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Abstract

Smart city systems are intended to enhance the lives of citizens through the design of systems

that promote resource efficiency and the real-time provisioning of resources in cities. The

benefits offered by smart cities include the use of internet of things (IoT) sensors to gather

useful data such as power demand to inhibit blackouts and the average speed of vehicles to

alleviate traffic congestion. Nonetheless, earlier studies have indicated a substantial increase

in  cyber-security  issues  due to  the increase  in  the  deployment  of  smart  city  ecosystems.

Consequently, IoT cyber-security is recognised as an area that requires crucial scrutiny. This

study begins by investigating the current state of intrusion detection in smart city ecosystems.

Current  intrusion  detection  frameworks  lack  the  capability  to  operate  under  extremely

limiting  settings  such  as  conditions  of  low  processing  power  and  fast  response  times.

Moreover, the study also identifies that, despite intrusion detection being a highly researched

thematic area, a plethora of previous studies tend to propose intrusion detection frameworks

that are more suitable for traditional computer networks rather than wireless sensor networks

(WSNs) which consist of heterogeneous settings with diverse devices and communication

protocols. Subsequently, this study developed two candidate deep learning models, namely a

convolutional neural network (CNN) and a long short-term memory (LSTM) network and

presents  evidence  on  their  robustness  and  predictive  power.  Results  have  indicated  that,

unlike the CNN model,  the LSTM model can quickly converge and offer high predictive

power without the vigorous application of regularisation techniques. The proposed LSTM

classification model obtained a remarkable 100% in detection rates and further reported 0%

in false alarm and false negative rates. This study gives a broad overview of the current state

of intrusion detection  mechanisms for smart city  ecosystems to guide future studies.  The

study also demonstrates that  existing intrusion detection systems (IDSs) can be enhanced

through the development of more robust and lightweight models that offer high detection

rates  and minimal  false  alarm rates  to  prevent  security  risks in  smart  city  ecosystems to

ensure sustainable and safe smart cities.
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Chapter 1: Introduction

1.1 Introduction

This chapter introduces the study, provides an overview of the study background, and states

the problem at  hand.  The chapter  further  outlines  the questions  that  the study intends to

answer and outlines the aims as well as the objectives of the study. Finally, the contributions

of the study are presented.

1.2 Background

The  emergence  of  the  Fourth  Industrial  Revolution  presents  sophisticated  futuristic

technologies. These advances in technology have seen a tremendous surge in the adoption of

Internet of Things (IoT) -based smart city systems, such as smart grids, traffic management

systems, smart health, and smart homes, which are intended to augment the lives of citizens

through their system design that fosters resource efficiency and the real-time provisioning of

resources in cities.  The benefits  offered by smart cities  include the use of IoT sensors to

gather  useful  data  such as  power  demand  to  inhibit  blackouts  and  the  average  speed of

vehicles to alleviate traffic congestion (AlDairi & Tawalbeh, 2017).

Previous  studies  have  reported  substantial  increases  in  cyber-security  issues  due  to  the

increase in the deployment of these smart city ecosystems. Consequently, cyber-security in

IoT is recognised as an area that requires crucial scrutiny. Security breaches in smart cities

are accredited to how smart city systems are designed. Several studies have revealed that

smart city systems are designed without security considerations in mind and, consequently,

offer  limited  authentication  and  integrity  capabilities  which  make  these  ecosystems

susceptible to cyber-attacks (Tuptuk & Hailes, 2018).

This view is supported by Mohamad Noor and Hassan (2019) who critically  investigated

trends in IoT security and identified poor authentication mechanisms, such as the use of weak

and identical passwords and lack of mechanisms that offer automated intrusion detection, as

the  main  factors  that  expose  cyber-physical  systems to cyber  threats.  In  a  similar  study,

Pacheco and Hariri (2016) argue that cyber-physical systems support poor authentication and

do  not  enforce  the  use  of  strong  passwords,  hence  it  is  easy  for  adversaries  to  guess

passwords or use brute force to gain unauthorised access to specific systems. In the same

way, Zhou, Zhang,  and Liu (2019) explored security trends in cyber-physical systems such

as smart homes, smart grids,  and smart cities. They established that, when developing IoT

inspired products, vendors tended to position their focus on implementing functionalities that
1



are  positioned  towards  user  satisfaction  while  neglecting  security  considerations  in  the

process. Furthermore, their study maintains that such vendors do not only design resource-

constrained devices but also devices that use default passwords and often have unpatched

bugs which impede the deployment of efficient security mechanisms.

Due to the interconnectivity and sensitivity of the data shared among devices in smart city

networks,  any compromise in these ecosystems may lead to fatalities and life-threatening

situations. Consequently, the security of smart city ecosystems has become an enormously

researched area (Banerjee, Lee, & Choo, 2018).

1.3 Problem identification

In an attempt to realise the sustainable deployment of smart cities, Elrawy, Awad and Hamed

(2018) proposed network intrusion detection as a necessary mechanism to protect  against

intrusions  that  compromise  the  confidentiality,  integrity  and  availability  of  smart  city

systems. Banerjee, Lee and Choo (2018), Chen, Hasan and Mohan (2018), Mohamad Noor

and Hassan (2019) and Pereira,  Barreto and Amaral (2017) concede the necessity for the

development of intrusion detection schemes that are capable of detecting malicious attacks.

An intrusion detection scheme is a mechanism implemented at the network layer of an IoT-

based system to analyse the data packets of the system of interest and generate responses in

real  time  (Elrawy  et  al.,  2018).  Although  intrusion  detection  has  been  an  exhaustively

explored  research  area  as  highlighted  by  Roux,  Alata,  Auriol,  Nicomette  and  Kaâniche

(2017), the majority of previous studies focused on wired networks rather than WSNs.

Smart city systems are largely based on wireless connections linking numerous devices. This

makes it imperative to continuously design and optimise intrusion detection systems (IDSs)

which will improve the security of smart city systems. Hence, this study seeks to propose a

deep  learning-based  intrusion  detection  mechanism  bespoke  for  IoT-based  smart  city

systems.

1.4 Research aim

This study aims to develop an IDS that can perform well in an IoT environment.

1.5 Research questions

This study seeks to address the following questions:

 What are the cyber-security challenges currently facing the deployment of smart city

ecosystems?
2



 What are the current intrusion detection methods in smart city ecosystems?

 Can  a  model  that  would  detect  intrusion  in  a  smart  city  ecosystem  with  better

accuracy be designed?

 How efficient is the proposed model?

1.6 Research objectives

The objectives of this study are as follows:

 To analyse cyber-security challenges in smart city ecosystems

 To identify state-of-the-art intrusion detection methods used in smart city ecosystems

 To propose a deep learning model as an intrusion detection mechanism for smart city

ecosystems

 To evaluate the efficiency of the proposed deep learning model.

1.7 Study contribution

The literature survey of this study contributes to existing knowledge by exposing gaps that

exist in intrusion detection in smart city ecosystems. The literature survey reveals that earlier

studies  were  not  mindful  of  the  resource  constraints  that  exist  in  IoT-based  networks.

Accordingly,  this  study  proposes  a  lightweight  deep  learning  model  that  will  take  into

consideration the low processing power, heterogeneity, and self-organising nature of smart

city ecosystems.

1.8 Dissertation outline

Chapter 1 introduces the study. The chapter encompasses the problem statement, background,

research questions and research objectives. This chapter also presents the expected outcomes

and impact of the study.

Chapter 2 provides a comprehensive survey of the literature related to the study.

Chapter  3 is  a  presentation  of  the  methodological  approaches  adopted  in  the  study.  The

chapter further discusses the philosophy followed in carrying out the research and the tools

utilised to carry out the experiments. Furthermore, this chapter provides an overview of the

methodologies that were undertaken for data analyses.

Chapter 4 gives a descriptive overview of how the feature selection, as well as the data used

to train and evaluate the candidate models, was processed. The chapter also discusses the

implementation approaches of the candidate models.
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Chapter  5 presents  a  performance  evaluation  and  comparative  analysis  of  two candidate

models.  The  two  models  are  evaluated  against  each  other  based  on  convergence  speed,

detection rates and false alarm rates under varied dropout rates.

Chapter 6 concludes the entire study and gives an overview of potential future studies.

1.9 Summary

This chapter introduced the study. The chapter started by giving a brief presentation of the

background of  the  study and further  outlined  the  research  questions  and objectives.  The

chapter also presented the significance of the study and concluded with the outline thereof.
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Chapter 2: Literature Review

2.1 Introduction

This chapter  presents the literature relevant  to the study. The chapter  briefly provides an

introductory  overview  of  smart  cities  and  the  dimensions  thereof.  The  chapter  further

provides a review of security issues in smart city ecosystems and state-of-the-art detection

mechanisms as well as a perusal of deep learning techniques for intrusion detection.

2.2 Smart city ecosystems

The  prevailing  technological  evolution  presents  innovations  predetermined  to  integrate

exhilarating technologies encompassing 5G networks, IoT and Artificial  Intelligence (AI).

These advances in technology have triggered the proliferation of the development of smart

cities. AlDairi and Tawalbeh (2017) define smart cities as cities that integrate infrastructure

and technology to enhance the lives of citizens. 

Smart cities exploit AI, cloud computing, embedded computing, biometric systems as well as

IoT technologies for efficient city automation and infrastructure governance and monitoring.

Smart cities comprise subsystems incorporating smart energy meters, smart health and smart

homes that  are  designed to  enhance the quality  of life  in cities  (Elmaghraby & Losavio,

2014).  One of the conveniences  offered by smart cities  is smart urban transportation – a

system of interconnected vehicles that exchange crucial information such as GPS coordinates

as well as traffic and weather updates.

Supporting  AlDairi  and Tawalbeh’s  (2017) narrative  on smart  cities,  Popescul  and Radu

(2016)  assert  that  smart  cities  incorporate  sophisticated  and  embedded  systems  such  as

smartphones,  medical  devices,  wearable  sensors,  supervisory control  and data  acquisition

(SCADA) systems as well  as other sensor technologies  which are utilised to  monitor  air

quality  and pollution,  energy and water  consumption,  waste  management  and automotive

traffic. The next section briefly outlines the distinguishing attributes of smart cities.

2.2.1 Dimensions of a smart city

Smart  cities  are  designed  to  promote  e-governance,  sustainability,  liveability  as  well  as

efficiency  in  urban areas  using IoT and AI (Joshi,  Saxena,  Goodbole,  & Shreya,  2016).

Jucevičius,  Patašiené  and  Patašius  (2014)  state  that  there  are  certain  underpinnings  that

ultramodern  cities  should  uphold  for  them  to  be  conceded  as  smart  cities.  These

underpinnings are outlined below:
5



2.2.1.1 Smart transportation

Smart transportation is an indispensable component of a smart city and uses sensors and other

intelligent technologies to collect data to promote information sharing between vehicles as a

means to mitigate traffic congestion as well as to monitor road infrastructure, alleviate road

traffic accidents and improve the quality of life in cities (Olaverri-Monreal, 2016).

2.2.1.2 Smart energy

Smart energy involves the use of sensors, smart meters and renewable energy sources for the

automation and monitoring of energy consumption. Smart grids are recognised as the most

notable  innovation  towards  the  concept  of  smart  energy management  (UNCTAD, 2016).

According to Otuoze, Mustafa and Larik (2018), smart grids are ecosystems that consist of

advanced metering systems, communication networks and data management systems that are

interconnected to exchange information and to collect data that can be utilised for real-time

monitoring of energy consumption to aid dynamic pricing.

2.2.1.3 Smart health care

Smart health care is a smart city system designed to leverage wearable sensors, long-range

communication networks, cloud technologies and machine learning techniques for the remote

monitoring of non-critical patients. The sensors gather essential information such as pulse,

respiratory rate, body temperature and blood pressure. The collected data can be sent to the

cloud and further used to notify emergency services whenever the readings from the sensors

vary.  Machine  learning  is  then  used to  recommend  treatment  based on the  data  that  are

collected from the wearable sensors (Baker, Xiang, & Atkinson, 2017).

2.2.1.4 Smart education

Smart  education  is  a  concept  of  fabricated  and  programmable  educational  spaces  that

leverage  state-of-the-art  technologies  to  provide  efficient  communication,  administration,

leadership  and  student  management  and  performance  monitoring  in  learning  institutions

(Williamson, 2015).

2.2.1.5 Smart environment

In  a  study  that  proposes  storage  architectures  for  the  efficient  monitoring  of  the  smart

environment, Fazio, Celesti, Puliafito and Villari, (2015) define a smart environment as an
6



interconnected  ecosystem of  cloud storage  technologies,  heterogeneous  devices,  actuators

and sensors that exchange data to promote real-time monitoring of environmental variables

such as waste management, air quality, pollution, health care and weather.

2.2.1.6 Smart security

This is a smart city system that uses IoT and ultramodern technologies, designed for intruder

detection and the tracking of people and objects (Saifuzzaman, Khan, Moon, & Nur, 2017).

2.2.1.7 Smart industry

Smart industry is an ecosystem where oil, gas, manufacturing, mining, and aviation industries

exploit sensor integrated applications to design intelligent machines. Intelligent machines are

used for the real-time exchange of data to promote timeous communication between suppliers

and retailers and to track goods (Butt & Afzaal, 2019).

2.2.2 Digitisation in a smart city

Regarding  the  smart  city  characteristics  highlighted,  it  is  clear  that  connectivity  and

automation are fundamental to the development of smart cities (Bruneo et al., 2019). This

digitisation is achievable using mobile applications, Wi-Fi, AI and cloud-based architectures

to facilitate resource monitoring in cities. Thus, smart city components are connected through

wireless networks and generate  data  that  may be used intelligently  for city  infrastructure

management and monitoring (UNCTAD, 2016).

Although smart cities offer an intelligent, spatial, and economic competitive advantage, they

are mired with security issues. Previous studies such as that of (AlDairi & Tawalbeh, 2017)

established that due to high interconnectivity and the data shared among smart city systems,

these systems are prone to cyber-attacks.

Motivated by the views of earlier scholars on security issues in smart city ecosystems, this

study  surveyed  cutting-edge  literature  related  to  security  hurdles  in  the  concerned

ecosystems.  The next  section  is  devoted  to  a  survey of  the  literature  relating  to  security

challenges in smart cities.

2.3 Security issues in smart city ecosystems

The pinnacle of the development of smart cities has instigated a significant rise in cyber-

security issues in these ecosystems. Therefore,  the security of smart cities is an area that

needs utmost attention from the research community.
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Popescul  and  Radu  (2016)  identified  limitations  related  to  hardware,  computational

processing power, low energy consumption and memory as the main factors that hinder the

implementation  of  security  mechanisms  in  smart  city  systems.  In  the  same  study,  they

recognise scalability, heterogeneity, the use of diverse communication and network protocols

and dynamic network topologies as other aspects that impede the deployment of security

techniques in these systems. According to their study, the aforementioned circumstances have

led  to  designers  gauging  the  performance  of  their  products  based  on  the  ability  of  the

products  to  consume  low  energy  and  processing  power  while  overlooking  security

considerations and viewing design and implementation of security mechanisms as just add-

ons.

After evaluating the state-of-the-art protection methods used for smart cities, Cui, Xie, Qu,

Gao  and  Yang  (2018)  established  that  numerous  protection  mechanisms  employed  in

conventional systems, such as encryption, biometrics and anonymity, are redundant in smart

city systems due to the limited computational processing power of sensors and other devices

that are used in the construction of smart city systems. Moreover, their study is in accord with

previous studies which maintain that heterogeneity, scalability, and the dynamic nature of IoT

systems make deployment of security measures in these systems largely a cumbersome task

to accomplish, subjecting smart cities to high-security risks.

Additionally,  their  study postulates  that  attackers  are  becoming  smarter  and have  started

developing tools  that  can bypass currently deployed security  mechanisms by using AI to

weaken the trained algorithms and make them less reliable.  Furthermore,  their  study has

pointed  out  denial-of-service  (DoS)  attacks  as  the  most  notable  attacks  that  threaten  the

integrity and availability of smart city ecosystems.

An  earlier  study  by  Ferraz,  André  and  Ferraz,  (2014)  investigated  the  impact  of  cyber-

security  on  smart  cities.  Their  study  argued  that  modern  communication  media  such  as

smartphones,  laptops,  tablets  and  easy  Wi-Fi  access  enable  cyber-criminals  to  perform

unethical  hacking  activities  effortlessly.  Additionally,  their  study  affirms  that  software

patches  and software  products  that  are  released  without  undergoing  enough  tests  induce

security loopholes in smart city systems.

Furthermore,  to  understand  the  applications  of  IoT  in  the  development  of  smart  cities,

Khajenasiri, Estebsari, Verhelst and Gielen (2017) investigated the architecture of IoT. Their

study  agrees  with  several  researchers  that  believe  that  hurdles  in  the  implementation  of

adequate security mechanisms are due to the heterogeneous nature of IoT architecture and

networks.  The  authors  criticised  the  lagging  in  the  enforcement  of  security  standards,
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claiming that this lagging resulted in leakages of sensitive information as the information was

not protected through security strategies such as encryption.

Otuoze et al. (2018) draw attention to the sources of threats in smart cities, focusing mainly

on smart grid systems. Their study maintains that the introduction of transmission control

protocol  (TCP)  and  the  presence  of  communication  nodes  in  smart  grids  have  induced

enormous security issues in the systems. According to their study, smart grids are currently

facing security threats that are likely to result in power blackouts. These power blackouts

may  further  lead  to  cascade  failures,  damage  to  consumer  devices,  chaos  in  the  energy

market, theft of sensitive data and jeopardising human lives. Furthermore, their study argues

that these security loopholes in smart grids expose the systems to organised crimes such as

hacking, rioting, terrorism, energy theft, information leakage, false data injection, sabotage,

and the disruption of services.

After  investigating  security  vulnerabilities  in  in-vehicle  networks,  Rizvi,  Willet,  Perino,

Marasco and Condo (2017) highlighted that modern vehicles have shifted from being just

‘metal boxes’ to sophisticated machines that possess sufficient intelligence to make decisions.

Their  study  adds  that,  due  to  this  shift,  vehicles  are  as  susceptible  to  cyber-attacks  as

computers. Their study confirms the views of Cui, Xie, Qu, Gao and Yang (2018) on the

notion that security mechanisms used in traditional computer networks fail to protect vehicle

networks due to the nature and architecture of their WSNs. Earlier studies established that

technologies used in connecting smart cities are a major issue in the security of systems. One

such technology used in smart cities is the radio frequency identification (RFID) tag which is

a core technology for interconnecting cyber-physical systems. This technology provides real-

time information sharing. However, Popescul and Radu (2016) argue that RFID is extremely

susceptible to attacks making it a security risk in smart cities.

One of the biggest  issues in  RFID is  the sabotage of a reader  where an adversary gains

control of the reader and starts emitting electromagnetic waves to destroy all the data in the

RFID tag. These devices can also be tracked without a user’s consent. Additionally, RFID

tags are highly prone to DoS attacks (Popescul & Radu, 2016). The surging deployment of

smart  cities  is  significantly  growing  data  and  network  traffic.  These  cities  are  rendered

inoperable without scalable city governance systems and techniques.

Additionally, smart city infrastructure, such as smart transportation systems which are active

institutions in cities, use devices such as radars, Bluetooth detectors and licence plate cameras

to collect data on the speed, flow, and travel times of vehicles. This information can be easily

associated  with  drivers’  identities  and  may  reveal  sensitive  information  (safety-critical
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events,  speed,  destination,  home and workplace  addresses  and time  spent  in  a  particular

location) about the drivers and put them in jeopardy (Popescul & Radu, 2016).

Furthermore,  earlier  scholars  established  that  cyber-physical  systems  exploit  open-source

platforms such as Android, which is renowned for attracting cyber-criminals into launching

particularly DoS attacks which are the most renowned in WSNs (Elleithy, 2006; Zekri, El

Kafhali,  Aboutabit,  &  Saadi,  2018).  The  next  section  provides  a  brief  overview  of  the

characterisation of four popular DoS attack scenarios.

2.4 The taxonomy of denial-of-service attacks

A DoS attack is an attack that disrupts the operations of a server by incapacitating the server

from providing services to its clients. Adversaries launch this attack by flooding a network

server with invalid packets or spoofed IP addresses to slow down the compromised network

(Elleithy, 2006. It is believed that DoS attacks are cumbersome to avert because the packets

that are sent when a DoS attack is launched are disguised as legitimate packets.

Conti (2018) established that DoS attacks have gained popularity because they have become

easier to launch due to technological advances that have availed high-speed networks and

enabled ease of access to bots that can be exploited to implement volumetric DoS attacks

such as TCP, ICMP, HTTP and UDP  flooding.

Alguliyev, Aliguliyev and Abdullayeva (2019) argue that DoS attacks are designed to disrupt

and halt services of WSN by saturating the already limited resources of WSNs. They add that

when  DoS  attacks  are  successfully  launched,  they  retard  the  performance  of  network

resources and paralyse the normal operations of the network by causing failure to the affected

sensors rendering the sensors inaccessible for communication.

Azahari Mohd Yusof, Hani Mohd Ali and Yusof Darus (2018) categorise DoS into different

classes as follows:

 UDP flood: An attack that uses the UDP protocol and attacks the victim by sending a

large number of packets to slow down and crash the compromised device. 

 TCP SYN flood: An attacker sends recurrent SYN packets using fake IP addresses.

Consequently, the victim will be unable to close connections, will thus receive a large

number of packets while unable to send an acknowledgement, causing the server to

crash. The orchestration of a TCP SYN flooding attack is as demonstrated in Figure

2.1.
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Figure 2.1: TCP SYN flooding attack

. Adapted from Azahari Mohd Yusof, Hani Mohd Ali and Yusof Darus (2018)

 Ping  of  death:  In  a  ping  of  death,  the  adversary  sends  oversized  and  malformed

packets to the victim. This leads to memory overflows that crash the compromised

device. This will keep the compromised network resource so busy that it will not be

able to service its legitimate clients.

 Smurf attack: This is an attack launched by sending extremely large ICMP packets to

the victim thereby flooding the victim’s device with spoofed ping messages to cripple

the network resource.

Regarding the above characteristics of DoS attacks, it is indisputable that the repercussions of

such attacks can be devastating. Thus, for any technology to thrive, the privacy and security

of  user  data  should be fundamental.  According to  Aris  and Oktug (2017),  IoT networks

remain exposed to cyber-attacks despite numerous cryptography-based security mechanisms

that  have  been  continuously  proposed  and  implemented.  Accordingly,  as  an  attempt  to

overcome  security  drawbacks  in  smart  city  technologies,  Krimmling  and  Peter  (2014)

proposed intrusion  detection  as  the  most  potent  security  mechanism that  can  be  used  to

alleviate cyber-attacks on resource-constrained smart city networks.

Intrusion  detection  is  a  cyber-security  approach  that  has  the  proficiency  to  monitor  and

analyse packet traffic, filter normal network behaviour from abnormal network behaviour and

discern  intruders  and  attacks  in  communication  systems.  Intrusion  detection  gained

popularity  due  to  the  astounding  defence  capacity  that  the  technique  demonstrated  in
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traditional computer networks (Zarpelāo, Miani, Kawakani, & de Alvarenga, 2017). Section

2.5 of this study is devoted to reviewing currently deployed intrusion detection methods.

2.5 Intrusion detection

The influx of smart city systems, such as intelligent transportation systems (ITS), compels the

development of methods that can monitor and detect security threats in ecosystems (Aloqaily,

Otoum, Al Ridhawi, & Jararweh, 2019). As mentioned in the preceding section,  previous

studies recommend intrusion detection as the best approach to mitigate cyber-security attacks

in smart city systems. Garcia-Font, Garrigues and Rifà-Pous (2016) state that computations

and energy constraints in WSNs make it impractical to deploy security mechanisms that are

used in traditional network architectures. Hence, there is a need to design intrusion detection

mechanisms  that  are  tailored  for  smart  city  ecosystems.  Inspired  by  the  above  notion,

Sherasiya, Upadhyay and Patel (2016) reviewed a state-of-the-art IDS and discovered that

currently deployed IDSs are inadequate for sensor networks due to massive computational

overhead setbacks that IDSs exhibit.

Similarly,  Zarpelāo,  Miani,  Kawakani  and  de  Alvarenga  (2017)  examined  IDSs  for  IoT

systems  to  understand  how  earlier  scholars  addressed  the  hurdles  that  impede  the

implementation of IDSs in IoT systems. Their study investigated 18 IDSs proposed between

2009 and 2016 and classified the IDSs under review based on detection method, placement

strategy and the validation strategy used. They suggested that IoT IDS is still in its infancy

and a lot more still needs to be done. Additionally, they established that detection methods

used in the majority  of current  IDSs do not clearly demonstrate  adequacy and validation

strategies are not proven to be effective. They further suggested that there is an earnest need

for researchers to focus on investigating flaws in currently deployed IDSs to improve the

development of IDSs for IoT environments.

In the same vein, Santos, Rabadao and Gon alves (2018) studied previously proposed IDSsҫ

to  make  recommendations  for  future  research  on  the  development  of  IDSs  for  IoT

environments. Their methodology involved an exhaustive evaluation of 20 research papers

published  between  2009  and  2017.  Their  study  suggested  that  current  IDSs  have  low

detection rates. Furthermore, they claim that the previously proposed IDSs are not adequate

for IoT environments due to poorly devised implementation strategies. Furthermore, Jabbar

and Aluvalu (2018) examined state-of-the-art IDSs. They established that, regardless of the

breakthroughs  made  in  the  development  of  IDSs,  current  systems  exhibit  enormous
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limitations that introduce complexities in IoT networks leading to poor detection rates in the

IDSs making the systems less adequate for deployment in IoT environments.

In their work, Hodo et al. (2016) developed an IDS for sensor networks. For the development

of the proposed model, their study simulated a network with five sensor nodes and collected

data after launching a DoS attack on the simulated network. A neural network classifier was

then trained and evaluated using the data. The trained network demonstrated a high level of

accuracy in detecting DoS attacks with a true positive rate of 99.4% and a false positive rate

of 0.6%. This is an impressive result in terms of detection and false positive rates, however,

there  is  no  evidence  provided  in  terms  of  reduced  computational  overheads  leaving  its

suitability for constrained networks uncertain.

Thanigaivelan, Nigussie, Virtanen and Isoaho (2018)  proposed a hybrid IDS. Their proposed

framework integrates the routing protocol for low-power and lossy networks (RPL) with the

distress propagation object to monitor and analyse the packets received at the device level,

enabling  nodes  to  monitor  and analyse  the  packets  received  and  react  against  malicious

traffic. The experimental results of their study indicated that the proposed IDS can efficiently

detect anomalies with minimal false alarm rates and lower overheads making it efficient for

IoT systems.

Doshi,  Apthorpe  and  Feamster  (2018) proposed  a  machine  learning  (ML)  classification

model for IoT distributed DoS (DDoS) attack detection testing five different ML classifiers,

namely linear support vector machines (LSVM), K-nearest neighbour (KNN), random forests

(RF),  neural networks (NN) and decision trees (DT).  They acquired the training and test

datasets by simulating an IoT network to obtain normal and abnormal traffic data. Zhang and

Xiao  (2019) proposed  a  negative  selection  algorithm-based  intrusion  detection  model  to

detect abnormal behaviour in WSNs. Their model is trained using the Iris dataset – whose

relevance is not clear – classifying versicolor and virginica samples as abnormal traffic. The

authors  argue that  their  experimental  results  have clearly  demonstrated  that  the proposed

model can efficiently detect anomalies while saving sensor resources.

Aldaej (2019) proposed an IDS aimed at enhancing cyber-security in modern IoT. The study

applies  the flexible  mobile  adhoc networks intrusion detection system (FMIDS) to  detect

DDoS attacks in IoT WSNs. His algorithm is implemented using simulated data. However,

the results of his study do not clearly indicate whether the proposed technique can reduce

false positives and computational  overhead. Thamilarasu and Chawla (2019) proposed an

IDS  that  exploits  deep  learning  (DL)  algorithms  incorporating  them  with  network

virtualisation techniques to detect abnormal network behaviour in smart city systems. Their
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methodology  involved  simulating  a  smart  home  network  where  the  connected  devices

communicated through CoAp, ZigBee, Bluetooth BLE and Wi-Fi protocols. They assessed

the performance of their proposed model based on its ability to detect five different attacks

including  blackhole,  opportunistic  service,  DDoS,  sinkhole  and  wormhole  attacks.  The

authors claim that their experimental results demonstrated high detection rates with minimal

false positive rates. A deep belief network-based IDS tailored for connected vehicles in smart

cities is proposed in the study of Aloqaily, Otoum, Ridhawi and Jararweh (2019). Their study

used the KDD CUP 99 dataset to represent malicious network traffic and benign network

traffic was simulated using NS3 where 40 vehicles in a smart city setup were used to collect

training data for the model; both the KDD CUP 99 dataset and the data from the simulated

network were used. The model was then evaluated on the KDD CUP 99 dataset where a

detection rate of 98.5% and a 1.5 % false positive rate were obtained.

Hasan, Islam, Zarif and Hashem (2019) proposed an intrusion detection framework for IoT-

based networks. Their  framework was trained using an open-source synthetic  dataset that

contained the network traffic of an IoT smart environment. The data contained normal and

malicious data with eight attack vectors. The authors applied several ML algorithms, namely,

support vector machines, random forest, logistic regression, DT and NN and compared the

robustness of the algorithms. All the trained algorithms demonstrated good detection rates

with RF being the most robust with an accuracy of 99.4%.

Anthi, Williams, Slowińska, Theodorakopoulos and Burnap (2019) developed a three-layer

IDS by applying a supervised ML approach to train a model that is not only able to classify if

a packet is normal or malicious but is also able to identify the type of attack. The model was

trained with data from an IoT testbed. The proposed model achieved an accuracy of 97% on

the training set but dropped significantly to 90% on the test dataset; this demonstrates that the

model is overfitted and unable to generalise.

Venkatraman  and  Surendiran  (2019)  proposed  an  automata  controller-based  intrusion

detection model. Their approach is designed to detect known and unknown attacks. The data

for  training  the  proposed  model  was  obtained  by  simulating  an  IoT-based  smart  home

network resulting in 18000 network transactions of which 15000 were normal network traffic

while  3000  were  malicious  network  traffic.  Their  novel  approach  obtained  an  overall

accuracy of 99%. This is a good detection rate even though there is no clear indication of

whether the approach introduces computational overheads or not.  The survey of cutting-edge

intrusion detection frameworks undertaken by this study has identified that it is indisputably

evident that several of the studies reviewed were not mindful of the dynamic characterisation
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and resource limitations of IoT infrastructures such as smart city ecosystems. Some notable

shortcomings  of  the  proposed  frameworks  include  the  use  of  inappropriate  datasets  that

contain antiquated attack vectors for training the proposed detection models and insubstantial

evidence of the elimination of computational overheads.

A probable precursor of the identified limitations is the unavailability of appropriate datasets

and the lack of frameworks that are tailored for the development of lightweight ML models.

These  findings  agree  with  the  findings  of  an  earlier  study by Arshad et  al.  (2018)  who

scrutinised state-of-the-art intrusion adetection frameworks for IoT architectures taking into

account  the  limiting  attributes  of  IoT networks.  They  pointed  out  that  an  overwhelming

majority  of currently deployed IDS models  were trained using KDD 99 data,  which is  a

dataset comprising network traffic for traditional computer networks with no reflection of

current threats encountered in IoT environments. Moreover, they concluded that the current

IDSs  do not  consider  the  limitations  of  IoT environments  that  encompass  computational

power constraints as well as the heterogeneity of devices and communication protocols.

Table 2.1 depicts a summary of the results of the conducted survey; a very brief outline of

the limitations identified from each study is provided. A (-) symbol indicates that the result of

a metric was not confirmed in the study.

Table 2.1: A simple analysis of the performance metrics applicable in the evaluation of IDS

suitable for resource-constrained networks

Reference Dataset TPR % FPR % Computational

Overheads

Limitations

Hodo et al. (2016) Simulated 99.4 0.6 - Evident 

overfitting 

Thanigaivelan, 

Nigussie, Virtanen,

& Isoaho (2018)

Simulated - - 864 B -

Doshi, Apthorpe, 

& Feamster (2018)

Experimental

IoT  network

traffic

99.0 - - -

Zhang & Xiao 

(2019)

Iris dataset - - - Irrelevant 

dataset; no 

evidence of 

suitability for 
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Reference Dataset TPR % FPR % Computational

Overheads

Limitations

constrained and 

heterogeneous 

networks

Aldaej (2019) Simulated - - - No evidence of 

the performance

and suitability 

of the model

Thamilarasu & 

Chawla (2019)

Simulated smart

home

97.0 - - -

Venkatraman & 

Surendiran (2019)

Simulated smart

home

99.0 - - -

Aloqaily, Otoum, 

Ridhawi, & 

Jararweh, (2019)

KDD  CUP  99

dataset

99.0 1.5 - Use of a dataset 

with outdated 

attack vectors

Hasan, Islam, 

Zarif, & Hashem 

(2019)

Simulated smart

environment

99.4 - - -

Anthi, Williams, 

Slowińska, 

Theodorakopoulos,

& Burnap (2019)

Experimental

WSN

90.0 - - Overfitting

2.6 Deep learning

DL is a field of ML inspired by biological neural systems that emerged to advance traditional

ML algorithms. DL offers the capability to eliminate the human effort that was previously

needed by contemporary ML for tasks that include feature engineering and model training

(Erickson et al., 2018). According to Wu, El-Maghraby and Pathak (2015), DL claimed its

prominence from its outstanding performance in applications encompassing object detection,

speech  recognition,  text  processing,  language  translation  and  self-driving  cars.  The  ML

algorithms at the core of DL are artificial neural networks (ANNs). A general overview of

ANNs is provided in the next section.

2.6.1 Artificial neural networks

ANNs  are  computational  models  that  simulate  the  functionalities  of  the  human  brain.

According to Wu et al. (2015), ANNs exhibit the capability to adeptly recognise complex

16



patterns in high-dimensional data points. A remarkable trade-off between NN and traditional

ML techniques is the ability of ANNs to self-learn and adjust to changes in patterns of the

data  that  are  being  modelled  (Wu  &  Rahman,  2017).  In  a  paper  that  investigates  the

applications of ANNs in HIV/AIDS studies, Sibanda and Pretorius (2012) classified ANNs

into two basic architectures. They suggest that the architecture of any ANN is determined by

the  structure  and the  learning  processes  of  the  network.  The  two architectures  are  feed-

forward NN and recurrent NN.

2.6.1.1 Feed-forward and recurrent artificial neural networks

A feed-forward NN is an ANN with an acyclic topology where information flows only in one

direction, that is, from input to output without any feedback loops (Krenker, Bešter, & Kos,

2011).  Feed-forward  NNs  are  widely  used  in  pattern  recognition.  The  feed-forward

architecture is diagrammatically demonstrated in Figure 2.2.

Figure 2.2: Feed-forward neural network structure

Recurrent neural networks (RNNs), on the other hand, are cyclic ANNs with a feedback loop

attribute that enables every node in a layer to take input both from the previous layer and

adjacent nodes (Azpiazu & Pera, 2019). This architecture allows RNNs to perform well in

tasks that involve sequential data modelling. Furthermore, according to Rosindell and Wong

(2018), this architecture also allows RNN models to store information about the past, thus

leveraging them the capability to observe correlations between events that are far away from

each other in the data.
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Azpiazu and Pera, (2019) added that despite the robustness of RNNs, they suffer from the

problem of a vanishing and exploding gradient which makes them cumbersome to train. As a

means  to  address  the  problem  of  vanishing  gradient,  Hochreiter  and  Schmidhuber

(1997) introduced LSTM. An LSTM NN is an RNN derivative that uses linear memory cells

enclosed by multiplicative gate units to read, write, revitalise, and store information (Liang,

2017). An LSTM prevents the vanishing gradient problem by integrating nonlinear and data-

dependent units into the RNN cell (Sherstinsky, 2018) .

2.6.1.2 The topology of artificial neural networks

ANNs are built from basic units called neurons whose basic functionalities are derived from

biological neurons. The neurons consist of inputs, weights, and bias. A basic NN (bundle of

neurons) comprises an input layer (that accepts the training features), at  least  one hidden

layer (at which all computations and transmutations are performed) and the output layer (that

returns the learned information).

Faghri, Martinelli and Demetsky (1997) decompose the architecture of NN into four facets,

namely  inputs,  outputs,  weights  and  activation  functions.  Given  an  input,  the  neuron

computes  the  weighted  sum of  the  given  inputs  and adds  bias;  thereafter,  the  activation

function  decides  if  it  should  send  a  new  signal  or  not.  The  said  scenario  can  be

mathematically mapped as:

y = f(x,w)                                                                                                                               (2.1)

where

y = outputs,

x = inputs,

w = weights, and

f = activation function.

The activation function (f) can be sigmoid, hyperbolic tangent (tanh), SoftMax or rectified

linear unit (ReLU).

2.6.1.2.1 Activation functions

An activation function is the aspect of an NN that is responsible for the transformation of

inputs into outputs by weighting how robust an output should be from the neuron based on

the  sum of  inputs.  There  are  a  variety  of  activation  functions  serving different  purposes

(Bach, 2018).
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A. Sigmoid

The sigmoid activation function is a nonlinear ‘squashing’ function that maps inputs (-∞, ∞)

to (0,1). The sigmoid is used immensely in feed-forward NN. The function is renowned for

its remarkable performance in binary classification tasks (Nwankpa, Ijomah, Gachagan, &

Marshall, 2018). The function can be mathematically defined as in (2.2).

(2.2)

In  an  NN that  uses  the  sigmoid  function,  if  the  weights  and  the  inputs  are  small  as  x

increases, then f(x) converges to 1; if x becomes large and negative, then f(x) converges to 0

(Renals, 2015).

B. Rectified linear units

ReLU  is  the  most  popular  activation  function  with  robust  mathematical  and  biological

foundations. ReLu outputs 0 when x < 0, and, conversely, outputs a linear function when x ≥

0 (Agarap, 2018).

2.7 Related work

Hu and He (2001)  presented a back-propagation NN based on self-organising map (SOM)

and multi-layer perceptron (MLP) algorithms. Their solution entails accumulating data from

different  sensors  and  analysing  the  data  by  using  detectors  that  use  a  SOM  to  identify

intrusive behaviour in the data. Their approach uses a three-layer perceptron consisting of

four input neurons, two hidden layers and two outputs. The authors declare that the proposed

solution obtained a good detection rate of 96% and a false positive rate below 3%.

Correspondingly, Sammany, Sharawi, El-Beltagy and Saroit (2007) introduced a three-class

intrusion detection framework based on back-propagation NN. Their model is trained using

the  Defence  Advanced Research  Projects  Agency dataset  containing  450 000 connection

records. Their two-layer MLP is trained with an 80/20 split and assessed on 2600 unseen

examples; an average detection rate of 93.43% was obtained.

Naoum, Abid and Al-Sultani, (2012) applied a back-propagation NN for intrusion detection

using the KDD CUP 99 dataset at a varying number of hidden layers using the tanh activation

function. They assert that their proposed network was able to distinguish between normal and
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abnormal  network  behaviour  with  an  accuracy  of  94%  and  a  false  positive  rate  of

approximately 16%.

A two-layer MLP intrusion detection framework was suggested by Moradi and Zulkernine

(2004).  A dataset  consisting of 450 000 examples  from the Defence Advanced Research

Projects Agency was utilised for the training and validation of the proposed model. Their

approach detects two attack vectors, namely, SYN Flood and Satan. The trained NN attained

an overall accuracy of 99%; however, the model is strongly indicative of overfitting as the

classification  accuracy  significantly  declined  when  the  trained  model  was  applied  on

previously unseen data.

Yin,  Zhu,  Fei  and  He  (2017)  proposed  an  RNN-based  IDS.  Their  approach  involved

investigating the impact of learning rates, the number of neurons and varying classification

methods  on the  performance  of  the  model.  The model  was  trained  using  the  NSL-KDD

dataset with 41 input features. Their experiments entailed evaluating the robustness of the

proposed model on binary classification and multi-class classification tasks. Furthermore, the

performance of the RNN model was compared to the performance of models trained with

other  algorithms  encompassing  SVM,  RF,  MLP  and  naive  Bayesian  (NB).  Their

experimental results are satisfactory even though there is an evident indication of overfitting

as their  model  performs impressively well  on the training set,  but the performance drops

significantly on the test set.

Shenfield,  Day and  Ayesh,  (2018)  applied  ANN to  develop  an  anomaly-based IDS that

detects malicious shell-code patterns in network traffic. Their solution was evaluated based

on a 10-fold cross-validation technique to test the ability of the trained network to generalise.

Their model obtained an average accuracy of 98% and a false positive rate of 2% which is a

magnificent outcome especially in terms of false positive rates.

Furthermore, Saljoughi, Mehrvarz and Mirvaziri (2017) proposed NN for intrusion detection

in cloud computing combining it with a particle swarm optimisation (PSO) algorithm for

performance  optimisation.  Their  approach  uses  a  Kolmogorov-Smirnov  correlation-based

filter for feature selection. The proposed model was trained and evaluated using the KDD

CUP  99  dataset.  Their  study  deduced  that  the  NN  demonstrated  a  more  remarkable

performance when combined with the PSO algorithm than when it was implemented as a

simple NN.

Althubiti, Nick, Mason, Yuan and Esterline (2018) investigated the applicability of LSTM

RNNs in modelling network intrusion detection. Their framework was trained using the KDD

CUP 99 dataset based on four attack scenarios. Their approach involved an exhaustive feature
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engineering and selection where a J4.8 DT algorithm was used for selecting the most relevant

features. The model was trained with a fixed number of epochs and varying learning rates to

find the optimal parameters for the learning rate, network type and LSTM features. Their

study concluded that LSTM offers excellent detection rates, especially when applied to the

detection  of  high-frequency  attacks  such  as  DoS  and  network  probe  attacks.  Mirsky,

Doitshman,  Elovici  and  Shabtai  (2018) used  autoencoders  to  develop  an  online  and

unsupervised network intrusion detection. The autoencoder NN was trained using real data

obtained  from  an  IP  surveillance  video  camera.  They  concluded  that  autoencoders  are

efficient for the development of IDS.

Shone, Ngoc, Phai and Shi (2018) proposed a network intrusion detection system (NIDS) that

stacks DL and shallow learning techniques based on the KDD 99 and NSL-KDD datasets.

They implemented their proposed solution using a GPU-enabled TensorFlow using a dataset

containing 41 features with five attack vectors. They trained their model using autoencoder

NN and compared its performance to the performance of a deep belief NN. The proposed

autoencoder model obtained an accuracy of 97.85%. Khan, Xiaosong, Alazab and Kumar

(2018)  proposed a CNN based IDS using the KDD CUP 99 dataset. The network comprised

three  hidden  layers  with  each  layer  containing  a  convolutional  and  pooling  layer.  They

compared  the  performance  of  their  proposed  technique  to  the  performance  of  an  SVM

classifier and the CNN model outperformed the SVM with an accuracy of 98.50%.

Papamartzivanos, Gómez Mármol and Kambourakis (2019)   proposed an autonomous and

self-adaptive IDS based on a self-taught learning (STL) NN combining it with a MAPE-K

control loop model. Their novel approach involved training a model using KDD CUP 99 and

NSL-KDD datasets. They split the datasets into smaller subsets with randomly selected attack

scenarios  and  evaluated  the  adaptability  of  the  trained  network  on  various  network

environments by changing the test datasets. According to the study, the STL NN attained an

accuracy of 73.37%.

2.8 Summary

This chapter introduced the concept of smart cities outlining the underlying attributes that

classify a city as ‘smart’. The chapter further gave a review of security issues that threaten the

sustainability  and  safety  of  smart  city  ecosystems.  Additionally,  the  taxonomy  of  DoS

attacks, which generally have been denoted as the most prominent attacks in IoT systems,

was outlined. Furthermore, the chapter presented a survey of the state of IDS and concluded
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with a review of DL and the applications thereof in the development of intrusion detection

frameworks.
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Chapter 3: Research Design and Methodology

3.1 Introduction

This chapter provides an overview of the methods adopted by this study to achieve the results

and answer the research questions. Section 3.2 highlights the methodologies adopted by the

study  and  in  Section  3.3  an  overview  of  how the  data  was  collected  is  provided.  Data

transformation  and  processing  procedures  are  presented  in  Section  3.4.  The  feature

engineering process is outlined in Section 3.5. Lastly, Section 3.6 describes the training and

performance evaluation approach.

3.2 Research methodology

This study followed three (3) research approaches, namely, the qualitative, quantitative and

simulation and modelling research methodologies.

3.2.1 Qualitative approach

A qualitative methodology is a research approach concerned with the qualitative elements of

data. According to Daniel (2016) , the robustness of a qualitative research method lies in its

flexibility  which  offers  the  ability  to  reconstruct  the  design  of  a  study.  The  study  used

document  analysis  as  a  primary  data  source  for  the  qualitative  approach  to  conduct  a

systematic review of state-of-the-art intrusion detection frameworks. Document analysis is a

systematic review method that permits analysis of documentary evidence. 

In the  systematic review, ten studies to interrogate previously proposed intrusion detection

mechanisms were scrutinised. The investigation focused on studies published between 2014

and 2019. To meet the requirements of the inclusion criteria, the studies had to be grounded

in intrusion detection in IoT architectures incorporating smart cities, cyber-physical systems

and  WSNs  regardless  of  whether  the  proposed  models  were  developed  based  on  ML

techniques  or  not.  The  selected  studies  were  from  Science  Direct,  Google  Scholar,

Academia.edu, Semantic Scholar and IEEE Explore databases. To retrieve the articles the

phrase ‘intrusion detection in smart cities’ was used to search for relevant studies. Papers

based on intrusion detection were surveyed and analysed.

3.2.2 Quantitative approach

The  quantitative  research  method  for  feature  engineering,  feature  selection  and  results

analysis  and interpretation were also utilised.  Feature engineering and selection is  clearly
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explained  in  Section  3.5. Acaps  (2012) describes  quantitative  methodology  as  a

comprehensive  and  evidence-based  research  approach  that  can  uncover  correlational  and

causal  relations  between  phenomena.  The  quantitative  methodology  involves  the  use  of

statistical and descriptive analysis methods to garner hidden insights into numerical data. In

his study, Apuke (2017) stipulated that the quantitative approach is based on quantitatively

analysing data to deduce results that give answers to research questions. The main trade-off

of using the quantitative approach is its questionable ability to produce generalisable, reliable

and replicable results (Acaps, 2012).

 

3.2.3 Simulation and modelling methodology

In addition to the qualitative and quantitative research approaches, the study followed the

simulation and modelling approach. This is an approach that involves the imitation of a real-

world system of interest to conduct experiments. For data collection for the experiments, the

simulation and modelling approach was used to simulate a smart urban mobility ecosystem.

The most fundamental benefit of using the simulation and modelling approach is that it offers

the capability to model a complex phenomenon in a simplified form safely, cost-effectively

and efficiently (Jaleesha & Ezhil, 2019).

For  this  study,  the  simulation  and  modelling  methodology  was  employed  to  simulate  a

communication scenario between vehicles  in a smart city  setup to collect  data.  Thus, the

simulation  was the  primary data  source.  The gathered  data  which comprised normal  and

malicious network packet traces data were used for model training and testing.

3.3 Research design

The tools and methods exploited to achieve the aim of this study are presented in this section.

3.3.1 Data collection

This section presents a technical description of the steps that were undertaken to acquire the

data used for model  training,  validation,  and testing.  Since data  sets  that are  suitable  for

training intrusion detection models appropriate for smart city networks are scarce, for data

gathering for this study, a smart urban mobility infrastructure was simulated. The simulation

was achieved using SUMO and NS3. The simulation stages are presented in Appendix A.
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3.3.1.1 Smart urban mobility simulation

Due to the scarcity of datasets that demonstrate cyber-attack vectors in smart city ecosystems,

a smart urban mobility system was simulated using Simulation of Urban Mobility (SUMO),

an open-source road traffic simulator that offers the capability to simulate road networks and

traffic demand. SUMO is used jointly with OpenStreetMaps.  A digital  map of an area of

interest  (city)  from  OpenStreetMaps  is  integrated  into  the  SUMO  simulation  and  then

converted  to  a  SUMO  road  network.  SUMO  was  used  to  simulate  a  network  of

communicating  vehicles  popularly  known as  a  vehicular  ad  hoc  network  (VANET).  The

VANET was then converted to a communication scenario using Network Simulator 3 and

packet  traces  were  captured  from  the  simulation.  Thereafter,  the  captured  packets  were

decoded  to  human-readable  data  using  Wireshark  as  the  network  analyser.  In  a  SUMO

simulation, each vehicle in the network is uniquely identified with a defined identifier. The

vehicles’ departure times and routes are defined; the routes are the connected sets of edges

between a vehicle’s departure point and destination. Appreciating the fact that the routes of

vehicles cannot be controlled in the real world, the vehicle routes were assigned randomly to

bring the simulation closer to reality.

The vehicles  and city  infrastructure  were connected  through wireless  access  in  vehicular

environment  (WAVE),  an  IEEE 802.11p  wireless  communication  standard  that  provides

interoperable and wireless communication between vehicles and city infrastructure. WAVE is

the most suitable for devices and network architectures with rapidly changing properties and

topologies, respectively. By default, routing within the simulated network follows the shortest

path first  algorithm which means that,  when searching for a communication  line,  a node

(vehicle) in the network will always search for its nearest neighbours and send packets to the

closest node.

3.3.1.2 Mobility network conversion

For seamless packet tracing and capturing, the SUMO-generated urban mobility network was

integrated with Network Simulator 3 (NS3). NS3 is an open-source event-oriented network

simulator.  NS3 offers  the  ability  to  import  a  SUMO network and define  the vehicles  as

simple nodes that communicate with each other. With NS3, various physical and application

layer protocols and routing protocols can be defined. This study implemented TCP and UDP

as  transport  layer  protocols  together  with  ad  hoc  on-demand  distance-vector  (AODV),

destination-sequenced distance-vector routing (DSDV), dynamic source routing (DSR), and

optimised link state routing (OLSR) as ad hoc routing protocols.
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Integrating SUMO with NS3 required that the mobility network be converted into a network

of communicating nodes. This was achieved by first converting the SUMO trace file to a

Network Simulator 2 (NS2) mobility trace file. The NS2 mobility trace was then imported

into  the  NS3  simulation  and  a  communication  scenario  was  configured.  The  process  is

depicted in Figure 3.1.

Figure 3.1: Simulation of Urban Mobility and Network Simulator 3 integration

Upon successfully configuring the network, the communication scenario within the network

could  then  be  defined.  The  configuration  involved  defining  the  routing  protocols,

communication  standards,  packet  sizes  and assignment  of  IP addresses.  Two DoS attack

scenarios (UDP and TCP flooding) were then launched on the simulated network and packet

traces for both normal and malicious network traffic were captured. A summary of the overall

simulation parameters is presented in Table 3.1.

Table 3.1: Simulation setting
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Parameters Values

Simulator SUMO, NS3

Channel Wireless

Wireless technologies WAVE, Wi-Fi

Standards IEEE 802.11p, IEEE 802.11b

Simulation time SUMO: 2000 seconds

NS3: 300 seconds

Number of vehicles 500

Speed of vehicles 40m/s

Transmission protocol TCP and UDP

Traffic application HTTP

Scenario Urban

Topology Dynamic

Communication range 50–500 meters

Routing protocols AODV, DSDV, DSR, OLSR, TCP and UDP

3.3.1.3 Packet tracing and decoding

The packets captured within the NS3 simulated network were then exported as capture files

and decoded with Wireshark for further data collection.  Wireshark is a real-time network

analyser software that decodes network packets in a human-readable format. The decoded

data  was  then  collected  as  comma separated  value  (CSV) files  for  further  processing as

explained in Section 3.4.

3.4 Data pre-processing

The normal and malicious traffic traces were extracted and saved as separate CSV files. The

quality of data has a significant impact on the predictive power of an ML model. The garbage
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in,  garbage  out  (GIGO)  concept  is  especially  relevant  in  the  training  of  ML  models.

Accordingly, to attain the best predictive power from the candidate ML models, a thorough

data  cleansing  process  was orchestrated to  reduce  the noise in  the data.  To achieve  this,

Pandas – an open-source data  manipulation  library – was used for the data  cleaning and

transformation  process.  The process further  involved labelling  the packet  traces  as either

normal or malicious accordingly to create the target feature (packet status).

3.5 Feature engineering and selection

According  to  Chandrashekar  and  Sahin  (2014),  feature  engineering  and  selection  is  a

technique  applied in the development  of ML models  to select  a subset of variables.  The

technique, which selects only variables that effectively describe the input data in the interest

of training ML models that offer high predictive power, is necessary to reduce dimensionality

in the data.

In this study, feature engineering was performed through pandas-profiling. Pandas-profiling

is a Python module popularly known for its robustness in providing quick exploratory data

analysis insights of a given dataset. The process helps with insight that assists in deciding on

features  that  should  be  removed  from the  data  either  due  to  high  correlation  with  other

features or a high number of missing values that may make the feature unusable. The insights

gathered from the profile report also help with handling missing data, duplicate rows, and

outliers. The feature engineering process resulted to a selection of six (6) features, namely:

  arrival time – the time at which a packet arrives to the host

 protocol – routing protocol

 length – packet size

 cumulative bytes – total number of transmitted bytes

 time delta from the previously captured frame – time difference between current two

packets

 mac overhead – a ratio of the packet length and the throughput  

 packet status –  defines whether the transmitted packet is normal or malicious.

3.6 Model training and performance evaluation

Our  model  training  followed  the  classification  approach.  Classification  is  a  supervised

learning technique that predicts a class for a given input. Five hundred thousand data points

containing normal and malicious network traffic were selected. The data was then split into

four  datasets:  train  data,  evaluation  data  (for  performance  evaluation  during  the  training
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process) and two validation  sets  which were used to  perform 2-fold cross-validation.  All

datasets consisted of both normal and malicious traffic.

To propose and build a robust ML model, two different NN – CNN and LSTM – were trained

using TensorFlow. TensorFlow is an end-to-end ML framework developed by Google. The

framework offers robust, scalable,,, and flexible functionalities to easily build powerful ML

models.  The  trained  model  that  demonstrated  the  highest  level  of  robustness  was  then

converted to a lightweight version with TensorFlow-lite.

In evaluating the performance of the models, the learning rate was set to 0.0001 and kept

constant throughout the experiment. Moreover, the activation function was set to ReLu at the

input layers and sigmoid at the output layer. The models were consistently trained, validated,

and  tested  using  identical  parameters  and  datasets  to  promote  an  unbiased  performance

evaluation  of  the  models  at  all  the training  iterations.  During the  training  and validation

process, the loss and accuracy of the models were monitored. The loss was monitored to track

how well  the model fitted the data without overfitting,  while  the accuracy monitored the

model’s generalisation ability as well as its predictive power.

The testing approach was based on 2-fold cross-validation, where the models’ performance

was evaluated on two different datasets, which throughout this study are referred to as the

validation dataset and the test dataset. The models were first evaluated on a validation set that

had 100 000 data points (99 790 normal and 210 malicious network packets). The models

were  further  tested  on  another  100  000  data  points  (99  775  normal  and  225  malicious

network packets). Both the validation and test datasets were completely unseen data.

In the interest of examining the robustness of the models on imbalanced data, which is what

would be found in real-world scenarios, all datasets were left imbalanced, that is, no class

balancing technique  was applied.  As far as  loss is  concerned,  an ideal  situation  is  when

training and validation loss decrease as the model fits and learns the data. The performance of

the lightweight model was further evaluated to investigate whether the lightweight version

preserved the predictive power of the original (regular DL) model.  Since this  model  is  a

binary classifier  model,  the results  were presented using a confusion matrix.  A confusion

matrix is a table that visualises the performance of a classification model. A confusion matrix

layout is shown in Table 3.2.

Table 3.2: Table illustrating a confusion matrix
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Actual Class

Predicted Class

Negative Positive

Negative True negative False positive

Positive False negative True positive

Where:

 True negative is a class that is negative and is predicted as negative

  False negative is a positive class that is predicted as negative

 True positive is a class that is predicted as positive and is actually positive

 False positive is a negative class that is predicted as positive.

The performance is also presented in terms of accuracy, which is the proportion of the total

number of correct predictions as per (3.1):

(3.1)

3.7 Summary

This chapter presented an overview of methodologies and tools that were used to aid this

study  to  answer  the  research  questions.  The  chapter  opened  with  a  run-down  of  the

methodology and design employed in the study and further outlined the tools used to achieve

the  objectives  of  the  study.  The chapter  concluded  by discussing  how the  datasets  were

analysed and how the results were validated. The next chapter will discuss in detail how the

tools were utilised to gather the data and train the models.
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Chapter 4: Implementation

4.1 Introduction

This  chapter  presents  the  implementation  stages  undertaken  to  train  the  two  candidate

intrusion detection models during this study. Section 4.2 describes the steps taken to simulate

a communication scenario to collect data for training the models. The data processing and

feature  selection  processes  are  explained  in  Section  4.3  and  the  implementation  of  the

candidate intrusion detection models is discussed in Section 4.4. Section 4.5 concludes the

chapter.

4.2 Data processing and feature selection

The predictive power of an ML model is highly dependent on the quality of the training

dataset. Hence, intensive data processing and feature engineering is a crucial step that cannot

be overlooked. In this study, the quality of the data was enhanced by removing duplicated

features from the dataset. Figure 4.1 shows how the duplicated features were removed from

the datasets.

Figure 4.1: Dropping duplicated features

Additionally, the dataset was enriched by adding a MAC overhead feature computed as the

ratio of the packet length and the throughput; throughput is the sum of packets received by all

nodes  in  the  network.  The  processing  further  involved  converting  the  data  types  of  the

features to make the data suitable to feed into an ML model. Moreover, features that required

label encodings, such as the protocol type and the target feature (packet status), were encoded

appropriately. Label encoding refers to converting text or string labels into numerical values.

Figure  4.2 demonstrates  how the  data  types  conversion  and the  encoding of  categorical

features were performed.
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Figure 4.2: Converting data types and encoding of categorical features

Upon completion of the data processing and transformation, a descriptive data analysis was

performed through pandas-profiling to generate an intensive exploratory report of the dataset.

To  generate  the  pandas-profiling  report  the  pandas-profiling  library  is  imported  and  the

profile report function, as shown in Figure 4.3, is invoked.

Figure 4.3: Generating a pandas-profile report

Table 4.1  and  Table 4.2 are sneak peeks  of the profile  report  gathered from the dataset

before any feature selection was orchestrated.

Table 4.1: Pandas-profiling data description snapshot
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Table 4.2: Pandas-profiling warnings snapshot

This study further leveraged a beneficial feature importance functionality offered by most

tree-based algorithms to help decide on the most appropriate features for developing the ML

model. Feature importance is a statistical computation that measures a score for each feature

in a dataset. The higher the score, the more relevant the feature towards estimating the output

variable. The feature importance is built-in for various tree-based ML algorithms that include

RF, XGBoost, Catboost and LightGBM.

In this study, a Catboost model was trained with the aim of extracting the features whose

importance was considered significant in the Catboost training process. The process followed

to train the Catboost model and generate feature importance is illustrated in  Appendix B.

Figure 4.4 shows the generated feature importance plot.

Figure 4.4: Catboost feature importance
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The final training features are presented in Table 4.3.

Table 4.3: Training dataset sample

By  default,  convolutional  NNs  and  LSTMs,  take  three-dimensional  matrix  input  data;

subsequently, the last data transformation step before training the model was to reshape the

data into a three-dimensional matrix. This step is illustrated in Figure 4.5.

Figure 4.5: Reshaping the data to a three-dimensional matrix

4.3 Model training approach and performance evaluation

The modelling approach followed four (4) steps:

1.  Training a regular DL model

2.  Evaluating the performance of the regular DL model

3. Converting the regular DL model to a lightweight version of the model

4. Assessing the lightweight model’s performance to determine whether the lightweight

model is as effective and reliable as the regular model.

Six  (6)  features  –  arrival  time,  protocol,  length,  cumulative  bytes,  time  delta  from  the

previously  captured  frame  and  mac  overhead  to  predict  the  packet  status  (whether  the

transmitted packet is normal or malicious) – were used in training the models.

The target feature comprises two classes – the normal class and the malicious class. A class is

considered  normal  if  the  transmitted  packet  does  not  contain  malware  and is  considered

malicious if it contains malware. In building a binary classification model, two NN-based

candidate models, viz, CNN and LSTM, were trained.
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The aim of  training  two models  was to  compare  the  classification  efficiency of  the  two

models and to select the model that offers the best predictive power. Each of the two models

consists of three (3) fully connected layers. The ReLu activation function was applied at the

input layers and the sigmoid function at the output layer. In the first training step, two (2)

regular candidate models were trained iteratively, tuning the different hyperparameters and

adding  dropout  as  a  regularisation  technique.  The  regularisation  technique  is  applied  to

prevent overfitting, thereby improving the model’s robustness and generalisation ability.

In the training approach, the dropout strategy is such that a varying number of nodes are

randomly dropped into the network. For example, a dropout of 0.5 implies that 50% of the

nodes will be dropped randomly in the layer in which the dropout is applied.

The models were set to train for 500 epochs. When training ML models, too many epochs

may  lead  to  the  overfitting  of  the  learning  model,  while  too  few  epochs  may  lead  to

underfitting.  To  mitigate  the  likelihood  of  the  model  overfitting,  an  early  stopping  was

defined to monitor  the validation loss and automatically  halt  the training once the model

started overfitting the data.  Table 4.4 presents a summary of the training parameters. The

processes to train the candidate models are presented in Appendix C and Appendix D.

Table 4.4: Model training parameters

Hyperparameter Value

Optimiser Adam

Learning rate 0.0001

Evaluation metric Accuracy

Loss Binary cross-entropy

Number of epochs 500

Regularisation technique Dropout (varies from 0.1 to 0.5)

The performance evaluation  metric  applied  was accuracy and a binary cross-entropy loss

function was defined to monitor the loss at each training iteration. The models were evaluated

based on three  (3) primary  evaluation  metrics,  namely,  the model  accuracy,  training and

validation loss curves and the confusion matrix. A code snippet that demonstrates how the
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model accuracy and loss curves were plotted is shown in Figure 4.6 and a snippet that shows

the plotting of a confusion matrix is depicted in Figure 4.7.

Figure 4.6: Plotting accuracy and loss curves

Figure 4.7: Plotting confusion matrix

A model that demonstrated robustness during the validation step was saved and converted to

a lightweight  version.  Figure 4.8 and  Figure 4.9 depict  the  conversion of a regular  NN

model to a lightweight version.

Figure 4.8: Saving a model
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Figure 4.9: Converting a regular model to a lightweight model

The  last  step  of  the  evaluation  was  loading  the  lightweight  model  and  assessing  its

performance on the test set to evaluate whether the model preserves the performance of the

regular  model.  The loading and evaluation  of the lightweight  model  are  demonstrated  in

Figure 4.10.

Figure 4.10: Loading and assessing the lightweight model

The entire study’s implementation strategy is presented in Figure 4.11.
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Figure 4.11: The implementation strategy

4.4 Summary

This chapter gave an overview of the implementation techniques adopted by this study and

outlined  how each technique  was applied  to  achieve  the  aim of  the  study.  The methods

followed to gather the data used for the training and testing of the candidate models was

described. Data processing and featuring engineering approaches exploited in this study were

demonstrated.  Finally,  the implementation  of  the  training  strategy of  the models  and the

methods adopted for the evaluation of the trained models were presented.
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Chapter 5: Study Results and Discussion

5.1 Introduction

In this study, a CNN with three (3) fully connected layers was used as a baseline model and

an LSTM network with three fully connected layers was proposed. This chapter focuses on

comparing the performance of the baseline model against the performance of the proposed

model.  The  performance  evaluation  of  the  models  is  primarily  focused  on  three  pivotal

metrics,  namely,  detection rate (true positives),  false alarm rate (false positives) and false

negative rates. Furthermore, the evaluation outcomes of both models are concisely analysed

and discussed.

5.2 Results

5.2.1 Convolutional neural network performance analysis

The approach involved training two candidate models. This section presents the performance

analysis  of  the  CNN classifier.  The  first  attempts  to  train  the  models  were  without  the

application  of any regularisation  technique.  Figure 5.1  presents  the model  accuracy of  a

CNN without any regularisation applied, that is, no dropout has been added in any of the

network layers. As can be seen in Figure 5.1, the accuracy of the model on the training set is

100% and  drops  slightly  to  99% on the  validation  set.  This  indicates  that  the  model  is

overfitting and is not likely to generalise well when applied to unseen data.

Figure 5.1: Model accuracy of an unregularised CNN
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Figure 5.2  shows the loss during the training process of the unregularised CNN. Loss is

defined as a penalty for bad prediction. Ideally, the loss should decrease as the model learns

the data. However, in Figure 5.2 it can be observed that the validation loss fluctuated instead

of decreasing.  This is a clear indicator that the model does not converge and is likely to

overfit the data.

Figure 5.2:Training vs validation loss of the unregularised CNN

The  confusion  matrix  shown  in  Figure  5.3  presents  the  classification  accuracy  of  the

validation set. It can be seen in Figure 5.3 that, out of the 210 instances, 190 were correctly

classified as malicious while 20 malicious instances were misclassified as normal, yielding a

false negative rate of 9.5%. This is an overall 86% detection rate and the false alarm rate is

0%. This implies that although the model exhibits a high detection accuracy, it would fail to

raise an alarm 9.5% of the time.
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Figure 5.3: Validation set confusion matrix – unregularised CNN

Figure 5.4 presents the confusion matrix for the test set classification accuracy. From the

figure, it can be seen that the classification accuracy of the model gradually declined. Out of

225 instances, 181 were correctly classified as malicious while 44 malicious instances were

incorrectly  classified  as  normal.  This  yields  a  detection  rate  of  80% and  a  19.5% false

negative rate. From this result, it can be observed that the detection and false negative rates

gradually drop by 6% and 10%, respectively, while the false alarm rate remains at 0%. This is

a clear indicator that the model’s generalisation ability is poor as we can see that it performs

poorly on the test set compared to the validation set.

Figure 5.4: Test set confusion matrix – unregularised CNN

In Figure 5.5, the accuracy of the CNN model with a dropout of 0.1 applied in the first layer

as  a  regularisation  technique  is  shown.  Again,  the  validation  accuracy  drops.  This  is  an

indication that the model is still overfitting the data.
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Figure 5.5: Model accuracy of a CNN with 0.1 dropout in first layer only

Training and validation loss of the CNN with 0.1 dropout in the first layer is depicted in

Figure 5.6. From the figure, it can be noted that although the validation loss increases and

decreases unstably, it is slightly better than the validation loss presented in Figure 5.2, where

the  model  is  not  regularised.  This  implies  a  slightly  better  generalisation  ability  of  the

regularised model compared to its unregularised counterpart.

Figure 5.6:Training vs validation loss of the CNN with 0.1 dropout in first layer only

The  confusion  matrix  shown  in  Figure  5.7  demonstrates  a  slight  improvement  in  the

detection and false negative rates. From Figure 5.7, it can be noted that the detection rate

improved from 86% to 90% while the false negative rate improved from 9.5% to 0.9% when
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the model  was assessed on the validation set.  This is  an improvement  of 4% and 5% in

detection and false negative rates, respectively.  This minor improvement in generalisation

ability demonstrated by the validation loss of the model as depicted in Figure 5.6 is visible in

the model’s classification accuracy as shown in Figure 5.8. It is worth noting that adding a

dropout of 0.1 in the model’s first layer did not remarkably improve the predictive power of

the model – the false alarm rates remained at 0%.

Figure 5.7: Validation set confusion matrix – CNN with 0.1 dropout in first layer only

Figure 5.8:Test set confusion matrix – CNN with 0.1 dropout in first layer only

Realising that regularising the CNN model by adding a dropout of 0.1 in the first layer did

not  demonstrate  much  significance  in  terms  of  detection  rates,  false  negative  rates  and
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generalisation  ability,  the  dropout  rate  in  the  first  layer  was  increased  to  0.2.  Regarding

Figure 5.9, it can be deduced that increasing the dropout rate improved the model accuracy

to a certain degree, however, the change in accuracy was not compelling. Figure 5.10 shows

the loss for the CNN when the dropout rate applied is 0.2. From the figure, it is notable that

the validation loss is still  fluctuating and far above zero at some epochs. This is a strong

indicator that the model’s penalty for bad predictions is still higher.

Figure 5.9: Model accuracy of a CNN with 0.2 dropout in first layer only

Figure 5.10: Training vs validation loss of the CNN with 0.2 dropout in first layer only

The confusion matrix presented in  Figure 5.11 demonstrates that when a dropout of 0.2 is

applied, the detection rates, false negative rates and false alarm rates on the validation set do
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not improve or deteriorate compared to when the dropout rate was 0.1. Figure 5.12 presents

the confusion matrix that depicts  how the CNN model performs on the test  set when the

dropout  rate  in  the  first  layer  is  increased  to  0.2.  From  the  confusion  matrix,  a  slight

improvement in detection and false negative rates compared to when the dropout rate was 0.2

can be observed. From this observation, it can be concluded that increasing the dropout rate

improved the model's predictive power even though the validation loss of the model was

relatively higher, which implies that the generalisation ability thereof is still poorer.

Figure 5.11: Validation set confusion matrix – CNN with 0.2 dropout in first layer only

Figure 5.12: Test set confusion matrix – CNN with 0.2 dropout in first layer only
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Presented in Figure 5.13 is a model accuracy of a CNN with a dropout rate of 0.5 in the first

layer. A slight improvement in accuracy is visible when the dropout rate is increased to 0.5.

Figure 5.14 illustrates the training and validation loss of a CNN with a dropout rate of 0.5

applied as a regularisation technique only in the first layer of the network. Again, there is no

significant change compared to when the dropout rates were 0.1 and 0.2.

Figure 5.13: Model accuracy of a CNN with 0.5 dropout in first layer only

Figure 5.14: Training vs validation loss of the CNN with 0.5 dropout in first layer only

In Figure 5.15, a validation set confusion matrix that illustrates the performance of the CNN

classifier when a dropout rate of 0.5 is applied in the first layer of the model is presented. The

results indicate that dropping 50% of the nodes in the first layer of the network deteriorated

the predictive power of the model. This is observable in the slight increase in false negative
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rates compared to when 20% of the network nodes were dropped. The results of adding a 0.5

dropout rate in the first layer are similar to the results obtained when the dropout rate was 0.1.

Figure 5.15: Validation set confusion matrix – CNN with 0.5 dropout in first layer only

Figure 5.16 presents the performance of the CNN model on the test set when the dropout rate

is 0.5. From the figure, a 10% detection rate can be observed which is indicative of a model

that is unable to generalise. The observations demonstrated in Figure 5.15 and Figure 5.16

clearly suggest that accuracy alone is not a reliable metric to measure the predictive power

and generalisation ability of a classification model.

Figure 5.16: Test set confusion matrix – CNN with 0.5 dropout in first layer only
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The second last experiment on the CNN was adding a dropout rate of 0.5 in the first two

layers of the CNN. Figure 5.17 demonstrates the performance of the classifier in terms of

accuracy. From the figure, it can be observed that the best approach would have been to train

the classifier with fewer epochs when the dropout is 0.5 in the first two layers. However,

training the model with fewer epochs does not guarantee a generalising model as shorter

training time may result in underfitting the model. Regarding the accuracy demonstrated in

the  figure,  the  model  performed  well  during  the  first  100 iterations/epochs  and dropped

slightly afterwards.

Figure 5.17: Model accuracy of a CNN with 0.5 dropout in first and second layers

Figure 5.18  is a clear demonstration of the model’s train versus validation loss. From the

figure, it is quite clear that the validation loss was lower before the first 100 epochs of the

training. This implies that the model started overfitting the data just before reaching the first

100 epochs. Additionally, what this implies is that adding a 0.5 dropout rate in the first two

layers of the CNN is more optimal with fewer training epochs.  Figure 5.19  is a validation

confusion matrix that demonstrates the performance of the CNN classifier when a dropout of

0.5 in the first two layers is defined. The results obtained when applying this dropout rate are

not indifferent to the results when the dropout rate was 0.5 in the first layer only.

48



Figure 5.18: Training vs validation loss of the CNN with 0.5 dropout in first and second

layers

Figure 5.19: Validation set confusion matrix – CNN with 0.5 dropout in first and second

layers

The validation set confusion matrix presented in Figure 5.20 shows a slight improvement in

generalisation ability when a dropout of 0.5 in the first two layers is defined compared to

when the dropout of 0.5 is applied only in the first layer of the CNN classifier. However, the

generalisation ability of the model is still poor as it can be observed that the detection rate in

the test set dropped when compared to the detection rate in the validation set.  Figure 5.21

presents the CNN classifier accuracy when the regularisation technique is such that a dropout
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rate of 0.5 is applied in all the layers of the network. The demonstrated accuracy suggests that

the said regularisation technique improved the accuracy of the model remarkably.

Figure 5.20: Test set confusion matrix – CNN with 0.5 dropout in first and second layers

Figure 5.21: Model accuracy of a CNN with 0.5 dropout in all three layers

In Figure 5.22, the training and validation loss curves when a dropout rate of 0.5 is applied in

all the layers of the CNN classifier are shown. From the results presented in the figure, it can

be observed that defining a dropout rate of 0.5 in all three layers reduces the penalty poor

prediction power. This strongly suggests that the model exhibits a relatively high predictive

power and can generalise unseen data well.

50



Figure 5.22: Training vs validation loss of the CNN with 0.5 dropout in all three layers

Figure 5.23 is  a  visual  demonstration  of  the performance  of  the CNN classifier  when a

dropout  rate  of  0.5 is  applied  in all  three defined layers  of  the CNN model.  The results

demonstrated that defining a higher dropout in all the defined layers optimised the detection

rates yielded by the model. From the validation set confusion matrix, it can be observed that

the model obtained 100% in detection, false negative and false alarm rates.

Figure 5.23: Validation set confusion matrix – CNN with 0.5 dropout in all three layers

Figure 5.24 is a confusion matrix that shows the performance of the CNN classifier when the

classifier is assessed on the test set. The model maintained a 100% score in detection, false

alarm and false negative rates when compared to how the model performed in the validation
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set. This indicated that the model is robust enough to predict the packet status – whether the

transmitted packet is normal or malicious – accurately.

Figure 5.24: Test set confusion matrix – CNN with 0.5 dropout in all three layers

The robust model whose performance has been demonstrated in  Figures 5.21 to  5.24 was

converted to a lightweight version. Figure 5.25 shows how the lightweight version performed

when cross-validated on the validation set. Regarding the results displayed in the figure, it

can be observed that the lightweight version preserved the performance of the regular CNN

model as it maintained 100% detection, false alarm and false negative rates.

Figure 5.25: CNN lightweight version confusion matrix
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5.2.2 Long short-term memory performance analysis

This  section presents  the analysis  of  the performance  of  the LSTM classification  model.

Figure  5.26  shows  the  classification  accuracy  of  the  LSTM classifier  when  there  is  no

regularisation  technique  applied.  The  results  demonstrated  in  the  figure  show  that  the

classifier  obtained a training accuracy of 0%. This  implies  that  the model  underperforms

extremely when it is not regularised. Moreover, this could imply that the number of training

iterations was not sufficient to allow the model to converge. However, results demonstrated

in  Figure  5.16 indicated  that  accuracy  alone  is  not  the  best  metric  to  measure  the

performance of a classifier.

Figure 5.26: Model accuracy of an unregularised LSTM

   

In Figure 5.27 the training and validation loss curves of the unregularised LSTM classifier

are presented. From the figure, it can be observed that the training is 0 throughout the training

process  while  an  unsteady  loss  is  evident  on  the  validation  loss  curve.  Looking  at  the

validation  loss  curve,  the  loss  is  0  during  approximately  the  first  100 epochs  and starts

increasing around 150 epochs. The model then starts converging again as it approaches 200

iterations of the training and the loss increases again as the training approaches 500 iterations

of the training process. With this loss, the model is expected to generalise well when applied

to unseen data.

53



Figure 5.27: Training vs validation loss of the unregularised LSTM

Figure 5.28 presents a confusion matrix  that  shows the classification performance of the

unregularised LSTM on the validation set. The validation set consisted of 100 000 packet

traces of which 99 790 were normal while 210 were malicious traces. As it can be observed

in  Figure  5.28,  all  the  100  000  packets  were  correctly  classified  as  either  normal  or

malicious. From these results, it can be established that the model has proffered impressive

performance on the validation  set  as  it  attained a 100% detection,  false  alarm,  and false

negative rate.

Figure 5.28: Validation set confusion matrix – unregularised LSTM
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Similarly, the model was cross-validated on a test set also comprising 100 000 packet traces

where 99 775 of the packet  traces  were normal  while  the remaining 225 were malicious

traces. A confusion matrix that clearly displays the performance of the unregularised LSTM

classifier  on the test  set  is  presented in  Figure 5.29. Of the 100 000 packets,  only three

packets were misclassified.  The three packets were malicious but incorrectly predicted as

normal. This implies that the model failed to detect three intrusions in the test set. As can be

observed, there is a marginal drop in the classification performance of the model when the

model is validated on the test set. The drop in performance resulted in a 0.01 rise in false

negative rates. Furthermore, the drop in performance in the second fold of the 2-fold cross-

validation is evidence of overfitting.

Figure 5.29: Test set confusion matrix – unregularised LSTM

Figure  5.30  shows the  training  and  validation  accuracy  of  the  LSTM classifier  when  a

dropout  of  0.1  is  added  in  the  first  layer  as  a  regularisation  technique.  The  classifier’s

learning behaviour demonstrated in the figure is similar to the behaviour demonstrated by the

unregularised LSTM classifier as far as accuracy is concerned.
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Figure 5.30: Model accuracy of a LSTM with 0.1 dropout in first layer only

Figure 5.31  presents the train and validation loss curves of the LSTM classifier  when a

dropout of 0.1 is applied only in the first layer of the classifier. From the curves displayed in

Figure 5.31, the model completely converges after the first 100 epochs as the loss decreases

and  remains  constant.  Before  reaching  the  first  100  epochs,  a  bit  of  variability  in  the

validation loss is observed but the loss stabilises after reaching 100 epochs. After 100 epochs,

both the train and validation loss remain constant at 0. This is indicative of a robust model

that can generalise well even on unseen data.

Figure 5.31: Training vs validation loss of the LSTM with 0.1 dropout in first layer only
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Figure  5.32 shows  a  confusion  matrix  that  demonstrates  the  results  of  the  performance

evaluation of the LSTM classifier on the validation set when a dropout of 0.1 is added only in

the first layer. From the confusion matrix, it is observed that the model correctly classified all

the packets in the validation set.  Furthermore,  the results demonstrate  that the model can

detect the normality or enmity of a transmitted packet 100% of the time. Moreover, it can be

concluded that the performance of the classifier was exceptional as it obtained a 100% in

detection, false alarm, and false negative rates.
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Figure 5.32: Validation set confusion matrix – LSTM with 0.1 dropout in first layer only

In Figure 5.33, the second fold of the cross-validation is presented. The model classified all

100 000 packets in the test  dataset accurately.  The outcomes of this cross-validation step

suggest that the model can generalise well as it performed exceptionally well both on the first

fold and the second fold of the cross-validation. From the presented results, it can be deduced

that  regularising  an  LSTM  classifier  plays  a  crucial  role  in  the  convergence  speed  and

performance of the model and its ability to generalise.

Figure 5.33: Test set confusion matrix – LSTM with 0.1 dropout in first layer only
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Results presented from Figures 5.30 to 5.33 have clearly demonstrated that adding a dropout

of 0.1 in the first layer eminently improved the classification accuracy and the generalisation

ability of the LSTM. To understand whether increasing the dropout rate would impact the

classifier’s performance, the dropout rate in the first layer was increased to 0.2 and the model

was evaluated again.

Figure 5.34 is a demonstration of the model accuracy when the dropout rate is increased to

0.2 in the first layer. From the figure, the model proffers a pleasing performance as both the

learning and validation accuracy are 100%.

Figure 5.34: Model accuracy of an LSTM with 0.2 dropout in first layer only

Figure 5.35 shows the loss of the LSTM classification model when a 0.2 dropout is applied

in the first layer. Regarding the train and validation loss curves presented in the figure, the

model  instantaneously  converges  when  the  dropout  rate  is  increased  to  0.2.  As  can  be

observed in the figure, both the train and validation loss remain constant at 0 throughout the

training process. From this result, it can be perceived that increasing the dropout optimised

the convergence speed of the model immensely. This implies that increasing the dropout rate

to 0.2 in the first layer reduces the model’s training time to a great extent.
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Figure 5.35: Training vs validation loss of the LSTM with 0.2 dropout in first layer only

In Figure 5.36, a confusion matrix shows the performance of the model on the validation set

when the dropout rate is increased to 0.2. Once more,  it  can be observed that the model

classified all 210 packets in the validation set accurately.

Figure 5.36: Validation set confusion matrix – LSTM with 0.2 dropout in first layer only

Figure 5.37 presents the performance of the model on the test set when the dropout rate is

increased to 0.2. It can be observed that increasing the dropout in this instance introduced a

negligible drop in the detection rate obtained by the classifier as the model was unable to read

three  of  the  packets  accurately.  However,  the  model  was  able  to  read  222  out  of  225
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malicious packets correctly while predicting all the 99 790 normal packets correctly which

gives the model an impressive accuracy score.

Figure 5.37: Test set confusion matrix – LSTM with 0.2 dropout in first layer only

In a similar manner as in the previous experiment, the dropout in the first layer was raised to

0.5. The results of the experiment are presented in Figures 5.38 to 5.41. Figure 5.38 shows

the classification accuracy of the model. From the results displayed, it can be observed that

the accuracy was a bit unstable during the first 200 epochs of the training and stabilised to a

100% accuracy score subsequently.

Figure 5.38: Model accuracy of an LSTM with 0.5 dropout in first layer only
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Presented in  Figure 5.39 are the training and validation loss curves of the LSTM classifier

when the dropout rate was increased to 0.5 in the first layer. From the graph, it can be seen

that there is a bit of unsteadiness in the train loss during the first 300 epochs. The validation

loss on the other hand demonstrates this unsteadiness only after 100 epochs and stability in

the validation loss is gained after 200 epochs. Moreover, it can be observed that the model

completely converges after roughly 300 training epochs.  From this observation,  it  can be

concluded  that  300  epochs  are  sufficient  to  make  the  model  converge.  However,  when

compared  to  applying  a  dropout  of  0.2  as  demonstrated  in  Figure  5.35,  increasing  the

dropout to 0.5 dropped the model’s convergence speed.

Figure 5.39: Training vs validation loss of the LSTM with 0.5 dropout in first layer only

In  Figure  5.40 a  confusion  matrix  that  demonstrates  how  the  model  performs  on  the

validation  set  is  presented.  From the  figure,  it  can  be observed that  the  model  correctly

predicted all 100 000 packets in the validation set leading to the model obtaining a 100%

detection rate in the validation set.
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Figure 5.40: Validation set confusion matrix – LSTM with 0.5 dropout in first layer only

Figure 5.41 visually displays the performance results of the LSTM classifier on the test set

when the dropout rate is raised to 0.5 in the first layer. Again, the model correctly predicted

all 100 000 packets in the test set. From these results, it can be established that the model is

robust enough to detect malicious packets with great accuracy.

Figure 5.41: Test set confusion matrix – LSTM with 0.5 dropout in first layer only

To understand how the dropout  implementation  strategy impacts  the model  performance,

varying dropout rates were applied in the different defined layers and the performance of the

model was evaluated. The results of the experiments are demonstrated in  Figures 5.42 to

5.49.
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Figure 5.42 depicts the accuracy of the LSTM classifier when a 0.5 dropout rate is applied in

the first and second layers of the LSTM. It can be observed that the classification accuracy is

consistently 100% during the first 300 training iterations, plunges slightly to 99% at epoch

300 but stabilises eventually.  This could indicate  that the model  started overfitting at  the

300th iteration of the training process.

Figure 5.42: Model accuracy of an LSTM with 0.5 dropout in first and second and layers

In Figure 5.43, the training and validation loss of the LSTM with a 0.5 dropout rate in the

first two layers is presented. Looking at the figure, a negligible instability in the train loss is

observed until after roughly 490 epochs. On the validation, the loss is 0 and an increase of

0.04 is observed at the 300th epoch. The validation loss steadies after 300 epochs while the

train loss remains until after 490 epochs. This observation confirms the overfitting and drop

in accuracy observed in Figure 5.42. It can be seen that the model indeed started overfitting

the data as the loss started increasing but the model converged again thereafter.
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Figure 5.43: Training vs validation loss of the LSTM with 0.5 dropout in first and second

layers

Figure 5.44 presents a confusion matrix that displays the performance of the LSTM with a

0.5 dropout rate in the first two layers of the LSTM. The model demonstrated the capability

to predict the status of the packets as it classified all 100 000 packets in the validation set

accurately.  This  implies  that  the  LSTM classifier  was  able  to  classify  the  validation  set

correctly with 100% accuracy.

Figure 5.44: Validation set confusion matrix – LSTM with 0.5 dropout in first and second

layers

Presented in Figure 5.45 is a confusion matrix that shows the performance of the model on

the  second  fold  of  the  cross-validation.  From the  figure,  it  can  be  seen  that  the  model
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misclassified two malicious packets as normal while 99 998 packets were classified correctly.

This implies a 0.008% drop in detection rates when compared to how the model performed

on  the  validation  set  during  the  first  fold  of  the  cross-validation.  This  implies  that  the

overfitting observed in Figure 5.42 and Figure 5.43 did have an impact on the performance

of the classifier to a small degree.

Figure 5.45: Test set confusion matrix – LSTM with 0.5 dropout in first and second layers

The last experiment was applying a 0.5 dropout rate in all the three defined layers of the

LSTM. Figures 5.46 to 5.49 depict the evaluation results of the LSTM. In Figure 5.46 the

accuracy  of  the  model  with  the  contemporary  dropout  strategy  is  depicted.  The  results

indicate that the model maintained 100% accuracy throughout the training process.
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Figure 5.46: Model accuracy of an LSTM with 0.5 dropout in all three layers

In Figure 5.47, the training and validation loss curves of the LSTM with a dropout rate of 0.5

in all the network layers are presented. Even though not so significant, some variability can

be observed in the train loss curve. On the loss curve, however, the loss decreases instantly

after the model starts training. The low loss in both the train and validation loss curves is

indicative of a model that can generalise even though a negligent delay in convergence is

clear in the train loss curve.

Figure 5.47: Training vs validation loss of the LSTM with 0.5 dropout in all three layers

Figure 5.48 presents a validation set confusion matrix that depicts the classification accuracy

when the dropout strategy is such that a dropout rate of 0.5 is applied in all three layers of the
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LSTM. With this strategy and as demonstrated in the confusion matrix, the model was able to

predict all 100 000 packet traces accurately. As can be seen in the figure, the results indicate

that the model was able to classify the status of the transmitted packets with 100% accuracy.

Figure 5.48: Validation set confusion matrix – LSTM with 0.5 dropout in all three layers

In Figure 5.49, the test set confusion matrix of the LSTM with the 0.5 dropout rate in all the

layers strategy is illustrated. Once again, the model predicted all the 100 000 packets in the

test set correctly. Regarding the results demonstrated in the confusion matrix, there is a clear

indication that applying a dropout of 0.5 in all  three layers defined in the LSTM greatly

elevated the performance and the generalisation ability of the model.

Figure 5.49: Test set confusion matrix – LSTM with 0.5 dropout in all three layers
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The best  performing LSTM model  was converted to  a lightweight  version of the trained

model and the performance of the lightweight model was again evaluated on unseen data. As

demonstrated  in  Figure  5.50,  the  results  strongly  suggest  that  the  lightweight  version

preserved the performance of the regular LSTM model as it maintained the 100% detection

rate obtained by the regular LSTM model.

Figure 5.50: LSTM lightweight version confusion matrix

5.3 Discussion and model evaluation

This  study  commenced  by  surveying cutting-edge  intrusion  detection  frameworks.  The

suitability of the surveyed IDS four (4) metrics – true positive rates (TPR), false positive rates

(FPR), computational overheads that may be induced by the IDS and the dataset used to train

the  model  –  were  evaluated.  Unlike  in  conventional  networks  where  TPR and  FPR are

sufficient  to  evaluate  the  suitability  of  an IDS,  in  resource-constrained networks  such as

smart  city  ecosystems,  metrics  that  evaluate  energy  consumption  and  computational

overheads introduced by the detection frameworks are essential  to determine whether the

proposed IDS technique is suitable for deployment in resource-constrained architectures.

Additionally,  since  smart  city  networks  are  heterogeneous  and  extremely  dynamic,  the

dataset used for training the model must reflect heterogeneity and dynamicity.  Hence, the

suitability  of  each  of  the  proposed IDSs  was  also  evaluated  on  the  dataset  used  for  the

development  and  evaluation  of  the  proposed  framework.  Accordingly,  the  analysis  was

focused on the relevance of the dataset used for training the proposed model and the ability of
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the model to exhibit high detection rates with minimal FPR. Since the proposed models were

designed for deployment in WSNs, it was also essential to evaluate the ability of the model to

perform well without introducing computational overheads.

The  results  of  the  survey  revealed  that  most  studies  reviewed  were  not  mindful  of  the

dynamic characterisation and resource limitations of IoT infrastructures such as smart city

ecosystems. Some notable shortcomings of the proposed frameworks include the use of amiss

datasets that contain antiquated attack vectors for training the proposed detection models and

insubstantial  evidence  of  the  elimination  of  computational  overheads.  To  address  the

identified  limitations  of  the  surveyed  frameworks,  this  study  trained  and  evaluated  two

candidate models to propose the model that demonstrated the highest predictive power.

In intrusion detection,  a model is considered effective if  it  demonstrates the capability to

detect the status/nature of network packets with high detection but low false alarm rates. The

experimental results have demonstrated that regularisation plays a vital role in augmenting

the detection and generalisation ability of both the CNN and LSTM models.

With CNN, it was observed that applying a regularisation – adding dropout in only one input

layer – was not sufficient to optimise the generalisation ability of the model. Thus, adding a

dropout  of  at  least  0.5  in  all  input  layers  significantly  improved  the  model’s  ability  to

generalise. This observation is demonstrated in  Figure 5.23 and  Figure 5.24. Moreover, a

comparative  analysis  between  the  performance  of  the  CNN  and  the  performance  of  the

LSTM models was orchestrated.  When comparing the performance of the two models,  it

could be observed that a dropout of just 0.1 in the first input layer was sufficient to make the

LSTM model converge more quickly and produce remarkable classification results – high

detection  rates  and low false alarm rates.  The indicated  efficiency  of  the  LSTM at  each

regularisation iteration is demonstrated in Figures 5.26 to 5.49. Regarding Figure 5.47, it is

evident that the LSTM model converges much more quickly when regularisation is applied to

all the input layers.

However, in Figures 5.2,  5.6, 5.10,  5.14 and 5.18, the loss fluctuates which is indicative of

overfitting. This overfitting is clear in the classification accuracy as well as the proportion of

false alarm rates. This observation is presented in Figures 5.3, 5.4, 5.7, 5.8, 5.11, 5.12, 5.15,

5.16,  5.19,  5.20,  5.29,  5.37 and  5.45.  In  the  said  figures,  it  can  be  observed  that  the

classification accuracy drops when the model is applied to unseen data. The most common

scenario is that the false alarm rates are notably higher when the model classifies the test

dataset.
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Regarding the evaluation results, it can be concluded that the implementation strategy of the

regularisation  technique  is  a  remarkable  factor  in  the  behaviour  of  the  model  and  its

robustness.

Furthermore,  one  of  the  study’s  objectives  was  to  propose  a  DL model  as  an  intrusion

detection  mechanism  for  smart  city  ecosystems.  Subsequently,  as  an  attempt  to  reduce

computational  overheads  that  may  be  introduced  by  the  deployment  of  trained  intrusion

detection models, the models that attained high predictive power were saved and converted to

lightweight versions using TensorFlow-lite.

The sizes of both models shrank remarkably after the conversion. The memory size of the

CNN model reduced from 859 kilobytes to 269 kilobytes and the LSTM reduced from 2.0

megabytes to 683 kilobytes. This means that TensorFlow-lite more than halves the memory

size of a model. This should then result in reduced computational overheads. The lightweight

versions were then tested using the test dataset that was used to evaluate the regular models.

The experiments have exposed that the lightweight versions preserve the performance of the

original models. This observation is demonstrated in Figures 5.25 and 5.50.

5.4 Summary

This  chapter  gave  an  overview  and  discussed  the  findings  of  the  study.  Additionally,  a

rigorous comparative analysis of the baseline and the proposed models was performed. The

comparison  was  mainly  focused on the  convergence  speed of  the  models,  generalisation

ability, detection and false alarm rates.
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Chapter 6: Conclusion

6.1 Introduction

This chapter concludes the study. The chapter presents the empirical findings of the study and

outlines  how  the  research  objectives  were  achieved.  The  chapter  further  presents  the

implications of the study and concludes by highlighting the potential for future studies. The

study aims to review the current state of intrusion detection in smart city ecosystems and

proposes a DL model tailored for smart city ecosystems.

6.2 Summary of the dissertation

This section provides a detailed summary of the study. The section presents the empirical

findings of this study, research objectives and the future work is highlighted. 

6.2.1 Empirical findings

Connectivity and automation are indispensable aspects of the realisation of sustainable smart

cities. This high connectivity and automation to facilitate resource monitoring in cities are

achievable with mobile applications, Wi-Fi, AI and cloud-based architectures. Thus, smart

city components are connected through wireless networks and generate data that may be used

intelligently  for  city  infrastructure  management  and monitoring.  Even though digitisation

places  smart  cities  in  an  excellent  position  to  offer  an  intelligent,  spatial  and  economic

competitive advantage, it renders the cities susceptible to security issues. Several studies have

proved  that  despite  numerous  cryptography-based  security  mechanisms  that  have  been

continuously  proposed  and  implemented,  IoT  networks  remain  exposed to  cyber-attacks.

Considering this,  the security  of smart cities  is an area that  undeniably needs the utmost

attention.

Numerous studies proposed intrusion detection that can be used to alleviate cyber-attacks as

the most potent security mechanism for resource-constrained smart city networks. This study

reviewed IDSs that have been previously proposed for resource-constrained environments.

The review investigated the features of the proposed intrusion detection frameworks and their

suitability  for  deployment  in  resource-constrained  and dynamic  environments.  This  study

identified that many studies are not mindful of resource constraints and the dynamic nature of

IoT-based networks such as smart city networks. Furthermore, more investigations on the

design of proper IDSs for smart cities still need to be orchestrated.

This  study  proposed  a  lightweight  binary  classification  NN.  The  proposed  model  is

lightweight and proffers high detection and low false alarm rates. Additionally, the results of
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the study’s experiments  strongly suggest  that  using dropout  as  a  regularisation  technique

boosts the performance of a DL model tremendously. The results further demonstrated that

achieving  the  best  results  depends  highly  on  the  strategy  by  which  the  dropout  is

implemented. Moreover, the study discovered that DL models can be converted into lighter

versions without detracting from the performance standard of non-lightweight DL models.

6.2.2 Research objectives

 To analyse cyber-security challenges in smart city ecosystems

The study presented cyber-security issues prevalent in smart city ecosystems. Advances in

technology present  countless  conveniences  that,  among others,  include  the automation  of

cities to effectuate smart cities. Smart cities offer plenty of appealing benefits such as the use

of IoT sensors to gather useful data on power demand to prevent power blackouts as well as

the average speed of vehicles to mitigate traffic congestion on roads. The reviewed work

revealed a wide variety of security challenges that threaten the safety and sustainability of

smart cities with DoS attacks discerned as the most notorious cyber-attacks that threaten this

sustainability.

 To identify state-of-the-art intrusion detection methods used in smart city ecosystems

State-of-the-art  intrusion  detection  frameworks  were  surveyed. The  results  of  the  survey

conveyed that most  frameworks were developed with less  consideration  for  the  dynamic

characterisation and resource limitations of IoT infrastructures such as smart city ecosystems.

 To propose a deep learning model as an intrusion detection mechanism for smart city

ecosystems

A CNN binary  classifier  and an LSTM binary  classifier  were implemented  as  candidate

models. The most robust model, which offers a relatively higher convergence speed and high

detection rates, was converted to a lightweight version. The conversion was performed to

make  the  model  lighter  and  thus  more  suitable  for  deployment  in  resource-constrained

environments.  The  results  of  the  empirical  study  demonstrated  that  the  LSTM  binary

classifier  proffers the best  performance.  Therefore,  this classifier  is proposed as the most

suitable model for intrusion detection in smart city ecosystems.

The robustness demonstrated by the LSTM classifier is in accordance with the results of an

earlier study by Althubiti et al. (2018) that investigated the applicability of LSTM RNNs in

modelling network intrusion detection. However, their model was trained using the KDD 99

cup dataset  which,  in  the  view of  the  researcher,  is  an inappropriate  dataset  for  training

models  tailored  for  smart  city  environments.  Additionally,  their  study  did  not  present
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sufficient  evidence  of whether  the produced model  was lightweight  enough to operate  in

resource-constrained environments.

 To evaluate the efficiency of the proposed deep learning model

The efficiency of the proposed model was evaluated. The proposed model obtained a 100%

detection rate and occupied only 683 kilobytes of memory. The model demonstrated high

detection rates with low false alarm and false negative rates. This implies that the model is

robust enough to detect cyber intrusions and the memory size of the model indicates that the

model is lightweight enough to be deployed in resource-constrained environments.

6.3 Implications of the study

Security is crucial for the sustainability, availability, confidentiality, and integrity of smart

city ecosystems. To give direction for future research, this study provides an overview of the

current  state  of  intrusion  detection  mechanisms available  for  smart  city  ecosystems.  The

study further demonstrates that current intrusion detection mechanisms can be improved. This

can be achieved by developing more robust and lightweight models that offer high detection

rates and minimal false alarm rates to prevent security risks in smart city ecosystems and to

ensure sustainable and safe smart cities.

6.4 Future studies

Although  the  proposed  model  demonstrated  remarkable  robustness,  it  can  currently  only

detect two types of DoS attacks – UDP and TCP flooding attacks. Future studies should delve

into  introducing  more  attack  vectors  to  assess  the  adaptability  of  the  proposed  model.

Additionally, the effectiveness of the proposed model should be scrutinised by deploying the

model  on  a  resource-constrained  device  (such  as  Raspberry-pi)  and  monitoring  the

computational overheads introduced when the model is in production.
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Appendix A: Data Collection

This  section  presents  the  steps  followed  by this  study  for  data  gathering.  The  steps  are

explained below.

a) Downloading and installing the SUMO simulator

The  SUMO  simulator  was  downloaded  from  the  official  SUMO  site:

https://sumo.dlr.de/docs/Installing/index.html.  Additionally,  as  a  prerequisite  to  run

the  simulation,  Python  had  to  be  installed.  Python  was  downloaded  from

https://www.python.org/downloads/.

b) Downloading an OpenStreetMap of the city of interest

A map of a small area in residential Cape Town South Africa was downloaded from

https://www.openstreetmap.org//. The process followed is demonstrated below:

i) Search for the city on the OpenStreetMap search bar (Figure A1).

Figure A1: Downloading a city from OpenStreetMaps

ii) Select an area of interest from the search results and click export (Figure

A2).
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Figure A2: Exporting the desired area

c) Converting the map into a SUMO network

The downloaded file is stored in a .osm file extension. It must be noted that in this

study all SUMO simulation files were named such that they contained ‘capetown’

before the file extension.  To convert  the downloaded map into a SUMO network,

navigation to the folder containing the map in a command line terminal is undertaken

and the command below is run:

  netconvert capetown.osm -o capetown.net.xml

Running the command generates a network file. The generated network file contains

node identifiers, node types and the priority of the nodes.

d) Adding trips and routes to the network

By default, SUMO comes with a randomTrips.py python file which is used to add

trips  and  routes  to  the  network.  The  output  of  this  step  is  a  route  file  with

extension .rou. The route file comprises identifiers of the vehicles and their routes.

This is achieved by running the following command in the command line terminal:

python randomTrips.py -n capetown.net.xml -r capetown.rou.xml -e 50 -l

e) Generating the SUMO configuration file
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The configuration  file  takes  the  network  file  and the  route  file  as  input.  The file

contains the simulation start time and end time. For this study, the simulation time

was set to 2000 seconds. The file has a.sumocfg extension. The extensible markup

language (xml) script that creates the SUMO configuration file is presented in Figure

A3.

Figure A3: SUMO configuration file

The  generated  configuration  file  is  used  to  run  the  simulation,  either  by  double-

clicking the configuration file or by using the following command in the command

line terminal:

sumo-gui -c capetown.sumocfg

The simulation is shown in Figure A4.
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Figure A4: SUMO simulation

f) Creating a trace file of communicating nodes

The first step towards creating the trace file was to convert the entire simulation into a

trace file of communicating nodes. The conversion produces the trace.mxl file (in this

case, capetown.xml file). This is achieved by running the next command:

sumo -c capetown.sumocfg --fcd-output capetwon.xml

g) Generation of an NS2 mobility file

This step produces an NS2 mobility file with a .tcl file extension and is achieved by

running a traceExporter.py file provided by SUMO with the following command:

python traceExporter.py capetown.xml --ns2mobility-output=ns2mobility.tcl

h) Importing an NS2 mobility file into NS3

As a prerequisite to run this step, NS3 was downloaded from https://www.nsnam.org/

releases/ns-3-29/download/.

i) Configuration of a communication scenario in NS3
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Upon the complete installation of NS3, a folder with a name that follows the pattern

‘ns3-allinone-version’ (for example, ns3-allinone-3.29) is automatically created. The

folder structure is illustrated in Table A1.

Figure A5: NS3 folder structure

To completely convert the SUMO simulation to a network of communicating nodes

within  NS3,  a  vanet-routing-compare.cc  code  that  comes  with  NS3  is  used.  The

vanet-routing-compare.cc script as shown below was used for navigation:

ns3-allinone-3.29 > src > wave > example > vanet-routing-compare.cc

For a normal network traffic simulation, within the vanet-routing-compare.cc code,

the simulation parameters were defined as follows:

// Realistic vehicular trace in Cape Town

// "low density, 478 total vehicles"

m_traceFile=".../mobility.tcl";

m_logFile = "mobcpt.log";

m_mobility = 1;

m_nNodes = 478;

m_TotalSimTime = 962.01;

90



m_nodeSpeed = 20;

m_nodePause = 0;

m_CSVfileName = "mobcpt.csv";

m_CSVfileName = "mobcpt2.csv";

j) Launching a DoS attack on the simulated network

To launch a DoS attack,  new parameters inside the vanet-routing-compare.cc code

were set. The defined parameters are shown below:

// Network traffic parameters to launch UDP and TCP flooding attacks

#define TCP_SINK_PORT 9000

#define UDP_SINK_PORT 9001

#define BULK_SEND_MAX_BYTES 2097152

#define MAX_SIMULATION_TIME 50.0

#define ATTACKER_START 0.0

#define ATTACKER_RATE (std::string)”12000kb/s”

#define ON_TIME (std::string)”0.25″

#define BURST_PERIOD 1

#define OFF_TIME (std::string)”0.75″

//std::to_string(BURST_PERIOD – stof(ON_TIME))

#define SENDER_START 0.75

k) Running NS3 simulation

 The NS3 simulation is run using the following command:

./waf --run vanet-routing-compare.cc

l) Packet tracing and decoding

The output of steps i and j are capture files (pcap files) that contain network packets

captured from the simulated network. The capture files were decoded using Wireshark

and  data  was  saved  as  comma-separated-values  files  for  further  processing.  A

snapshot of data generated from the decoded packets is demonstrated in  Table A2.

Figure A5 demonstrates the process of exporting the decoded packets to a CSV file.
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Figure A6: Wireshark packet details

Figure A7: Saving packet data as CSV

m)  Concatenating multiple CSVs to a single CSV file

The CSV files exported from Wireshark were then loaded into Pandas Dataframes and

concatenated to make a single CSV. The procedure is demonstrated in Figure A6.

 

Figure A8: Concatenating multiple CSV files into a single file
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Appendix B: Training a Catboost Model
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Appendix C: Training a Convolutional Neural Network Model
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Appendix D: Training a Long Short-Term Memory Model
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