
A Model for Recommending Related
Research Papers: A Natural Language

Processing Approach

by

Juandre Anton van Heerden

A Model for Recommending Related
Research Papers: A Natural Language

Processing Approach

by

Juandre Anton van Heerden

Dissertation

submitted in fulfilment

of the requirements

for the degree

Master of Information Technology

in the

Faculty of Engineering the Built Environment and

Technology

of the

Nelson Mandela University

Supervisor: Prof. Reinhardt A. Botha

Co-supervisor: Prof. Bertram P. Haskins

April 2022

Declaration

I, Juandre Anton van Heerden, hereby declare that:

• The work in this dissertation is my own work.

• All sources used or referred to have been documented and recognised.

• This dissertation has not previously been submitted in full or partial

fulfilment of the requirements for an equivalent or higher qualification

at any other recognised educational institute.

Juandre Anton van Heerden

i

This thesis is dedicated to the memory of my father, Anton van Heerden.

ii

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisors Prof.

Reinhardt A. Botha and Prof. Bertram P. Haskins for their continuous sup-

port during my Master’s study. Furthermore, I would like to express my

gratitude for their patience, motivation, enthusiasm, and immense knowl-

edge. Their guidance assisted me throughout the research and writing of

this dissertation. I could not have imagined having better supervisors for my

Master’s study.

Furthermore, I would like to thank the following benefactors for their

financial assistance:

• The financial assistance of the National Research Foundation (NRF)

towards this research is hereby acknowledged. Opinions expressed and

conclusions arrived at, are those of the authors, and are not necessarily

to be attributed to the National Research Foundation.

• The financial assistance of the Nelson Mandela University’s Post Grad-

uate Research Scholarship (PGRS) is also hereby acknowledged.

Finally, I must express my very profound gratitude to my family for pro-

viding me with unfailing support and continuous encouragement throughout

the process of researching and writing this dissertation. This accomplishment

would not have been possible without you. Thank you.

iii

Abstract

The volume of information generated lately has led to information overload,

which has impacted researchers’ decision-making capabilities. Researchers

have access to a variety of digital libraries to retrieve information. Digital

libraries often offer access to a number of journal articles and books. Al-

though digital libraries have search mechanisms it still takes much time to

find related research papers.

The main aim of this study was to develop a model that uses machine

learning techniques to recommend related research papers. The conceptual

model was informed by literature on recommender systems in other domains.

Furthermore, a literature survey on machine learning techniques helped to

identify candidate techniques that could be used.

The model comprises four phases. These phases are completed twice, the

first time for learning from the data and the second time when a recommen-

dation is sought. The four phases are: (1) identify and remove stopwords, (2)

stemming the data, (3) identify the topics for the model, and (4) measuring

similarity between documents.

The model is implemented and demonstrated using a prototype to rec-

ommend research papers using a natural language processing approach. The

prototype underwent three iterations. The first iteration focused on under-

standing the problem domain by exploring how recommender systems and

related techniques work. The second iteration focused on pre-processing

techniques, topic modeling and similarity measures of two probability dis-

tributions. The third iteration focused on refining the prototype, and docu-

menting the lessons learned throughout the process. Practical lessons were

learned while finalising the model and constructing the prototype. These

practical lessons should help to identify opportunities for future research.

iv

Contents

Declaration i

Acknowledgements iii

Abstract iv

1 Introduction 1

1.1 Background . 1

1.2 Description of Problem Area 2

1.3 Research Objective . 4

1.4 Research process . 4

1.5 Delineation . 4

1.6 Ethical Consideration . 5

1.7 Chapter Outline . 5

2 Recommender Systems 7

2.1 Information Retrieval . 7

2.2 Collaborative Filtering (CF) 10

2.2.1 Model based collaborative filtering 11

2.2.2 Memory based collaborative filtering 11

2.3 Content-based Filtering . 12

2.4 High level Architecture of Recommender Systems 13

2.5 Hybrid Method . 16

2.6 Summary . 16

3 Overview of Machine Learning Technologies 18

3.1 Machine Learning . 18

3.1.1 Reinforcement Learning 19

v

CONTENTS vi

3.1.2 Supervised Learning 20

3.1.3 Unsupervised Learning 21

3.2 Document Clustering . 21

3.2.1 Document Clustering Applications 23

3.2.2 Document Clustering Procedure 23

3.2.2.1 Term Frequency-Inverse Document Frequency

(TF-IDF) . 24

3.2.2.2 Dimension Reduction 24

3.2.3 Similarity Measures for Document Clustering 24

3.3 Natural Language Processing 26

3.3.1 Morphological processing 27

3.3.2 Syntax and Semantic analysis 28

3.3.3 Semantics and Pragmatic 29

3.4 Topic modeling . 30

3.4.1 Latent Dirichlet Allocation Algorithm 31

3.4.2 Topic Model Validation 31

3.4.3 Additional Topic Modeling Tools and Techniques . . . 32

3.5 Summary . 33

4 Research Methodology 35

4.1 Research design . 35

4.2 Methods . 36

4.2.1 Literature review . 36

4.2.2 Experimentation . 37

4.2.3 Prototyping . 38

4.2.4 Modeling . 39

4.2.5 Argumentation . 39

4.3 Summary . 40

5 Conceptual Model 41

5.1 Model Overview . 42

5.2 Learning . 44

5.2.1 Populating stopword list 45

5.2.2 Why Stemming? . 46

5.2.3 Topics of the model . 46

5.2.4 Measuring the similarities 47

CONTENTS vii

5.3 Processing . 47

5.3.1 Removing the stopwords 47

5.3.2 Stemming of the words 48

5.3.3 Determining the topics 48

5.3.4 Measuring the similarities 49

5.3.5 Processing phase summary 49

5.4 Summary . 49

6 Prototype development 51

6.1 Prototype overview . 51

6.2 Identification and removal of stopwords 54

6.2.1 Extracting the data . 54

6.2.2 Regular expressions . 56

6.2.3 Ligature Characters . 56

6.2.4 Stopword Removal . 57

6.3 Stemming . 57

6.4 Topics for the model . 58

6.4.1 Bag of Words . 58

6.4.2 Topic modeling parameters 60

6.4.3 Selecting the Number of Topics 62

6.5 Similarity between documents 65

6.6 Summary . 66

7 Lessons learned 68

7.1 Pre-processing . 68

7.2 LDA Parameters . 70

7.2.1 Passes . 72

7.2.2 Chunksize . 72

7.2.3 Minimum-probability 74

7.2.4 The number of LDA topics 75

7.3 Latent dirichlet allocation hyperparameters 77

7.3.1 Dirichlet hyperparameter alpha 77

7.3.2 Dirichlet hyperparameter beta 79

7.4 Similarity between probability distributions 79

7.5 Evaluation . 80

7.5.1 Digital Forensics . 80

CONTENTS viii

7.5.2 Privacy . 82

7.6 Summary . 82

8 Conclusion 85

8.1 Revisiting the research objectives 85

8.2 Reflection on the Model . 87

8.3 Research Limitations . 88

8.4 Suggestions for further research 89

8.5 Epilogue . 90

References 91

A Expansion of validation process 104

A.1 Topic: Cloud Computing . 104

A.2 Topic: Neural Network . 105

A.3 Topic: Smartphone Security Awareness 105

A.4 Topic: Bring Your Own Device 106

A.5 Topic: Intrusion Detection . 106

List of Tables

2.1 Comparison between IR and IF systems 9

5.1 Mapping between Terminologies Used in the Study 43

6.1 Stemming words from the data 58

6.2 Test paper and tokenized output 66

6.3 Similarity scores of the most similar academic papers 67

7.1 Results on the number of passes 72

7.2 Results of adjusting the chunksize. 73

7.3 Using minimum probability as 0.00 74

7.4 Results of testing minimum probability values. 75

7.5 Results of testing different number of LDA topics. 76

7.6 Digital forensic similarity . 81

7.7 Privacy similarity . 82

7.8 Summary of the lessons learned 84

A.1 Security in Cloud Computing similarity 104

A.2 Neural Network similarity . 105

A.3 Awareness similarity . 105

A.4 BYOD similarity . 106

A.5 Intrusion detection similarity 106

ix

List of Figures

1.1 Layout of the Dissertation . 6

2.1 Overview of Recommender Systems 13

2.2 Architecture of Recommender Systems 14

3.1 Reinforcement Learning reward system (Sebastiani, 2002) . . . 19

3.2 Classification of NLP . 26

3.3 Steps in Natural Language Processing 27

3.4 Deconstruction of a sentence 29

3.5 A finite automaton and string it generates 30

5.1 Data Analytics lifecycle (Storey & Song, 2017) 42

5.2 The Model Overview . 44

5.3 Learning Component . 45

5.4 Processing phase of the model 48

6.1 High level overview of the prototype 52

6.2 Data on Github . 55

6.3 Statistics of the documents . 55

6.4 Visualisation package for LDA 64

7.1 Alpha and beta representation 78

8.1 Mapping lessons learned to the model 87

x

Listings

6.1 Importing data to the system 54

6.2 Regular Expression . 56

6.3 Replacing Ligature Characters 56

6.4 Stopwords code . 57

6.5 Stemming the corpus . 57

6.6 Scoring the documents . 60

6.7 LDA Parameters . 61

6.8 Topic coherence . 62

6.9 LDA topic output . 63

6.10 Implementation of Jensen-Shannon similarity 65

6.11 Jensen-Shannon function . 65

7.1 Custom list of stopwords . 68

7.2 5 Number of topics . 76

xi

Chapter 1

Introduction

Academic content generation has seen an increase in recent years. Getting

usable research papers has become a problem. In order to produce reputable

and quality papers, vast amounts of research need to be consulted in sev-

eral domains and sub-domains. Reading and working through the additional

research papers can be time consuming and could result in researchers over-

looking important topics and discussions.

This study is a exploratory study into how machine learning (ML) coupled

with natural language processing can aid in identifying usable research papers

with less effort. However, it quickly became clear that machine learning and

natural language processing is rich in aiding techniques and algorithms.

This chapter sets the groundwork of the research project. The problem

area consists of a brief introduction into machine learning, topic modeling and

clustering techniques, leading to the problem statement. In addition, research

objectives are identified. Thereafter, the research process is described which

was followed to achieve the research objectives. The chapter ends with the

chapter outline for the rest of the dissertation and a brief conclusion to the

chapter.

1.1 Background

Information overload is a real phenomenon in our digital age, and our ac-

cess to knowledge and resources have exceeded our capacity to comprehend.

The emergence of online databases has made the ability to search, find, re-

trieve and summarise documents increasingly difficult. The possibilities have

1

CHAPTER 1. INTRODUCTION 2

increased drastically in recent years of using machine learning (ML), infor-

mation retrieval (IR) and natural language processing (NLP) to ease this

immense task of navigating through the same databases.

Burkov (2019) describes machine learning as a subfield of computer sci-

ence, which uses algorithms to help identify certain objectives. There are

three paradigms of machine learning:

1. Reinforcement learning – primarily focuses on training machine learn-

ing models to perform a sequence of decisions based on data (Mousavi,

Schukat, & Howley, 2018).

2. Supervised learning – is a machine learning task that maps input to

output based on tagged or labelled datasets (Singh, 2019).

3. Unsupervised learning – is defined as mapping inputs to outputs but

the datasets do not contain any tagging or labels (Hastie, Tibshirani,

& Friedman, 2009).

Information retrieval is a mixture of information systems, databases and

data mining techniques (Baeza-Yates & Ribeiro-Neto, 1999). Furthermore,

Baeza-Yates and Ribeiro-Neto (1999) mentioned that information retrieval

includes techniques which aid searching for information in a document. An-

other technique, called text mining, also intersects information retrieval and

machine learning.

The text mining approach seeks to identify words and phrases that could

explain certain underlying structure in the data. Text mining has focused on

analysing co-occurrence data through association rules, distribution analysis,

and different clustering approaches. Utilising these approaches to create

practical categories rather than using predefined categories, opens up a world

of new research options. Krasnov (2018) suggests that topic modeling would

be a useful tool to extract information from textual data.

1.2 Description of Problem Area

As mentioned in the previous section, information overload has become a

real problem in recent years. More specifically, researchers have indicated

that information overload has caused three main difficulties (Al-Kumaim,

CHAPTER 1. INTRODUCTION 3

Hassan, Shabbir, Almazroi, & Al-Rejal, 2021). They are; difficulty to process

the information which was collected, difficulty to find relevant and quality

information and lastly, there are just too much information generated.

Researchers experience difficulty when seeking information they develop

cognitive barriers (Savolainen, 2015). Five sub-types of cognitive barriers are

reported by the study: (1) not able to differentiate between the information

needs and the research needs, (2) inability to formulate information needs,

(3) not aware of the various information sources, (4) low self-efficacy, and (5)

unable to deal with information overload.

The best way to combat information overload from an personal and tech-

nological perspective, is better designed information systems. Such informa-

tion systems will enable the researcher to better balance the scale between

consuming information and understanding it (Bawden & Robinson, 2020).

As mentioned in the previous section, information overload has become

a real problem in recent years. More specifically, researchers have indicated

that information overload has caused three main difficulties (Al-Kumaim

et al., 2021). They are: difficulty to process the information which was

collected; difficulty to find relevant and quality information; and lastly, there

is just too much information generated.

Researchers experiencing difficulty when seeking information develop cog-

nitive barriers (Savolainen, 2015). Five sub-types of cognitive barriers are

reported by the study: (1) not being able to differentiate between informa-

tion needs and research needs, (2) inability to formulate information needs,

(3) not being aware of the various information sources, (4) low self-efficacy,

and (5) inability to deal with information overload.

The best way to combat information overload from both a personal and

a technological perspective, is to have better designed information systems.

Such information systems will enable the researcher to balance the scale bet-

ter between consuming information and understanding it (Bawden & Robin-

son, 2020).

This leads to the following problem statement:

To identify related research papers is a time consuming cogni-

tive barrier.

CHAPTER 1. INTRODUCTION 4

1.3 Research Objective

Research objectives are derived from the problem statement. In order to

satisfy the problem described above, the primarily research objective is to:

Develop a model to recommend related research papers

This model is to be developed with the intention of aiding academics in

any research field. For this to be achieved, the following sub-objectives must

be achieved:

SO1: To identify recommender systems techniques and how they are used.

SO2: To identify machine learning techniques that assist with the recom-

mender task.

The model will include recommender system- and machine learning tech-

niques. The development of the prototype is to show that the model is

feasible to implement. Furthermore, it serves to demonstrate applicability

by using information security South Africa data. Throughout the develop-

ment of the model and prototype practical lessons were learned, which will

be discussed in Chapter 7.

In the next section, the research process will be discussed.

1.4 Research process

Owing to the fact that this research study is primarily experimental in nature,

a model and a prototype were developed. A broader explanation of the

paradigm, the research position itself, and also which methods were used

throughout the study, are presented in Chapter 4.

1.5 Delineation

This study included the development of a prototype that was built using

text mining and natural processing techniques. Furthermore, the techniques

used were not chosen based on experimentation but were derived from litera-

ture. The prototype was developed to identify topics, however the prototype

needs a certain level of manual intervention to validate the recommendations.

CHAPTER 1. INTRODUCTION 5

The prototype was developed in the Python 3 environment and used several

NTLK and Gensim libraries. The dataset was obtained from the Information

Security South Africa website.

1.6 Ethical Consideration

No ethical clearance was needed to complete this study. All of the data was

used from a publicly available source and do not contain personal or sensitive

data. No human interaction was needed to complete this study.

1.7 Chapter Outline

Figure 1.1 provides the layout of this dissertation. It can be categorised into

three parts: Introduction, prototype development, and lessons learned and

conclusion.

The Introduction part includes Chapter 1 to 3. Chapter 1 provides the

introduction and background to this study. This is followed by the problem

statement and the objectives. Lastly, it refers to the research process, which

will be discussed in Chapter 4. Chapter 2 focuses on recommender systems

and what constitutes a recommendation task. Furthermore, it discusses each

recommender system method, along with examples of each. Chapter 3 in-

vestigates the various machine learning technologies that were considered in

this study. Chapter 3 concludes by investigating document clustering and

which techniques should be used.

The model development part includes Chapters 4 to 6. Chapter 4 focuses

on the research process which was followed in this study, highlighting the

research methods used. Chapter 5 deals with the development of the model

derived from the research design chapter. Chapter 6 outlines the techniques

and methods that were used in the development.

As seen in Figure 1.1, Chapter 6 is created with a dual purpose: (1)

while developing the prototype, certain parameters were identified which

influenced the quality of the prototype and model, (2) using recommender

system concepts, machine learning algorithms and data from an information

security conference showed that the model was applicable and feasible.

The lessons learned and conclusion part includes Chapter 7 and Chapter

CHAPTER 1. INTRODUCTION 6

8. Chapter 7 focuses on practical lessons learned during the development of

the model and prototype. Chapter 8 concludes the study by summarising it

and revisits the research objectives and hints to further research to be done.

The lessons learned and conclusion part includes Chapter 7 and Chapter

8. Chapter 8 focuses on practical lessons learned during the development of

the model and prototype. Chapter 8 concludes the study by summarising it.

It revisits the research objectives and hints at further research to be done.

Chapter 8:
Conclusion

Chapter 3:
Overview of Machine

Learning Technologies

Chapter 2:
Recommender systems

Chapter 4:
Research design

Chapter 1:
Introduction

L
e

s
s
o

n
s
 le

a
rn

e
d

 a
n

d

c
o

n
c
lu

s
io

n

Chapter 7:
Lessons learned

Chapter 5:
Conceptual model

M
o

d
e

l d
e

v
e

lo
p

m
e

n
t

Chapter 6:
Prototype development

In
tro

d
u

c
tio

n

Figure 1.1: Layout of the Dissertation

Chapter 2

Recommender Systems

The focus of this chapter is to identify a research problem and methodology

which needs to be followed.

In this chapter, we discuss the background and related work of recom-

mender systems. The following section discusses the history of information

retrieval and how it ties in with information filtering. After that, the various

methods of recommender systems will be addressed. In the latter sections,

a high-level overview will be discussed of the components in a recommender

system. The chapter concludes with state-of-the art recommender systems.

2.1 Information Retrieval

We live in an information age surrounded by technology. Information is the

lifeblood of the technological ecosystem that is spread using smartphones,

tablets, and other computing devices. Owing to technological advances, in-

formation is easily created or distributed. It is apparent that with the ever-

increasing creation of information, researchers are experiencing information

overload, which has a direct influence on academic performance (Suhaimi &

Hussin, 2017).

Information overload can be defined as when an individual, who needs to

make a decision, is trying to ingest a large amount of data, and the amount of

data is larger than the individual’s capacity to process the information (Hey-

lighen, 2002). Researchers have learned to combat information overload by

employing tools consisting of new technology to expose only the information

that is relevant to them, known as information filtering (Hanani, Shapira, &

7

CHAPTER 2. RECOMMENDER SYSTEMS 8

Shoval, 2001).

Information filtering systems stretch across multiple domains and are use-

ful for extracting information out of unstructured or semi-structured infor-

mation bodies like e-mails and documents, for large amounts of text, and

lastly, it can also keep account of the activities of various user profiles.

The above features are not only limited to information filtering systems

but also information retrieval. It is important to remember that information

filtering and information retrieval do work similarly, but differ in character-

istics indicated below, and in summary in Table 2.1.

1. Frequency of use – information retrieval [IR] systems are designed for

one-time, ad hoc users, whereas information filtering [IF] systems are

created for repetitive uses.

2. Representation of information needs – in information retrieval systems,

users interact with queries. In contrast, in information filtering systems,

the long-term needs of users are best saved in user profiles.

3. Goal – information retrieval systems select the information stated in

the query out of the database. Information filtering systems just filter

out irrelevant data.

4. Database – information retrieval systems usually employ static databases

to store and retrieve information. Information filtering works with dy-

namic data.

5. Types of users – information retrieval systems do not know the users,

and anyone can pose a query. Users of information filtering systems

need to be known, since the system has models of all the user profiles.

6. Index – information retrieval systems index data based on items and

information filtering systems index based on user profiles.

As highlighted in Table 2.1, information retrieval and information filtering

does work similarly but there are some differences at their core. Resnick and

Varian (1997) mention that sources suggest using recommender systems to

tailor content to users.

The aim of information filtering (IF) is to show only the items that are

relevant to the users (Hanani et al., 2001). The idea was that Information

CHAPTER 2. RECOMMENDER SYSTEMS 9

Characteristics Information Retrieval Information Filtering
Frequency of use ad-hoc use long term users
Representation of information needs queries user profiles
Goal selecting relevant items filtering out irrelevant data
Database static dynamic

Type of users not known to the system
known to the system,
a user model
is saved in the system

Index items user profiles

Table 2.1: Comparison between IR and IF systems

Filtering can be more effective when humans are involved in the filtering

process (Hanani et al., 2001).

Because the spike of product information makes it harder for users to

find what they are looking for online, e-commerce sites like Amazon.com

use collaborative filtering based on purchase history and customer ratings to

make personalised recommendations.

Since the introduction of collaborative filtering in the 1990s, recommender

systems have grown to be a very important research area (Resnick, Iacovou,

Suchak, Bergstrom, & Riedl, 1994; Shardanand & Maes, 1995). The term

‘collaborative filtering’ was coined in 1992 by Goldberg when implementing

one of the first spam-filtering systems (Goldberg, Nichols, Oki, & Terry,

1992).

‘A recommender system is defined as a tool that can recommend a list

of items to a particular set of users based on the user’s preferences’ (Ricci,

Rokach, & Shapira, 2011, p. 4).

They have successfully applied recommender systems to different domains

such as e-commerce, movies, news, music, research, just to name a few.

For example, on Amazon and Netflix users buy and watch more content

that is recommended to them (André et al., 2018) now that the gravity of

recommender systems is emphasised.

Adomavicius and Tuzhilin (2005) have identified three types of recom-

mendation methods. They are:

1. Collaborative filtering (CF)

2. Content-based filtering (CBF)

3. A hybrid method

CHAPTER 2. RECOMMENDER SYSTEMS 10

In the following section, we will discuss the various types of recommendation

methods.

2.2 Collaborative Filtering (CF)

Collaborative filtering systems assume that a user will like the same items as

another user liked in the past. Collaborative filtering systems are popular and

are commonly used in online shopping websites (Nilashi, Jannach, Ibrahim,

Esfahani, & Ahmadi, 2016).

Collaborative filtering focuses recommendations based on similarities be-

tween user ratings. Content-based filtering works a bit differently from col-

laborative filtering, in that users get recommendations based on other users’

preferences in the past. Lastly, the hybrid recommender system employs

both collaborative filtering and content-based filtering methods.

In recent years, researchers adapted the traditional content-based filter-

ing approach to move towards preference-based filtering. This subdomain

focused on predicting items based on the users’ preferences (William, Robert,

& Singer, 1999; Freund, Iyer, Schapire, & Singer, 2003; Jin, Si, & Zhai, 2002;

Jin, Si, Zhai, & Callan, 2003). For example, preference-based filtering can

predict movies based on their order relative to each other and not on indi-

vidual ratings. As stated in the delineation of this dissertation, the focus

will be on rating like-based recommendations since it is a popular approach

(Park, Kim, Choi, & Kim, 2012).

The collaborative filtering (CF) approach works by predicting user pref-

erences for items through learning from past user-item relationships (Celma

& Herrera, 2008). Users give feedback to the system through their prefer-

ences or ratings and then the recommender system provides a list based on

the feedback.

One of the first recommender systems that used the collaborative filter-

ing method was Ringo, a music recommender system (Shardanand & Maes,

1995). A few other systems that have employed collaborative filtering in that

time period can be found in Resnick et al. (1994).

Each method has several advantages and disadvantages, which would

guide recommender system implementation to fit the use case. An argu-

ment in favour of using collaborative filtering is that implementing Memory

CHAPTER 2. RECOMMENDER SYSTEMS 11

based filtering is easy (Bokde, Girase, & Mukhopadhyay, 2015). For exam-

ple, memory-based methods use historic rating data between users or items

to recommend items to people. Another positive aspect is that memory-

based filtering would be preferred when new data is continuously supplied to

the model (Jannach, Zanker, Felfernig, & Friedrich, 2010). Full updates can

be made continuously to the recommending system.

In contrast to the advantages of collaborative filtering, it also does have

disadvantages. Some occur when collaborative filtering runs into a general

issue called the cold start problem. That is when a new user is introduced to

the system, and the system does not know what to recommend to the user.

Collaborative filtering is also less scalable since some systems generate

recommendations for billions of user-item pairs. Finally, in some cases, col-

laborative filtering systems have been found to be manipulated by users

promoting their own items (Resnick et al., 1994).

Collaborative filtering is classified into two methods: memory-based- and

model-based collaborative filtering (Naak, Hage, & Aimeur, 2009).

2.2.1 Model based collaborative filtering

This creates and builds an offline statistical model based on the user-item

pairs seen in the training set. Once the model has been built, it is then

applied in an online setting to recommend as intended (Jannach et al., 2010).

Several techniques are being used in model-based collaborative filtering, such

as probabilistic techniques (Pavlov, Manavoglu, Giles, & Pennock, 2004), and

graph- based techniques (Clements, Vries, & Reinders, 2009).

The preferred ones are the latent factor models that reduces the dimen-

sionality of the matrix and uncover latent topics between users and items.

Some examples of latent factor models include: singular value decomposi-

tion (SVD) for matrix factorisation (Clements et al., 2009) and probabilistic

latent semantic analysis (pLSA).

2.2.2 Memory based collaborative filtering

Jannach et al. (2010) describe memory-based collaborative filtering as rec-

ommendations that are being made on the entire user-item rating matrix. It

computes distance or correlation measures to find user/item similarities. Fur-

CHAPTER 2. RECOMMENDER SYSTEMS 12

thermore, memory-based collaborative filtering looks for either neighboured

users for the target user, user-based, or pairs of items that are rated by other

users (item-based).

In the next section, the content-based filtering method will be discussed,

followed by its advantages and disadvantages.

2.3 Content-based Filtering

The content-based approach to recommendation has its roots in the infor-

mation retrieval (IR) and information filtering (IF) research field. Recently,

much research has been undertaken in the recommendation systems, infor-

mation retrieval and information filtering fields.

Pushing the boundries in terms of what each field can do, content-based

filtering methods analyse a set of features of items that are relevant to the

user and link the user profile based on those items. In essence, the method

links the users to the items (Lops, De Gemmis, & Semeraro, 2011).

There are a few comparisons that can be made between content-based

filtering and IR, outlining the differences and similarities (Belkin & Croft,

1992). The common goal between content-based filtering and IR systems is

to select items that are relevant to the users.

For example, suppose the user is looking for a similar or set of similar

research papers. In that case, the content-based recommender system will

recommend research papers based on the themes found in the current pa-

per; thus, leading us to the advantages and disadvantages of content-based

recommender systems.

One of the disadvantages found in collaborative filtering, is a strength in

content-based filtering. In contrast to collaborative filtering, the cold-start

problem does not apply to content-based filtering since the recommendations

are not made based on ratings from other users.

In addition to the non-existent cold-start problem, building a content-

based filtering recommender system is straightforward and significant in

terms of adding incremental data to the models.

On the other hand, content-based filtering does have difficulty in gener-

ating the features of the items. There are limits to the number and types of

features that one can generate from items.

CHAPTER 2. RECOMMENDER SYSTEMS 13

In addition to the features, domain knowledge is needed. For example,

for research paper recommendations, the system needs to have quite a lot of

data regarding each document, including data such as what topics are being

discussed, and which branch in that specific topic are being covered. The

system needs to distinguish between what the user likes and what not (Lops

et al., 2011).

Content-based filtering often suffers from over-specialisation since it rec-

ommends the same types of item. For example, when inputting a ransomware

research paper into the recommender system, it will only show research

papers which also contain ransomware-related topics. This issue is called

serendipity. Content-based recommender systems tend to lack novelty aware-

ness (Shah, Salunke, Dongare, & Antala, 2017).

In the next section, the high-level architecture of a recommender system

will be discussed.

2.4 High level Architecture of Recommender

Systems

Figure 2.1: Overview of Recommender Systems

This section focuses on introducing the high-level architecture of a recom-

mender system. Each component will be discussed in relation to collaborative

filtering and content-based filtering methods.

As seen in Figure 2.1, in both recommender system methods, we see sim-

ilar components. One component is that of similarity, either between articles

CHAPTER 2. RECOMMENDER SYSTEMS 14

or between other users. Both of the methods have a learning component

where machine learning or information retrieval methods can be employed.

More components will be introduced later in this section. Recommender

systems are strung together to attain a certain goal. The high-level architec-

ture, portrayed in Figure 2.2, will be discussed now:

Learning component

User model
component

UserSimilarity model componentData analyser componentInformation

Figure 2.2: Architecture of Recommender Systems

• The data analyser component – the items are obtained or collected (e.g.

documents) from information providers. The items are then analysed

and represented in a readable format (e.g. in a vector of index terms).

Such a vector will be the input to the similarity model component.

• The user/item model component – it gathers information about the

user and their needs (explicitly and/or implicitly) and is constructed

as user profiles. Then the user profiles will also serve as input to the

similarity filtering component. In most collaborative filtering recom-

mender systems, users will have items recommended based on their

item model. When the system recommends items, it will compare sim-

ilar users.

• The similarity model component – it consists of matching the user

profile or item models to the corresponding items and calculating the

similarity between them.

• The learning component – the user who gets the relevant data item

is ultimately the catalyst for feedback. Furthermore, the data is then

updated with the new user preference to improve further predictions.

Various methods and techniques can be used to integrate content-based

recommender systems: There are many ways to analyse data items and to

CHAPTER 2. RECOMMENDER SYSTEMS 15

represent them in better ways, ultimately to gain more knowledge from the

user to implement back into the user models. More of those techniques will

be discussed in Chapter 3.

Content-based filtering methods can be divided into two categories: (1)

models built in machine learning, such as neural networks, naive Bayes model

and decision trees (Lops et al., 2011), or (2) heuristic functions stemming

from information retrieval techniques (Cantador, Belloǵın, & Vallet, 2010;

Diederich & Iofciu, 2006). The machine learning (ML) methods try to clas-

sify new items that are relevant or not for each user. The authors (Lops

et al., 2011) used the naive Bayes model to create a probabilistic model to

recommend items to users.

The naive Bayes model calculates the probability whether the item is

relevant or not. However, most content-based filtering methods are based on

a heuristic approach, which represents users and items are vectors of TF-IDF

(Jones, 2004) or BM25 (Baeza-Yates & Ribeiro-Neto, 1999) in a vector space

model (VSM).

VSM is a spacial representation of the text documents where each docu-

ment is represented by a vector in an n-dimensional space. Each dimension

corresponds to a term from the overall vocabulary of a document. Recently,

the most popular term-weighting scheme is TF-IDF that considers terms oc-

curing frequently in one document, but do not occur as much in the rest of

the corpus.

Now to compare the two filtering methods, collaborative filtering and

content-based filtering, content-based filtering allows for user independence,

which means that it does not use the other user ratings to find the nearest

neighbours. Content-based filtering uses the ratings provided by the targeted

user to build their own profile. However, one of the most common limitations

that occurs in content-based filtering methods is that the content-based fil-

tering methods cannot provide recommendations if the content does not have

enough features to distinguish one from another (Lops et al., 2011).

Furthermore, this phenomenon raises the need to create domain knowl-

edge to link new features to new items. For instance, commonly in a movie

recommendation system one of the components is to use an external source,

like an ontology, to know who the actors and directors are of the movie.

Another limitation of using content-based filtering is that it recommends ex-

CHAPTER 2. RECOMMENDER SYSTEMS 16

actly the same content as that which the user already rated. This is called

the serendipity problem (Gemmis, Lops, Semeraro, & Musto, 2015). Also,

content-based filtering methods cannot recommend items before they have

gathered enough data from the user, and this is called the cold-start problem

(Lika, Kolomvatsos, & Hadjiefthymiades, 2014).

2.5 Hybrid Method

The term hybrid recommender system comes from the combination of collaborative-

and content-based filtering techniques. The combination of the two increases

their individual performances by reducing the severity of the cold-start prob-

lem. On the other hand, it will diversify the recommendations given to the

user. Three base designs of hybrid recommender systems were presented by

Burke (2002). These are:

1. One base design is a single recommender system that considers a wide

range of input data from other recommendation techniques in one al-

gorithm implementation (Dong et al., 2017). For example, a hybrid

system was proposed to combine features like user ratings, and fea-

tures of the items.

2. Furthermore, another design made an appearance by combining the

two methods. The combination was not in series, but rather paral-

lelised (Sharma & Singh, 2016), taking each method’s output and rec-

ommending both to the user.

3. Lastly, recommender systems are joined together in a pipeline where

the output of one recommender system is the input of the other one.

2.6 Summary

The rise of information creation and content on the internet has created a

problem. In the problem, it was found that researchers are experiencing

cognitive barriers. These barriers include not knowing which pieces of in-

formation are relevant to their study, and actually not obtaining the correct

information to include in their studies.

CHAPTER 2. RECOMMENDER SYSTEMS 17

Information filtering and information retrieval were discovered, which

aided the larger audience to scope down information to only a few lines.

Many employed these techniques in various sections in the industry. These

advances led to the creation of recommender systems.

Each type of recommender system has specific capabilities. This chap-

ter gave a brief overview of what each recommender system method can

achieve. The chapter presented an architectural overview in Section 2.2.

The implementation of the recommender system relies on the use case of the

implementer.

For the use case in this study, the recommender system would need to

have a level of insight with regards to the content. This is necessary as the

system would need to identify specific terminology of a given domain; in

this case Information Security. This study does not have access to historic

recommendation data, but bases its insights on Information Security-related

papers.

As described in Section 2.2, collaborative filtering uses item and user

pairing to recommend items that other users have liked in the past. Fur-

thermore, collaborative filtering does not look at the content of items. The

utility of collaborative filtering did not compliment the use case of the study,

and therefore a content based recommender system was used.

The next chapter, Chapter 3, discusses the various technological concepts

like machine learning, topic modeling, document clustering, and natural lan-

guage processing.

Chapter 3

Overview of Machine Learning

Technologies

The development in machine learning and information retrieval in recent

years has resulted in a surge in recommender systems. However, machine

learning and information retrieval plays an integral part in the success and

failure of a recommender system. This chapter will cover three popular types

of learning: (1) reinforcement learning, (2) supervised learning, and (3) un-

supervised learning. This is followed by document cluster, how it works, and

challenges pertaining to document clustering. This chapter will also investi-

gate the different problems that natural language processing faces and what

tasks are involved. Lastly, topic modeling will be discussed and how it is

used.

3.1 Machine Learning

Machine learning (ML) is a subfield of artificial intelligence that is concerned

with building algorithms which rely on a collection of some phenomenon

(Burkov, 2019). These examples can come from nature, can be created by

developers, or can be generated by other ML algorithms. Machine learning is

also known as attempting to solve problems by: (1) acquiring a dataset, and

(2) automatically building a model using that dataset (Sebastiani, 2002).

The rise of big data in recent years has created the problem of how to

translate untouchable data into knowledge. Technological advances have

enabled machine learning to solve these problems. Machine learning plays

18

CHAPTER 3. OVERVIEWOFMACHINE LEARNING TECHNOLOGIES19

an integral part in the following sectors (Alpaydin, 2010):

• Computational finance – in the credit section of banks, for credit scor-

ing.

• Computer vision – for face recognition, object detection, and motion

detection.

• Natural language processing – for text analysis and text summarisation.

Games or simulations were not mentioned in the list above. Simulations

bring forth a new need that has to be satisfied. Furthermore, simulation

brings a decision-making aspect.

3.1.1 Reinforcement Learning

Reinforcement learning (RL) can be defined as a machine, capable of getting

the state of an environment as input also known as features (Mousavi et al.,

2018). Actions are executed within each state. Furthermore, each action can

give rewards, which can move the machine to another state. As mentioned,

reinforcement learning works on a reward system and each component, as

indicated in Figure 3.1 will be discussed below.

Figure 3.1: Reinforcement Learning reward system (Sebastiani, 2002)

• Autonomous agent - it is the responsibility of the agent to take action.

• Actions - it can be seen as a set of logical steps which are needed to

move forward. An action can occur in two states; either reward or

penalty.

CHAPTER 3. OVERVIEWOFMACHINE LEARNING TECHNOLOGIES20

• Environment - this is the environment in which the autonomous agent

finds itself.

• Reward - the main aim of reinforcement learning is to obtain rewards,

either good or bad.

• State - this is defined as the position in which it finds itself in the

environment. To move around in the environment, the state needs to

keep changing.

The goal of a reinforcement learning algorithm is to learn a near-optimal

policy that thrives on the reward system. A policy is the rules of the

game. Reinforcement learning focuses on addressing problems, which in-

clude decision-making (Burkov, 2019). This works well for games, robotics,

and logistics.

3.1.2 Supervised Learning

Supervised learning (SL) can be defined as a task that is learning the map-

ping between input and output by looking at examples of the input and

output pairs. It creates a model from the labelled training data consisting

of a set of training examples. Labelled suggests that the mapping between

questions and answers, or between input and output, has already been done

(Singh, 2019). For example, take a financial company that wants to look

at users’ profiles to decide whether to give them a loan or not. A machine

learning model would be trained on historical labelled data, which consists of

information regarding the profiles of past customers (Kotsiantis, Zaharakis,

& Pintelas, 2007).

The methodology that is used in supervised learning can sometimes vary

based on the output of the model. Some supervised machine learning algo-

rithms are listed here:

• Logistic regression

• Decision trees

• Linear regression

• Support vector machines

CHAPTER 3. OVERVIEWOFMACHINE LEARNING TECHNOLOGIES21

Another integral part of supervised learning is evaluating the model.

Based on the type of model, the appropriate evaluation metric can be chosen

and applied (Sebastiani, 2002). Furthermore, this can be done by splitting

the training data into two sets: train set, and validation set. Training of

the model would be done on the training set and testing the performance

should be done on the labelled validation set. Changes can be made in the

hyperparameters to improve the performance of the model (Kotsiantis et al.,

2007). Hyperparameters are used to configure various aspects of the learning

algorithm and they have a direct impact on the results and the performance

of the created model.

3.1.3 Unsupervised Learning

In unsupervised learning, a model is trained on similar unlabelled data. Since

the data does not contain labels and is sometimes unstructured, the model

will just be trained without any influence given by labels. In unsupervised

learning, the machine tries to find latent patterns and insights into the data

that can be used in any form. The relevant unsupervised learning algorithms

are:

• Clustering algorithms (document and hierarchical)

• Dimensionality reduction techniques

• Topic modeling

The rest of Chapter 3 will cover different applications of unsupervised

learning, and how they interact with one another.

3.2 Document Clustering

Clustering is the answer to the problem of learning to map a label to examples

based on an unlabelled dataset. Owing to the dataset being unlabelled, one

must decide whether the learned model is optimal, which makes it much

more complicated than supervised learning. Clustering has several use cases

ranging from text analysis to anomaly detection. A common use case for

businesses is to use machine learning-driven clustering for profiling customers

based on their activities and building strategies around these results.

CHAPTER 3. OVERVIEWOFMACHINE LEARNING TECHNOLOGIES22

Search engines have been employing clustering by finding similar searches

and results in one cluster. Document clustering, a branch of clustering, is the

technique that data mining uses, which includes concepts from fields of ma-

chine learning, information retrieval and natural language processing. Doc-

ument clustering organises documents into different groups called clusters,

where the documents in the cluster share some common features according to

the similarity measure. Clustering, in general, can produce overlapping clus-

ters or non-overlapping clusters. In an overlapping cluster, it is likely that

multiple clusters can contain the same document (Andrews & Fox, 2007); in

a non-overlapping cluster, the opposite can happen.

An example of supervised learning and unsupervised learning, in terms of

document clustering, can be in document classification, where all the classes

and their properties are known beforehand. In document clustering, all the

properties or other information are unknown. Thus, classification is an ex-

ample of supervised learning, and clustering is an example of unsupervised

learning (Andrews & Fox, 2007). Document clustering can be broken down

into two sections: hard clustering and soft clustering (Chen, Tseng, & Liang,

2010). Furthermore, soft clustering can be broken down even more, into

partitioning and hierarchical.

• Hard clustering - this clusters the features to exactly one cluster.

• Soft clustering - clusters feature into multiple clusters. For example, if

the titles of papers need to be clustered, ‘natural language and infor-

mation retrieval’ would be clustered in both the cluster names ‘natural

language processing’ and ‘information retrieval’.

– Partitioning - this type of clustering splits the documents into a

fixed number of clusters. An example is k-means clustering (Chen

et al., 2010).

– Hierarchical - this is commonly known as taking shape as a tree

of clusters.

In this section, we discussed what document clustering is, covering the

different types of clustering. In the next section, the applications of document

clustering will be discussed.

CHAPTER 3. OVERVIEWOFMACHINE LEARNING TECHNOLOGIES23

3.2.1 Document Clustering Applications

As mentioned above, document clustering falls within supervised learning

and can be used in various fields like business and science (Jain, 2010). The

origin of document clustering research was to improve recall or precision in

information retrieval (IR) systems; however, recently the application of doc-

ument clustering has evolved drastically. The rate of development in technol-

ogy has spiked research on how to improve document clustering (Alhawarat

& Hegazi, 2018; Mekonnen & Abdullayev, 2017).

Document clustering can be applied in different ways (Abualigah, Khader,

Al-Betar, & Alomari, 2017): First, it is a system which enables people to find

documents that are similar to that which was inputted. Using document clus-

tering enables systems to find other documents that are similar semantically

(Shah & Mahajan, 2012). Second, it is useful to organise large numbers of

documents into a taxonomic structure. Third, the number of documents in

the information ocean created a need to find duplicates.

Clustering use cases includes plagiarism detection, identifying related

news stories and fake news, and optimises search engines (Jin, Cao, Zhang,

& Luo, 2016). Lastly, in the most basic form, papers are recommended for an

academic based on the papers they have already read. This can be done by

using clustering and employing other features of the text, ultimately improv-

ing the quality of recommendations. The use of latent Dirichlet allocation

and content-based filtering is evidence that it can work well, as depicted in

Yeh and Wu (2010).

3.2.2 Document Clustering Procedure

Moving from a collection of documents to a cluster of documents a few pro-

cesses need to be followed. The processes generally comprise three compo-

nents: (1) feature extraction and selection, (2) document representation and,

(3) document clustering (Shah & Mahajan, 2012).

Feature extraction takes the document and applies pre-processing steps

to it. Cleaning the text includes the removal of stop words, which should be

updated with the domain’s most common keywords, which would not add any

value from a semantic perspective. The document should then be analysed

and features should be extracted (Mugunthadevi, Punitha, Punithavalli, &

CHAPTER 3. OVERVIEWOFMACHINE LEARNING TECHNOLOGIES24

Mugunthadevi, 2011). Then, looking at the extracted features, selecting the

right ones would be an important exercise to remove further noise. The ben-

efit is that dimensionality is also reduced through only selecting the wanted

features; it helps by enabling better data understanding (Wei, Yang, Hsiao,

& Cheng, 2006).

After the document has been stripped of all the unnecessary features, the

documents are then left with only the features which scored the highest in

the metric score (Shah & Mahajan, 2012). Term frequency (TF) would be an

example of feature selection metrics. The documents are then grouped into

clusters based on their features and the metric scores which were calculated

(Wei et al., 2006).

3.2.2.1 Term Frequency-Inverse Document Frequency (TF-IDF)

The dataset that will be clustered will be presented as a set of vectors of an

object. Vector space model (VSM) is a model that represents text documents

as vectors (Clark, 2015).

Term weight value can be defined as the noteworthiness of a specific

term in a document. This can be calculated by the number of times the

term occurs within the document over the entire dataset. Term frequency

with inverse document frequency (TF-IDF) is the most commonly used term

weight scheme (Cui & Potok, 2005). More frequent the words in a document

the more important (Peng, Kou, Chen, & Shi, 2006).

3.2.2.2 Dimension Reduction

The increase in vast amounts of data has highlighted the inefficiency of most

dimension reduction algorithms (Mugunthadevi et al., 2011). These algo-

rithms are used for feature extraction and feature selection. While feature

extraction is taking place, new features are combined with the original fea-

tures, which causes the computation load to increase. In contrast to feature

extraction, feature selection selects the features directly

3.2.3 Similarity Measures for Document Clustering

Cluster similarity is based on the measurements between objects. Three main

steps are involved to determine the similarity between objects: (1) Identifiers

CHAPTER 3. OVERVIEWOFMACHINE LEARNING TECHNOLOGIES25

need to be used to characterise the objects; (2) a weighting scheme needs to

be selected; and (3) a similarity coefficient needs to be selected to determine

the degree of resemblance between two vectors (Willett, 1988).

Cluster accuracy is the precise distance between a pair of objects must

be known in terms of either similarity or distance. Distance and similarity

measures have been proposed and are used widely, for example (1) Cosine

similarity, (2) Jaccard correlation coefficient, (3) Euclidean distance, and (4)

relative entropy (Huang, 2008). An overview of the similarity measures are

discussed in Huang (2008).

• Euclidean distance - this is a standard metric for geometrical problems.

It is the distance between two points and is the default distance measure

used in the k-means algorithm.

• Cosine similarity - the similarity of two documents corresponds to the

correlation between the vectors.

• Jaccard coefficient - the Jaccard coefficient contrasts the sum weight of

shared terms with the sum weight of terms that are present in either

of the two documents but not the shared terms.

• Pearson correlation coefficient - this is an alternative to measure two

vectors.

• Kullback–Leibler divergence - this can be used for evaluating the dif-

ferences between two probability distributions.

• Jensen–Shannon divergence - this is based on the Kullback–Leibler di-

vergence with improved differences, for example, it always returns a

finite value and is also symmetric.

Keeping above overview in mind, the Jensen–Shannon divergence has

been reported to make a positive contribution when comparing two proba-

bility distributions (Uto, Louvigné, Kato, Ishii, & Miyazawa, 2017; Bagul &

Barve, 2021).

CHAPTER 3. OVERVIEWOFMACHINE LEARNING TECHNOLOGIES26

3.3 Natural Language Processing

Natural language processing (NLP) is a sub-discipline of artificial intelligence

and linguistics. The goal of natural language processing was to ease the

user’s work and to communicate effectively with a computer (Khurana, Koli,

Khatter, & Singh, 2017). Since some users are not proficient in machine

programming languages, NLP alleviates the pressure that time or lacking

the ability to perfect machine language has on a person (Russell & Norvig,

2016).

A language can be defined as a set of rules or a set of symbols (Santana,

2016). The symbols can be combined and used to convey information in

a clear and concise manner. This being said, NLP can be classified into

two sections: (1) Natural language understanding; and (2) Natural language

generation, which means to understand and to generate text as seen in Figure

3.2.

Syntax

Morphology

Pragmatics

Natural Language
Understanding

Natural
Language Text

Phonology

Natural Language
Generation

Natural Language
Processing

Semantics

Figure 3.2: Classification of NLP

Linguistics is the domain where languages are studied, which involves the

meaning of language, and the context in which language finds itself (Bates,

1995). The important terminologies of NLP are: (1) Phonology, that refers

to the relationship in sound, (2) Morphology, which refers to word formation,

CHAPTER 3. OVERVIEWOFMACHINE LEARNING TECHNOLOGIES27

(3) Syntax, which is the sentence structure, (4) Semantics, which refers to

the arrangement of words and their meaning (Hassan, Tahir, & Ali, 2021)

and (5) Pragmatics, which refers to understanding.

To simplify the complexity of natural language processing, it can be bro-

ken up into four distinct stages (See Figure 3.3). In a real-world scenario,

these stages seldom occur separately. In the overview that follows, it is as-

sumed that the syntactic analysis and semantic analysis is done by the pre-

processing. The rest of this section contains the processes shown in Figure

3.3.

Syntax

Semantic

Pragmatic

Lexicon

Grammar

Semantic Rules

Contexual
Information

Morphology

Figure 3.3: Steps in Natural Language Processing

3.3.1 Morphological processing

The first logical step in a typical NLP system is morphological processing.

In this step the text will be broken down into sets of tokens corresponding to

the equivalent words, sub-words, and punctuation forms (Bates, 1995). For

example, a word like ‘unnecessarily’ can be broken down into three sub-word

tokens: un - necessari - ly.

Morphology can be defined as a study of how words can be modified

CHAPTER 3. OVERVIEWOFMACHINE LEARNING TECHNOLOGIES28

to have similar meanings but used in different syntactical ways. Modifying

these words is typically done by adding prefixes or suffixes. Generally, word

modification can be broken down into three components:

• Inflection - words can be represented differently based on the syntax in

which they find themselves.

• Derivation - new words are made from existing words. ‘Determines’,

‘determining’, and ‘determined’ all come from the root ‘determine’.

• Compounding: new words are made through the grouping of existing

words. It is not used so much in English (for example, ‘toothpaste’)

but is widely used in other languages.

Outputs from the morphology phase is a set of tokens. These tokens can

contain identifiable data that is needed for the parser to do its job. The next

stage of processing is syntax and semantic analysis.

3.3.2 Syntax and Semantic analysis

A language processor has certain tasks that it needs to perform: that is,

syntax analysis and semantic analysis. There are two main aims for syntax

analysis: (1) to check whether a sentence is well formed, and (2) to break up

the structure to show syntactic relationships between the words. A syntactic

analyser (parser) does this by using a dictionary of words (lexicon) and a set

of syntax rules (grammar). The usage of a dictionary and syntax rules indi-

cates how syntactic categories can be combined to form phrases of different

types (Nation, Snowling, & Clarke, 2007; Feldman, 1999).

This syntax–semantic combination could deconstruct the sentence ‘The

large cat chased the rat’ as follows:

One of the tasks of a language processor is to analyse a sentence and

to produce a formal notation that expresses the semantics of a sentence

concisely; it is called semantic analysis. When constructing a model, semantic

analysis plays the role of finding the meaning of the words in the sentence. In

order for that to happen, the dictionary of the model should include whether

the words are nouns, verbs or adjectives. The grammar rule in Figure 3.4 with

VerbPhrase to Verb, NounPhrase states how the syntactic group is formed.

CHAPTER 3. OVERVIEWOFMACHINE LEARNING TECHNOLOGIES29

Adjective

NounPhrase

Sentence

large

VerbArticle Noun

The

NounPhrase

cat chased the rat

Article Noun

VerbPhrase

Figure 3.4: Deconstruction of a sentence

The key part of this section is understanding that the syntax and semantic

analysis phase is of vital importance for any NLP system or tool. The next

stage of processing is semantics and pragmatics.

3.3.3 Semantics and Pragmatic

After the combined stages, syntax and semantic analysis, the next stage of

processing is pragmatics. There is no clear distinction between semantics

and pragmatics (Mateas & Stern, 2004), but for the purpose of this study we

make the distinction as follows: semantics studies the meaning of the word

and their meaning within sentences, whereas pragmatics studies the same

word and meaning but within a certain context. Doing semantic analysis on

a sentence like ‘The large cat chased the rat’ can only provide a string of

text which translates to the large cat (the identity of the cat). Pragmatic

analysis, like the example supplied, simply maps the actual objects, which

exist in a certain context, to a reference obtained during semantic analysis

(Russell & Norvig, 2016).

This section has provided examples of how analysing human languages

creates certain challenges within the natural language processing domain. In

the next section, we will discuss topic modeling.

CHAPTER 3. OVERVIEWOFMACHINE LEARNING TECHNOLOGIES30

3.4 Topic modeling

Language models have recently been used to aid speech recognition and hand-

writing recognition by showing textual data. Language modelling can be

defined as a probability distribution derived from words in an indexed vo-

cabulary (Croft, Metzler, & Strohman, 2010). A traditional generative model

of a language can be used either to recognise patterns of strings or to generate

documents (Sajjadi, Bachem, Lucic, Bousquet, & Gelly, 2018). The genera-

tive model, as illustrated in Figure 3.5, is a finite automaton that generates

documents.

Figure 3.5: A finite automaton and string it generates

Topic modeling has been used as a technique to identify concepts and

annotate large text corpora, to keep track of topics over time, and to assess

the similarity between topics and documents. The purpose of topic modeling

is to analyse data or documents to look for patterns and latent topics. After

the topics were identified they would be represented by means of a probability

distribution. Topic modeling has been applied actively to several tasks, for

the analysis of scientific patterns (Lau, Collier, & Baldwin, 2012; Yi & Allan,

2009; Wei & Croft, 2006; Yi & Allan, 2009) and in scholarly publication

search engines (Newman, Noh, Talley, Karimi, & Baldwin, 2010).

Topic modeling refers to a range of generative models for language that

specifies procedures by which documents are built (Blei, Ng, & Jordan, 2003).

The most preferred algorithm of topic modeling is latent Dirichlet allocation

(LDA), which describes a generative model for topics and documents (Blei

et al., 2003).

CHAPTER 3. OVERVIEWOFMACHINE LEARNING TECHNOLOGIES31

3.4.1 Latent Dirichlet Allocation Algorithm

Latent Dirichlet allocation (LDA) is a type of topic model that associates

multiple topics of a document. A topic is a distribution over a fixed vocabu-

lary (Chaney & Blei, 2021). In each topic the distribution of words is differ-

ent, assuming the topics are specified before the documents are generated.

The documents are generated through the following processes. Initially, the

random distribution of topics is selected. For each word in the document, a

random topic is selected from the distribution of topics. Finally, a word is

selected from the topic (Blei et al., 2003; Mekonnen & Abdullayev, 2017).

The goal of topic modeling is to discover topics from a collection of doc-

uments automatically. To compute the hidden topic structure from docu-

ments, the probability distribution of the hidden variables given must be

computed (Mimno, Hoffman, & Blei, 2012).

3.4.2 Topic Model Validation

The quality, performance, and efficiency of the topic model must be evaluated

(Ramirez, Brena, Magatti, & Stella, 2012). Topic validations have been

created to compare the quality of different algorithms. The first approach

is to evaluate the topic models based on perplexity, which is calculated on

how well the topics were extracted using the training set and allows the

prediction of the occurrence of words belonging to the training set (Ramirez

et al., 2012).

Other approaches focus on the semantic coherence of the topics. Chang,

Gerrish, Wang, Boyd-Graber, and Blei (2009) introduced human validation

of topical coherence via intrusion tests. The judges had to find the intruder

in the evaluated topics and if the intruder was easily detected that means the

other words have a strong thematic correlation. However, the process requires

manual validation of every built model. Automatic approaches have been

proposed by Newman, Lau, Grieser, and Baldwin (2010), using point-wise

mutual information (PMI) to calculate the co-occurrence in Google search

results for all given word pairs in the topic. This approach achieved similar

results as human judges (AlSumait, Barbará, Gentle, & Domeniconi, 2009).

CHAPTER 3. OVERVIEWOFMACHINE LEARNING TECHNOLOGIES32

3.4.3 Additional Topic Modeling Tools and Techniques

Many researchers have worked on NLP, building tools and systems which

made NLP what it is today. There are tools such as sentiment analysers,

part-of-speech (POS) taggers, Chunking, name entity recognition, emotion

detection, and topic modeling. A sentiment analyser works by extracting

sentiments about a given topic. Sentiment analysis consists of a topic feature

extraction, sentiment extraction, and association by relationship analysis (Yi,

Nasukawa, Bunescu, & Niblack, 2003). Sentiment analysis uses two linguistic

resources, namely the sentiment lexicon and the sentiment pattern database

(Nasukawa & Yi, 2003). It analyses a document for positive and negative

words and gives them a rating on a scale of -5 to +5.

A part-of-speech (POS) tagger can be defined as a piece of software that

reads in text and assigns parts of speech to tokens; parts of speech like noun,

verb and adjective. POS tagging is a daunting task because a word can

represent more than one part of speech at different times. A substantial

amount of research has been conducted in European languages, and research

has shifted to improve POS taggers for other languages like Arabic, San-

skrit (Tapaswi & Jain, 2012), Hindi (Ranjan, Ray, Harish, Sarkar, & Basu,

2003), etc. It can tag and classify words effectively as nouns, verbs, adjec-

tives, etc. Technological improvements for part-of-speech tagging can work

efficiently on European languages but still lacks advancement on Asian lan-

guages (Hirschberg & Manning, 2015). The POS tagger used for the Sanskrit

language uses the treebank technique (Bengoetxea & Gojenola, 2010). Ara-

bic uses the Support Vector Machine (SVM) (Diab, Hacioglu, & Jurafsky,

2004) approach to tokenise, POS tag, and annotate phrases in Arabic text.

Chunking is also known as shadow parsing, it works by labeling pieces of

a sentence with syntactically correlated keywords like noun phrase and verb

phrase (NP or VP). Each sentence that is being tagged starts with a unique

tag marked as begin chunk (B-NP) tag or inside chunk (I-NP) tag. Chunking

can be evaluated by means of the CoNLL 2000 shared task, which provides

test data for chunking (Sang & Buchholz, 2000).

The usage of named entity recognition (NER) in places such as the inter-

net is problematic because people do not use traditional or academic English

(Nadeau & Sekine, 2007). This brings down the overall performance and

CHAPTER 3. OVERVIEWOFMACHINE LEARNING TECHNOLOGIES33

quality of language processing tools. By annotating the phrases unlabelled,

in-domain and out-of-domain data improves the performance compared to

traditional language processing tools (Katiyar & Cardie, 2018).

Emotion detection is similar to sentiment analysis but is used in the social

media scene in the mixing of two languages (English and one other language).

It categorises statements into six different groups based on emotions, namely

sadness, happiness, disgust, fear, surprise, and anger. During the categorising

process, the identification of ambiguous words that are in English and the

other language should commence by determining the base language of the

text. Determining the base language would accelerate the performance and

quality of the detection (Khurana et al., 2017).

Event discovery in social media feeds use a graphical model and NER to

determine whether it contains the name of a person, city, place, etc. The

model operates by listening to noisy data and extracting records and key-

words of the events from multiple data streams. Despite the noise and the

use of irregular language, the model is able to extract records with very high

accuracy (Benson, Haghighi, & Barzilay, 2011).

3.5 Summary

There has been so much achieved in trying to satisfy the problem of infor-

mation overload over the past few years; hence, machine learning has been

used.

Document clustering is a crucial and fundamental pillar in unsupervised

document organisation. In this chapter, we have discussed what document

clustering is, the types of clustering used, and the applications that employ

document clustering. We also discussed the three phases needed to cluster

documents, emphasising the importance of extracting and selecting the cor-

rect features, which later translate in the quality of clusters. The size of

data sets has piqued the interest of researchers to look for alternative ways

to reduce the dimensions of an SVM. Furthermore, we have highlighted the

types of similarity measures that can be used.

Before using document clustering techniques, the data should first be

transformed from raw data to structured data. While working with textual

data, to extract meaning out of data natural language processing techniques

CHAPTER 3. OVERVIEWOFMACHINE LEARNING TECHNOLOGIES34

are commonly used. This chapter discussed three logical steps into to break-

ing down textual data and removing meaningless words.

Topic modeling was also discussed in this chapter. Topic Modeling is com-

monly used to identify concepts by utilising document clustering and natural

language processing techniques. The chapter introduced the algorithm called

latent dirichlet allocation and that perplexity and human validations are used

to look at the quality of topics.

The chapter ends by discussing other topic modeling techniques such as

sentiment analysers, part-of-speech taggers, chunking, name entity recogni-

tion and emotion detection. The next chapter presents the research method-

ology that was followed.

In the next chapter, the research methodology will be discussed.

Chapter 4

Research Methodology

As mentioned in the previous chapter, machine learning has many technolo-

gies that can be harnessed in easing information overload. However, these

technologies should be used in a methodical way. This chapter provides the

reader with information regarding the overall research design and the research

methods used in this study.

The main research approach utilised during this study can be classified

as positivism. Research methods that commonly compliment a positivist ap-

proach are methods that presents facts and data. Research methods used in

this study include: (1) literature review, (2) experimentation, (3) prototype,

(4) modeling and, (5) argumentation that threads these methods together.

This chapter provides insights on how the various research methods were

implemented in this study, by discussing each in turn.

4.1 Research design

This research study has adopted a positivist approach. The positivist paradigm

is based on facts and observation (Wilson, 2014) and reduces the impact that

the researcher’s interpretation has on the study.

Positivist studies usually come from a deductive research approach, whereas

an inductive research approach is manifested within the philosophy of phe-

nomenology (Saunders, Lewis, Thornhill, & Bristow, 2019). The inductive

approach can also be known as inductive reasoning, which begins to look

for patterns from observations and theories. Moreover, inductive reasoning

follows the bottom-up approach, that includes crafting theories or general

35

CHAPTER 4. RESEARCH METHODOLOGY 36

conclusions from specific observations (Saunders et al., 2019).

For example, when searching for emerging themes in data inductive rea-

soning is used (Fereday & Muir-Cochrane, 2006). In contrast, deductive rea-

soning follows the top-down approach, starting with the general and moving

to the specific. It uses facts and rules to arrive at its conclusions (Fereday &

Muir-Cochrane, 2006).

The scientific research domain makes use of this deductive approach. It

enables various theories that are tested. Observational hypotheses can be

drawn from them and ultimately be compared to data (Deese & Bechtel,

1990). In the past, scientific research methodologies employed this approach

when collecting and evaluating data (Marsden & Pingry, 2018).

In the next section, the methods that were followed in this research study

are discussed.

4.2 Methods

This research study was primarily experimental in nature. It did not focus

on the researcher’s interpretation of the data, but rather on the findings

which could be drawn directly from the data. This research study employed

a set of methods, which make up the methodology. These methods include a

literature review, experimentation, a prototype, and the creation of a model.

The upcoming sub-sections provide more detail about how these methods fit

into the research objectives and milestones.

4.2.1 Literature review

A literature review is a process of going through various academic studies

in search of information dealing with the topic at hand (Olivier, 2009). The

literature review in this study focuses on various topics of recommender sys-

tems, document clustering, natural language processing and their application

to recommend related papers using Information Security South Africa past

conference papers. The literature review was conducted to meet secondary

research objectives one and two.

CHAPTER 4. RESEARCH METHODOLOGY 37

4.2.2 Experimentation

As mentioned, the research took on the positivist philosophy. This study

was experimental in nature. As Olivier (2009) discussed, an experiment can

be conducted with the following goals in mind, namely to test a theory, to

prove a theory, and to see whether something interesting happens, which is

also known as an exploratory experiment.

Experiments have three main goals; they are (1) to explore a theory, (2)

test a theory, and (3) prove a theory. It was later added by Olivier (2009)

that it is common for experiments to compare two cases, an older solution

to a newer one to see how they compare. In the context of this study, the

algorithms and techniques identified were used to construct a prototype to

which was used to observe the possibility of using recommender systems,

document clustering and natural language processing techniques together to

satisfy the primary objective.

Testing can be used to see whether a certain theory holds up against

specific cases. In testing a single theory, one should conduct a limited ex-

periment. This may be done to ’feel’ whether the theory is correct, to refine

the theory even more, or to justify a full-scale experiment. For example, an

academic paper recommender system can employ natural language process-

ing techniques to achieve paper recommendations. If it is determined that

the experiment holds true, the theory can either be further refined or a full-

scale experiment can then begin. In contrast to testing a theory, proving a

theory would be conducted to ensure without a doubt that a theory holds

true. Proving the previous theory requires all outside factors, which can be

a hindrance, to be removed.

Lastly, to see if something interesting happens. This experimental goal

has very little structure and provides freedom to play around with certain

ideas. For example, an academic paper recommender system can employ nat-

ural language processing techniques along with topic modeling algorithms to

achieve paper recommendations. Such experiments do not have certain out-

comes and are conducted with no given theory. As mentioned in the previous

paragraph, the experiments had little structure and were accompanied by a

prototype to maximise what there is to learn. The creation of the prototype

and experiments were to satisfy the third research sub-objective.

CHAPTER 4. RESEARCH METHODOLOGY 38

4.2.3 Prototyping

In information technology the term prototype refers to a simplified program

or system that serves as an example or demo of the full-scale program or

system (Olivier, 2009). A prototype usually only has a few characteristics of

the bigger system. The simplicity of the prototype is deliberate because only

the study subject matter will be tested or demonstrated. In the research

environment, the prototype research method cannot be used solely to consti-

tute the research. In other words, it cannot be used as the icing on the cake;

rather, it needs another method to lean on.

Working well with other methods, a prototype can be used in multiple

roles. Commonly, there are four roles that a prototype can take: proof of

concept, prototype for experimentation, prototype for conceptual clarity, and

exploratory research. First, after proposing and constructing a new model

or new concept, researchers build a prototype to prove the concept. In other

words, the statement can be made that the concept can be implemented and

works well in practice. The second role, prototype for experimentation, can

be used to gather all the information about the prototype.

In general, information gathered can range from measuring the speed of

the system and the quality of a model. However, measuring the speed or

quality of a model alone does not make a big research contribution. The

third role, prototype for conceptual clarity, is used when a certain concept

or work is difficult to visualise. Developing the prototype with this role in

mind forces the researcher to focus on the concepts at hand and helps in

not overlooking certain details. Furthermore, after the construction of the

prototype and its merit can be shown, it can be used as a proof of concept.

Lastly, the final role that a prototype can play is in exploratory research.

In all of the other three roles the prototype is constructed to aid the

research process. However, when a model, algorithm or concept is not new

there are still lessons to be learnt by developing it. For example, in 2003 a

new topic modeling algorithm was created called latent dirichlet allocation

(LDA) and it achieved great success in the natural language processing (NLP)

and information retrieval (IR) domains (Blei et al., 2003). However, there

were only a few papers available for the use of LDA in the recommender

systems domain. This is a perfect example of incorporating LDA into a

CHAPTER 4. RESEARCH METHODOLOGY 39

recommender system to see what lessons there are to learn. If a major issue

is identified while constructing the prototype and it can be linked to the

incorporation of LDA and recommender systems, this role of the prototype

can be used to create new knowledge. The quality of the research will,

however, be determined by the interesting data.

4.2.4 Modeling

A model can be defined to capture the essence of the system or process

(Olivier, 2009). In addition, a model needs to be expressed clearly and con-

cisely. In the context of this study, the model was created as to achieve the

primary research objective. The construction of the model commenced after

the literature reviews, which satisfied sub-objectives one and two. It then

became an iterative process between constructing the model, to build the pro-

totype, and to do experiments on it. The feedback from the experimentation

ensured amendments to the model.

Furthermore, Olivier (2009) states that a model captures the essence or

core of a system or process. All of this while it ignores all the aspects that

do not bring value. The model in this study was the main method, and the

prototype was created to support it. An experiment can be used to validate

a model. For example, defining a model that takes academic research papers

that learns trends from the academic research papers. The model can be

validated by creating a prototype. Where users can look for recommendations

based on one of users papers, which the prototype has never seen. In theory,

the model looks like it works; however, using an experiment, the model can

be tested in practice (Steenkamp & Mccord, 2007).

4.2.5 Argumentation

Argumentation can be seen as the thread which ties several statements to-

gether. As mentioned, arguments string from facts to create a premise on

which conclusions can be based. An argument can be supported by other

arguments, it can derail other arguments, or highlight main ideas (Walton,

2009).

This study used argumentation throughout the development of the model.

Deductive argumentation was used to develop a theory to create and test a

CHAPTER 4. RESEARCH METHODOLOGY 40

high-level model, diving deeper into which algorithms were needed to address

the primary objective.

4.3 Summary

This chapter has discussed two major points: (1) the paradigm in which the

research finds itself, and (2) the collection of methods which the study em-

ployed to achieve the main research objective. The aim of the research was

to explore the possibility of using natural language processing and informa-

tion retrieval techniques to satisfy the research objective; thus making it an

exploratory study.

The literature reviews reported on in Chapters 2 and 3 showed viable

avenues and options to pursue. This finding ensured that the model would

be based on pre-existing knowledge, establishing it in the domain of episte-

mology. The second half of the chapter covered the different methods used.

A survey of the literature to identify trends and algorithms that could be

used in the study was captured in Chapter 3. This was followed by creating

a prototype of the proposed model and running various experiments with it,

adjusting certain values every time.

In the next chapter, the construction of the conceptual model will be

discussed.

Chapter 5

Conceptual Model

In Chapter 2, we discussed a brief history and introduced the three main types

of recommender systems. The importance of this exercise was to review the

literature and to determine the inner workings of how recommender systems

work. The corpus of papers revealed that nearly 55% of papers employed

the content-based filtering (CBF) techniques of handling the content and the

ranking system i.e., user profile building. This led to further exploration to

find algorithms and techniques that will complement CBF.

Chapter 3 lay the groundwork and introduces various machine learning

(ML) technologies. Primarily, the literature in Chapter 3 was reviewed to

shed a light on the field of machine. However, it introduced complex in-

terrelationships within its domain and the interaction with others. These

interrelationships created the need to identify and approach employing vari-

ous technologies covered in Chapters 2 and 3.

In Chapter 4, the approach was not only set out, but various stepping

stones also were discovered. The creation of the initial prototype was dis-

cussed in this chapter. Furthermore, common traps and concerns were iden-

tified, i.e. feature extraction, selecting the number of topics, and the tech-

nology used to determine the similarity or to recommend academic papers.

In this chapter, the recommendation model, a conceptual model is devel-

oped to ease the intricacy surrounding the implementation of a NLP based

recommender system.

The recommendation model uses various algorithms and techniques de-

rived from Chapters 2, 3, and 4. In Section 5.1, the model will be discussed

from a birds-eye view. Later in the chapter, we will transition from an ab-

41

CHAPTER 5. CONCEPTUAL MODEL 42

stract level to a slightly more technical one. The above-mentioned technical

overview will be covered in Section 5.2.

2
Data prep

1
Discovery

3
Model planning

6
Operation

4
Model building

5
Communicate results

Figure 5.1: Data Analytics lifecycle (Storey & Song, 2017)

5.1 Model Overview

In recent years, research and development have been focused on creating a

streamlined, widely acceptable data analytics lifecycle.

The goal of the data analytics lifecycle was to have a structure in place

that could aid developers and other researchers. Teams usually learn new

things throughout their projects and often need to go back to the previous

phase to refine their work based on new insights and information they have

uncovered (Dietrich et al., 2015). Each component of the data analytics

lifecycle will briefly be discussed below:

1. Discovery – in this phase, discovering and gathering data is undertaken.

It is essential to frame the data needs best and to obtain the correct

CHAPTER 5. CONCEPTUAL MODEL 43

data according to the requirements.

2. Data preparation – the data must be correctly formatted to be used in

a later phase.

3. Model planning – this phase entails looking at various methods, tech-

niques, and workflows that need to be employed to learn about the

underlying relationships between the variables.

4. Model building – also known as analyze data, this phase focuses on

analysing the data and determining whether the existing tools will suf-

fice to get to the end goal.

5. Communicate results – in this phase, various visualisation techniques

will be considered and a summary will be developed to convey to the

stakeholders.

6. Operationalise – this is also commonly known as making decisions.

This phase focuses on delivering reports, code, and other technical

documents.

Known terminology Study terms Domain of techniques
Discovery Past papers Dataset
Data prep Preprocessing Machine learning - Chapter 4.2.1
Model planning Learning ML + IR - Chapter 3
Model building Human intervention Prototype - Chapter 4.2.3
Communicate results Represent in data frame Discussion - Chapter 7
Operation Enable decision makers Evaluation - Chapter 7.5

Table 5.1: Mapping between Terminologies Used in the Study

With the above being said, the researcher felt the need to provide a

mapping between the terminology used in the research domain and this study.

As seen in Table 5.1, it should be known that when the researcher uses

terminology like past papers, pre-processing, and learning they hold the exact

content of the corresponding terms used in research. The column on the right

in Table 5.1 can be translated to be the domain and/ or section in this study

which addressed each phase of this model.

CHAPTER 5. CONCEPTUAL MODEL 44

Past Papers

Core Configuration

Recommended PapersAcademic
Paper

Processing

Figure 5.2: The Model Overview

This section of the chapter covers the model overview, as seen in Figure

5.2. The model is categorised into three components: (1) past papers, (2)

learning, and (3) processing.

Past papers can be identified as the core of the model. It is made up of

past or historical papers. This will then flow into the learning component,

which is a fundamental stepping stone in defining what needs to be done. In

the processing component, the model looks at the defining functions in learn-

ing and further refines them. The learning and the processing component will

be discussed further in this chapter.

5.2 Learning

The learning component is created by analysing past papers closely. The

goal was to understand better the characteristics which made up the learn-

ing component. The conceptual model is constructed in such a way that it is

not only information security domain-specific. This being said, the charac-

teristics of the learning component were identified and guided by literature.

The characteristics of the learning component are:

CHAPTER 5. CONCEPTUAL MODEL 45

1. Populating the stopword list

2. Stemming

3. Topics of the model

4. Measuring the similarities

Similarity

Stopwords

Stemming

Topics

Figure 5.3: Learning Component

The flow of the learning component is using the stopword list, then stem-

ming those words. Stemming leads into topics that will be generated, and

the similarity of these topics will be measured. As seen in Figure 5.3, the

flow of the learning component leads one character into another. The reason

for this is that the learning component is a continuous process. Each of these

characteristics is described in the following sections.

5.2.1 Populating stopword list

The stopword list was primarily made up of NLTK’s stopword list. The goal

of this choice was to employ a stopword list with a comprehensive list of

words. NTLK is one of the most widely used NLP libraries. Furthermore,

after close consideration, additional words were included in the stopword list

CHAPTER 5. CONCEPTUAL MODEL 46

as time passed. These words were primarily domain-specific such as: (1)

information, (2) technology, and (3) security.

The goal of the inclusion was to retrieve second- or third-tier topics from

the text. The textual outputs of each component of the learning component

were analysed, and words that did not bring any value or primarily domain-

specific words were omitted.

The process of including some words and excluding others was a man-

ual and iterative process. The resulting words were best suitable for the

information security domain and were used as the stopword list.

5.2.2 Why Stemming?

Stemming was employed for the sheer simplicity and thorough work it has

done. To recap, stemming is removing the suffix of the word to return it

to its root form. The Porter stemmer is appropriate to IR research work

involving stemming where the experiments need to be repeatable exactly.

This being said, after consulting the dataset, it was identified that the domain

in which this research position found itself did not need to have a custom-

made stemming solution.

After close consideration, the researcher, along with evidence, used Porter

stemmer from the NLTK library.

5.2.3 Topics of the model

The information technology domain is such a rich field with regard to topics

and sub-topics. It needed to be scoped down to provide better topics for the

algorithm to use. For example, information, technology and security would

be excluded. As seen in Section 5.3, all of the components fed into one

another. In this case, specific topic names were appended in the stopword

list.

The result of the methodology mentioned above was smaller topics. These

were second- and third-tier topics, such as hacking and man-in-the-middle

attacks, respectively. A few of the lower-tier topics fused to make up the

second-tier topics. This also holds for second-tier- and first-tier topics.

CHAPTER 5. CONCEPTUAL MODEL 47

5.2.4 Measuring the similarities

The vast number of topics made it challenging to group similarities of papers.

The topics were too dense from the perspective of dimensionality. For the

scope of this research, similarity algorithms reduced dimensionality. In addi-

tion to the dimension reduction, the unsupervised learning approach made it

viable to use an algorithm to cluster similar topics. This would have a direct

impact on measuring the similarities in the academic papers.

5.3 Processing

In this section, the next phase of the conceptual model will be discussed.

The academic paper processing phase is executed when a new and unseen

academic paper is submitted. Just like the learning component, this phase

also has four components. It is merely an extension of the components found

in the learning component.

In the first step, the fundamental stepping stone was actioned, the removal

of stopwords. The new document had its stopwords removed to simplify and

get the text ready for further analysis. Step two includes taking the text

that was cleaned and stemming it. This removed the suffix and returned the

words to their root form. The goal of Step three was to get the related topics

in the text. The last step, Step 4, focused on using the topic output and

determining the similarities of the topics. These four components are best

described in Figure 5.4, and a brief description of each component is given

in the following sub-sections.

5.3.1 Removing the stopwords

The stopwords are removed from the collection of documents. The goal was

to remove the words that do not bring any meaning to the sentences. These

are terms such as ’specified’ , ’specify’, ’specifying’. The stopword list also

included words such as ’information’, ’security’ and ’technology’.

CHAPTER 5. CONCEPTUAL MODEL 48

Past Papers

Recommended PapersAcademic
Paper

Similarity

Stopwords

Stemming

Topics

Measure
SimilarityRemove

Stopwords

Stem
Words

Determine
Topics

Figure 5.4: Processing phase of the model

5.3.2 Stemming of the words

After the stopwords were removed, the tokenised dataset was then stemmed.

For example, the words mentioned above: ’specified’ , ’specify’, ’specifying’

can be stemmed and will look like the following: ’specif’, ’specif’, ’specif’.

As explained in the learning component section of this chapter, stemming

is removing the suffix of the word to return the term to its root form. The

stemmed words are then used to determine topics.

5.3.3 Determining the topics

This component comprises determining the topics of the dataset. This is

done after the stopwords were removed and after the text was stemmed. A

topic modeling technique was then applied to the dataset after it was trans-

formed. The soft clustered topics looked something like this: ’0.040*”data”

+ 0.033*”file” + 0.024*”encrypt” + 0.021*”cloud”. A similarity ratio of the

terms was calculated, and the most similar terms were clustered together,

forming topics.

CHAPTER 5. CONCEPTUAL MODEL 49

5.3.4 Measuring the similarities

At this point of the conceptual model, the stemmed words that did not

contain any stopwords were pushed through the topic modeling technique.

The product of the previous three components was a collection of topics that

represented the dataset. The collection of topics of the dataset and the topics

of the test set were measured in terms of similarity. The lower the score, the

more similar the two papers were with one another.

5.3.5 Processing phase summary

In this section, we discussed the academic paper processing phase. This

phase was executed when a new document was submitted. The dataset

already removes the stopwords, stemmed, and determined the topics. Once

a new document was submitted, it went through the same process. The

only difference there was that the similarity of the two datasets were then

measured. The topics with the lowest score were most similar.

5.4 Summary

The conceptual model presented in this chapter is a template for finding

similar academic papers. The use case for this research was focused on in-

formation security academic papers. However, it can be used to find any

academic papers across disciplines. The conceptual model was built on a

collection of academic papers or datasets. Various learning components were

identified while surveying the field. The learning components were broken

down into four distinct components: (1) stopword, (2) stemming, (3) topics,

and (4) similarity.

After the learning component was built through experimentation, it was

ready and waiting for new academic papers to do the testing. The academic

paper processing phase could then begin. Just like the learning components,

the academic paper processing phase also has four components.

First, the dataset was cleaned of all the stopwords. Special consideration

was made for the first-tier topics like ’information’ and ’security’, and those

were also included in the stopword list.

Second, once the stopwords were removed, next would be to stem the

CHAPTER 5. CONCEPTUAL MODEL 50

remaining data. Stemming commonly includes omitting the suffix of a word.

This was done to return the word to its root form.

Third, topics were determined by using a topic modeling technique. The

technique helped soft cluster all of the similar terms together, which formed

topics. These topics consisted of the ’training set’ corpora. Once a ’test set’

document appeared, it was run through the same components.

Once we had the ’training set’ and ’test set’ ready, the last component

measured the similarity between the two sets. The new, unseen ’test set’

document was then hard clustered to the most similar set of topics. In the

next chapter, the prototype development will be discussed.

Chapter 6

Prototype development

Chapter 5 introduced the conceptual model. This chapter will discuss ev-

erything that is needed to develop the prototype and performing the experi-

ments. The prototype essentially provides an implementation of the concep-

tual model defined in Chapter 5.

The rest of the chapter will look at each element in the pipeline, as

depicted in Figure 6.1, especially with the focus on the refinements that were

applied. Figure 6.1 illustrates the steps that were followed in the creation of

the prototype. Furthermore, Figure 6.1 shows mappings from the prototype

development and refinement to the various parts which were created in the

conceptual model chapter, in Chapter 5. In addition, the parts that were

intentionally neglected will also be discussed. This chapter will start with a

overview of the development of the prototype.

6.1 Prototype overview

During the development of the prototype, the focused was to document the

process of using one recommender system and discussing the lessons learned

from it. The prototype can be split up into four parts at a system level

view: (1) identification and removal of the stopwords, (2) stemming the text,

(3) topics of the model, and (4) similarity measurement between the test

and training set. Although the identification and removal of stopwords and

stemming can be grouped under pre-processing, it is important to note that

each has an important role in the development of the prototype. Each part

plays a critical role in how usable the text is for further topics modeling.

51

CHAPTER 6. PROTOTYPE DEVELOPMENT 52

Recommendation

Similarity measure

Do pipeline with the test set

LDA model

Ligature characters

Stemming

Regular expression

Normalisation

Stopword removal

Data loading

Pipeline

Populating stopwords

Stemming

Topics of the model

Measuring the similarities

Figure 6.1: High level overview of the prototype

Stopword identification and removal is a process that is applied the same

in the learning phase and testing phase of the prototype, the same goes for

stemming.

As mentioned in section 4.2.4, it is utmost important to develop a proto-

type to validate a model. There will always be lesson to be learned, which

will be discussed in chapter 7.

The prototype was developed to achieve the following goals:

1. To better understand the problem domain, the research problem, and

the solution.

CHAPTER 6. PROTOTYPE DEVELOPMENT 53

2. To show that the natural language processing and topic modeling ap-

proach is feasible.

3. To be used in recommending research papers and to see the relevance

of those recommendations made from the prototype.

The prototype has undergone three iterations, which have supported the

goals stated above. The first iteration tied in with the first goal, to better

understand the domain and to explore a possible solution. The first itera-

tion provided insight by exploring how recommender systems work and the

techniques employed to achieve the desired goal. The second iteration fo-

cused more on the initial pre-processing phase of the prototype along with

the topic modeling algorithm, latent dirichlet allocation (LDA), and what

is to be learned from the development. The topics were later analysed to

assess whether this approach will be sufficient. Lastly, the third iteration

of the prototype was more polished and had refinement applied to it. The

focus shifted slightly from NLP and topic modeling to better the quality of

the recommendations made by the prototype. Throughout the third itera-

tion, several parameters in the LDA algorithm were changed to better the

recommendations. Unless specified otherwise, reference to the prototype will

imply the usage of the third iteration of the prototype.

The researcher decided on Python as the base development environment.

Python is a programming language that has gained its popularity in recent

years for its modularity and effectiveness of handling data. Many developers

have built various libraries in aiding the machine learning and information

retrieval community with better system building.

More specifically, the researcher used Jupyter Notebook to build and test

the prototype. Jupyter Notebook is a web application, which provides a

Python development environment for users. Jupyter Notebook can be used

in various ways: data cleaning, data transformation, statistical modelling,

data visualisation and machine learning. It allows you to create and share

documents that contain live coding, visualisations, and text, thus making it

perfect for reproducability of the prototype and making the experimentation

easier. Every part of the prototype will now be discussed along with the

various components related to each part.

Code snippets were used from:

CHAPTER 6. PROTOTYPE DEVELOPMENT 54

https://github.com/JuandrevanHeerden/Juandre-M-Final

6.2 Identification and removal of stopwords

More frequently than not, looking for papers and analysing them is a daunt-

ing task for most researchers. The problem is that those papers found by

researchers have too much noise to do the necessary, thus creating the need

to clear all the unwanted noise from the text. One of the processes within

pre-processing is called stopword removal.

Pre-processing contains many techniques to clear the text and make it

ready for analysis. These techniques are primarily used in text mining

pipelines to better the text input into Information retrieval systems. These

techniques include tokenisation, stopword removal, and stemming and trans-

forming the data into a vector space later in various text mining algorithms.

Before stopwords can be removed, they first need to be identified. Each

document that needs to be pre-processed contains domain knowledge that

is not shared across other domains. Specific domain knowledge needs to be

identified first, and then certain words need to be applied to the stopword list.

First the data needs to be extracted and analysed. In the next sub-section,

we will discuss how the data was extracted. After that, we will discuss the

steps taken to identify domain-specific words and add them to the stopword

list.

6.2.1 Extracting the data

The data used in this study was obtained from the International Information

Security South Africa Conference website. The articles were downloaded

and documented in a per year fashion. The abstracts, along with the title of

each article, were manually extracted into the form of ten csv files as seen in

Figure ??6.2 Each csv file had two columns named title and abstract.

The collection of csv file were uploaded to github for documentation and

reproducible purposes. A Python library called Pandas was used to handle

the data, as seen in Figure 6.1. Pandas is a well known library, which is

primarily used to manipulate data.

1 # Import Dataset

CHAPTER 6. PROTOTYPE DEVELOPMENT 55

Figure 6.2: Data on Github

2 df = pd.read_csv(’https :// raw.githubusercontent.com/brix -mix/

Fake/master /2006 csv.csv’, usecols = [’abstracts ’,’title’])

3 df1 = pd.read_csv(’https ://raw.githubusercontent.com/brix -mix

/Fake/master /2008 csv.csv’, usecols = [’abstracts ’,’title ’

])

4 frames = [df , df1]

5 df = pd.concat(frames , ignore_index=True)

6 df.head()

Listing 6.1: Importing data to the system

The dataset consists of 254 documents spread over 10 years. As shown

in Figure 6.3, the largest document has 235 words, whereas the document

with the least number of words has 10. The average number of words in the

documents are 110. What this means is that there are about 20 per cent of

the words that will actually have meaning. Usually, out of 100 words used

in a piece of writing, 20 have meaning; the rest are filler words or stopwords.

Figure 6.3: Statistics of the documents

It is best practice to remove all the stopwords and unwanted characters

from your dataset. Junk in equals junk out. In order to achieve good results,

a decision was made to clear the text of unwanted characters. The next

sub-section includes further removal of unwanted text.

CHAPTER 6. PROTOTYPE DEVELOPMENT 56

6.2.2 Regular expressions

Regular expressions can be seen as a sequence of characters that can be used

to search for patterns, and those patterns are used to find and replace those

characters. The nature of the domain of the document suggests that email

addresses and other unconventional characters could be found in the text,

therefore Figure 6.2 was used to remove these characters.

1 text = re.sub("((\S+)?(http(s)?)(\S+))|((\S+)?(www)(\S+))|((\

S+)?(\@)(\S+)?)", " ", text)

Listing 6.2: Regular Expression

This code segment was only run once because all data were already in

one big data frame. Looking at the raw text, the researcher found ligature

characters, which also needed to be removed and replaced. In the next sub-

section more details are discussed.

6.2.3 Ligature Characters

In writing or typography, two or more characters can be merged into one to

form; a glyph or single character called a ligature. Ligature characters were

commonly used in TEX. TEX is a formatting system that was created and

made famous in academia. The ease of executing specific typesetting tasks

gave TEX its popularity.

This research dataset contains older papers published from 2006 onwards,

making it ligature prone. The two ligatures that were found in this research

were; fi and fl. The main reason to replace these ligatures is to normalise

the text, so that readers who do not change their font encodings will have

no problem reading it. As seen in Listing 6.3, the use of regular expressions

was employed to find and replace the ligatures, fi and fl, respectively.

1 # Remove fi and fl ligature characters

2 text = re.sub("fi", "fi", text)

3 text = re.sub("fi", "fl", text)

Listing 6.3: Replacing Ligature Characters

After removing the ligature characters, the normalised, tokenised text is

ready for the stopwords to be removed.

CHAPTER 6. PROTOTYPE DEVELOPMENT 57

6.2.4 Stopword Removal

A stopword can be defined as a word that is commonly used within a sentence.

However, stopwords in this study are standard information security terms

that need to be filtered out to enhance the quality of the topics. This was

a delicate tweaking process. Only after the data were tokenised and viewed

by the researcher a call was made to include several terms. The additional

terms that was added was appended to the stopword list as seen in Listing

6.4, the total number of stopwords totaled 282. After the filler words were

excluded from the corpus, the next step in the pipeline is to stem the words.

1 stop_words = stopwords.words(’english ’)

2 stop_words.extend ([’used’,’using ’,’jam’,’found ’,’plays ’,’

information ’,’security ’,’network ’, ’technology ’, ’bgp’])

Listing 6.4: Stopwords code

6.3 Stemming

As mentioned in Chapter 5, Section 5.2.2, the Porter stemmer is used in the

research (Porter, 1980). The goal of a stemmer is to reduce the forms of

a word to the common base word. Stemmers usually cut off the end part

(affixes) to achieve above goal. Stemmers are easy to implement and do

not need time or resources to complete the task. This research looked at

high performance, low time, or resources spent on normalisation of words.

Stemming was selected to be used in this study based on its simplicity and

the time it takes. In Listing 6.5, we display the code snippet showing how

the stemmer was used.

1 stemmer = PorterStemmer ()

2 def stem_words(text):

3 """

4 Function to stem words , so plural and singular are

treated the same

5 """

6 try:

7 text = [stemmer.stem(word) for word in text]

8 text = [word for word in text if len(word) > 1] #make

sure we have no 1 letter words

9 except IndexError: # catch the exception

CHAPTER 6. PROTOTYPE DEVELOPMENT 58

10 pass

11 return text

Listing 6.5: Stemming the corpus

In Listing 6.5, the core code was to instantiate the Porter stemmer and

feed the data through it. We also encountered some words like ’eod’, which

broke this and needed to insert a try catch, to make the code continue run-

ning.

Word Stemmed word
informational inform
translations translat
evaluating evalu
itemisation item
awareness awar
reference refer
plotted plot

Table 6.1: Stemming words from the data

Some of the words that were found in the data along with their root forms

can be viewed in Table 6.1. The Porter stemmer takes the original word back

to its root form.

In the next section, getting topics for the model will be discussed.

6.4 Topics for the model

This section will be a in-depth continuation of Chapter 5, Section 5.3.3. The

bag of words was the step taken between normalising the data and feeding

it into a topic modeling algorithm. Later in this section, the topic modeling

technique and its parameter refinement will be discussed.

6.4.1 Bag of Words

For the topic modeling technique to compute the latent topics, it needs to

understand the document. Before the text gets to the topic modeling tech-

nique, the text is just tokenised and normalised, thus creating the need to

represent the text in a manner that the topic modeling technique can in-

CHAPTER 6. PROTOTYPE DEVELOPMENT 59

terpret it. The most common technique in natural language processing and

information retrieval is the bag of words (BoW) model.

The bag of words (BoW) model can be used to extract features from the

text. A BoW model is a way to simplify the representation of words in a

document. Note that it is called a ’bag of words’, the order of the words or

sentence of the words does not bear merit. The BoW model is only interested

in known words in the document, and the rest is discarded. Goldberg (2017)

mentions that documents are similar if they have similar content. The BoW

model can be simple to use or rather complex in determining the vocabulary

of known words and how to score the reoccurring words.

Determining the vocabulary will be shown below. Listed are snippets

from a paper dealing with Phishing attacks occurring through email and so-

cial networking sites. Each sentence will be handled as a document. Ignoring

case and punctuation, the sentences are:

• Phishers continuously seek new methods...

• Conducting phishing solely through email...

• Social network phishing and discusses...

After removing stopwords. The unique words here are:

1. ’Phish’

2. ’Method’

3. ’Conduct’

4. ’Email’

5. ’Social’

6. ’Network’

This is a vocabulary of six words from a corpus of 15 words. Scoring the

words can commence once the vocabulary has been selected. There are two

scoring approaches one can follow. They are:

1. Counting the number of times the word is used in the corpus.

CHAPTER 6. PROTOTYPE DEVELOPMENT 60

2. Frequencies can be calculated by how frequently each word is used out

of all the other words.

This research employed the first scoring approach by counting the words.

A library called Gensim with a function of doc2bow was used to count the

number of times the word occurs, converts the word to a word id and then

returns the result as a sparse vector (Rehurek & Sojka, 2010). Scoring the

previous three documents against the vocabulary of six words will look as

follows:

1 Phishers continuously seek new methods = [1, 0, 0, 0, 0]

2 Conducting phishing solely through email = [1, 1, 0, 0,

1]

3 Social network phishing and discusses = [1, 1, 1, 0, 0]

Listing 6.6: Scoring the documents

Each sentence in Listing 6.6 was compared to the tokenised and nor-

malised list. In conclusion, the BOW model disregards context, the meaning

of the words, and lastly, the order in which the words appear. This gives

the BOW model its strength because the more similar words are, the more

similar documents are to each other. In the next subsection, we will discuss

how the vector (BOW) is used in the topic modeling technique.

6.4.2 Topic modeling parameters

In Chapter 3, this study discussed what latent dirichlet allocation is and how

it works. In this section, we will discuss how the LDA algorithm parameters

work, on a deeper level. It should be said that in latent dirichlet allocation

the order of the words do not matter, because of the bag of words model

used in the study.

The dataset consists of several documents, and a document is a distribu-

tion over topics. Each topic within the document is a distribution over words

that is then added to a vocabulary. Latent dirichlet allocation is a probabilis-

tic model that identifies hidden variables within text. To infer such variables

using LDA, the algorithm has parameters that steer the inference process.

These parameters include the number of topics, chunksize, corpus, minimum

probability, id2word, alpha, and beta. The last two parameters, alpha and

CHAPTER 6. PROTOTYPE DEVELOPMENT 61

beta, are known as hyperparameters. All of the parameters will now be

defined:

1. Number of topics – the number of topics to be extracted from the

training set.

2. Chunk size – the number of documents that are processed per training

cycle.

3. Corpus – this is the stream of documents that have been transformed

into a vector.

4. Minimum probability – inferred topics that have a probability score

less than this threshold will be filtered out.

5. Passes - the number of passes the corpus goes through during training.

6. Id2Word – the main feature is mapping word id to words. It also help

to determine the vocabulary size.

7. Alpha – a high value means that text will be represented by more topics

and the inverse also holds true. Low value means that the text will be

represented by fewer topics.

8. Beta – a high beta value means that the topics are represented by more

words.

As seen in Listing 6.7, getting the best topics from the algorithm does

require fine tuning. Most of the parameters have previous workings, which

influence the quality of the topics inferred by die LDA algorithm, for example,

with pre-processing it is garbag- in; garbage-out. Do the number of topics

capture the total number of inferred topics? See in Listing 6.7 the parameters

and values that this research used.

1 def train_lda(data):

2 num_topics = 10

3 chunksize = 300

4 dictionary = corpora.Dictionary(data[’tokenized ’])

5 corpus = [dictionary.doc2bow(doc) for doc in data[’

tokenized ’]]

6 t1 = time.time()

CHAPTER 6. PROTOTYPE DEVELOPMENT 62

7 ten = LdaModel(corpus=corpus , num_topics=num_topics ,

id2word=dictionary , chunksize=chunksize ,

minimum_probability =0.0, iterations =100)

8 t2 = time.time()

9 print("Time to train LDA model on ", len(df), "articles:

", (t2 -t1)/60, "min")

10 return dictionary ,corpus ,ten

Listing 6.7: LDA Parameters

When experimenting with the parameter, the researcher found that it

was not that complex to obtain good topics with minimal tweaking of the

parameters. However, one parameter, the number of topics, is one of the

critical parameters that has the most influence over the quality of the model.

Selecting the number of topics will now be discussed.

6.4.3 Selecting the Number of Topics

Finding the optimal number of topics for the LDA algorithm to provide

better interpretability is a rather daunting task. There are two techniques

to achieve the main goal of selecting the number of topics to be inferred.

First, after running the LDA algorithm with K number of topics, one can

use topic coherence, which scores a single topic by measuring the semantic

similarity. The measurement is made in seeing how the topic is similar to the

high-ranking words in the topic. Topic coherence helps to seek the difference

between semantically inferred topics and topics that are created through

statistical inference.

1 10 topics = CoherenceModel(model =10LDA ,texts=listt ,dictionary=

dictionary ,coherence=’c_v’)

2 0.36285839731827135 = 10 topics

3 0.32723852556113137 = 15 topics

4 0.358826134976557 = 20 topics

5 0.33560120776491093 = 25 topics

6 0.33958962920470964 = 30 topics

7 0.3203274912859999 = 35 topics

Listing 6.8: Topic coherence

As seen in listing 6.8, 10 topics is a coherence model that uses the LDA model

with the number of topics set to 10 and increments by 5 per output. Below

that is the coherence score of a range between 10 to 35 topics respectively.

CHAPTER 6. PROTOTYPE DEVELOPMENT 63

(Stevens, Kegelmeyer, Andrzejewski, & Buttler, 2012) argues that the higher

the coherence score the more semantically similar the topics are. However,

the first ready should normally be ignored and the next highest value should

be used. Based on this, the researcher used 20 topics to infer from the LDA

model.

Lastly, the other technique is more observation based called Eye-balled

method. The technique consists of two main parts. One part is looking at

the output of the LDA algorithm and seeing if the keywords in the topic

are actually making sense. The other part pyLDAvis must be looked at.

PyLDAvis is a visualization tool used to visualize the output of the LDA

algorithm. In listing 6.9 topic 0 can be represented as: bank, mobile, similar,

compute, website and much more. They are ranked from higher to a lower

number between 0 and 1. Closer to 1 means that the weight is reflecting the

importance of a keyword in that topic.

As seen in Listing 6.8, 10 topics is a coherence model that uses the LDA

model with the number of topics set to 10 and increments by 5 per output.

Below that is the coherence score of a range between 10 and 35 topics, re-

spectively. Stevens et al. (2012) argue that the higher the coherence score,

the more semantically similar the topics are. However, the first ready should

normally be ignored and the next highest value should be used. Based on

this, the researcher used 20 topics to infer from the LDA model.

Lastly, another technique, which is more observation-based, is called the

eye-balled method. The technique consists of two main parts. One part is

looking at the output of the LDA algorithm and seeing whether the keywords

in the topic are actually making sense. The other part pyLDAvis must be

looked at. PyLDAvis is a visualisation tool used to visualise the output of

the LDA algorithm. In Listing 6.9, topic 0 can be represented as: bank,

mobile, similar, compute, website, and much more. They are ranked from

a higher to a lower number between 0 and 1. Closer to 1 means that the

weight reflects the importance of a keyword in that topic.

1 [(0,

2 ’0.017*" bank" + 0.011*" mobil" + 0.007*" similar" + 0.007*"

comput" + ’

3 ’0.007*" websit" + 0.007*" student" + 0.007*" system" +

0.006*" digit" + ’

4 ’0.006*" vote" + 0.005*" technolog" + 0.005*" techniqu" +

CHAPTER 6. PROTOTYPE DEVELOPMENT 64

0.005*" framework" +

5 ’0.005*" measur" + 0.005*" domain" + 0.005*" phish" + 0.005*"

toward" + ’

6 ’0.005*" south" + 0.005*" develop" + 0.005*" distanc" +

0.005*" engin"’)]

Listing 6.9: LDA topic output

If the keywords in the topic contain no real words of value, the stopword

list should be updated to remove such words. This is a common occurrence

in domain-specific systems.

The last part of selecting the correct number of topics for the LDA algo-

rithm is using visualisation tools such as pyLDAvis. This visualisation tool

shows the soft clusters that the LDA algorithm provides. As seen in Figure

6.4, each bubble on the left hand side represents a topic. The larger the bub-

ble, the more popular the topic. A good topic is considered to be displayed

as a big bubble that does not overlap with the other bubbles. Therefore, a

smaller sized bubble that overlaps with other bubbles, usually has too many

topics.

Figure 6.4: Visualisation package for LDA

Based on the coherence score and supported by the observations made

in pyLDAvis, the researcher selected the LDA parameter number of topics

as 20. In the next sub-section, the researcher will discuss how the similarity

was calculated between the documents.

CHAPTER 6. PROTOTYPE DEVELOPMENT 65

6.5 Similarity between documents

One of the main goals of this study is to present similar papers to the readers.

In order to do this, the data needs to be tokenised, normalised and cleaned.

After the pre-processing pipeline, the tokenised data should be transformed

into a vector and fed into the latent dirichlet allocation topic modeling algo-

rithm. After a few iterations and fine tuning of the parameters within the

LDA algorithm, the output data can then be used to obtain deeper findings.

The goal of obtaining in-depth information rests on the Jensen-Shannon

Divergence algorithm. As seen in Figure 6.10, we were computing the Jenson-

Shannon Distance (JSD) using Scipy’s entropy. JSD finds the distance be-

tween an input query (LDA topic distribution of a single document) and a

big matrix (the whole corpus), as seen in line 2. In line 5 it returns an array

of length m, where m is the number of document in the corpus.

Later in line 5, the square root of the Jensen-Shannon Divergence is re-

turned because the square root of Jensen-Shannon Divergence is the Jensen-

Shannon Distance. The smaller the JSD, the more similar the two topic

distributions are to each other; in this case, the more similar two documents

are to each other.

1 def jensen_shannon(query , matrix):

2 p = query[None ,:].T

3 q = matrix.T

4 m = 0.5*(p + q)

5 return np.sqrt (0.5*(entropy(p,m) + entropy(q,m)))

Listing 6.10: Implementation of Jensen-Shannon similarity

The Jensen-Shannon function in Listing 6.10 is then implemented in List-

ing 6.11, where it actually computes the JSD and returns the top k smallest

distances. These Jensen-Shannon distances were then used to find the rec-

ommendations of academic papers.

1 def get_most_similar_documents(query ,matrix ,k=10):

2 sims = jensen_shannon(query ,matrix)

3 return sims.argsort ()[:k]

Listing 6.11: Jensen-Shannon function

As mentioned in Chapter 3, the dataset was split into a training set and

a testing set. The testing set comprised only one document. The document

CHAPTER 6. PROTOTYPE DEVELOPMENT 66

Title of test paper Tokenised paper
Testing the harmonised digital forensic
investigation process model using an
android mobile phone

[’test’, ’harmonis’, ’digit’,
’forens’, ’investig’, ’model’,
’android’, ’mobil’, ’phone’]

Table 6.2: Test paper and tokenized output

was kept aside while training the model. The test document was selected

at random using a simple Python random function. The title of the test

paper can be seen in Table 6.2, alongside the tokenised words from that one

document corpus. Interpreting the tokenised data, a fairly good guess can

be made of the content of the paper. The researcher translated the tokenised

data as testing a model in the digital forensic field, looking at mobile phones,

Android more specifically.

Looking at the JSD output of the two topic distributions, whole corpus

and the one document, a recommendation can be made. In Listing 6.3 we

can see that the scores are sorted in ascending order, ranging from 0,426 to

0,603. The smaller the score, the more similar that specific document is to

the test document. However, no hard-coded threshold would have made a

difference in identifying the top most similar documents. These most similar

documents were, in fact, closely similar to the test document.

6.6 Summary

This chapter discussed the prototype development. It outlined the impor-

tance of having a good pre-processing pipeline in place. This entailed feeding

the data that was extracted from PDFs into a JSON format file and stored

on Github for easy access ability. After the data was tokenised and pre-

processed, it was transformed into a vector so the LDA algorithm could use

the data. Through the iterations of fine tuning the parameters of the LDA

model, the number of topics were chosen (20 topics) and fed into the Jensen-

Shannon Divergence similarity model and the papers were all ranked, based

on similarity scores. Smaller similarity scores indicates that a particular pa-

per is very similar to the test paper. The next chapter discusses the lessons

learned while developing the prototype.

CHAPTER 6. PROTOTYPE DEVELOPMENT 67

Title of papers Scores
The design of a wireless forensic readiness model (WFRM) 0.426
Mobile forensics using the harmonised digital forensic
Investigation process

0.452

Enhancing digital business ecosystem trust and reputation with
centrality measures

0.498

Mobile cyber-bullying: A proposal for a pre-emptive approach to risk
mitigation by employing digital forensic readiness

0.497

Remote fingerprinting and multisensor data fusion 0.508
Real-time distributed malicious traffic monitoring for
Honeypots and network telescopes.

0.509

Harmonised digital forensic investigation process model 0.549
Digital forensic readiness in the cloud 0.579
Towards a digital forensic readiness framework for
Public key infrastructure systems

0.592

Bimodal biometrics for financial infrastructure security 0.603

Table 6.3: Similarity scores of the most similar academic papers

Chapter 7

Lessons learned

The previous chapter covered the steps taken to build a prototype of the

model presented in Chapter 5. The purpose of the prototype was to act

as a driver to test various techniques. The prototype was refined based on

similarity scores.

In this chapter, the algorithms and techniques are discussed in greater

detail. The chapter will start off by discussing the rationale when picking

pre-processing techniques, sparking the discussion around the gensim LDA

algorithm, whether the antecedent algorithms and techniques influenced the

similarity measures and lastly, evaluating three topics.

7.1 Pre-processing

In this section, the aim is to discuss pre-processing techniques and the signifi-

cance of choosing the correct combination. Every natural language processing

project has its own set of pre-processing techniques; this study is no different.

The combination of techniques were derived from literature, as discussed in

Chapter 3.

At first, combining the set of techniques was simple to do. However, by

the time the data was at the end of the pipeline, quality inconsistencies could

be seen in Listing 7.1. This established the challenge to clean the data to a

satisfactory level.

1 ’unfortunately ’,’huge’,’used’,’myburg@gmail.com’,’information

’,

68

CHAPTER 7. LESSONS LEARNED 69

2 ’security ’,’aodv’,’A12fD’,’derive ’

Listing 7.1: Custom list of stopwords

The removal of stopwords can be bundled into a three-part process: (1)

regular expressions, (2) removing the stopwords, and lastly, (3) removing

the ligature characters. Throughout the process, three lessons were learned,

not only during the experimentation stage of the study, but also during the

refinement phase.

During the experimentation stage of the study, the first takeaway was that

being too strict with the words in the stopword list would have a negative

impact on the quality of the topics. However, leaving out stopwords on

purpose would render the same results.

Lesson 1 (Goldilock’s dilemma). The identification and removal of stop-

words is a very important part of the pre-processing pipeline. Removing too

many domain-specific words negatively influences the quality of the topics,

and ultimately influences the similarity scores.

Removing too many stopwords would increase the risk of losing the con-

text of the topics, since the approach of this study is to employ unsupervised

learning methods, which makes context key.

Leaving too many stopwords in the pipeline, will make the trained model

convoluted. The model will then soft cluster topics, which brings no signifi-

cant value and will result in inaccurate recommendations.

The optimal number of domain-specific words which are in included in

the stopword list should solely be based on experimentation.

Building on the customisation of the stopword list, a second lesson was

learned. Researchers used different tools for typesetting, where ligatures oc-

cur. Modern typesetting tools use updated fonts, which do not use ligatures.

The problem with it was that the pre-processing techniques could not identify

the ligatures and let them passed unscathed, ending up in the dataset.

Lesson 2 (Problematic ligature characters). Researchers using different tools

for typesetting can result in the pre-processing pipeline excluding words con-

taining ligature characters.

Reducing dimensionality by using pre-processing did play a major part in

the time performance of the algorithms. It decreased the time it took to train

CHAPTER 7. LESSONS LEARNED 70

the models. There were 5446 unique words in the dataset without removing

stopwords. Furthermore, removing more domain-specific words lowered the

unique words count to 3376. Even though the unique words were reduced,

we still needed to apply LDA to the words.

7.2 LDA Parameters

As described in Chapter 6, Section 6.4.2, latent dirichlet allocation has five

parameters and two hyperparameters, which need refinement in order to

achieve quality topics. However, only four parameters and two hyperparam-

eters will be considered as they are the only parameters which need refine-

ment.

The quality of the topics were measured in two ways: by using topic

modeling evaluation techniques and human intervention by the researcher.

First, the coherence score and perplexity were calculated. It should be noted

that a higher coherence score indicates quality topics and simultaneously, a

low perplexity score also indicates quality topics.

Manual intervention has been used in this study to validate the recom-

mendations made. This was done by looking at the test paper, identifying a

few dimensions like:

1. What is the main topic discussed in this paper?

2. What are the secondary topics discussed in this paper?

3. What is the argument made by the researcher in this paper?

Once the dimensions were identified, a similar exercise was done on the

training set. The recommendations was an output of 5 most similar papers,

ranked from the lowest Jensen-Shannon Divergence score (most similar), to

the highest JSD score.

The researcher then looked at the 5 recommended papers and compared

the above-mentioned dimensions to the test paper. In most cases some of

the recommendations were similar. Once the researcher identified some rec-

ommendations to be not similar, the researcher looked at how changing the

LDA parameters would affect the coherence, perplexity scores and, ultimately

influence the recommendations.

CHAPTER 7. LESSONS LEARNED 71

Human intervention was needed to validate if good coherence and per-

plexity scores translated into good recommendations. The observation was

that for some it was true, however, some recommendations with good coher-

ence and perplexity scores were not good recommendations. The researcher

looked at the coherence and perplexity scores for the LDA parameters of the

recommendations.

As mentioned, the number of papers that are recommended is 5. This

number could be increased to see when the recommended papers stopped

being similar however, the study focused on getting the 5 most similar papers

and see how similar they are to the test paper.

Lesson 3 (Manual intervention). When evaluating the quality of the top-

ics generated by the model, even though evaluation techniques like coherence

scores or perplexity indicate good topics, manual intervention is still needed

to validate them.

Every LDA model first needs to establish a base model to gauge a base-

line. As mentioned in Chapter 6, Section 6.4.2, the number of topics was

chosen as 20. Since establishing a base model needs human intervention

to identify and to separate good results from the rest, most of the initial

parameter values were chosen based on previous literature and through ex-

perimentation (Baghel & Dhir, 2010). Optimising for these parameters may

not yield humanly interpretable results.

The LDA parameters needed to be constant throughout the refinement

process. The only parameter that changed was the one that was closely

monitored. The parameter values were:

1. Number of topics - 20

2. Chunksize - 20

3. Passes - 20

4. Minimum probability - 0.001

5. Alpha - 0.1

6. Beta - 0.9

In the rest of the section, the lessons will be discussed that were learned

regarding parameter refinements.

CHAPTER 7. LESSONS LEARNED 72

Number of passes 2 20 200
Time to train the model 0.020 Min 0.138 Min 1.185 Min
Perplexity -7.574 -7.400 -7.3099
Coherence Score c v 0.3056 0.4411 0.4668

Table 7.1: Results on the number of passes

7.2.1 Passes

Exploring the effect that passes have on the model showed a number of

interesting observations. When the number was set to 2 passes, the model

trained within two seconds. The perplexity score was -7.574; this was by far

the highest score from all of the tests. In addition, the coherence score was

also low with 0.3056, which is significantly lower than the rest.

Next, the passes parameter was set to 200. This yielded better results

than the previous one. However, the trade-off was that the model took 1.185

minutes to train. The perplexity score did improve by 0.3 to -7.3099, and

the coherence score also improved to 0.4668.

Lastly, the researcher chose the value 20. The model trained significantly

faster than the previous test. It took merely 8.28 seconds to train the model,

which is a 758% increase on the previous test. Perplexity and coherence

scores were -7.4 and 0.4411, respectively.

The lesson learned was that the performance gain with regard to model

training speed was much better than the increase in quality of the topics.

Passes parameter 2 and 200 both had trade-offs: quality and speed, as refer-

enced in Table 7.1.

Lesson 4 (Quality over quantity). Increasing the number of passes does not

automatically increase the quality of the topics.

Through human intervention, the researcher evaluated the topics to see

whether they were making sense. With the lower passes parameter set, it

was observed that the topics could be read and identified. However, some

topics were spotted containing words which does not fit the topic it was in.

7.2.2 Chunksize

As per the definition, chunksize refers to the number of documents to be used

in each chunk. It is also one of the optional parameters in the gensim LDA

CHAPTER 7. LESSONS LEARNED 73

Chunksize 20 125 253
Time to train the model 0.083 Min 0.059 Min 0.135 Min
Perplexity -7.377 -7.523 -7.422
Coherence score c v 0.591 0.394 0.4674

Table 7.2: Results of adjusting the chunksize.

library. In principle, chunksize should not have an effect on the quality of the

LDA topics. However, after testing the model with various sets of chunksize

parameters, the numbers shows a different story.

As seen in Table 7.2, a chunksize of 20, 125, and 253 greatly affected the

time taken to train the model, the perplexity value and lastly, the coherence

score.

It was anticipated that reducing the chunksize, the model would take

longer to train. Looking at the time values in Table 7.2, with a size of 20

the model trained in 0.083 minutes (4.98 seconds). Furthermore, changing

the chunksize parameter to roughly half of the total number of documents,

125, the model trained in 0.059 minutes (3.54 seconds). Using 125 chunksize

decreases the time the model took to train by 28.91%. In contrast to using 253

as the Chunksize, which includes all the documents in the testing set, the time

it took to train the model increased to 0.132 min (7.92 seconds). Comparing

the difference in time the model took between 20 and 254 chunksizes was

37.12%.

Moving to the perplexity scores of each iteration: 20, 125, and 253, re-

spectively, a chunksize of 20 produced a perplexity score of -7.377, which was

the lowest compared to all the others. This signifies that the model using a

chunksize of 20 produced better topics then the rest. However, this means

that it is only slightly better than using 125 and 253 chunksizes. A perplexity

score of -7.377 is an increase of 1.9% and 0.6% compared to using the other

chunksize numbers.

The coherence score of these tests proved that using a smaller chunksize

does take longer to train the model; however, it does yield better results.

As seen in Table 7.2, using a chunksize of 20 outperformed the rest by a

big margin. Comparing the test sets, 20 to 125, and 20 to 253, there was a

decrease in coherence score by 33.33% for the first comparison and a further

decrease by 20.9% for the second comparison.

CHAPTER 7. LESSONS LEARNED 74

Probability Topic
0.002 softlift
0.001 distanc
0.001 popul
0.001 residenti
0.001 dcss
0.001 profil
0.000 wherea
0.000 incom
0.000 strongli

Table 7.3: Using minimum probability as 0.00

The lessons learned when comparing these above-mentioned results lead

to the following point. After each test set the researcher looked at the topics

to evaluate the readability and to see whether the topics can be interpreted to

something of value. However, after close inspection, no noticeable difference

could be flagged.

Lesson 5 (Chunksize has little influence). Increasing the chunksize does not

have a significant influence on the quality of the topics.

7.2.3 Minimum-probability

As unwanted words filter through the pre-processing pipeline into the trained

model, one of the ways to combat this is to have a minimum probability value

set. Table 7.3 shows how using no minimum probability threshold can run

the risk of picking up unwanted words, which translate to topics.

Table 7.4 details the results of testing different minimum probability val-

ues. Setting the various probability values did not yield any impact on the

time it took to train all the models. One would expect to see the model being

trained faster as the minimum probability value increased. This was, in fact,

the case. Comparing the perplexity score of the three models revealed that

increasing the probability value did not impact the perplexity score.

It was highly anticipated that minimum probability would have a direct

impact on the coherence score since it measures the quality of the topics.

The take-away from these refinements was that, as the time and perplexity

score were not affected by the parameter, the coherence score was.

CHAPTER 7. LESSONS LEARNED 75

Minimum Probability 0.00 0.001 0.1
Time to train the model 0.081 Min 0.078 Min 0.077 Min

Perplexity -7.381 -7.385 -7.381
Coherence score c v 0.444 0.536 0.6203

Table 7.4: Results of testing minimum probability values.

The value of 0.1 produced the best coherence score; however, human

intervention needed to take place. Increasing the value to 0.1 meant that

infrequently used terms would be disregarded. In the context of this dis-

sertation, the data set consists of abstracts which do not contain a large

text.

In light of the results shared in Table 7.4, the researcher chose the min-

imum probability of 0.01 to be used in the main model. The lesson learned

was that if the parameter minimum probability was tweaked too high, most

of the words that would add context to each set of topics would be omit-

ted. This being an unsupervised machine learning proposed model, running

certain risks would be unavoidable. It was all about getting the threshold.

Lesson 6 (Probability Dilemma). If the minimum probability is set too high,

the topic model runs the risk of not including certain topics. Smaller doc-

uments often only have a few sentences, which influences the probability of

word occurring. Therefore, the minimum probability cannot be too high.

7.2.4 The number of LDA topics

In Section 6.4.3, the systematic process was discussed that was used in deter-

mining the number of LDA topics. In addition to that, lessons were learned

throughout the process and will be discussed in this section.

The tests varied from 10 topics to 35 topics. In Listing 6.8, the fluctuating

topic coherence scores were a quantitative indication of the most suitable

number of topics. However, the process still needed human intervention to

confirm that the topics were making logical sense.

Keeping in mind that the corpus (ISSA Conference papers) was rich in

topics, the conference papers contained about 15 primary and secondary

topics; essentially, picking 10 or 15 LDA topics to try to represent the topics

from the text failed.

CHAPTER 7. LESSONS LEARNED 76

Number of LDA topics 5 20 50
Time to train the model 0.053 Min 0.079 Min 0.125 Min

Perplexity -7.341 -7.488 -7.611
Coherence score c v 0.34 0.35 0.41

Table 7.5: Results of testing different number of LDA topics.

The first lesson that was learned in this process was that a low number

of LDA topics will not represent the true topic depth of the text. In Listing

7.2, only five topics were chosen and we can derive the general themes they

represent. Running the model again will render different results; thus show-

ing that lowering the number of topics will result in wasting potential LDA

topics and ultimately skew our recommendation at the end of the pipeline.

It is understood that every time the model runs, there is a chance that

it will provide slightly different results. However, increasing the number of

LDA topics would provide a safety net that the strong topics will always

prevail.

1 Topic 1 - 0.016 system + 0.016 user + 0.011 social + 0.011

privaci + 0.010 manag

2 Topic 2 - 0.027 south + 0.024 risk + 0.016 africa + 0.015

popi + 0.013 govern

3 Topic 3 - 0.063 forens + 0.054 digit + 0.042 investig + 0.020

data + 0.014 databas

4 Topic 4 - 0.030 network + 0.025 mobil + 0.022 attack + 0.019

detect + 0.018 applic

5 Topic 5 - 0.027 cloud + 0.022 servic + 0.017 comput + 0.015

pattern + 0.012 face

Listing 7.2: 5 Number of topics

In Table 7.5, three tests were undertaken, which included time taken to

train the model based on the number of topics, the perplexity values per

number of topics and lastly, the coherence score of each.

It was to be expected that the time would increase as the number of topics

grew in size. The time increased by 49.05%, and then by 58.22% starting

from five topics to 20 and ending off with 50 topics.

Furthermore, the lesson learned from observing the perplexity score over

time in Table 7.5, was that with every step from five to 20 to 50 topics,

the score gradually decreases. It is to be expected that the perplexity score

CHAPTER 7. LESSONS LEARNED 77

will flatten out as the number of topics increase. However, as stated in a

previous lesson learnt, human intervention will be needed to validate whether

the topics still make semantic and logical sense.

Lesson 7 (Flatten the curve). The perplexity score will flatten out as the

number of topics gradually increase.

Looking at the coherence score, which also gradually changes over time,

human intervention is still needed. The coherence score increases with 2.9%

and 17.14% with each increase of topics.

7.3 Latent dirichlet allocation hyperparame-

ters

In this section the lessons learned regarding the two hyperparameters, alpha

and beta, will be discussed. The hyperparameter beta will be also referred

to as eta (gensim).

Figure 7.1 illustrates the interconnectivity between documents, topics and

words, furthermore, showing that favouring one of these two hyperparameters

will result in either of two things:

• High alpha - the documents will have high number of topics contribut-

ing to them.

• High beta - the topics have a high number of words contributing to

them.

In the rest of this section, the lessons learned for both of these hyperpa-

rameters will be discussed.

7.3.1 Dirichlet hyperparameter alpha

Choosing a value of alpha or beta (eta) can be a tricky task, since these two

hyperparameters have an direct impact on the topic modeling results. A high

alpha means the documents contain more topics.

The researcher experimented with various alpha values. These values

were 0.01, 0.1, and 0.5. It was discovered that using the above-mentioned

CHAPTER 7. LESSONS LEARNED 78

WordsTopics

BetaAlpha

Document

Figure 7.1: Alpha and beta representation

CHAPTER 7. LESSONS LEARNED 79

values, the actual prototype was displaying run time divided by zero errors.

The cause of the errors was linked to the alpha and beta values. The model

was producing explicit zero results.

As Wallach, Mimno, and McCallum (2009) mention, an alpha asymmetric

is good, but an asymmetric beta is not. It was because of the run time errors

that it was decided to set the parameters to auto. This means that the

model learns an asymmetric statistical inference, or prior for short. The

hyperparameter beta will be discussed in the next sub-section.

7.3.2 Dirichlet hyperparameter beta

It was also found that experimenting with various beta (eta) values rendered

the same run time errors observed with the alpha testing. The researcher

also decided to set the hyperparameter to auto, which learns asymmetric

prior from the data.

This approach of setting the hyperparameters to auto, as stated, was

found to benefit the topics generated by the LDA model. Giving the ability

to the data to learn their own prior meant that it should deliver similar

results each time the model ran. Capping or limiting the hyperparameters

would result in run time errors and skewed results.

As mentioned by Griffiths and Steyvers (2004), when working with scien-

tific documents, it is best to use a larger beta (eta) value. The reason is that

it could lead to the model containing a smaller number of topics and could

cover more scientific concepts. This is in contrast to using a smaller beta

(eta) value, which would produce more topics that would address specific

concepts.

In the next section, similarities will be discussed between the probability

distributions.

7.4 Similarity between probability distribu-

tions

In this section, lessons learned will be shared on the process of finding the

similarities between the documents.

In Section 3.2.3, Jensen-Shannon Divergence (JSD) was mentioned to be

CHAPTER 7. LESSONS LEARNED 80

the improved method used to measure similarity between two probability

distributions. The researcher used the Jensen-Shannon Divergence method

to calculate the distance between the two probability distributions. In recent

years, research has indicated that JSD still has relevance today (Tong &

Zhang, 2016; Giles, Ang, Mihaylova, & Arvaneh, 2019; He, Chen, Du, &

Jiang, 2015; Chu & Li, 2010).

As there are no parameters with Jensen-Shannon Divergence, this made

it easy to implement it into the prototype and ultimately, to look at the end

results. Since the goal of this research was not to compare other similarity

measurement methods, the researcher only considered JSD.

In the next section, evaluating the output of the similarity of the proba-

bility distributions will be discussed.

7.5 Evaluation

In this section the observations will be discussed between the test document

and training documents. Observations will be shared to understand whether

and what made the similarity list good or bad. In the next subsection a

single test document with its corresponding list of similar documents will be

discussed.

The layout of the subsection will include observations on what made a

topic like digital forensics and similar documents good, what LDA param-

eters could contribute to the change of similar documents, and how many

documents matched. This structure will continue with what was considered

a good match and what a bad match.

In addition to the layout of the subsections, two topics were selected

to demonstrate the prototype and model. More topics were used in the

experiment, however, these two topics were selected to illustrate the lessons

which were learned during the study. Data related to the the other topics

can be viewed in Appendix A.

7.5.1 Digital Forensics

The title of the test document was ‘Towards a Framework for Enhancing Po-

tential Digital Evidence Presentation’. The contents of the document covered

CHAPTER 7. LESSONS LEARNED 81

JSD SCORE TITLE
0.5372 Towards a digital forensic science
0.6170 A model for secure value-added service subscriptions in cellular networks

0.6172
POPI act - Opt-in and opt-out compliance from a data
Value chain perspective: A South African insurance industry experiment

0.6179 Team formation in digital forensics
0.6306 The current state of digital forensic practitioners in South Africa

Table 7.6: Digital forensic similarity

working towards a framework to develop methodologies and specifications.

The ultimate goal is to enhance the presentation and interpretation of any

legal proceedings effectively.

The recommendation list of documents of the above topic consists of five

documents. The list of recommendations are listed in Table 7.6. Observing

the list, one could argue that the topic, digital forensics, was a good topic to

test with.

The researcher observed that one of the reasons that digital forensics was

a good topic to test with was that there were multiple documents covering

the same topic. This meant that the LDA model had more training data.

Having multiple documents covering the same topic provided more words for

the bag of words representation of the text.

Another observation was that since Jensen-Shannon Divergence had no

real parameters to adjust, little difference could be made in the greater

scheme of things. The majority of the tweaking and working must be done

before getting to the Jensen-Shannon Divergence. The tweaking was done in

the text pre-processing, text representation, and LDA model phases of the

experiment.

Lesson 8 (JSD no parameters). Jensen-Shannon Divergence (JSD) does not

have parameters to refine, thus putting more emphasis on the refinement of

the pre-processing and topic modeling components.

In terms of changing the LDA parameters, it was observed that increasing

the chunksize of the LDA model to cover all the documents in the training

set yielded good results for this specific topic. In addition, increasing the

number of passes during training also yielded good results.

In the next subsection, the topic privacy, similarity list and observations

will be discussed.

CHAPTER 7. LESSONS LEARNED 82

JSD SCORE TITLE
0.5612 A profile of the distance computing student softlifter
0.5820 CDMA in signal encyption and information security
0.6670 Context aware mobile application for mobile devices
0.6671 Towards a framwork for a network warfare capability
0.6676 Adaptable exploit detection through scalable netflow analysis

Table 7.7: Privacy similarity

7.5.2 Privacy

The test document that was used had the title ‘Computer monitoring in the

21st century workplace’ which laid the foundation for a workplace privacy

policy that protects employees.

The recommendation list has also provided the top five documents which

it considers very similar to the document above. As viewed in Table 7.7, the

titles of the documents do not indicate any privacy topics.

The main observation for this subsection is that words that would be

more easily identifiable in the LDA model became lost in the pre-processing

and LDA pipeline.

The other observation was that once the number of topics increased, it

created room for the other topics also to be included. Those topics were

previously the second- or third-tier topics in the LDA model.

Lesson 9 (More is not better). Increasing the number of topics increases the

risk that topics will be included that do not provide any significant value.

As simple as it may sound, compared to digital forensics, there were not

many documents which dealt with privacy and workforce topics.

7.6 Summary

In this chapter, we discussed several themes while developing the prototype.

What changes were needed to be made for the prototype to perform at its

maximum? The other theme was the lessons that were learned while admin-

istering the changes.

The lessons learned from each component, as indicated in Figure 6.1, are

summarised and shared in Table 7.8. The conclusion that is drawn is that

CHAPTER 7. LESSONS LEARNED 83

pre-processing is certainly one of the most important legs in the pipeline

and needs to have most of the time dedicated to it. Each component of the

pre-processing process needs to be closely considered. Removing too many

words can cause documents not to any similarity to others and leaving too

many words can make the LDA model too sensitive.

The experimentation, analysis, and discussion enabled the creation of the

model used in Chapter 6. The model outlines the steps that were needed to

achieve a recommendation list. It also opened discussions so that researchers

can further the research by using additional techniques and algorithms, which

will be discussed in the next chapter.

CHAPTER 7. LESSONS LEARNED 84

Lesson name Lesson
1. Goldilock’s dilemma The identification and removal of

stopwords is a very important part of
the pre-processing pipeline. Remov-
ing too many domain-specific words
negatively influences the quality of
the topics and ultimately, influences
the similarity scores.

2. Problematic ligature characters Researchers using different tools
for typesetting can make the pre-
processing pipeline exclude words
containing ligature characters.

3. Manual intervention When evaluating the quality of the
topics generated by the model, even
though evaluation techniques like co-
herence scores or perplexity indicate
good topics, manual intervention is
still needed to validate them.

4. Quality over quantity Increasing the number of passes does
not automatically increase the qual-
ity of the topics.

5. Chunksize has little influence Increasing the chunksize does not
have a significant influence on the
quality of the topics.

6. Probability Dilemma If the minimum probability is set too
high, the topic model runs the risk of
not including certain topics. Smaller
documents often only have a few sen-
tences, which influences the probabil-
ity of a word occurring. Therefore,
the minimum probability cannot be
too high.

7. Flatten the curve The perplexity score will flatten out
as the number of topics gradually in-
crease.

8. JSD no parameters Jensen-Shannon Divergence (JSD)
does not have parameters to refine,
putting more emphasis on the refine-
ment of the pre-processing and topic
modeling components.

9. More is not better Increasing the number of topics in-
creases the risk that topics will be in-
cluded that do not provide any sig-
nificant value.

Table 7.8: Summary of the lessons learned

Chapter 8

Conclusion

Based on the discussion in the previous chapter, it is clear that using the

various natural language processing and text mining techniques outlined in

Chapter 6 would indeed be possible. It was apparent that adjusting the

parameters of the prototype also played a major role in the quality of the

topics. Later, such topics directly influenced the recommendation list.

This chapter provides a summary of the study to conclude the findings

of the study. The next section will discuss how the research objectives were

reached. After that section, suggestions will be made for future research.

8.1 Revisiting the research objectives

This section facilitates a discussion on how the research objectives were met.

As mentioned in Chapter 1, the primary research objective was to Develop

a model to recommend related research papers.

Achieving the primary objective depended on meeting the secondary ob-

jectives listed in Chapter 1.

SO 1: To identify recommender systems techniques and how they are

used.

This secondary objective was met by surveying the literature about rec-

ommender systems. As the goal of this secondary objective was to map and

understand which techniques are used in recommender systems and how re-

searchers utilise it, I looked at the various approaches that not only fit the

use case of the study but also at which are relevant.

It was decided that the content-based filtering approach would the best

85

CHAPTER 8. CONCLUSION 86

to use since no assumptions are made about user activity. In addition to

this, CBF does not care about user ratings; it looks at the content of the

documents. It was critical to look for approaches that do not rely on user

activity and user ratings. Chapter 2 was dedicated to introducing the con-

cepts of how modern information systems (Recommender Systems) work and

how they have evolved from the past to recent years. A continuation of the

introduction to the fields was found in Chapter 3.

SO 2: To identify machine learning techniques that assist with the rec-

ommender task.

This secondary objective was met by surveying several machine learn-

ing techniques. The goal of this objective was to identify and understand

better what machine learning techniques there are, and how they tie into

recommender type systems.

Machine learning in Section 3.1, natural language processing in Section

3.3, and topic modeling in Section 3.4 paved the way to understand the

technology that would be used in this study.

The selection of the topic model algorithm that would be most suitable

came from literature. More specifically, in Section 3.4 it was discussed that

latent dirichlet allocation (LDA) was a very popular choice for building such

topic models. Furthermore, Section 3.4.1 explains how LDA works, by com-

puting hidden topic structures from documents.

The main research objective was met by consolidating SO 1 and SO 2 to

form a conceptual model. The model was refined by developing a prototype.

To develop such a model, some guidance was needed. The researcher

used the data analytics lifecycle process to harness work done by secondary

objectives one and two. Further refinement was needed on the model to

display research rigour.

The development of the model was documented in Chapter 5, accompa-

nied by the development of the prototype in Chapter 6. A prototype was

developed to refine, ensure the amendments to be done, and showed whether

the model is applicable and feasible. The model demonstrated applicability

since it required domain-specific data for training and this was done using

Information Security South Africa conference data. In addition, the model

also demonstrated feasibility with its ease of using recommender system and

machine learning techniques.

CHAPTER 8. CONCLUSION 87

In the next section, a reflection on the model will be discussed.

8.2 Reflection on the Model

Past Papers

Recommended PapersAcademic
Paper

Similarity

Stopwords

Stemming

Topics

Measure
SimilarityRemove

Stopwords

Stem
Words

Determine
Topics

5. Chunksize has little influence

6. Probability Dilemma

3. Manual intervention

9. More is not better

7. Flatten the curve

4. Quality over quantity

2. Problematic ligature characters

1. Goldilock’s Dilemma

8. JSD no parameters

Figure 8.1: Mapping lessons learned to the model

This section reflects on the model and the accompanying prototype. The

model was developed to identify related research papers. The model specified

the process that needs to be followed and the prototype showed that it is

indeed feasible to implement. The prototype showed that it worked within

the specific domain of information security papers, since we used Information

Security South Africa conference papers from 2006–2016 as data. Addressing

the main objective using the model and prototype, it was shown that it can

be done, theoretically and practically.

CHAPTER 8. CONCLUSION 88

The prototype served a dual purpose. The first was to learn technologies

and to gain first-hand experience related to recommender systems. The sec-

ond was to demonstrate its applicability by using various technologies and

feasibility by using a information security specific domain.

The majority of the lessons learned exists in the topics quadrant of the

model, as depicted in Figure 8.1. It was found that removing the stop-

words and stemming the data meant that it was streamlined and the body of

knowledge was well defined. Removing stopwords and stemming present two

lessons to draw the attention of future researchers to the subtleties in the

area. For testing similarity measures, only Jensen-Shannon Divergence was

tested. Jensen-Shannon Divergence does not use parameters, and therefore

had an big influence on the preceding steps.

This opens up opportunities for future research to be undertaken using

different similarity measure technologies, which do contain parameters.

To get back to the majority of the lessons about determining the topics.

Lessons four, seven and nine show us that if we can define the domain better,

the model will perform better. A trade-off thus exists between accuracy and

generality. In the prototype, the domain was limited to information security

papers by using research papers from the Information Security South Africa

conference.

Moving on to lesson three, manual intervention. It was found that evalua-

tion techniques for machine learning algorithms are well defined and stream-

lined. However, human validation is needed, since bad topics still make it

into the system, thus challenging future researchers to look for methods and

techniques that eliminate such human intervention altogether.

8.3 Research Limitations

This study has some limitations that must be recognised. The first limitation

is that of the sample size. At the time of data collection, the Information

Security South Africa conference only had 254 research papers to use in the

dataset. Of those 254 research papers, certain topics are only discussed in a

limited number. If the topics are scarce during training, the recommendation

task will be very difficult to complete. The goal was to train and test the

prototype using one specific library of one conference.

CHAPTER 8. CONCLUSION 89

The second limitation is that only one topic modeling technique (latent

dirichlet allocation) was used. There were several reasons for this, one of

which is that recent research suggests that when using content-based ap-

proaches, latent dirichlet allocation would be preferred. Considering time

constraints, since this is a Master’s study, we felt it right to go ahead with

the one topic modeling technique.

The third limitation is that this study only uses Jensen-Shannon Diver-

gence to calculate the similarity between the two data spaces (test set and

training set). Similar to the second limitation, time did not allow us to ven-

ture deeper into different similarity measures. The fourth limitation includes

not having a human factor to evaluate each phase individually. The phases

which are referred to are the outputs of the topic modeling technique and

also the end result of the similarity measurement.

Lastly, the fifth limitation is that this study did not compare how different

recommender systems performed (optimisation and recommendations). This

research study focused on documenting the process of using one recommender

system and discussing the observations.

8.4 Suggestions for further research

This section is dedicated to outlining further research to be done on the

limitations which were raised in the previous section. Future research could

possibly be conducted using a conference that has more research papers at

their disposal. It will provide more data to be clustered and will ultimately,

better the similarity measures. This relates to the first limitation.

Reflecting on the second limitation, the study could include multiple top-

ics modelling algorithms and compare the outputs. Examples of such al-

gorithms are: non negative matrix factorisation (NMF) (Purpura, 2018),

latent semantic analysis (LSA) (Qomariyah, Iriawan, & Fithriasari, 2019),

parallel latent dirichlet allocation (PLDA) (Mukherjee & Poovammal, 2019)

and Pachinko allocation model (PAM) (Koltcov, Ignatenko, Terpilovskii, &

Rosso, 2021).

Similarly, the third limitation, using different similarity measures could

lead to different recommendations. Furthermore, mixing different topic mod-

els with similarity measures could yield better results.

CHAPTER 8. CONCLUSION 90

The fourth limitation, which includes human intervention to evaluate each

phase, could speed up the model implementation, since one would be getting

feedback every step of the way. Suggestions for further research can include

looking for methods and techniques that eliminate manual intervention.

Reflecting on the fifth limitation, this study did not compare the perfor-

mance and recommendations of different recommender systems. This lim-

itation can be addressed in future research by considering alternative rec-

ommender systems. Examples of such recommender systems are: a hybrid

model (Sharma & Singh, 2016) and model-based collaborative filtering (Naak

et al., 2009). Future research could possibly be conducted using data sets

which includes user-item pairing data.

8.5 Epilogue

This study identified that it is time consuming for researchers to look for

related research papers. This problem was addressed by developing a model

to recommend related research papers. Throughout the development of the

model and prototype, it was evident that machine learning bridges the gap of

spotting latent themes. However, Chapter 7, the lessons learned, shows that

when other researchers endeavour to explore similar topics, a great learning

curve awaits. The researcher hopes that this study will motivate other re-

searchers to advance the research angle of the traditional topic of natural

language processing and machine learning.

References

Abualigah, L. M., Khader, A. T., Al-Betar, M. A., & Alomari, O. A. (2017).

Text feature selection with a robust weight scheme and dynamic di-

mension reduction to text document clustering. Expert Systems with

Applications, 84, 24–36.

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of

recommender systems: A survey of the state-of-the-art and possible

extensions. IEEE Transactions on Knowledge & Data Engineering(6),

734–749.

Alhawarat, M., & Hegazi, M. (2018). Revisiting k-means and topic model-

ing, a comparison study to cluster arabic documents. IEEE Access, 6,

42740–42749.

Al-Kumaim, N. H., Hassan, S. H., Shabbir, M. S., Almazroi, A. A., & Al-

Rejal, H. M. A. (2021). Exploring the inescapable suffering among

postgraduate researchers: Information overload perceptions and impli-

cations for future research. International Journal of Information and

Communication Technology Education (IJICTE), 17 (1), 19–41.

Alpaydin, E. (2010). Introduction to machine learning (2nd ed.). The MIT

Press.

AlSumait, L., Barbará, D., Gentle, J., & Domeniconi, C. (2009). Topic

Significance Ranking of LDA Generative Models. In W. Buntine,

M. Grobelnik, D. Mladenić, & J. Shawe-Taylor (Eds.), Machine learn-

ing and knowledge discovery in databases (pp. 67–82). Berlin, Heidel-

berg: Springer Berlin Heidelberg.

André, Q., Carmon, Z., Wertenbroch, K., Crum, A., Frank, D., Goldstein,

W., Huber, J., Boven, L. van, Weber, B., & Yang, H. (2018). Consumer

91

REFERENCES 92

Choice and Autonomy in the Age of Artificial Intelligence and Big Data.

Customer Needs and Solutions, 5 (1), 28–37.

Andrews, N. O., & Fox, E. A. (2007). Recent developments in document

clustering (Tech. Rep.). Department of Computer Science, Virginia

Polytechnic Institute & State University.

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval

(Vol. 463). ACM Press New York.

Baghel, R., & Dhir, R. (2010). A frequent concepts based document cluster-

ing algorithm. International Journal of Computer Applications, 4 (5),

6–12.

Bagul, D. V., & Barve, S. (2021). A novel content-based recommendation

approach based on LDA topic modeling for literature recommendation.

In Proceedings of the 6th International Conference on Inventive Com-

putation Technologies, ICICT 2021 (pp. 954–961).

Bates, M. (1995). Models of natural language understanding. Proceedings of

the National Academy of Sciences, 92 (22), 9977–9982.

Bawden, D., & Robinson, L. (2020). Information Overload: An Overview.

Oxford University Press.

Belkin, N. J., & Croft, W. B. (1992). Information Filtering and Information

Retrieval: Two Sides of the Same Coin? In Communications of the

ACM (Vol. 35, p. 29-38).

Bengoetxea, K., & Gojenola, K. (2010). Application of Different Tech-

niques to Dependency Parsing of Basque. In Proceedings of the NAACL

HLT 2010 First Workshop on Statistical Parsing of Morphologically-

rich Languages (pp. 31–39).

Benson, E., Haghighi, A., & Barzilay, R. (2011). Event discovery in social

media feeds. In Proceedings of the 49th Annual Meeting of the Asso-

ciation for Computational Linguistics: Human Language Technologies

(Vol. 1, pp. 389–398).

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation.

Journal of Machine Learning research, 3, 993–1022.

REFERENCES 93

Bokde, D., Girase, S., & Mukhopadhyay, D. (2015). An Item-based Collabo-

rative Filtering using Dimensionality Reduction Techniques on Mahout

Framework.

Burke, R. (2002). Hybrid Recommender Systems: Survey and Experiments.

User Modeling and User-Adapted Interaction, 12 (4), 331–370.

Burkov, A. (2019). The Hundred-page Machine Learning Book (1 ed.). Kindle

Direct Publishing.

Cantador, I., Belloǵın, A., & Vallet, D. (2010). Content-based Recommen-

dation in Social Tagging Systems. In Proceedings of the fourth ACM

conference on Recommender Systems (pp. 237–240).

Celma, Ò., & Herrera, P. (2008). A new approach to evaluating novel

recommendations. In Proceedings of the 2008 ACM conference on Rec-

ommender systems (pp. 179–186).

Chaney, A., & Blei, D. (2021). Visualizing Topic Models. Proceedings of

the International AAAI Conference on Web and Social Media, 6 (1),

419–422.

Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J. L., & Blei, D. M. (2009).

Reading Tea Leaves: How Humans Interpret Topic Models. In Neural

Information Processing Systems (pp. 288–296).

Chen, C.-L., Tseng, F. S., & Liang, T. (2010). An integration of WordNet

and fuzzy association rule mining for multi-label document clustering.

Data & Knowledge Engineering, 69 (11), 1208–1226.

Chu, K.-M., & Li, F. (2010). Topic Evolution Based on LDA and Topic

Association [J]. Journal of Shanghai Jiaotong University, 11.

Clark, S. (2015). Vector Space Models of Lexical Meaning. Handbook of

Contemporary Semantics, 10, 9781118882139.

Clements, M., Vries, A. P. de, & Reinders, M. J. (2009). Exploiting Positive

and Negative Graded Relevance Assessments for Content Recommen-

dation. In International Workshop on Algorithms and Models for the

Web-Graph (pp. 155–166).

REFERENCES 94

Croft, W. B., Metzler, D., & Strohman, T. (2010). Search Engines - Infor-

mation Retrieval in Practice (Vol. 520). Addison-Wesley Reading.

Cui, X., & Potok, T. E. (2005). Document clustering analysis based on

hybrid PSO+ K-means algorithm. Journal of Computer Sciences, 27,

33.

Deese, J., & Bechtel, W. (1990). Philosophy of Science: An Overview for

Cognitive Science. The American Journal of Psychology, 122–124.

Diab, M., Hacioglu, K., & Jurafsky, D. (2004). Automatic tagging of Arabic

text: From raw text to base phrase chunks. In Proceedings of HLT-

NAACL 2004: Short papers (pp. 149–152).

Diederich, J., & Iofciu, T. (2006). Finding Communities of Practice from

User Profiles Based On Folksonomies. CEUR Workshop Proceedings,

213, 288–297.

Dietrich, D., et al.. (2015). Data Science and Big Data Analytics: Dis-

covering, Analyzing, Visualizing and Presenting Data. John Wiley &

Sons,.

Dong, X., Yu, L., Wu, Z., Sun, Y., Yuan, L., & Zhang, F. (2017). A hybrid

collaborative filtering model with deep structure for recommender sys-

tems. In 31st AAAI Conference on Artificial Intelligence, AAAI 2017

(pp. 1309–1315).

Feldman, S. E. (1999). NLP Meets the Jabberwocky: Natural Language

Processing in Information Retrieval. 23, 62–73.

Fereday, J., & Muir-Cochrane, E. (2006). Demonstrating Rigor Using The-

matic Analysis: A Hybrid Approach of Inductive and Deductive Coding

and Theme Development. International Journal of Qualitative Meth-

ods, 5 (1), 80-92.

Freund, Y., Iyer, R., Schapire, R. E., & Singer, Y. (2003). An Efficient

Boosting Algorithm for Combining Preferences. Journal of Machine

Learning Research, 4 (Nov), 933–969.

REFERENCES 95

Gemmis, M. de, Lops, P., Semeraro, G., & Musto, C. (2015). An investiga-

tion on the serendipity problem in recommender systems. Information

Processing Management, 51 (5), 695 - 717.

Giles, J., Ang, K. K., Mihaylova, L. S., & Arvaneh, M. (2019). A Subject-

to-subject Transfer Learning Framework Based on Jensen-Shannon Di-

vergence for Improving Brain-computer Interface. In ICASSP 2019 -

2019 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP) (pp. 3087–3091).

Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collabora-

tive filtering to weave an information tapestry. Communications of the

ACM, 35 (12), 61–71.

Goldberg, Y. (2017). Neural Network Methods for Natural Language Pro-

cessing. Synthesis Lectures on Human Language Technologies, 10 (1),

1–309.

Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings

of the National academy of Sciences, 101 (suppl 1), 5228–5235.

Hanani, U., Shapira, B., & Shoval, P. (2001). Information Filtering:

Overview of Issues, Research and Systems. User Modeling and User-

Adapted Interaction, 11 (3), 203–259.

Hassan, J., Tahir, M. A., & Ali, A. (2021). Natural language understanding

of map navigation queries in Roman Urdu by joint entity and intent

determination. PeerJ Computer Science, 7, 15–20.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). Unsupervised Learning.

In The Elements of Statistical Learning: Data Mining, Inference, and

Prediction (pp. 485–585). Springer.

He, J., Chen, X., Du, M., & Jiang, H. (2015). Topic evolution analysis based

on improved online LDA model. Journal of Central South University

(Science and Technology), 547-553.

Heylighen, F. (2002). Complexity and Information Overload in Society: why

increasing efficiency leads to decreasing control.

REFERENCES 96

Hirschberg, J., & Manning, C. D. (2015). Advances in natural language

processing. Science, 349 (6245), 261–266.

Huang, A. (2008). Similarity measures for text document clustering. In

Proceedings of the 6th New Zealand Computer Science Research Student

Conference (Vol. 4, pp. 9–56).

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern

Recognition Letters, 31 (8), 651–666.

Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender

Systems: An Introduction. Cambridge University Press.

Jin, R., Si, L., & Zhai, C. (2002). Preference-based graphic models for

collaborative filtering. In Proceedings of the Nineteenth conference on

Uncertainty in Artificial Intelligence (pp. 329–336).

Jin, R., Si, L., Zhai, C., & Callan, J. (2003). Collaborative filtering with de-

coupled models for preferences and ratings. In Proceedings of the twelfth

International Conference on Information and Knowledge Management

(pp. 309–316).

Jin, Z., Cao, J., Zhang, Y., & Luo, J. (2016). News verification by exploiting

conflicting social viewpoints in microblogs. Proceedings of the AAAI

Conference on Artificial Intelligence, 30 (1).

Jones, K. S. (2004). A statistical interpretation of term specificity and its

application in retrieval. Journal of Documentation, 60, 493-502.

Katiyar, A., & Cardie, C. (2018). Nested Named Entity Recognition Re-

visited. In Proceedings of the 2018 Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long Papers) (pp. 861–871). New

Orleans, Louisiana: Association for Computational Linguistics.

Khurana, D., Koli, A., Khatter, K., & Singh, S. (2017). Natural Language

Processing: State of The Art, Current Trends and Challenges.

Koltcov, S., Ignatenko, V., Terpilovskii, M., & Rosso, P. (2021). Analysis and

tuning of hierarchical topic models based on Renyi entropy approach.

PeerJ Computer Science.

REFERENCES 97

Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised Machine

Learning: A Review of Classification Techniques. In Proceedings of

the 2007 Conference on Emerging Artificial Intelligence Applications

in Computer Engineering: Real Word AI Systems with Applications in

EHealth, HCI, Information Retrieval and Pervasive Technologies (Vol.

160, pp. 3–24).

Krasnov, F. (2018). Topic Classification Through Topic Modeling with

Additive Regularization for Collection of Scientific Papers. In Proceed-

ings of the 14th Central and Eastern European Software Engineering

Conference Russia. New York, NY, USA: Association for Computing

Machinery.

Lau, J. H., Collier, N., & Baldwin, T. (2012). On-line Trend Analysis with

Topic Models: twitter Trends Detection Topic Model Online. Proceed-

ings of COLING 2012, 1519-1534.

Lika, B., Kolomvatsos, K., & Hadjiefthymiades, S. (2014). Facing the cold

start problem in recommender systems. Expert Systems with Applica-

tions, 41 (4, Part 2), 2065 - 2073.

Lops, P., De Gemmis, M., & Semeraro, G. (2011). Content-based Rec-

ommender Systems: State of the Art and Trends. In Recommender

Systems Handbook (pp. 73–105). Springer.

Marsden, J. R., & Pingry, D. E. (2018). Numerical data quality in IS research

and the implications for replication. Decision Support Systems, 115.

Mateas, M., & Stern, A. (2004). Natural Language Understanding in Façade:

Surface-Text Processing. In S. Göbel, U. Spierling, A. Hoffmann,

I. Iurgel, O. Schneider, J. Dechau, & A. Feix (Eds.), Technologies for

Interactive Digital Storytelling and Entertainment (pp. 3–13). Berlin,

Heidelberg: Springer Berlin Heidelberg.

Mekonnen, A., & Abdullayev, S. (2017). Topic Modeling and Clustering

for Analysis of Road Traffic Accidents. Master of Science thesis. De-

partment of Applied Mechanics, Chalmers University of Technology,

Göteborg, Sweden, 65.

REFERENCES 98

Mimno, D., Hoffman, M., & Blei, D. (2012). Sparse Stochastic Inference

for Latent Dirichlet allocation. Proceedings of the 29th International

Conference on Machine Learning, ICML 2012, 2.

Mousavi, S. S., Schukat, M., & Howley, E. (2018). Deep Reinforcement

Learning: An Overview. In Y. Bi, S. Kapoor, & R. Bhatia (Eds.), Pro-

ceedings of SAI Intelligent Systems Conference (IntelliSys) 2016 (pp.

426–440). Cham: Springer International Publishing.

Mugunthadevi, K., Punitha, S., Punithavalli, M., & Mugunthadevi, K.

(2011). Survey on Feature Selection in Document Clustering. Interna-

tional Journal on Computer Science and Engineering, 3 (3), 1240–1241.

Mukherjee, M., & Poovammal, E. (2019). Improved topic modeling with

parallel-supervised LDA. International Journal of Recent Technology

and Engineering.

Naak, A., Hage, H., & Aimeur, E. (2009). A Multi-criteria Collaborative

Filtering Approach for Research Paper Recommendation in Papyres.

In E-Technologies: Innovation in an Open World (pp. 25–39).

Nadeau, D., & Sekine, S. (2007). A Survey of Named Entity Recognition

and Classification. Lingvisticae Investigationes, 30 (1), 3–26.

Nasukawa, T., & Yi, J. (2003). Sentiment analysis: Capturing favorability

using natural language processing. In Proceedings of the 2nd Interna-

tional Conference on Knowledge Capture (pp. 70–77).

Nation, K., Snowling, M. J., & Clarke, P. (2007). Dissecting the rela-

tionship between language skills and learning to read: Semantic and

phonological contributions to new vocabulary learning in children with

poor reading comprehension. International Journal of Speech-Language

Pathology, 9 (2), 131–139.

Newman, D., Lau, J. H., Grieser, K., & Baldwin, T. (2010). Automatic

Evaluation of Topic Coherence. In Human Language Technologies: The

2010 Annual Conference of the North American Chapter of the ACL

(pp. 100–108).

REFERENCES 99

Newman, D., Noh, Y., Talley, E., Karimi, S., & Baldwin, T. (2010). Eval-

uating Topic Models for Digital Libraries. In Proceedings of the 10th

Annual Joint Conference on Digital Libraries (pp. 215–224).

Nilashi, M., Jannach, D., Ibrahim, O. bin, Esfahani, M. D., & Ahmadi,

H. (2016). Recommendation quality, transparency, and website qual-

ity for trust-building in recommendation agents. Electronic Commerce

Research and Applications.

Olivier, M. S. (2009). Information technology research: A practical guide for

computer science and informatics. Van Schaik.

Park, D. H., Kim, H. K., Choi, I. Y., & Kim, J. K. (2012). A literature review

and classification of recommender systems research. Expert Systems

with Applications, 39 (11), 10059–10072.

Pavlov, D., Manavoglu, E., Giles, C. L., & Pennock, D. M. (2004). Col-

laborative filtering with maximum entropy. IEEE Intelligent Systems,

19 (6), 40–47.

Peng, Y., Kou, G., Chen, Z., & Shi, Y. (2006). Recent trends in Data Mining

(DM): Document Clustering of DM Publications. In 2006 International

Conference on Service Systems and Service Management (Vol. 2, pp.

1653–1659).

Porter, M. F. (1980). An algorithm for suffix stripping. Program: electronic

library and information systems, 14 (3), 130-137.

Purpura, A. (2018). Non-negative matrix factorization for topic modeling.

In Ceur workshop proceedings.

Qomariyah, S., Iriawan, N., & Fithriasari, K. (2019). Topic modeling Twitter

data using Latent Dirichlet Allocation and Latent Semantic Analysis.

In Aip conference proceedings.

Ramirez, E. H., Brena, R., Magatti, D., & Stella, F. (2012). Topic model

validation. Neurocomputing, 76 (1), 125–133.

Ranjan, P., Ray, Harish, V., Sarkar, S., & Basu, A. (2003). Part of Speech

Tagging and Local Word Grouping Techniques for Natural Language

REFERENCES 100

Parsing in Hindi. In Proceedings of the 1st International Conference on

Natural Language Processing (ICON 2003).

Rehurek, R., & Sojka, P. (2010). Software Framework for Topic Modelling

with Large Corpora. In In Proceedings of the LREC 2010 workshop on

new challenges for NLP frameworks (p. 45-50).

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994).

GroupLens: An Open Architecture for Collaborative Filtering of Net-

news. In Proceedings of the 1994 ACM Conference on Computer Sup-

ported Cooperative Work (pp. 175–186).

Resnick, P., & Varian, H. R. (1997). Recommender Systems. Communica-

tions of the ACM, 40 (3), 56–58.

Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to Recommender

Systems Handbook. In Recommender Systems Handbook (pp. 1–35).

Springer.

Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach.

Malaysia; Pearson Education Limited,.

Sajjadi, M. S. M., Bachem, O., Lucic, M., Bousquet, O., & Gelly, S. (2018).

Assessing Generative Models via Precision and Recall. In Proceedings

of the 32nd International Conference on Neural Information Processing

Systems (p. 5234–5243).

Sang, E. F., & Buchholz, S. (2000). Introduction to the CoNLL-2000 shared

task: Chunking. Proceedings of the 2nd Workshop on Learning Lan-

guage in Logic and the 4th Conference on Computational Natural Lan-

guage Learning - Volume 7, 127–132.

Santana, C. (2016). What is language? Ergo, an Open Access Journal of

Philosophy, 3.

Saunders, M., Lewis, P., Thornhill, A., & Bristow, A. (2019). ”Research

Methods for Business Students” Chapter 4: Understanding research

philosophy and approaches to theory development. Research Methods

for Business Students, 128-171.

REFERENCES 101

Savolainen, R. (2015). Cognitive barriers to information seeking: A concep-

tual analysis. Journal of Information Science, 41 (5), 613–623.

Sebastiani, F. (2002). Machine Learning in Automated Text Categorization.

ACM Computing Surveys, 34 (1), 1–47.

Shah, K., Salunke, A., Dongare, S., & Antala, K. (2017). Recommender

systems: An overview of different approaches to recommendations. In

2017 international conference on innovations in information, embedded

and communication systems (iciiecs) (p. 1-4).

Shah, N., & Mahajan, S. (2012). Document clustering: a detailed review.

International Journal of Applied Information Systems, 4 (5), 30–38.

Shardanand, U., & Maes, P. (1995). Social Information Filtering: Algorithms

for Automating “Word of Mouth”. In Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems (Vol. 95, pp. 210–

217).

Sharma, R., & Singh, R. (2016). Evolution of Recommender Systems from

Ancient Times to Modern Era: A Survey. Indian Journal of Science

and Technology, 9 (20), 1–12.

Singh, P. (2019). Natural language processing. In Machine learning with

pyspark (pp. 191–218). Springer.

Steenkamp, A., & Mccord, A. (2007). Approach to Teaching Research

Methodology for Information Technology. Journal of Information Sys-

tems Education.

Stevens, K., Kegelmeyer, P., Andrzejewski, D., & Buttler, D. (2012). Explor-

ing Topic Coherence over Many Models and Many Topics. In Proceed-

ings of the 2012 Joint Conference on Empirical Methods in Natural

Language Processing and Computational Natural Language Learning

(pp. 952–961). Jeju Island, Korea: Association for Computational Lin-

guistics.

Storey, V. C., & Song, I.-Y. (2017). Big data technologies and Management:

What conceptual modeling can do. Data & Knowledge Engineering,

108, 50–67.

REFERENCES 102

Suhaimi, F., & Hussin, N. (2017). The Influence of Information Overload on

Students’ Academic Performance. International Journal of Academic

Research in Business and Social Sciences, 7.

Tapaswi, N., & Jain, S. (2012). Treebank based deep grammar acquisition

and Part-Of-Speech Tagging for Sanskrit sentences. In 2012 CSI Sixth

International Conference on Software Engineering (CONSEG) (pp. 1–

4).

Tong, Z., & Zhang, H. (2016). A Text Mining Research Based on LDA

Topic Modelling. In Computer Science Information Technology (pp.

201–210).

Uto, M., Louvigné, S., Kato, Y., Ishii, T., & Miyazawa, Y. (2017). Diverse

reports recommendation system based on Latent Dirichlet Allocation.

Behaviormetrika, 44 (2), 425–444.

Wallach, H., Mimno, D., & McCallum, A. (2009). Rethinking LDA: Why

Priors Matter. In Advances in Neural Information Processing Systems

(Vol. 22).

Walton, D. (2009). Argumentation theory: A very short introduction. In

Argumentation in Artificial Intelligence (pp. 1–22). Springer.

Wei, C.-P., Yang, C.-S., Hsiao, H.-W., & Cheng, T.-H. (2006). Combin-

ing preference-and content-based approaches for improving document

clustering effectiveness. Information Processing & Management, 42 (2),

350–372.

Wei, X., & Croft, W. B. (2006). LDA-Based Document Models for Ad-

Hoc Retrieval. In Proceedings of the 29th Annual International ACM

SIGIR Conference on Research and Development in Information Re-

trieval (pp. 178–185).

Willett, P. (1988). Recent trends in hierarchic document clustering: A critical

review. Information Processing & Management, 24 (5), 577–597.

William, C., Robert, E. S., & Singer, Y. (1999). Learning to order things.

Journal of Artificial Intelligence Research, 10, 243–270.

REFERENCES 103

Wilson, J. (2014). Essentials of business research: A guide to doing your

research project. Sage.

Yeh, J.-h., & Wu, M.-l. (2010). Recommendation Based on Latent Topics

and Social Network Analysis. In 2010 Second International Conference

on Computer Engineering and Applications (Vol. 1, p. 209-213).

Yi, J., Nasukawa, T., Bunescu, R., & Niblack, W. (2003). Sentiment ana-

lyzer: Extracting sentiments about a given topic using natural language

processing techniques. In Proceedings - IEEE International Conference

on Data Mining, ICDM (pp. 427–434).

Yi, X., & Allan, J. (2009). A Comparative Study of Utilizing Topic Models

for Information Retrieval. In Advances in Information Retrieval (pp.

29–41).

Appendix A

Expansion of validation process

The validation process described in Section 7.5, focused on providing ob-

servations based on the demonstration of the prototype and model of two

topics. Even though Section 7.5 only showcased two topics, more tests were

conducted which will be displayed here.

The layout of the sections will include one topic at which the top 10

recommendations were presented.

A.1 Topic: Cloud Computing

The title of the test document: ‘The Management of Security in Cloud Com-

puting’.

TITLE JSD SCORE
Secure e-Government Services: Towards A Framework 0.208068
Android Botnets on the Rise: Trends and Characteristics 0.236715
Protection of personal information in the South-African 0.296202
Security Foundation for a Distributed Cabin Core 0.300801
Considering web services security policy compatibility 0.315992
Cloud Supply Chain Resilience- A Coordination 0.316091
Security Objectives, Controls and Metrics Development 0.322413
Evaluating Information Security Controls Applied 0.335019
Considering the influence of human trust in practical 0.33537
A Software Gateway to Affordable and Effective 0.342548

Table A.1: Security in Cloud Computing similarity

104

APPENDIX A. EXPANSION OF VALIDATION PROCESS 105

A.2 Topic: Neural Network

The title of the test document: ‘Filtering Spam E-Mail with Generalized

Additive Neural Networks’.

TITLE JSD SCORE
Investigating the effect of genetic algorithms 0.288162
Spam over Internet Telephony and how to deal with it 0.309555
E-mail security awareness at Nelson Mandela 0.320261
An Analysis of authentication for passive RFID 0.32099
The use of computer vision technologies 0.340537
The IP Protection of Electrical Databases 0.343205
Remote Fingerprinting and Multisensor Data Fusion 0.343431
AFA-RFID-Physical Layer Authentication for 0.350931
Mobile Security from an Information Warfare 0.351308
Bimodal Biometrics for Financial Infrastructure 0.352621

Table A.2: Neural Network similarity

A.3 Topic: Smartphone Security Awareness

The title of the test document: ‘Exploring End-User Smartphone Security

Awareness within a South African context’.

TITLE JSD SCORE
An adaptation of the awareness boundary model 0.213688
Identity Management for e-Government Libya 0.242323
Considering the influence of human trust 0.247079
Factors Affecting User Experience with Security 0.252316
Online Social Networks: Enhancing user trust 0.272419
Gamifying Authentication 0.30036
Secure Cloud Computing Benefits, Risks 0.300522
Towards achieving scalability and interoperability 0.300544
A formal qualitative risk management approach 0.301527
Design of cyber security awareness game 0.309103

Table A.3: Awareness similarity

APPENDIX A. EXPANSION OF VALIDATION PROCESS 106

A.4 Topic: Bring Your Own Device

The title of the test document: ‘A framework towards governing Bring Your

Own Device in SMMEs’.

TITLE JSD SCORE
Considering the influence of human trust 0.207733
Protection of personal information in the South African 0.250983
Information Security Assurance Model (ISAM) 0.256613
Bloom’S Taxonomy for Information Security Education 0.257684
A survey of computer crime and security in South Africa 0.258457
The impact of Information security awareness training 0.259873
The Identification of Information Sources to 0.265763
BC3I – Towards requirements specification 0.267988
A formal qualitative risk management approach 0.271136
An Interactive Visual Library Model to Improve 0.271961

Table A.4: BYOD similarity

A.5 Topic: Intrusion Detection

The title of the test document: ‘Intrusion Detection in Bluetooth Enabled

Mobile Phones’.

TITLE JSD SCORE
A Framework of Opportunity-Reducing Techniques 0.166268
A Conceptual Opportunity-based Framework 0.198728
The Murky Waters of IT Governance 0.269619
Towards a framework for a network warfare capability 0.282355
Combatting Phishing: A Holistic Human Approach 0.299802
Towards a PHP Webshell Taxonomy using Deobfuscation 0.30253
Mobile Security from an Information Warfare Perspective 0.309996
Secure e-Government Services: Towards A Framework 0.317646
Unsolicited Short Message Service Marketing 0.318187
Towards a Sandbox for the Deobfuscation 0.32363

Table A.5: Intrusion detection similarity

