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ABSTRACT 

Tuberculosis (TB) is most commonly a pulmonary infection caused by the bacterium 

Mycobacterium tuberculosis. With the exception of the COVID-19 pandemic, TB was the most 

common cause of death due to an infectious disease for a number of years up until 2020. In 

2019, 10 million people fell ill with TB worldwide and 1.4 million people died (WHO, 2020a). 

Additionally, multidrug-resistant TB (MDR-TB) remains a public health crisis and a health 

security threat. A global total of 206 030 people with multidrug- or rifampicin-resistant TB 

(MDR/RR-TB) were reported in 2019, a 10% increase from 186 883 in 2018. South Africa is 

ranked among the 48 high TB burden countries, with an estimated 360 000 people falling ill in 

2019, resulting in 58 000 deaths, the majority of which being among people living with HIV. 

Unlike HIV, however, TB is a curable disease when managed correctly with long durations of 

antitubercular chemotherapy. Pyrazinamide (PZA) is an important first-line tuberculosis drug 

unique for its activity against latent TB. PZA is a prodrug, being converted into its active form, 

pyrazinoic acid (POA) by the Mtb gene pncA, coding for the pyrazinamidase enzyme (PZase). 

TB resistance to first-line drugs such as PZA is commonly associated with mutations in the 

pncA/PZase enzyme. This study aimed to identify potential novel inhibitors that bind to the 

active site of PZase. By making use of molecular docking studies and molecular dynamics (MD) 

simulations, high throughput virtual screening was performed on 623 compounds from the 

South African Natural Compounds database (SANCDB; https://sancdb.rubi.ru.ac.za). Ligands 

that selectively bound to the PZase active site were identified using docking studies, followed 

by MD simulations to assess ligand-PZase complex stability, Finally, hit compounds identified 

from the first round of MD simulations were screened again against PZase structures with high 

confidence point mutations known to infer PZA resistance in order to identify any novel 

compounds which had inhibitory potential against both WT and mutant forms of the PZase 

enzyme. 

  

https://sancdb.rubi.ru.ac.za/


   
 

iii 
 

DECLARATION 

I, Thomas Kenyon, hereby declare that this thesis submitted to Rhodes University is my 

original work and has never been submitted to any institution for a degree or diploma. 

 

………………………………                           ………………………………  

       Signature                                               Date             

 

  

28/09/2021



   
 

iv 
 

DEDICATION 

This thesis is dedicated to my parents, 

Barbara and Michael 

For always being there for me, no matter what. Thanks mom and dad, for all the love and 

support you have shown me every single day of the 25 years I have been on this Earth.  



   
 

v 
 

ACKNOWLEDGEMENTS 

My sincere gratitude and appreciation to my supervisor Professor Özlem Tastan Bishop for all 

the advice, insight, and prompt feedback she has given me for the duration of this project. 

I am also grateful to Rita Afriyie Boateng for her endless guidance, advice and patience while 

assisting me with this project, I truly could not have done it without you. 

To Prudence Gowo, my project partner, thank you for sticking by me for the past year, I wish 

you the best of luck for all your future endeavours and have no doubt that you will be 

immensely successful in whatever you set your mind to. 

To Mbunge Mbunge, my partner of heart and mind. There have been many moments of 

personal regret over the past few years but becoming friends with you has been one of the truly 

good things that has happened to me since I signed up for that fateful Honours degree in 

Biochemistry. Who would have thought we would both be alive and kicking more than a year 

into a global pandemic? 

To the rest of my Bioinformatics MSc colleagues, Nabeelah, Sophakama, Amira and Lillian, 

spending a large part of 2020 together with all of you was truly special to me and I am grateful 

that every single one of you are some of the most wonderful people I have had the privilege of 

suffering through a pandemic with. 

I am also grateful to all members of RUBi as a whole; I am truly sad to leave. Some of you 

lectured me and my colleagues while others gave advice and encouragement, thank you to 

every single one of you. 

This work would not have been possible without the financial support from the National 

Research Foundation (NRF).  



   
 

vi 
 

TABLE OF CONTENTS 

Abstract ...................................................................................................................................... ii 

Declaration ............................................................................................................................... iii 
Dedication ................................................................................................................................. iv 

Acknowledgements .................................................................................................................... v 

Table of contents ....................................................................................................................... vi 

List of figures ............................................................................................................................ ix 

List of tables .............................................................................................................................. xi 
List of equations ....................................................................................................................... xii 

Webservers and software tools used ...................................................................................... xiii 

List of abbreviations ............................................................................................................... xiv 

Chapter 1 .................................................................................................................................... 1 

Literature review ..................................................................................................................... 1 

1.1 Introduction ................................................................................................................... 1 

1.2 The Burden of TB ......................................................................................................... 1 

1.3 TB Etiology ................................................................................................................... 2 

1.4 The genome of MTB ..................................................................................................... 3 

1.5 Transmission and Pathophysiology ............................................................................... 3 

1.6 Treatment ...................................................................................................................... 6 

1.7 Pyrazinamide ................................................................................................................. 7 

1.8 TB Drug resistance: ....................................................................................................... 9 

1.9 Treatment of MDR- and XDR-TB .............................................................................. 10 

1.10 The PncA/Pyrazinamidase Enzyme .......................................................................... 10 

1.11 Problem Statement: ................................................................................................... 12 

1.12 Aim of study: ............................................................................................................. 12 

1.13 Specific Study Objectives: ........................................................................................ 13 

Chapter 2 .................................................................................................................................. 14 

Molecular Docking ............................................................................................................... 14 

2.1 Introduction ................................................................................................................. 14 

2.2 A note on protein-ligand binding ................................................................................ 14 

2.3 Molecular Docking Studies ......................................................................................... 15 

2.4 Conformation sampling ............................................................................................... 16 

2.5 Scoring functions......................................................................................................... 16 



   
 

vii 
 

2.6 AutoDock4 .................................................................................................................. 17 

2.7 Methodology ............................................................................................................... 18 

2.7.1 Data preparation .................................................................................................... 18 

2.7.2 Protonation ............................................................................................................ 19 

2.7.3 Autogrid setup and docking preparation ............................................................... 19 

2.7.4 Docking Simulations ............................................................................................. 19 

2.7.5 Docking Validation ............................................................................................... 19 

2.7.6 Docking Analysis .................................................................................................. 20 

2.8 Results and discussion ................................................................................................. 22 

2.8.1 Docking validation ................................................................................................ 22 

2.8.2 SANCDB screened compounds ............................................................................ 23 

2.9 Conclusion ................................................................................................................... 28 

Chapter 3 .................................................................................................................................. 29 

Molecular dynamics simulations for WILD type – LIGAND complexes ............................ 29 

3.1 Introduction ................................................................................................................. 29 

3.2 Molecular Dynamics Simulations ............................................................................... 29 

3.3 Methods: ...................................................................................................................... 32 

3.3.1 Model Preparation ................................................................................................. 32 

3.3.1.1 Protein preparation ......................................................................................... 32 

3.3.1.2 Ligand preparation:......................................................................................... 32 

3.3.2 System preparation................................................................................................ 32 

3.3.3.1 Topology generation ....................................................................................... 32 

3.3.3 Minimization ......................................................................................................... 33 

3.3.4 Equilibration ......................................................................................................... 33 

3.3.5 Production MD runs .............................................................................................. 33 

3.3.6 Trajectory Analysis ............................................................................................... 34 

3.3.6.1 RMSD ............................................................................................................. 34 

3.3.6.2 RMSF.............................................................................................................. 34 

3.3.6.3 Radius of gyration: ......................................................................................... 34 

3.3.6.4 Hydrogen bonding analysis: ........................................................................... 34 

3.4 Results and Discussion ................................................................................................ 36 

3.4.1 20 ns pre-runs ........................................................................................................ 36 

3.4.2 Ligand RMSD ....................................................................................................... 37 

3.4.3 Hydrogen bonding ................................................................................................ 38 

3.4.4 Protein RMSD ....................................................................................................... 40 



   
 

viii 
 

3.4.5 Radius of Gyration (Rg)........................................................................................ 41 

3.4.6 RMSF .................................................................................................................... 43 

3.4.7 Hit compounds ...................................................................................................... 45 

7-Angelylplatynecine ..................................................................................................... 46 

Rubrolide E .................................................................................................................... 47 

4'-Demethyl-5-O-methyl-3,9-dihydroeucomin .............................................................. 47 

(Z)-Eucomin ................................................................................................................... 47 

5-Hydroxy-7-methoxy-3-(3-hydroxy-4-methoxybenzyl)chroman-4-one ...................... 48 

3.5 Conclusion ................................................................................................................... 48 

Chapter 4 .................................................................................................................................. 50 

Mutant PZase Molecular dynamics simulations ................................................................... 50 

4.1.1 Introduction .............................................................................................................. 50 

4.1.2 Mutations in the pncA gene and PZA resistance .................................................. 50 

4.1.3 Identification of SANCDB compounds that bind to mutant PZase ...................... 51 

4.2 Methodology ............................................................................................................... 53 

4.2.1 Mutagenesis .......................................................................................................... 53 

4.3 Results and Discussion ................................................................................................ 54 

4.3.1 Ligand RMSD ....................................................................................................... 54 

4.3.2 Hydrogen bonding analysis................................................................................... 55 

4.3.3 Mutations and compound stability ........................................................................ 61 

4.3.4 Top Hits ................................................................................................................ 64 

4.3.5 Drug-likeness of Hits ............................................................................................ 67 

4.4 Conclusion ................................................................................................................... 68 

Chapter 5 .................................................................................................................................. 69 

Concluding remarks and future work ................................................................................... 69 

References ................................................................................................................................ 71 

Appendices ............................................................................................................................... 82 

 

  



   
 

ix 
 

LIST OF FIGURES 

Figure 1: Global estimated TB incidence rates in 2019. 

Figure 2: Architecture of the TB granuloma.  

Figure 3: Classical activation of alveolar macrophage.  

Figure 4: Proposed mechanisms of action for Pyrazinamide. 

Figure 5: Hybrid ribbon and stick representation of the structure of Mtb PncA/Pzase protein. 

Figure 6: NAD+ de novo and salvage pathways present in Mtb. 

Figure 7: Overall methodology used in this project. 

Figure 8: Overview of docking methodology in this chapter 

Figure 9: Docking validation. 

Figure 10: All PZase protein-ligand docking complexes. 

Figure 11: Selected PZase protein-ligand docking complexes. 

Figure 12: Hydrogen bond distribution for all selected ligands. 

Figure 13: Components of a typical MM force field 

Figure 14: Overview of methodology used for Molecular Dynamics studies. 

Figure 15: Violin plots of Ligand RMSD results for 20 ns pre-production MD runs.  

Figure 16: Violin plots of Ligand RMSD results for 150 ns production MD runs.  

Figure 17: Heatmap of intermolecular hydrogen bond interactions during production runs.  

Figure 18: Heatmap of intermolecular hydrogen bond counts during production runs.  

Figure 19: Violin plots of protein backbone RMSD results for 150 ns production MD runs.  

Figure 20: Violin plots of protein Radius of gyration results for 150 ns production MD runs. 

Figure 21: Violin plots of Rg of active site residue results for 150 ns production MD runs. 

Figure 22: RMSF data for 150 ns production MD runs. 

Figure 23: Point mutations within the PZase protein used during this screening study.  

Figure 24: Violin plots of Ligand RMSD results for 150 ns production MD runs for the 
PZase mutant study.  

Figure 25: Heatmap of intermolecular hydrogen bond interactions during MD runs. 

Figure 26: Heatmap of intermolecular hydrogen bond counts during production runs. 

Figure 27: Mutations within the active site pocket resulted in few stable compounds. 
Figure 28: Locations of two mutations outside of the pncA active site. 



   
 

x 
 

Figure 29: First pair of analogous hits. 

Figure 30: Second pair of analogous hits.  

Figure S1: Violin plots of protein backbone RMSD results for 150 mutant PZase production 
runs  

Figure S2: Violin plots of protein Rg) results for 150 ns mutant PZase production MD runs  
Figure S3: Violin plots of Rg of active site residue results for 150 ns mutant PZase 
production MD runs  
Figure S4: RMSF data results for 150 ns mutant PZase production MD runs.   



   
 

xi 
 

 

LIST OF TABLES 

Table 1: Drugs used in the treatment of TB. 

Table 2: Selected Ligands that remained bound to PZase during MD simulations.  

Table 3: Characteristics of final selected ligands used for the following mutagenesis studies.  

Table 4: PZase point mutations chosen for this study. 

Table 5: Summary of ligand stability in mutant systems and H-bonding residues. 

Table 6: Tabulated results of the QED test for drug desirability. 

 

 

 

  



   
 

xii 
 

LIST OF EQUATIONS 

Equation 1: Scoring functions used by AutoDock4 

 



   
 

xiii 
 

WEBSERVERS AND SOFTWARE TOOLS USED 

Accelrys Discovery Studio Visualizer:  

https://discover.3ds.com/discovery-studio-visualizer-download 

ACPYPE: https://github.com/alanwilter/acpype 

AmberTools20: https://ambermd.org/AmberTools.php 

AutoDock4.2: http://autodock.scripps.edu/ 

AutoDockTools: http://autodock.scripps.edu/resources/adt 

AutoDockVina: http://vina.scripps.edu/ 

CHPC: https://www.chpc.ac.za/ 

JupyterLab: https://jupyter.org/ 

GROMACS: https://www.gromacs.org/ 

H++ webserver: http://biophysics.cs.vt.edu/ 

OpenBabel: http://openbabel.org/wiki/Main_Page 

PyMOL: https://pymol.org/2/ 

RCSB PDB: https://www.rcsb.org/ 

Reduce tool: DOI: 10.1006/jmbi.1998.2401 

SANCDB: https://sancdb.rubi.ru.ac.za 

 

 

 

 

 

 

 

 

 



   
 

xiv 
 

LIST OF ABBREVIATIONS 

_lc        largest cluster 

_le        lowest binding energy 

2D        Two-dimensional 

3D        Three-dimensional 

AIDS       Acquired immunodeficiency syndrome 

ALERTS      Structural alerts for fragments with high toxicity potential 

AROM       Aromatic rings 

CADD       Computer-Aided Drug Design 

CHPC        Center for High Performance Computing 

COM       Centre of mass 

COVID-19      Coronavirus disease 2019 

CPU       Central processing unit 

Da        Dalton 

DCs       Dendritic cells 

GPU       Graphics processing unit 

H-bond       Hydrogen bond 

HBA       Hydrogen bond acceptor 

HBD       Hydrogen bond donor 

HIV       Human immunodeficiency virus 

Kcal       kilocalories 

LogP       octanol-water partition coefficient 

LTBs       Latent Tuberculosis infections 

MBS       Metal binding site 



   
 

xv 
 

MD        Molecular Dynamics 

MIC       Minimum Inhibitory Concentration 

MDR-TB      Multidrug-resistant Tuberculosis 

MoA       Mechanism of action 

Mtb        Mycobacterium Tuberculosis 

MW       Molecular weight 

NAD+       Nicotinamide Adenine Dinucleotide 

NK cells      Natural Killer cells 

NMR       Nuclear magnetic resonance  

PDB       Protein Data bank 

POA       Pyrazinoic acid 

PSA       Polar surface area 

PZA       Pyrazinamide 

PZase       Pyrazinamidase 

QED       Quantitative Estimate of Drug-Likeness 

Rg        Radius of gyration 

RMSD       Root mean square deviation 

RMSF       Root mean square fluctuation 

ROTB       Rotatable bonds 

RR-TB       Rifampicin-resistant Tuberculosis 

SANCDB      South African Natural Compounds Database 

STATSSA      Statistics South Africa 

TB        Tuberculosis 

vdW       van der Waals 



   
 

xvi 
 

WHO       World Health Organisation 

WT        Wild-type 

XDR-TB      Extensively drug resistant tuberculosis 

 

(Sandgren et al., 2009)   (Sheik Amamuddy et al., 2020) 

 



   
 

1 
 

CHAPTER 1 

LITERATURE REVIEW 

1.1 INTRODUCTION 

Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis (TB), remains one of 

the leading causes of death worldwide due to an infectious disease. In 2018 TB infected 10 

million people and was responsible for approximately 1.5 million deaths (WHO, 2020a). TB 

is spread through the air in aerosols that are released when a person with an active TB infection 

coughs. It primarily (but not exclusively) infects the lungs. Like many other infectious diseases 

of global importance, the disease burden of TB varies drastically between different countries 

as shown in Figure 1, with nations in the Global South shouldering most of the burden (WHO, 

2020a). 

1.2 THE BURDEN OF TB 

Approximately one quarter of the world’s population has been infected with TB. The 

overwhelming majority of these infections are latent and asymptomatic but 5-10% of latent 

Figure 1: Global estimated TB incidence rates in 2019. 
(Adapted from WHO Global Tuberculosis Report 2020)  



   
 

2 
 

infections will eventually progress to active TB which, if untreated, will kill approximately half 

its victims (Falzon et al., 2011). Effective suppression of TB present in the body by the immune 

system prevents latent infections from becoming active. However immunocompromised 

individuals such as those living with AIDS are at higher risk of developing active TB infections. 

The majority of TB cases occur in three regions: South-East Asia (44%), Africa (24%) and the 

Western Pacific (18%). These three regions combined accounted for 86% of all cases in 2019. 

The WHO defined 30 countries as having a “high TB burden” in 2019, as they account for 87% 

of all cases globally (WHO, 2020a) These include India, China, Pakistan, Nigeria and South 

Africa, amongst others.  

In South Africa, TB incidence is among the highest in the world, with approximately 520 active 

cases per 100 000 population and a total number of cases of 215 – 400 thousand in 2018 (WHO, 

2020a). In 2015 TB was responsible for 7.2% of all deaths in South Africa (~65 000) and the 

leading cause of death due to a communicable disease. South Africa’s TB epidemic is 

intertwined with the socio-economic failures of post-Apartheid governance: in terms of both 

wealth and income inequality, South Africa is still one of the most unequal countries in the 

world. Real unemployment stands at 38.5% and 49.2 % of the adult population lives below the 

official poverty line (STATSSA, 2015). Inadequate living conditions and poor access to health 

facilities are widely considered the primary factors behind South Africa’s TB burden (Hartel, 

Yazbeck and Osewe, 2018). Ultimately these factors result in approximately 100 000 

unidentified TB cases each year, and of those that are diagnosed, between 17-25% do not 

initiate treatment (Skinner and Claassens, 2016).  

Incidence of TB amongst South Africans living with HIV/AIDS is significantly higher than the 

general population (WHO, 2020a) One in six adults in South Africa are HIV positive (WHO, 

2020b) and approximately half of all TB cases in 2018 were people living with HIV. HIV-

positive mortality was twice the HIV-negative mortality rate (WHO, 2020a). 

1.3 TB ETIOLOGY 

The causative agent of TB is Mycobacterium tuberculosis. Archaeological evidence indicates 

that tuberculosis has existed since antiquity and has been infecting humans since the Neolithic 

era approximately 9 000 years ago (Hershkovitz et al., 2008). Mtb is a highly aerobic, non-

motile, non-spore forming and non-encapsulated obligate intracellular pathogen belonging to 

the bacterial family Mycobacteriaceae. It has a unique waxy coating on its surface partially 

comprised of mycolic acid. This coating is responsible for Mtb responding poorly to gram 

staining. It is also a key virulence factor (Forrellad et al., 2013) and makes the bacterium 
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relatively resistant to desiccation compared to many other non-spore-forming bacteria. Mtb is 

primarily a pathogen of the human respiratory system where it typically (but not exclusively) 

infects the lungs due to its airborne mode of transmission and preference for highly oxygenated 

environments (Lawn and Zumla, 2011). Mtb is a fastidious microbe to culture, with 

complicated nutrient requirements and a division time of 18-24 hours that results in culturing 

times of weeks instead of hours like a model organism such as E. coli. This glacial replication 

rate and Mtb’s ability to persist in a non-replicative latent state in unfavourable conditions 

mean that successful treatment of tuberculosis infections require extended drug treatment 

courses that last many months (Lawn and Zumla, 2011). 

1.4 THE GENOME OF MTB 

The complete genome of the Mtb reference strain H37Rv was published in 1998 by Cole et. al. 

This was a landmark achievement that has paved the way for significant advances in 

understanding the evolution, pathogenesis, and biology of Mtb. Notable is the complete 

absence of any extrachromosomal elements such as plasmids, with the Mtb nuclear genome 

containing approximately 4 million base pairs and 4 thousand genes. With a guanine-cytosine 

content of 65.6%, the Mtb genome is remarkably uniform with respect to other Mycobacterium 

species such as M. leprae (Cole et al., 2001; Eiglmeier et al., 2001) This suggests that the 

evolution of Mtb was not shaped significantly by horizontal gene transfer events, as is the case 

with many other bacterial pathogens. One of its most remarkable features is the presence of 

250 genes responsible for fatty acid metabolism. This is approximately 5 times the number of 

such genes found in E.coli (Jeucken et al., 2019), pointing to the importance of lipid 

metabolism for the survival and pathogenesis of Mtb. Indeed Mtb can be cultured in 

environments where cholesterol is the only source of carbon, and the bacteria have been shown 

to prefer fatty acids over other source of carbon (Wipperman et al., 2014). Additionally these 

genes are essential for the synthesis of Mtb’s complex and lipid-rich cell wall (Wilburn et al., 

2018).  

1.5 TRANSMISSION AND PATHOPHYSIOLOGY 

Transmission of TB in the overwhelming majority of cases occurs when a person with an active 

pulmonary TB infection coughs or sneezes and expels thousands of aerosol droplets containing 
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Mtb bacteria which are then inhaled by an uninfected person. Inhalation of even one or two 

droplets may be enough to ultimately cause an infection as less than 10 bacterium are capable 

of causing an infection (Nicas, et al., 2005). The duration of contact, frequency of contact, and 

proximity of contact with an infected person are all factors that influence the likelihood of 

becoming infected (Nicas et al., 2005) Additionally the infectivity of the carrier, degree of 

ventilation in the immediate environment and susceptibility of the uninfected person also 

influence the infection probability (Turner et al., 2017).  

In a public health setting, early screening, diagnosis and initiation of treatment are essential to 

disrupt person-to-person transmission as infectivity of individuals with non-resistant infections 

decreases substantially after approximately two weeks of treatment (Ahmed and Hasnain, 

2011). Of those infected with Mtb and classified as asymptomatic latent infections (LTBs), 

only 5-10% will develop an active TB infection in their lifetimes (Petruccioli et al., 2016). 

Typically, immunocompetent individuals either eliminate Mtb entirely or contain it in a latent 

state. However in those with HIV or other immunocompromising conditions the chance of 

Figure 2: Architecture of the TB granuloma. Located at its centre is the initial site of TB infection, 
consisting of extracellular TB bacilli, activated alveolar macrophages containing phagocytosed and 
actively replicating Mtb bacilli, apoptotic macrophages, and foam cells (lipid-laden macrophages). 
Surrounding this are epithelioid macrophages, dendritic cells (DCs), multinucleated giant cells, 
neutrophils, and natural killer (NK) cells. The outer layer of a mature granuloma consists of helper 
and regulatory T-cells, B-cells, and fibroblasts. Adapted from Minton, 2016. Graphic created using 
BioRender. 
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developing an active TB infection can increase as much as 10% a year (Petruccioli et al., 2016). 

In a country with high burdens of both diseases, this co-morbidity has been the biggest 

challenge for the South African public health system until the COVID-19 pandemic (Karim et 

al., 2009).  

Both latent and active TB infections ultimately begin once the mycobacteria reach the terminal 

alveolar air sacs of the lungs (Armstrong and Hart, 1971) where they are identified as foreign 

and phagocytosed by alveolar macrophages. For most bacteria, phagocytosis results in cell lysis. 

However Mtb make use of an arsenal of weapons to undermine macrophage defences, block 

lysosome fusion which prevents cell lysis and allows for replication within the macrophages 

(Ehrt and Schnappinger, 2009). As shown in Figure 3, Mtb, unlike many other pathogens, can 

survive and replicate within the phagosomes of fully activated macrophages and even escape 

into the macrophage cytoplasm. Mtb also manipulates intracellular signal transduction 

pathways within host macrophages which in turn alters the cytokine profile of the body’s 

immune response, attenuating it and promoting intracellular Mtb survival (BoseDasgupta and 

Pieters, 2014; Orme et al., 2015) The body’s immune response is pivotal in determining the 

outcome of a TB infection: the hallmark of this response is the aggregation of immune cells at 

the original site of macrophage infection into a structure known as a granuloma, shown in 

Figure 2. This consists of activated infected macrophages at the centre that typically fuse into 

Figure 3: Classical activation of alveolar macrophages does not result in Mtb cell lysis. An armed 
TH1 cell specific to a Mtb peptide makes physical contact with an Mtb-infected macrophage. The TH1 
cell then secretes IFN-γ and expresses the CD40 ligand (CD40L) on its surface, both of which then 
activate the macrophage. Activated macrophages are significantly more microbicidal, producing more 
reactive oxygen species such as nitric oxide (NO) and superoxide (O2

-) and promoting fusion of 
lysosomes and phagosomes. Activated macrophages also amplify the adaptive immune response by 
expressing more MHC class I and II receptors and secreting cytokines such as TNF-α and IL-12. Mtb 
has evolved mechanisms to prevent lysosome-phagosome fusion even in activated macrophages, 
allowing it to avoid cell lysis and escape into the macrophage cytoplasm. Adapted from Murphy and 
Weaver, 2016. Graphic created using BioRender. 
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a multi-nucleated giant cell, surrounded by T-lymphocytes, recruited macrophages, neutrophils 

and fibroblasts (de Martino et al., 2019). Fibroblasts surrounding the immune cells lay down 

connective tissue and deposit calcium, forming the physical granuloma structure that is visible 

in lung X-rays.  

Mtb persistence within granulomas without further spread is what is considered a latent TB 

infection that is asymptomatic: the immune response has successfully constrained the 

replication of Mtb and is preventing it’s spread, and the individual remains free of any tissue 

damage. If the immune response is disrupted or insufficient, granuloma formation may be 

impaired, alternatively, a previously adept immune response may become disrupted, resulting 

in the rupture of existing pulmonary granulomas in a process known as cavitation (Queval et 

al., 2017). The outcome of either of these two scenarios is the uncontrolled release and 

replication of Mtb in pulmonary airways, causing an active and symptomatic TB infection. If 

left untreated, active TB can result in severe lung damage and systemic dissemination of Mtb 

throughout the body.  

1.6 TREATMENT 

Treatment of TB infections relies on antibiotics. However unlike many other bacterial 

pathogens, Mtb is intrinsically more tolerant of antibiotics due to its slow replication rate, 

persistence in a non-replicative latent state and its unique mycobacterial cell wall that prevents 

entry of many antibiotics (Brennan and Nikaido, 1995). In 1944 the first effective antibiotic 

against Mtb was discovered: Streptomycin (Sakula, 1988) and in 1952 isoniazid became the 

first oral mycobacterial antibiotic to be widely used (Crofto, 1969). Despite the discovery of 

multiple effective antibiotics, the tendency of mono-therapy to give rise to resistance led to the 

adoption of combination therapy of at least two antibiotics in the early 1960s (Kerantzas and 

Jacobs, 2017). More recently numerous drugs with antitubercular activity have been developed 

including rifampicin, ethambutol, and pyrazinamide.  

As of 2011 (Falzon et al., 2011), anti-TB drugs are classified into five main groups as shown 

in Table 1, considering the evidence for their efficacy and their safety/risk of side-effects. As 

a general rule, the groups start with the most effective drugs available (in group one, Table 1), 

while other drugs are grouped consecutively according to decreasing efficacy and higher risk 

of serious side-effects. 
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TB Drug Classification (WHO, 2011) Drug Name 
Group 1 
First-line oral anti-TB drugs 

Rifampicin 
Isoniazid 
Pyrazinamide 
Ethambutol 

Group 2 
Injectable anti-TB drugs 

Streptomycin 
Kanamycin 
Amikacin 
Capreomycin 

Group 3 
Fluoroquinolones 

Levofloxacin 
Moxifloxacin 
Gatifloxacin 
Ofloxacin 

Group 4 
Oral bacteriostatic second-line anti-TB drugs 

Ethionamide/Prothionamide 
Cycloserine/Terizidone 
p-aminosalicylic acid 

Group 5 
Anti-TB drugs with limited data on efficacy 
and safety. Only used in treatment of drug 
resistant TB 

Linezolid 
Clofazimine 
Amoxicillin/Clavulanate 
Imipenem/Cilastatin 
Meropenem 
High-dose isoniazid 
Thioacetazone 
Clarithromycin 

Group one drugs are all administered orally and are the first drugs to be used when treating 

non-resistant infections. Rifampicin in group 1 as well as kanamycin and amikacin in group 2 

all disrupt RNA synthesis and ultimately inhibit protein synthesis. Isoniazid is a prodrug that 

is activated by the mycobacterial catalase-peroxidase enzyme KatG and ultimately inhibits the 

formation of the mycobacterial cell wall by preventing the synthesis of mycolic acid, an 

essential component (Unissa et al., 2016). Ethambutol is another group one drug that disrupts 

cell wall synthesis. However it inhibits synthesis of arabinogalactan, a disaccharide and 

essential component of the mycobacterial cell wall (Goude et al., 2009). 

1.7 PYRAZINAMIDE 

Like isoniazid, pyrazinamide (PZA) is a prodrug that is activated by the mycobacterial enzyme 

pyrazinamidase PncA (PZase) along with numerous host enzymes (Via et al., 2015), forming 

pyrazinoic acid (POA). Notably PZA, a synthetic nicotinamide analogue, is able to effectively 

penetrate TB lung granulomas right into their necrotic caseous centres and kill non-replicative 

latent Mtb cells (Gopal et al., 2019) This remarkable characteristic allows for much shorter TB 

treatment regimens: when PZA was first introduced in the 1970s, uncomplicated TB treatment 

courses were shortened from 12 to 6 months (Mitchison, 1985). Additionally PZA has desirable 

pharmacokinetic properties: a high degree of absorption that is not affected by food intake 

Table 1: Drugs used in the treatment of TB. 
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(Peloquin et al., 1998), with only 3% of absorbed PZA being excreted in urine in its prodrug 

form (McIlleron et al., 2006). For wild-type Mtb strains the MIC99 values have been reported 

as between 8 and 64 µg/mL (Werngren et al., 2012).  

The underlying mechanism of action (MoA) of PZA is still poorly defined. Furthermore PZA’s 

notably poor in vitro potency seemingly conflicts with its ability to kill resistant persister cells 

that other TB drugs are ineffective against (Blanc et al., 2018). Numerous MoA models have 

been proposed over the years but virtually all of them now have significant evidence disproving 

them (Gopal et al., 2019). Four leading models for the mechanism of action of PZA are 

summarized in Figure 4 below.  

Model 1: PZA is a protonophore. In this model, shown in Figure 4A, PZA enters Mtb cells 

via passive diffusion where it is converted to POA by PZase. The POA anion is then exported 

out of the cell by a currently unidentified efflux mechanism. Within the acidic environment of 

an activated phagosome the POA anion becomes protonated and diffuses back into the bacillus 

where it dissociates into a proton and POA. Over time this results in the acidification of the 

cytoplasm and the collapse of Mtb’s membrane potential resulting in cell death (Zhang et al., 

1999).  

Figure 4: Proposed mechanisms of action for Pyrazinamide. In all cases, PZA enters the Mtb cell 
by passive diffusion and is converted into the active form (POA) by the nicotinamidase PncA/PZase 
enzyme. A: POA acts as a protonophore leading to the acidification of the bacterial cytoplasm, B: 
POA inhibits the essential fatty acid synthase I (FAS I) enzyme, C: POA inhibits trans-transation, D: 
POA inhibits biosynthesis of coenzyme A (CoA). Graphic adapted from Lamont et al., 2020 and 
created using BioRender.  
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Model 2: Inhibition of Mycobacterial fatty acid synthase I (FAS-I). In this model, shown 

in Figure 4B, POA-driven inhibition of the large multifunctional enzyme stops the synthesis 

of C16 - C26 fatty acids. Without these fatty acids, numerous cytoplasmic membrane lipids 

cannot be synthesised, nor can the mycolic acids Mtb uses in its cellular envelope (Zimhony et 

al., 2000; Schweizer and Hofmann, 2004).  

Model 3: PZA inhibits the ribosome salvage pathway. In this model, shown in Figure 4C, 

POA disrupts the process of trans-translation, a process virtually all bacteria use to free 

ribosomes that cannot disengage from the 3’ end of some mRNAs that lack an in-frame stop 

codon (Keiler, Waller and Sauer, 1996). Ultimately this results in the depletion of free 

ribosomes in the mycobacterial cytoplasm, preventing protein synthesis and causing cell death. 

(Shi et al., 2011).  

Model 4: PZA inhibits coenzyme A synthesis. In this model, shown in Figure 4D, bioactive 

POA binds to the Mtb aspartate decarboxylase (PanD) enzyme and blocks synthesis of 

coenzyme A (Gopal, et al., 2019), an essential coenzyme in most organisms responsible for the 

synthesis and oxidation of many fatty acids and the oxidation of pyruvate in the citric acid 

cycle (Daugherty et al., 2002; Leonardi et al., 2005). 

1.8 TB DRUG RESISTANCE: 

According to WHO guidelines (Falzon et al., 2011; Kurz et al., 2016) TB drug resistance is 

classified according to how many drugs a TB strain is resistant to, and which groups those 

drugs fall into. The four classifications are: Mono-resistant TB, poly-drug resistant TB, multi-

drug resistant TB (MDR-TB) and finally Extensively drug resistant TB (XDR-TB). Both 

mono- and poly-resistant strains are resistant to one or more first-line drugs except for 

rifampicin and isoniazid. MDR-TB meanwhile is at minimum resistant to both rifampicin and 

isoniazid, while XDR-TB is further resistant to second-line injectable drugs such as one or 

more of the fluoroquinolones. While significant progress has been made globally in the 

management, treatment, and outcome of drug-resistant TB infections, only one in three of the 

approximately half a million people infected with active MDR-TB or rifampicin-resistant TB 

(RR-TB) were diagnosed and started on treatment in 2018. Undiagnosed and untreated MDR-

/RR-TB is the greatest obstacle for the WHO’s global strategy to end the TB epidemic by 2035 

(WHO, 2020a), reducing deaths by 95% and cases by 90% between 2015 and 2035 (WHO, 

2015). 
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1.9 TREATMENT OF MDR- AND XDR-TB 

Treatment regimens for MDR-TB are complicated, longer, and significantly more expensive 

than those used to treat drug-susceptible TB. The first-line drugs are used as such because they 

are all orally administered and have minimal side-effects. Treatment of MDR-TB necessitates 

the use of drugs with increased toxicity at clinically relevant concentrations and often with 

reduced efficacy. Initially any first-line drugs that are still effective (as determined by testing) 

are chosen, usually PZA and isoniazid. However these two drugs are only effective as adjuncts 

to a treatment regimen due to their limited activity by themselves (Kurz et al., 2016). Therefore 

one injectable drug from group two and one fluoroquinolone from group three are used to make 

up a regimen consisting of four drugs and PZA if susceptible (Falzon et al., 2011). Further 

resistance to injectable group two drugs and one or more fluoroquinolones indicates the 

presence of an XDR-TB infection. In this case, drugs from group four are substituted into a 

regimen. These drugs can have very severe side effects and are often toxic at therapeutic 

concentrations in many individuals (Rendon et al., 2016). 

1.10 THE PNCA/PYRAZINAMIDASE ENZYME 

PncA (PZase), the enzyme that activates PZA is a monomeric ~20 kDa protein comprised of a 

six-stranded parallel B-sheet with multiple helices on either side forming a single α/β domain 

as shown in Figure 5A (Petrella et al., 2011b). The metal binding site (MBS) consists of a 

ferrous ion that is coordinated in a distorted tetragonal bipyramidal arrangement by four 

histidine residues. Directly adjacent to the MBS are the three substrate-binding residues that 

form the catalytic triad (Figure 5B).  

A flexible loop/lid region consisting of residues 52-70 controls access to the active site pocket. 

Two of the MBS residues, HIS 71 and His51, also function as flexible hinges, attaching the 

lid/loop region to the rest of the protein. The cavity containing the MBS and catalytic triad 

shown in Figure 5B is relatively small, 10 Å deep and 7 Å wide. On either side of it, the MBS 

and catalytic triad sit roughly opposite each other. 
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PZase forms a part of Mtb’s nicotinamide salvage pathway, summarized in Figure 6. This is 

one of two pathways available to Mtb to obtain NAD+, the other pathway being the de novo 

synthesis pathway (Vilchèze et al., 2010) Both pathways are shown in Figure 6. These two 

pathways are both used by Mtb during infection. However Mtb relies on the salvage pathway 

(and therefore PZase) under certain conditions. Once enclosed within a granuloma, conditions 

at the necrotic caseous centre can become highly acidic and anoxic (Queval et al.,2017). Under 

these conditions, Mtb primarily makes use of the salvage pathway to hydrolyse nicotinamide 

and its analogues in order to regenerate and maintain cytoplasmic NAD+ concentrations (Zhang 

et al., 2008, 2014). Since intracellular NAD+/NADH must be continuously regenerated due to 

its essential role as a redox agent in all living organisms, disrupting the NAD+ biosynthesis 

pathways that are responsible for its regeneration in Mtb is a plausible angle of attack when 

searching for novel antitubercular compounds. As the Mtb enzymes NadD and NadE are 

common to both the de novo and salvage pathway, they are each potential drug targets (Gerdes 

et al., 2002). Blocking an enzyme unique to one pathway however (such as PZase in the salvage 

pathway) would likely require blocking an additional enzyme unique to the other pathway in 

order to yield maximum antitubercular effects at a level of therapeutic interest (Boshoff et al., 

2008). This is the rationale of this study: although blocking PZase alone may not be sufficient 

to induce bactericidal effects, there is a high-quality crystal structure of it available, and 

blocking it as well as an enzyme in Mtb’s de novo pathway may be an effective therapeutic 

strategy. 

Figure 5: Hybrid ribbon and stick representation of the structure of Mtb PncA/Pzase protein. 
A: Overview of important features of PncA/PZase. Yellow = Loop or lid region; Orange = iron atom; 
Blue = Metal binding site (MBS); Red = catalytic triad. B: MBS and active site cavity of PncA. 
Obtained from RCSB (PDB ID: 3PL1) 
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1.11 PROBLEM STATEMENT: 

There were between 215 000 and 400 000 cases of TB in South Africa in 2018 and over 10 

million cases globally resulting in approximately 1.5 million deaths (WHO, 2020a). Globally 

3.4% of new TB cases and 18% of previously treated cases were caused by MDR-/RR-TB. 

This is major threat to the progress made against TB over the last few decades, both in South 

Africa and globally. For the WHO’s global strategy to end the TB epidemic by reducing deaths 

by 95% and cases by 90% between 2015 and 2035 to be successful, an enormous amount of 

research is needed in order to further our knowledge of how TB drug resistance arises, spreads 

and the mechanisms behind it. Furthermore, new drugs are needed urgently to minimize 

pressure on existing first- and second-line drugs and reduce the reliance on the current drugs 

used to treat resistant TB infections. 

1.12 AIM OF STUDY: 

The principle aim of this study is to identify potential compounds that bind to the active site of 

PZase via high-throughput virtual screening, using compounds in the South African Natural 

Compound Database (SANCDB) (Hatherley et al., 2015). Since PZase functions as part of the 

of the essential NAD+ biosynthesis pathway, identifying novel compounds that bind to it is of 

potential scientific and therapeutic value. After molecular dynamics (MD) analysis of 

interactions between PZase and hit compounds, the effect of mutant-induced structural changes 

Figure 6: NAD+ de novo and salvage pathways present in Mtb. The de novo pathway begins with 
aspartate, followed by intermediate reactions catalysed by 3 enzymes: aspartate oxidase NadB, 
quinolinic acid synthase NadA and quinolinate phosphoribosyl transferase NadC respectively, all of 
which are unique to the de novo pathway, ultimately producing NAMN. The final two enzymes that 
convert NAMN to NAD+, adenyl transferase NadD and deamido-NAD ligase NadE, respectively, are 
common to both the de novo and salvage pathways. The salvage pathway begins with NAD+ which is 
either converted to NMN or to NAm. NAm is then converted to NAc by the pyrazinamidase 
(pncA/PZase). Diagram adapted from Vilchèze et al., 2010. 
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on binding of hit compounds will be studied in order to investigate some of the underlying 

mechanisms of resistance used by Mtb that grant phenotypic resistance to PZA. Compounds 

that bind to PZase mutants will also be identified. An overview of the methodology used during 

this study is shown in Figure 7. 

1.13 SPECIFIC STUDY OBJECTIVES: 

1. Obtain a high-quality crystal structure of Mtb wild-type (WT) PZase from the Protein 

Data Bank as well as minimized compound structures from SANCDB. 

2. Perform molecular docking of PZA onto PZase using AutoDock4.2 in order to obtain 

the protein-drug complex. 

3. Perform molecular docking of compounds from SANCDB using AutoDock4.2. 

4. Perform MD simulations using the GROMACS software package for WT PZase with 

hit compounds to determine enzyme stability and drug-receptor interactions over 

relevant timescales. 

5. Perform a second round of MD simulations using hit compounds emerging from WT-

MD simulations and mutant PZase models. 

Figure 7: Overall methodology used in this study. 
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CHAPTER 2 

MOLECULAR DOCKING 

2.1 INTRODUCTION 

Resistance to anti-tuberculosis drugs has become increasingly common worldwide. In order to 

maintain and improve treatment outcomes, new anti-tuberculosis drugs that act against novel 

targets within the Mtb proteome are needed. For the past 30 years improvements in 

computational biology tools and the increasing power of CPUs and GPUs have resulted in 

Computer-Aided Drug Design (CADD) or rational drug design becoming increasingly 

common (Abdolmaleki et al., 2017; Yu and Mackerell, 2017; Dar et al., 2019). This chapter 

describes the identification and selection of compounds that bind favourably to the Mtb protein 

PZase deposited in the South African Natural Compounds Database (Hatherley et al., 2015). 

Hit compounds were identified by performing molecular docking studies and systems were 

evaluated based on binding affinities and intermolecular interactions such as the presence of 

H-bonds. 

2.2 A NOTE ON PROTEIN-LIGAND BINDING 

The mechanism of protein-ligand binding has been a topic of study since the late 19th century, 

with several theories being presented since, each with their own strengths and weaknesses. The 

first mechanism of protein-ligand binding was proposed by Emil Fischer in 1894, and became 

known as the ‘lock-and-key’ model wherein both ligand and protein/enzyme are rigid and the 

ligand shape fits into the active site of its complementary enzyme. While this model can explain 

how enzymes exhibit specificity for a particular substrate, it cannot explain enzyme 

promiscuity where a particular enzyme may bind to several different substrates, nor can it 

explain non-competitive inhibition (Cornish-Bowden, 2013) or allosteric modulation. Daniel 

E. Koshland Jr. introduced the ‘induced-fit’ theory in 1958, stating that the ligand-binding site 

on an enzyme undergoes a conformational change in the presence of a ligand, allowing for 

binding. This theory better explains enzyme promiscuity as multiple ligands can induce unique 

conformational changes to facilitate binding and further research has generated a volume of 

evidence that proteins exist in many different conformational states prior to ligand binding, 

also known as a conformational ensemble (Austin et al., 1975; Foote and Milstein, 1994). The 

‘conformational selection and population shift’ model was born out of these observations: the 
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ligand selects one of the fluctuating protein conformations suitable for binding, shifting the 

conformational ensemble towards it (Frauenfelder, Sligar and Wolynes, 1991; Ma et al., 1999). 

This model describes the conformational space accessible to a protein-ligand system as an 

energy landscape: the system’s free energy is a function of its conformations, and the 

probability of occupying a particular point in the energy landscape depends on the free energy 

of that state. On the energy landscape are global and local minima which correspond to native 

and metastable states of the system respectively. These minima are then separated by energy 

barriers or transition states in the form of local maxima. 

2.3 MOLECULAR DOCKING STUDIES 

CADD techniques are commonly used at the following stages of the drug discovery process: 

design of novel drugs based off a pharmacophore or knowledge of target of interest; hit 

identification by virtual screening; and hit-to-lead optimization to enhance selectivity and/or 

affinity. CADD techniques can be further classified in ligand-based and structure-based drug 

design. Ligand-based design does not require a high-quality structure of the target and makes 

use of existing compounds that are known to bind to a target of interest. This often involves 

the elucidation of a pharmacophore with the essential sub-structural characteristics required for 

target binding (Amaro et al., 2008). Structure-based design techniques require accurate 

knowledge of the structure of the target protein. Data which is typically obtained using 

techniques such as x-ray crystallography (Petrella et al., 2011b) or NMR spectroscopy 

(Bezsonova et al., 2008), alternatively homology modelling, has emerged as a viable way to 

generate accurate 3D structures using experimental structure information of homologous 

proteins (Hatherley et al., 2016). One popular method of structure-based drug design is virtual 

screening, where a compound library is searched through using rapid docking software to 

identify compounds that favourably bind to the target structure.  

Docking techniques predict the most favoured orientation or pose of one molecule (a ligand) 

to another (most commonly a protein) (Huang and Zou, 2010). Typically docking is done in 

two stages for a given system. First a sampling engine is used to generate numerous ligand 

poses/conformations, then a scoring function is used to evaluate and rank each pose based on 

binding energy. To be as accurate as possible, the sampling engine must be able to generate 

adequate numbers of valid poses, and the scoring function must be able to identify favoured 

conformations based on them being at or near the global energy minima of the energy landscape 

of a system.  
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2.4 CONFORMATION SAMPLING 

In principle the search/sampling engine during docking is set an impossible task: generate and 

search all valid ligand-receptor conformations within a search space. However an exhaustive 

search is impossible as both the ligand and receptor are dynamic systems that exist in a 

multitude of states (Austin et al., 1975; Foote and Milstein, 1994). Additionally there are many 

ways to fit two molecules together in a 3D space: three translational and three rotational degrees 

of freedom mean that the number of possibilities increases exponentially with increasing size 

of protein and ligand (Shoichet et al., 1992). In order to reduce the computational cost of 

searching, most sampling algorithms limit the flexibility of either one or both molecules to 

varying degrees (Halperin et al., 2002). Docking techniques that limit flexibility in one 

structure, typically the larger receptor molecule, are known as semi-flexible docking techniques. 

These techniques assume that a rigid receptor conformation can bind to ligands in a realistic 

manner, an assumption based on the lock-and-key mechanism for protein-ligand binding 

proposed by Emil Fischer in 1894. As discussed previously, this mechanism alone is 

insufficient to explain numerous protein-ligand binding processes as proteins are not static 

structures but rather dynamic, existing in an ensemble of possible conformations. Numerous 

methods for flexible docking have also been designed (Alonso et al., 2006). They can be 

divided between those that consider single protein conformations such as soft docking (Jiang 

and Kim, 1991) or sidechain flexibility approaches (Leach, 1994) and multiple conformation 

approaches, where an ensemble of receptor protein conformations is used during docking 

(Knegtel et al., 1997; Huang and Zou, 2007). 

Allowing for increasing flexibility and therefore a greater number of degrees of freedom in a 

system can increase the accuracy of docking, as this allows the dynamic nature of proteins and 

ligands to be better simulated, but this also typically comes with a significant increase in 

computational cost. In order to achieve desired feasibility goals in the context of high-

throughput virtual screening, sampling and conformational searching techniques used should 

be balanced between accuracy and speed.  

2.5 SCORING FUNCTIONS 

Scoring functions are the second half of any docking program. They are used to identify 

favourable binding modes from the sample of poses that are generated from the sampling 

engine. They do this by estimating the binding energy between a ligand and receptor based on 

many physiochemical properties such as: bonded interactions, non-bonded interactions (van 
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der Waals forces (vdW), electrostatic potentials) as well as solvation and desolvation effects. 

They can be separated into 3 categories: force-field, empirical and knowledge-based scoring 

functions. Force-field based scoring functions estimate the potential energy of a system by 

summing the strain energy and intermolecular interactions (Morris et al., 2009). Empirical 

scoring functions count the various types of intermolecular interaction terms in a system and 

weigh them against coefficients derived using multiple linear regression methods (Böhm, 

1998). Knowledge-based scoring functions are derived from statistical observations of the 

frequency of intermolecular interactions in 3D structure databases such as the Protein Data 

Bank (PDB), with the assumption that favourable interactions, those that increase binding 

affinity, are more common than those with a negligible or negative effect on binding affinity 

(Velec et al., 2005).  

2.6 AUTODOCK4 

The AutoDock4.2 software (Morris et al., 2009) was used to perform molecular docking in this 

study. It makes use of a semi-flexible sampling engine and a force field-based scoring function 

and allows for fully automated docking workflows. An important part of the software is the 

Autogrid program that calculates grid maps of interaction energies between receptor atoms and 

any potential ligand atoms prior to any docking. This reduces the time taken during docking as 

these 3D grid maps are used to determine the net binding energy between a ligand and receptor, 

and only need to be generated once for a particular ligand. The calculated binding energy of 

the ligand is therefore the product of corresponding values in the 3D grid maps and the partial 

charge of ligand and receptor atoms. 

AutoDock4 uses a sampling engine based on a Lamarckian genetic algorithm (Morris et al., 

1998). These algorithms allow for searching of a large conformational space by representing 

each receptor-ligand complex as a collection of genes, describing the conformation, translation, 

and orientation of the ligand. Each of these ‘genes’ are treated as the state variables of the 

ligand and each state variable therefore corresponds to a gene. As such the ligand’s state 
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variables correspond to its net genotype while its atomic coordinates in 3D space correspond 

to its phenotype. A phenotype’s ‘fitness’ is calculated by the scoring function and is therefore 

the net binding energy between the ligand and protein. Sampling of new poses is done in two 

ways: by crossover, where a new pose is generated using genes inherited from two parents, or 

by mutation where a single gene is altered to a random degree. This process is repeated for 

multiple generations and for each generation selection of the ‘offspring’ for the next generation 

is performed using its associated fitness scores. 

The scoring function used by AutoDock4 is force-field based and calibrated empirically using 

30 validated protein-ligand complexes with experimentally determined binding constants. The 

function includes five terms as shown in Equation 1. The first four terms (vdW forces, 

hydrogen bonding, electrostatics, and torsional constraints) are standard molecular mechanics 

terms and are described in more detail in the following chapter. 

2.7 METHODOLOGY 

2.7.1 Data preparation 

Molecular docking was performed using the crystal structure of Mycobacterium tuberculosis 

pyrazinamidase enzyme (PDB ID: 3PL1) and 623 ligands from the South African Natural 

Compound Database (Hatherley et al., 2015). The 3D structure of PZase used in this study 

contained the PZA ligand docked to it and was generated during previous research (Sheik 

Amamuddy et al., 2020). This docked PZA ligand was extracted from the structure and used 

Equation 1: Scoring functions used by AutoDock4. The function consists of 5 terms. A 
Lennard-Jones 12-6 intermolecular pair potential is used to calculate vdW dispersion/repulsion 
contributions; a directional 12-10 potential hydrogen bonding term for H-bond interactions; a 
screened coulomb potential term for electrostatic interactions; an unfavorable entropy of ligand 
binding term to account for restrictions on conformational degrees of freedom and finally a 
desolvation potential based on the volume of atoms surrounding an atom of interest. 
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to validate the redocking attempt performed in this study as there is no crystal structure of Mtb 

PZase that has been co-crystalized with PZA 

2.7.2 Protonation 

All ligand PDB files and the 3PL1 PDB file were converted to PDBQT files suitable for use 

with AutoDock. The 3PL1 receptor and all ligands were prepared by merging all non-polar 

hydrogen atoms, adding atom types, and calculating Gasteiger charges. The 3PL1 receptor was 

also protonated at a pH of 7 that matches the physiological conditions the PZase protein is 

found in.  

2.7.3 Autogrid setup and docking preparation 

The Autogrid program was used to calculate grid maps for receptor docking with each ligand. 

Since this was a blind docking study, the grid was centred at the PZA active site and a 

110x110x110 Å box size was used to ensure the entire PZase structure was inside each grid 

map. Grid maps for all default atom types were generated, in addition to maps for bromine, as 

some of the SANCDB ligands contained bromide groups. 

2.7.4 Docking Simulations 

Docking was performed using AutoDock4.2 on the in-house Yoda cluster. As per previous 

work (Sheik Amamuddy et al., 2020), maximum number of generations per run was set at 27 

000 with a maximum number of energy evaluations set at 450 000. RMSD cut-off when 

performing clustering analysis on poses was left at the default value of 2.0. 

2.7.5 Docking Validation 

Docking methodology was validated by redocking the PZA ligand with the 3PL1 PZase crystal 

structure. Initially, docking was going to be performed with AutoDock Vina (Trott and Olson, 

2009) due to its performance advantages over AutoDock4.2 (Morris et al., 2009), however 

AutoDock Vina was unable to replicate the same pose and intermolecular interactions as the 

original docked PZA ligand (both the water and Asp8 H-bonds between PZA and PZase were 

absent). Docking with AutoDock4.2 however was able to produce the near identical pose and 

intermolecular interactions including the water hydrogen bond that is essential for the 

conversion of PZA to POA (Petrella et al., 2011a). Docking validation was performed with 

identical parameters as those described above for the docking of SANCDB compounds. 
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2.7.6 Docking Analysis 

Analysis of AutoDock4 docking results is more complicated than analysis of AutoDock Vina 

results. For each docked system, 100 poses were generated and the clustered according to 

docking RMSD with a cut-off of 2.0 Å using AutoDock4’s internal automated analysis toolset. 

In order to take into account multiple factors that influence a ligand’s affinity and specificity 

to a particular target such as: binding energy, hydrogen bonds and ligand molecular weight and 

RMSD clustering; custom scripts were used in conjunction with those part of AutoDock Tools 

to extract poses from each docked system and then apply criteria to each extracted pose to 

perform selection. The first script used for this was a slightly customized 

process_VSResults.py script in AutoDockTools that was used to extract 2 poses from each 

system: (1) The global lowest energy pose (LE pose) and (2) the lowest energy pose in the 

largest cluster (LC pose). The output of this would usually be 2 PDBQT files per ligand, 1 for 

each of the poses, however in instances where the LE and LC poses were the same pose only 

one PDBQT file was generated. In addition to standard PDBQT file data, the 

process_VSResults.py also generated hydrogen bond information as well as docking clustering 

data as comments within each PDBQT file. This resulted in 1068 distinct PDBQT files 

representing 1068 poses. Centre of Mass (COM) distance between ligand and the PZase active 

site was calculated to determine ligand distance from the active site.  

Two rounds of selection with different criteria were performed using a fully custom script on 

all 1068 PDBQT files: 

Selection 1: COM distance <= 8 Å; 1 >= hydrogen bond between ligand and PZase 

(residue agnostic); binding energy <= -6.5 kcal/mol; Molecular mass <= 600 Da 

Selection 2: 1 >= hydrogen bond between ligand and PZase (specifically to active site 

residues); binding energy <= -5 kcal/mol; Molecular mass <= 600 Da 

Selected ligands were converted in PDB file format using Open Babel (O’Boyle et al., 2011). 

Visualization of docking results and docked ligand-receptor complexes were done using 

PyMOL (Schrödinger, 2020)and Accelrys Discovery Studio visualizer (BIOVIA, 2021). 

Visualization of intermolecular interactions was also done with Accelrys Discovery Studio. A 

graphical overview of the methodology used in this study is shown in Figure 8. 
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Figure 8: Overview of docking methodology in this study 
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2.8 RESULTS AND DISCUSSION 

2.8.1 Docking validation 
The PZA ligand used for re-docking was extracted from the complex produced in previous 

work. Docking against the Mtb PZase structure is a fairly straightforward process as it is a 

relatively small monomeric, single chain protein with a well-defined active site. Validation via 

re-docking of the PZA ligand indicated that the docking protocol used in this study was able to 

reproduce the correct pose and intermolecular interactions as determined by previous research 

(Sheik Amamuddy et al., 2020). While the calculated binding energy of the redocking was not 

Figure 9: Docking validation. (A) Docking validation results of 3PL1 crystal structure in 
complex with both the original docked PZA ligand (green) and re-docking attempt (red). Fe2+ 
atom shown in orange. (B) 2D diagram of intermolecular interactions between the 3PL1 PZase 
receptor and the PZA ligand. 
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notable at -4.28 kcal/mol, this was in line with previous research which obtained a binding 

energy of -4.48 kcal/mol. Reproducing the exact pose through docking is essential as specific 

residues within the PZase active site are required in catalysing the PZA to POA reaction. 

Shown in Figure 9A, a surface representation of the 3PL1 PZase receptor with both the original 

and redocked PZA poses overlayed is presented. RMSD between the two poses was calculated 

at 0.232 using the DockRMSD (Bell and Zhang, 2019) webserver, indicating that the redocked 

PZA achieved a similar pose and location to the original docked ligand. Discovery studio was 

used to generate the 2D intermolecular interaction diagrams shown in Figure 9B between 3PL1 

receptor and the PZA ligands. Redocking was successful in reproducing the correct pose as 

well as all the essential non-bonding interactions. Notable is the hydrogen bonds between 

ligand and residues Cys138 and Asp8, both of which are part of the Asp8-Lys96-Cys138 

catalytic triad that is conserved amongst numerous homologous proteins (Du et al., 2001) 

Additionally the essential water hydrogen bond to the aromatic ring nitrogen of PZA is also 

present. These interactions are essential to PZase activity on PZA: H20 initiates the reaction, 

Asp8 acts as a general base and converts Cys138 to its thiolate form which initiates a 

nucleophilic attack on PZA producing the acyl enzyme intermediate (Du et al., 2001) 

2.8.2 SANCDB screened compounds 

Virtual screening was performed with 623 compounds from the SANCDB database. All 

compound structures were pre-optimised and in their lowest energy conformations. Virtually 

all of these compounds have not been manufactured and are unavailable for purchase, therefore 

they have not been tested for anti-tuberculosis activity. All protein-ligand complexes produced 

from docking were viewed in either PyMOL or Discovery Studio Visualizer. Since the original 

intention of this study was to identify compounds binding to both the active site and any 

potential allosteric sites, blind docking was performed over the entire surface of the PZase 

structure and ligands that preferentially bound to within the active site pocket were identified. 
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The most common method of determining the binding affinity between a ligand and protein 

after docking uses a calculated value known as binding free energy. AutoDock4 uses a semi-

empirical free energy force-field algorithm to determine whether a ligand-protein complex is 

energetically favourable. Therefore, a lower energy value corresponds to a more favourable 

binding while a higher value means it is less favourable. However, this calculated binding 

energy is by no means the only method to evaluate ligand suitability as intermolecular 

interactions such as the presence of hydrogen bonds have been shown to be important factors 

to consider during screening (Zhao and Huang, 2011; Chen et al., 2016). Compounding this 

are the output results of AutoDock4.2, which as per the default parameters used in this study 

produces 100 of the most favourable poses for each docking system. As per methods described 

above, multiple poses were extracted from each docking result and filtered using 2 sets of 

criteria. 

Initially selection with the 1st criteria resulted in 107 systems. Given time considerations, this 

was deemed an adequate number of ligands that would then be analysed and submitted for MD 

simulations. However, a second round of selection was performed to ensure as many SANCDB 

ligands that bound preferentially to PZase active sites were selected. The selection criteria 

differed firstly due to further work being made on the custom script used for selection and 

secondly because the presence of a hydrogen bond between ligand and an active site residue 

such as those forming hydrogen bonds in the PZA control was judged an alternate method to 

select ligands that a) were binding near active site and b) were interacting with an active site 

Figure 10: All PZase protein-ligand docking complexes. The 1068 ligand poses are shown as 
colored sticks while the PZase receptor protein is shown as a semi-transparent blue surface. 
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residue.. The 8 Å COM distance criterion used for the first selection was also very strict and 

resulted in many ligands being excluded from selection despite being present in the active site. 

The second selection yielded 115 systems after removal of duplicates. In total 221 ligands 

binding within the active site pocket were selected as shown in Figure 11. In a few instances, 

both of those extracted poses for a SANCDB compound passed one or both of the selections. 

They are denoted with the suffix “_le” and “_lc” to distinguish between them when relevant. 

As will become clear in the following chapter, the two different poses can exhibit very different 

trajectories during MD simulations despite being the same ligand. The introduction of H-bond 

requirements in the two selection criteria were due to two reasons: Firstly, during docking 

validation, as well as in previous work (Sheik Amamuddy et al., 2020), binding energy of the 

redocked PZA-PZase system was only -4.28 kcal/mol, his is a very poor score and would 

certainly not be indicative of a favourable binding. However, it is important to note that the 

binding energy reported by docking programs is a synthetic value that is determined by the 

scoring function used, and these scoring functions are not always accurate when calculating 

binding energies across a diverse set of ligands such as those in the SANCDB database. Indeed, 

several studies have cautioned against relying solely on binding energy to determine promising 

compounds (Ramírez and Caballero, 2016, 2018; Pagadala et al., 2017; Pantsar and Poso, 

2018). This is especially true in cases of cross-docking where a ligand is docked to a receptor 

structure that it was not co-crystalized with. Cross-docking is the most popular type of docking 

since it is used to identify novel drug candidates but because receptor binding sites are often 

Figure 11: Selected PZase protein-ligand docking complexes. The 221 ligand poses are shown 
as colored sticks while the PZase receptor protein is shown as a semi-transparent blue surface. 
Ferrous ion shown in orange. 
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fitted to the ligand it was co-crystalized with (Skjærven et al., 2011; Ramírez and Caballero, 

2018), scoring functions may report inaccurate binding energies. The ‘induced-fit’ model of 

protein-ligand binding was borne out of observations such as this (Koshland, 1958; Austin et 

al., 1975; Foote and Milstein, 1994), and docking programs have traditionally struggled to 

accurately account for this model due to the computational challenges associated with 

introducing residue flexibility into the receptor structure. One avenue to evaluate docking poses 

is by the presence of hydrogen bonds between polar groups in the ligand and on the protein 

surface. Complementary hydrogen bonds are essential to a significant number of ligand-protein 

binding events (Fersht et al., 1985; Chen et al., 2016), the breaking of water-ligand hydrogen 

bonds and subsequent formation of protein-ligand hydrogen bonds are an important part of this 

process (Zhao and Huang, 2011). Hydrogen bonding can also further modulate ligand affinity 

and specificity when the ligand-receptor complex has significantly higher or significantly lower 

hydrogen bonding potential than the hydrogen and oxygen atoms in the surrounding bulk water 

(Chen et al., 2016). It was therefore judged that the presence of a hydrogen bond between a 

ligand and the PZase protein during docking would be a positive indicator of a favourable 

binding. Results of this investigation are shown in Figure 12. Shown in this figure are the 238 

ligand poses that passed one or both of the selection criteria and were submitted for short MD 

simulations. Ligands with no hydrogen bonds shown were selected with criteria 1 and 

contained hydrogen bonds with residues outside the active site. 
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Figure 12: Hydrogen bond distribution for all selected ligands. Y axis represents each ligand-
PZase complex. On X-axis all active site residues within 5 Å of original docked PZA location. 
The presence of an H-bond between a ligand and specific residue is shown by a navy square, a 
white square denotes the absence of an H bond.  
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2.9 CONCLUSION 

The development of novel drugs is challenging, time-consuming and expensive. Computer 

assisted drug design (CADD) can speed up this process and reduce costs by using 

computational tools in the early stages of the drug design and screening process to rapidly 

identify large numbers of potential drug candidates that can then be further investigated. In this 

chapter, 623 small molecules from the SANCDB were screened against the crystal structure of 

Mtb PZase (PDB ID: 3PL1). Compounds that bound at or near the active site, exhibited 

relatively low binding energies and had hydrogen bonds with the PZase receptor protein were 

preferentially selected. In total 238 ligand poses were identified and selected for further MD 

analysis in the following chapter.  
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CHAPTER 3 

MOLECULAR DYNAMICS SIMULATIONS FOR WILD TYPE – 

LIGAND COMPLEXES 

3.1 INTRODUCTION 

Proteins are dynamic structures that move and change conformation over time based on the 

physiological environment they exist in. In silico studies on protein dynamics often make use 

of molecular dynamics simulations to predict and analyse protein behaviour as well as protein-

protein and protein-ligand interactions within a system. This differs from the approach used 

during standard docking studies, during docking protein receptors are modelled as rigid 

structures with certain isolated residues being allowed to flex. Ligand conformation and 

orientation sampling followed by scoring are then done in the absence of a fully physically 

relevant environment. In this chapter, the stability and dynamics of selected SANCDB 

compounds in complex with the WT-PZase protein were investigated using MD simulations. 

3.2 MOLECULAR DYNAMICS SIMULATIONS 

With an emphasis on dynamics, MD simulations involve the simulation of molecular systems 

as a function of time. The movement and trajectories of all atoms in a system is calculated by 

integrating Isaac Newton’s equations governing objects in motion, otherwise known as 

classical mechanics. MD as a proof-of-concept as technique was first demonstrated in 1957 

and was used to simulate collisions between hard spheres (Alder and Wainwright, 1957; Wood 

and Jacobson, 1957), in 1977 the first simulation on a protein was achieved: a 9.2 ps trajectory 

of bovine pancreatic trypsin inhibitor (McCammon et al., 1977). Today, MD simulations are a 

powerful tool used for studying protein folding and unfolding, enzymatic reaction mechanisms, 

protein dynamics, rational drug design as well as elucidation of drug and protein mechanisms 

of action (Karplus and Petsko, 1990; Karplus and McCammon, 2002; Durrant and McCammon, 

2011). During a simulation, trajectories of atoms are determined by solving Newton’s 

equations governing objects in motion, inter- and intramolecular interactions, forces and the 

kinetic energies of atoms are evaluated using empirically derived force fields based on classical 

mechanics. This means each atom in a system is simulated as a particle with a radius and net 

charge, while bonded and many non-bonded interactions between particles are simulated as 

springs. A force field therefore is in effect a set of equations and constants that can be used to 
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reproduce the properties and geometry of atoms and all interactions within a system. Since 

protein structure files such as the PDB format do not contain any of this information, atom 

coordinates are derived from the PDB structure, then a velocity for each atom is assigned 

randomly from a Maxwellian distribution that is centred on the desired temperature. The 

velocities of each atom are then adjusted until a net angular momentum of zero is achieved. 

Bond length, bond angle and angle torsion are factors that influence the force exerted during 

bonded interactions, as shown in Figure 13. Hooke’s Law (F= -kx) is typically used to 

approximate this force. F being the force that is applied to the atom, -k is the spring constant 

and x is the extension distance. For non-bonded interactions, Lennard-Jones equations are used 

to calculate both attractive and repulsive interactions for electronically neutral atoms.  

MD simulations are frequently coupled in various manners with docking studies. The 

trajectories produced by MD simulations are essentially a collection of conformations for any 

protein(s) and ligand(s) included, as such they have been used in docking studies that use 

multiple receptor protein conformations instead of a common single-conformation receptor 

(Lin et al., 2002; Amaro et al., 2008). Aside from novel MD-docking hybrid techniques MD 

simulations can complement standard ligand-protein docking studies by using trajectory data 

to determine ligand (or protein) stability for the simulation duration. Due to receptor rigidity 

and lack of explicit solvent simulation, poses that appear favourable during docking may be 

unstable or even dissociate from the protein receptor at adequate timescales in an MD 

simulation. 

For the purposes of simulations modelling biological macromolecules, MD simulations that 

rely on molecular mechanics and empirically derived force fields have one notable shortcoming: 

they are unable to describe the interactions between a protein and any coordinating metal 

atom(s). The metal atoms in many proteins play essential roles in enzymatic catalysis as well 

as protein dynamics and folding (Sousa et al., 2010), therefore they cannot be omitted during 

MD simulations. However commonly used force fields such as CHARRM (Vanommeslaeghe 

et al., 2010), GROMOS (Oostenbrink et al., 2004) and AMBER (Maier et al., 2015) typically 

contain molecular mechanical parameters for an expanded set of standard and non-standard 

amino acid residues and common post-translational modifications, but little to no metal atom 

parameters, and since molecular mechanic methods bypass the concept of electrons as well as 
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the quantum mechanical nature of molecules, these force fields cannot hope to simulate 

interactions between a protein and a metal atom in an accurate manner in the absence of 

empirically derived parameters. 

 

 

 

 

 

 

 

 

 

Figure 13: Components of a typical MM force field. The total energy of each atom in a system 
is the summation of all potential energy terms (Bond distance, bond angle, bond torsion, bond 
angle and non-bonding interactions). Graphic created in Biorender. 
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3.3 METHODS: 

Molecular dynamics simulations for screening hit compounds and wild-type PZase were 

performed in a standardize step-by-step protocol as illustrated in Figure 14 at the end of this 

section. 

3.3.1 Model Preparation 

3.3.1.1 Protein preparation 

The Reduce tool (Word et al., 1999) was used to remove all hydrogens from the PZase protein 

structure (PDB ID: 3PL1). The de-protonated structure was then protonated by the H++ 

webserver (Anandakrishnan et al., 2012) at a pH of 7 with a salinity of 0.15 M and default 

dielectric parameters. Generated AMBER topology and coordinate files (.top and .crd) were 

downloaded and used to generate correctly protonated protein structure files using the 

amb2PDB tool. Catalytic site residues were edited and re-labelled in order to work with 

inferred Fe2+ parameters and the Fe2+ atom was manually assigned a correct charge of +2. 

3.3.1.2 Ligand preparation: 

Ligand PDBQT files of hits from the docking study were converted to a PDB file with all 

implicit hydrogens added using open Babel (O’Boyle et al., 2011). A custom python script was 

used to automate this and to correctly renumber atoms as open Babel did not update atom 

numbers when adding hydrogens. AmberTools’ antechamber tool was then used to generate 

coordinate and parameter files for each ligand using the AM1-BCC charge model (Jakalian et 

al., 2002) to calculate atomic point charges. Potential non-parameterized atom combinations 

were then checked for using AmberTools’ parmchk tool. 

3.3.2 System preparation 

3.3.3.1 Topology generation 

AmberTools’ LEaP program was used to generate Amber topology and coordinate files of the 

PZase-ligand complexes with the AMBER ff14SB (Maier et al., 2015) force field and 

generated Fe2+ force field parameters. Systems were solvated using the TIP3P water model 

(Mark and Nilsson, 2001) in a cubic box with a padding distance of 10 nm and all systems were 

neutralized by addition of NaCl. The AnteChamber Python Parser Interface (ACPYPE) tool 

(Da Silva and Vranken, 2012) was used to convert finalized AMBER topology and coordinate 
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files to GROMACS-compatible structure (.gro) and topology (.top) files with corrected atom 

types and charges. 

3.3.3 Minimization 

Energy minimization of systems prior to production runs is essential in order to remove any 

unfavourable geometries and steric clashes in a system, particularly after water molecules and 

neutralization ions are added to the system. Systems were minimized using the GROMACs 

(Abraham et al., 2015) preparatory grompp command followed by the mdrun command. 

Minimization was done using the steepest descent algorithm for 50 000 steps and was halted 

when a maximum force < 1000 kj/mol was achieved for every system. Successful minimization 

was verified by generating an energy minimization curve with the GROMACS energy 

command. The resulting .xvg files were viewed in xmgrace. 

3.3.4 Equilibration 

The equilibration step ensures that a solvated system is at a correct temperature and pressure. 

Equilibration was done by taking the system to the desired simulation temperature of 300 K 

with an NVT ensemble (constant number of particles, volume and temperature) for 200 ps 

using a Brendsen thermostat. Following this pressure equilibration was performed with an NPT 

ensemble (constant number of particles, constant pressure and constant temperature) for 200 

ps in order to achieve a stable pressure of approximately 1 bar using the Parrinello-Rahman 

barostat. Successful equilibration was verified by generating pressure and temperature curves 

with the GROMACS energy command. The resulting .xvg files were viewed in xmgrace. 

3.3.5 Production MD runs 

Following minimization and equilibration, system position restraints were relaxed, and 150 ns 

production runs were conducted using the GROMACS mdrun command. Trajectory and 

coordinate information was saved every 10 ps, yielding 15 000 states for every system 

simulated. All production runs were done on the CHPC (Center for High Performance 

Computing) in Cape Town.  
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3.3.6 Trajectory Analysis 

3.3.6.1 RMSD 

RMSD (Root mean square deviation) in the context of MD simulations is a measure of the 

average distance between atoms (usually backbone atoms or ligand atoms in the case of protein 

MD). Here it is a measure of distance between atoms during simulation and the initial 

simulation state after equilibration and minimization. It is used to evaluate the stability of a 

simulated structure through time and for this study RMSD of protein backbone atoms and 

RMSD of ligand atoms was analysed to evaluate protein and ligand stability, respectively. 

RMSD data was generated using the GROMACS rms command, processed in R studio and 

then visualized using the Pandas (McKinney, 2010; Reback et al., 2021) and Seaborn toolkits 

(Waskom et al., 2020). 

3.3.6.2 RMSF 

While RMSD provides a global measure of deviation of a system through time, RMSF (Root 

means square fluctuation) provides an average deviation over time at the individual residue 

level and is therefore a measure of residue rigidity over the course of the simulation. RMSF 

data was generated using the GROMACS rmsf command, processed in R studio and then 

visualized using the Pandas and Seaborn toolkits  

3.3.6.3 Radius of gyration: 

The Rg (Radius of gyration) of protein is a measure of its ‘compactness’. When a protein is 

stable and in its native fold it is most likely to maintain a constant value gyration value over 

time. For this study Rg was used to determine the overall distribution of a system. The 

GROMACS command gyrate was used to calculate Rg for the PZase protein as a whole as well 

as active site residues within 8 angstroms of the binding site of PZA. Data was processed in R 

studio and then visualized using the Pandas and Seaborn toolkits. 

3.3.6.4 Hydrogen bonding analysis: 

Hydrogen bonding was evaluated in a two-fold manner. Firstly, the hbond tool built into 

GROMACS was used to generate data on the total number of intermolecular H-bonds between 

ligand and PZase throughout the 150 ns simulations. The second tool used was AmberTool20’s 

CPPTRAJ program (Case et al., 2020). This tool was used to generate specific hydrogen 

bonding data and occupancy values for every residue in the PZase active site pocket. Both tools 
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were supplied identical parameters (max H-bond distance: 3.5 Å; angle cut-off: ± 35º) to ensure 

equivalence between the two sets of data. 

 

 

 

Figure 14: Overview of methodology used for Molecular Dynamics studies. 
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3.4 RESULTS AND DISCUSSION 

3.4.1 20 ns pre-runs 
As a first step, 20 ns MD simulations were performed on all ligands selected from the docking 

study. Due to the computational cost of these simulations, it was decided that pre-production 

20 ns runs would be used initially to eliminate ligands that were immediately unstable during 

MD simulations. To determine this, ligand-PZase complexes were simulated for 20 ns MD 

runs, then ligand RMSD for each system at 10 ps intervals was determined to evaluate stability 

-whether each ligand underwent significant changes in conformation or location. Only the last 

10 ns of these simulations were used to calculated ligand RMSD in order to allow the ligands 

to settle into a favourable conformation, if one exists. Ligands with RMSD clustering that 

indicated initial stable binding to PZase were then submitted for 150 ns production MD runs, 

as shown in Figure 15. RMSD data is present here using violin plots, which are similar to box 

plots but with the added benefit that they show probability density values. Ligands that 

exhibited unimodal RMSD clustering with a median value at or below 0.2 nm were selected 

Figure 15: Violin plots of Ligand RMSD results for 20 ns pre-production MD runs. In purple: 
PZA-PZase control; blue: ligands judged to be unstable; yellow: ligands appearing stable. 
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based on this data, while all others were discarded. By this metric the PZA control was also 

considered sufficiently stable and submitted for a 150 ns MD run. Unimodal clustering at or 

below 0.2 nm indicates that the ligand is very stable throughout the simulation and was likely 

only in one pose. Multimodal clustering and clustering at values much higher than 0.2 nm 

indicates that a ligand is fluctuating substantially and is alternating between different poses 

during simulation, suggesting instability. Finally, ligands that dissociate from the protein and 

leave the system entirely are visible as violin plots stretched out over large RMSD ranges with 

no apparent clustering. Since the plots in Figure 15 only represent the last 10 ns of a 20 ns 

simulation, analysis of any multi-modal clustering was not performed as the simulation 

timescale was too short. 

3.4.2 Ligand RMSD 

Extended 150 ns production MD runs revealed the limitations of the shorter MD runs: <100 ns 

timescales are not sufficient to simulate ligand-binding and ligand-unbinding events and 

therefore cannot reliably predict ligand stability. Many ligands that appeared stable during 20 

ns simulation were shown to be unstable in the 150 ns simulations. Still, since it was unfeasible 

to perform 150 ns MD simulations on all 238 systems, pre-screening using 20 ns MD runs was 

an effective method to reduce the number of 150 ns simulations needed. Selection of hit ligands 

from MD production runs was based primarily on ligand stability observed with ligand RMSD 

Figure 16: Violin plots of Ligand RMSD results for 150 ns production MD runs. In purple: 
PZA-PZase control; blue: ligands judged to be unstable; yellow: ligands appearing stable. 
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data shown in Figure 16, additionally, hydrogen bond data was taken into account too, as the 

presence of persistent hydrogen bonds is an important indicator of ligand stability. 

3.4.3 Hydrogen bonding 

In Figure 17, systems are ranked according to the sum of the occupancy values of H-bonds 

that are present between ligand and the active site residues shown on the x-axis of Figure 17A. 

Most notable is that a significant number of stable systems exhibit weak and even non-existent 

hydrogen bonding between ligand and protein. This is also apparent in Figure 18, showing 

non-specific hydrogen bond counts. Take for example the top 4 systems in Figure 18: all four 

Figure 17: Heatmap of intermolecular hydrogen bond interactions during production runs. 
(A) Each system is denoted by the ligand name on the y-axis, residues making up the PZase active 
site pocket are listed on the x-axis. The colour intensity of coloured squares and the numbers in 
each denote hydrogen bond occupancy, or the percentage of time during the simulation where the 
hydrogen bond was present. The absence of a coloured square and a percentage therefore denotes 
the absence of a hydrogen bond. Systems identified as stable in Figure 16 are marked with an 
asterisk (B) Average occupancy per residue. 
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exhibit hydrogen bonding throughout the simulation duration with the exception of 

SANC00679_lc. Despite this, none of the ligands in these systems are stable, as per ligand 

RMSD data shown in Figure 16. This suggests that hydrogen bonding alone is not a reliable 

way to predict ligand binding potential. 

Figure 18: Heatmap of intermolecular hydrogen bond counts during production runs. Each 
system is denoted by the ligand name on the y-axis, with simulation time on the x-axis. Increasing 
colour intensity corresponds to a higher number of hydrogens bonds between ligand and PZase. 
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Also notable, is the large difference in common hydrogen bonding residues between the 

docking results and this MD study. During docking, as shown in Figure 12, the most common 

residues that participated in hydrogen bonding were ALA134, CYS138 and ASP8, present in 

60%, 39% and 21% of systems respectively, while during MD simulations as shown in Figure 

17 the most common residues were ASP8, LEU19 and ALA102 at 31.3%, 11.6% and 5% 

respectively. The comparison is not perfect as overall residue occupancy for this MD study was 

determined by calculating the average % occupancy for each residue by summing the per-

system occupancies over the 150 ns simulation duration, whereas the docking study produced 

binary data: either a hydrogen bond was present, or it was not. What is clear is that residue 

ALA134 and CYS138 displayed significant hydrogen bonding potential during the docking 

study, but did not do so during this MD simulation, meanwhile ASP8 and LEU19, the residues 

exhibiting the most H-bond potential during MD simulations had significantly less potential 

during the docking study. Part of the reason for this is the fundamental difference between 

molecular dynamics simulations and molecular docking performed in this study: during 

docking, a single protein conformation is used, in this case, the pose of the crystal structure, 

the orientation of the ligand is the factor that determines what hydrogen bonds will be present. 

However, during MD simulations everything in a system is in motion, ligand, water, ions, and 

protein; and only a fraction of the conformational ensembles produced during MD simulations 

will make certain hydrogen bonds favourable. 

3.4.4 Protein RMSD 

Shown in Figure 19, protein backbone RMSD was one metric used to evaluate PZase stability 

in each system, showing average deviation of protein structure from initial coordinates. RMSD 

values for all systems clustered between 0.10 and 0.20 nm over the 150 ns simulation time. 

This indicates that all systems, including the PZA control were stable for the duration of the 

150 ns simulation time. Only one system, SANC00244, exhibited a slightly higher average 

RMSD at 0.25 nm. Additionally, most systems and a majority of stable systems (Figure 19, 

yellow) exhibit unimodal clustering, suggesting that the PZase structure converged on a single 

stable state for the simulation duration. However, a minority of systems such as SANC00170, 

SANC00231, SANC00343 and SANC00648 exhibited multimodal clustering, usually bimodal, 

which indicates the PZase structure may have converged into multiple stable states.  
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3.4.5 Radius of Gyration (Rg) 

Net distribution and density of PZase structures was monitored by calculating Rg (radius of 

gyration) data for each 150 ns MD run. Since Rg is a measure of root mean distance of a 

collection of atoms from a common centre of mass, Rg describes the ‘compactness’ of the 

protein structure and therefore a protein’s stability in terms of whether it maintains its native 

structure or partially or even fully denatures during the simulation duration. A protein that 

denatures during an MD simulation would result in steadily increasing Rg value throughout 

the simulation, on a violin plot, this would result in the absence of clustering, with violin plots 

being stretched out. Significant changes in protein conformation can also typically be detected 

in Rg data as movement of a large number of atoms towards or away from the protein center 

of mass will alter Rg values. As shown in Figure 20, all PZase structures maintained Rg values 

of 2.54 ± 0.02 nm, indicating that all structures maintained a stable state for the duration of 

simulation time, with insignificant changes in overall Rg states. 

 

 

Figure 19: Violin plots of protein backbone RMSD results for 150 ns production MD runs. In 
purple: PZA-PZase control; blue: systems judged to be unstable based on ligand RMSD data; 
yellow: systems judged stable based on ligand RMSD data. 
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Radius of gyration of the active site residues was also evaluated by selection of residues within 

8 Å of the binding site of PZA. This was used to determine whether there were significant 

variations in active site conformation or topology between systems. As shown in Figure 21, 

absolute Rg values were approximately 0.5 nm lower than the Rg values shown in Figure 20. 

This is expected as the active site residues are all in the active site pocket buried within the 

PZase surface and are therefore closer to the enzyme’s centre of mass than an average residue. 

Overall active site residues exhibited average Rg values of 0.975 ± 0.08 nm. This variation is 

larger than the variation observed for whole protein Rg shown in Figure 20, however this is 

largely due to outlier systems that show increased Rg variation over the majority of systems. 

This includes SANC00170, SANC00267, SANC00343 and SANC00710. 

Figure 20: Violin plots of protein Radius of gyration (Rg) results for 150 ns production MD 
runs. In purple: PZA-PZase control; blue: systems judged to be unstable based on ligand RMSD 
data; yellow: systems judged stable based on ligand RMSD data. 
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3.4.6 RMSF 

RMSF data was analysed to determine protein stability at the per-residue level. For this, RMSD 

data for the duration of the 150 ns simulation was averaged at the per-residue level to identify 

any regions of fluctuating residues (Figure 22). Regions that consistently exhibited increased 

fluctuations across most systems include several loop regions, as shown in Figure 22C. This 

is to be expected as structured regions such as α-helices and β-sheets typically exhibit more 

restricted motion than loops when in their native folded states. The most consistently flexible 

regions across all systems were residues 14-17 and 35-41, both of which are loop regions. 

Semi-flexible residues 59 – 65 and residue 53 are part of the loop region that forms the ‘lid’ 

controlling access to the PZase active site pocket, and accordingly exhibit a mild to moderate 

increase in RMSF. 

Figure 21: Violin plots of Rg of active site residue results for 150 ns production MD runs. In 
purple: PZA-PZase control; blue: systems judged to be unstable based on ligand RMSD data; 
yellow: systems judged stable based on ligand RMSD data. 
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Figure 22: RMSF data for 150 ns production MD runs. (A) RMSF profiles of all systems 
selected for further screening during mutagenesis studies. (B) RMSF profiles of all other systems. 
(C) Crystal structure of PZase with regions of consistent higher RMSF values colored in yellow 
and green, adjacent labels indicate residue numbers. 
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3.4.7 Hit compounds 

Ligand RMSD data generated from the 150 ns production MD runs indicated that there were 

approximately 20 ligands that remained stable and bound to PZase for the duration of the 

simulation timescale (Figure 16, yellow). This selection was based primarily on ligand RMSD 

as ligand stability and potential for sustained binding at the PZase active site is essential for 

any potential drug candidate.  

Compound Docking 

binding 

Energy 

(kcal/mol 

Docking H-bonds Mean MD 

ligand 

RMSD 

(nm) 

MD H-bonds 

PZA -4.48 ASP8, ALA102, ILE133, CYS138 0.120 ASP8, ILE133, ALA134 

SANC00110 -5.46 ALA134 0.153 ALA134 

SANC00129 -5.8 ASP8 0.0763 ASP8 

SANC00182 -6.75 ALA134, CYS138 0.099 ALA134 

SANC00202 -5.53 ALA134, CYS138 0.085 ALA134 

SANC00237 -9.31 ALA134, CYS138 0.093 ALA134, CYS138 

SANC00238 -5.42 ASP8 0.099 ASP8 

SANC00258 -7.45 ASP8 0.159 ASP8 

SANC00308 -7.59 ALA134, CYS138 0.090 LYS96 

SANC00313 -7.02 ALA20, ALA134 0.072 ASP8 

SANC00315 -7.28 ALA20, ALA134 0.078 -- 

SANC00318 -7.12 ALA134 0.114 -- 

SANC00336 -6.70 ASP8, TYR64 0.190 ASP8 

SANC00351 -6.82 ALA134, CYS138 0.097 ALA102 

SANC00360 -7.21 ALA134, CYS138, ALA20 0.165 LEU19, TRP68, LYS96 

SANC00363 -8.16 ASP8, ALA134 0.093 ASP8, ALA134 

SANC00521 -6.55 ALA102, ILE133, ARG140 0.103 LEU19 

SANC00527 -7.00 ILE133, ALA134, CYS138 0.122 ASP8 

SANC00614 -7.50 ALA134 0.122 -- 

SANC00615 -6.66 ALA20 0.202 ASP8, ALA134 

SANC00648 -7.13 ALA134 0.106 -- 

SANC00652 -5.89 ALA134, CYS138 0.094 -- 

SANC00683 -5.99 ALA134 0.152 -- 

SANC00719 -5.71 ALA134, CYS138 0.124 ALA134, CYS138 

Table 2: Selected Ligands that remained bound to PZase during MD simulations. A 
particular H-bond was considered present if it had a >10% occupancy value. 
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Given time considerations, compounds with no significant H-bonding during MD simulations 

were removed from the selection. Notable in Table 2 is the wide range of binding energy values 

during docking simulations, many of these compounds would not have been selected for MD 

simulations if the criteria for binding energy had been a more conventional -8 kcal/mol instead 

of -5 kcal/mol, despite being stable during MD simulations. As stated previously the H-bonding 

interactions between docking and MD simulations are also different for many compounds such 

as SANC00308, SANC00313, SANC00351and SANC00652, among others. 

Compound Compound Name 

Classification 

Source 

Organism 

Uses References 

SANC00110 

7-Angelylplatynecine 

Alkaloid 
Pyrrolizodine 
 
MW: 239 Da 

 N/A (Logie, 

1996) 

SANC00129 

Damirone B 

 

Alkaloid 

Damirone 

Pyrroloiminoquinone 

MW: 202 Da 

Latrunculia 

lorii 

N/A (Antunes, 

2003) 

SANC00238 

Damirone C 

 

Damirone 
Pyrroloiminoquinone 

MW: 188 Da 

Strongylodesm

a aliwaliensis 

Anticancer 

activity 

(Whibley et 

al., 2005) 

SANC00243 

4'-O-Methyl-punctatin 
 
Flavonoid 
Homoisoflavonoid 

MW: 328 Da 

Eucomis 

autumnalis 
N/A (Sidwell 

and Tamm, 
1970) 

Table 3: Characteristics of final selected ligands used for the following mutagenesis studies.  
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SANC00258 

4'-Demethyl-eucomin 
Homoisoflavonoid 

MW: 284 Da 

Eucomis 

punctata 
N/A (Finckh and 

Tamm, 

1970) 

SANC00313 

Rubrolide E 

Furanone 
 
MW: 280 Da 

Synoicum 

globosum 
N/A (Sikorska et 

al., 2012) 

SANC00336 

4'-Demethyl-5-O-
methyl-3,9-
dihydroeucomin 

Homoisoflavonoid 
 
MW: 300 Da 

Eucomis 
punctata 
Eucomis 
montana 
Eucomis 
comosa 

N/A (Finckh and 

Tamm, 

1970) 

SANC00351 

5,7-Dihydroxy-3-(3'-
hydroxy-4'-
methoxybenzyl)-4-
chromanone 
 
Homoisoflavonoid 
MW: 316 Da 

Resnova 

humifusa 

N/A (N. A. 

Koorbanall

y et al., 

2006) 

SANC00360 

8-O-Demethyl-7-O-
methyl-3,9-
dihydropunctatin 

Homoisoflavonoid 

MW: 316 Da 

Eucomis 
punctata 
Eucomis 
montana 
 

N/A (N. A. 

Koorbanall

y et al., 

2006) 

SANC00363 

Ent-3β-hydroxy-beyer-
15-ene-2-one 
 
Diterpene 
Terpenoid 
MW: 302 Da 

Spirostachys 

africana 

Antibacteri

al activity 

(Mathabe et 

al., 2008) 

SANC00521 

(E)-3,2',4'-

Trihydroxychalcone 
Flavonoid 

MW: 256 Da 

Galenia 

africana 

N/A (Mativandl

ela et al., 

2009) 

 

(Z)-Eucomin 
 
Homoisoflavonoid 
 
MW: 298 Da 

Eucomis 

comosa 
N/A (C. 

Koorbanall

y et al., 

2006) 
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SANC00527 

SANC00615 

5-Hydroxy-7-methoxy-
3-(3-hydroxy-4-
methoxybenzyl)chroma
n-4-one 

Homoisoflavonoid 
 
MW: 330 Da 

Scilla nervosa N/A (Bangani, 

Crouch and 

Mulholland

, 1999) 

 

Shown in table 3 are the properties of the 13 final compounds selected for further analysis in 

the following PZase mutant study. Nearly all of them except for SANC00238 and SANC00363 

have no known uses or specific activities. Also notable is that many of them have significant 

structural similarities, with SANC00129 and SANC00238 sharing a common structure and 

SANC00243, SANC00258, SANC00336, SANC00351, SANC00360 and SANC00527 also 

share a common structure. Finally, PZA is a small molecule with a MW of 123 Da, while the 

hit compounds identified in this chapter have MW values 2-3 times larger, as shown in Table 

3. Given the dimensions of the PZase active site pocket (approximately 10 Å deep and 7 Å 

wide), the increased size of these compounds may hinder access to the active site in vitro to a 

greater extent than is evident during this in silico study.  

3.5 CONCLUSION 

As described previously, prediction of protein-ligand for the purposes of rational drug design 

is challenging and computationally expensive, many docking protocols rely on shortcuts that 

come at the expense of accuracy, such as simulating the protein receptor as a rigid structure. 

MD simulations assist with this shortcoming by allowing for the precise simulation of the 

conformational dynamics between protein and ligand over physically relevant timescales. In 

this chapter, 238 ligand poses were subjected to 20 ns MD simulations with the PZase enzyme 

in order to discard immediately unstable ligands, this was followed by 83 150 ns simulations 

to identify stable ligands. Regretfully, system SANC00307_le was erroneously not selected for 

further 150 ns MD simulations despite it passing the 0.2 nm median ligand RMSD stability 

criterion. Ligand potential was evaluated using ligand RMSD data as well as H-bonding 

interactions between ligand and PZase. Protein RMSD, Rg and RMSF were used to evaluate 

the PZase protein stability and dynamics over the simulation period and to identify any local 

points of increased fluctuation. In total there were 13 ligands identified that showed significant 

potential primarily due to ligand RMSD data, many of which fell into two distinct common 
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structures. The next chapter will be focused on investigating whether these ligands exhibit 

similar behaviour against mutant PZase enzymes, that induce PZA resistance in Mtb.  
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CHAPTER 4 

MUTANT PZASE MOLECULAR DYNAMICS SIMULATIONS 

4.1.1 INTRODUCTION 

Worldwide, an estimated 500 000 cases of MDR/RR-TB were reported in 2019, a 10% increase 

compared to 2018 (WHO, 2020a), this is alarming as there is likely a significant number of 

unreported MDR/RR-TB  cases worldwide, and only 57% of MDR-TB infected people are 

successfully treated. The increasing incidence of MDR/RR-TB, as well as XDR/TDR-TB 

poses a significant threat to the control of TB globally, but particularly in the Global South, 

where TB burden is significantly higher. Since PZA is such a vital drug for the treatment of 

both drug-susceptible and drug-resistant TB, it is imperative that insights into its MoA are 

uncovered, and novel potential drug candidates are discovered. 

4.1.2 Mutations in the pncA gene and PZA resistance 

The gene encoding the Mtb PZase enzyme, pncA, was first associated with PZA resistance by 

Scorpio and Zhang in 1996, and shortly after that mutations in the pncA were found to be 

responsible for 70-97% of cases of PZA-resistant Mtb infections (Hirano et al., 1998). 

Although not all cases of PZA-resistance have been attributed to mutated pncA, recombinant 

studies using mutated pncA have shown that mutated enzymes can reduce PZA to POA 

enzymatic activity up to 10 times depending on the type of mutation and its location(s) in the 

protein (Cheng et al., 2000; Sheen et al., 2009). Notable residues include those at the active 

site: Asp8, Ile133, Ala134 and Cys138; all of which, when mutated, have significant effects on 

PZase activity (Sheen et al., 2009; Petrella et al., 2011c). Although not all PZA resistance can 

be attributed to mutations in pncA, there is a very high correlation between PZA resistance and 

pncA mutations in South Africa (Louw et al., 2006; Mphahlele et al., 2008). 
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4.1.3 Identification of SANCDB compounds that bind to mutant PZase 

In the previous chapter, SANCDB compounds that favourably bind to PZase during MD 

simulations were identified and described. In this chapter, these identified compounds will be 

screened against mutant PZase structures in order to identify any compounds that are less 

affected by PZase mutations that PZA is. A total of 13 high confidence missense mutations 

(Figure 23) were retrieved from previous work done by Sheik Amamuddy et al., 2020, who 

originally obtained mutation data from the TB Drug Resistance Mutation Database (Sandgren 

et al., 2009). Sheik Amamuddy et al classified the mutations according to their distance from 

the PZA ligand’s COM: Group 1, green spheres are ≤6.7 Å from COM; Group 2, red spheres 

are ≤ 11 Å from COM; Group 3, yellow spheres are ≥11 Å from COM and finally Group 4, 

purple spheres formed part of the MBS of PZase. This was done to determine whether 

distance from active site was a factor that affected a mutation’s effect. For this study, 13 point 

mutations where chosen with a few from each group, listed below in Table 4 

 

Figure 23: Point mutations within the PZase protein used during this screening study. PZA 
ligand shown in cyan within the active site pocket; FE2+ atom shown in orange. Group 1: green; 
Group 2: red; Group 3: yellow; Group 4: purple.  
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Mutant Group 

A134V 1 (≤6.7 Å from active site) 

H137R 

D8G  

 

2 (≤ 11 Å from active site) 

Q10P 

Y103S 

V139M 

R140S 

A3P  

 

 

3 are ≥11 Å from active site) 

T61P 

D63G 

L85R 

L116R 

A146V 

D49A  

4 (MBS residues) D49G 

H51P 

 

  

Table 4: PZase point mutations chosen for this study. Mutations originally obtained from the 
TB drug resistance database (Sandgren et al., 2009) and studied by Sheik Amamuddy et al., 2020 
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4.2 METHODOLOGY 

The overall methodology for this study was very similar to the methodology used for the 

previous wild-type MD study. The only significant differences were the added step of 

mutagenesis where PZase structures were mutated and modifications to Fe2+ force field 

parameters where a mutation changed the coordination environment surrounding the Fe2+ atom. 

4.2.1 Mutagenesis 

Point mutations were introduced into the PZase crystal structure (PDB ID: 3PL1) using the 

residue editing tool built into Discovery Studio Visualizer (BIOVIA, 2021). Mutated structures 

were then deprotonated using the Reduce tool (Word et al., 1999). The de-protonated structures 

were then protonated by the H++ webserver (Anandakrishnan, Aguilar and Onufriev, 2012) at 

a pH of 7 with a salinity of 0.15 M and default dielectric parameters, from here on the 

methodology used was identical to that of the previous chapter. Energies of mutated structures 

were minimized during the energy minimization step of the MD simulations, this was essential 

to eliminate any unfavourable geometries and steric clashes that may have been introduced 

during mutagenesis, 
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4.3 RESULTS AND DISCUSSION 

4.3.1 Ligand RMSD 
Like the previous chapter, ligand RMSD was the primary method used to determine ligand 

stability, as shown in Figure 24, unlike chapter 3 however, all plots in this chapter have been 

split so that each ligand tested has its own subplot, and each subplot characterizes a ligand 

across all mutant PZase structures tested.  

Criteria for determining stability via ligand RMSD data was identical to that used in chapter 3, 

only systems that exhibited unimodal clustering below 0.2 nm RMSD are considered stable, 

with small exceptions made if clustering occurred on the 0.2 nm boundary with significant 

levels of hydrogen bonding. As expected, PZA performed poorly, only being stable in 2 out of 

Figure 24: Violin plots of Ligand RMSD results for 150 ns production MD runs for the 
PZase mutant study. In purple: WT control; blue: ligands judged to be unstable; yellow: ligands 
appearing stable. 
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the 13 mutant systems, this is somewhat expected, as the majority of these mutations are 

detected in PZA resistant isolates of Mtb (Sandgren et al., 2009). D8G and Q10P, the two 

systems where PZA was stable are both group 2 mutations. Ligands SANC00243, SANC00313, 

SANC00360, SANC00521, SANC00615 performed similarly poorly, only being stable in 1-4 

mutant systems, suggesting that they would not be promising candidates against PZase mutants. 

SANC00110 and SANC00336 showed slightly more promise being stable in 7 and 6 systems, 

respectively. The 6 ligands that were stable in more than half of systems were SANC00129, 

SANC00238, SANC00258, SANC00351, SANC00363, SANC00527, with the most promising 

systems: SANC00129, SANC00238 and SANC00258 being stable in 14,14 and 15 systems, 

respectively. Supplementary Figures S1-S4 show protein backbone RMSD, protein Rg, active 

site Rg and protein RMSF respectively for all mutant system MD simulations. Protein RMSD 

data (Figure S1) showed that there were no systems rendered significantly more unstable due 

to introduced point mutations. Protein Rg data, shown in Figure S2 indicates a similar situation, 

with the exception of D49A and D49G systems, Rg values remained unimodally clustered and 

very similar to those of WT PZase. Active site Rg data, shown in Figure S3 is largely the same: 

active site residues in a majority of systems were comparable to WT systems. The exception 

to this were systems with the D49A and D49G mutations, since Asp49 is part of the protein 

MBS, it is likely a point mutation of this residue significantly alters the stability of the MBS as 

well as the active site as a whole. In vitro investigations of mutations of PZase MBS residues 

show that they often abolish nicotinamidase activity and protein stability (Petrella et al., 2011a). 

A similar pattern is observed in protein RMSF data, shown in Figure S4. RMSF patterns 

largely correspond to that of the WT systems, however systems with the D49G and D49A 

residues.   

4.3.2 Hydrogen bonding analysis 

Hydrogen bonding data, shown in Figures 25 and 26¸ reveals that the most common residue 

participating in hydrogen bonding with ligands is the active site residue Asp8. In approximately 

eight ligands, Asp8 shows significant hydrogen bonding in the majority of mutants, with 

consistently high occupancy ranges, often in the 80-100% range. Being part of the catalytic 

triad, Asp8, is hypothesized to facilitate the nucleophilic attack of Cys138 on the carbonyl atom 

of PZA, forming the intermediate acyl-enzyme complex. Asp8 also facilitates water-mediated 

hydrolysis of the acyl-intermediate by acting as a general base, completing the conversion of 

PZA into POA (Petrella et al., 2011c). Asp8 is an even more important hydrogen-bonding 

residue for SANCDB compounds that exhibit the most favorable binding across a wide range 
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of mutants: SANC00129, SANC00238, SANC000258 and SANC00527 all show significant 

hydrogen bonding with most mutants. Occupancy values are almost always > 90% and there is 

very little hydrogen bonding to other residues in any of the systems.  

 

Compound No. stable systems H-bonding residues 

PZA 2 Ile133, Ala134, Cys138 
SANC00110 7 Ile133, Ala134, Cys138 
SANC00129 14 Asp8 
SANC00238 14 Asp8 
SANC00243 1 -- 
SANC00258 15 Asp8 
SANC00313 4 Asp8 
SANC00336 6 Asp8, Ala102 
SANC00351 9 Asp8, Ala102 
SANC00360 1 Leu19 
SANC00363 10 Asp8, Ala134 
SANC00521 4 Asp8, Leu19 
SANC00527 12 Asp8 
SANC00615 3 Asp8, Leu19 

Table 5: Summary of ligand stability in mutant systems and H-bonding residues. 
Compounds shaded in grey showed the most favorable binding pattern in a majority of mutant 
systems. 
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Figure 25: Heatmap of intermolecular hydrogen bond interactions during MD runs. Each 
system is denoted by the mutant name on the y-axis, residues making up the PZase active site 
pocket are listed on the x-axis. The colour intensity of coloured squares and the numbers in each 
denote hydrogen bond occupancy, or the percentage of time during the simulation where the 
hydrogen bond was present. The absence of a coloured square and a percentage therefore denotes 
the absence of a hydrogen bond. 
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Figure 26: Heatmap of intermolecular hydrogen bond counts during production runs. Each 
system is denoted by the mutant on the y-axis, with simulation time on the x-axis. Increasing 
colour intensity corresponds to a higher number of hydrogens bonds between ligand and PZase. 
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4.3.3 Mutations and compound stability 

Point mutations can have significant effects on protein structure, substrate specificity and 

enzymatic activity, (Rodríguez-Zavala, 2008; Ishida, 2010) and therefore play roles in the 

development of drug resistance in many diseases (van Doorn et al., 2003; Bohnert et al., 2007).  

In this study, 3 residues in the active site pocket were mutated: 2 MBS residues (mutations 

D49A, D49G and H51P) and 1 residue that was part of the catalytic triad (D8G). The other 12 

mutations are located outside of the active site cavity, and so any effects they may have on 

protein activity and function are not due to any direct alteration of the active site –although 

they may very well still influence the active site via allosteric mechanisms. The 3 residues in 

the active site that were mutated (D8G, D49A, D49G, H51P) all resulted in the most significant 

reductions in the number of stable compounds compared to the other mutations, as shown in 

Figure 27C. In addition to being missense mutations, the substituted amino acids are all 

Figure 27: Mutations within the active site pocket resulted in few stable compounds. A) and 
B) are hybrid representations of the active site cavity of PZase/pncA, rotated 90º. In red are the 
active site residues forming the catalytic triad, in purple are the MBS residues that coordinate with 
the Fe2+ atom, shown in orange. (C) Number of stable compounds for each set of mutant systems, 
grouped according to approximate distance to the binding site of PZA within the active site cavity. 
3D diagrams generated using PyMOL. 
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biochemically distinct from the WT residues they replace. Asp8, an acidic residue essential for 

catalysis in numerous enzymes due to its ability to provide a carboxylate group (Buller and 

Townsend, 2013), is replaced with glycine, the smallest amino acid with no side chain and 

therefore no polar groups. Asp49 is replaced with glycine or proline, both small, aliphatic, and 

non-polar residues. His51, a basic residue with an imidazole group is replaced with proline, a 

residue with neither of these features. Both Asp49 and His51 are coordinating residues of the 

Fe2+ atom and are essential for the proper coordination geometry of the metal ion. Therefore, 

these mutations will lead to alterations of the ion’s coordination geometry. As all these 

mutations perturb either the MBS or catalytic triad, it is expected that they would result in 

significant structural alterations to the active site itself (Figure 27A & 27B) and therefore 

binding affinity. In vitro assays on heterologously expressed PZase with the D8G, D49G and 

H51P mutations have shown that mutations at these positions abolish PZase activity or, in the 

case of the D8G mutation, cause the protein to precipitate out of solution (Petrella et al., 2011b), 

likely due to protein denaturation and exposure of hydrophobic residues to the bulk solvent. 

Mutations outside of the active site can influence protein function and enzymatic activity in 

two ways: via allosteric effects as mentioned above where a mutation occurs at an allosteric 

site (Qiang et al., 2017; Mishra et al., 2018), thereby altering binding behaviour of any effector 

molecules (or drugs that target the allosteric site); or by disrupting protein structure and 

dynamics to such an extent that the active site of a protein is functionally altered (Shakhnovich 

Figure 28: Locations of two mutations outside of the pncA active site. Despite being outside 
the active site cavity, both mutations introduced here resulted in a significant reduction in 
compound stability. Diagram generated using PyMOL. 
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and Gutin, 1991; Shanthirabalan et al., 2018). A notable characteristic of the pncA gene is the 

diversity in mutations that infer PZA resistance (Petrella et al., 2011b), which occur along the 

length of the pncA gene. The mutations investigated in this study are all point mutations, but 

there are numerous insertions, deletions and frameshift mutations that have all been 

documented to infer PZA resistance as well (Aono et al., 2014; Khan et al., 2019). As shown 

in Figure 27C, mutations in the active site pocket (specifically residues part of the catalytic 

triad and MBS coordinating residues) appear to have the most significant effect on the number 

of stable compounds at the active site. However, mutations outside of the active site cavity also 

reduced the number of stable compounds at the active site. Two mutations, Q10P and T61P, 

shown in Figure 28, resulted in only five of the 14 compounds tested being stable in the active 

site. Gln10 in the WT protein, while still being relatively close to the active site cavity is 

situated beneath it, within the interior of the protein. Thr61 on the other hand is located further 

from the active site cavity being one of the outermost residues on the flexible loop/lid region 

of the protein. Once again, both of these mutations, result in the substitution of a biochemically 

distinct amino acid, proline. In the case of the Q10P mutation, tertiary protein structure is 

formed by networks of disulphide bonds, hydrogen bonds, ionic bonds, and non-polar 

hydrophobic interactions and such a mutation may disrupt this network. Gln10, with its amide 

functional group, has a high propensity to form H-bonds, important for both protein secondary 

and tertiary structure, a property that proline does not share. The Thr61 residue on the other 

hand is located on the exterior, solvent-facing surface of the protein and as such likely interacts 

with water molecules via its polar hydroxyl group. Proline, being an aliphatic residue has no 

such polar group and is therefore a hydrophobic residue, exposure of a hydrophobic residue to 

the water molecules may alter the behaviour of the flexible loop region that controls access to 

the active site cavity. Other mutations introduced have a smaller but still considerable effect 

on compound stability, since they do not form part of the active site cavity, they likely influence 

compound stability indirectly, by altering the networks of intramolecular interactions 

responsible for protein secondary and tertiary structure. 

  



   
 

64 
 

4.3.4 Top Hits 

Four clear hit compounds, that bound favourably to both WT PZase and the majority of PZase 

mutants were identified, as shown in Figures 27 and 28. However these 4 hits are actually just 

two sets of analogues: SANC00129 and SANC00238 share an identical chemical structure 

except for SANC00129’s addition of a methyl group onto the nitrogen atom of the pyridine 

ring. The near identical structures also produce very similar hydrogen bonding patterns, with 

both compounds exhibiting consistent hydrogen bonding with Asp8, in the D8G mutated 

system, this hydrogen bond is no longer possible and both compounds become unstable in these 

systems. SANC00129 also exhibits significantly reduced hydrogen bonding to Asp8 in the 

D49G mutant system and subsequently is also unstable here, this is however not the case with 

Figure 29: First pair of analogous hits. SANC00129 and SANC00238 performed favourably 
against WT PZase as well as the majority of PZase mutants. Sub-figures for each ligand 
correspond to 2D structure and docking interactions, hydrogen bonding during MD simulations 
and ligand RMSD, respectively. 
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SANC00238 which maintains the Asp8 hydrogen bond in the D49G system but loses the 

majority of this interaction in the Q10P system and therefore becomes unstable. Interestingly, 

SANC00238 does exhibit significantly reduced hydrogen bonding to Asp8 in the D49A mutant 

system, unlike SANC00129. A possible explanation for this, as highlighted previously is that 

Asp49 is one of the residues forming the Fe2+ MBS and as such a mutation in this residue likely 

destabilizes the Fe2+ atom or at the very least alters its coordination geometry, both scenarios 

could lead to changes in the topology of the active site, disrupting ligand stability. Curiously, 

SANC00129 exhibited significantly reduced Asp8 hydrogen bonding in the L116R system, but 

this did not have a detrimental effect on ligand stability as indicated by ligand RMSD data. To 

conclude, the Asp8 residue plays an important role in stabilizing both compounds within the 

active site pocket.  

Figure 30: Second pair of analogous hits. SANC00258 and SANC00527 performed favourably 
against WT PZase as well as the majority of PZase mutants. Sub figures for each ligand 
correspond to 2D structure and docking interactions, hydrogen bonding during MD simulations 
and ligand RMSD, respectively. 
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The second set of analogues, SANC00258 and SANC00527 behave somewhat differently, both 

structures share an identical structure except for the oxygen bonded to the terminal benzene 

ring. In SANC00258 this oxygen is just bonded to a hydrogen, forming a polar hydroxylic 

group ideal for potential hydrogen bonding, this oxygen in SANC00527 on the other hand is 

bonded to a methyl carbon, reducing this oxygen’s potential to form hydrogen bonds. This 

difference does not result in any significant changes in hydrogen bonding patterns during MD 

simulations between the two compounds however, just like the previous pair, SANC00258 and 

SANC00527 hydrogen bond almost exclusively with Asp8. Again, the first exception to this is 

in the D8G mutant system, where the absence of Asp8 results in the absence of this hydrogen 

bond, however unlike the previous pair its absence does not disrupt the stability of either 

compound, which remain stable in the active site pocket throughout the duration of MD 

simulations and instead exhibit very intermittent hydrogen bonding with Lys96, another 

residue in the catalytic triad. Important to note in both these compounds is that in mutant 

systems where Asp8 hydrogen bonding is disrupted and virtually no other hydrogen bonding 

occurs, ligand stability does not appear to be affected in any significant manner: SANC00258 

does not hydrogen bond with Asp8 in the D8G and L116R mutants but is still stable in both, 

and SANC00527 does not hydrogen bond with Asp8 in the D8G, D49G and H51P systems but 

is still stable in all 3. This may suggest that for these two compounds, H-bonding is not a major 

factor keeping these compounds stable at the active site and that hydrophobic interactions may 

instead be responsible. 

It is important to note just how different hydrogen bonding patterns are between the docking 

study systems and MD systems. In Figures 29 and 30 H-bonds are shown in bright green, in 

Figure 29, both SANC00129 and SANC00238 are shown to be H-bonding to Asp8 which is 

then also present during MD simulations, however this is not the case for Lys96, which is 

present in the docking simulations but then almost completely absent during the MD 

simulations. In Figure 30, this difference is even more stark, the Asp8 was the only residue 

showing significant levels of H-bonding during MD simulations for both SANC00258 and 

SANC00527. However, Asp8 is not considered to be H-bonding to either compound during 

the docking study. One possible explanation for this is that the criteria used by Discovery 

Studio Visualizer to identify H-bonds during the docking study may be different to the criteria 

that was used with CPPTRAJ for the MD simulations (3.5 Å distance, 35º H-bond angle 

tolerance). This is unlikely to be the only factor however as the difference in H-bonding 

patterns between docking and MD is significant, with H-bonds during docking being 
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completely absent during MD or vice-versa. Another possibility is that the hydrogen bonds 

detected after docking are not actually favourable or possible when the system is simulated in 

a dynamic state such as that in an MD simulation. This may be due to the rigidity of the protein 

structure during docking: when the protein is placed into the MD environment it undergoes any 

necessary conformational changes to enter its lowest energy state(s) because it is no longer a 

rigid structure. This may lead to alterations in the topology of the active site and therefore 

potentially significant changes in H-bonding. 

4.3.5 Drug-likeness of Hits 

The concept of drug-likeness allows for more efficient screening during the early stages of drug 

discovery. For example, The Lipinski Rule of five is one of the most commonly used guidelines 

to evaluate whether potential drug candidates are suitable for oral intake (Lipinski et al., 2001; 

Lipinski, 2004). Lipinski’s rules (Ro5) state that a suitable candidate passes a minimum of 3 

of the 4 criteria for drug-likeness: >5 H-bond donors, >10 H-bond acceptors, >500 Da 

molecular weight and a >5 LogP value. While the Ro5 is certainly a powerful tool to predict 

oral bioavailability, 16% of current oral drugs violate one of these criteria, and 6% violate 2 or 

more, the Ro5 also does not apply to natural products which very often violate the Ro5 criteria 

but are still bioavailable (Doak and Kihlberg, 2017). For this reason, applying the Ro5 criteria 

alone to SANCDB compounds, all of which are natural products is likely to yield incorrect 

results. 

Bickerton et al., 2012, proposed a different, more quantitative metric for assessing drug-

likeness based on the concept of desirability. This metric, termed the Quantitative Estimate of 

Drug-Likeness (QED) produces a single value between zero and one. Zero indicates that all 

desirability properties are unfavorable, while one indicates that all desirability properties are 

favorable for oral bioavailability. This single dimensionless score is based on 8 commonly used 

drug properties used to determine drug likeness: Molecular weight, octanol-water partition 

coefficient (LogP), number of H-bond donors (HBDs), number of H-bond acceptors (HBAs), 

molecular polar surface area (PSA), number of rotatable bonds (ROTBs), number of aromatic 

rings (AROMs) and the number of structural alerts for fragments with high toxicity potential 

(ALERTS) (Limban et al., 2018). All these numerical properties are then used to produce the 

final QED value, calculated based on a curated collection of 771 orally dosed and approved  
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drugs that were used to generate the asymmetric double sigmoidal functions used to calculate 

a final QED score. 

SANC00129 and SANC00238, the first pair of analogous hits (Figure 27) received slightly 

below average QED scores, brought down by their low MW, low lipophilicity (LogP) and 

absence of any rotatable bonds. SANC00258 and SANC00527, the second pair of analogous 

hits received improved scores due to the increase MW and lipophilicity and the presence of 2 

and 3 rotatable bonds, respectively. Based on the QED scores of these compounds, all of them 

are possible candidates for further screening and testing. 

4.4 CONCLUSION 

Given the increasing prevalence of PZA resistant Mtb infections worldwide, it is important to 

evaluate any potential drug candidates for potential against PZase mutant enzymes as they are 

the primary mechanism by which PZA-resistance arises in Mtb. In this chapter, 13 hit 

compounds arising from WT-PZase screening were screened against 16 mutant PZase 

structures in a total of 224 MD simulations. Post-MD analysis of H-bonding patterns and ligand 

RMSD data revealed that of the 13 hit compounds, 4 behaved favourably with the majority of 

mutant PZase structures. Protein RMSD, RMSF, and Rg data indicated that all mutant 

structures remained stable despite introduced mutations, albeit with some localized residue-

level increases in fluctuations as indicated by RMSF data. All 4 hit compounds exhibited 

consistent hydrogen bonding with Asp8 in virtually all MD simulations indicating that this 

residue is important for localizing potential ligands at the PZase active site. 

  

Compound MW (Da) LogP HBD HBA PSA ROTB AROM ALERTS QED 

SANC00129 212 -0.979 4 3 55.73 0 0 0 0.5 

SANC00238 198 -1.322 4 4 64.52 0 0 0 0.4 

SANC00258 300 0.435 5 4 90.15 2 0 0 0.6 

SANC00527 314 1.089 5 3 79.15 3 0 0 0.7 

Table 6: Tabulated results of the QED test for drug desirability. Properties highlighted in red 
indicate a value that contributes negatively to the compound’s QED score. 
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CHAPTER 5 

CONCLUDING REMARKS AND FUTURE WORK 

The crystal structure of Mtb PZase (PDB ID: 3PL1) and natural compounds from the SANCDB 

were retrieved and used in a molecular docking study using Autdock4.2. Blind molecular 

docking allowed for the identification of compounds that selectively bound to the active site of 

PZase with binding energies below that of the PZA control complex and hydrogen bonding to 

active site residues.  

After docking evaluation and selection based on multiple criteria, 211 SANCDB compounds 

were then tested in 20ns MD pre-runs to evaluate whether the hit docking compounds were 

stable when in complex with PZase in an MD environment. Ligand stability was evaluated 

using ligand RMSD data in the last 10ns of each 20ns simulation. After selection, 

approximately 80 systems were identified as being stable and submitted for extended, 150ns 

production MD runs to evaluate system stability and behaviour over more physiologically 

relevant timescales. After evaluating system stability using RMSF, Rg and protein RMSD, 

ligand stability was evaluated using ligand RMSD data and hydrogen bonding interactions 

were assessed. Both ligand RMSD data and hydrogen bonding data was used to select the 13 

compounds that behaved favourably enough to justify MD screening with mutant PZase 

structures 

The 13 selected ligands and 16 mutant PZase structures each containing a single, high 

confidence point mutation were then screened in 224 150 ns MD simulations, with identical 

parameters to those used in the WT PZase MD simulations. Systems were evaluated for 

stability and PZase structure compactness using protein RMSD, Rg and RMSF data, following 

this ligand stability was evaluated using ligand RMSD data and hydrogen bonding interactions 

were again assessed. Of the 13 compounds screened against mutants, 4 compounds remained 

bound and stable in complex with the majority of mutant PZase structures, SANC00129, 

SANC00238, SANC00258 and SANC00527. Further analysis of these compounds revealed 

that they were 2 pairs of analogous structures that differed only by the presence or absence of 

a single methyl group. Drug-likeness of these compounds was assessed using the QED metric 

and revealed that the first pair of analogues, SANC00129 and SANC00238 would likely need 

to undergo optimization before any further screening, while the other two analogues, 

SANC00258 and SANC00527 achieved promising QED scores. 
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In this study, the first major compromise made was the use of semi-flexible docking with 

AutoDock4.2, only the ligands were allowed to be flexible while the PZase protein was 

simulated as a rigid structure, in the future it may be beneficial to perform molecular docking 

with multiple active site residues being made flexible in order to better simulate the active site 

pocket of PZase. Additionally, since blind docking was performed in this study, another avenue 

to pursue would be to identify potential allosteric sites where disproportionally large numbers 

of ligands have preferentially bound to sites other than the active site pocket of PZase. This 

could lead to the discovery of potential PZase allosteric sites of therapeutic interest. 

Additionally, given more time, it may be prudent to attempt further short MD simulations using 

ligands emerging from the docking study, as the criteria for selection of ligands was primarily 

based on time constraints. For example, given that the docking validation with PZA and PZase 

in complex yielded a poor binding energy of -4.28 kcal/mol, lowering selection criteria for 

binding energy to at least this value would yield many more compounds requiring further 

screening with at least 20 ns pre-run MD simulations.  

For the screening study performed on mutant PZase structures, one of the compromises made 

due to time limits was that point mutations were introduced using Discovery Studio visualizer. 

Ideally point mutations would be introduced in the protein sequence and homology modelling 

using a tool like MODELLER (Webb and Sali, 2016) would be used to re-generate mutant 

structures based on the WT 3PL1 PZase structure, which would then be validated. This is what 

was done by Sheik Amamuddy et al. in 2020, and would result in more accurate mutant 

structures as even point mutations can induce changes in global protein structure and dynamics 

(Petrella et al., 2011c).  
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Figure S1: Violin plots of protein backbone RMSD results for 150 mutant PZase production 
runs. In purple: PZA-PZase control; blue: systems judged to be unstable based on ligand RMSD 
data; yellow: systems judged stable based on ligand RMSD data. 
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Figure S2: Violin plots of protein Radius of gyration (Rg) results for 150 ns mutant PZase 
production MD runs. In purple: PZA-PZase control; blue: systems judged to be unstable based 
on ligand RMSD data; yellow: systems judged stable based on ligand RMSD data. 
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Figure S3: Violin plots of Rg of active site residue results for 150 ns mutant PZase 
production MD runs. In purple: PZA-PZase control; blue: systems judged to be unstable based 
on ligand RMSD data; yellow: systems judged stable based on ligand RMSD data. 
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Figure S4: RMSF data results for 150 ns mutant PZase production MD runs. (A) RMSF 
profiles of all systems selected for further screening during mutagenesis studies. (B) RMSF 
profiles of all other systems. (C) Crystal structure of PZase with regions of consistent higher 
RMSF values colored in yellow and green, adjacent labels indicate residue numbers. 
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