
DEPARTMENT OF COMPUTER SCIENCE

Modelling Internet Network Intrusion Detection in Smart

City Ecosystems

By

WANDISA MFENGUZA

A dissertation submitted in fulfilment of the requirements for the Master of Computer

Science Degree

Student Number: 201308763

Supervisor: Prof. K. Sibanda

Submission Date: May 2021

Declaration

I, WANDISA MFENGUZA, student number 201308763, declare that this research is my

own work. It has not been submitted before for any other degree, part of a degree or

examination at this or any other university.

Signature:

Date: 10 May 2021

Declaration on Plagiarism

I, WANDISA MFENGUZA, student number 201308763, hereby declare that I am fully

aware of the University of Fort Hare’s policy on plagiarism and I have taken every precaution

to comply with the regulations.

Signature:

Date:10 May 2021

Declaration on Ethical Clearance

I, WANDISA MFENGUZA, student number 201308763, hereby declare that I am fully

aware of the University of Fort Hare’s policy on research ethics and I have taken every

precaution to comply with the regulations. I confirm that my research constitutes an

exemption to Rule G17.6.10.5 and an ethical certificate with a reference number is not

required.

Signature:

Date: 21 May 2021

Dedication

This work is dedicated to my late mother and my amazing grandmother who encouraged me

to pursue a master’s degree. Thank you, Thahla, for being my pillar of strength when I felt

too weak to stand on my own. You are amazing!

Abstract

Smart city systems are intended to enhance the lives of citizens through the design of systems

that promote resource efficiency and the real-time provisioning of resources in cities. The

benefits offered by smart cities include the use of internet of things (IoT) sensors to gather

useful data such as power demand to inhibit blackouts and the average speed of vehicles to

alleviate traffic congestion. Nonetheless, earlier studies have indicated a substantial increase

in cyber-security issues due to the increase in the deployment of smart city ecosystems.

Consequently, IoT cyber-security is recognised as an area that requires crucial scrutiny. This

study begins by investigating the current state of intrusion detection in smart city ecosystems.

Current intrusion detection frameworks lack the capability to operate under extremely

limiting settings such as conditions of low processing power and fast response times.

Moreover, the study also identifies that, despite intrusion detection being a highly researched

thematic area, a plethora of previous studies tend to propose intrusion detection frameworks

that are more suitable for traditional computer networks rather than wireless sensor networks

(WSNs) which consist of heterogeneous settings with diverse devices and communication

protocols. Subsequently, this study developed two candidate deep learning models, namely a

convolutional neural network (CNN) and a long short-term memory (LSTM) network and

presents evidence on their robustness and predictive power. Results have indicated that,

unlike the CNN model, the LSTM model can quickly converge and offer high predictive

power without the vigorous application of regularisation techniques. The proposed LSTM

classification model obtained a remarkable 100% in detection rates and further reported 0%

in false alarm and false negative rates. This study gives a broad overview of the current state

of intrusion detection mechanisms for smart city ecosystems to guide future studies. The

study also demonstrates that existing intrusion detection systems (IDSs) can be enhanced

through the development of more robust and lightweight models that offer high detection

rates and minimal false alarm rates to prevent security risks in smart city ecosystems to

ensure sustainable and safe smart cities.

Acknowledgements

First, I would like to thank God for the abundant strength He has given me throughout this

master’s degree journey. I wish to express my earnest gratitude to my supervisor Professor

Sibanda for his support, motivation, and guidance. A special thanks to the Department of

Science and Innovation as well as the Council for Scientific and Industrial Research for their

financial support. I am also indebted to my family for their support and encouragement.

Finally, I would like to thank my friends who were part of this journey for all their support.

Table of Contents

Declaration..i

Declaration on Plagiarism..ii

Declaration on Ethical Clearance..iii

Dedication...iv

Abstract..v

Acknowledgements...vi

Table of Contents...vii

List of Figures..x

List of Tables..xiii

Chapter 1: Introduction..1

 1.1 Introduction...1

 1.2 Background..1

 1.3 Problem identification...2

 1.4 Research aim..2

 1.5 Research questions..2

 1.6 Research objectives...3

 1.7 Study contribution...3

 1.8 Dissertation outline..3

 1.9 Summary..4

Chapter 2: Literature Review...5

 2.1 Introduction...5

 2.2 Smart city ecosystems...5

2.2.1 Dimensions of a smart city..5

2.2.2 Digitisation in a smart city...7

 2.3 Security issues in smart city ecosystems...7

 2.4 The taxonomy of denial-of-service attacks..10

 2.5 Intrusion detection...12

 2.6 Deep learning...16

 2.6.1 Artificial neural networks...17

 2.7 Related work..19

 2.8 Summary..22

Chapter 3: Research Design and Methodology..23

 3.1 Introduction...23

 3.2 Research methodology..23

 3.2.1 Qualitative approach...23

 3.2.2 Quantitative approach...23

 3.2.3 Simulation and modelling methodology...24

 3.3 Research design...24

 3.3.1 Data collection..24

 3.4 Data pre-processing...27

 3.5 Feature engineering and selection...28

 3.6 Model training and performance evaluation..28

 3.7 Summary..30

Chapter 4: Implementation...31

 4.1 Introduction...31

 4.2 Data processing and feature selection..31

 4.3 Model training approach and performance evaluation..34

 4.4 Summary..38

Chapter 5: Study Results and Discussion...39

 5.1 Introduction...39

 5.2 Results...39

 5.2.1 Convolutional neural network performance analysis...39

 5.2.2 Long short-term memory performance analysis...53

 5.3 Discussion and model evaluation..69

 5.4 Summary..71

Chapter 6: Conclusion..72

 6.1 Introduction...72

 6.2 Summary of the dissertation..72

 6.2.1 Empirical findings...72

 6.2.2 Research objectives...73

 6.3 Implications of the study...74

 6.4 Future studies...74

References..75

Appendix A: Data Collection...86

Appendix B: Training a Catboost Model...93

Appendix C: Training a Convolutional Neural Network Model..94

Appendix D: Training a Long Short-Term Memory Model..95

List of Figures

Figure 2.1: TCP SYN flooding attack..11

Figure 2.2: Feed-forward neural network structure...17

Figure 3.1: SUMO and NS3 integration..26

Figure 4.1: Dropping duplicated features...31

Figure 4.2: Converting data types and encoding of categorical features.................................32

Figure 4.3: Generating a pandas-profile report..32

Figure 4.4: Catboost feature importance..33

Figure 4.5: Reshaping the data to a three-dimensional matrix...34

Figure 4.6: Plotting accuracy and loss curves..36

Figure 4.7: Plotting confusion matrix..36

Figure 4.8: Saving a model..37

Figure 4.9: Converting a regular model to a lightweight model..37

Figure 4.10: Loading and assessing the lightweight model...37

Figure 4.11: The implementation strategy...38

Figure 5.1: Model accuracy of an unregularised CNN..39

Figure 5.2:Training vs validation loss of the unregularised CNN...40

Figure 5.3: Validation set confusion matrix – unregularised CNN...41

Figure 5.4: Test set confusion matrix – unregularised CNN...41

Figure 5.5: Model accuracy of a CNN with 0.1 dropout in first layer only.............................42

Figure 5.6:Training vs validation loss of the CNN with 0.1 dropout in first layer only..........42

Figure 5.7: Validation set confusion matrix – CNN with 0.1 dropout in first layer only........43

Figure 5.8:Test set confusion matrix – CNN with 0.1 dropout in first layer only...................44

Figure 5.9: Model accuracy of a CNN with 0.2 dropout in first layer only.............................44

Figure 5.10: Training vs validation loss of the CNN with 0.2 dropout in first layer only.......45

Figure 5.11: Validation set confusion matrix – CNN with 0.2 dropout in first layer only......45

Figure 5.12: Test set confusion matrix – CNN with 0.2 dropout in first layer only................46

Figure 5.13: Model accuracy of a CNN with 0.5 dropout in first layer only...........................46

Figure 5.14: Training vs validation loss of the CNN with 0.5 dropout in first layer only.......47

Figure 5.15: Validation set confusion matrix – CNN with 0.5 dropout in first layer only......47

Figure 5.16: Test set confusion matrix – CNN with 0.5 dropout in first layer only................48

Figure 5.17: Model accuracy of a CNN with 0.5 dropout in first and second layers..............49

Figure 5.18: Training vs validation loss of the CNN with 0.5 dropout in first and second

layers...49

Figure 5.19: Validation set confusion matrix – CNN with 0.5 dropout in first and second

layers...50

Figure 5.20: Test set confusion matrix – CNN with 0.5 dropout in first and second layers....50

Figure 5.21: Model accuracy of a CNN with 0.5 dropout in all three layers...........................51

Figure 5.22: Training vs validation loss of the CNN with 0.5 dropout in all three layers.......51

Figure 5.23: Validation set confusion matrix – CNN with 0.5 dropout in all three layers......52

Figure 5.24: Test set confusion matrix – CNN with 0.5 dropout in all three layers................52

Figure 5.25: CNN lightweight version confusion matrix...53

Figure 5.26: Model accuracy of an unregularised LSTM..54

Figure 5.27: Training vs validation loss of the unregularised LSTM......................................54

Figure 5.28: Validation set confusion matrix – unregularised LSTM.....................................55

Figure 5.29: Test set confusion matrix – unregularised LSTM...56

Figure 5.30: Model accuracy of a LSTM with 0.1 dropout in first layer only.........................56

Figure 5.31: Training vs validation loss of the LSTM with 0.1 dropout in first layer only.....57

Figure 5.32: Validation set confusion matrix – LSTM with 0.1 dropout in first layer only....58

Figure 5.33: Test set confusion matrix – LSTM with 0.1 dropout in first layer only..............58

Figure 5.34: Model accuracy of an LSTM with 0.2 dropout in first layer only.......................59

Figure 5.35: Training vs validation loss of the LSTM with 0.2 dropout in first layer only.....60

Figure 5.36: Validation set confusion matrix – LSTM with 0.2 dropout in first layer only....60

Figure 5.37: Test set confusion matrix – LSTM with 0.2 dropout in first layer only..............61

Figure 5.38: Model accuracy of an LSTM with 0.5 dropout in first layer only.......................61

Figure 5.39: Training vs validation loss of the LSTM with 0.5 dropout in first layer only.....62

Figure 5.40: Validation set confusion matrix – LSTM with 0.5 dropout in first layer only....63

Figure 5.41: Test set confusion matrix – LSTM with 0.5 dropout in first layer only..............63

Figure 5.42: Model accuracy of an LSTM with 0.5 dropout in first and second and layers. . .64

Figure 5.43: Training vs validation loss of the LSTM with 0.5 dropout in first and second

layers...65

Figure 5.44: Validation set confusion matrix – LSTM with 0.5 dropout in first and second

layers...65

Figure 5.45: Test set confusion matrix – LSTM with 0.5 dropout in first and second layers. 66

Figure 5.46: Model accuracy of an LSTM with 0.5 dropout in all three layers.......................66

Figure 5.47: Training vs validation loss of the LSTM with 0.5 dropout in all three layers.....67

Figure 5.48: Validation set confusion matrix – LSTM with 0.5 dropout in all three layers....68

Figure 5.49: Test set confusion matrix – LSTM with 0.5 dropout in all three layers..............68

Figure 5.50: LSTM lightweight version confusion matrix..69

Figure A1: Downloading a city from OpenStreetMaps...93

Figure A2: Exporting the desired area...94

Figure A3: SUMO configuration file...95

Figure A4: SUMO simulation..96

Figure A5: Saving packet data as CSV..99

Figure A6: Concatenating multiple CSV files into a single file..99

List of Tables

Table 2.1: A simple analysis of the performance metrics applicable in the evaluation of

IDS suitable for resource-constrained networks...15

Table 3.1: Simulation setting...26

Table 3.2: Table illustrating a confusion matrix..29

Table 4.1: Pandas-profiling data description snapshot..32

Table 4.2: Pandas-profiling warnings snapshot...32

Table 4.3: Training dataset sample..34

Table 4.4: Model training parameters..35

Table A.1: NS3 folder structure...97

Table A.2: Wireshark packet details..98

Keywords

Machine Learning

Deep Learning

Cybersecurity

Intrusions Detection

Internet of Things

Wireless Senor Networks

Smart Cities

Neural Networks

List of Acronyms

DoS Denial of Service

TCP Transmission Control Protocol

ICMP Internet Control Message Protocol

HTTP Hypertext Transfer Protocol

UDP User Datagram Protocol

WSN Wireless Sensor Network

TCP SYN Transmission Control Protocol Synchronize

ANN Artificial Neural Network

IDS Intrusion Detection System

ML Machine Learning

DL Deep Learning

CNN Convolutional Neural Network

LSTM Long Short-term Memory

TPR True Positive Rate

FPR False Positive Rate

IoT Internet of Things

SUMO Simulation of Urban Mobility

NS3 Network Simulator 3

NS2 Network Simulator 2

Chapter 1: Introduction

1.1 Introduction

This chapter introduces the study, provides an overview of the study background, and states

the problem at hand. The chapter further outlines the questions that the study intends to

answer and outlines the aims as well as the objectives of the study. Finally, the contributions

of the study are presented.

1.2 Background

The emergence of the Fourth Industrial Revolution presents sophisticated futuristic

technologies. These advances in technology have seen a tremendous surge in the adoption of

Internet of Things (IoT) -based smart city systems, such as smart grids, traffic management

systems, smart health, and smart homes, which are intended to augment the lives of citizens

through their system design that fosters resource efficiency and the real-time provisioning of

resources in cities. The benefits offered by smart cities include the use of IoT sensors to

gather useful data such as power demand to inhibit blackouts and the average speed of

vehicles to alleviate traffic congestion (AlDairi & Tawalbeh, 2017).

Previous studies have reported substantial increases in cyber-security issues due to the

increase in the deployment of these smart city ecosystems. Consequently, cyber-security in

IoT is recognised as an area that requires crucial scrutiny. Security breaches in smart cities

are accredited to how smart city systems are designed. Several studies have revealed that

smart city systems are designed without security considerations in mind and, consequently,

offer limited authentication and integrity capabilities which make these ecosystems

susceptible to cyber-attacks (Tuptuk & Hailes, 2018).

This view is supported by Mohamad Noor and Hassan (2019) who critically investigated

trends in IoT security and identified poor authentication mechanisms, such as the use of weak

and identical passwords and lack of mechanisms that offer automated intrusion detection, as

the main factors that expose cyber-physical systems to cyber threats. In a similar study,

Pacheco and Hariri (2016) argue that cyber-physical systems support poor authentication and

do not enforce the use of strong passwords, hence it is easy for adversaries to guess

passwords or use brute force to gain unauthorised access to specific systems. In the same

way, Zhou, Zhang, and Liu (2019) explored security trends in cyber-physical systems such

as smart homes, smart grids, and smart cities. They established that, when developing IoT

inspired products, vendors tended to position their focus on implementing functionalities that
1

are positioned towards user satisfaction while neglecting security considerations in the

process. Furthermore, their study maintains that such vendors do not only design resource-

constrained devices but also devices that use default passwords and often have unpatched

bugs which impede the deployment of efficient security mechanisms.

Due to the interconnectivity and sensitivity of the data shared among devices in smart city

networks, any compromise in these ecosystems may lead to fatalities and life-threatening

situations. Consequently, the security of smart city ecosystems has become an enormously

researched area (Banerjee, Lee, & Choo, 2018).

1.3 Problem identification

In an attempt to realise the sustainable deployment of smart cities, Elrawy, Awad and Hamed

(2018) proposed network intrusion detection as a necessary mechanism to protect against

intrusions that compromise the confidentiality, integrity and availability of smart city

systems. Banerjee, Lee and Choo (2018), Chen, Hasan and Mohan (2018), Mohamad Noor

and Hassan (2019) and Pereira, Barreto and Amaral (2017) concede the necessity for the

development of intrusion detection schemes that are capable of detecting malicious attacks.

An intrusion detection scheme is a mechanism implemented at the network layer of an IoT-

based system to analyse the data packets of the system of interest and generate responses in

real time (Elrawy et al., 2018). Although intrusion detection has been an exhaustively

explored research area as highlighted by Roux, Alata, Auriol, Nicomette and Kaâniche

(2017), the majority of previous studies focused on wired networks rather than WSNs.

Smart city systems are largely based on wireless connections linking numerous devices. This

makes it imperative to continuously design and optimise intrusion detection systems (IDSs)

which will improve the security of smart city systems. Hence, this study seeks to propose a

deep learning-based intrusion detection mechanism bespoke for IoT-based smart city

systems.

1.4 Research aim

This study aims to develop an IDS that can perform well in an IoT environment.

1.5 Research questions

This study seeks to address the following questions:

 What are the cyber-security challenges currently facing the deployment of smart city

ecosystems?
2

 What are the current intrusion detection methods in smart city ecosystems?

 Can a model that would detect intrusion in a smart city ecosystem with better

accuracy be designed?

 How efficient is the proposed model?

1.6 Research objectives

The objectives of this study are as follows:

 To analyse cyber-security challenges in smart city ecosystems

 To identify state-of-the-art intrusion detection methods used in smart city ecosystems

 To propose a deep learning model as an intrusion detection mechanism for smart city

ecosystems

 To evaluate the efficiency of the proposed deep learning model.

1.7 Study contribution

The literature survey of this study contributes to existing knowledge by exposing gaps that

exist in intrusion detection in smart city ecosystems. The literature survey reveals that earlier

studies were not mindful of the resource constraints that exist in IoT-based networks.

Accordingly, this study proposes a lightweight deep learning model that will take into

consideration the low processing power, heterogeneity, and self-organising nature of smart

city ecosystems.

1.8 Dissertation outline

Chapter 1 introduces the study. The chapter encompasses the problem statement, background,

research questions and research objectives. This chapter also presents the expected outcomes

and impact of the study.

Chapter 2 provides a comprehensive survey of the literature related to the study.

Chapter 3 is a presentation of the methodological approaches adopted in the study. The

chapter further discusses the philosophy followed in carrying out the research and the tools

utilised to carry out the experiments. Furthermore, this chapter provides an overview of the

methodologies that were undertaken for data analyses.

Chapter 4 gives a descriptive overview of how the feature selection, as well as the data used

to train and evaluate the candidate models, was processed. The chapter also discusses the

implementation approaches of the candidate models.

3

Chapter 5 presents a performance evaluation and comparative analysis of two candidate

models. The two models are evaluated against each other based on convergence speed,

detection rates and false alarm rates under varied dropout rates.

Chapter 6 concludes the entire study and gives an overview of potential future studies.

1.9 Summary

This chapter introduced the study. The chapter started by giving a brief presentation of the

background of the study and further outlined the research questions and objectives. The

chapter also presented the significance of the study and concluded with the outline thereof.

4

Chapter 2: Literature Review

2.1 Introduction

This chapter presents the literature relevant to the study. The chapter briefly provides an

introductory overview of smart cities and the dimensions thereof. The chapter further

provides a review of security issues in smart city ecosystems and state-of-the-art detection

mechanisms as well as a perusal of deep learning techniques for intrusion detection.

2.2 Smart city ecosystems

The prevailing technological evolution presents innovations predetermined to integrate

exhilarating technologies encompassing 5G networks, IoT and Artificial Intelligence (AI).

These advances in technology have triggered the proliferation of the development of smart

cities. AlDairi and Tawalbeh (2017) define smart cities as cities that integrate infrastructure

and technology to enhance the lives of citizens.

Smart cities exploit AI, cloud computing, embedded computing, biometric systems as well as

IoT technologies for efficient city automation and infrastructure governance and monitoring.

Smart cities comprise subsystems incorporating smart energy meters, smart health and smart

homes that are designed to enhance the quality of life in cities (Elmaghraby & Losavio,

2014). One of the conveniences offered by smart cities is smart urban transportation – a

system of interconnected vehicles that exchange crucial information such as GPS coordinates

as well as traffic and weather updates.

Supporting AlDairi and Tawalbeh’s (2017) narrative on smart cities, Popescul and Radu

(2016) assert that smart cities incorporate sophisticated and embedded systems such as

smartphones, medical devices, wearable sensors, supervisory control and data acquisition

(SCADA) systems as well as other sensor technologies which are utilised to monitor air

quality and pollution, energy and water consumption, waste management and automotive

traffic. The next section briefly outlines the distinguishing attributes of smart cities.

2.2.1 Dimensions of a smart city

Smart cities are designed to promote e-governance, sustainability, liveability as well as

efficiency in urban areas using IoT and AI (Joshi, Saxena, Goodbole, & Shreya, 2016).

Jucevičius, Patašiené and Patašius (2014) state that there are certain underpinnings that

ultramodern cities should uphold for them to be conceded as smart cities. These

underpinnings are outlined below:
5

2.2.1.1 Smart transportation

Smart transportation is an indispensable component of a smart city and uses sensors and other

intelligent technologies to collect data to promote information sharing between vehicles as a

means to mitigate traffic congestion as well as to monitor road infrastructure, alleviate road

traffic accidents and improve the quality of life in cities (Olaverri-Monreal, 2016).

2.2.1.2 Smart energy

Smart energy involves the use of sensors, smart meters and renewable energy sources for the

automation and monitoring of energy consumption. Smart grids are recognised as the most

notable innovation towards the concept of smart energy management (UNCTAD, 2016).

According to Otuoze, Mustafa and Larik (2018), smart grids are ecosystems that consist of

advanced metering systems, communication networks and data management systems that are

interconnected to exchange information and to collect data that can be utilised for real-time

monitoring of energy consumption to aid dynamic pricing.

2.2.1.3 Smart health care

Smart health care is a smart city system designed to leverage wearable sensors, long-range

communication networks, cloud technologies and machine learning techniques for the remote

monitoring of non-critical patients. The sensors gather essential information such as pulse,

respiratory rate, body temperature and blood pressure. The collected data can be sent to the

cloud and further used to notify emergency services whenever the readings from the sensors

vary. Machine learning is then used to recommend treatment based on the data that are

collected from the wearable sensors (Baker, Xiang, & Atkinson, 2017).

2.2.1.4 Smart education

Smart education is a concept of fabricated and programmable educational spaces that

leverage state-of-the-art technologies to provide efficient communication, administration,

leadership and student management and performance monitoring in learning institutions

(Williamson, 2015).

2.2.1.5 Smart environment

In a study that proposes storage architectures for the efficient monitoring of the smart

environment, Fazio, Celesti, Puliafito and Villari, (2015) define a smart environment as an
6

interconnected ecosystem of cloud storage technologies, heterogeneous devices, actuators

and sensors that exchange data to promote real-time monitoring of environmental variables

such as waste management, air quality, pollution, health care and weather.

2.2.1.6 Smart security

This is a smart city system that uses IoT and ultramodern technologies, designed for intruder

detection and the tracking of people and objects (Saifuzzaman, Khan, Moon, & Nur, 2017).

2.2.1.7 Smart industry

Smart industry is an ecosystem where oil, gas, manufacturing, mining, and aviation industries

exploit sensor integrated applications to design intelligent machines. Intelligent machines are

used for the real-time exchange of data to promote timeous communication between suppliers

and retailers and to track goods (Butt & Afzaal, 2019).

2.2.2 Digitisation in a smart city

Regarding the smart city characteristics highlighted, it is clear that connectivity and

automation are fundamental to the development of smart cities (Bruneo et al., 2019). This

digitisation is achievable using mobile applications, Wi-Fi, AI and cloud-based architectures

to facilitate resource monitoring in cities. Thus, smart city components are connected through

wireless networks and generate data that may be used intelligently for city infrastructure

management and monitoring (UNCTAD, 2016).

Although smart cities offer an intelligent, spatial, and economic competitive advantage, they

are mired with security issues. Previous studies such as that of (AlDairi & Tawalbeh, 2017)

established that due to high interconnectivity and the data shared among smart city systems,

these systems are prone to cyber-attacks.

Motivated by the views of earlier scholars on security issues in smart city ecosystems, this

study surveyed cutting-edge literature related to security hurdles in the concerned

ecosystems. The next section is devoted to a survey of the literature relating to security

challenges in smart cities.

2.3 Security issues in smart city ecosystems

The pinnacle of the development of smart cities has instigated a significant rise in cyber-

security issues in these ecosystems. Therefore, the security of smart cities is an area that

needs utmost attention from the research community.
7

Popescul and Radu (2016) identified limitations related to hardware, computational

processing power, low energy consumption and memory as the main factors that hinder the

implementation of security mechanisms in smart city systems. In the same study, they

recognise scalability, heterogeneity, the use of diverse communication and network protocols

and dynamic network topologies as other aspects that impede the deployment of security

techniques in these systems. According to their study, the aforementioned circumstances have

led to designers gauging the performance of their products based on the ability of the

products to consume low energy and processing power while overlooking security

considerations and viewing design and implementation of security mechanisms as just add-

ons.

After evaluating the state-of-the-art protection methods used for smart cities, Cui, Xie, Qu,

Gao and Yang (2018) established that numerous protection mechanisms employed in

conventional systems, such as encryption, biometrics and anonymity, are redundant in smart

city systems due to the limited computational processing power of sensors and other devices

that are used in the construction of smart city systems. Moreover, their study is in accord with

previous studies which maintain that heterogeneity, scalability, and the dynamic nature of IoT

systems make deployment of security measures in these systems largely a cumbersome task

to accomplish, subjecting smart cities to high-security risks.

Additionally, their study postulates that attackers are becoming smarter and have started

developing tools that can bypass currently deployed security mechanisms by using AI to

weaken the trained algorithms and make them less reliable. Furthermore, their study has

pointed out denial-of-service (DoS) attacks as the most notable attacks that threaten the

integrity and availability of smart city ecosystems.

An earlier study by Ferraz, André and Ferraz, (2014) investigated the impact of cyber-

security on smart cities. Their study argued that modern communication media such as

smartphones, laptops, tablets and easy Wi-Fi access enable cyber-criminals to perform

unethical hacking activities effortlessly. Additionally, their study affirms that software

patches and software products that are released without undergoing enough tests induce

security loopholes in smart city systems.

Furthermore, to understand the applications of IoT in the development of smart cities,

Khajenasiri, Estebsari, Verhelst and Gielen (2017) investigated the architecture of IoT. Their

study agrees with several researchers that believe that hurdles in the implementation of

adequate security mechanisms are due to the heterogeneous nature of IoT architecture and

networks. The authors criticised the lagging in the enforcement of security standards,
8

claiming that this lagging resulted in leakages of sensitive information as the information was

not protected through security strategies such as encryption.

Otuoze et al. (2018) draw attention to the sources of threats in smart cities, focusing mainly

on smart grid systems. Their study maintains that the introduction of transmission control

protocol (TCP) and the presence of communication nodes in smart grids have induced

enormous security issues in the systems. According to their study, smart grids are currently

facing security threats that are likely to result in power blackouts. These power blackouts

may further lead to cascade failures, damage to consumer devices, chaos in the energy

market, theft of sensitive data and jeopardising human lives. Furthermore, their study argues

that these security loopholes in smart grids expose the systems to organised crimes such as

hacking, rioting, terrorism, energy theft, information leakage, false data injection, sabotage,

and the disruption of services.

After investigating security vulnerabilities in in-vehicle networks, Rizvi, Willet, Perino,

Marasco and Condo (2017) highlighted that modern vehicles have shifted from being just

‘metal boxes’ to sophisticated machines that possess sufficient intelligence to make decisions.

Their study adds that, due to this shift, vehicles are as susceptible to cyber-attacks as

computers. Their study confirms the views of Cui, Xie, Qu, Gao and Yang (2018) on the

notion that security mechanisms used in traditional computer networks fail to protect vehicle

networks due to the nature and architecture of their WSNs. Earlier studies established that

technologies used in connecting smart cities are a major issue in the security of systems. One

such technology used in smart cities is the radio frequency identification (RFID) tag which is

a core technology for interconnecting cyber-physical systems. This technology provides real-

time information sharing. However, Popescul and Radu (2016) argue that RFID is extremely

susceptible to attacks making it a security risk in smart cities.

One of the biggest issues in RFID is the sabotage of a reader where an adversary gains

control of the reader and starts emitting electromagnetic waves to destroy all the data in the

RFID tag. These devices can also be tracked without a user’s consent. Additionally, RFID

tags are highly prone to DoS attacks (Popescul & Radu, 2016). The surging deployment of

smart cities is significantly growing data and network traffic. These cities are rendered

inoperable without scalable city governance systems and techniques.

Additionally, smart city infrastructure, such as smart transportation systems which are active

institutions in cities, use devices such as radars, Bluetooth detectors and licence plate cameras

to collect data on the speed, flow, and travel times of vehicles. This information can be easily

associated with drivers’ identities and may reveal sensitive information (safety-critical
9

events, speed, destination, home and workplace addresses and time spent in a particular

location) about the drivers and put them in jeopardy (Popescul & Radu, 2016).

Furthermore, earlier scholars established that cyber-physical systems exploit open-source

platforms such as Android, which is renowned for attracting cyber-criminals into launching

particularly DoS attacks which are the most renowned in WSNs (Elleithy, 2006; Zekri, El

Kafhali, Aboutabit, & Saadi, 2018). The next section provides a brief overview of the

characterisation of four popular DoS attack scenarios.

2.4 The taxonomy of denial-of-service attacks

A DoS attack is an attack that disrupts the operations of a server by incapacitating the server

from providing services to its clients. Adversaries launch this attack by flooding a network

server with invalid packets or spoofed IP addresses to slow down the compromised network

(Elleithy, 2006. It is believed that DoS attacks are cumbersome to avert because the packets

that are sent when a DoS attack is launched are disguised as legitimate packets.

Conti (2018) established that DoS attacks have gained popularity because they have become

easier to launch due to technological advances that have availed high-speed networks and

enabled ease of access to bots that can be exploited to implement volumetric DoS attacks

such as TCP, ICMP, HTTP and UDP flooding.

Alguliyev, Aliguliyev and Abdullayeva (2019) argue that DoS attacks are designed to disrupt

and halt services of WSN by saturating the already limited resources of WSNs. They add that

when DoS attacks are successfully launched, they retard the performance of network

resources and paralyse the normal operations of the network by causing failure to the affected

sensors rendering the sensors inaccessible for communication.

Azahari Mohd Yusof, Hani Mohd Ali and Yusof Darus (2018) categorise DoS into different

classes as follows:

 UDP flood: An attack that uses the UDP protocol and attacks the victim by sending a

large number of packets to slow down and crash the compromised device.

 TCP SYN flood: An attacker sends recurrent SYN packets using fake IP addresses.

Consequently, the victim will be unable to close connections, will thus receive a large

number of packets while unable to send an acknowledgement, causing the server to

crash. The orchestration of a TCP SYN flooding attack is as demonstrated in Figure

2.1.

10

Figure 2.1: TCP SYN flooding attack

. Adapted from Azahari Mohd Yusof, Hani Mohd Ali and Yusof Darus (2018)

 Ping of death: In a ping of death, the adversary sends oversized and malformed

packets to the victim. This leads to memory overflows that crash the compromised

device. This will keep the compromised network resource so busy that it will not be

able to service its legitimate clients.

 Smurf attack: This is an attack launched by sending extremely large ICMP packets to

the victim thereby flooding the victim’s device with spoofed ping messages to cripple

the network resource.

Regarding the above characteristics of DoS attacks, it is indisputable that the repercussions of

such attacks can be devastating. Thus, for any technology to thrive, the privacy and security

of user data should be fundamental. According to Aris and Oktug (2017), IoT networks

remain exposed to cyber-attacks despite numerous cryptography-based security mechanisms

that have been continuously proposed and implemented. Accordingly, as an attempt to

overcome security drawbacks in smart city technologies, Krimmling and Peter (2014)

proposed intrusion detection as the most potent security mechanism that can be used to

alleviate cyber-attacks on resource-constrained smart city networks.

Intrusion detection is a cyber-security approach that has the proficiency to monitor and

analyse packet traffic, filter normal network behaviour from abnormal network behaviour and

discern intruders and attacks in communication systems. Intrusion detection gained

popularity due to the astounding defence capacity that the technique demonstrated in

11

traditional computer networks (Zarpelāo, Miani, Kawakani, & de Alvarenga, 2017). Section

2.5 of this study is devoted to reviewing currently deployed intrusion detection methods.

2.5 Intrusion detection

The influx of smart city systems, such as intelligent transportation systems (ITS), compels the

development of methods that can monitor and detect security threats in ecosystems (Aloqaily,

Otoum, Al Ridhawi, & Jararweh, 2019). As mentioned in the preceding section, previous

studies recommend intrusion detection as the best approach to mitigate cyber-security attacks

in smart city systems. Garcia-Font, Garrigues and Rifà-Pous (2016) state that computations

and energy constraints in WSNs make it impractical to deploy security mechanisms that are

used in traditional network architectures. Hence, there is a need to design intrusion detection

mechanisms that are tailored for smart city ecosystems. Inspired by the above notion,

Sherasiya, Upadhyay and Patel (2016) reviewed a state-of-the-art IDS and discovered that

currently deployed IDSs are inadequate for sensor networks due to massive computational

overhead setbacks that IDSs exhibit.

Similarly, Zarpelāo, Miani, Kawakani and de Alvarenga (2017) examined IDSs for IoT

systems to understand how earlier scholars addressed the hurdles that impede the

implementation of IDSs in IoT systems. Their study investigated 18 IDSs proposed between

2009 and 2016 and classified the IDSs under review based on detection method, placement

strategy and the validation strategy used. They suggested that IoT IDS is still in its infancy

and a lot more still needs to be done. Additionally, they established that detection methods

used in the majority of current IDSs do not clearly demonstrate adequacy and validation

strategies are not proven to be effective. They further suggested that there is an earnest need

for researchers to focus on investigating flaws in currently deployed IDSs to improve the

development of IDSs for IoT environments.

In the same vein, Santos, Rabadao and Gon alves (2018) studied previously proposed IDSsҫ

to make recommendations for future research on the development of IDSs for IoT

environments. Their methodology involved an exhaustive evaluation of 20 research papers

published between 2009 and 2017. Their study suggested that current IDSs have low

detection rates. Furthermore, they claim that the previously proposed IDSs are not adequate

for IoT environments due to poorly devised implementation strategies. Furthermore, Jabbar

and Aluvalu (2018) examined state-of-the-art IDSs. They established that, regardless of the

breakthroughs made in the development of IDSs, current systems exhibit enormous

12

limitations that introduce complexities in IoT networks leading to poor detection rates in the

IDSs making the systems less adequate for deployment in IoT environments.

In their work, Hodo et al. (2016) developed an IDS for sensor networks. For the development

of the proposed model, their study simulated a network with five sensor nodes and collected

data after launching a DoS attack on the simulated network. A neural network classifier was

then trained and evaluated using the data. The trained network demonstrated a high level of

accuracy in detecting DoS attacks with a true positive rate of 99.4% and a false positive rate

of 0.6%. This is an impressive result in terms of detection and false positive rates, however,

there is no evidence provided in terms of reduced computational overheads leaving its

suitability for constrained networks uncertain.

Thanigaivelan, Nigussie, Virtanen and Isoaho (2018) proposed a hybrid IDS. Their proposed

framework integrates the routing protocol for low-power and lossy networks (RPL) with the

distress propagation object to monitor and analyse the packets received at the device level,

enabling nodes to monitor and analyse the packets received and react against malicious

traffic. The experimental results of their study indicated that the proposed IDS can efficiently

detect anomalies with minimal false alarm rates and lower overheads making it efficient for

IoT systems.

Doshi, Apthorpe and Feamster (2018) proposed a machine learning (ML) classification

model for IoT distributed DoS (DDoS) attack detection testing five different ML classifiers,

namely linear support vector machines (LSVM), K-nearest neighbour (KNN), random forests

(RF), neural networks (NN) and decision trees (DT). They acquired the training and test

datasets by simulating an IoT network to obtain normal and abnormal traffic data. Zhang and

Xiao (2019) proposed a negative selection algorithm-based intrusion detection model to

detect abnormal behaviour in WSNs. Their model is trained using the Iris dataset – whose

relevance is not clear – classifying versicolor and virginica samples as abnormal traffic. The

authors argue that their experimental results have clearly demonstrated that the proposed

model can efficiently detect anomalies while saving sensor resources.

Aldaej (2019) proposed an IDS aimed at enhancing cyber-security in modern IoT. The study

applies the flexible mobile adhoc networks intrusion detection system (FMIDS) to detect

DDoS attacks in IoT WSNs. His algorithm is implemented using simulated data. However,

the results of his study do not clearly indicate whether the proposed technique can reduce

false positives and computational overhead. Thamilarasu and Chawla (2019) proposed an

IDS that exploits deep learning (DL) algorithms incorporating them with network

virtualisation techniques to detect abnormal network behaviour in smart city systems. Their
13

methodology involved simulating a smart home network where the connected devices

communicated through CoAp, ZigBee, Bluetooth BLE and Wi-Fi protocols. They assessed

the performance of their proposed model based on its ability to detect five different attacks

including blackhole, opportunistic service, DDoS, sinkhole and wormhole attacks. The

authors claim that their experimental results demonstrated high detection rates with minimal

false positive rates. A deep belief network-based IDS tailored for connected vehicles in smart

cities is proposed in the study of Aloqaily, Otoum, Ridhawi and Jararweh (2019). Their study

used the KDD CUP 99 dataset to represent malicious network traffic and benign network

traffic was simulated using NS3 where 40 vehicles in a smart city setup were used to collect

training data for the model; both the KDD CUP 99 dataset and the data from the simulated

network were used. The model was then evaluated on the KDD CUP 99 dataset where a

detection rate of 98.5% and a 1.5 % false positive rate were obtained.

Hasan, Islam, Zarif and Hashem (2019) proposed an intrusion detection framework for IoT-

based networks. Their framework was trained using an open-source synthetic dataset that

contained the network traffic of an IoT smart environment. The data contained normal and

malicious data with eight attack vectors. The authors applied several ML algorithms, namely,

support vector machines, random forest, logistic regression, DT and NN and compared the

robustness of the algorithms. All the trained algorithms demonstrated good detection rates

with RF being the most robust with an accuracy of 99.4%.

Anthi, Williams, Slowińska, Theodorakopoulos and Burnap (2019) developed a three-layer

IDS by applying a supervised ML approach to train a model that is not only able to classify if

a packet is normal or malicious but is also able to identify the type of attack. The model was

trained with data from an IoT testbed. The proposed model achieved an accuracy of 97% on

the training set but dropped significantly to 90% on the test dataset; this demonstrates that the

model is overfitted and unable to generalise.

Venkatraman and Surendiran (2019) proposed an automata controller-based intrusion

detection model. Their approach is designed to detect known and unknown attacks. The data

for training the proposed model was obtained by simulating an IoT-based smart home

network resulting in 18000 network transactions of which 15000 were normal network traffic

while 3000 were malicious network traffic. Their novel approach obtained an overall

accuracy of 99%. This is a good detection rate even though there is no clear indication of

whether the approach introduces computational overheads or not. The survey of cutting-edge

intrusion detection frameworks undertaken by this study has identified that it is indisputably

evident that several of the studies reviewed were not mindful of the dynamic characterisation
14

and resource limitations of IoT infrastructures such as smart city ecosystems. Some notable

shortcomings of the proposed frameworks include the use of inappropriate datasets that

contain antiquated attack vectors for training the proposed detection models and insubstantial

evidence of the elimination of computational overheads.

A probable precursor of the identified limitations is the unavailability of appropriate datasets

and the lack of frameworks that are tailored for the development of lightweight ML models.

These findings agree with the findings of an earlier study by Arshad et al. (2018) who

scrutinised state-of-the-art intrusion adetection frameworks for IoT architectures taking into

account the limiting attributes of IoT networks. They pointed out that an overwhelming

majority of currently deployed IDS models were trained using KDD 99 data, which is a

dataset comprising network traffic for traditional computer networks with no reflection of

current threats encountered in IoT environments. Moreover, they concluded that the current

IDSs do not consider the limitations of IoT environments that encompass computational

power constraints as well as the heterogeneity of devices and communication protocols.

Table 2.1 depicts a summary of the results of the conducted survey; a very brief outline of

the limitations identified from each study is provided. A (-) symbol indicates that the result of

a metric was not confirmed in the study.

Table 2.1: A simple analysis of the performance metrics applicable in the evaluation of IDS

suitable for resource-constrained networks

Reference Dataset TPR % FPR % Computational

Overheads

Limitations

Hodo et al. (2016) Simulated 99.4 0.6 - Evident

overfitting

Thanigaivelan,

Nigussie, Virtanen,

& Isoaho (2018)

Simulated - - 864 B -

Doshi, Apthorpe,

& Feamster (2018)

Experimental

IoT network

traffic

99.0 - - -

Zhang & Xiao

(2019)

Iris dataset - - - Irrelevant

dataset; no

evidence of

suitability for

15

Reference Dataset TPR % FPR % Computational

Overheads

Limitations

constrained and

heterogeneous

networks

Aldaej (2019) Simulated - - - No evidence of

the performance

and suitability

of the model

Thamilarasu &

Chawla (2019)

Simulated smart

home

97.0 - - -

Venkatraman &

Surendiran (2019)

Simulated smart

home

99.0 - - -

Aloqaily, Otoum,

Ridhawi, &

Jararweh, (2019)

KDD CUP 99

dataset

99.0 1.5 - Use of a dataset

with outdated

attack vectors

Hasan, Islam,

Zarif, & Hashem

(2019)

Simulated smart

environment

99.4 - - -

Anthi, Williams,

Slowińska,

Theodorakopoulos,

& Burnap (2019)

Experimental

WSN

90.0 - - Overfitting

2.6 Deep learning

DL is a field of ML inspired by biological neural systems that emerged to advance traditional

ML algorithms. DL offers the capability to eliminate the human effort that was previously

needed by contemporary ML for tasks that include feature engineering and model training

(Erickson et al., 2018). According to Wu, El-Maghraby and Pathak (2015), DL claimed its

prominence from its outstanding performance in applications encompassing object detection,

speech recognition, text processing, language translation and self-driving cars. The ML

algorithms at the core of DL are artificial neural networks (ANNs). A general overview of

ANNs is provided in the next section.

2.6.1 Artificial neural networks

ANNs are computational models that simulate the functionalities of the human brain.

According to Wu et al. (2015), ANNs exhibit the capability to adeptly recognise complex

16

patterns in high-dimensional data points. A remarkable trade-off between NN and traditional

ML techniques is the ability of ANNs to self-learn and adjust to changes in patterns of the

data that are being modelled (Wu & Rahman, 2017). In a paper that investigates the

applications of ANNs in HIV/AIDS studies, Sibanda and Pretorius (2012) classified ANNs

into two basic architectures. They suggest that the architecture of any ANN is determined by

the structure and the learning processes of the network. The two architectures are feed-

forward NN and recurrent NN.

2.6.1.1 Feed-forward and recurrent artificial neural networks

A feed-forward NN is an ANN with an acyclic topology where information flows only in one

direction, that is, from input to output without any feedback loops (Krenker, Bešter, & Kos,

2011). Feed-forward NNs are widely used in pattern recognition. The feed-forward

architecture is diagrammatically demonstrated in Figure 2.2.

Figure 2.2: Feed-forward neural network structure

Recurrent neural networks (RNNs), on the other hand, are cyclic ANNs with a feedback loop

attribute that enables every node in a layer to take input both from the previous layer and

adjacent nodes (Azpiazu & Pera, 2019). This architecture allows RNNs to perform well in

tasks that involve sequential data modelling. Furthermore, according to Rosindell and Wong

(2018), this architecture also allows RNN models to store information about the past, thus

leveraging them the capability to observe correlations between events that are far away from

each other in the data.

17

Azpiazu and Pera, (2019) added that despite the robustness of RNNs, they suffer from the

problem of a vanishing and exploding gradient which makes them cumbersome to train. As a

means to address the problem of vanishing gradient, Hochreiter and Schmidhuber

(1997) introduced LSTM. An LSTM NN is an RNN derivative that uses linear memory cells

enclosed by multiplicative gate units to read, write, revitalise, and store information (Liang,

2017). An LSTM prevents the vanishing gradient problem by integrating nonlinear and data-

dependent units into the RNN cell (Sherstinsky, 2018) .

2.6.1.2 The topology of artificial neural networks

ANNs are built from basic units called neurons whose basic functionalities are derived from

biological neurons. The neurons consist of inputs, weights, and bias. A basic NN (bundle of

neurons) comprises an input layer (that accepts the training features), at least one hidden

layer (at which all computations and transmutations are performed) and the output layer (that

returns the learned information).

Faghri, Martinelli and Demetsky (1997) decompose the architecture of NN into four facets,

namely inputs, outputs, weights and activation functions. Given an input, the neuron

computes the weighted sum of the given inputs and adds bias; thereafter, the activation

function decides if it should send a new signal or not. The said scenario can be

mathematically mapped as:

y = f(x,w) (2.1)

where

y = outputs,

x = inputs,

w = weights, and

f = activation function.

The activation function (f) can be sigmoid, hyperbolic tangent (tanh), SoftMax or rectified

linear unit (ReLU).

2.6.1.2.1 Activation functions

An activation function is the aspect of an NN that is responsible for the transformation of

inputs into outputs by weighting how robust an output should be from the neuron based on

the sum of inputs. There are a variety of activation functions serving different purposes

(Bach, 2018).
18

A. Sigmoid

The sigmoid activation function is a nonlinear ‘squashing’ function that maps inputs (-∞, ∞)

to (0,1). The sigmoid is used immensely in feed-forward NN. The function is renowned for

its remarkable performance in binary classification tasks (Nwankpa, Ijomah, Gachagan, &

Marshall, 2018). The function can be mathematically defined as in (2.2).

(2.2)

In an NN that uses the sigmoid function, if the weights and the inputs are small as x

increases, then f(x) converges to 1; if x becomes large and negative, then f(x) converges to 0

(Renals, 2015).

B. Rectified linear units

ReLU is the most popular activation function with robust mathematical and biological

foundations. ReLu outputs 0 when x < 0, and, conversely, outputs a linear function when x ≥

0 (Agarap, 2018).

2.7 Related work

Hu and He (2001) presented a back-propagation NN based on self-organising map (SOM)

and multi-layer perceptron (MLP) algorithms. Their solution entails accumulating data from

different sensors and analysing the data by using detectors that use a SOM to identify

intrusive behaviour in the data. Their approach uses a three-layer perceptron consisting of

four input neurons, two hidden layers and two outputs. The authors declare that the proposed

solution obtained a good detection rate of 96% and a false positive rate below 3%.

Correspondingly, Sammany, Sharawi, El-Beltagy and Saroit (2007) introduced a three-class

intrusion detection framework based on back-propagation NN. Their model is trained using

the Defence Advanced Research Projects Agency dataset containing 450 000 connection

records. Their two-layer MLP is trained with an 80/20 split and assessed on 2600 unseen

examples; an average detection rate of 93.43% was obtained.

Naoum, Abid and Al-Sultani, (2012) applied a back-propagation NN for intrusion detection

using the KDD CUP 99 dataset at a varying number of hidden layers using the tanh activation

function. They assert that their proposed network was able to distinguish between normal and

19

abnormal network behaviour with an accuracy of 94% and a false positive rate of

approximately 16%.

A two-layer MLP intrusion detection framework was suggested by Moradi and Zulkernine

(2004). A dataset consisting of 450 000 examples from the Defence Advanced Research

Projects Agency was utilised for the training and validation of the proposed model. Their

approach detects two attack vectors, namely, SYN Flood and Satan. The trained NN attained

an overall accuracy of 99%; however, the model is strongly indicative of overfitting as the

classification accuracy significantly declined when the trained model was applied on

previously unseen data.

Yin, Zhu, Fei and He (2017) proposed an RNN-based IDS. Their approach involved

investigating the impact of learning rates, the number of neurons and varying classification

methods on the performance of the model. The model was trained using the NSL-KDD

dataset with 41 input features. Their experiments entailed evaluating the robustness of the

proposed model on binary classification and multi-class classification tasks. Furthermore, the

performance of the RNN model was compared to the performance of models trained with

other algorithms encompassing SVM, RF, MLP and naive Bayesian (NB). Their

experimental results are satisfactory even though there is an evident indication of overfitting

as their model performs impressively well on the training set, but the performance drops

significantly on the test set.

Shenfield, Day and Ayesh, (2018) applied ANN to develop an anomaly-based IDS that

detects malicious shell-code patterns in network traffic. Their solution was evaluated based

on a 10-fold cross-validation technique to test the ability of the trained network to generalise.

Their model obtained an average accuracy of 98% and a false positive rate of 2% which is a

magnificent outcome especially in terms of false positive rates.

Furthermore, Saljoughi, Mehrvarz and Mirvaziri (2017) proposed NN for intrusion detection

in cloud computing combining it with a particle swarm optimisation (PSO) algorithm for

performance optimisation. Their approach uses a Kolmogorov-Smirnov correlation-based

filter for feature selection. The proposed model was trained and evaluated using the KDD

CUP 99 dataset. Their study deduced that the NN demonstrated a more remarkable

performance when combined with the PSO algorithm than when it was implemented as a

simple NN.

Althubiti, Nick, Mason, Yuan and Esterline (2018) investigated the applicability of LSTM

RNNs in modelling network intrusion detection. Their framework was trained using the KDD

CUP 99 dataset based on four attack scenarios. Their approach involved an exhaustive feature
20

engineering and selection where a J4.8 DT algorithm was used for selecting the most relevant

features. The model was trained with a fixed number of epochs and varying learning rates to

find the optimal parameters for the learning rate, network type and LSTM features. Their

study concluded that LSTM offers excellent detection rates, especially when applied to the

detection of high-frequency attacks such as DoS and network probe attacks. Mirsky,

Doitshman, Elovici and Shabtai (2018) used autoencoders to develop an online and

unsupervised network intrusion detection. The autoencoder NN was trained using real data

obtained from an IP surveillance video camera. They concluded that autoencoders are

efficient for the development of IDS.

Shone, Ngoc, Phai and Shi (2018) proposed a network intrusion detection system (NIDS) that

stacks DL and shallow learning techniques based on the KDD 99 and NSL-KDD datasets.

They implemented their proposed solution using a GPU-enabled TensorFlow using a dataset

containing 41 features with five attack vectors. They trained their model using autoencoder

NN and compared its performance to the performance of a deep belief NN. The proposed

autoencoder model obtained an accuracy of 97.85%. Khan, Xiaosong, Alazab and Kumar

(2018) proposed a CNN based IDS using the KDD CUP 99 dataset. The network comprised

three hidden layers with each layer containing a convolutional and pooling layer. They

compared the performance of their proposed technique to the performance of an SVM

classifier and the CNN model outperformed the SVM with an accuracy of 98.50%.

Papamartzivanos, Gómez Mármol and Kambourakis (2019) proposed an autonomous and

self-adaptive IDS based on a self-taught learning (STL) NN combining it with a MAPE-K

control loop model. Their novel approach involved training a model using KDD CUP 99 and

NSL-KDD datasets. They split the datasets into smaller subsets with randomly selected attack

scenarios and evaluated the adaptability of the trained network on various network

environments by changing the test datasets. According to the study, the STL NN attained an

accuracy of 73.37%.

2.8 Summary

This chapter introduced the concept of smart cities outlining the underlying attributes that

classify a city as ‘smart’. The chapter further gave a review of security issues that threaten the

sustainability and safety of smart city ecosystems. Additionally, the taxonomy of DoS

attacks, which generally have been denoted as the most prominent attacks in IoT systems,

was outlined. Furthermore, the chapter presented a survey of the state of IDS and concluded

21

with a review of DL and the applications thereof in the development of intrusion detection

frameworks.

22

Chapter 3: Research Design and Methodology

3.1 Introduction

This chapter provides an overview of the methods adopted by this study to achieve the results

and answer the research questions. Section 3.2 highlights the methodologies adopted by the

study and in Section 3.3 an overview of how the data was collected is provided. Data

transformation and processing procedures are presented in Section 3.4. The feature

engineering process is outlined in Section 3.5. Lastly, Section 3.6 describes the training and

performance evaluation approach.

3.2 Research methodology

This study followed three (3) research approaches, namely, the qualitative, quantitative and

simulation and modelling research methodologies.

3.2.1 Qualitative approach

A qualitative methodology is a research approach concerned with the qualitative elements of

data. According to Daniel (2016) , the robustness of a qualitative research method lies in its

flexibility which offers the ability to reconstruct the design of a study. The study used

document analysis as a primary data source for the qualitative approach to conduct a

systematic review of state-of-the-art intrusion detection frameworks. Document analysis is a

systematic review method that permits analysis of documentary evidence.

In the systematic review, ten studies to interrogate previously proposed intrusion detection

mechanisms were scrutinised. The investigation focused on studies published between 2014

and 2019. To meet the requirements of the inclusion criteria, the studies had to be grounded

in intrusion detection in IoT architectures incorporating smart cities, cyber-physical systems

and WSNs regardless of whether the proposed models were developed based on ML

techniques or not. The selected studies were from Science Direct, Google Scholar,

Academia.edu, Semantic Scholar and IEEE Explore databases. To retrieve the articles the

phrase ‘intrusion detection in smart cities’ was used to search for relevant studies. Papers

based on intrusion detection were surveyed and analysed.

3.2.2 Quantitative approach

The quantitative research method for feature engineering, feature selection and results

analysis and interpretation were also utilised. Feature engineering and selection is clearly
23

explained in Section 3.5. Acaps (2012) describes quantitative methodology as a

comprehensive and evidence-based research approach that can uncover correlational and

causal relations between phenomena. The quantitative methodology involves the use of

statistical and descriptive analysis methods to garner hidden insights into numerical data. In

his study, Apuke (2017) stipulated that the quantitative approach is based on quantitatively

analysing data to deduce results that give answers to research questions. The main trade-off

of using the quantitative approach is its questionable ability to produce generalisable, reliable

and replicable results (Acaps, 2012).

3.2.3 Simulation and modelling methodology

In addition to the qualitative and quantitative research approaches, the study followed the

simulation and modelling approach. This is an approach that involves the imitation of a real-

world system of interest to conduct experiments. For data collection for the experiments, the

simulation and modelling approach was used to simulate a smart urban mobility ecosystem.

The most fundamental benefit of using the simulation and modelling approach is that it offers

the capability to model a complex phenomenon in a simplified form safely, cost-effectively

and efficiently (Jaleesha & Ezhil, 2019).

For this study, the simulation and modelling methodology was employed to simulate a

communication scenario between vehicles in a smart city setup to collect data. Thus, the

simulation was the primary data source. The gathered data which comprised normal and

malicious network packet traces data were used for model training and testing.

3.3 Research design

The tools and methods exploited to achieve the aim of this study are presented in this section.

3.3.1 Data collection

This section presents a technical description of the steps that were undertaken to acquire the

data used for model training, validation, and testing. Since data sets that are suitable for

training intrusion detection models appropriate for smart city networks are scarce, for data

gathering for this study, a smart urban mobility infrastructure was simulated. The simulation

was achieved using SUMO and NS3. The simulation stages are presented in Appendix A.

24

3.3.1.1 Smart urban mobility simulation

Due to the scarcity of datasets that demonstrate cyber-attack vectors in smart city ecosystems,

a smart urban mobility system was simulated using Simulation of Urban Mobility (SUMO),

an open-source road traffic simulator that offers the capability to simulate road networks and

traffic demand. SUMO is used jointly with OpenStreetMaps. A digital map of an area of

interest (city) from OpenStreetMaps is integrated into the SUMO simulation and then

converted to a SUMO road network. SUMO was used to simulate a network of

communicating vehicles popularly known as a vehicular ad hoc network (VANET). The

VANET was then converted to a communication scenario using Network Simulator 3 and

packet traces were captured from the simulation. Thereafter, the captured packets were

decoded to human-readable data using Wireshark as the network analyser. In a SUMO

simulation, each vehicle in the network is uniquely identified with a defined identifier. The

vehicles’ departure times and routes are defined; the routes are the connected sets of edges

between a vehicle’s departure point and destination. Appreciating the fact that the routes of

vehicles cannot be controlled in the real world, the vehicle routes were assigned randomly to

bring the simulation closer to reality.

The vehicles and city infrastructure were connected through wireless access in vehicular

environment (WAVE), an IEEE 802.11p wireless communication standard that provides

interoperable and wireless communication between vehicles and city infrastructure. WAVE is

the most suitable for devices and network architectures with rapidly changing properties and

topologies, respectively. By default, routing within the simulated network follows the shortest

path first algorithm which means that, when searching for a communication line, a node

(vehicle) in the network will always search for its nearest neighbours and send packets to the

closest node.

3.3.1.2 Mobility network conversion

For seamless packet tracing and capturing, the SUMO-generated urban mobility network was

integrated with Network Simulator 3 (NS3). NS3 is an open-source event-oriented network

simulator. NS3 offers the ability to import a SUMO network and define the vehicles as

simple nodes that communicate with each other. With NS3, various physical and application

layer protocols and routing protocols can be defined. This study implemented TCP and UDP

as transport layer protocols together with ad hoc on-demand distance-vector (AODV),

destination-sequenced distance-vector routing (DSDV), dynamic source routing (DSR), and

optimised link state routing (OLSR) as ad hoc routing protocols.
25

Integrating SUMO with NS3 required that the mobility network be converted into a network

of communicating nodes. This was achieved by first converting the SUMO trace file to a

Network Simulator 2 (NS2) mobility trace file. The NS2 mobility trace was then imported

into the NS3 simulation and a communication scenario was configured. The process is

depicted in Figure 3.1.

Figure 3.1: Simulation of Urban Mobility and Network Simulator 3 integration

Upon successfully configuring the network, the communication scenario within the network

could then be defined. The configuration involved defining the routing protocols,

communication standards, packet sizes and assignment of IP addresses. Two DoS attack

scenarios (UDP and TCP flooding) were then launched on the simulated network and packet

traces for both normal and malicious network traffic were captured. A summary of the overall

simulation parameters is presented in Table 3.1.

Table 3.1: Simulation setting

26

Parameters Values

Simulator SUMO, NS3

Channel Wireless

Wireless technologies WAVE, Wi-Fi

Standards IEEE 802.11p, IEEE 802.11b

Simulation time SUMO: 2000 seconds

NS3: 300 seconds

Number of vehicles 500

Speed of vehicles 40m/s

Transmission protocol TCP and UDP

Traffic application HTTP

Scenario Urban

Topology Dynamic

Communication range 50–500 meters

Routing protocols AODV, DSDV, DSR, OLSR, TCP and UDP

3.3.1.3 Packet tracing and decoding

The packets captured within the NS3 simulated network were then exported as capture files

and decoded with Wireshark for further data collection. Wireshark is a real-time network

analyser software that decodes network packets in a human-readable format. The decoded

data was then collected as comma separated value (CSV) files for further processing as

explained in Section 3.4.

3.4 Data pre-processing

The normal and malicious traffic traces were extracted and saved as separate CSV files. The

quality of data has a significant impact on the predictive power of an ML model. The garbage

27

in, garbage out (GIGO) concept is especially relevant in the training of ML models.

Accordingly, to attain the best predictive power from the candidate ML models, a thorough

data cleansing process was orchestrated to reduce the noise in the data. To achieve this,

Pandas – an open-source data manipulation library – was used for the data cleaning and

transformation process. The process further involved labelling the packet traces as either

normal or malicious accordingly to create the target feature (packet status).

3.5 Feature engineering and selection

According to Chandrashekar and Sahin (2014), feature engineering and selection is a

technique applied in the development of ML models to select a subset of variables. The

technique, which selects only variables that effectively describe the input data in the interest

of training ML models that offer high predictive power, is necessary to reduce dimensionality

in the data.

In this study, feature engineering was performed through pandas-profiling. Pandas-profiling

is a Python module popularly known for its robustness in providing quick exploratory data

analysis insights of a given dataset. The process helps with insight that assists in deciding on

features that should be removed from the data either due to high correlation with other

features or a high number of missing values that may make the feature unusable. The insights

gathered from the profile report also help with handling missing data, duplicate rows, and

outliers. The feature engineering process resulted to a selection of six (6) features, namely:

 arrival time – the time at which a packet arrives to the host

 protocol – routing protocol

 length – packet size

 cumulative bytes – total number of transmitted bytes

 time delta from the previously captured frame – time difference between current two

packets

 mac overhead – a ratio of the packet length and the throughput

 packet status – defines whether the transmitted packet is normal or malicious.

3.6 Model training and performance evaluation

Our model training followed the classification approach. Classification is a supervised

learning technique that predicts a class for a given input. Five hundred thousand data points

containing normal and malicious network traffic were selected. The data was then split into

four datasets: train data, evaluation data (for performance evaluation during the training
28

process) and two validation sets which were used to perform 2-fold cross-validation. All

datasets consisted of both normal and malicious traffic.

To propose and build a robust ML model, two different NN – CNN and LSTM – were trained

using TensorFlow. TensorFlow is an end-to-end ML framework developed by Google. The

framework offers robust, scalable,,, and flexible functionalities to easily build powerful ML

models. The trained model that demonstrated the highest level of robustness was then

converted to a lightweight version with TensorFlow-lite.

In evaluating the performance of the models, the learning rate was set to 0.0001 and kept

constant throughout the experiment. Moreover, the activation function was set to ReLu at the

input layers and sigmoid at the output layer. The models were consistently trained, validated,

and tested using identical parameters and datasets to promote an unbiased performance

evaluation of the models at all the training iterations. During the training and validation

process, the loss and accuracy of the models were monitored. The loss was monitored to track

how well the model fitted the data without overfitting, while the accuracy monitored the

model’s generalisation ability as well as its predictive power.

The testing approach was based on 2-fold cross-validation, where the models’ performance

was evaluated on two different datasets, which throughout this study are referred to as the

validation dataset and the test dataset. The models were first evaluated on a validation set that

had 100 000 data points (99 790 normal and 210 malicious network packets). The models

were further tested on another 100 000 data points (99 775 normal and 225 malicious

network packets). Both the validation and test datasets were completely unseen data.

In the interest of examining the robustness of the models on imbalanced data, which is what

would be found in real-world scenarios, all datasets were left imbalanced, that is, no class

balancing technique was applied. As far as loss is concerned, an ideal situation is when

training and validation loss decrease as the model fits and learns the data. The performance of

the lightweight model was further evaluated to investigate whether the lightweight version

preserved the predictive power of the original (regular DL) model. Since this model is a

binary classifier model, the results were presented using a confusion matrix. A confusion

matrix is a table that visualises the performance of a classification model. A confusion matrix

layout is shown in Table 3.2.

Table 3.2: Table illustrating a confusion matrix

29

Actual Class

Predicted Class

Negative Positive

Negative True negative False positive

Positive False negative True positive

Where:

 True negative is a class that is negative and is predicted as negative

 False negative is a positive class that is predicted as negative

 True positive is a class that is predicted as positive and is actually positive

 False positive is a negative class that is predicted as positive.

The performance is also presented in terms of accuracy, which is the proportion of the total

number of correct predictions as per (3.1):

(3.1)

3.7 Summary

This chapter presented an overview of methodologies and tools that were used to aid this

study to answer the research questions. The chapter opened with a run-down of the

methodology and design employed in the study and further outlined the tools used to achieve

the objectives of the study. The chapter concluded by discussing how the datasets were

analysed and how the results were validated. The next chapter will discuss in detail how the

tools were utilised to gather the data and train the models.

30

Chapter 4: Implementation

4.1 Introduction

This chapter presents the implementation stages undertaken to train the two candidate

intrusion detection models during this study. Section 4.2 describes the steps taken to simulate

a communication scenario to collect data for training the models. The data processing and

feature selection processes are explained in Section 4.3 and the implementation of the

candidate intrusion detection models is discussed in Section 4.4. Section 4.5 concludes the

chapter.

4.2 Data processing and feature selection

The predictive power of an ML model is highly dependent on the quality of the training

dataset. Hence, intensive data processing and feature engineering is a crucial step that cannot

be overlooked. In this study, the quality of the data was enhanced by removing duplicated

features from the dataset. Figure 4.1 shows how the duplicated features were removed from

the datasets.

Figure 4.1: Dropping duplicated features

Additionally, the dataset was enriched by adding a MAC overhead feature computed as the

ratio of the packet length and the throughput; throughput is the sum of packets received by all

nodes in the network. The processing further involved converting the data types of the

features to make the data suitable to feed into an ML model. Moreover, features that required

label encodings, such as the protocol type and the target feature (packet status), were encoded

appropriately. Label encoding refers to converting text or string labels into numerical values.

Figure 4.2 demonstrates how the data types conversion and the encoding of categorical

features were performed.

31

Figure 4.2: Converting data types and encoding of categorical features

Upon completion of the data processing and transformation, a descriptive data analysis was

performed through pandas-profiling to generate an intensive exploratory report of the dataset.

To generate the pandas-profiling report the pandas-profiling library is imported and the

profile report function, as shown in Figure 4.3, is invoked.

Figure 4.3: Generating a pandas-profile report

Table 4.1 and Table 4.2 are sneak peeks of the profile report gathered from the dataset

before any feature selection was orchestrated.

Table 4.1: Pandas-profiling data description snapshot

32

Table 4.2: Pandas-profiling warnings snapshot

This study further leveraged a beneficial feature importance functionality offered by most

tree-based algorithms to help decide on the most appropriate features for developing the ML

model. Feature importance is a statistical computation that measures a score for each feature

in a dataset. The higher the score, the more relevant the feature towards estimating the output

variable. The feature importance is built-in for various tree-based ML algorithms that include

RF, XGBoost, Catboost and LightGBM.

In this study, a Catboost model was trained with the aim of extracting the features whose

importance was considered significant in the Catboost training process. The process followed

to train the Catboost model and generate feature importance is illustrated in Appendix B.

Figure 4.4 shows the generated feature importance plot.

Figure 4.4: Catboost feature importance

33

The final training features are presented in Table 4.3.

Table 4.3: Training dataset sample

By default, convolutional NNs and LSTMs, take three-dimensional matrix input data;

subsequently, the last data transformation step before training the model was to reshape the

data into a three-dimensional matrix. This step is illustrated in Figure 4.5.

Figure 4.5: Reshaping the data to a three-dimensional matrix

4.3 Model training approach and performance evaluation

The modelling approach followed four (4) steps:

1. Training a regular DL model

2. Evaluating the performance of the regular DL model

3. Converting the regular DL model to a lightweight version of the model

4. Assessing the lightweight model’s performance to determine whether the lightweight

model is as effective and reliable as the regular model.

Six (6) features – arrival time, protocol, length, cumulative bytes, time delta from the

previously captured frame and mac overhead to predict the packet status (whether the

transmitted packet is normal or malicious) – were used in training the models.

The target feature comprises two classes – the normal class and the malicious class. A class is

considered normal if the transmitted packet does not contain malware and is considered

malicious if it contains malware. In building a binary classification model, two NN-based

candidate models, viz, CNN and LSTM, were trained.

34

The aim of training two models was to compare the classification efficiency of the two

models and to select the model that offers the best predictive power. Each of the two models

consists of three (3) fully connected layers. The ReLu activation function was applied at the

input layers and the sigmoid function at the output layer. In the first training step, two (2)

regular candidate models were trained iteratively, tuning the different hyperparameters and

adding dropout as a regularisation technique. The regularisation technique is applied to

prevent overfitting, thereby improving the model’s robustness and generalisation ability.

In the training approach, the dropout strategy is such that a varying number of nodes are

randomly dropped into the network. For example, a dropout of 0.5 implies that 50% of the

nodes will be dropped randomly in the layer in which the dropout is applied.

The models were set to train for 500 epochs. When training ML models, too many epochs

may lead to the overfitting of the learning model, while too few epochs may lead to

underfitting. To mitigate the likelihood of the model overfitting, an early stopping was

defined to monitor the validation loss and automatically halt the training once the model

started overfitting the data. Table 4.4 presents a summary of the training parameters. The

processes to train the candidate models are presented in Appendix C and Appendix D.

Table 4.4: Model training parameters

Hyperparameter Value

Optimiser Adam

Learning rate 0.0001

Evaluation metric Accuracy

Loss Binary cross-entropy

Number of epochs 500

Regularisation technique Dropout (varies from 0.1 to 0.5)

The performance evaluation metric applied was accuracy and a binary cross-entropy loss

function was defined to monitor the loss at each training iteration. The models were evaluated

based on three (3) primary evaluation metrics, namely, the model accuracy, training and

validation loss curves and the confusion matrix. A code snippet that demonstrates how the

35

model accuracy and loss curves were plotted is shown in Figure 4.6 and a snippet that shows

the plotting of a confusion matrix is depicted in Figure 4.7.

Figure 4.6: Plotting accuracy and loss curves

Figure 4.7: Plotting confusion matrix

A model that demonstrated robustness during the validation step was saved and converted to

a lightweight version. Figure 4.8 and Figure 4.9 depict the conversion of a regular NN

model to a lightweight version.

Figure 4.8: Saving a model

36

Figure 4.9: Converting a regular model to a lightweight model

The last step of the evaluation was loading the lightweight model and assessing its

performance on the test set to evaluate whether the model preserves the performance of the

regular model. The loading and evaluation of the lightweight model are demonstrated in

Figure 4.10.

Figure 4.10: Loading and assessing the lightweight model

The entire study’s implementation strategy is presented in Figure 4.11.

37

Figure 4.11: The implementation strategy

4.4 Summary

This chapter gave an overview of the implementation techniques adopted by this study and

outlined how each technique was applied to achieve the aim of the study. The methods

followed to gather the data used for the training and testing of the candidate models was

described. Data processing and featuring engineering approaches exploited in this study were

demonstrated. Finally, the implementation of the training strategy of the models and the

methods adopted for the evaluation of the trained models were presented.

38

Chapter 5: Study Results and Discussion

5.1 Introduction

In this study, a CNN with three (3) fully connected layers was used as a baseline model and

an LSTM network with three fully connected layers was proposed. This chapter focuses on

comparing the performance of the baseline model against the performance of the proposed

model. The performance evaluation of the models is primarily focused on three pivotal

metrics, namely, detection rate (true positives), false alarm rate (false positives) and false

negative rates. Furthermore, the evaluation outcomes of both models are concisely analysed

and discussed.

5.2 Results

5.2.1 Convolutional neural network performance analysis

The approach involved training two candidate models. This section presents the performance

analysis of the CNN classifier. The first attempts to train the models were without the

application of any regularisation technique. Figure 5.1 presents the model accuracy of a

CNN without any regularisation applied, that is, no dropout has been added in any of the

network layers. As can be seen in Figure 5.1, the accuracy of the model on the training set is

100% and drops slightly to 99% on the validation set. This indicates that the model is

overfitting and is not likely to generalise well when applied to unseen data.

Figure 5.1: Model accuracy of an unregularised CNN

39

Figure 5.2 shows the loss during the training process of the unregularised CNN. Loss is

defined as a penalty for bad prediction. Ideally, the loss should decrease as the model learns

the data. However, in Figure 5.2 it can be observed that the validation loss fluctuated instead

of decreasing. This is a clear indicator that the model does not converge and is likely to

overfit the data.

Figure 5.2:Training vs validation loss of the unregularised CNN

The confusion matrix shown in Figure 5.3 presents the classification accuracy of the

validation set. It can be seen in Figure 5.3 that, out of the 210 instances, 190 were correctly

classified as malicious while 20 malicious instances were misclassified as normal, yielding a

false negative rate of 9.5%. This is an overall 86% detection rate and the false alarm rate is

0%. This implies that although the model exhibits a high detection accuracy, it would fail to

raise an alarm 9.5% of the time.

40

Figure 5.3: Validation set confusion matrix – unregularised CNN

Figure 5.4 presents the confusion matrix for the test set classification accuracy. From the

figure, it can be seen that the classification accuracy of the model gradually declined. Out of

225 instances, 181 were correctly classified as malicious while 44 malicious instances were

incorrectly classified as normal. This yields a detection rate of 80% and a 19.5% false

negative rate. From this result, it can be observed that the detection and false negative rates

gradually drop by 6% and 10%, respectively, while the false alarm rate remains at 0%. This is

a clear indicator that the model’s generalisation ability is poor as we can see that it performs

poorly on the test set compared to the validation set.

Figure 5.4: Test set confusion matrix – unregularised CNN

In Figure 5.5, the accuracy of the CNN model with a dropout of 0.1 applied in the first layer

as a regularisation technique is shown. Again, the validation accuracy drops. This is an

indication that the model is still overfitting the data.

41

Figure 5.5: Model accuracy of a CNN with 0.1 dropout in first layer only

Training and validation loss of the CNN with 0.1 dropout in the first layer is depicted in

Figure 5.6. From the figure, it can be noted that although the validation loss increases and

decreases unstably, it is slightly better than the validation loss presented in Figure 5.2, where

the model is not regularised. This implies a slightly better generalisation ability of the

regularised model compared to its unregularised counterpart.

Figure 5.6:Training vs validation loss of the CNN with 0.1 dropout in first layer only

The confusion matrix shown in Figure 5.7 demonstrates a slight improvement in the

detection and false negative rates. From Figure 5.7, it can be noted that the detection rate

improved from 86% to 90% while the false negative rate improved from 9.5% to 0.9% when
42

the model was assessed on the validation set. This is an improvement of 4% and 5% in

detection and false negative rates, respectively. This minor improvement in generalisation

ability demonstrated by the validation loss of the model as depicted in Figure 5.6 is visible in

the model’s classification accuracy as shown in Figure 5.8. It is worth noting that adding a

dropout of 0.1 in the model’s first layer did not remarkably improve the predictive power of

the model – the false alarm rates remained at 0%.

Figure 5.7: Validation set confusion matrix – CNN with 0.1 dropout in first layer only

Figure 5.8:Test set confusion matrix – CNN with 0.1 dropout in first layer only

Realising that regularising the CNN model by adding a dropout of 0.1 in the first layer did

not demonstrate much significance in terms of detection rates, false negative rates and
43

generalisation ability, the dropout rate in the first layer was increased to 0.2. Regarding

Figure 5.9, it can be deduced that increasing the dropout rate improved the model accuracy

to a certain degree, however, the change in accuracy was not compelling. Figure 5.10 shows

the loss for the CNN when the dropout rate applied is 0.2. From the figure, it is notable that

the validation loss is still fluctuating and far above zero at some epochs. This is a strong

indicator that the model’s penalty for bad predictions is still higher.

Figure 5.9: Model accuracy of a CNN with 0.2 dropout in first layer only

Figure 5.10: Training vs validation loss of the CNN with 0.2 dropout in first layer only

The confusion matrix presented in Figure 5.11 demonstrates that when a dropout of 0.2 is

applied, the detection rates, false negative rates and false alarm rates on the validation set do
44

not improve or deteriorate compared to when the dropout rate was 0.1. Figure 5.12 presents

the confusion matrix that depicts how the CNN model performs on the test set when the

dropout rate in the first layer is increased to 0.2. From the confusion matrix, a slight

improvement in detection and false negative rates compared to when the dropout rate was 0.2

can be observed. From this observation, it can be concluded that increasing the dropout rate

improved the model's predictive power even though the validation loss of the model was

relatively higher, which implies that the generalisation ability thereof is still poorer.

Figure 5.11: Validation set confusion matrix – CNN with 0.2 dropout in first layer only

Figure 5.12: Test set confusion matrix – CNN with 0.2 dropout in first layer only

45

Presented in Figure 5.13 is a model accuracy of a CNN with a dropout rate of 0.5 in the first

layer. A slight improvement in accuracy is visible when the dropout rate is increased to 0.5.

Figure 5.14 illustrates the training and validation loss of a CNN with a dropout rate of 0.5

applied as a regularisation technique only in the first layer of the network. Again, there is no

significant change compared to when the dropout rates were 0.1 and 0.2.

Figure 5.13: Model accuracy of a CNN with 0.5 dropout in first layer only

Figure 5.14: Training vs validation loss of the CNN with 0.5 dropout in first layer only

In Figure 5.15, a validation set confusion matrix that illustrates the performance of the CNN

classifier when a dropout rate of 0.5 is applied in the first layer of the model is presented. The

results indicate that dropping 50% of the nodes in the first layer of the network deteriorated

the predictive power of the model. This is observable in the slight increase in false negative
46

rates compared to when 20% of the network nodes were dropped. The results of adding a 0.5

dropout rate in the first layer are similar to the results obtained when the dropout rate was 0.1.

Figure 5.15: Validation set confusion matrix – CNN with 0.5 dropout in first layer only

Figure 5.16 presents the performance of the CNN model on the test set when the dropout rate

is 0.5. From the figure, a 10% detection rate can be observed which is indicative of a model

that is unable to generalise. The observations demonstrated in Figure 5.15 and Figure 5.16

clearly suggest that accuracy alone is not a reliable metric to measure the predictive power

and generalisation ability of a classification model.

Figure 5.16: Test set confusion matrix – CNN with 0.5 dropout in first layer only

47

The second last experiment on the CNN was adding a dropout rate of 0.5 in the first two

layers of the CNN. Figure 5.17 demonstrates the performance of the classifier in terms of

accuracy. From the figure, it can be observed that the best approach would have been to train

the classifier with fewer epochs when the dropout is 0.5 in the first two layers. However,

training the model with fewer epochs does not guarantee a generalising model as shorter

training time may result in underfitting the model. Regarding the accuracy demonstrated in

the figure, the model performed well during the first 100 iterations/epochs and dropped

slightly afterwards.

Figure 5.17: Model accuracy of a CNN with 0.5 dropout in first and second layers

Figure 5.18 is a clear demonstration of the model’s train versus validation loss. From the

figure, it is quite clear that the validation loss was lower before the first 100 epochs of the

training. This implies that the model started overfitting the data just before reaching the first

100 epochs. Additionally, what this implies is that adding a 0.5 dropout rate in the first two

layers of the CNN is more optimal with fewer training epochs. Figure 5.19 is a validation

confusion matrix that demonstrates the performance of the CNN classifier when a dropout of

0.5 in the first two layers is defined. The results obtained when applying this dropout rate are

not indifferent to the results when the dropout rate was 0.5 in the first layer only.

48

Figure 5.18: Training vs validation loss of the CNN with 0.5 dropout in first and second

layers

Figure 5.19: Validation set confusion matrix – CNN with 0.5 dropout in first and second

layers

The validation set confusion matrix presented in Figure 5.20 shows a slight improvement in

generalisation ability when a dropout of 0.5 in the first two layers is defined compared to

when the dropout of 0.5 is applied only in the first layer of the CNN classifier. However, the

generalisation ability of the model is still poor as it can be observed that the detection rate in

the test set dropped when compared to the detection rate in the validation set. Figure 5.21

presents the CNN classifier accuracy when the regularisation technique is such that a dropout

49

rate of 0.5 is applied in all the layers of the network. The demonstrated accuracy suggests that

the said regularisation technique improved the accuracy of the model remarkably.

Figure 5.20: Test set confusion matrix – CNN with 0.5 dropout in first and second layers

Figure 5.21: Model accuracy of a CNN with 0.5 dropout in all three layers

In Figure 5.22, the training and validation loss curves when a dropout rate of 0.5 is applied in

all the layers of the CNN classifier are shown. From the results presented in the figure, it can

be observed that defining a dropout rate of 0.5 in all three layers reduces the penalty poor

prediction power. This strongly suggests that the model exhibits a relatively high predictive

power and can generalise unseen data well.

50

Figure 5.22: Training vs validation loss of the CNN with 0.5 dropout in all three layers

Figure 5.23 is a visual demonstration of the performance of the CNN classifier when a

dropout rate of 0.5 is applied in all three defined layers of the CNN model. The results

demonstrated that defining a higher dropout in all the defined layers optimised the detection

rates yielded by the model. From the validation set confusion matrix, it can be observed that

the model obtained 100% in detection, false negative and false alarm rates.

Figure 5.23: Validation set confusion matrix – CNN with 0.5 dropout in all three layers

Figure 5.24 is a confusion matrix that shows the performance of the CNN classifier when the

classifier is assessed on the test set. The model maintained a 100% score in detection, false

alarm and false negative rates when compared to how the model performed in the validation
51

set. This indicated that the model is robust enough to predict the packet status – whether the

transmitted packet is normal or malicious – accurately.

Figure 5.24: Test set confusion matrix – CNN with 0.5 dropout in all three layers

The robust model whose performance has been demonstrated in Figures 5.21 to 5.24 was

converted to a lightweight version. Figure 5.25 shows how the lightweight version performed

when cross-validated on the validation set. Regarding the results displayed in the figure, it

can be observed that the lightweight version preserved the performance of the regular CNN

model as it maintained 100% detection, false alarm and false negative rates.

Figure 5.25: CNN lightweight version confusion matrix

52

5.2.2 Long short-term memory performance analysis

This section presents the analysis of the performance of the LSTM classification model.

Figure 5.26 shows the classification accuracy of the LSTM classifier when there is no

regularisation technique applied. The results demonstrated in the figure show that the

classifier obtained a training accuracy of 0%. This implies that the model underperforms

extremely when it is not regularised. Moreover, this could imply that the number of training

iterations was not sufficient to allow the model to converge. However, results demonstrated

in Figure 5.16 indicated that accuracy alone is not the best metric to measure the

performance of a classifier.

Figure 5.26: Model accuracy of an unregularised LSTM

In Figure 5.27 the training and validation loss curves of the unregularised LSTM classifier

are presented. From the figure, it can be observed that the training is 0 throughout the training

process while an unsteady loss is evident on the validation loss curve. Looking at the

validation loss curve, the loss is 0 during approximately the first 100 epochs and starts

increasing around 150 epochs. The model then starts converging again as it approaches 200

iterations of the training and the loss increases again as the training approaches 500 iterations

of the training process. With this loss, the model is expected to generalise well when applied

to unseen data.

53

Figure 5.27: Training vs validation loss of the unregularised LSTM

Figure 5.28 presents a confusion matrix that shows the classification performance of the

unregularised LSTM on the validation set. The validation set consisted of 100 000 packet

traces of which 99 790 were normal while 210 were malicious traces. As it can be observed

in Figure 5.28, all the 100 000 packets were correctly classified as either normal or

malicious. From these results, it can be established that the model has proffered impressive

performance on the validation set as it attained a 100% detection, false alarm, and false

negative rate.

Figure 5.28: Validation set confusion matrix – unregularised LSTM

54

Similarly, the model was cross-validated on a test set also comprising 100 000 packet traces

where 99 775 of the packet traces were normal while the remaining 225 were malicious

traces. A confusion matrix that clearly displays the performance of the unregularised LSTM

classifier on the test set is presented in Figure 5.29. Of the 100 000 packets, only three

packets were misclassified. The three packets were malicious but incorrectly predicted as

normal. This implies that the model failed to detect three intrusions in the test set. As can be

observed, there is a marginal drop in the classification performance of the model when the

model is validated on the test set. The drop in performance resulted in a 0.01 rise in false

negative rates. Furthermore, the drop in performance in the second fold of the 2-fold cross-

validation is evidence of overfitting.

Figure 5.29: Test set confusion matrix – unregularised LSTM

Figure 5.30 shows the training and validation accuracy of the LSTM classifier when a

dropout of 0.1 is added in the first layer as a regularisation technique. The classifier’s

learning behaviour demonstrated in the figure is similar to the behaviour demonstrated by the

unregularised LSTM classifier as far as accuracy is concerned.

55

Figure 5.30: Model accuracy of a LSTM with 0.1 dropout in first layer only

Figure 5.31 presents the train and validation loss curves of the LSTM classifier when a

dropout of 0.1 is applied only in the first layer of the classifier. From the curves displayed in

Figure 5.31, the model completely converges after the first 100 epochs as the loss decreases

and remains constant. Before reaching the first 100 epochs, a bit of variability in the

validation loss is observed but the loss stabilises after reaching 100 epochs. After 100 epochs,

both the train and validation loss remain constant at 0. This is indicative of a robust model

that can generalise well even on unseen data.

Figure 5.31: Training vs validation loss of the LSTM with 0.1 dropout in first layer only

56

Figure 5.32 shows a confusion matrix that demonstrates the results of the performance

evaluation of the LSTM classifier on the validation set when a dropout of 0.1 is added only in

the first layer. From the confusion matrix, it is observed that the model correctly classified all

the packets in the validation set. Furthermore, the results demonstrate that the model can

detect the normality or enmity of a transmitted packet 100% of the time. Moreover, it can be

concluded that the performance of the classifier was exceptional as it obtained a 100% in

detection, false alarm, and false negative rates.

57

Figure 5.32: Validation set confusion matrix – LSTM with 0.1 dropout in first layer only

In Figure 5.33, the second fold of the cross-validation is presented. The model classified all

100 000 packets in the test dataset accurately. The outcomes of this cross-validation step

suggest that the model can generalise well as it performed exceptionally well both on the first

fold and the second fold of the cross-validation. From the presented results, it can be deduced

that regularising an LSTM classifier plays a crucial role in the convergence speed and

performance of the model and its ability to generalise.

Figure 5.33: Test set confusion matrix – LSTM with 0.1 dropout in first layer only

58

Results presented from Figures 5.30 to 5.33 have clearly demonstrated that adding a dropout

of 0.1 in the first layer eminently improved the classification accuracy and the generalisation

ability of the LSTM. To understand whether increasing the dropout rate would impact the

classifier’s performance, the dropout rate in the first layer was increased to 0.2 and the model

was evaluated again.

Figure 5.34 is a demonstration of the model accuracy when the dropout rate is increased to

0.2 in the first layer. From the figure, the model proffers a pleasing performance as both the

learning and validation accuracy are 100%.

Figure 5.34: Model accuracy of an LSTM with 0.2 dropout in first layer only

Figure 5.35 shows the loss of the LSTM classification model when a 0.2 dropout is applied

in the first layer. Regarding the train and validation loss curves presented in the figure, the

model instantaneously converges when the dropout rate is increased to 0.2. As can be

observed in the figure, both the train and validation loss remain constant at 0 throughout the

training process. From this result, it can be perceived that increasing the dropout optimised

the convergence speed of the model immensely. This implies that increasing the dropout rate

to 0.2 in the first layer reduces the model’s training time to a great extent.

59

Figure 5.35: Training vs validation loss of the LSTM with 0.2 dropout in first layer only

In Figure 5.36, a confusion matrix shows the performance of the model on the validation set

when the dropout rate is increased to 0.2. Once more, it can be observed that the model

classified all 210 packets in the validation set accurately.

Figure 5.36: Validation set confusion matrix – LSTM with 0.2 dropout in first layer only

Figure 5.37 presents the performance of the model on the test set when the dropout rate is

increased to 0.2. It can be observed that increasing the dropout in this instance introduced a

negligible drop in the detection rate obtained by the classifier as the model was unable to read

three of the packets accurately. However, the model was able to read 222 out of 225

60

malicious packets correctly while predicting all the 99 790 normal packets correctly which

gives the model an impressive accuracy score.

Figure 5.37: Test set confusion matrix – LSTM with 0.2 dropout in first layer only

In a similar manner as in the previous experiment, the dropout in the first layer was raised to

0.5. The results of the experiment are presented in Figures 5.38 to 5.41. Figure 5.38 shows

the classification accuracy of the model. From the results displayed, it can be observed that

the accuracy was a bit unstable during the first 200 epochs of the training and stabilised to a

100% accuracy score subsequently.

Figure 5.38: Model accuracy of an LSTM with 0.5 dropout in first layer only

61

Presented in Figure 5.39 are the training and validation loss curves of the LSTM classifier

when the dropout rate was increased to 0.5 in the first layer. From the graph, it can be seen

that there is a bit of unsteadiness in the train loss during the first 300 epochs. The validation

loss on the other hand demonstrates this unsteadiness only after 100 epochs and stability in

the validation loss is gained after 200 epochs. Moreover, it can be observed that the model

completely converges after roughly 300 training epochs. From this observation, it can be

concluded that 300 epochs are sufficient to make the model converge. However, when

compared to applying a dropout of 0.2 as demonstrated in Figure 5.35, increasing the

dropout to 0.5 dropped the model’s convergence speed.

Figure 5.39: Training vs validation loss of the LSTM with 0.5 dropout in first layer only

In Figure 5.40 a confusion matrix that demonstrates how the model performs on the

validation set is presented. From the figure, it can be observed that the model correctly

predicted all 100 000 packets in the validation set leading to the model obtaining a 100%

detection rate in the validation set.

62

Figure 5.40: Validation set confusion matrix – LSTM with 0.5 dropout in first layer only

Figure 5.41 visually displays the performance results of the LSTM classifier on the test set

when the dropout rate is raised to 0.5 in the first layer. Again, the model correctly predicted

all 100 000 packets in the test set. From these results, it can be established that the model is

robust enough to detect malicious packets with great accuracy.

Figure 5.41: Test set confusion matrix – LSTM with 0.5 dropout in first layer only

To understand how the dropout implementation strategy impacts the model performance,

varying dropout rates were applied in the different defined layers and the performance of the

model was evaluated. The results of the experiments are demonstrated in Figures 5.42 to

5.49.

63

Figure 5.42 depicts the accuracy of the LSTM classifier when a 0.5 dropout rate is applied in

the first and second layers of the LSTM. It can be observed that the classification accuracy is

consistently 100% during the first 300 training iterations, plunges slightly to 99% at epoch

300 but stabilises eventually. This could indicate that the model started overfitting at the

300th iteration of the training process.

Figure 5.42: Model accuracy of an LSTM with 0.5 dropout in first and second and layers

In Figure 5.43, the training and validation loss of the LSTM with a 0.5 dropout rate in the

first two layers is presented. Looking at the figure, a negligible instability in the train loss is

observed until after roughly 490 epochs. On the validation, the loss is 0 and an increase of

0.04 is observed at the 300th epoch. The validation loss steadies after 300 epochs while the

train loss remains until after 490 epochs. This observation confirms the overfitting and drop

in accuracy observed in Figure 5.42. It can be seen that the model indeed started overfitting

the data as the loss started increasing but the model converged again thereafter.

64

Figure 5.43: Training vs validation loss of the LSTM with 0.5 dropout in first and second

layers

Figure 5.44 presents a confusion matrix that displays the performance of the LSTM with a

0.5 dropout rate in the first two layers of the LSTM. The model demonstrated the capability

to predict the status of the packets as it classified all 100 000 packets in the validation set

accurately. This implies that the LSTM classifier was able to classify the validation set

correctly with 100% accuracy.

Figure 5.44: Validation set confusion matrix – LSTM with 0.5 dropout in first and second

layers

Presented in Figure 5.45 is a confusion matrix that shows the performance of the model on

the second fold of the cross-validation. From the figure, it can be seen that the model

65

misclassified two malicious packets as normal while 99 998 packets were classified correctly.

This implies a 0.008% drop in detection rates when compared to how the model performed

on the validation set during the first fold of the cross-validation. This implies that the

overfitting observed in Figure 5.42 and Figure 5.43 did have an impact on the performance

of the classifier to a small degree.

Figure 5.45: Test set confusion matrix – LSTM with 0.5 dropout in first and second layers

The last experiment was applying a 0.5 dropout rate in all the three defined layers of the

LSTM. Figures 5.46 to 5.49 depict the evaluation results of the LSTM. In Figure 5.46 the

accuracy of the model with the contemporary dropout strategy is depicted. The results

indicate that the model maintained 100% accuracy throughout the training process.

66

Figure 5.46: Model accuracy of an LSTM with 0.5 dropout in all three layers

In Figure 5.47, the training and validation loss curves of the LSTM with a dropout rate of 0.5

in all the network layers are presented. Even though not so significant, some variability can

be observed in the train loss curve. On the loss curve, however, the loss decreases instantly

after the model starts training. The low loss in both the train and validation loss curves is

indicative of a model that can generalise even though a negligent delay in convergence is

clear in the train loss curve.

Figure 5.47: Training vs validation loss of the LSTM with 0.5 dropout in all three layers

Figure 5.48 presents a validation set confusion matrix that depicts the classification accuracy

when the dropout strategy is such that a dropout rate of 0.5 is applied in all three layers of the

67

LSTM. With this strategy and as demonstrated in the confusion matrix, the model was able to

predict all 100 000 packet traces accurately. As can be seen in the figure, the results indicate

that the model was able to classify the status of the transmitted packets with 100% accuracy.

Figure 5.48: Validation set confusion matrix – LSTM with 0.5 dropout in all three layers

In Figure 5.49, the test set confusion matrix of the LSTM with the 0.5 dropout rate in all the

layers strategy is illustrated. Once again, the model predicted all the 100 000 packets in the

test set correctly. Regarding the results demonstrated in the confusion matrix, there is a clear

indication that applying a dropout of 0.5 in all three layers defined in the LSTM greatly

elevated the performance and the generalisation ability of the model.

Figure 5.49: Test set confusion matrix – LSTM with 0.5 dropout in all three layers
68

The best performing LSTM model was converted to a lightweight version of the trained

model and the performance of the lightweight model was again evaluated on unseen data. As

demonstrated in Figure 5.50, the results strongly suggest that the lightweight version

preserved the performance of the regular LSTM model as it maintained the 100% detection

rate obtained by the regular LSTM model.

Figure 5.50: LSTM lightweight version confusion matrix

5.3 Discussion and model evaluation

This study commenced by surveying cutting-edge intrusion detection frameworks. The

suitability of the surveyed IDS four (4) metrics – true positive rates (TPR), false positive rates

(FPR), computational overheads that may be induced by the IDS and the dataset used to train

the model – were evaluated. Unlike in conventional networks where TPR and FPR are

sufficient to evaluate the suitability of an IDS, in resource-constrained networks such as

smart city ecosystems, metrics that evaluate energy consumption and computational

overheads introduced by the detection frameworks are essential to determine whether the

proposed IDS technique is suitable for deployment in resource-constrained architectures.

Additionally, since smart city networks are heterogeneous and extremely dynamic, the

dataset used for training the model must reflect heterogeneity and dynamicity. Hence, the

suitability of each of the proposed IDSs was also evaluated on the dataset used for the

development and evaluation of the proposed framework. Accordingly, the analysis was

focused on the relevance of the dataset used for training the proposed model and the ability of

69

the model to exhibit high detection rates with minimal FPR. Since the proposed models were

designed for deployment in WSNs, it was also essential to evaluate the ability of the model to

perform well without introducing computational overheads.

The results of the survey revealed that most studies reviewed were not mindful of the

dynamic characterisation and resource limitations of IoT infrastructures such as smart city

ecosystems. Some notable shortcomings of the proposed frameworks include the use of amiss

datasets that contain antiquated attack vectors for training the proposed detection models and

insubstantial evidence of the elimination of computational overheads. To address the

identified limitations of the surveyed frameworks, this study trained and evaluated two

candidate models to propose the model that demonstrated the highest predictive power.

In intrusion detection, a model is considered effective if it demonstrates the capability to

detect the status/nature of network packets with high detection but low false alarm rates. The

experimental results have demonstrated that regularisation plays a vital role in augmenting

the detection and generalisation ability of both the CNN and LSTM models.

With CNN, it was observed that applying a regularisation – adding dropout in only one input

layer – was not sufficient to optimise the generalisation ability of the model. Thus, adding a

dropout of at least 0.5 in all input layers significantly improved the model’s ability to

generalise. This observation is demonstrated in Figure 5.23 and Figure 5.24. Moreover, a

comparative analysis between the performance of the CNN and the performance of the

LSTM models was orchestrated. When comparing the performance of the two models, it

could be observed that a dropout of just 0.1 in the first input layer was sufficient to make the

LSTM model converge more quickly and produce remarkable classification results – high

detection rates and low false alarm rates. The indicated efficiency of the LSTM at each

regularisation iteration is demonstrated in Figures 5.26 to 5.49. Regarding Figure 5.47, it is

evident that the LSTM model converges much more quickly when regularisation is applied to

all the input layers.

However, in Figures 5.2, 5.6, 5.10, 5.14 and 5.18, the loss fluctuates which is indicative of

overfitting. This overfitting is clear in the classification accuracy as well as the proportion of

false alarm rates. This observation is presented in Figures 5.3, 5.4, 5.7, 5.8, 5.11, 5.12, 5.15,

5.16, 5.19, 5.20, 5.29, 5.37 and 5.45. In the said figures, it can be observed that the

classification accuracy drops when the model is applied to unseen data. The most common

scenario is that the false alarm rates are notably higher when the model classifies the test

dataset.

70

Regarding the evaluation results, it can be concluded that the implementation strategy of the

regularisation technique is a remarkable factor in the behaviour of the model and its

robustness.

Furthermore, one of the study’s objectives was to propose a DL model as an intrusion

detection mechanism for smart city ecosystems. Subsequently, as an attempt to reduce

computational overheads that may be introduced by the deployment of trained intrusion

detection models, the models that attained high predictive power were saved and converted to

lightweight versions using TensorFlow-lite.

The sizes of both models shrank remarkably after the conversion. The memory size of the

CNN model reduced from 859 kilobytes to 269 kilobytes and the LSTM reduced from 2.0

megabytes to 683 kilobytes. This means that TensorFlow-lite more than halves the memory

size of a model. This should then result in reduced computational overheads. The lightweight

versions were then tested using the test dataset that was used to evaluate the regular models.

The experiments have exposed that the lightweight versions preserve the performance of the

original models. This observation is demonstrated in Figures 5.25 and 5.50.

5.4 Summary

This chapter gave an overview and discussed the findings of the study. Additionally, a

rigorous comparative analysis of the baseline and the proposed models was performed. The

comparison was mainly focused on the convergence speed of the models, generalisation

ability, detection and false alarm rates.

71

Chapter 6: Conclusion

6.1 Introduction

This chapter concludes the study. The chapter presents the empirical findings of the study and

outlines how the research objectives were achieved. The chapter further presents the

implications of the study and concludes by highlighting the potential for future studies. The

study aims to review the current state of intrusion detection in smart city ecosystems and

proposes a DL model tailored for smart city ecosystems.

6.2 Summary of the dissertation

This section provides a detailed summary of the study. The section presents the empirical

findings of this study, research objectives and the future work is highlighted.

6.2.1 Empirical findings

Connectivity and automation are indispensable aspects of the realisation of sustainable smart

cities. This high connectivity and automation to facilitate resource monitoring in cities are

achievable with mobile applications, Wi-Fi, AI and cloud-based architectures. Thus, smart

city components are connected through wireless networks and generate data that may be used

intelligently for city infrastructure management and monitoring. Even though digitisation

places smart cities in an excellent position to offer an intelligent, spatial and economic

competitive advantage, it renders the cities susceptible to security issues. Several studies have

proved that despite numerous cryptography-based security mechanisms that have been

continuously proposed and implemented, IoT networks remain exposed to cyber-attacks.

Considering this, the security of smart cities is an area that undeniably needs the utmost

attention.

Numerous studies proposed intrusion detection that can be used to alleviate cyber-attacks as

the most potent security mechanism for resource-constrained smart city networks. This study

reviewed IDSs that have been previously proposed for resource-constrained environments.

The review investigated the features of the proposed intrusion detection frameworks and their

suitability for deployment in resource-constrained and dynamic environments. This study

identified that many studies are not mindful of resource constraints and the dynamic nature of

IoT-based networks such as smart city networks. Furthermore, more investigations on the

design of proper IDSs for smart cities still need to be orchestrated.

This study proposed a lightweight binary classification NN. The proposed model is

lightweight and proffers high detection and low false alarm rates. Additionally, the results of
72

the study’s experiments strongly suggest that using dropout as a regularisation technique

boosts the performance of a DL model tremendously. The results further demonstrated that

achieving the best results depends highly on the strategy by which the dropout is

implemented. Moreover, the study discovered that DL models can be converted into lighter

versions without detracting from the performance standard of non-lightweight DL models.

6.2.2 Research objectives

 To analyse cyber-security challenges in smart city ecosystems

The study presented cyber-security issues prevalent in smart city ecosystems. Advances in

technology present countless conveniences that, among others, include the automation of

cities to effectuate smart cities. Smart cities offer plenty of appealing benefits such as the use

of IoT sensors to gather useful data on power demand to prevent power blackouts as well as

the average speed of vehicles to mitigate traffic congestion on roads. The reviewed work

revealed a wide variety of security challenges that threaten the safety and sustainability of

smart cities with DoS attacks discerned as the most notorious cyber-attacks that threaten this

sustainability.

 To identify state-of-the-art intrusion detection methods used in smart city ecosystems

State-of-the-art intrusion detection frameworks were surveyed. The results of the survey

conveyed that most frameworks were developed with less consideration for the dynamic

characterisation and resource limitations of IoT infrastructures such as smart city ecosystems.

 To propose a deep learning model as an intrusion detection mechanism for smart city

ecosystems

A CNN binary classifier and an LSTM binary classifier were implemented as candidate

models. The most robust model, which offers a relatively higher convergence speed and high

detection rates, was converted to a lightweight version. The conversion was performed to

make the model lighter and thus more suitable for deployment in resource-constrained

environments. The results of the empirical study demonstrated that the LSTM binary

classifier proffers the best performance. Therefore, this classifier is proposed as the most

suitable model for intrusion detection in smart city ecosystems.

The robustness demonstrated by the LSTM classifier is in accordance with the results of an

earlier study by Althubiti et al. (2018) that investigated the applicability of LSTM RNNs in

modelling network intrusion detection. However, their model was trained using the KDD 99

cup dataset which, in the view of the researcher, is an inappropriate dataset for training

models tailored for smart city environments. Additionally, their study did not present
73

sufficient evidence of whether the produced model was lightweight enough to operate in

resource-constrained environments.

 To evaluate the efficiency of the proposed deep learning model

The efficiency of the proposed model was evaluated. The proposed model obtained a 100%

detection rate and occupied only 683 kilobytes of memory. The model demonstrated high

detection rates with low false alarm and false negative rates. This implies that the model is

robust enough to detect cyber intrusions and the memory size of the model indicates that the

model is lightweight enough to be deployed in resource-constrained environments.

6.3 Implications of the study

Security is crucial for the sustainability, availability, confidentiality, and integrity of smart

city ecosystems. To give direction for future research, this study provides an overview of the

current state of intrusion detection mechanisms available for smart city ecosystems. The

study further demonstrates that current intrusion detection mechanisms can be improved. This

can be achieved by developing more robust and lightweight models that offer high detection

rates and minimal false alarm rates to prevent security risks in smart city ecosystems and to

ensure sustainable and safe smart cities.

6.4 Future studies

Although the proposed model demonstrated remarkable robustness, it can currently only

detect two types of DoS attacks – UDP and TCP flooding attacks. Future studies should delve

into introducing more attack vectors to assess the adaptability of the proposed model.

Additionally, the effectiveness of the proposed model should be scrutinised by deploying the

model on a resource-constrained device (such as Raspberry-pi) and monitoring the

computational overheads introduced when the model is in production.

74

References

Acaps. (2012). Qualitative and quantitative research techniques for humanitarian needs

assessment. United Nations Office for the Coordination of Humanitarian Affairs

(OCHA), New York, USA. Retrieved from http://reliefweb.int/report/world/qualitative-

and-quantitative-research-techniques-humanitarian-needs-assessment

Agarap, A. F. (2018). Deep learning using rectified linear units (ReLU), 1, 2-8. Retrieved

from http://arxiv.org/abs/1803.08375

Aldaej, A. (2019). Enhancing cyber security in modern internet of things (IoT) using

intrusion prevention algorithm for IoT (IPAI). IEEE Access, 1-1.

https://doi.org/10.1109/

access.2019.2893445

AlDairi, A., & Tawalbeh, L. (2017). Cyber security attacks on smart cities and associated

mobile technologies. Procedia Computer Science, 109(2017), 1086-1091. https://

doi.org/10.1016/j.procs.2017.05.391

Alguliyev, R. M., Aliguliyev, R. M., & Abdullayeva, F. J. (2019). The improved LSTM and

CNN models for DDoS attacks prediction in social media. International Journal of

Cyber Warfare and Terrorism, 9(1), 1-18. https://doi.org/10.4018/IJCWT.2019010101

Aloqaily, M., Otoum, S., Al Ridhawi, I., & Jararweh, Y. (2019). An intrusion detection

system for connected vehicles in smart cities. Ad Hoc Networks, 90. https://doi.org/

10.1016/j.adhoc.2019.02.001

Althubiti, S., Nick, W., Mason, J., Yuan, X., & Esterline, A. (2018, April 19-22). Applying

long short-term memory recurrent neural network for intrusion detection. Paper

presented at the IEEE SoutheastCon in St. Petersburg, Florida, USA. Retrieved from

https://doi.org/10.1109/SECON.2018.8478898

75

http://reliefweb.int/report/world/qualitative-and-quantitative-research-techniques-humanitarian-needs-assessment
http://reliefweb.int/report/world/qualitative-and-quantitative-research-techniques-humanitarian-needs-assessment
https://www.unocha.org/
https://www.unocha.org/

Anthi, E., Williams, L., Slowińska, M., Theodorakopoulos, G., & Burnap, P. (2019). A

supervised intrusion detection system for smart home IoT devices. IEEE Internet of

Things Journal, 6(5), 9042-9053. https://doi.org/10.1109/JIOT.2019.2926365

Apuke, O. D. (2017). Quantitative research methods a synopsis approach. Arabian Journal of

Business and Management Review (Kuwait Chapter), 6(10). https://doi.org/

10.12816/0040336

Aris, A., & Oktug, S. F. (2017, February). Poster: State of the art IDS design for IoT. Paper

presented at the 2017 International Conference on Embedded Wireless Systems and

Networks (EWSN), Uppsala, Sweden (pp. 196-197).

Arshad, J., Azad, M. A., Salah, K., Jie, W., Iqbal, R., & Alazab, M. (2018). A review of

performance, energy and privacy of intrusion detection systems for IoT. Retrieved from

http://arxiv.org/abs/1812.09160

Atieno, O. P. (2009). An analysis of the strengths and limitation of qualitative and

quantitative research paradigms. Problems of Education in the 21st Century, 13.

Retrieved from http://www.scientiasocialis.lt/pec/node/files/pdf/Atieno_Vol.13.pdf

Azahari Mohd Yusof, M., Hani Mohd Ali, F., & Yusof Darus, M. (2018). Detection and

defense algorithms of different types of DDoS attacks. International Journal of

Engineering and Technology, 9(5), 410-444. https://doi.org/10.7763/ijet.2017.v9.1008

Azpiazu, I. M., & Pera, M. S. (2019). Multiattentive recurrent neural network architecture for

multilingual readability assessment. Transactions of the Association for Computational

Linguistics, 7, 421-436. https://doi.org/10.1162/tacl_a_00278

Bach, A. A. (2018). WORD2VEC embeddings for playlist recommendation. Facultat de

Matem`atiques i Inform`atica, Universitat de Barcelona. Retrieved from

http://diposit.ub.edu/dspace/bitstream/2445/130481/3/memoria.pdf

76

Baker, S. B., Xiang, W., & Atkinson, I. (2017). Internet of things for smart healthcare:

Technologies, challenges, and opportunities. IEEE Access, 5, 26521-26544.

https://doi.org/10.1109/ACCESS.2017.2775180

Banerjee, M., Lee, J., & Choo, K. R. (2018). A blockchain future for internet of things

security: A position paper. Digital Communications and Networks, 4(3), 149-160.

https://doi.org/10.1016/j.dcan.2017.10.006

Bruneo, D., Distefano, S., Giacobbe, M., Minnolo, A., Longo, F., Merlino, G., … Tapas, N.

(2019). An IoT service ecosystem for smart cities: The #SmartME project. Internet of

Things, 5, 12-33. https://doi.org/10.1016/j.iot.2018.11.004

Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers &

Electrical Engineering, 40(1), 16-28. https://doi.org/10.1016/

j.compeleceng.2013.11.024

Chen, C., Hasan, M., & Mohan, S. (2018). Securing real-time internet-of-things. Sensors,

18(12), 4356. https://doi.org/10.3390/s18124356

Conti, M. (Ed.) (2018). Versatile cybersecurity. New York, NY: Springer. https://doi.org/

10.1007/978-3-319-97643-3

Cui, L., Xie, G., Qu, Y., Gao, L., & Yang, Y. (2018). Security and Privacy in Smart Cities:

Challenges and Opportunities. IEEE Access, 6, 46134-46145. doi:

10.1109/access.2018.2853985

Daniel, E. (2016). The usefulness of qualitative and quantitative approaches and methods in

researching problem-solving ability in science education curriculum. Journal of

Education and Practice, 7(15), 91-100. https://eric.ed.gov/?id=EJ1103224

Doshi, R., Apthorpe, N., & Feamster, N. (2018, May 24). Machine learning DDoS detection

for consumer internet of things devices. A paper presented at the 2018 IEEE

77

Symposium on Security and Privacy Workshops, San Francisco, California, USA (pp.

29-35). https://doi.org/10.1109/SPW.2018.00013

Elleithy, K., & Blagovic, D. (2006). Denial of service attack techniques: Analysis,

implementation and comparison. Systemics, Cybernetics and Informatics, 3(1), 66-71.

Retrieved from http://www.iiisci.org/Journal/CV$/sci/pdfs/P129065.pdf

Elmaghraby, A. S., & Losavio, M. M. (2014). Cyber security challenges in smart cities:

Safety, security and privacy. Journal of Advanced Research, 5(4), 491-497.

https://doi.org/10.1016/j.jare.2014.02.006

Elrawy, M. F., Awad, A. I., & Hamed, H. F. A. (2018). Intrusion detection systems for IoT-

based smart environments: A survey. Journal of Cloud Computing, 7(21). https://

doi.org/10.1186/s13677-018-0123-6

Erickson, B. J., Korfiatis, P., Kline, T. L., Akkus, Z., Philbrick, K., & Weston, A. D. (2018).

Deep learning in radiology: Does one size fit all? Journal of the American College of

Radiology, 15(3), 521-526. https://doi.org/10.1016/j.jacr.2017.12.027

Faghri, A., Martinelli, D., & Demetsky, M. J. (1997). Neural network applications in

transportation engineering. Artificial Neural Networks for Civil Engineers:

Fundamentals and Applications, 1, 137-159.

Fazio, M., Celesti, A., Puliafito, A., & Villari, M. (2015). Big data storage in the cloud for

smart environment monitoring. Procedia Computer Science, 52, 500-506.

https://doi.org/10.1016/j.procs.2015.05.023

Ferraz, F. S., & Ferraz, C. A. G. (2014). Smart City Security Issues: Depicting Information

Security Issues in the Role of an Urban Environment. Proceedings - 2014 IEEE/ACM

7th International Conference on Utility and Cloud Computing, UCC 2014.

https://doi.org/10.1109/UCC.2014.137

78

Garcia-Font, V., Garrigues, C., & Rifà-Pous, H. (2016). A comparative study of anomaly

detection techniques for smart city wireless sensor networks. Sensors, 16(6), 868.

https://doi.org/10.3390/s16060868

Hasan, M., Islam, M. M., Zarif, M. I. I., & Hashem, M. M. A. (2019). Attack and anomaly

detection in IoT sensors in IoT sites using machine learning approaches. Internet of

Things, 7, 100059. https://doi.org/10.1016/j.iot.2019.100059

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,

9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735

Hodo, E., Bellekens, X., Hamilton, A., Dubouilh, P. L., Iorkyase, E., Tachtatzis, C., &

Atkinson, R. (2016). Threat analysis of IoT networks using artificial neural network

intrusion detection system. Paper presented at the 2016 International Symposium on

Networks, Computers and Communications, Hammamet, Tunisia (pp. 4-8).

https://arxiv.org/ftp/arxiv/papers/1704/1704.02286.pdf

Hu, L., & He, Z. (2001). Neural network-based intrusion detection systems. Proceedings of

the Sixth International Conference for You Computer Scientist: In Computer Science

and Technology in New Century, 106(18), 296–298. https://doi.org/10.5120/18705-

9636

Jabbar, M. A., & Aluvalu, R. (2018, April 22-23). Intrusion detection system for the internet

of things: A review. A paper presented at the Smart Cities Symposium, Bahrain,

Bahrain.

Jaleesha, B. K., & Ezhil, S. S. (2019). A performance on simulation with methodologies.

International Journal of Innovative Technology and Exploring Engineering, 8(7), 1166-

1170.

79

Joshi, S., Saxena, S., Goodbole, T., & Shreya. (2016). Developing smart cities: An integrated

framework. Procedia Computer Science, 93, 902-909. https://doi.org/10.1016/

j.procs.2016.07.258

Jucevičius, R., Patašiené, I., & Patašius, M. (2014). Digital dimension of smart city: Critical

analysis. Procedia – Social and Behavioral Sciences, 156(April), 146-150.

https://doi.org/10.1016/j.sbspro.2014.11.137

Khan, R. U., Xiaosong, Z., Alazab, & Kumar, R. (2018). An improved convolutional neural

network model for intrusion detection in networks. Retrieved from https://easychair.

org/publications/preprint/bj3s.

Khajenasiri, I., Estebsari, A., Verhelst, M., & Gielen, G. (2017). A Review on Internet of

Things Solutions for Intelligent Energy Control in Buildings for Smart City

Applications. Energy Procedia, 111(September 2016), 770–779.

https://doi.org/10.1016/j.egypro.2017.03.239

Krenker, A., Bešter, J., & Kos, A. (2011). Introduction to the artificial neural networks. In K.

Suzuki (Ed), Artificial neural networks: Methodological Advances and biomedical

applications (pp. 1-18). Retrieved from https://doi.org/10.5772/15751

Krimmling, J., & Peter, S. (2014). Integration and evaluation of intrusion detection for CoAP

in smart city applications. A paper presented at the 2014 IEEE Conference on

Communications and Network Security, San Francisco, California, USA (pp. 73-78).

https://doi.org/10.1109/CNS.2014.6997468

Liang, X. (2017). 20: Convolutional and recurrent neural networks. Retrieved from

https://www.cs.cmu.edu/~epxing/Class/10708-17/notes-17/10708-scribe-lecture20.pdf.

80

Mirsky, Y., Doitshman, T., Elovici, Y., & Shabtai, A. (2018). Kitsune: An ensemble of

autoencoders for online network intrusion detection. Ben-Gurion University of the

Negev, Beersheba, Israel. Retrieved from https://doi.org/10.14722/ndss.2018.23204

Mohamad Noor, M., & Hassan, W. H. (2019). Current research on internet of things (IoT)

security: A survey. Computer Networks, 148, 283-294. https://doi.org/10.1016/

j.comnet.2018.11.025

Moradi, M., & Zulkernine, M. (2004, November 15-18). A neural network based system for

intrusion detection and classification of attacks. A paper presented at the 2004 IEEE

International Conference on Advances in Intelligent Systems – Theory and

Applications, Luxembourg. Retrieved from https://www.researchgate.net/publication/

236030027_A_Neural_Network_Based_System_for_Intrusion_Detection_and_Classifi

cation_of_Attacks

Naoum, R. S., Abid, N. A., & Al-Sultani, Z. N. (2012). An enhanced resilient

backpropagation artificial neural network for intrusion detection system. International

Journal of Computer Science and Network Security, 12(3), 11-16.

Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation functions:

Comparison of trends in practice and research for deep learning. Retrieved from

http://arxiv.org/abs/1811.03378

Olaverri-Monreal, C. (2016). Intelligent technologies for mobility in smart cities.

Hiradastechnika Journal, 71, 29-34.

Otuoze, A. O., Mustafa, M. W., & Larik, R. M. (2018). Smart grids security challenges:

Classification by sources of threats. Journal of Electrical Systems and Information

Technology, 5(3), 468-483. https://doi.org/10.1016/j.jesit.2018.01.001

81

Pacheco, J., & Hariri, S. (2016). IoT Security Framework for Smart Cyber Infrastructures.

2016 IEEE 1St International Workshops On Foundations And Applications Of Self*

Systems (FAS*W). doi: 10.1109/fas-w.2016.58

Papamartzivanos, D., Gómez Mármol, F., & Kambourakis, G. (2019). Introducing deep

learning self-adaptive misuse network intrusion detection systems. IEEE Access, 7,

13546-13560. https://doi.org/10.1109/ACCESS.2019.2893871

Pereira, T., Barreto, L., & Amaral, A. (2017). Network and information security challenges

within Industry 4.0 paradigm. Procedia Manufacturing, 13, 1253-1260.

https://doi.org/10.1016/j.promfg.2017.09.047

Popescul, D., & Radu, L. D. (2016). Data security in smart cities: Challenges and solutions.

Informatica Economică, 20(1). https://doi.org/10.12948/issn14531305/20.1.2016.03

Renals, S. (2015). Multi-layer neural networks. Retrieved from https://www.inf.ed.ac.uk/

teaching/courses/asr/2014-15/asr07-nnDetails.pdf

Rizvi, S., Willet, J., Perino, D., Marasco, S., & Condo, C. (2017). A threat to vehicular cyber

security and the urgency for correction. Procedia Computer Science, 114, 100-105.

https://doi.org/10.1016/j.procs.2017.09.021

Rosindell, J., & Wong, Y. (2018). Biodiversity, the tree of life, and science communication.

In R. Scherson & D. Faith (Eds.), Phylogenetic diversity: Applications and challenges

in biodiversity science (pp. 41-71). Cham, Switzerland: Springer. https://doi.org/

10.1007/978-3-319-93145-6_3

Roux, J., Alata, E., Auriol, G., Nicomette, V., & Kaâniche, M. (2017, September). Toward an

intrusion detection approach for IoT based on radio communications profiling. A paper

presented at the 13th European Dependable Computing Conference, Geneva,

Switzerland.

82

Saifuzzaman, M., Khan, A. H., Moon, N. N., & Nur, F. N. (2017). Smart security for an

organization based on IoT. International Journal of Computer Applications, 165(10),

33-38. https://doi.org/10.5120/ijca2017913982

Sammany, M., Sharawi, M., El-Beltagy, M., & Saroit, I. (2007). Artificial neural networks

architecture for intrusion detection systems and classification of attacks. A paper

presented at the 5th International Conference INFO2007. Retrieved from

http://infos2007.fci.cu.edu.eg/Computational Intelligence e/07177.pdf

Santos, L., Rabadao, C., & Gonҫalves, R. (2018, June). Intrusion detection systems in

internet of things: A literature review. A paper presented at the 5th Iberian Conference

on Information Systems and Technologies, Caceres, Spain (pp. 1-7). https://doi.org/

10.23919/CISTI.2018.8399291

Shenfield, A., Day, D., & Ayesh, A. (2018). Intelligent intrusion detection systems using

artificial neural networks. ICT Express, 4(2), 95-99. https://doi.org/10.1016/

j.icte.2018.04.003

Sherasiya, T., Upadhyay, H., & Patel, H. B. (2016). A survey: Intrusion detection system for

internet of things. International Journal of Computer Science and Engineering, 5(2),

91-98. Retrieved from http://oaji.net/articles/2016/1870-1456139720.pdf

Sherstinsky, A. (2018). Fundamentals of recurrent neural network (RNN) and long short-

term memory (LSTM) network. Retrieved from http://arxiv.org/abs/1808.03314.

Shokuh Saljoughi, A., Mehrvarz, M., & Mirvaziri, H. (2018). Attacks and intrusion detection

in cloud computing using neural networks and particle swarm optimization algorithms.

Emerging Science Journal, 1(4), 179-191. https://doi.org/10.28991/ijse-01120

Shone, N., Ngoc, T. N., Phai, V. D., & Shi, Q. (2018). A deep learning approach to network

intrusion detection. IEEE Transactions on Emerging Topics in Computational

Intelligence, 2(1), 41-50. https://doi.org/10.1109/tetci.2017.2772792

83

http://oaji.net/articles/2016/1870-1456139720.pdf

Sibanda, W., & Pretorius, P. (2012). Artificial neural networks – a review of applications of

neural networks in the modeling of HIV Epidemic. International Journal of Computer

Applications, 44(16), 1-5.

Thamilarasu, G., & Chawla, S. (2019). Towards deep-learning-driven intrusion detection for

the internet of things. Sensors, 19(9). https://doi.org/10.3390/s19091977

Thanigaivelan, N. K., Nigussie, E., Virtanen, S., & Isoaho, J. (2018). Hybrid internal

anomaly detection system for IoT: Reactive nodes with cross-layer operation. Security

and Communication Networks, 2018. https://doi.org/10.1155/2018/3672698

Tuptuk, N., & Hailes, S. (2018). Security of smart manufacturing systems. Journal of

Manufacturing Systems, 47, 93-106. https://doi.org/10.1016/j.jmsy.2018.04.007

UNCTAD. (2016). Smart cities and infrastructure. Report of the Secretary-General of the

Economic and Social Council. Retrieved from https://doi.org/10.1017/

S0020818300006640

Venkatraman, S., & Surendiran, B. (2019). Adaptive hybrid intrusion detection system for

crowd sourced multimedia internet of things systems. Multimedia Tools and

Applications, 79, 3993-4010. https://doi.org/10.1007/s11042-019-7495-6

Williamson, B. (2015). Educating the smart city: Schooling smart citizens through

computational urbanism. Big Data & Society. https://doi.org/10.1177/

2053951715617783

Wu, Z. Y., El-Maghraby, M., & Pathak, S. (2015). Applications of deep learning for smart

water networks. Procedia Engineering, 119, 479-485. https://doi.org/10.1016/

j.proeng.2015.08.870

84

Wu, Z. Y., & Rahman, A. (2017). Optimized deep learning framework for water distribution

data-driven modeling. Procedia Engineering, 186, 261-268. https://doi.org/10.1016/

j.proeng.2017.03.240

Yin, C., Zhu, Y., Fei, J., & He, X. (2017). A deep learning approach for intrusion detection

using recurrent neural networks. IEEE Access, 5, 21954-21961. https://doi.org/

10.1109/ACCESS.2017.2762418

Zarpelāo, B. B., Miani, R. S., Kawakani, C. T., & de Alvarenga, S. C. (2017). A survey of

intrusion detection in internet of things. Journal of Network and Computer

Applications, 84, 25-37. https://doi.org/10.1016/j.jnca.2017.02.009

Zekri, M., El Kafhali, S., Aboutabit, N., & Saadi, Y. (2018, October 24-26). DDoS attack

detection using machine learning techniques in cloud computing environments. A paper

presented at the 2017 3rd International Conference of Cloud Computing Technologies

and Applications, (CloudTech), Rabat, Morocco (pp. 1-7). Retrieved from

https://doi.org/10.1109/CloudTech.2017.8284731

Zhang, R., & Xiao, X. (2019). Intrusion detection in wireless sensor networks with an

improved NSA based on space division. Journal of Sensors, 2019(5451263).

https://doi.org/10.1155/2019/5451263

Zhou, W., Zhang, Y., & Liu, P. (2019). The effect of IoT new features on security and

privacy: New threats, existing solutions, and challenges yet to be solved. IEEE Internet of

Things Journal, 6(2), 1606-1616. https://arxiv.org/abs/1802.03110

85

https://arxiv.org/abs/1802.03110

Appendix A: Data Collection

This section presents the steps followed by this study for data gathering. The steps are

explained below.

a) Downloading and installing the SUMO simulator

The SUMO simulator was downloaded from the official SUMO site:

https://sumo.dlr.de/docs/Installing/index.html. Additionally, as a prerequisite to run

the simulation, Python had to be installed. Python was downloaded from

https://www.python.org/downloads/.

b) Downloading an OpenStreetMap of the city of interest

A map of a small area in residential Cape Town South Africa was downloaded from

https://www.openstreetmap.org//. The process followed is demonstrated below:

i) Search for the city on the OpenStreetMap search bar (Figure A1).

Figure A1: Downloading a city from OpenStreetMaps

ii) Select an area of interest from the search results and click export (Figure

A2).

86

Figure A2: Exporting the desired area

c) Converting the map into a SUMO network

The downloaded file is stored in a .osm file extension. It must be noted that in this

study all SUMO simulation files were named such that they contained ‘capetown’

before the file extension. To convert the downloaded map into a SUMO network,

navigation to the folder containing the map in a command line terminal is undertaken

and the command below is run:

 netconvert capetown.osm -o capetown.net.xml

Running the command generates a network file. The generated network file contains

node identifiers, node types and the priority of the nodes.

d) Adding trips and routes to the network

By default, SUMO comes with a randomTrips.py python file which is used to add

trips and routes to the network. The output of this step is a route file with

extension .rou. The route file comprises identifiers of the vehicles and their routes.

This is achieved by running the following command in the command line terminal:

python randomTrips.py -n capetown.net.xml -r capetown.rou.xml -e 50 -l

e) Generating the SUMO configuration file
87

The configuration file takes the network file and the route file as input. The file

contains the simulation start time and end time. For this study, the simulation time

was set to 2000 seconds. The file has a.sumocfg extension. The extensible markup

language (xml) script that creates the SUMO configuration file is presented in Figure

A3.

Figure A3: SUMO configuration file

The generated configuration file is used to run the simulation, either by double-

clicking the configuration file or by using the following command in the command

line terminal:

sumo-gui -c capetown.sumocfg

The simulation is shown in Figure A4.

88

Figure A4: SUMO simulation

f) Creating a trace file of communicating nodes

The first step towards creating the trace file was to convert the entire simulation into a

trace file of communicating nodes. The conversion produces the trace.mxl file (in this

case, capetown.xml file). This is achieved by running the next command:

sumo -c capetown.sumocfg --fcd-output capetwon.xml

g) Generation of an NS2 mobility file

This step produces an NS2 mobility file with a .tcl file extension and is achieved by

running a traceExporter.py file provided by SUMO with the following command:

python traceExporter.py capetown.xml --ns2mobility-output=ns2mobility.tcl

h) Importing an NS2 mobility file into NS3

As a prerequisite to run this step, NS3 was downloaded from https://www.nsnam.org/

releases/ns-3-29/download/.

i) Configuration of a communication scenario in NS3

89

https://www.nsnam.org/releases/ns-3-29/download/
https://www.nsnam.org/releases/ns-3-29/download/

Upon the complete installation of NS3, a folder with a name that follows the pattern

‘ns3-allinone-version’ (for example, ns3-allinone-3.29) is automatically created. The

folder structure is illustrated in Table A1.

Figure A5: NS3 folder structure

To completely convert the SUMO simulation to a network of communicating nodes

within NS3, a vanet-routing-compare.cc code that comes with NS3 is used. The

vanet-routing-compare.cc script as shown below was used for navigation:

ns3-allinone-3.29 > src > wave > example > vanet-routing-compare.cc

For a normal network traffic simulation, within the vanet-routing-compare.cc code,

the simulation parameters were defined as follows:

// Realistic vehicular trace in Cape Town

// "low density, 478 total vehicles"

m_traceFile=".../mobility.tcl";

m_logFile = "mobcpt.log";

m_mobility = 1;

m_nNodes = 478;

m_TotalSimTime = 962.01;

90

m_nodeSpeed = 20;

m_nodePause = 0;

m_CSVfileName = "mobcpt.csv";

m_CSVfileName = "mobcpt2.csv";

j) Launching a DoS attack on the simulated network

To launch a DoS attack, new parameters inside the vanet-routing-compare.cc code

were set. The defined parameters are shown below:

// Network traffic parameters to launch UDP and TCP flooding attacks

#define TCP_SINK_PORT 9000

#define UDP_SINK_PORT 9001

#define BULK_SEND_MAX_BYTES 2097152

#define MAX_SIMULATION_TIME 50.0

#define ATTACKER_START 0.0

#define ATTACKER_RATE (std::string)”12000kb/s”

#define ON_TIME (std::string)”0.25″

#define BURST_PERIOD 1

#define OFF_TIME (std::string)”0.75″

//std::to_string(BURST_PERIOD – stof(ON_TIME))

#define SENDER_START 0.75

k) Running NS3 simulation

 The NS3 simulation is run using the following command:

./waf --run vanet-routing-compare.cc

l) Packet tracing and decoding

The output of steps i and j are capture files (pcap files) that contain network packets

captured from the simulated network. The capture files were decoded using Wireshark

and data was saved as comma-separated-values files for further processing. A

snapshot of data generated from the decoded packets is demonstrated in Table A2.

Figure A5 demonstrates the process of exporting the decoded packets to a CSV file.

91

Figure A6: Wireshark packet details

Figure A7: Saving packet data as CSV

m) Concatenating multiple CSVs to a single CSV file

The CSV files exported from Wireshark were then loaded into Pandas Dataframes and

concatenated to make a single CSV. The procedure is demonstrated in Figure A6.

Figure A8: Concatenating multiple CSV files into a single file

92

Appendix B: Training a Catboost Model

93

Appendix C: Training a Convolutional Neural Network Model

94

Appendix D: Training a Long Short-Term Memory Model

95

	Declaration
	Declaration
	Declaration
	Dedication
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Keywords
	List of Acronyms
	Chapter 1
	1.1 Introduction
	1.2 Background
	1.3 Problem
	1.4 Research aim
	1.5 Research questions
	1.6 Research objectives
	1.7 Study contribution
	1.8 Dissertation outline
	1.9 Summary

	Chapter 2
	2.1 Introduction
	2.2 Smart city
	2.3 Security
	2.4 The taxonomy
	2.5 Intrusion
	2.6 Deep learning
	2.7 Related work
	2.8 Summary

	Chapter 3
	3.1 Introduction
	3.2 Research
	3.3 Research design
	3.4 Data pre-processing
	3.5 Feature engineering
	3.6 Model training
	3.7 Summary

	Chapter 4
	4.1 Introduction
	4.2 Data processing
	4.3 Model training
	4.4 Summary

	Chapter 5
	5.1 Introduction
	5.2 Results
	5.3 Discussion
	5.4 Summary

	Chapter 6
	6.1 Introduction
	6.2 Summary
	6.3 Implications
	6.4 Future

	References
	Appendix A
	Appendix C
	Appendix D

