state 

of recovery. The findings/results from this study could inform the local community in 

the Mngazana area that mangrove sustainability is crucial, especially maintaining 

the mangroves' health remaining to prevent the loss of mangroves. Further, the 

community could be involved in conducting mangrove restoration and protection 
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activities which could benefit from the sustainable utilization of mangrove resources 

by strengthening the local community‟s capacity to implement, monitor and report on 

mangrove management activities for sustainable natural resource management  

Our study demonstrated the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) remote sensing approach for monitoring and 

quantifying mangroves' deforestation in the Mngazana ecosystem. It was found that 

vegetation indices were able to map and monitor mangrove deforestation, and 

according to the results, the mangroves were not shrinking but increasing. This was 

due to noticeable changes in NDVI and SAVI values, although there was a decrease 

between 2009 and 2016 after that an increase was seen in the results of 2018. Land 

cover classes were classified into seven classes; bare soil, terrestrial vegetation, 

mangroves, salt marshes, sand, open water and mud banks, using the supervised 

classification classifier maximum likelihood; while the mangrove class were classified 

into three classes of vegetation canopy density; dense, moderately dense and low 

dense using the K-means classifier. A classification accuracy was conducted which 

produced acceptable results with good accuracies achieved of 94.64 with a kappa 

statistic of 0.93, 88.62 with a kappa statistic of 0.85, 95.08 with a kappa statistic of 

0.93, and 93.58 with a kappa statistic of 0.91. Indeed the indices were positively 

correlated with each other, which yielded a significant relationship of 0.70. Dynamic 

estimation of the mangroves was not possible at Mngazana because mangrove 

extent and biomass were not considered during the mangroves' mapping and 

monitoring. This is because ASTER does not have bands that are active in the SWIR 

region. After all, they have stopped functioning since 2008, and the formula for 

calculating Leaf Area Index (LAI) involves the use of the SWIR bands. LAI has 

successfully mapped mangrove extent and biomass, and the study could have used 

another satellite but then using one satellite sensor was the focus to maintain 

consistency. However, in the future, I recommend that in-situ vegetation parameters 

be correlated with remote sensing-derived indices to see which ones will be highly 

correlated with each other and see which data will pick up mangrove deforestation 

between in-situ data and satellite-retrieved data.  
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