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a b s t r a c t

Many countries are observing significant growth rates in electric vehicle (EV) uptake, often backed
by financial incentives or regulation and legislation. The availability of large multi-charger sites for
rapid EV charging with an experience similar to conventional refuelling stations lowers the barrier to
acceptance for drivers considering the switch to using an EV. The question arises about how to size
such a facility at the design and planning stage, as well as accommodating growth in the number of EVs
in daily use. One of the important factors is the vehicle arrival rate and the corresponding power and
energy demand. EV charging is a function of several parameters, all of which are stochastic in nature,
such as the vehicle daily travelled distance, charging start time and the required energy. To account for
uncertainty in the parameters, a stochastic model has been designed to simulate realistic vehicle arrival
rates. The model accounts for EVs coming from the site catchment area and opportunistic charging
from passing traffic travelling on the major roads adjacent to the site, the seasonality of parameters,
and charging at places other than the site (competitive charging). The model produced plausible EV
arrival patterns for both local and passing traffic, and reproduced the characteristic power demand at
the case study site. All estimates incorporate uncertainty, reflecting realistic variability of the important
parameters. The model in independent of location, uses open-source data, and is structured flexibly,
making it adaptable to new sites as part of the technical and business planning process.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The aim of electrifying transport is to reduce greenhouse gas
GHG) emissions. In the UK the anticipated reduction in the
arbon dioxide emissions is between 50% and 87% by 2050 com-
ared to 2014 due to EV uptake, improved efficiency of internal
ombustion engine vehicles and decarbonization of the electricity
upply (Hill et al., 2019; Bharathidasan et al., 2022). Interest in
rialing EVs and charging infrastructure is worldwide, for exam-
le: China (Zheng et al., 2020), Finland (Uimonen and Lehtonen,
020), Ireland (Morrissey et al., 2016), New Zealand (Su et al.,
019), South Korea (Moon et al., 2018), UK (Robinson et al., 2013),
nd USA (Harris and Webber, 2014; Tehrani and Wang, 2015;
lmutairi and Alyami, 2021). Barriers to the spread of EVs include
imited availability of charging infrastructure, low charging power
long EV recharge time) and limited electrical range (Elghitani
nd El-Saadany, 2021; Goel et al., 2021). Most frequently charg-
ng infrastructure has been limited to individual home charging,
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352-4847/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
adhoc on-street charging, and small collections of chargers at
workplaces. For the normalization of EV use, charging needs to be
more convenient, and it is proposed that an experience similar to
current refuelling stations will be required i.e. public sites with
many chargers available. However, this has attendant issues such
as estimating the likely vehicle throughput and the impact on the
local distribution grid (estimating the maximum instantaneous
power demand). Neither of these issues are deterministic, but
must be simulated stochastically.

Although EVs reduce tailpipe emissions, they introduce a new
type of electric load (Birk Jones et al., 2022; Ahmad et al., 2022).
It is widely recognized that grid constraints are an obstacle to
greater EV uptake (Qian et al., 2011; Steen et al., 2012; Robinson
et al., 2013; Harris and Webber, 2014; Morrissey et al., 2016;
Su et al., 2019; Cheng et al., 2022). The majority of studies con-
sider the effects of home charging (Qian et al., 2011; Harris and
Webber, 2014; Tehrani and Wang, 2015; Brady and O’Mahony,
2016; Morrissey et al., 2016; Ul-Haq et al., 2018; Su et al., 2019;
Almutairi and Alyami, 2021). Work place (Brady and O’Mahony,
2016; Uimonen and Lehtonen, 2020) and public (Qian et al., 2011;
Morrissey et al., 2016) charging have also been considered. Most
EV charging uses uncoordinated low to medium power charging
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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oints at home, work, and public places. Currently 81.4% of UK
ublic installed charging points have power ratings ≤22 kW
nd only 3.9% are ≥100 kW (Zap-MAP, 2021). Home charging is
imited to 3–5 kW requiring off-street parking often unavailable
o those living in apartments or other high-density housing. Ded-
cated high-speed charging stations will allow drivers to charge
ithout needing to arrive at their destination (Dixon et al., 2018).
The load profile of an EV is determined by several stochastic

actors such as the daily travelled distance and the battery state-
f-charge (SoC) at start of the day (Humayd and Bhattacharya,
018). Deterministic modelling is not a suitable mean to estimate
he EV load profile as it does not reflect the stochastic nature of
he important variables, but non-deterministic approaches have
ot received sufficient attention (Buzna et al., 2021). Zhang et al.
2020) divide EV infrastructure modelling into computational
eometry and origin–destination flow-based approaches. Differ-
nt models have been reported to forecast/estimate the aggre-
ated EVs load profile (Shepero et al., 2018; Daina et al., 2017).
odelling methods use a variety of statistical and probabilistic

echniques (Tehrani and Wang, 2015; Brady and O’Mahony, 2016;
imonen and Lehtonen, 2020; Zheng et al., 2020), agent-based
odels (Zhang et al., 2020), Gaussian mixture models (Powell
t al., 2022), Monte Carlo simulation (Harris and Webber, 2014;
lmutairi and Alyami, 2021; Sadhukhan et al., 2021), Markov
hain (Ul-Haq et al., 2018; Yan et al., 2022), ensemble methods
Buzna et al., 2021), and deep learning (Zhu et al., 2019a,b).
ost studies use travel data and vehicle specifications, but de-
ographic data (Steen et al., 2012), building occupancy (Uimonen
nd Lehtonen, 2020), and user preference (Robinson et al., 2013;
oon et al., 2018) have also been used. Probability distribution

unctions have been used (Almutairi and Alyami, 2021) to repre-
ent variables such as the EV home arrival time, home departure
ime and daily mileage. The daily load profile was estimated for
ach EV and accumulated for all vehicles resulting in the total
leet load profile. The copula method has been used (Tehrani
nd Wang, 2015) to develop set of random variables with joint
robability distributions.
In assuming that EVs charge at end of each trip to generate

robability distributions throughout the day and giving differ-
nt probabilities of charging to plug-in hybrid electric vehicles
PHEVs) and the battery electric vehicles (BEVs), Harris and Web-
er (Harris and Webber, 2014) used Monte Carlo simulations to
stimate the load demand. In Brady and O’Mahony (2016), the
ependence structure between the first departure time in the
ay, number of journeys per day and total distance travelled was
odelled using a non-parametric copula function. Then, a travel
attern was generated considering uncertainty of the inputs.
pon arrival at a destination, a probabilistic charging decision
odel calculates the probability of charging given the EV battery
tate of charge, the available parking time and the current journey
umber. The model depends on using slow home/work chargers
nd assumed that it is more likely an EV charges after the first or
econd journey due to arriving at work.
Attention has been paid to characterizing charging demand us-

ng surveys and by analysing recorded charging events. A Korean
urvey (Moon et al., 2018) estimated the increase in the electrical
oad due to the expansion of EVs and its affect on the electric grid.
he survey included questions about EV users’ preferences such
s time of the day, location and type of charging point used to
echarge the EVs. This showed that the users prefer to use fast
ublic charging points during the peak hours of the day while
harging at home during the night. Fast charging points are pre-
erred by users of the public chargers which will be commercially
vailable in the short to medium term (Morrissey et al., 2016). A
tudy of charging habits in the north east of the UK combined

oth private and organizational users (Robinson et al., 2013).
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Analysis of 7704 charging events showed that private users peak
demand was at the evening when the drivers arrive home (home
charging) while the organizational drivers primarily charge their
EVs at the work. Charging events at a wide variety of locations
and types of chargers in the San Francisco area have been anal-
ysed and modelled to estimate charging demand (Powell et al.,
2022).

Unscheduled EV charging places stress on the electric grid
(Harris and Webber, 2014). In Zhu et al. (2019b,a), different deep
learning approaches have been used and compared for short-term
load forecasting of EV charging. Real charging events recorded
in Shenzhen, China, have been used for the training and test-
ing of the models. By segmenting the fleet (Zheng et al., 2020)
studied mid-and-long term load forecasting using a probabilistic
approach incorporating market evolution, giving projections of
future EV ownership. To enhance the power system operation
and to help setting the network reinforcement or upgrade plans,
stochastic modelling for EV load demand was proposed (Qian
et al., 2011). Comparison between four charging scenarios (Qian
et al., 2011): (1) uncontrolled domestic charging, (2) uncontrolled
off-peak domestic charging, (3) smart domestic charging and
(4) uncontrolled public charging, showed that the uncontrolled
domestic charging causes the highest increase in the system peak
load. The model assumed that private EVs charge once every two
days while company EVs charge once per day.

Two models estimate loads for fast-charging stations in a
stochastic manner: a station with six 50 kW chargers (Deng
et al., 2018) and 50 stations each with one 50 kW charging
point (Korolko et al., 2016) (defaults to home-charging with a
10% station-use probability). The fleet size was defined according
to the national average size of EVs per installed charger (with
uniform distribution). Moradipari et al. (2021) studied how to
influence where EV users charge to reduce both the aggregate
congestion at fast-charging points installed at different locations
and impact on the electric grid. An energy management approach
(Huo et al., 2017) forecasts charging demand assuming a Poisson
process where EVs start with 10%–40% SoC, terminating at 80%.
For a 3-charger station 100 EVs were assumed to arrive every day.
Google Maps Popular Times data for all petrol stations in the UK
was used in a Monte Carlo model to estimate the EV arrival at a
fast-charging station (Dixon et al., 2018). Probability distributions
were assigned to EV initial and final SoC while converting the
arrival rate to a demand profile. Most models do not consider
location-dependent factors/parameters, instead using an average
station occupancy.

Most previous models rely on finding the periods of time
EVs are at home/work/public place, then checking the charging
probability during these intervals. Others concerned about fast
charging estimate an average occupancy of the charging connec-
tion or study the aggregate influence of dispersed charging points
on the electric grid. Typically, studies have been concerned with
power demand from EVs at a highly aggregated system level
e.g. Tang and Wang (2016), Yi and Bauer (2016), Zhang et al.
(2020), Kavianipour et al. (2021) and Pan et al. (2020) and are fo-
cused on infrastructure planning for a geographic area or region.
The charging requirements of EVs has been incorporated into
a stochastic transport model as part of a smart city simulation
(Duan et al., 2021).

In this paper, EV arrival at a multi-charger electric forecourt is
treated like conventional (liquid) refuelling stations, which is ex-
pected to be the preferred method in a mature EV market. To the
authors best knowledge, work reported in the literature regarding
EV charging demand allocation/estimation lacks a detailed study
concerning a dedicated multi-charger forecourt with EVs charging
during a journey. The aim of this paper is to model EV arrival rates

and power demand for a dedicated charging station. The model
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Fig. 1. Structure of the proposed model.
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helps optimize the forecourt operation by using parameters spe-
cific to the forecourt location, such as registered BEV/PHEVs by
zipcode and real-world traffic flow on nearby roads, to forecast
the EVs arrival rate and the corresponding power/energy demand.
Moreover, the model has the following features which are not
fully incorporated in a single model in the literature:

1. A stochastic approach incorporating uncertainty in the pa-
rameters controlling the charging process.

2. Considers probabilistic EV charging from both residents
and travelling EVs (different populations).

3. PHEVs and BEVs are treated independently with different
probabilities.

4. Real-world sale statistics are used to derive information
about the EV market share and fleet composition in differ-
ent populations instead of assuming a national average EV
distribution.

5. Accounts for seasonality in the parameters.
6. Considers charging at other places other than the electric

forecourt (competitive charging).

The approach is to use real-world open-source data to ensure
that the method is widely applicable. For validation, a convenient
case-study is the UK’s first dedicated multi-charger station, lo-
cated at Braintree in Essex County. It is an integrated, utility-scale
site consisting of 24 ultra-rapid DC chargers (of various power
ratings from 90 kW to 350 kW) with charging times of less than
30 min, plus 6 AC chargers (up to 22 kW) and 6 T superchargers.
This facility may mitigate the burden on the local distribution
system the as the site is connected to the 33 kV grid. The model
will help predict likely near-term site use, understand patterns
of use to assist in developing similar sites, optimize revenue, and
maintain assets.

2. Model design

The model is developed from an outline given in Aboshady
et al. (2021), to include seasonality, competitive charging with
facilities beyond the site, and charging EVs from adjacent geo-
graphical districts. The structure of the proposed model is shown
in Fig. 1 has three stages. Different input parameters are fed to
the model in the first stage. The processing stage estimates the
arrival rate and the corresponding load demand. Lastly, the model
outputs the variables of interest.

For any day, the need to charge depends on parameters such
as daily travelled distance and the battery state of charge (SoC)
 (
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at the start of the day. Most of the parameters are probabilistic in
nature. Therefore, a stochastic approach of EV arrival accounts for
the uncertainty observable in real-world data. The arrival model
first estimates the number of EVs arriving at the site at each of
48 half-hour slots (aligning with the National Grid settlement
period). Then, we estimate the power and energy demand for
these EVs.

The model uses two population-based estimations namely EV
owners living or working nearby, and traffic passing along the
main roads surrounding the site. For instance, an EV driver may
plan to use the site for recharging during a long journey. Each
population has different charging requirements and is modelled
independently. For modelling different parameters, data from the
literature is used.

2.1. The local population of EVs

The local fleet combines EVs in the adjacent areas plus 25%
(assumed) of the next-nearest areas, concentric to the site. Re-
garding the Braintree site used as a case-study, this gives 406
BEVs and 303 PHEVs registered at the end of 2020 (Department
for Transport, 2020b). Their behaviour is tied to the daily travelled
distance.

Modelling EV arrival rate for the local population has two
steps. Firstly, the number of EVs (Nev) most likely needing to
charge in the next 24 h is estimated. The second step uses the
output of the first to estimate the number of EVs for each of
the 48 half-hour periods. Each EV’s SoC is related to the total
distance travelled since the last charging event. Assuming the SoC
decreases linearly with the distance travelled, the likely current
SoC is calculated by

SoC c = SoC f − (d/D)×100% (1)

where SoC c and SoC f are the current and final SoC respectively,
and d and D are the total travelled distance (accumulated daily
ravelled distance since the last charging event) and total elec-
rical range for the EV, respectively. The total electrical range,
attery capacity, and charging rate depend on the EV model
EV Database, 2020). A database with the common EV models
nd their market share is constructed. From this database, an
V model is picked randomly, based on their relative market
hare, for each EV in the local fleet (Department for Transport,
020b). The distribution modelling the uncertainty in the daily
ravelled distance is derived from the UK National Travel Survey

Department for Transport, 2017). The data (Fig. 2) is fitted to
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Fig. 2. Histogram of daily travelled distance (blue) and modelled distribution
red line).
ource: Department for Transport (2017).

Table 1
Plug-in time distribution parameters.
Postcode Winter Spring Summer Autumn

Mean 14:00 13:12 13:24 13:42
Standard deviation 3 h 42 min 4 h 6 min 4 h 2 min 4 h 12 min

a lognormal distribution (2). The mean and standard deviation
coefficients for the distribution are 1.9 and 1.1, respectively.

f (d|µ, σ) =
1

dσ
√
2π

exp(−
(ln d − µ)2

2σ 2 ) (2)

where f (d|µ, σ) is the probability density function at distance d,
µ is the mean value and σ is the standard deviation.

If the likely SoC c for an EV is < 20% the EV needs charging
in the next 24-h period, giving Nev for the local population. The
sequence describing this first step is illustrated by Algorithm I
(Appendix). Next, we estimate the EV arrival for the 48 half-
hour slots using a plug-in time distribution. Real-world charging
events recorded in Essex County in the UK. are used to build
the seasonal plug-in time distribution (Department for Transport,
2020a). The data is fitted to a normal distribution (3) with mean
and standard deviation given in Table 1,

f (t|µ, σ) =
1

σ
√
2π

exp(−
1
2

(
t − µ

σ

)2

) (3)

here f (t|µ, σ) is the probability density function at t, µ is the
ean value and σ is the standard deviation.
For each time slot, the likelihood calculated from the plug-in

ime distribution is used as a threshold value. A random integer
etween zero and an upper limit is generated. The upper limit
or the first time slot is Nev and is recursively decreased for the
remaining time slots to account for the EVs charged during the
previous time slots. This integer (N) represents the maximum
possible number of EVs arriving at this slot. To decide how many
EVs arrive at the current time slot, N random values between 0
and 1 are generated. Each value is compared with the threshold
value at this time slot. The EV is counted as a new arrival if the
random value is less than or equal to the threshold value. The
sequence describing this second step is illustrated by Algorithm
II (Appendix).

2.2. Passing traffic population

Arrivals from this population depend on the daily flow on the
nearby roads. For this case-study (Braintree site), three major
roads are considered, A12, A120 and A131, using the flow on
an average day of the year (Department for Transport, 2019).
The variance in traffic flow between months of the year can
11572
Table 2
Average daily traffic flow by month, average = 100.
Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Value 90.4 95.1 98.0 101.2 103.7 104.5 104.6 104.0 103.4 100.9 98.9 95.0

Table 3
Traffic flow distributions parameters.
Gaussian mixture Value Generalized extreme Value

Mean [17.3, 9.6] Location 12.7
Covariance [8.6, 8.4] Scale 5
Proportion [0.53, 0.47] Shape −0.373

be considered using the relative monthly flow (Department for
Transport, 2019) (Table 2). From the average daily vehicle flow,
the expected EV flow is estimated using the EV market share.
The licenced BEVs and PHEVs in the UK at the end of 2019 are
0.3% and 0.4%, respectively, of the total fleet (Department for
Transport, 2020b). Therefore, the total EV share (0.7%) is used
to scale the total vehicle flow to represent the passing EV flow.
Not all vehicles on the roads are travelling long distances. The
National Travel Survey dataset (Department for Transport, 2017)
showed that car trips longer than 25 miles are only 7% of the total
trips. This is used to distinguish long journeys from the average
EV daily traffic flow. Thus, the daily vehicle flow is scaled by two
factors to reflect the EV flow travelling long distances.

The EV daily flow is distributed throughout the day using the
normalized motor vehicle flow distribution by time of the day
(Fig. 3) (Department for Transport, 2019). All weekdays show
similar distributions with two peaks, and the weekends are sim-
ilar with a single peak in the afternoon. A Gaussian mixture
distribution, comprising multivariate Gaussian distribution com-
ponents, is used for the weekdays (4). The mean, covariance, and
proportion values for the distribution are given in Table 3. A gen-
eralized extreme value distribution (5) is used for the weekends
with the distribution parameters (Table 3). These distributions are
equivalent to the plug-in time distribution required with the local
population modelling. Accordingly, each time slot has a maxi-
mum possible number of EVs (upper limit). For each time slot,
several random values are generated between 0 and 1. The slot
upper limit determines how many random values are generated.
These values are compared with a threshold level (TF thr ). An EV
is counted as a new arrival if the generated random value is less
than or equal to the threshold level. The influence of the TF thr
value is studied later in the competitive charging subsections.

p (t) =

n∑
i=1

wi f (t|µi, σi)

f (t|µi, σi) =
1

σi
√
2π

exp(−
1
2

(
t − µi

σi

)2

) (4)

n∑
i=1

wi = 1

here p (t) is the probability density function at t for a weekday,
µi, σi and wi are the mean, the covariance, and the proportion
value for the ith distribution and n is the number of distributions.
In this case, n = 2.

f (t|k, µ, σ ) =
1
σ
Q k+1 exp(−Q )

Q =

(
1 + k

t − µ

σ

)−
1
k

(5)

where f (t|k, µ, σ ) is the probability density function at t for a
weekend, µ, σ and k are the location, the scale, and the shape
parameters for the generalized extreme value distribution.
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Fig. 3. Traffic flow distribution.
Source: Department for Trans-
port (2019).

.3. Competitive charging

As EVs may charge at other locations e.g. home, work, or
ublic standalone charging points, the proposed model includes
competitive charging probability for each population.

.3.1. Local population competitive charging factor
For each EV from the local population, Nev , a random value

between 0 and 1 is generated and compared with the competition
factor to decide if that EV is going to be a potential arrival
from the local population or is going to charge elsewhere. If the
random value is less than or equal to the competition factor,
then this EV is counted as a possible new arrival. Otherwise, it is
assumed that this EV is going to charge elsewhere. Accordingly,
a modified value for Nev is calculated and used as an input to
the second step of the local population algorithm. It is expected
that the site is mostly used by BEVs rather than PHEVs because of
their larger battery capacity, thus benefitting from higher charg-
ing rates. Hence, two competition factors are used, BEVcom and
HEVcom.

.3.2. Passing traffic population competitive charging factor
The competitive charging is implemented by controlling the

hreshold level used to determine the new arrivals (TF thr ). PHEVs
ave the option of using the engine, so to account for the lower
ikelihood of charging, the PHEV market share is scaled down by
factor (PHEV rt ) when estimating the EV flow. Therefore, the
EV to the PHEV effective ratio participating in the passing traffic
ncreases. The effective EV share in the passing traffic is therefore
stimated by (6) with the second term representing the PHEV
ffective share in the passing traffic,

V share = BEV share + PHEV rt×PHEV share (6)

study setting the competitive charging parameters is carried out
n Section 3.

.4. EV charging

Thus far, only the EV arrival rate is modelled. This section
hows how to estimate the load demand corresponding to the
stimated EV arrivals. As previously mentioned, a database for
he common EV models is constructed and used to randomly
ick the EV model for each new arrival based on the relative EVs
hare in the market (Department for Transport, 2020b). The EV
odel defines the rated charging power, battery capacity, and

otal electrical range. The BEVs and PHEVs in the local population

s defined using the relative share of the common models. For the
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Fig. 4. Initial and final state of charge distributions.

Table 4
Parameters for the initial and final SoC distributions.
Initial SoC Value Final SoC Value

Location 20 Location 85
Scale 15 Scale 10
Shape 0.4 Shape −0.7

passing traffic population, firstly the EV is chosen to be BEV or
PHEV based on their relative share in the population. For example,
if the BEV and PHEV relative share is 80% and 20% respectively.
A random value is generated between 0 and 1. If the random
value is less than or equal to 0.8 then the vehicle is considered
a BEV, otherwise, a PHEV. Then a vehicle is selected using the
relative share of the common BEVs and PHEVs, similar to the local
population case.

The energy demand of an EV is drawn from the combination
of initial SoC, final SoC and the EV battery capacity because the
energy distribution may be biased based on the EV type. The
likely initial SoC is estimated by (1) for the local population.
However, it is not predicted for the passing traffic population.
Common distributions for the initial SoC (Qian et al., 2011) and
final SoC (Schäuble et al., 2017) are used (Fig. 4). Both initial and
final SoC distributions are represented by generalized extreme
value distribution with the parameters given in Table 4.

The EV charging status time step (∆t) is 2 min. The EV charg-
ing power is assumed to be the rated EV value. The charging
session ends when the amount of energy charged is equal to
the required energy. A 1% probability is assumed that the user
terminates the charging session before its planned end. Therefore,
the power delivered by each charger and the total power (from
all chargers) is recorded with a resolution ∆t throughout the day.
The total power demand is calculated using (7), where Nch is
the total number of chargers in the charging station. This power
profile represents the expected load profile for the next day
which can be integrated in the optimization process controlling
the site operation.

P (t) =

Nch∑
i=1

Pi(t) (7)

3. Results and discussion

3.1. Competitive parameters: setting and model sensitivity

A study is performed on the influence of the four parameters
controlling the competitive charging namely BEV com, PHEV com,
TF thr , and PHEV rt on the model output, and to guide setting the
values. The total monthly energy required to charge the EVs

and the percentage of charging sessions related to charging BEVs
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Fig. 5. Variation of BEV com , TF thr with monthly energy demand.

(%BEV ss) are considered as the outputs of interest when setting
the competitive charging parameters. As more charging events
are for BEVs, the monthly energy demand is dominated by BEVs
rather than PHEVs. So, the BEV com for the local population and
he TF thr for the passing traffic population are the important pa-
rameters from an energy point of view. The other two parameters
(PHEV com and PHEV rt ) control the %BEV ss level.

Deep testing is performed to (1) derive the relationship be-
ween the parameters and the model output, (2) define the feasi-
le range for each parameter, and (3) provide a guide for setting
he parameters. Testing is performed over a wide range of values
or the parameters using the following tests. For all cases the
odel has been executed 15 times for each test point.

.1.1. BEV com, TFthr and monthly energy
To study the relationship between the BEV com, the TF thr , and

he energy demand, each of the BEV com and the TF thr were varied
etween 0.1 to 0.8 in 0.05 steps while keeping PHEV com and
HEV rt fixed at 0.1 and 0.25, respectively. Fig. 5 shows the average
onthly energy. The standard deviation for the 15 model execu-

ions at each point has been calculated and the average standard
eviation for all points is 0.57 MWh. The following observations
an be made from Fig. 5:

• the monthly energy increases with increasing any of the two
parameters, and

• both BEV com and TF thr have a close to linear relationship
with total monthly energy.

The operational data suggests that the %BEV ss is > 70%. Over
the whole feasible range, the change in the average %BEV ss was
nly 10% as shown in Fig. 6 meaning that the BEV com and TF thr

have a limited effect on the %BEV ss.
Repeating this scenario, but with PHEV com and PHEV rt fixed at

0.25 and 0.05 showed a similar curve to that in Fig. 5. The average
difference in the monthly energy is 0.8 MWh between the two
cases. Comparing this difference with the standard deviation of
the results (0.57 MWh), then the two curves are undistinguish-
able, and therefore, this difference can be ignored. In other words,
the PHEV com and PHEV rt have a limited impact on the relationship
between the BEV com and TF thr and the monthly energy. This is also
true for the %BEV ss relationship with BEV com and TF thr .

3.1.2. PHEV com, PHEVrt and %bevss.
From Fig. 5, different operating points can provide the same

amount of energy. Assuming an energy level of 15 MWh, a possi-
ble setting from Fig. 5 for the TF thr and the BEV com is 0.55 and
0.65, respectively (exact corresponding energy is 14.75 MWh).
PHEV com and PHEV rt were changed between 0 and 0.5 while keep-

ing the TF thr and the BEV com fixed at 0.55 and 0.65, respectively.
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Fig. 6. Variation of BEV com , TF thr with %BEV ss .

Fig. 7. Variation of PHEV com and PHEV rt with monthly energy demand.

Fig. 8. Variation of PHEV com and PHEV rt with %BEV ss .

The average monthly energy and %BEV ss are shown in Figs. 7
nd 8, respectively. The average standard deviation is 0.64 MWh
or the monthly energy and 1.6% for the %BEV ss. Lower PHEV rt
values have less effect than higher PHEV rt values on the energy.
Compared with the variation of BEV com and TF thr , it is clear that
the BEV com and TF thr have the major impact on the monthly
energy while the PHEV com and PHEV rt predominantly affects the
%BEV ss. This conclusion does not eliminate any dependency be-
tween the parameters, though the result is stable with variation
in BEV com and TF thr . Repeating this scenario, but with BEV com
and TF thr fixed at 0.4 and 0.7 at the same energy level does not
influence the relationship between the %BEV ss and the PHEV com
and PHEV rt (Fig. 8). Furthermore, changing the monthly energy by
20% showed a <3% (%BEV ss > 70%) difference from that in Fig. 8.

3.1.3. %BEVss level and monthly energy, BEVcom and TFthr
This case tests the effect of changing the %BEV ss level, as

defined by the PHEV and PHEV , on the relationship between
com rt
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he monthly energy and the BEV com and TF thr . From Fig. 8, the
BEV ss at PHEV com of 0.1 and PHEV rt of 0.25, used in the first
cenario, is equal to 77%. Both the PHEV com and the PHEV rt were
et to 0.1 corresponding to a %BEV ss of 85% in Fig. 8. The average
ifference in the monthly energy between the first and third
cenarios was only 0.33 MWh. The influence of changing the
BEV ss level (8% change between the two scenarios) is small and
ill be ignored. Therefore, the same curve points can be used for
epresenting the relationship between the monthly energy and
he BEV com and TF thr .

.1.4. Summary
From the previous three scenarios, we conclude:

• BEV com and TF thr are key in determining the monthly energy
level (Figs. 5 and 7). Whilst PHEV com and PHEV rt affect more
the %BEV ss (Figs. 6 and 8).

• The relationship between the monthly energy and the
BEV com and TF thr is little affected by changing the %BEV ss
level.

• A 20% change in the monthly energy causes a change of
<3% in the relationship between %BEV ss and the PHEV com
and PHEV rt for %BEV ss > 70%.

• For the same %BEV ss as defined by the two parameters
PHEV com and PHEV rt , different settings for these two param-
eters do not affect the relationship between the %BEV ss and
the BEV com and TF thr .

• For the same energy level, different combinations for the
BEV com and TF thr can be used. Changing the setting point
does not affect the relationship between the %BEV ss and the
PHEV com and PHEV rt .

ccordingly, the following five steps are the proposed guide for
etting the four parameters:

1. Save the data in Figs. 5, 6, and 8 with energy values
rounded to the nearest quarter as lookup tables.

2. For the required %BEV ss that matches the nominal site uti-
lization, pick all possible PHEV com and PHEV rt combinations
that satisfy this %BEV ss.

3. Choose any setting for the PHEV com and PHEV rt . Noting that
high PHEV rt values are not recommended.

4. For the required energy demand, pick all possible BEV com
and TF thr combinations that satisfy this demand.

5. For the possible combinations in step 4, find the corre-
sponding %BEV ss values (data saved from Fig. 6). Choose a
setting for the BEV com and TF thr that provides a %BEV ss close
to the required value. If different combinations satisfy this
point, then choose any setting.

As the data in Fig. 6 was derived for a %BEV ss of 77% then the
aximum value is 80%. Therefore, if the required %BEV ss is > 77%,
tep 5 in the previous procedure may be not achievable and it can
e omitted.

.2. Model output

The model has been executed using the values for differ-
nt parameters e.g. the local fleet composition, distribution for
lug-in time, and SoC distributions. For the competitive charging
arameters, models will be unique if based on real operational
ata and specific local characteristics. The model has been tested
t a monthly energy demand of 17 MWh, and a %BEV ss of 80% and
5%.1

1 Monthly data obtained from Gridserve, priv. comm.
 p
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Table 5
Possible settings for energy = 17 MWh and %BEVss = 80%.
PHEV com/PHEV rt 0/0.35 0.10/0.20 0.20/0.05
BEV com/TF thr 0.40/0.80 0.55/0.75 0.70/0.65 0.80/0.55

Table 6
Model output for energy = 17 and %BEVss = 80%.

PHEV com/PHEV rt BEV com/TF thr
Energy (MWh) %BEV ss

Mean Std Mean Std

0/0.35 0.40/0.80 17.8 0.63 76 1
0.80/0.55 17.4 0.70 82 2

0.10/0.20 0.40/0.80 16.7 0.67 79 1
0.80/0.55 16.8 0.80 81 1

0.20/0.05 0.40/0.80 17.1 0.55 81 1
0.80/0.55 17.5 0.68 81 1

Table 7
Model output for energy = 17 MWh and %BEVss = 85%.

BEV com/TF thr
Energy (MWh) %BEV ss

Mean Std Mean Std

0.40/0.80 17.0 0.73 84 1
0.55/0.75 17.5 0.63 86 1
0.70/0.65 17.6 0.62 86 2
0.80/0.55 17.0 0.68 86 1

For a %BEVss of 80% and following the proposed procedure to
set the competitive charging parameters, three possible settings
for the PHEVcom and PHEVrt and four different settings for the
BEVcom and TFthr were found (Table 5). The model was run
for the three possible settings for the PHEVcom and PHEVrt and
the two extreme settings for the BEVcom and TFthr to show
how changing the parameters affects the model output. For each
setting group, the model has been executed for a month with 15
runs for each day.

Table 6 illustrates the average and standard deviation values
for the energy and %BEV ss for the six test cases. Despite the data
used to extract the parameters setting corresponds to %BEV ss of
7% (Fig. 5) and energy level of 15 MWh (Fig. 8), the model output
or energy level of 17 MWh and %BEV ss of 80% are close to the
esired values.
For a %BEV ss of 85% and demand of 17 MWh, the possible

ettings for BEV com and TF thr are given in Table 5. There are two
ossible combinations for (PHEV com, PHEV rt ) as (0, 0.25) and (0.1,
.1). Setting the PHEV com and PHEV rt to 0.1 and running the code
or the four possible BEV com and TF thr settings, the output is given
n Table 7. Similar to the previous test, the obtained energy and
BEV ss are close to the desired values. It is worth noting that the
aximum %BEV ss in Fig. 6 is 80%. Therefore, none of the BEV com
nd TF thr settings in Table 5 correspond to 85%. However, the
BEV ss obtained is close to the desired value ensuring that the
EV com and the TF thr do not have undue influence on the %BEV ss.
To illustrate the range of outputs, the EV arrival distribution

or an iteration for one day is shown in Fig. 9 for the local and
assing traffic populations. The corresponding charging power is
hown in Fig. 10. The daily required charging energy over the
hole month is given in Fig. 11. Finally, Figs. 12 and 13 show
he distribution of the total monthly EV arrival from the two
opulations. The average arrival (15 iterations) at each time slot
s shown together with the error bars representing the standard
eviation. The monthly EV arrival matches the modelled plug-in
ime distribution and the traffic flow distribution for the local and

assing traffic populations, respectively.
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Fig. 9. EV arrival distribution for one day.

Fig. 10. Charging power for a typical day.

Fig. 11. Daily charging energy for a whole month.

Fig. 12. Monthly EV arrival distribution from the local population.

Fig. 13. Monthly EV arrival distribution from the passing traffic.
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4. Conclusions and further work

The growth of EVs is slowed by a lack of easy to use and
reliable charging infrastructure, especially rapid charging facil-
ities with an experience similar to conventional refuelling sta-
tions. Such stations will likely be used mainly by BEVs rather
than PHEVs because large capacity batteries require charging
rates higher than can be accommodated by at-home on on-street
facilities.

Designing and operating a large multi-charger station depends
on an optimization process of parameters such as arrival rate and
the technical specifications of different EV types. The parameters
characterizing whether an EV needs to charge are shaped by
the habits of drivers, thus in their nature are stochastic and not
deterministic. A stochastic model for EV arrival has been de-
veloped to consider different uncertainties associated with daily
travelled distance, vehicle battery SoC, start time of charging
events, and vehicle parameters. In this way, the model can mimic
observable power demand for a charging facility resulting from
patterns in EV owner/driver behaviour and travel patterns. The
model uniquely treats EVs as local and passing traffic populations,
plus separating BEVs and PHEVs. The steps for estimating arrival
rates from each population were discussed in detail, accounting
for seasonality. The model incorporates competitive charging be-
tween the forecourt and other facilities. Sensitivity of the model
to different parameters controlling the competitive charging was
investigated, resulting in a procedure to better understand and
set these parameters. The model addresses the gap in knowledge
between a detailed physics-based power systems and power elec-
tronics model of the charging process, and a purely behavioural
or economics view of EV fleet characteristics.

By using the UK’s first dedicated large-scale multi-charger
forecourt as a case study, the model was tested and validated
with real-world data. The model was able to produce plausible
EV arrival patterns for both of the population types, and repro-
duce the characteristic power demand at the site. All estimates
incorporate uncertainty, reflecting the realistic variability of the
parameters of interest. Together, these allow the site operator
to plan daily activities, interact with the local grid operator, and
to inform investment decisions. The model in independent of
location, uses open-source data, and is structured flexibly, making
it is relatively straightforward to adapt to any potential site as
part of the technical and business planning process.

Future development will be directed to using real operational
data for predicting daily demand, applying this model to other
types of location e.g. city centre, and understanding how pro-
jected growth of EV use will affect the requirements for charging
infrastructure and impact the electrical power distribution grid.
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