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Riemann vs. Lebesgue Integrals
Justin Moore

Department of Mathematics, Longwood University

Faculty Mentor: Dr. Jeffrey Ledford, MATH 462

A comparison of the Riemann and Lebesgue approximations for 
“y = sin(x)” from [0,π], using eight divisions.

Riemann Integrals

Lebesgue Integrals

Comparison

• Riemann integration partitions the domain of the 
function into a series of smaller intervals.

• Then, the height of the function is taken at a 
specific point within each interval.
• Leftmost, rightmost, midpoint, minimum, and 

maximum are the most common.
• For each interval, multiply that function height by 

the width of the interval to generate the area of 
a rectangle. The sum of each of these rectangles 
is the approximated area for the integral.

• Lebesgue integration uses a set of points in the 

range of the function for its procedure.

• To take the Lebesgue integral, the “measure” of 

each range value within the function must be 

determined.

• The measure of a range value is the total 

length of the function where that value is the 

closest value in the set.

• “Closest” in this context means it is either the 

largest range value under or the smallest range 

value above the function at any given domain 

value, depending on which Lebesgue 

approximation is used.

• By taking the product of the range value and its 

measure, the total area of all rectangles with a 

height of the range value is obtained. The sum of 

each of these areas gives the Lebesgue 

approximation for the area of the integral.
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increase the number of partitions to infinity. However, we can 
look at the function using Lebesgue integration.
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Conclusions

• There are two main types of integration: 

Riemann and Lebesgue. Both have their 

advantages and drawbacks.

• Riemann integration is simpler to learn and 

understand but does not quite have the power 

to determine the integral of some functions.

• Lebesgue integration is more powerful than 

Riemann integration, but requires a deeper 

understanding of mathematics and analysis to 

understand.

• Although students are taught one way to 

integrate, there are more tools at their disposal 

later in their studies which could help in solving 

more complex and analytically rigorous 

problems. It is important to recognize these 

tools so they will not go unused.

Future Work

A continuation of this project would consist of a 

deeper exploration into measure theory, such as 

what it means for a function which has values that 

do not have a measure, and what those functions 

look like.
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