

Photophysical, photochemical and bovine serum albumin binding studies on water-soluble gallium(III) phthalocyanine derivatives

Abimbola Ogunsipe^{a,b}, Tebello Nyokong^a and Mahmut Durmus^{*a,c}

^a Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa

^b Department of Chemistry, University of Lagos, Lagos, Nigeria

^c Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze, 41400, Turkey HR'S SITE

Received 11 July 2007 Accepted 25 July 2007

> ABSTRACT: Spectral, photophysical, photochemical and boothe serum albumin binding studies on some gallium(III) derivatives - $\{1,(4)-(tetrapyridyloxyp)(halocyaninato)gallium(III), (\alpha GaPc);$ 2,(3)-(tetrapyridyloxyphthalocyaninato)gallium(III), (**\beta Garc**); and their quaternized derivatives: $Q\alpha GaPc$ and $Q\beta GaPc$) are hereby presented. β -Substituted complexes are more fluorescent, but show lower tendencies to undergo intersystem crossing than the α -substituted, as judged by their fluorescence and triplet quantum yield values. The quaternized derivatives (QGaPc) are watersoluble and non-aggregated, which makes the potential photosensitizers of choice for photodynamic therapy applications; these amphiphilic compounds also bind strongly to bovine serum albumin in 1:1 stoichiometries, and with binding constants (Kb) in the order of 106 M-1. Copyright © 2007 Society of Porphyrins & Phthalocyanines.

> KEYWORDS: photophysics, fotochemistry, photodynamic therapy, bovine serum albumin, Stern-Volmer equation.

INTRODUCTION

Metallophthalocyanines (MPcs) show great prospects as phototherapeutic agents for the treatment of a variety of oncological and non-oncological diseases [1]. Photodynamic therapy (PDT) is based on the concept that a photosensitizer can be preferentially localized in malignant tissue, and subsequently, these photosensitizers can be activated with the appropriate wavelength of light to generate cytotoxic radical and non-radical derivatives of oxygen. MPc complexes exhibit a lot of promise as photosensitizers for photodynamic therapy (PDT) [2-7]. Their superior attributes, such as: red or near

infra-red light absorption; non-toxicity, with low, skin photosensitizing potency; selective localization in tumors; efficient generation of singlet oxygen and appreciable fluorescence for visualization make them first-rate candidates for this purpose.

Complexation of phthalocyanines to closedshell, diamagnetic ions such as Zn²⁺, Al³⁺ and Si⁴⁺ imparts high triplet yields on the MPc complexes [8]. Gallium(III) phthalocyanine (GaPc) complexes are known [9-11], but photophysical and photochemical studies on these complexes are still limited. Tertiary butyl substituted GaPc and InPc derivatives have been investigated by Hanack and co-workers [10, 11] for their non-linear optical behavior. GaPc complexes, containing a heavier central metal, should give a higher triplet yield than their ZnPc, AlPc and SiPc counterparts, hence our interest in GaPc

^{\$}SPP full member in good standing

^{*}Correspondence to: Mahmut Durmuş, email: durmus@ gyte.edu.tr, fax: +90 262-6538490