

Contents lists available at SciVerse ScienceDirect

Journal of Electroanalytical Chemistry

journal homepage: www.elsevier.com/locate/jelechem

Short Communication

4-Azidoaniline-based electropolymer as a building block for functionalisation of conductive surfaces

Megan Coates^{a,b}, Hichem Elamari^a, Christian Girard^a, Sophie Griveau^{a,*}. Tebello Nvokong^b. Fethi Bedioui^{a,*}

^a Unité de Pharmacologie Chimique et Génétique et Imagerie, Chimie ParisTech, INSERM (No. 1022), CNRS 8151, École Nationale Supérieure de Chimie de Paris, Université Paris Descartes Paris France

^b Department of Chemistry, Rhodes University, 6140 Grahamstown, South Africa

ARTICLE INFO

Article history Received 7 November 2011 Received in revised form 19 December 2011 Accepted 9 January 2012 Available online 28 January 2012

Keywords: Surface modification Click chemistry Electropolymerisation Diazonium

ABSTRACT

We propose in this work to compare three approaches using 4-azidoaniline combined with "click" chemistry and electrochemistry to anchor ferrocene moieties at glassy carbon surfaces. The immobilisa-tropolymerisation or via in situ diazovation followed by electrografting is studied by analysing the samples by XPS and electrochemistry. TO THE FULL TEXT.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The controlled immobilisation of molecties on conductive surfaces is the subject of considerable research due to the large potential applications ranging from sensors to biomaterials. A quite recent and versatile approact consists of applying the concept of "click chemistry" - wing the copper(I) catalysed azide-alkyne cycloaddition (CuAAC) reaction [1,2] - to interfacial reactions for the functionalisation of conductive substrates through adsorption of thiols (to form SAMs) or electrografting of azido-diazonium salts [3-6]. SAMs are, however, not adapted to all electrode materials, making the "diazonium strategy" appealing for modifying conductive surfaces [7–9]. Moreover, scarce and recent studies have reported on electropolymerisation of pyrrole synthesised with terminal azide or alkyne groups and on the use of poly(3,4-(1-azidomethylethylene)dioxythiophene) (PEDOT) bearing azide groups for interfacial click chemistry [10-12]. But, to our knowledge, no study has been reported yet on electropolymerisation of 4-azidoaniline for use in click chemistry.

We report here on "diazonium-like" electrochemical approaches using CuAAC click chemistry to produce versatile functionalisation of conductive materials starting from 4-azidoaniline

* Corresponding authors. E-mail addresses: sophie-griveau@chimie-paristech.fr (S. Griveau), fethi-bedioui@ chimie-paristech.fr (F. Bedioui).

(noted 1, Scheme 1). Click chemistry was performed either before or after electrochemical functionalisation, as explained below. The long-term purpose of comparing the modification of electrode surfaces by electropolymerisation versus electrografting lies in the difference in properties of the resulting surfaces for the preparation of electrochemical sensors. Using a starting molecule, 1, as a basis for making such diverse surfaces is then more attractive when looking at multiple applications of sensors.

In this work, the strategies defined in Scheme 1 were applied to the immobilisation of ferrocene groups at a glassy carbon surface. Indeed, research on ferrocene-based polymers has many applications, such as the conception of biosensors [13]. The choice of **1** is dictated by its versatility for click chemistry. It was used in this work to synthesise (by CuAAC reaction from 1 and ethynylferrocene, 2) [14,15] new electrodeposable moieties possessing an aniline group, namely 4-(4-ferrocenyl-1H-1,2,3-triazol-1-yl)aniline (3). Two routes were followed for immobilisation of 3, either through its direct electropolymerisation (route A) or by in situ diazotization [16] of the aniline part of 3 to form the species 4-(4-ferrocenyl-1H-1,2,3-triazol-1-yl)benzenediazonium (4) that was further electrografted (route B), as illustrated in Scheme 1. The direct electropolymerisation of **1** followed by immobilisation of ferrocene via click reaction with **2** (route C) was also investigated here for the first time for this aniline derivative. These modification routes were compared to the "classical" modification of electrodes by a two-step method [5], consisting of the in situ diazotization of 1 to form 4-azidobenzenediazonium salt (5) followed by

^{1572-6657/\$ -} see front matter © 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.jelechem.2012.01.001