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MECHANISMS OF TELOMERE MAINTENANCE IN TRYPANOSOMA BRUCEI

M A G RABBANI

ABSTRACT

Telomeres are a nucleoprotein structure at the end of the chromosome and are 

essential for genome integrity and chromosome stability. Telomere lengths are primarily 

maintained by a telomerase-mediated pathway but can be maintained by a homologous 

recombination-mediated pathway. However, detailed mechanisms of telomere 

maintenance are still unclear in many eukaryotes, including an important human pathogen, 

Trypanosoma brucei. Telomeres can be elongated by telomerase in T. brucei, a causative 

agent of fatal sleeping sickness in humans and nagana in cattle. T. brucei evades host 

immune response by regularly switching its major surface antigen, variant surface 

glycoprotein (VSG), a process known as antigenic variation. The telomere structure and 

telomere proteins play critical roles in T. brucei pathogenesis. In mammalian, yeast, and 

plant cells, ssDNA binding proteins with OB-fold domains play important roles in 

coordinating telomere G- and C-strand syntheses. However, no such protein has been 

described in T. brucei to be specifically associated with the telomere. We identified POLIE, 

an A-type DNA polymerase, as a crucial telomere complex component in T. brucei and 

essential in maintaining telomere integrity in T. brucei. Depletion of POLIE in T. brucei 

leads to an increased amount of DNA damage at telomere/subtelomere, increased 

frequency of gene conversion-mediated VSG switching, and an increased amount of the 

telomeric circles (T-circles), suggesting a potential role of POLIE in suppressing DNA 

recombination at the telomere and the subtelomere. However, I find that telomeric and 

subtelomeric DNA recombination is unlikely to be mediated by the increased telomeric R- 
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loop level as the telomeric repeat-containing RNA (TERRA) level is significantly lower in 

POLIE-depleted cells. The telomere G-rich 3’overhangs are dramatically elongated in 

POLIE-depleted cells, indicating a potential role of POLIE to coordinate telomere G- and 

C-strand syntheses and suggesting that the long telomere 3’ overhang can induce more 

telomeric and subtelomeric recombination. In addition, I find that POLIE inhibits 

telomerase-dependent telomere G-strand extension, identifying POLIE as the first telomere 

protein that potentially suppresses telomerase in T. brucei. Moreover, depletion of POLIE 

greatly increases the amount of telomeric C-circles which can be derived from replication 

stress in the telomere C-strand. Importantly, the elongated telomere 3’ overhang and 

elevated telomeric C-circle level phenotypes are independent of the telomerase, which 

suggests that POLIE may promote the telomere C-strand synthesis. Therefore, we 

identified that POLIE plays a major role in suppressing telomere recombination, 

coordinating telomerase-mediated telomere G-strand extension, and telomere C-strand 

synthesis, and maintaining telomere integrity in T. brucei.
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CHAPTER I

INTRODUCTION

1.1 Trypanosoma brucei and Human African Trypanosomiasis (HAT)

Trypanosoma brucei is a eukaryotic unicellular parasite that belongs to the 

Kinetoplastea class. It causes African trypanosomiasis or sleeping sickness in humans and 

animal trypanosomiasis or nagana in cattle. The nagana name in the animal is derived from 

"N'gana" which means "powerless/useless’, meaning the animal is unfit for work. This 

vector-borne disease is limited to sub-Saharan Africa and is fatal without treatment. T. 

brucei is a heteroxenous pathogen which means it requires at least two hosts to complete 

its full life cycle. It reproduces extracellularly in the mammalian host and is transmitted by 

the Tsetse fly (Glossina spp.) African trypanosomiasis affected the cultural and economic 

growth of central Africa throughout its history (Steverding, 2008). Few drugs were 

developed but most of these drugs are cautiously used due to their high toxicity.

There are three subspecies of T. brucei, T. brucei gambiense, T. brucei rhodesiense, 

and T. brucei brucei, all of which are morphologically alike. Among these subspecies, T. 

brucei gambiense and T. brucei rhodesiense cause sleeping sickness in humans, whereas 

T. brucei brucei causes nagana in livestock and other African hoofed animals (Steverding, 

1



2008). T. brucei brucei is unable to infect humans because it is susceptible to trypanosome 

lytic factor (TLF) present in the human blood (Thomson et al., 2009). T. brucei rhodesiense 

neutralizes TLF by expressing a serum resistance-associated protein (SRA) (De Greef et 

al., 1989) whereas T. brucei gambiense evolved to reduce the expression of TLF receptor 

which contributes to TLF resistance (Kieft et al., 2010). T. brucei gambiense is more 

prevalent in central and west Africa and causes a chronic form of the disease, while T. 

brucei rhodesiense is more prevalent in Southern and Eastern Africa and causes an acute 

form of the disease (Steverding, 2008).

T. brucei is estimated to have diverged from mammals more than 500 million years 

ago (Schulz et al., 2016; Li, 2021). Phylogenetic analyses based on rRNA genes suggest 

that, about 300 million years ago, T. brucei diverged from other trypanosomes (Haag et al., 

1998). At that time, early insects which evolved before T. brucei may have served as a host 

(Steverding, 2008). However, when tsetse flies evolved around 35 million years ago, they 

finally served as a vector to carry the pathogen to mammals through a blood meal 

(Steverding 2008).

One of the earliest records of nagana-like symptoms in cattle was described in 

Kahun Papyriin in around the 2nd millennium BC in ancient Egypt (Griffith, 1898). The 

earliest record of sleeping sickness in humans was described by Ibn Khaldun (1332-1406) 

who published a case report that the Emperor of Mali, Sultan Mari Jata died from a disease 

whose symptom was similar to sleeping sickness, a frequent disease in that region 

(Williams, 1996; Steverding 2008). Those affected individuals rarely awake, and sickness 

continues until the patients die (Steverding 2008).
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John Aktins, a naval surgeon, first described neurological symptoms of the disease 

in the patient which developed at the late phase of infection (Cox, 2004). Later, in 1803, 

Thomas Winterbottom, an English physician reported the early phase of the disease with 

swollen lymph glands around the neck (Cox, 2004). David Livingston, a Scottish explorer 

first described in 1852 that, the bite of tsetse flies causes trypanosomiasis in animals 

(Winkle et al., 2005). In 1902, Joseph Everett Dutton, an English physician identified the 

pathogen in European patients and termed the pathogen Trypanosoma gambiense (now T. 

brucei gambiense) (Dutton, 1902).

There are two stages of disease pathogenesis of sleeping sickness. The first phase 

symptoms include enlargement of the spleen and liver, headache, fever, and swollen lymph 

nodes. In the next phase, the parasite travels through the blood-brain barrier (BBB) and 

infiltrates the CNS to cause neuro-psychological disorders including speech disorders, 

paralysis of the extremities, and disruption of the circadian rhythm, the features of sleeping 

sickness in humans (Blum et al., 2012). In the 20th century, there were several epidemics 

caused by T. brucei in Africa. The largest one happened mainly in Uganda and Kenya 

between 1896-and 1906 which cost about 800,000 lives (de Raadt, 2005, Hide, 1999). 

Several scientific missions aimed to find a cure for African trypanosomiasis at that time to 

minimize the devastation caused by the epidemic (Winkle et al., 2005, de Raadt, 2005). 

The first drag, sodium arsenite, was identified in 1902 which inhibited the growth of T. 

brucei in infected laboratory animals (Cox, 2004). hi 1904, the arsenical drag atoxyl was 

shown to cure animal trypanosomiasis in the laboratory which was less toxic than any other 

arsenical compound at that time (Winkle et al., 2005). However, Robert Koch, a German 
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physician, later identified that atoxyl causes atrophy of the optic nerve which ultimately 

leads to blindness in the patient (Winkle et al., 2005).

In 1915, Jacobs and Heidelberger discovered an organo-arsenical tryparsamide 

which was the first drug to treat late-stage disease (Vickerman, 1997). Another drug 

Suramin, which was often used with organo-arsenical tryparsamide, was discovered in 

1916 by Wilhelm Roehl in a collaborative project with Bayer pharmaceutical (Winkle et 

al., 2005; Simarro et al., 2008). Suramin is still in use to treat the first stage of infections 

caused by T. b. rhodesiense infections (Winkle et al., 2005; Simarro et al., 2008). Suramin 

inhibits various enzymes including enzymes in the glycolytic pathway and thymidine 

kinase to inhibit the rapid proliferation of T. brucei (Wang, 1995). However, the limitation 

of Suramin treatment is that it cannot pass through the blood-brain barrier to inhibit the 

parasite growth in CNS (Wang, 1995). With the help of both drugs and the implementation 

of strategic decisions such as the introduction of special service units and mobile teams, 

host reservoir control and vector control effectively reduced the infection rate (Steverding 

2008). In 1937, Baker pharmaceutical company and Ewins, an English chemist co­

developed pentamidine to treat the first stage of disease caused by T. b. gambiense (Bray 

et al., 2003; Simarro et al., 2008). Although the mechanism of action of pentamidine is 

poorly understood, it is believed to interfere with the nucleic acid metabolism in T. brucei. 

Pentamidine is not effective against the second stage of the disease and has toxic side 

effects (Bacchi, 2009). In 1939, the invention of DDT as an insecticide helped to eradicate 

tsetse flies from its endemic areas (Winkle et al., 2005, de Raadt, 2005). In 1949, Ernst 

Friedheim, a Swiss pathologist, invented arsenical melarsoprol to treat the second stage of 

T. b. rhodesiense infection which is still the only effective drug against the pathogen
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(Steverding 2008). Melarsoprol diminishes energy for trypanosome growth by interfering 

with ATP production and inhibiting the S-H group found in many enzymes (Bacchi, 2009). 

Melarsoprol is the most toxic HAT drug with a high failure rate due to its nonspecific 

activity. Since the 1950s, there were several drugs introduced by different companies to 

treat both sleeping sickness and nagana (Steverding, 2008).

Decolonization of Africa, economic collapse, and political instability in the mid- 

1960 led to the disruption of disease control and surveillance in many African countries, 

which caused a sharp increase in sleeping sickness (Steverding 2008). But existing drugs 

and newly evolving drags such as eflornithine (DL-a-di fluoromethyl ornithine, DFMO) 

reduced the suffering in treatment. Eflornithine, although originally discovered in 1990 as 

a treatment for cancer, was found to be effective against T. b. gambiense infection and had 

a better toxicity profile than available melarsoprol (Meyskens and Gemer, 1999). DFMO 

inhibits ornithine decarboxylase, a rate-limiting enzyme in the polyamine synthetic 

pathway (Bacchi, 2009).

With time, an increase in surveillance leads to the reduction of new cases number 

gradually (Steverding, 2008). By 2006, the number of cases was estimated to be around 

50,000-70,000 per year (WHO, 2006), which further reduced to below 10000 cases per 

year by 2009 (Kennedy and Rodgers, 2019). By 2016 the number of confirmed cases came 

down to approximately 2,184 cases a year (Kennedy and Rodgers, 2019) although the 

actual number remain underestimated due to the lack of detection method to detect the 

early-stage infection (Welburn and Maudlin, 2012).

The diagnosis of HAT is complex as the clinical presentation varies depending on 

the pathogen type and stage of the disease. The major contributor to this diversity is the 
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host-parasite interactions and the genetic background of parasite and host (Morrison, 

2011). The choice of drug for treatment depends on the infection stage. The later stage 

treatment requires a drug that is more toxic to the patient. Although HAT is still fatal 

without treatment, the disease is still considered one of the most neglected tropical diseases 

in the current times (Buguet et al., 2014). Recently, a combination treatment of Eflomithine 

and Nifurtimox was found to be cost-effective and efficient (Simarro et al., 2008; Alirol et 

al., 2013). The treatment of HAT requires special administration and special training due 

to diversity in subspecies type, disease stage-specific action, nature of the drug, toxicity, 

resistance development, and careful follow-up (Alirol et al., 2013). Further research is 

required to design a therapeutic strategy that would be safer for the host but effective 

against any subspecies type and stage of the disease.

1.2 T. brucei Life Cycle

Humans and insects are the two hosts required to complete the lifecycle of T. brucei 

(Fig. 1). The tsetse fly (Glossina spp.) is the vector for both T. brucei rhodesiense and T. 

brucei gambieuse. The pathogen enters the midgut of the fly when the tsetse fly takes a 

blood meal from an infected host. In the anterior midgut of the fly, the parasite undergoes 

biochemical and morphological changes to form long slender parasitic forms (Aksoy, 

2003). The parasite then rapidly multiplies in the posterior midgut and expresses surface 

protein procyclin to protect the pathogen from hydrolytic enzymes present in the midgut 

of the fly (Gruszynski et al., 2006). Then the pathogen travels to salivary glands through 

the digestive and respiratory tract to develop into epimastigotes form. In the salivary gland 

of the fly, the pathogen differentiates into the short stumpy metacyclic form which is an 

infective form. The metacyclic form expresses metacyclic VSGs (mVSGs) as their surface 
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protein (Graham and Barry, 1995). The flies gain the ability to infect ~ 21 days after feeding 

and retain infection ability for the rest of their life (Atouguia and Kennedy, 2000).

The metacyclic form of the pathogen enters the mammalian host from the tsetse fly 

when the fly bites the host for a blood meal (Kennedy, 2004). Several thousands of 

metacyclic trypanosomes can be transmitted in a single bite. Then the parasite transforms 

into an infectious dividing bloodstream form that resides in the lymph nodes, spleen, and 

bloodstream of the host. At this form, T. brucei starts to express monoallelic bloodstream 

VSGs from its VSG gene pool (>2500 VSG genes and pseudogenes) and regularly switch 

to express a different VSG to escape from the host immune response in a mechanism called 

antigenic variation. T. brucei gambiense primarily invades the central nervous system of 

the host to cause chronic infections and sleeping sickness whereas T. brucei rhodesiense 

can invade almost all organs to cause acute infections and rapid death. The disease is fatal 

if left untreated (Kennedy, 2004). The infected host also serves as a reservoir for tsetse flies 

to further spread the disease. The life cycle of the T. brucei in its mammalian host and the 

insect host is summarized in Fig. 1 (CDC, 2021).
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Fig. 1: T. brucei rhodesiense and T. brucei gambiense life cycle (CDC, 2021). The life 
cycle of T. brucei starts when the Tsetse fly takes a blood meal from the host. Injected 
trypomastigotes transform into infective bloodstream form which multiplies in the host. 
When a Tsetse fly takes another blood meal, the circulating bloodstream form develops 
into procyclic trypomastigotes which can be transferred back to a host with another blood 
meal.

1.3 Genome Organization

The T. brucei haploid genome size is about ~35 Mb. Its DNA is enclosed in a 

nucleus of ~2.5 pm in diameter (Daniels et al., 2010). One of the previous studies predicted 

about 10000 genes in the T. brucei genome (Berriman et al., 2005). Recent studies 

estimated more than 2500 variant surface glycoprotein (VSG) genes and pseudogenes in 

the T. brucei genome (Navarro and Cross, 1996, Berriman et al., 2005, Cross et al., 2014, 

Li, 2021). Based on their sizes, the T. brucei chromosomes are divided into three classes. 

There are 11 pairs of megabase chromosomes (1-5.2 Mb) (El-Sayed, 1997; Donelson, 
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2002; Melville et al., 1998), 5 intermediate chromosomes (200-900 kb), and ~100 

minichromosomes (30-150 kb) (Donelson, 2002; El-Sayed, 1997; Donelson, 2002). All of 

these chromosomes end with telomeric TTAGGG repeats. The immediate region upstream 

of the telomere in some megabase and intermediate chromosomes contains bloodstream 

expression sites (BESs), which are responsible for the expression of VSGs (El-Sayed, 

1997). VSGs are expressed from about 15 BESs (Navarro and Cross, 1996).

Minichromosomes contain additional silent VSG genes (64-67 VSGs on ~96 

minichromosomes), which increase the number of VSGs genes in the VSG pool (Alsford et 

al., 2001; Cross et al., 2014). These minichromosomes were shown to segregate and 

replicate without any aberration for greater than 360 generations and more than five years 

of culture, which implies their stability in the genome of T. brucei (Alsford et al., 2001). 

There are approximately 900 VSG pseudogenes in the genome of T. brucei (Cestari and 

Stuart, 2018). VSG gene constitutes a large portion of the pseudogenes (Berriman et al., 

2005) but the mechanism of activation of these VSG pseudogenes is yet not fully 

understood (Alsford et al., 2001, Berriman et al., 2005).

1.4 The Telomere and Subtelomere Structure

Telomeres are a nucleoprotein complex composed of repetitive DNA and 

associated proteins which protect the chromosome ends (Blackbum, 1991). Telomeres are 

important for maintaining chromosome stability and genome integrity (Lim and Cech, 

2021; de Lange, 2018). Telomeres are shortened after each round of cell duplication as 

conventional DNA polymerases cannot fully replicate the ends of the chromosome; a 

phenomenon termed as end replication problem (Blackbum, 2001, Feng et al., 2017; 

Olovnikov, 1973; Ohki et al., 2001). This telomere shortening mechanism ultimately leads 
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to cellular senescence if telomere elongation mechanisms are absent or defective 

(Blackbum, 2001). In most eukaryotic cells, there is a correlation between the life span of 

cells to their telomere length. Eukaryotic telomeres usually contain TG-rich double­

stranded DNA that terminates in a 3’ single-stranded G-rich overhang structure (Podlevsky 

et al., 2008; Bonetti et al., 2014; de Lange, 2005).

Mammalian telomeres consist of the Shelterin protein complex and 2-15 kilobases 

of duplex 5’-TTAGGG-3’:3’-AATCCC-5’ repeated sequence which terminates in~15-300 

nt of 3’ overhang (Fig. 2) (Lim and Cech, 2021). The 3’ overhang can form a T-loop 

structure by invading the double-stranded telomere DNA section of the same telomere 

(Bruce, 1895). The T-loop structure helps to stabilize telomeres by protecting them from 

unwanted nucleolytic degradation, and components of DNA damage repair machinery (de 

Lange, 2018). Hence, the telomere 3’ G-rich overhang is essential for chromosome end 

protection and preservation of telomere structure. The 3’ overhang structure generation is 

tightly regulated by several telomere proteins and takes several steps to process (Bonetti et 

al., 2014; Bonnell et al., 2021). In most eukaryotes, the 3’ overhang structure act as a 

substrate for the telomerase, a specialized reverse transcriptase, which elongates the 3’ 

overhang by adding G-rich repeats to the single-stranded 3' termini (Greider and 

Blackbum, 1987; Greider and Blackburn, 1989; Blackbum and Collins, 2011; Schmidt and 

Cech, 2015, Feng et al., 2017). After elongation by telomerase, a DNA polymerase covert 

a part of the elongated overhang to double-stranded DNA (Feng et al., 2017). Hence, the 

collective action of the DNA polymerase and telomerase is required to counterbalance the 

shortening of telomere in proliferating cells (Feng et al., 2017; Olovnikov, 1973; Ohki et 

al., 2001).
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Fig 2: Structure of mammalian telomere at the end of the chromosome (Figure 
reproduced from Lim and Cech, 2021). Telomere and the individual component of the 
human Shelterin complex are shown.

The Shelterin complex is a multimeric protein complex that plays a key role in 

telomere end protection and telomere length maintenance in a wide array of organisms (de 

Lange, 2005). The human Shelterin complex component includes RAP1, POT1, TPP1, 

TRF1, TRF2, and TIN2. The Shelterin complex facilitates telomere replication and averts 

the triggering of ATM/ATR-mediated DNA damage response at the DNA terminus 

(Amoult and Karlseder, 2015, Hockemeyer and Collins, 2015, Martinez and Blasco, 2015). 

TRF1 and TRF2 are the dsDNA telomeric repeats binding proteins (Broccoli et al., 1997) 

while POT1 binds the single-stranded 3’ overhang structure at the end of the chromosome 

(Feng et al., 2017). TPP1 dimerizes with single-stranded DNA binding protein POT1 and 

acts as a linker to connect TRF1/2 to POT1 via another Shelterin complex protein TIN2 

(Feng et al., 2017). Similar to humans, the fission yeast Schizosaccharomyces pombe also 

forms a Shelterin-like complex (Moser and Nakamura 2009). The Shelterin-like complex 

in S. pombe is composed of Rapl, Pot1, Tazl, Ccql, Tpzl, and Pozl (Moser and Nakamura 
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2009). S. pombe Rapl is a homolog of mammalian RAP1 with analogous telomere and 

non-telomeric function (Cooper et al., 1997). Tazl is a double-stranded telomeric repeat 

binding protein with structural and functional resemblances to mammalian TRF1 and TRF2 

(Cooper etal., 1997). The S. pombe equivalent of mammalian single-stranded 3’ overhang­

binding proteins POT1 and TPP1 are Pot1 and Tpzl, respectively (Miyoshi et al., 2008). 

Pozl is structurally and functionally similar to mammalian TIN2 which connects single­

stranded 3 ’ overhang-binding proteins to double-stranded telomeric repeats binding protein 

Rapl (Miyoshi et al., 2008; Harland et al., 2014). The is no mammalian homolog of Ccql 

which plays a key role in telomerase recruitment to telomeres (Moser et al., 2011). In 

budding yeast, Saccharomyces cerevisiae, the CST complex is associated with the 

telomeric overhang (Martin et al., 2007) and performs a function similar to the Shelterin 

complex in mammals (Price et al., 2010). In S.pombe Potl as well Stnl and Ten l associate 

with the telomeric ssDNA overhang, but Stnl and Tenl do not interact with Pot1, rather 

works as a two separate complex (Martin et al., 2007). In humans, POT1 and TPP1 are 

associated with telomeric ssDNA overhang (Martin et al., 2007). Shelterin and the CST- 

like proteins have been identified in the plant as well (Procházková  et al., 2016).

Several telomere-associated proteins were identified in T. brucei (Fig. 3). The 

functions of these telomere-associated proteins are surprising because, besides their 

function in telomere maintenance, telomere-associated proteins regulate antigenic 

variation, a key mechanism to evading the immune response of the host (Duraisingh and 

Horn, 2016). Similar to other eukaryotic organisms, T. brucei telomere is primarily 

synthesized and maintained by telomerase (Gupta et al., 2013; Sandhu et al., 2013; Dreesen 

et al., 2005). Additionally, telomeres in T. brucei telomeres were shown to form a T-loop 
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structure (Munoz-Jordan et al., 2001), despite having a much shorter G-rich 3’ overhang 

compared to mammals (Sandhu and Li, 2011; Sandhu and Li, 2017). TbTRF plays a key 

role in maintaining the telomere 3’ overhang structure in T. brucei (Li et al., 2005).

T. brucei telomere structure and telomere proteins are unique in the aspect that, 

apart from maintaining genome stability and cell proliferation, telomere structure and 

telomere proteins are also crucial for regulating the VSG switching rate and monoallelic 

VSG expression (Li et al., 2005; Yang et al., 2009; Hovel-Miner et al., 2012; Pandya et al., 

2013; Benmerzouga et al., 2013; Jehi et al., 2014a; Jehi et al., 2014b; Nanavaty et al., 

2017; Li and Zhao, 2017; Saha et al., 2019; Afrin et al., 2020; Saha et al., 2021; Li, 2021). 

The VSG switching rate is also affected by telomere length (Hovel-Miner et al., 2012). 

Genes located near telomeres are silenced by the telomeric chromatin structure, a 

phenomenon known as the telomere position effect (TPE) (Gottschling et al., 1990). In 

budding yeast, TPE depends on the distance of the gene from the telomere and the length 

of the telomere (Gottschling et al., 1990). TbRAP1 was shown to silences VSG by a TPE- 

like mechanism in T. brucei (Yang et al., 2009). Additionally, depletion of TbRAP1 causes 

derepression of all silent BES-linked genes at the subtelomere (Yang et al., 2009). Since 

most of the telomeric proteins in T. brucei are essential, targeting telomeric protein is a 

promising therapeutic area to explore for the treatment of sleeping sickness (Li, 2012).
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Fig. 3: Schematic diagram of T. brucei Telomere DNA structures. TbTRF and TbRAP1 
bind to double-stranded telomere DNA, and TelAP1 interact with both TbTRF and 
TbRAP1 (Reis et al., 2018). TbRAPl, TbTIF2, TbTIF3, and POLIE interact with TbTRF.

1.5 VSG and Antigenic Variation

While it is proliferating in the mammalian host, T. brucei express, VSG, the major 

surface antigen, and the type of expressed VSG is routinely changed to evade the host 

immune response (Fig 4). VSGs are about 58 kDa glycoprotein with enormous sequence 

diversity which facilitates the pathogen to escape antibody-mediated pathogen clearance 

from the host blood (Metcalf et al., 1987, Manna et al., 2014). About 10 million copies of 

a single type of VSG cover the entire surface of the parasite (Kennedy, 2004). The C- 

terminal hydrophobic region of VSG is secured to the plasma membrane by a 

glycosylphosphatidylinositol (GPI) anchor and the N-terminal hydrophilic region of VSG 

faces towards extracellular space (Carrington et al., 1991; Dubois et al., 2005; Donelson, 

2002). The GPI anchor of VSG contains a galactose side chain and a dimyristoyl- 

phosphatidyl-inositol moiety (Hong and Kinoshita, 2009). GPI is attached to the VSG in 

the endoplasmic reticulum (ER) by a GPI transamidase so that it can be transported to the 

cell surface (Hong and Kinoshita, 2009, Kruzel et al., 2017). In T. brucei, GPI anchors 

alone function as a forward trafficking signal to transport VSG from the ER to the plasma 

membrane (Kruzel et al., 2017).
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After a new VSG switching, the pathogen simultaneously presents both pre-and 

post-switch VSGs on their surface. The pathogen must replace the pre-switch VSG with 

the post-switch VSGs as soon as possible as the pre-switch VSGs remain susceptible to the 

host immune response. The pre-switch VSGs may persist several days for a full 

replacement with the new VSGs (Seyfang et al., 1990). The turnover of the preexisting 

VSG is mediated by the action of proteases such as a GPI-specific phospholipase (GPI- 

PLC) and zinc metalloprotease activity (MSP-B) so that old VSG can be replaced with a 

new VSG. The complete replacement of the pre-existing VSG takes about 48hr (Dubois et 

al., 2005).

The C-terminal region is usually conserved in different VSGs while the N-terminal 

region is usually highly variable (Carrington et al., 1991). VSGs are highly immunogenic, 

and the immune system rapidly raises antibodies against them for immune clearance. 

However, T. brucei regularly switches VSG for immune evasion and long-term survival in 

the host (Aresta-Branco et al., 2019). Millions of rod-like VSGs form a continuous layer 

on the parasite cell surface, which alleviates the host immune response by masking other 

invariant surface molecules of T. brucei (Morrison et al., 2009).
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Fig. 4. T. brucei antigenic variation. (A) Antigenic variation occurs through continuous 
switching of VSG. Consecutive immune responses lead to waves of parasitemia. (B) 
Structure of a VSG expression site (ES) containing a single VSG gene flanked by distinct 
repetitive sequences. The cassette has several unusual features (marked on the arrowed 
box) (Figure reproduced from Hom, 2014).

VSG is monoallelically expressed in the bloodstream form of T. Brucei. That means, 

at a time, only one VSG is expressed from one ES (Hertz-Fowler et al., 2014). VSG gene 

arrays can be found in megabase chromosomes at subtelomeric regions, and individual 

VSGs can be found at minichromosome subtelomeres (Fig. 6). The active VSG is expressed 

from one of the ~15 subtelomeric bloodstream VSG expression sites (BES) (Navarro and 

Cross, 1996), and the rest VSG genes remain transcriptionally silent (Donelson, 2002) (Fig. 

5). Each VSG ES contains a sub-telomeric VSG gene, several expression sites associated 

genes (ESAGs), and an upstream 70 bp repeat sequence (Alexandre et al., 1988). The alpha 

amanitin-resistant RNA Pol-I drives the transcription of VSG ES and the promoter is 
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located approximately 45 kb upstream of the VSG gene locus (Pays et al., 1989). In the 

metacyclic stage, T. brucei also expresses metacyclic VSG (mVSG), although mVSG is 

transcribed monocistronically (Alarcon et al., 1994) and the promoter of m VSG is activated 

when the parasite resides in the salivary gland of the tsetse fly (Fig. 6) (Graham and Barry, 

1995).

Fig. 5: Monoallelic VSG expression. VSG is expressed from a larger pool of VSG genes 
in a monoallelic fashion from the active ES only. Each VSG gene encodes for an 
antigenically distinct coat protein.

The molecular basis of antigenic variation is derived from a very large VSG gene 

pool and VSG is periodically switched to a new VSG from the pool to evade the host 

immune response (Fig. 5) (Donelson, 2002, Cross, 1975). There is a low-frequency 

recombination-based mechanism, in which a previously silent VSG can recombine to 

replace the originally active VSG, which in turn activates the expression of a new VSG to 

escape from the host immune response (Kennedy, 2004). This mechanism prolongs the 

endurance of the pathogen in the host circulatory system (Rudenko et al., 1998) and 
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produces a wave of parasitemia to cause sleeping sickness (Barry, 1997) (Fig. 4A). VSG 

switching can be mediated by in-situ switches, cross-over, gene conversion, and a 

combination of ES loss and in situ (Fig. 6). In the in-situ, the originally active BES is 

silenced, and a previously silent BES is expressed without any DNA rearrangements. In 

the cross-over switch, the originally active VSG is exchanged with a silent VSG to activate 

it with a loss of genetic information from the VSG ES (Rudenko et al., 1996). In gene 

conversion (GC), the donor VSG is duplicated, and the original VSG is lost in the process 

(Robinson et al., 1999).

VSG monoallelic expression and VSG switching are tightly regulated by several 

mechanisms, making evolutionally developed antigenic variation as one of the most 

complex mechanisms to escape the host immune response (Taylor and Rudenko, 2006).
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Fig. 6: T. brucei VSG gene pool and mechanisms of VSG switching (Figure reproduced 
from Li, 2021). (A) Schematic representation of subtelomeric VSG gene array in megabase 
chromosome. (B) The structure of a VSG gene located at the subtelomere of a 
minichromosome. (C) A representative VSG BES (D) A representative metacyclic VSG 
ES. (E) Schematic representation of major VSG switching pathways T. Brucei use to evade 
host immuno response. The originally active VSG was denoted as VSGac and the originally 
silent VSG was denoted as VSGsil. The silent ES promoter is represented by a short red 
arrow and the active ES promoter is represented by a long green arrow.
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BES is located adjacent to the telomeres from which active VSG is singularly 

transcribed. A silent VSG can be activated by recombination-mediated switching which 

replaces the originally active VSG gene with a silent gene that leads to activation of the 

originally silent VSG gene (McCulloch et al., 2015).

VSG transcription is controlled by several telomere-associated proteins in a way 

that only one BES is transcribed from the VSG gene pool and these proteins affect 

recombination-mediated VSG switching for the survival of the pathogen in the host 

(Duraisingh and Hom, 2016). For example, TbRAP1 (T. brucei repressor activator protein 

1) may be required for monoallelic VSG expression as transient depletion of TbRAP1 

derepresses all silent BES (Yang et al., 2009). Furthermore, TbTRF, the telomere duplex 

DNA binding factor, suppresses homologous recombination-mediated VSG switching 

(Jehi et al., 2014a). The TbTIF2 (T. brucei TRF interacting factor 2) may also act as a 

negative regulator of VSG switching in association with 76TRF but by a mechanism 

independent of TbTRF (Jehi et al., 2014b, Jehi et al., 2016). A recent study identified that 

the replication of actively transcribed BES happens in the early S-phase, but replication of 

all silent BES happens later (Devlin et al., 2016). The factors that direct the early 

replication of transcribed BES or replication of all silent BES compared to the rest of the 

genome are still unidentified (Tiengwe et al., 2012, Benmerzouga et al., 2013, Kim, 2019). 

A previous study identified POLIE as a putative T. brucei translesion polymerase, although 

the translesion polymerase activity of POLIE has not been verified yet (Reis et al., 2018). 

The study purified POLIE by coimmunoprecipitation with TbTRF, and with a telomeric 

repeat-containing oligonucleotide (Reis et al., 2018). It was shown that POLIE is closely 

related to four mitochondrial-targeted DNA polymerases but seems to be localized to the 
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periphery of the nucleus in T. brucei and that RNAi-mediated depletion of POLIE results 

in slowed growth without a specific cell cycle arrest, accumulation of DNA damage, and 

chromosome segregation defects (Leal et al., 2020). The study also documents substantial 

deregulation of telomeric VSG genes after POLIE depletion, which suggests at least one 

putative translesion DNA polymerase can contribute to antigenic variation (Leal et al., 

2020).

1.6 DNA Polymerase and Genome Duplication

Accurate duplication of genomic DNA is indispensable for organism survival. 

Precise duplication of genomic DNA depends on two processes, replication of the genome, 

and necessary repair of DNA damage (Cotterill and Kearsey, 2009). DNA polymerases are 

involved in both genome replication as well as repair of DNA lesions. Based on sequence 

and structural homologies, there are four different families of eukaryotic DNA polymerase, 

A, B, X, and Y. Nuclear DNA is replicated by B family DNA polymerases while the 

mitochondrial DAN is replicated by A family DNA polymerases (Raia et al., 2019).

Translesion DNA polymerases span all families of DNA polymerases and are 

involved in replication to bypass DNA damage. Replicative DNA polymerases are high- 

fidelity polymerases with a very low error rate (Kunkel, 2004). Replicative DNA 

polymerases can efficiently select the appropriate nucleotide for incorporation into the 

newly synthesized DNA by its polymerase activity and remove incorrectly inserted 

nucleotides by its proofreading activity (Leal et al., 2020). Furthermore, post-replicative 

repair decreases overall error rates by removing damaged or mispaired bases (Sale, 2013).

21



1.7 Translesion Polymerase and POLIE

Cells developed a wide array of DNA repair mechanisms that can effectively 

identify and eliminate DNA lesions from the DNA template during replication. Yet few 

forms of DNA lesions can persist in the genome which may lead to fork stalling during 

replication and affect organism survival (Iyama and Wilson, 2013, Gao et al., 2019). Cells 

from different organisms express a wide array of translesion DNA polymerases to ensure 

efficient duplication of the genome. When replicative DNA polymerases encounter a lesion 

in the template strand, translesion DNA Polymerases are recruited to bypass DNA damage 

to allow genome duplication (Powers and Washington, 2018, Vaisman and Woodgate, 

2017, Goodman and Woodgate, 2013). Translesion synthesis bypasses this lesion by 

incorporating nucleotides in the newly synthesized DNA strand (Sale, 2013). Translesion 

DNA polymerases are recruited to the damaged DNA by proliferating cell nuclear antigen, 

PCNA (Fig. 7) (Andersen et al., 2008). The PCNA complex encompasses DNA and helps 

to recruit replicative DNA Polymerases, increasing the processivity for repairing DNA 

damage (Zhuang and Ai, 2010). Additionally, PCNA interacts with translesion DNA 

polymerases through its PIP box motif (Boehm et al., 2016). It was shown previously that 

at least some Translesion DNA polymerases can form a complex with other proteins at 

stalled replication forks (Wojtaszek et al., 2016). Replication fork stalling can cause a 

longer appearance of single-stranded DNA, which can be identified by the RPA 

(replication protein A) heterotrimer. The binding of RPA stimulates RAD18/RAD6 

complex to mono-ubiquitinate PCNA, which assists the exchange of replicative 

polymerases with Translesion polymerases to circumvent DNA lesions in replication 

(Mailand et al., 2016).
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Fig. 7: Schematic representation of translesion synthesis (figure reproduced from 
Chang and Cimprich, 2009, Pustovalova et al., 2016). (a) Structure of replicative DNA 
polymerase and translesion DNA polymerase. Translesion DNA polymerases, such as 
Poln, Poll, and Po1k contain a core polymerase domain with palm, finger, and thumb 
domains, a polymerase associated domain (PAD), a ubiquitin-binding zinc finger (UBZ) 
domain, PCNA interacting domain (PIP), REV1 interacting region (RIR), and a nuclear 
localization signal domain (NLS). (b) Model of polymerase switching at lesions. (c) At the 
stalled fork, translesion DNA polymerase (tan) is recruited to slide clamp PCNA and 
bypass the lesion. Then another (green) or same translesion DNA polymerase extends the 
“patch” and switches to replicative DNA polymerase (blue) to restore DNA synthesis.

23



Translesion activities in T. brucei are not well documented. The only studied 

translesion DNA polymerases are two primase-polymerase-like proteins called PPL1 and 

PPL2 in T. brucei (Rudd et al., 2016). In an in vitro experiment, these polymerases were 

shown to incorporate nucleotides opposite to thymine dimers in DNA templates. 

Furthermore, PPL2 depletion leads to a severe cell cycle defect after completion of most 

nuclear DNA synthesis and initiation of the DNA damage response (Rudd et al., 2016). 

The substrate of PPL2 in the T. brucei genome is yet unknown but translesion polymerase 

was shown to form a complex with other telomere-binding proteins in T. brucei (Reis et 

al., 2018).

1.8 Telomere Replication and C-Strand Fill-in

Although the duplex region of telomere is replicated by conventional DNA 

polymerase, several other proteins play important roles in accurate, efficient telomere 

replication and in maintaining organism-specific length homeostasis. Cells carrying linear 

chromosomes must find a way to prevent progressive telomere shortening due to the end 

replication problem, as conventional DNA polymerases cannot prime the 3 ’end of the DNA 

in a lagging strand. During replication, only the leading strand can be continuously 

synthesized in the 5’ to 3’ direction. The lagging strand is replicated in small Okazaki 

fragments where each fragment requires a primer. The end replication problem is driven 

by the fact that a small stretch of the parental DNA in the lagging strand at the chromosome 

end cannot be primed with RNA primer by the DNA polymerase a/primase complex and 

that region is lost in the newly replicated DNA. Hence telomere DNA is shortened after 

each round of DNA replication due to the inability of conventional polymerase to fully 

replicate telomere DNA. Telomerase, a specialized reverse transcriptase, is the enzyme that 
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solves the end replication problem by elongating the G-rich strand of the telomere. While 

telomerase is mostly inactive in human somatic cells but active in highly dividing cells 

such as germ cells (Ishikawa, 2013). About 90% of clinical primary tumors maintain their 

telomere length (Ishikawa, 2013). Hence, inactivating telomerase is an attractive 

therapeutic model to treat cancer.

Human telomerase is an RNA-protein complex with two major components, 

telomerase RNA (TER, product of the TERC gene) and telomerase reverse transcriptase 

(TERT). Human TERT is expressed only in telomerase-positive cells and TERT expression 

indicates the telomerase activity of cells (Avilion et al., 1996). Telomerase uses a 3’ 

overhang to add telomeric sequences to the G-rich strand using an RNA component as a 

template. Since telomerase only elongates the G-rich strand of the telomere, the C-rich 

strand needs to be extended to maintain telomere length. In human, budding yeast, and 

plant, the CST complex (CTC1-STN1-TEN1) play important role in the synthesis of 

complementary C-strand by fill-in (Song et al., 2008; Ishikawa, 2013; Ge et al., 2020). 

However, the homolog/ortholog of the CST complex has not been identified in T. brucei. 

This suggests that T. brucei may use a CST-independent mechanism to maintain G- 

overhang. Telomerase-mediated telomere synthesis is the principal mechanism of telomere 

maintenance in T. brucei (Dreesen et al., 2005; Sandhu et al., 2013; Gupta et al., 2013).

Telomere replication in humans is extensively studied. Human telomeres 

replication is a multi-step process that involves not only the conventional DNA replication 

machinery but also telomerase, telomere proteins, and various other accessory factors 

(Feng et al., 2017). Human telomeric dsDNA is replicated by the conventional DNA 

replication machinery, which is aided by TRF1, TRF2, CST, and multiple helicases 
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(Martinez and Blasco, 2015; Wang et al., 2012). In the S phase, DNA replication by 

conventional DNA polymerases generates a blunt-ended product in the leading strand 

telomere synthesis while in the lagging strand telomere synthesis, the removal of the 5’ 

RNA primer generates a short 3 ’ overhang. In mammalian cells, the 5 ’ end of the leading 

strand synthesis product is first resected by Apollo, a 5’ to 3 ’ exonuclease (Wu et al., 2010), 

then resected further by Exol (Keijzers et al., 2016; Wu et al., 2012) which leads to the 

generation of telomere 3’ overhangs on the leading strand (Chow et al., 2012; Wu et al., 

2012).

On the other hand, the lagging strand telomere synthesis generates telomere 3’ 

overhangs after the removal of the RNA primer and sub-terminal position of the last 

Okazaki fragment (Chow et al., 2012). Exol also resects the 5’ ends of lagging strand to 

generate longer telomere 3’ overhangs (Keijzers et al., 2016; Wu et al., 2012). Afterward, 

the 3’ overhang is elongated by telomerase to generate telomere G-strand (Blackbum and 

Collins, 2011). Telomerase extension happens immediately after the replication of duplex 

telomere DNA and the generation of a 3’ overhang (Feng et al., 2017). In humans, TPP1 

stabilizes the association of telomerase to the telomeres which allows telomerase to extend 

the G-strands by ~60 nt (Hockemeyer and Collins, 2015; Zhao et al., 2009; Schmidt et al., 

2016; Sexton et al., 2014). The TEL patch of TPP1 is involved in the recruitment of 

telomerase to the telomeres and promotes DNA synthesis with high processivity 

(Nandakumar et al., 2012). The final maturation of the 3’ overhang only happens after 

S/G2 when a DNA polymerase, such as DNA polymerase alpha-primase in mammals, 

synthesizes a complementary C-strand DNA in a process termed as C-strand fill-in (Zhao 
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et al., 2009; Wei and Price, 2003). CST complex recruits DNA polymerase alpha-primase

to the lagging strand to facilitate C-strand fill-in at telomeres (Rice and Skordalakes. 2016).

Fig. 8: Schematic representation of C-strand fill-in (Ishikawa, 2013). C-strand fill-in 
occurs after telomerase extends the telomere. In humans, DNA polymerase a/primase 
involve in the C-strand fill-in reaction.

T. brucei telomere 3’ overhangs are very short (~12 nts) (Sandhu and Li, 2017; Li 

et al., 2005), suggesting that the telomere C-strand fill-in is well coordinated with the G- 

strand extension. However, the OB fold-containing telomere-specific ssDNA binding 

factors appear to be absent in the T. brucei genome, and so far, no telomerase regulators 

have been identified. Rather, a zinc finger-containing protein UMSBP2 that is important 

for mitochondrial DNA replication can bind the G-rich telomere ssDNA (Milman et al., 
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2007; Klebanov-Akopyan et al., 2018). Depletion of UMSBP2 leads to a decreased G-rich 

but an increased C-rich ssDNA signal level and an increased amount of telomeric circles 

(Klebanov-Akopyan et al., 2018). In this study, I explored whether POLIE plays a potential 

role to maintain telomere 3 ’ overhangs length in T. brucei, similar to OB fold-containing 

telomere-specific ssDNA binding factors that function in maintaining human 3 ’ overhangs 

length.
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CHAPTER II

MATERIAL AND METHOD

2.1 T. brucei Strain

Each T. brucei strain used in this study is listed in Table 1. Only bloodstream form 

(BF) strains used in this study which is derived from VSG2-expressing Lister 427 cells. 

This strain is known as Single Marker (SM) which expresses a Tet repressor and a T7 

polymerase (Wirtz et al., 1999). All BF cells were cultured in HMI-9 media containing 

10% FBS with proper antibiotics for selection.

The HSTB261 strain is derived from SM and specifically designed for assaying 

VSG switching (Kim and Cross, 2010), which we renamed as the S strain for easier 

reference (Jehi et al., 2014b). HSTB261 contains a blasticidin resistance gene (BSD) 

immediately downstream of the active ES promoter and a puromycin resistance gene 

(PURO) fused with the Herpes simplex virus thymidine kinase (PURO-TK). SM, tif2+F2H/+ 

(Jehi et al., 2014b), and the S cells were used for conditional expression of the POLIE 

double-stranded RNA (dsRNA) for downregulation of POLIE. Briefly individual cells 

were transfected with pSK-POLIE-mycl3-Hyg-tar to tag one endogenous allele of POLIE 

with a C-terminal 13 x myc tag. Correctly targeted clones were confirmed by PCR and 

western blotting. POLIE single knockout cells were generated by replacing the POLIE 
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allele with the Blasticidin resistance gene using a targeting construct. Correctly targeted 

clones were confirmed by PCR.

Table 1: List of T. brucei strains used in this study

Strain Life cycle stage & Description of genotype
POLIE+myc/+ BF; One allele of POLIE is C-terminally tagged with 13 x myc
POLIE+/- BF; One allele of POLIE is deleted
POLIE+myc/- BF; One allele of POLIE is C-terminally tagged with 13 x myc and the 

other is deleted
POLIE+myc/+ BF; One allele of POLIE is C-terminally tagged with 13 x myc; One 

allele of TIF2 is C-terminally tagged with F2H
POLIE+myc/+ 
TRF RNAi

BF; One allele of POLIE is C-terminally tagged with 13 x myc; The 
Tet-inducible TRF RNAi expressing construct is integrated into an 
rDNA spacer

POLIE+myc/+
RNAi

BF; One allele of POLIE is C-terminally tagged with 13 x myc; The 
Tet-inducible POLIE RNAi expressing construct is integrated into an 
rDNA spacer

S (Kim and 
Cross, 2010)

BF; In the active VSG2-containing ES, a BSD marker is inserted 
immediately downstream of the ES promoter, and a PUR-TK marker is 
inserted immediately upstream of the VSG2 gene (Fig. S3A)

S/ev (Jehi et 
al., 2014b)

BF; The active ES has the BSD and PUR-TK markers; The empty 
RNAi construct is integrated into an rDNA spacer

S/IEi BF; The active ES has the BSD and PUR-TK markers; The Tet- 
inducible POLIE RNAi expressing construct is integrated into an 
rDNA spacer

POLIE+myc/+ 
S/IEi

BF; The active ES has the BSD and PUR-TK markers; The Tet- 
inducible POLIE RNAi expressing construct is integrated into an 
rDNA spacer; One allele of POLIE is C-terminally tagged with 13 x 
myc

S/IEi + 
ecPOLIE- 
myc

BF; The active ES has the BSD and PUR-TK markers; The Tet- 
inducible POLIE RNAi expressing construct is integrated into an 
rDNA spacer; An inducible ectopic POLIE-myc expressing construct 
is integrated into an rDNA spacer

TR (Sandhu 
et al., 2013)

BF; Both TR alleles are deleted

TR -/- POLIE 
RNAi

BF; Both TR alleles are deleted; The Tet-inducible POLIE RNAi 
expressing construct is integrated into an rDNA spacer

POLIE+myc/+ cells were transfected with pZJMβ-TRF (Li et al., 2005) and pZJMβ-

POLIE to generate POLIE+myc/+ TRF RNAi and POLIE+myc/+ RNAi, respectively. pZJMβ- 
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TRF or pZJMβ-POLIE was linearized with Not I before transfection and correctly targeted 

clones were confirmed by western blot. Surviving clones were screened for doxycycline 

sensitivity; only clones exhibiting strong depletion of TbTRF/POLIE were used for further 

studies.

The S cells were transfected with pZJMβ-POLIE to generate S/ZEi followed by 

transfection with pSK-POLIE-mycl3-Hyg-tar to generate POLIE+myc/+ S/IEi. Clones were 

tested for doxycycline sensitivity and only clones exhibiting depletion of POLIE were used 

for VSG Switching studies. S/IEi cells were also transfected with pLewlOOv5-POLIE-myc 

to generate S/IEi + ecPOLIEmyc. TR-/- cells (Sandhu et al., 2013) were transfected with 

pZJMβ-POLIE to generate TR-/- POLIE RNAi. SM and POLIE+myc/+ cells were transfected 

with pSK-POLIE-ko-BSD to generate POLIE+/- and POLIE+myc/-. All transfections were 

done using an AMAXA Nucleofector (Lonza, Inc.) in Basic Parasites Buffer 1 using 

program X-001 according to manufacture protocol.

2.2 T. Brucei Plasmids Construct

To generate pSK-F2HTRF-Pur-tar, a 500 bp genomic DNA fragment upstream of 

the TRF gene, the Puromycin resistance gene (PUR), the a/β tubulin intergenic sequence, 

the F2H tag, and a 500 bp fragment of the TRF gene (Encoding its N-terminus) are inserted 

into pBluescript SK in this order.

To generate pSK-POLIE-mycl3-Hyg-tar, a 400 bp POLIE gene fragment 

(encoding its C-terminus), a 13 x myc tag, the a/p tubulin intergenic sequence, the 

Hygromycin resistance gene (HYG), and a 500 bp genomic DNA fragment downstream of 

the POLIE gene were inserted into pBluescript SK.

To generate pZJMβ-POLIE RNAi, a 470 bp DNA fragment at the N-terminus of 
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POLIE ORF and a 520 bp DNA fragment at the C-terminus of POLIE ORF were inserted 

into pZJMβ.

To generate pSKPOLIE-ko-BSD, the Blasticidin-resistance gene (BSD) flanked by 

genomic DNA fragments upstream and downstream of the POLIE gene, respectively, were 

inserted into pBluescript SK.

To generate pLewl00v5-POLIE-myc, the DNA fragment encoding the full-length 

POLIE and a C-terminal 13 x myc tag were inserted into pLewl00v5.

2.3 Growth Analysis

To measure the growth of individual strains, the experimental cells were grown 

with control cells and the growth rates were compared. Cells were counted at 24Hr intervals 

and population doublings were calculated. Population doubling = log2 (total number of 

cells, n/total number of cells, (n-1)) + PD (n-1), where n is the day when cells were counted, 

and n-1 is the immediate day preceding it.

2.4 UV and Cisplatin Sensitivity Assay

The sensitivity of POLIE+myc/+ RNAi cell lines towards DNA-damaging agents 

such as UV and Cisplatin were tested. Briefly, POLIE+myc/+ RNAi cells were incubated 

with and without doxycycline for 12 hrs, then diluted to a concentration of 1.5 x 106 

cells/ml. For assessing UV irradiation effects, the RNAi cell was induced with dox for 12 

hrs. The induced and non-induced cells were diluted to a concentration of 1.5 x 106/ml and 

were exposed to 0, 50, or 100 J m-2 of UV using the Stratalinker® Crosslinker (Stratagene). 

For Cisplatin (Sigma) sensitivity assays, the RNAi cells were induced with dox for 12 hrs, 

treated with 0 and 20 uM Cisplatin, and incubated for 1Hr in the incubator. In each case, 

treated and untreated control cell cultures were washed to remove doxycycline and diluted 
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daily to a concentration of 0.1 x 106/ml. Cell growth was monitored every 24hr with 

necessary dilutions and the survival was calculated as a percentage of untreated controls.

2.5 Chromatin Immunoprecipitation

200 million cells were harvested and crosslinked with 1% formaldehyde for 20 

minutes at room temperature. T. brucei BF cells were lysed and sonicated at a volume of 

330 uL using a Bioruptor300 for 4 cycles with high output for 30 sec on/off per cycle. 

Lysates were incubated using Dynabeads® Protein G with or without specific antibodies 

to immunoprecipitate protein-DNA complexes. 50 uL lysate was collected as the input. 

The rest of 280 ul of lysate was divided into 3 equal fractions and each was subjected to 

immunoprecipitation using Dynabeads® Protein G conjugated with IgG, anti-TRF (1261), 

and Anti-Myc (9el0) antibody. Before IP, beads were washed and equilibrated following 

the manufacturer’s protocol. Immunoprecipitated DNA was reverse cross-linked and 

purified using the Qiaquick spin PCR purification Kit (Qiagen). The final sample was 

dissolved in 50 uL of ddH2O. The sample was analyzed by slot blot using a telomere­

specific TTAGGG repeat containing a radioactive probe. As a control for pull-down 

specificity, blots were hybridized with a tubulin probe.

2.6 Western Blot

Cells growing at exponential phase (~1,5X106/ml) were lysed in 2x Laemmli buffer 

(0.1 M Tris-Cl-pH 6.8, 6% SDS, 20% glycerol, 0.004% bromophenol blue) and boiled at 

100°C for 10 min to collect total cell lysate. Samples were separated on a Tris-Glycine 

polyacrylamide gel at 100 V for ~2 hrs. After separation, proteins were transferred onto 

0.45 um nitrocellulose membrane (GE healthcare life sciences) by electrophoresis at 100 

V for 90 min at 4°C. The membrane was blocked with 10% milk/ 0.5% Tween 20/ lx PBS 

33



(phosphate buffer saline) at room temperature for ~1 hour. The membrane was rinsed twice 

for ~5 minutes each using 0.1% milk/0.1% Tween 20/lx PBS. The membrane was 

hybridized overnight in a plastic bag using an appropriate primary antibody and dilution, 

in 5% milk/0.1% Tween 20/lx PBS. The next day, the membrane was washed three times 

for ~5 minutes using 0.1% milk/0.1% Tween 20/lx PBS and hybridized with an 

appropriate secondary antibody in 5% milk/0.1% Tween 20/lx PBS at room temperature 

for one hour. Subsequently, the membrane was washed 4 times, each for ~5 minutes, using 

0.1% milk/0.1% Tween 20/lx PBS. Finally, the membrane was washed for 5 minutes using 

lx PBS. The membrane was rinsed with water and incubated with Amersham ECL Western 

blotting reagent (GE Healthcare Life Sciences) for ~2 minutes. The blot was imaged with 

Odyssey Fc (LI-COR Biosciences). In POLIE-RNAi cells, 13 x myc-POLIE was detected 

using the 9E10 monoclonal antibody against Myc. As a loading control, beta-tubulin 

antibody TAT-1 was used (gift from Dr. Keith Gull) (Yang et al., 2009).

2.7 VSG Switching Assay

The VSG switching frequency was determined in switching cells (HSTB261) 

where POLIE was transiently knocked down by RNAi. HSTB261- POLIE-RNAi cells 

were maintained in the presence of blasticidin and puromycin until the start of the assay to 

homogenize the cell population (that expresses VSG2). Then 1100 cells were incubated 

with doxycycline to induce POLIE RNAi for 30 hrs in the absence of blasticidin and 

puromycin so that cells were then allowed to switch. Doxycycline was washed off and cells 

were grown in the absence of doxycycline until cell density reaches ~1.5-1.7 million 

cells/ml (10.5 population doublings) before they were harvested. Switchers were enriched 
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by passing cells through a VSG2 Ab-conjugated MACS column and collecting the flow 

through.

To determine plating efficiency, cells were plated at 1 cell/well in 3 x 96-well plates 

without ganciclovir (GCV) selection. Switchers were selected by 5 ug/ml GCV after they 

were diluted and distributed in 1 million cells/6 x 96-well plates. GCV-resistant switchers 

were further verified by western dot-blot analysis using a VSG2 Ab ( CRD) to determine 

the switching frequency. The VSG switching rate was calculated by dividing the number 

of switchers (GCV resistant and VSG2- cell) by the total number of plated cells and was 

further normalized by the plating efficiency. To determine the switching mechanisms, 

switchers were analyzed for their sensitivity to 5 ug/ml and 100 pg/ml blasticidin and 2 

pg/ml puromycin. The presence of the BSD and VSG2 genes was determined by PCR using 

genomic DNA isolated from the switchers.

2.8 Telomere DNA Isolation

Genomic DNA was isolated using PCIA extraction followed by DNA strand 

fishing. Briefly, 200 million BF cells were washed 1X TDB (80 mM NaCl, 5 mM KC1, 1 

mM MgSO4, 2 mM NaH2PO4, 20 mM Na2HPO4 and 20 mM glucose at pH 7.4) and 

resuspended in 1 ml of TNE (10 mM Tris pH 7.4, 10 mM EDTA, 100 mM NaCl). 1 ml of 

TNES/proteinase K (10 mM Tris pH 7.4, 100 mM NaCl, 10 mM EDTA, 1% SDS + 100 

pg/ml proteinase K (Roche)) was added, and samples were incubated overnight at 37°C. 

DNA was extracted using 2 ml of phenol-chloroform-isoamyl alcohol. DNA was 

precipitated with 2M NaAc pH 5.5 and an equal volume of isopropanol and gently spooled 

out. The DNA was resuspended in 300 ul TNE+100 pg/ml RNase. After incubation for 2 

hrs and 30 min with RNase at 37°C, 300 ul of TNES/proteinase K was added and reaction 
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samples were incubated for 1 hour at 37°C. The DNA was extracted and precipitated as 

mentioned above and resuspended in 100 ul of T10E0.1 (10 mM Tris pH 7.5/0.1 mM EDTA). 

2.9 Southern Blot Analysis of Telomeric DNA

5-10 ug of genomic DNA was digested overnight at 37°C by AluI and Mbol. The 

DNA concentration after digestion was measured using Qubit (Thermofisher). 500 ng of 

digested DNA was separated in a 0.7% agarose gel in 0.5 x TAE with 20x20 cm dimensions 

with an appropriate DNA marker. The gel was first run for 1 hour at 30 volts followed by 

overnight at 50 volts, in a total of~1,000-1,100 Vhrs. The EtBr-stained gel was scanned 

using Typhoon FLA 9140 (GE healthcare life sciences) by placing a ruler next to it. The 

gel was depurinated for 30 min with depurination buffer (0.25 M HC1), denatured 2 times 

30 min each with denaturation buffer (1.5 M NaCl, 0.5 M NaOH), neutralized 2 times 30 

min each with neutralization buffer (1 M Tris pH 7.4. 1.5 M NaCl) and blotted onto a 

Hybond nylon membrane (GE Healthcare Life Sciences) by capillary blotting in 20XSSC 

(3 M NaCl, 0.3 M sodium citrate) overnight. The blot was UV cross-linked (Stratalinker 

UV crosslinker) pre-hybridized with Church Mix (1% BSA, 0.5 M NaPi pH 7.2, 7% SDS, 

4 mM EDTA pH 8.0) and hybridized with the appropriate radiolabeled probe at 65 °C 

overnight. The blot was washed three times in 15-minute washing intervals with Church 

Wash (40 mM NaPi-pH 7.2, 1 mM EDTA pH-8.0, and 1% w/v SDS) at 65 °C, wrapped, 

and exposed to a phosphorimager.

2.10 Telomere 3’ Overhang Assay (Native In-Gel Hybridization)

Genomic DNA from the bloodstream form T. brucei cells was treated with or 

without Exo I (NEB) and digested with MboI and AluI. An equal amount of Exol treated 

and non-treated DNA was separated by agarose gel electrophoresis. The DNA-containing 
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agarose gel was dried for 4 hrs at room temperature and hybridized overnight with an end- 

labeled (CCCTAA)4 or (TTAGGG)4 probe at 50°C in Church Mix (1% BSA, 0.5 M NaPi 

pH 7.2, 7% SDS, 4 mM EDTA pH 8.0). The hybridized gel was washed three times for 30 

minutes each with 4xSSC (0.6 M NaCl and 0.06 M sodium citrate) at 50°C followed by a 

final wash in 4xSSC with 0.1% SDS for 30 minutes at 50°C and exposed to a 

phosphorimager for 24 - 72 hrs. The gel was then denatured 2 times 30 min each with 

denaturation buffer (1.5 M NaCl, 0.5 M NaOH), neutralized 2 times 30 min each with 

neutralization buffer (1 M Tris pH 7.4. 1.5 M NaCl), and hybridized with the same oligo 

probe at 55°C in Church Mix (1% BSA, 0.5 M NaPi pH 7.2, 7% SDS, 4 mM EDTA pH 

8.0). The gel was washed three times for 30 minutes each with 4xSSC (0.6 M NaCl and 

0.06 M sodium citrate) at 50°C followed by a final wash in 4xSSC with 0.1%SDS for 30 

minutes at 55°C, followed by exposure to a phosphorimager for 2-4 hrs. The hybridization 

signals were quantified using ImageQuant. Telomere 3’ overhang signal levels were 

quantified by dividing the amount of native hybridization signals by the amount of post­

denaturation hybridization signals.

2.11 Pulsed-Field Gel Electrophoresis

DNA plugs were prepared according to Li et al. (Li et al., 2005). 150 million cells 

were centrifuged at 2000rpm for l0min, and the cell pellet was washed with 1 x TDB (80 

mM NaCl, 5 mM KC1, 1 mM MgSO4, 2 mM NaH2PO4, 20 mM Na2HPO4, and 20 mM 

glucose at pH 7.4). Cells were resuspended in L buffer (0.02 M NaCl, 0.01 M Tris-HCl pH 

7.6) at a concentration of 5 x 10s cells/ml. Cells were incubated at 42-50°C for 10 minutes 

and an equal volume of 1.6% low-melting-point (LMP) agarose in L buffer (already melted 

and equilibrated at 50°C) was added to cells (to a final concentration of 2.5xl08 cells/ml).
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Approximately 85 ul of this solution (2x107 cells) was loaded into each well of disposable 

plug-preparing molds. The DNA plugs were kept at RT for 10 minutes to solidify and 

transferred into a 15ml tube containing 2 ml of L buffer, 1% Sarkosyl, and 1 mg/ml 

Proteinase K. Samples were incubated at 50°C for 48 hrs and washed 2 times at 10 minutes 

each with L buffer. The Proteinase K treatment was repeated for another 48 hrs and washed 

again as above. The plugs were stored at 4°C in L buffer until running (but not more than 

a week).

The undigested T. brucei chromosomes in the DNA plugs were separated by a 

Pulsed Field Gel Electrophoresis (PFGE) apparatus (CHEF-DR II, Bio-Rad) according to 

Jehi et al. (Jehi et al., 2014b). 200 ml of a 1.2 % agarose gel was prepared in 0.5 x TBE 

(40 mM Tris-Cl pH 8.3, 4 mM boric acid, 1 mM EDTA) and kept at 42°C in water to cool 

down. The plugs were attached to the comb with 1.6% melted LMP agarose and placed on 

a 1.2 % agarose gel. The agarose gel was run on PFGE apparatus with prechilled 3 L 0.5 x 

TBE. Running parameters are initial pulse: 1500s, ending pulse: 700s, voltage: 2.5 V/cm 

for 120 hrs at 12°C. The gel was stained for 1 hour in 0.5 x TBE with 1 pg/ml EtBr and 

washed for 2 times 30 minutes each with ddH2O before imaging.

After imaging, the ethidium bromide-stained gel was dried for 8 hrs at room 

temperature. The dried gel was pre-hybridized at 50°C in 35 ml Church Mix (1% BSA, 0.5 

M NaPi pH 7.2, 7% SDS, 4 mM EDTA pH 8.0) for at least 1 hr and hybridized overnight 

at 50 °C with end-labeled probe in 35 ml Church Mix (1% BSA, 0.5 M NaPi pH 7.2, 7% 

SDS, 4 mM EDTA pH 8.0). The (CCCTAA)4 probe was used to detect the telomeric G- 

strand DNA and the (TTAGGG)4 probe was used to detect the telomeric C-strand DNA. 

The hybridized gel was washed in 4 x SSC three times for 30 minutes at 50°C. The gel was 
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washed again in 0.1% SDS in 4 x SSC once for 30 minutes at 50°C. The washed gel was 

exposed to a phosphorimager screen overnight. After scanning of the phosphorimager, the 

gel was denatured 2 times 30 min each with denaturation buffer (1.5 M NaCl, 0.5 M 

NaOH), neutralized 2 times 30 min each with neutralization buffer (1 M Tris pH 7.4. 1.5 

M NaCl), hybridized again with the same probe in Church Mix (1% BSA, 0.5 M NaPi pH 

7.2, 7% SDS, 4 mM EDTA pH 8.0) at 55°C. The gel was washed at 55°C as above and 

exposed to the phosphorimager for 4 hrs. The signals were quantified with ImageQuant. 

Telomere 3’ overhang signal levels were calculated by dividing the amount of signals 

obtained before denaturation by the amount of those obtained after denaturation. The 

change in the telomere 3 ’ overhang level was quantified by normalizing 3 ’ overhang levels 

to WT level.

2.12 EDU-Labeling

Exponentially growing bloodstream form T. brucei cells (0.7-0.9 x 106 cells/ml) 

were incubated with 150 pM 5-ethynyl-2’-deoxyuridine (EdU) (Click Chemistry Tools) 

for 3 hrs at 37 °C. Cells were harvested by centrifugation at 1,500 g for 5 min and the 

genomic DNA was isolated using strand fishing described in section 2.8. DNA was 

sonicated to 400-1000 bp fragments. Newly synthesized EdU-labeled DNA fragments 

were conjugated with desthiobiotin in native or denatured conditions (4M Urea) using the 

click chemistry reagent (2 mM desthiobiotin-Azide, 100 mM/500 mM CuSO4/THPTA, 50 

mM Na-Ascorbate, 100 mM HEPES pH 7, and 10% DMSO). The desthiobiotin conjugated 

DNA was pulled down using streptavidin beads (ThermoFisher) and eluted from the beads 

using 25 mM D-biotin. The eluted DNA was dot-blotted onto a Hybond N nylon membrane 

(GE Healthcare) and UV-crosslinked and hybridized with telomere and tubulin probes at 
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65°C. The blot was exposed to a phosphorimager and the signals were quantified using 

ImageQuant.

2.13 Two-Dimensional Gel Electrophoresis

Genomic DNA from POLIE+myc/+ RNAi uninduced and induced cells (24 hrs) were 

digested with MboI/AluI. 5 ug of digested DNA was separated on 2-dimensional (2D) gel 

electrophoresis according to a protocol from Cohen and Mechali (Cohen and Mechali, 

2002). DNAs were separated in the first dimension in a 0.4% agarose 1 x TBE gel without 

EtBr for 18 hrs at 40 volts at room temperature. Subsequently, the gel was incubated in 1 

x TBE with 0.3 pg/ml EtBr for 20 minutes followed by washing 3 times 10 min each with 

1 x TBE. DNAs were then excised from the gel, transferred to a second 1.1% agarose gel 

with 1 x TBE with 0.3 pg/ml EtBr, and electrophoresed for 5 hrs at 150 volts at 4°C. DNA 

was transferred to a Hybond N nylon membrane (GE Healthcare) by blotting and 

subsequently hybridized with a telomere probe.

2.14 The Telomeric C-Circle (and G-Circle) Assay

The (p29 DNA polymerase-mediated rolling-circle assay was performed according 

to Henson et al (Henson et al., 2009) with minor modifications. 8 pg of AluI, Mbol digested 

genomic DNA from BF T. Brucei was digested by X Exonuclease and Exonuclease I to 

remove dsDNA. 20 ng of the resulting DNA was incubated with 7.5 U (p29 DNA 

polymerase (NEB) in reaction buffer [1 pg/pl BSA, 0.05% Tween 20, 0.5 mM dATP, 0.5 

mM dGTP (or 0.5 mM dCTP for detecting G-circles) and 0.5 mM dTTP, 1 x (p29 Buffer] 

at 30°C for 8 hrs, then (p29 was heat-inactivated at 65 °C for 20 min. The reaction products 

were slot blotted onto a Hybond N nylon membrane (GE Healthcare) followed by 

hybridization at 50°C with end-labeled (CCCTAA)4 to detect C-circles or (TTAGGG)4 to 
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detect G-circles. The blot was exposed to a phosphorimager and the signals were quantified 

with ImageQuant.

2.15 TERRA RNA Isolation

Total RNA was isolated from T. brucei cells using RNA STAT-60 (TEL-TEST, 

Inc). Briefly, 200 million cells at the log growth phase (1.2 - 1.5 million/ml) were harvested 

by centrifugation at 1.5 krpm, 4°C for 10 minutes. The pellet was resuspended and evenly 

homogenized in 1 ml of RNA STAT-60 reagent at room temperature for 5 min. After 

incubation, 200 pl of chloroform was added to the tube and mixed vigorously by vortexing 

for 15 sec. The sample was incubated for another 5 minutes at room temperature and 

centrifuged at 13.2k rpm for 15 minutes at 4°C to collect the aqueous phase. 600 pl of 

isopropanol was added to the aqueous phase and mixed thoroughly. Samples were stored 

at -80°C for at least 1 hour. Samples were centrifuged at 13.2k rpm for 30 min at 4°C. The 

pellet was washed twice with 1 ml of 70% EtOH and centrifuged at 13.2k rpm for 10 mins 

at 4°C. The RNA was air-dried and dissolved in 50 pl of RNase-free ddH2O. The RNA 

sample was treated with 10U of DNAse I enzyme (Thermo Fisher) for 45 mins at 37°C to 

remove telomeric DNA from the RNA sample. The RNA was mixed with 900 pl of RNA 

STAT-60 and the isolation process was repeated 2 times and the final RNA was dissolved 

in 20 pl of RNase-free water for subsequent use in northern or slot blot.

2.16 Northern Blot Analysis

TERRA was separated in a 1.5% agarose gel prepared with formaldehyde in 1 x 

MOPS buffer (0.4 M MOPS, 0.1 M NaOAc, and 0.01 M EDTA). Briefly, 10 pg of RNA 

was mixed with the premix buffer (1.5 pl 10 x MOPS, 2.6 pl 37% formaldehyde, 7.5 pl 

Formamide, 3 pl 5 x loading buffer (ImM EDTA pH-8.0, 0.25% (w/v) bromophenol blue, 
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0.25% (w/v) xylene cyanol, 50% glycerol) and Ethidium bromide) in a volume of ~20 pl. 

5 pg of RNA marker was also mixed with the premix. Samples were heated at 65°C for 10 

minutes and immediately loaded onto the gel. The gel was run at ~5V/cm using 1 x MOPS 

buffer. The EtBr-stained gel was washed in ddH2O for one hour and scanned using a 

Typhoon FLA 9140. The gel was blotted onto a nylon hybond membrane (GE healthcare 

life sciences) overnight in 20 x SSC (3 M NaCl, 0.3 M sodium citrate), UV cross-linked 

and prehybridized at 55°C for one hour using the CHURCH mix (1% BSA, 0.5 M NaPi pH 

7.2, 7% SDS, 4 mM EDTA pH 8.0). To detect the TERRA transcript, The blot was 

hybridized with an end-labeled (CCCTAA)4 or (TTAGGG)4 probe at 55°C overnight, and 

the blot was washed twice for 15 minutes each at 65°C using 0.1 x SSC (15 mM NaCl, 1.5 

mM sodium citrate)/0.1% SDS followed by exposure to a phosphorimager screen 

overnight. Tubulin was used as a loading control. To detect the tubulin, hybridization was 

performed overnight at 55°C using a tubulin probe. The blot was washed three times for 15 

min each at 55°C using the CHURCH wash (40 mM NaPi-pH 7.2, 1 mM EDTA pH-8.0, 

and 1% w/v SDS), wrapped, and exposed overnight to a Phosphorimager screen (GE 

healthcare life sciences).

2.17 Probe Preparation

To make a telomere or tubulin probe, 100 ng of this DNA fragment was mixed with 

5 ng of random hexamer in a volume of 39 pl. The mixture was incubated at 100°C for 5 

minutes and immediately chilled on ice. 5 pl of 10 x nucleotide mixture (dATP, dGTP, 

dTTP) without dCTP, 1 pl Klenow polymerase (New England Biolabs) and 5 pl of 32P- 

alpha-dCTP (3000 Ci/mmol) were added to the reaction. The reaction was incubated at 

room temperature for 90 minutes and stopped by adding 50 pl of TNES (10 mM Tris pH7.4, 
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10 mM EDTA, 100 mM NaCl, 1%SDS) buffer. The probe was purified over a sepharose 

G-50 column and eluted using TNES buffer. The probe was heated at 100°C for 5 minutes 

and added to 10-25 ml of CHURCH mix (1% BSA, 0.5 M NaPi pH 7.2, 7% SDS, 4 mM 

EDTA pH 8.0). This mixture was filtered using a 0.22 um syringe filter and added directly 

onto the blot. End labeling of oligonucleotide probe was done for telomere in-gel 

hybridization. Briefly, 50 ng of TELC4 oligo ((CCCTAA)4) or TELG4 oligo 

((TTAGGG)4) was mixed with 32P-gamma-ATP, Kinase buffer, and Polynucleotide 

kinase (New England Biolabs). The reaction was incubated at 37°C for 45 min. The 

reaction was stopped by adding 80 pl of TES (Tris-HCl/EDTA/SDS) buffer to the mixture. 

The probe was purified using a 3 ml Sepharose G-25 column and elution with TNES buffer. 

The purified probe was mixed with 25 ml of CHURCH mix (1% BSA, 0.5 M NaPi pH 7.2, 

7% SDS, 4 mM EDTA pH 8.0), filtered through a 0.22 pm syringe filter, and added to the 

blot for hybridization.

2.18 Strand-Specific Telomere Probe Preparation

To synthesize radioactive (CCCTAA)n probe, 100 ng of purified 800 bp TTAGGG 

repeat dsDNA template were boiled for 5 min at 95°C with a random hexamer. Reaction 

was performed at room temperature with 5 pl of OLB buffer (0.5 M Tris pH 6.8, 0.1 M 

MgOAc, 1 mM DTT, 0.5 mg/ml BSA, 60 pM dATP, and 60 pM dTTP), 1 pl of Klenow 

polymerase (NEB) and 5 pl of radioactive dCTP. The probe was purified with a G-50 

Sepharose beads column and immediately used for hybridization. The radioactive 

(TTAGGG)n probe was similarly synthesized except radioactive dGTP was included in the 

reaction instead of radioactive dCTP.
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CHAPTER III

POLIE REGULATES TELOMERE G-STRAND EXTENSION AND C-STRAND 

SYNTHESIS IN TRYPANOSOMA BRUCEI

3.1 Introduction

Telomeres protect the eukaryotic chromosome ends from unwanted damage repair 

and DNA recombination. Therefore, telomeres are essential for genome integrity and 

chromosome stability. Proper telomere length maintenance is a prerequisite for 

chromosome end protection. Telomere lengths are primarily maintained by telomerase. 

However, telomere lengths can also be maintained by homologous recombination. 

Telomere maintenance mechanisms are still unclear in many eukaryotes including T. 

brucei.

T. brucei is a protozoan parasite that causes Human African Trypanosomiasis 

which is fatal without treatment. Telomere and telomeric protein of T. brucei play key roles 

in the pathogenesis of the disease. T. brucei regularly switches its major surface antigen, 

VSG, to effectively evade the host immune response. Such antigenic variation is a key 

pathogenesis mechanism that enables the parasite to establish a long-term infection. 

Interestingly, VSG is expressed exclusively from regions adjacent to the telomere in a 
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strictly monoallelic manner. Telomere proteins and the telomere structure play key roles in 

antigenic variation and parasite virulence.

Telomeres in T. brucei are primarily maintained by telomerase. In vertebrates, 

yeasts, metazoans and plants, OB fold-containing telomere ssDNA binding proteins such 

as the POT1/TPP1 complex (Takai et al., 2016; Arnoult et al., 2009; Aramburu et al., 2020; 

Rajavel et al., 2014, Myler et al., 2021) and the CST complex (vertebrate CTCl/budding 

yeast CDC13, STN1, and TEN1) (Feng et al., 2018; Gu et al., 2018; Feng et al., 2017; 

Amir et al., 2020) play critical roles in coordinating the telomere G-strand extension and 

C-strand fill-in (Lue, 2018; Feng et al., 2017). However, no homolog/ortholog of CST 

complex or POT1/TPP1 complex has been identified in T. Brucei (Li and Zhao, 2021). 

There were several attempts to identify single-stranded telomere G-overhang binding 

proteins in T. Brucei. Field and Field first attempted to identify the exitance of telomere G- 

overhang binding proteins in T. Brucei (Field and Field, 1996). However, this protein-DNA 

complex was neither purified nor characterized in this or later study. Cano and his 

colleagues purified a three-protein complex (complexes C1-C3) that was associated with 

single-stranded telomeric DNA (Cano et al., 2002). However, mass spectrometry analysis 

failed to identify the components of these complexes. This implies that T. brucei may use 

a novel pathway using yet unknown single-stranded telomere G-overhang binding proteins 

to coordinate the telomere G-strand extension and C-strand fill-in.

The human TPP1/POT1 complex binds the telomere 3’ overhang through POTI 

(Loayza and de Lange, 2003; Lei et al., 2004) and recruits telomerase to the telomere, and 

stimulates telomerase activity through TPP1 (Nandakumar et al., 2012;Zhong etal., 2012; 

Sandhu et al., 2021). Mammalian CST is a trimeric complex that has structural similarity 
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to RPA (Replication Protein A) and like RPA, appears to bind ssDNA via multiple OB- 

folds (Bryan et al., 2013; Bhattacharjee et al., 2016; Miyake et al., 2009; Surovtseva et al., 

2009). The binding of the CST complex on the telomere 3’ overhang effectively inhibits 

telomerase-mediated telomere extension in humans (Chen et al., 2012). Similarly, in 

budding yeasts, CDC13, the single-stranded telomere DNA binding factor, both positively 

and negatively regulates telomerase-mediated telomere extension: CDC13 interacts with 

EST1, a telomerase accessory protein, to help recruit telomerase to the telomere (Wu and 

Zakian, 2011). However, the binding of the CST complex (CDC13/STN1/TEN1) to the 

telomere also prevents the access of telomerase to the telomere substrate (Mersaoui and 

Wellinger, 2019). Furthermore, both vertebrate and yeast CST complexes promote the 

telomere C-strand fill-in by directly interacting with and recruiting DNA polymerase alpha- 

primase to the telomere (Fig 6) (Feng et al., 2017; Lue, 2018; Casteel et al., 2009; Huang 

et al., 2012; Qi and Zakian, 2000). A disruption in CTC1 of CST leads to a decrease in C- 

strand length (Feng et al., 2017), and several studies identified that CST complex is 

essential in C-strand fill-in (Huang et al., 2012; Gu et al., 2012; Stewart et al., 2012; 

Kasbek et al., 2013; Feng et al., 2017; Ganduri and Lue, 2017). Therefore, telomere ssDNA 

binding factors are major players to coordinate the synthesis of the two telomere strands. 

No OB fold-containing telomere ssDNA binding proteins have been identified in T. brucei 

(Li and Zhao, 2021). In this project, I studied whether POLIE potentially functions as a 

human OB fold-containing telomere ssDNA binding protein in maintaining telomere G and 

C -strands in T. brucei.
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3.2 Results 

3.2.1 POLIE is an intrinsic component of the telomere complex and is essential for 

survival

POLIE was initially identified through its ability to bind a telomeric sequence­

containing oligo (Leal et al., 2020). However, it was not shown whether POLIE is a 

component of the telomere complex. Our lab previously identified homologs of several 

Shelterin components that are associated with the telomere but no OB fold-containing 

telomere-specific ssDNA binding factors in T. brucei have been identified (Li et al., 2005; 

Yang et al., 2009; Jehi et al., 2014b). To identify additional components of the telomere 

complex, our lab member Maiko Tonini performed an affinity pulled down assay for 

telomere protein complex using known telomere proteins, TRF (Li et al., 2005) and TIF2 

(Jehi et al., 2014b). Additionally, Maiko Tonini isolated the telomere chromatin by 

Proteomics of Isolated Chromatin segments (PICh) (Dejardin and Kingston, 2009) to 

identify proteins associated with the telomere chromatin (Rabbani et al., 2022). About 800 

proteins protein was identified using every two approaches and 282 proteins were 

identified in both. Among these, DNA polymerase IE (POLIE, Tb927.11.5550) (Reis et 

al., 2018; Leal et al., 2020) is one of the most abundant proteins in both experiments along 

with other telomeric proteins such as TRF, TIF2, RAP1, etc. (Rabbani et al., 2022).

To verify that POLIE is an intrinsic component of the telomere complex, we tagged 

one endogenous POLIE allele with a C-terminal 13 x myc tag and established BF T. brucei 

POLIE+myc/+ POLIE+/-, and POLIE+myc/- strains (Table 1). These and WT cells grew at 

similar rates (Fig. 9), indicating that POLIE-myc appears to be functional. A slightly 

reduced growth was observed in POLIE+myc/+ strains than in POLIEP+myc/+ and POLIE+/- We 
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performed an additional experiment in part 3.6 (Fig. 20) to show that POLIE-13 x myc is 

indeed functional. Moreover, we used POLIE-13 x myc as a negative control for all 

experiments to consider the mild effect of the tagged allele.

Fig. 9: C-terminal 13 x myc tagged POLIE in BF T. brucei. Growth curves of 
POLIE+myc/+, POLIE+myc/-, POLIE+/+ and POLIE+/-. Average population doublings were 
calculated from three independent experiments. Here, error bars represent standard 
deviation.

In POLIE+myc/+ TIF2+F2HJ+ cells, Maiko Tonini performed IP of POLIE-myc 

using the myc monoclonal antibody 9E10 pulled down TIF2-F2H and TRF (Fig. 10A). 

Similarly, POLIE-myc and TIF2-F2H were present in the TRF IP (done by Maiko Tonini) 

(Fig. 10B), confirming that POLIE interacts with TRF and TIF2. In POLIE+myc/+ cells, 

Maiko Tonini also performed ChIP using the myc antibody and observed that POLIE-myc 

is associated with the telomere chromatin (Fig. 10C). Additionally, our lab member, Marjia 

Afrin performed the Immunofluorescence (IF) analysis in POLIE+myc/+ cells to show that 

POLIE-myc is colocalized with TRF, a component of telomere complex (Li et al., 2005), 
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throughout the cell cycle. These observations confirm that POLIE is an intrinsic component 

of the telomere complex. I, then, further investigated whether the association of POLIE 

with the telomere chromatin depends on TRF, which has a duplex telomeric DNA binding 

activity (Li et al., 2005). ChIP was performed in POLIE^0^ TRF RNAi cells (Table 1) 

before and after induction of TRF RNAi for 24 hrs, and ChIP products were hybridized 

with telomere and tubulin probes. TRF was successfully depleted from the telomere 

chromatin (Fig. 10D). However, POLIE remained at the telomere after TRF depletion (Fig. 

10E). Therefore, POLIE is localized to the telomere independent of TRF.
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Fig. 10: POLIE is a component of the T. brucei telomere complex. IP using the myc 
antibody 9E10 (MSKCC Antibody & Bioresource Core Facility) (A) and a TRF rabbit 
antibody (Yang et al., 2009) (B) or IgG (as a negative control in both) in POLIE+myc/+ 
TIF2+F2H/+ cells (done by Maiko Tonini). Western analyses were performed using the myc 
antibody 9E10, the HA antibody (HA probe, Santa Cruz Biotechnologies), and a TRF 
chicken antibody (Yang et al., 2009). (C) Quantification of ChIP results using the myc 
antibody 9E10, a TRF rabbit antibody (Yang et al., 2009), and IgG (as a negative control) 
in POLIE+myc/+ cells. Average enrichment (ChlP/Input) was calculated from three to four 
independent experiments. (D) Western blotting showing depletion of TRF in POLIE+myc/+ 
TRF RNAi cells after a 24-hr induction. A TRF rabbit antibody, the myc antibody 9E10, 
and the tubulin antibody TAT-1 were used. (E) Quantification results of POLIE-myc and 
TRF ChIP in POLIE+myc/+ TRF RNAi cells before (-Dox) and after (+Dox) the induction 
of TRF RNAi. Average enrichment (ChIP/Input) was calculated from three independent
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experiments. P values of unpaired t-tests are shown in (C) and (E). Here, error bars 
represent standard deviation.

To examine the functions of POLIE, Maiko Tonini introduced the inducible POLIE 

RNAi construct into the POLIE+myc/+ cells to establish the POLIE+myc/+ RNAi strain (Table 

1). Significant depletion of POLIE-myc (Fig. 11 A) was observed upon induction of POLIE 

RNAi by doxycycline (done by Maiko Tonini) (Rabbani et al., 2022).

Fig. 11: POLIE is essential for T. brucei cell proliferation. (A) Western blotting shows 
depletion of POLIE-myc in POLIE+myc/+ RNAi cells (done by Maiko Tonini). (B) Growth 
curves of POLIE+myc/+ RNAi cells without (-Dox) and with (+Dox) the induction of RNAi 
(done by Maiko Tonini) (Rabbani et al., 2022).

Additionally, Maiko Tonini and I observed significant growth arrest by 24 hrs (Fig. 

1 IB) upon induction of POLIE RNAi by doxycycline, confirming that POLIE is essential 

for cell proliferation. Overall, we identified POLIE as an intrinsic component of the T. 

brucei telomere complex.

3.2.2 POLIE plays important roles in DNA damage repair

POLIE is an A family DNA polymerase, and its polymerase domain is homologous 

to the C-terminal DNA polymerase domains of mammalian PolO and Polv (Leal et al., 

2020). Since PolO and Polv play important roles in DNA damage repair (Wood and 

Doublie, 2016; Moldovan et al., 2010), I examined whether POLIE is important for DNA 

damage repair. POLIE-depleted cells were subjected to different DNA damaging agents to 
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evaluate its role in DNA damage repair. In the POLIE+myc/+ RNAi cells, RNAi was induced 

for 12 hrs and irradiated with UV light which causes cyclobutane pyrimidine dimers, or 

incubated with cisplatin which causes inter-strand crosslinks, and cell growth was 

monitored (Fig. 12A, B). After UV irradiation, the relative growth (irradiated/un- 

irradiated) is significantly poorer for POLIE-depleted cells compared to uninduced cells 

(Fig. 12C). Similarly, cells treated with cisplatin had a poorer relative growth 

(treated/untreated) in POLIE RNAi-induced cells than in uninduced cells (Fig. 12D).

hrs

Fig. 12: POLIE plays important role in DNA damage repair. (A) POLIE+mycl+ RNAi 
cells incubated with or without doxycycline for 12 hrs were irradiated with and without 50 
mJ and 100 mJ UV before cells were washed free of doxycycline. Subsequently, cell 
growth was monitored. (B) POLIE+myc/+ RNAi cells incubated with or without doxycycline

52



for 12 hrs were treated with and without 20 uM cisplatin for 1 hr before cells were washed 
free of doxycycline and cisplatin. Subsequently, cell growth was monitored. Relative 
growth (treated/untreated) after UV (C) or cisplatin (D) was calculated from three 
independent experiments. Asterisks indicate significant differences between the relative 
growth of uninduced and induced cells.

Therefore, POLIE appears to play an important role in UV, and cisplatin-induced 

DNA damage repair in T. brucei. In summary, POLIE is an essential protein that is required 

to maintain telomere integrity.

3.2.3 POLIE suppresses DNA recombination at the subtelomere

DNA double-strand breaks (DSBs) at or near the active VSG locus are a potent 

inducer for VSG switching (Boothroyd et al., 2009; Glover et al., 2013) and DSBs serve 

as a site for DNA recombination. T. brucei has a large VSG gene pool with all VSGs located 

in subtelomeric regions (Cross et al., 2014), and VSG is expressed exclusively from 

subtelomeric expression sites (ESs) in a strictly monoallelic manner (de Lange and Borst, 

1982; Cross, 1975). To estimate the VSG switching rate upon POLIE depletion, I 

introduced the POLIE RNAi construct into a strain that was specifically established for 

analyzing VSG switching (which we refer to as the S strain) (Kim and Cross, 2010) to 

create S/IEi (Table 1). Our lab member Marjia performed VSG switching assay in the 

switching cell line. Because recovering VSG switchers relies on cell proliferation, she only 

induced POLIE RNAi for 30 hrs followed by removal of doxycycline from the medium by 

extensive washing.

The S strain has a puromycin resistance (PUR) gene fused with a thymidine kinase 

(TK) gene immediately upstream of the active VSG (Fig. 13). Switchers are expected to 

lose the TK expression and can be selected by GCV (Scahill et al., 2008).
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Fig. 13: A schematic diagram of the VSG switching assay. The S strain (parent, top left 
(Kim and Cross, 2010) contains a BSD {blasticidin resistance) marker immediately 
downstream of the active ES promoter (long arrow) and puromycin resistance {PUR)- 
thymidine kinase (TK) fusion gene inserted between the 70 bp repeats and the active VSG2 
gene. Other ESs are silent, and only one silent ES is shown. Loss of TK expression renders 
T. brucei cells resistant to GCV, so VSG switchers can be selected by GCV. In an in situ 
switch, the active ES becomes silenced while a previously silent ES becomes expressed. 
In crossover events, the active VSG2 gene and its neighboring DNA sequences change 
place with a silent VSG X (frequently also in an ES). In VSG gene conversion events, a 
silent VSG X is duplicated into the active ES to replace the active VSG2 gene, which is 
lost. In ES gene conversion events, a whole silent ES is duplicated to replace the originally 
active ES, which is lost. In ES loss coupled with an in situ switch (ES Loss + in situ), the 
originally active ES is lost and a different ES is expressed. In each scenario, the expected 
resistant (R) or sensitive (S) phenotypes to 100 ug/ml blasticidin, 2 ug/ml puromycin, 5 
pg/ml GCV, and the VSG2 and BSD genotypes (tested by PCR analyses) are listed. +, the 
gene is present; -, the gene is absent.

I also observed that removal of doxycycline after 30 hrs of induction allowed cells to 

recover, and these cells were still responsive to doxycycline upon repeated treatment (Fig. 

14A). As a control, one endogenous POLIE allele was tagged with the C-terminal 13 x myc 

to establish the POLIE+myc/+ S/IEi strain (Table 1). Western analysis showed depletion of
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POLIE-myc upon induction of POLIE RNAi and the recovery of the POLIE-myc protein 

level after removal of doxycycline (Fig. 14B).

Fig. 14: RNAi-mediated POLIE depletion in switching cell (S/IEi) is reversible. (A) 
Growth curves of S/IEi cells under several conditions: without induction (-Dox), continued 
induction (+Dox), a transient induction (+Dox for 30 hrs followed by wash), and re­
induction (after a transient 30-hr induction and wash, +Dox at 96 hrs). Average population 
doublings were calculated from three independent experiments. (B) Western blotting 
showing that inducing POLIE RNAi for 30 hrs resulted in a transient depletion of POLIE- 
myc in POLIEPmycl+ S/IEi cells.

Transient depletion of POLIE resulted in an ~3-fold higher VSG switching rate 

when compared to the S/ev control strain (Fig. 15A), indicating that POLIE suppresses 

VSG switching. To confirm that this phenotype is specifically due to depletion of POLIE, 

I established the S/IEi + ecPOLIE-myc strain that carries an ectopic POLIE allele (Table 

1). Adding doxycycline induced both POLIE RNAi and the expression of the ectopic 

POLIE-myc (Fig. 15C). The VSG switching rate in S/IEi + ecPOLIE-myc cells is 

significantly lower than that in S/IEi cells and similar to that in S/ev cells when all cells 

were induced by doxycycline for 30 hrs (Fig. 15 A), confirming that the more frequent VSG 

switching phenotype was specifically caused by POLIE depletion. We also determined the 

VSG switching pathways in all obtained switchers (Fig. 15B; 13). In the S/ev control cells, 

a small fraction of the switchers arose from in situ switch (5%) and crossover (10%), while
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VSG gene conversion (43%) and ES gene conversion/ES loss + in situ events (42%) were 

more popular (Fig. 15C; 13). In contrast, in cells depleted of POLIE, in situ switcher and 

crossover events were absent, a small fraction of switchers arose from ES gene 

conversion/ES loss + in situ events (12%), while VSG gene conversion became the 

predominant switching event (88%) (Fig. 15C; 13). Therefore, POLIE suppresses VSG 

gene conversion to maintain telomere integrity.

Fig. 15: POLIE suppresses VSG switching. (A) VSG switching rates in the indicated 
strains (done by Marjia Afrin). (B) Percent of various VSG switching mechanisms in the 
indicated strains. The total number of switchers characterized in each strain is listed on top 
of each column (done by Marjia Afrin) (Rabbani et al., 2022). (C) Western blotting showed 
that induced ectopic POLIE-myc expression in S/IEi+ecPOLIE-myc cells. (D) Growth 
curves of S/IEi+ecPOLIE-myc cells in the presence (+) or the absence (-) of doxycycline 
(DOX). Average population doublings were calculated from three independent 
experiments. P-values of unpaired t-tests are shown in (A).

These experiments suggest that POLIE suppresses DNA recombination at the

subtelomere.
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3.2.4 POLIE suppresses DNA recombination at the telomere

I speculated that, in addition to suppressing subtelomere DNA recombination, 

POLIE may also suppress telomere recombination. Intratelomeric homologous 

recombination (HR), such as excision of the T-loop structure, can result in 

extrachromosomal telomeric circles (T-circles) (Tomaska et al., 2009). I performed 2D gel 

electrophoresis to separate circular from linear DNA molecules followed by southern 

hybridization with a telomere probe (Fig. 16A).
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Fig. 16: Depletion of POLIE leads to an increased amount of T-circles. (A) 2D gel 
electrophoresis of AluI/Mbol digested genomic DNA isolated from POLIE+myc/+ RNAi 
cells before (-Dox) and after (+Dox) 24-hr of RNAi induction. Red arrowheads indicate 
the circular telomere DNA. (B) A diagram showing expected migration patterns of linear 
and circular DNAs in 2D electrophoresis (139). (C) Quantification of southern results after 
2D electrophoresis. The average T-circle amount (percent of total telomeric DNA) was 
calculated from six independent experiments.

In uninduced POLIE RNAi cells, there is only a faint signal representing the 
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telomere sequence-containing circular DNA (Fig. 16, A, B). After depletion of POLIE, the 

T-circle signal was much stronger (Fig. 16, A, C), suggesting that POLIE suppresses 

telomere recombination.

3.2.5 Recombination at telomere and subtelomere is not mediated by increased TERRA

The active VSG-adjacent telomere is transcribed by RNA polymerase I into 

telomeric repeat-containing RNA (TERRA) in T. brucei (Nanavaty et al., 2017; Saha et 

al., 2021). TERRA has a propensity to form the telomeric R loop (TRL) (Toubiana and 

Selig, 2018), and our lab has shown that an excessive amount of TRL induces more 

frequent telomere/subtelomere recombination (Nanavaty et al.; 2017, Saha et al., 2021). 

Since POLIE depletion induced a mild VSG derepression (Fig. 15), I tested the hypothesis 

that increases in recombination at the telomere and subtelomere in POLIE depleted cells 

caused by an increase in TERRA level.
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Fig. 17: TERRA may not contribute to an increase in recombination at the telomere 
and subtelomere. (A) Northern hybridization detecting TERRA in POLIE+myc/+ RNAi 
cells before (-Dox) and after (+Dox) the RNAi induction. The rRNA precursors are very 
abundant and shown as non-specific bands (three bands between 1.6 and 2.5 kb) 
overlapping with the TERRA species. The telomerase RNA component, TR, was detected 
as a loading control. (B) A representative slot blot detecting TERRA in POLIE+myc/+ RNAi 
cells. TR was detected as a loading control. (C) Quantification of relative TERRA levels 
in POLIE+myc/+ RNAi cells (normalized against the TR level). The Average was calculated 
from three independent experiments. P values of unpaired t-tests are shown in (C).

To our surprise, I detected a lower level of TERRA after POLIE depletion in both

northern (Fig. 17A) and slot blot hybridizations (Fig. 17B, C). Therefore, it is unlikely that 

the increased level of telomere and subtelomere recombination is caused by an increased 
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TRL level in POLIE-depleted cells.

3.2.6 POLIE is essential to coordinate telomere G- and C-strand syntheses

The single-stranded telomere 3’ overhangs can invade a homologous sequence and 

induce HR (Haber, 2018). Therefore, I tested whether depletion of POLIE affected the 

telomere 3’ overhang structure. Using the native in-gel hybridization analysis, I detected a 

very faint telomere 3’ overhang signal in WT cells (Fig. 18A), confirming our previous 

observations (Sandhu and Li, 2011; Sandhu and Li, 2017).
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Fig. 18: POLIE depletion results in similar telomere length but more ssDNA 
hybridization. Genomic DNAs were isolated from WT and POLIEPmycl+ RNAi (labeled as 
POLIE RNAi) cells (A & B) before (-Dox) and after (+Dox) a 24-hr induction of RNAi. 
The genomic DNA was treated with and without Exol (NEB), which is a 3’ to 5’ single­
strand DNA-specific exonuclease and digested with Alul and Mbol. In-gel hybridization 
was performed using a (CCCTAA)4 or a (TTAGGG)4 probe first under the native 
condition, and then after denaturation and neutralization. (C) Quantification of the relative 
telomere 3 ’ overhang level (using that in WT cells as a reference) in POLIE+mycl+ RNAi 
cells before (-Dox) and after (+Dox) POLIE RNAi induction. The average telomere 3’ 
overhang level was calculated from three to five independent experiments. P values of 
unpaired t-tests are shown in (C).

Depletion of POLIE led to an ~19-fold more intense telomere 3’ overhang signal 

(Fig. 18 A, C), which was sensitive to Exo I, a 3’ to 5’ ssDNA specific exonuclease (Fig. 

18A), indicating that the signal was detected indeed from the telomere 3’ overhang. In 

addition, only the (CCCTAA)4 probe detected overhang signals (Fig. 18A), while the 

(TTAGGG)4 probe did not (Fig. 18B), confirming that the T. brucei telomere overhang 

has a G-rich sequence (Sandhu and Li, 2011; Sandhu and Li, 2017). This experiment 
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suggests that POLIE is necessary for C-strand synthesis, depletion of which leads to shorter 

C-strand which results in elongated G- overhang. This observation also suggests that 

POLIE helps to coordinate telomere G- and C-strand syntheses.

I also performed Pulsed- Field Gel Electrophoresis (PFGE) to separate intact T. 

brucei chromosomes and performed the same native in-gel hybridization. Only G-rich 

telomere overhang signals were detected, and POLIE depletion again increased the 

intensity of the telomere 3’ overhang signal significantly (Fig. 19).

Fig. 19: Native in-gel hybridization analysis to examine the telomere 3’ overhang 
structure. DNA plugs were prepared from POLIE+raycl+ RNAi cells (A) before (-) and after 
(+) the RNAi induction. Undigested chromosomes were separated by Pulsed- Field Gel 
Electrophoresis. After electrophoresis, the gel was dried at room temperature followed by 
hybridization with end-labeled (CCCTAA)4 or (TTAGGG)4 probes under the native 
condition. After exposing the gel to a phosphorimager, the gel was denatured, neutralized, 
and again hybridized with the same (CCCTAA)4 and (TTAGGG)4 probes, respectively. 
The EtBr-stained gel is shown on the left. The native in-gel hybridization result is shown 
in the middle. The hybridization result after the denaturation is shown on the right.
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Furthermore, the EtBr-stained gel and the post-denaturation hybridization showed 

more smeary DNA species in POLIE-depleted cells than in WT and uninduced POLIE 

RNAi cells (Fig. 19, left and right), further indicating that depletion of POLIE led to an 

increased amount of telomere DNA degradation. These observations suggest that POLIE 

normally suppresses the telomere recombination by limiting the length of the telomere 3’ 

overhang. As a control, I have also examined the telomere 3’ overhang structure in 

POLIE+myc/- and S/IEi + ecPOLIE-myc cells. As shown in Fig. 20, the telomere 3 ’ overhang 

level in POLIE+mycl~ and S/IEi + ecPOLIE-myc cells is comparable to that in WT cells, 

indicating that POLIE-myc retains POLIE’s key telomere function and that ectopic POLIE - 

myc can complement phenotypes in POLIE-depleted cells.
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Fig. 20: Telomere 3’ overhang length in POLIE+myc/- and S/IEi+ecPOLIE-myc cells is 
similar to WT length. (A) & (B) Native in-gel hybridization assays were performed for 
POLIE+rayd+ RNAi cells before and after induction (+ Dox for 24 hrs, used as a control), 
POLIEP^1', and S/IEi+ecPOLIE-myc cells the same way as described in Fig. 18. 
Telomeres on various chromosome ends have different sizes, and different trypanosome 
clones always have different telomere fragment hybridization patterns, as seen in the post­
denaturation hybridization results. In-gel hybridization was performed using a (CCCTAA)4 
(A) or a (TTAGGG)4 (B) probe. (C) The relative level of the telomere 3’ overhang was 
quantified as described in Fig. 18. The average telomere 3’ overhang levels in POLIE +myc/- 
and S/IEi+ecPOLIE-myc cells were calculated from three independent experiments. The 
result for POLIE+myc/+ RNAi cells (labeled as POLIE RNAi) is the same as shown in Fig. 
18C. P values for unpaired student t-tests are shown (compare to the unindexed POLIE 
RNAi sample).
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The telomerase-mediated telomere G-strand synthesis is expected to elongate the 

telomere 3’ overhang length (Bonetti et al., 2014). In addition, we previously found that 

the telomere 3’ overhang is lost in telomerase null T. brucei cells (Sandhu and Li, 2017). 

To examine whether the elongated telomere 3’ overhang in POLIE-depleted cells depends 

on telomerase, I tested the telomere 3’ overhang signal in the TR -/- POLIE RNAi strain 

(Table 1). Although the telomere 3’ overhang signal in uninduced TR -/- POLIE RNAi 

cells was essentially undetectable (Fig. 21 A, left), an ~17-fold higher level of the telomere 

3’ overhang signal was observed upon depletion of POLIE (Fig. 21A, B). The appearance 

of telomerase-independent long overhang in cells lacking POLIE was surprising and is 

likely to be contributed by either higher 5’ to 3’ exonuclease mediated resection of the 

telomere 5’ end or decreased telomere C-strand fill-in synthesis (Bonetti et al., 2014). In 

mammals, Apollo, a 5’ to 3’ exonuclease is involved in telomere end processing; however, 

the functional assessment of such exonuclease is not studied yet in T. brucei. On the 

contrary, a defective telomere C-strand fill-in synthesis is plausible since, in telomerase 

null cells, depletion of POLIE still increases the telomere 3 overhang length to a similar 

extent as that in the TR+/+ background.
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Fig. 21: Elongated telomere 3’ overhang in POLIE-depleted cells is not dependent on 
the telomerase activity. (A) Genomic DNAs were isolated from WT and TR-/- POLIE 
RNAi cells before (-Dox) and after (+Dox) a 24-hr induction of RNAi. The genomic DNA 
was treated with and without Exol (NEB), which is a 3’ to 5’ single-strand DNA-specific 
exonuclease and digested with Alul and Mbol. In-gel hybridization was performed using a 
(CCCTAA)4 or a (TTAGGG)4 probe first under the native condition, and then after 
denaturation and neutralization. The telomere 3’ overhang level is reflected by the 
hybridization intensity throughout the whole lane (excluding the signal in the well) but not 
by the sizes of the telomere fragments. (B) Quantification of the relative telomere 3’ 
overhang level (using the hybridization signal after the denaturation/neutralization as a 
loading control and using the telomere 3 ’ overhang level in WT cells as a reference) in TR' 
' POLIE RNAi cells before (-Dox) and after (+Dox) POLIE RNAi induction. The average 
telomere 3’ overhang level was calculated from three to six independent experiments. (C 
& D) Native in-gel hybridization analysis to examine the telomere 3’ overhang structure. 
DNA plugs were prepared from TR" POLIE RNAi cells before (-) and after (+) the RNAi 
induction. Undigested chromosomes were separated by PFGE. After electrophoresis, the 
gel was dried at room temperature followed by hybridization with end-labeled (CCCTAA)4 
(C) or (TTAGGG)4 probes (D) under the native condition. After exposing the gel to a 
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phosphorimager, the gel was denatured, neutralized, and again hybridized with the same 
(CCCTAA)4 and (TTAGGG)4 probes, respectively. The EtBr-stained gel is shown on the 
left. The native in-gel hybridization result is shown in the middle. The hybridization result 
after the denaturation is shown on the right. P values of unpaired /-tests are shown in (B).

Similarly, PFGE of intact chromosomes followed by native in-gel hybridization 

showed the same elongated telomere 3 ’ overhang phenotype upon POLIE depletion in the 

TR -I- background (Fig. 21, C, D). As expected, no (TTAGGG)4 hybridization signal was 

detected in the TR -I- background, either (Fig. 21, A, right; D, middle). Therefore, the 

elongated telomere 3’ overhang phenotype in POLIE-depleted cells is not dependent on 

the telomerase activity.

3.2.7 POLIE inhibits telomerase-dependent telomere G-strand extension

Telomerase contains a protein catalytic subunit with a reverse transcriptase activity, 

TERT, and a template-harboring RNA subunit, TR (Greider and Blackburn, 1987; Greider 

and Blackbum, 1989). Telomerase uses a G-rich single-stranded 3’ DNA end as its 

substrate (Blackbum and Collins, 2011; Schmidt and Cech, 2015). Hence, the telomere 3’ 

overhang is essential for telomerase-mediated telomere extension (Bonetti et al., 2014). 

WT T. brucei cells have very short telomere 3’ overhangs (Sandhu and Li, 2011; Sandhu 

and Li, 2017), suggesting that the telomere G and C-strand synthesis need to be well- 

coordinated. To investigate how telomere 3’ overhangs were elongated in POLIE-depleted 

cells, I examined the telomere DNA synthesis.

Labeling cells with BrdU for one cell cycle followed by CsCl gradient 

centrifugation should be able to separate the leading and lagging telomere DNA synthesis 

products because one telomere strand has two Ts per TTAGGG repeat and the other strand 

one T per CCCTAA repeat (Chai et al., 2006). However, BrdU incorporation in T. brucei 

is frequently at very low efficiency (da Silva et al., 2017) and appears to be toxic at a high 
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level (Reynolds et al., 2014). In addition, although T. brucei cells can be arrested at the S 

phase by hydroxyurea (HU), they are poorly synchronized after HU release, possibly due 

to the atypical cell cycle control in these cells (McKean, 2003).

Therefore, I used EdU-labeling to examine the telomere DNA synthesis in 

asynchronous cells, and most of the incorporated EdU signal is expected to result from 

DNA replication in the S phase. POLIE depletion leads to cell growth arrest 24 hrs after 

induction, which interferes with the EdU incorporation. Hence, POLIE+mycl+ RNAi cells 

were only induced for 12 hrs before the cells were labeled with EdU for 3 hrs. EdU-labeled 

DNA was conjugated to desthiobiotin by the CLICK chemistry, pulled down by 

streptavidin beads, and detected by hybridization with telomere and tubulin probes. 

Because the two telomere strands contain either G or C but not both, I used radioactive 

dCTP-labeled (CCCTAA)n and radioactive dGTP-labeled (TTAGGG)n probes to 

specifically detect the G- and C-strand telomere DNA, respectively. Depletion of POLIE 

did not affect tubulin DNA synthesis (Fig. 22 A, B, C). Interestingly, POLIE depletion 

resulted in a mild and significant increase in the telomere G strand DNA synthesis (Fig. 22 

A, B). POLIE depletion appeared to also decrease the telomere C-strand synthesis (Fig. 22 

A, B, C), but the decrease was significant when the experiment was performed in denatured 

condition with 4M Urea to separate both strands during pull-down and to reduce the 

background associated with an opposite strand when hybridized with a probe against a 

specific strand of the telomere (Fig. 22C). A decrease in C-strand synthesis suggests the 

role of POLIE in C-strand fill-in.
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Fig. 22: POLIE depletion increases the telomerase-mediated telomere G-strand 
synthesis. In POLIE+myc/+ RNAi cells, before (-Dox) and after 12-hr (+Dox) of POLIE 
RNAi induction, EdU-labeled nascent DNA was conjugated with desthiobiotin in native 
(A, B) or denatured condition (C) and pulled-down by streptavidin beads. In TR'/_ POLIE 
RNAi (D) cells, before (-Dox) and after 12-hr (+Dox) of POLIE RNAi induction, EdU- 
labeled nascent DNA was conjugated with desthiobiotin in native condition and pulled 
down by streptavidin beads. The pulled-down DNA was slot blotted in the Hybond nylon 
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membrane and hybridized using a telomere or a tubulin probe. The fold changes in the 
amount of EdU-labeled telomeric and tubulin DNA (+Doc/-Dox) were quantified and 
shown in (B, C) & (E), respectively. The average change was calculated from four to 
twelve independent experiments. (F) Depletion of POLIE did not affect the bulk telomere 
length within a short time frame. Genomic DNA isolated from POLIPPmycl+ RNAi cells 
before (0 hr) and after (24 hr) POLIE RNAi induction were digested with Alul and Mbol 
and separated by agarose gel electrophoresis. Southern blotting was performed using a 
telomere probe. P values of unpaired t-tests are shown in B, C, and E.

Telomerase can synthesize the telomere G-strand DNA de novo. To examine

whether the increased level of telomere G-strand synthesis in POLIE-depleted cells is 

telomerase-dependent, I performed the EdU-labeling in TR-/- POLIE RNAi cells. I found 

that POLIE depletion no longer increased the telomere G-strand synthesis in the TR null 

background (Fig. 22D, E), indicating that the higher level of the telomere G-strand 

synthesis was due to excessive telomerase-mediated telomere G-strand extension in 

POLIE-depleted cells. Therefore, POLIE is the first telomere protein in T. brucei that has 

been identified to suppress telomerase.

Additionally, I further performed telomere southern analysis in POLIE+myc/+ RNAi

cells to see whether depletion of POLIE for 24 hrs affects telomere length due to a higher 

level of the telomere G-strand synthesis. However, within 24 hrs of POLIE RNAi 

induction, no significant telomere length change was observed (Fig. 22F).

3.2.8 POLIEpromotes the telomere C-strand synthesis

POLIE depletion may affect the telomere C-strand fill-in, as EdU-labeling

experiment in denatured condition shows a significant decrease the telomere C-strand 

synthesis (Fig. 22C). Therefore, I examined whether POLIE depletion affected the 

telomeric C-circle level, as defects in telomere C-strand replication can lead to an increased 

amount of telomeric C-circles (Fig. 23 A) (Zhang et al., 2019). I performed the (p29 DNA 
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polymerase-mediated telomeric C-circle assay (Fig. 23B), which does not amplify T- 

circles because both strands of T-circles have nicks (Henson et al., 2009).

A C-circle G-circle

Fig. 23: Principle of the C-circle amplification assay. (A) Diagrams of telomeric C and 
G-circles. (B) Left, is a schematic diagram showing the principle of the C-circle 
amplification assay. Right, depletion of POLIE leads to an increased amount of telomeric 
C-circles. The C-circle amplification products were analyzed by slot blot hybridization 
using a (CCCTAA)4 probe. The average fold difference in C-circle amount (+Dox/-Dox) 
(+/- standard deviation) is calculated from three independent experiments and shown 
beneath the slot blot.

I found that POLIE depletion led to a 6.7-fold increase in the amount of telomeric 

C-circles but did not affect the telomeric G-circle level (Fig. 24). Telomeric C-circles are 

a hallmark of telomerase-negative cancer ALT cells (Henson et al., 2009). Therefore, I
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examined whether deleting the telomerase further increased the telomeric C circle level in 

POLIE-depleted cells.

Fig. 24: POLIE depletion increases the amount of telomeric C-circles, which is 
telomerase-independent. (A) The C-circle and G-circle products from indicated cells 
were detected in slot blot hybridization using a (CCCTAA)4 and a (TTAGGG)4 probe, 
respectively. (B) Quantification of the telomeric C-circle amount in the C-circle assay. The 
C-circle level in WT cells was arbitrarily set to 1, and relative C-circle levels in other cells 
were quantified using the WT level as a reference. The average C-circle signal level was 
calculated from three to four independent experiments. P values of unpaired /-tests are 
shown.

Unexpectedly, TR-/- cells had a lower level of telomeric C circles than WT cells

(Fig. 24A, B), and uninduced TR -/- POLIE RNAi cells also had a lower level of telomeric 

C-circles than uninduced POLIE RNAi cells (Fig. 24B). Therefore, deleting telomerase is 

not sufficient to make T. brucei more ALT-like. Importantly, depletion of POLIE induced 

a 4.8- fold increase in the telomeric C-circle level in the TR-/- background (Fig. 24A, B), 

indicating that the POLIE depletion-induced increase in the telomeric C-circle level is 

telomerase-independent.
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3.3 Discussion

While many telomere chromatin components have been identified in T. brucei (Li 

et al., 2005; Yang et al., 2009; Jehi et al., 2014b; Rabbani et al., 2022), we still have not 

identified any OB-fold containing telomere-specific proteins, suggesting that T. brucei 

telomere complex has quite different protein components than those in higher eukaryotes 

and telomere end processes are poorly understood in this organism. In mammals, yeasts, 

and plants, OB-fold containing telomere ssDNA binding proteins play critical roles in the 

coordination of the telomere G- and C- strand syntheses. T. brucei appear to lack these OB- 

fold containing telomere-specific ssDNA binding factors, suggesting that T. brucei uses a 

different mechanism to coordinate DNA syntheses of the two telomere strands and to 

regulate telomerase action at the telomere end. Indeed, our observations strongly suggest 

that POLIE is a novel telomere protein that suppresses telomerase-mediated telomere G- 

strand elongation and helps ensure proper telomere C-strand synthesis.

POLIE depletion increased the VSG switching rate and the amount of T-circles, 

indicating that POLIE suppresses DNA recombination at the telomere and subtelomere. 

POLIE-depleted cells have much longer telomere 3’ overhangs than WT cells, which likely 

contributes to the increased level of telomere recombination, as the long single-stranded 3 ’ 

overhang is prone to invade duplex DNA with a homologous sequence (Haber, 2018). The 

telomere 3’ overhang length depends on several factors (Fig. 25), including the 

exonuclease-mediated resection of the telomere 5’ end, the telomerase-mediated telomere 

G-strand extension, and the telomere C strand fill-in (Bonetti et al., 2014).
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Fig. 25: Telomere end processing involve progression through several steps. Multiple 
processes are involved in the generation of a proper telomere 3’ overhang structure. The 
exonuclease that process the telomere 5 ’ end has not been identified in T. brucei.

Our results suggest that POLIE maintains a normal length of telomere 3 ’ overhang 

at least two steps (Fig. 25): EdU-labeling showed that POLIE-depleted cells have a 

significantly elevated level of telomere G-strand synthesis, which is telomerase-dependent, 

indicating that POLIE suppresses telomerase-mediated telomere G-strand extension. 

Considering that T. brucei telomeres are ~15 kb on average (Fig. 22E) and the conventional 

DNA replication in the S phase contributes to the EdU-labeling signal considerably, even 

a mild increase in the telomere G-strand synthesis reflects a dramatically enhanced 

telomerase action at the telomere.

POLIE is also likely required for telomere C-strand fill-in, which is supported by 

several observations (Fig. 26). First, in telomerase null cells, depletion of POLIE still 
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increases the telomere 3’ overhang length to a similar extent as that in the TR+/+ 

background (Fig. 2 1B), suggesting that in addition to suppressing telomerase, POLIE also 

promotes the telomere C-strand fill-in. Second, I observed a mild but significant decrease 

in telomere C-strand DNA synthesis upon POLIE depletion using the EdU-labeling assay 

(Fig. 22C). This a mild decrease could be because the EdU-labeling technique is not 

sensitive enough as asynchronous T. brucei cells were used. In addition, telomeres in the 

T. brucei cells used in this study are ~15 kb long (Fig. 22E). Hence, the telomere C-strand 

fill-in is expected to have a limited contribution to the EdU incorporation. Third, POLIE 

depletion dramatically increases the telomeric C-circle level in a telomerase-independent 

manner, while telomeric C-circles can arise from telomere C-strand replication stress 

(Zhang et al., 2019), further suggesting that POLIE is important for the telomere C-strand 

fill-in and helps to ensure telomere C-strand synthesis (Fig. 26).
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Fig. 26: POLIE suppresses telomerase-mediated telomere G-strand extension and is 
involved in telomere C-strand fill-in. Our observations suggest that POLIE suppresses 
the telomerase-mediated telomere G-strand elongation and is important for telomere C- 
strand fill-in.

Interestingly, I detected a higher level of telomerase-dependent telomere G-strand 

extension in POLIE-depleted cells, identifying POLIE as the first telomere protein that 

suppresses telomerase in T. brucei. The inhibitory effects of POLIE on telomerase- 

mediated telomere G-strand extension and the positive effect of POLIE on telomere C- 

strand fill-in are unexpected (Fig. 27).
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Fig. 27: Model of POLIE functions in telomere end processing.

In mammalian, yeast, and plant cells, OB fold-containing proteins that bind the 

single-stranded telomere 3’ overhang play important roles in coordinating the telomere G- 

and C-strand syntheses (Lue, 2018). Specifically, human TPP1 recruits telomerase to the 

telomere and stimulates telomerase activity through TPP1 (Nandakumar et al., 2012; 

Zhong et al., 2012; Sandhu et al., 2021), while binding of the CST complex on the telomere 

3’ overhang effectively inhibits telomerase-mediated telomere extension (Chen et al., 

2012). CST action is needed for DNA polymerase to initiate the C-strand fill-in reaction 

(Feng et al., 2017; Wang et al., 2012; Huang et al., 2012). CST depletion leads to a delay 
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in C-strand synthesis which results in the maintenance of extended G-overhangs 

throughout G2 of the cell cycle (Wang et al., 2012). CST also appears to participate in 

several aspects of G-overhang maturation (Feng et al., 2017) and appears to limit G-strand 

extension by telomerase (Chen et al., 2012). In budding yeasts, CDC13, the single-stranded 

telomere DNA binding factor, both positively and negatively regulates telomerase- 

mediated telomere extension (Wu and Zakian, 2011; Mersaoui and Wellinger, 2019). 

Importantly, both vertebrate and yeast CST complexes promote the telomere C-strand fill- 

in by directly interacting with and recruiting DNA polymerase alpha-primase to the 

telomere (Wu et al., 2012; Amir et al., 2020; Casteel et al., 2009; Huang et al., 2012; Qi 

and Zakian, 2000). Therefore, single-stranded telomere DNA binding factors are major 

players to coordinate the synthesis of the two telomere strands.

However, the T. brucei genome appears to lack these OB fold-containing telomere­

specific ssDNA binding factors. On the other hand, our study identifies POLIE as an 

essential telomere maintenance factor that plays a critical role in coordinating the 

telomerase-mediated G-strand synthesis and C-strand fill-in. T. brucei POLIE is not only 

a novel telomerase regulator but also represents a completely new mechanism of telomere 

maintenance. Since POLIE is essential for T. brucei proliferation and regulates antigenic 

variation, our findings can also be applied to the future development of anti-parasite agents.
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CHAPTER IV 

FUTURE PERSPECTIVE

Telomeres help to protect the natural chromosome ends of eukaryotic cells from 

nucleolytic degradations, improper damage repair processes, and DNA recombination. 

Hence telomere maintenance mechanism is crucial for chromosome end protection, 

genome maintenance, and organism survival. Telomere maintenance involves many 

processes, including telomerase extension and the timely progression of DNA replication 

(Pickett and Reddel, 2012). The molecular pathogenesis of T. brucei was studied 

throughout history to develop safer and more effective safer treatments due to toxicity 

related to existing treatment. T. brucei evolved to escape the host immune response by 

using the antigenic variation mechanism. Therefore, it is essential to dissect the 

consequences of deletion or depletion of essential genes to elucidate the most effective 

drug targets. Additionally, telomere length maintenance mechanisms are crucial for T. 

brucei cell survival in the host.

A previous study identified that POLIE is associated with telomeric sequences and 

important for DNA damage repair with potential translesion polymerase activity (Leal et 

al., 2020). Our study further confirms POLIE as an intrinsic component of telomere that is 
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essential in maintaining telomere integrity in T. brucei. In this study, we used 13 x myc- 

tagged POLIE for easier identification of POLIE in different experiments with an anti-myc 

antibody. However, POLIE+myc/- strains show slightly reduced growth than POLIE+myc/+ 

and POLIE+/-. Although we used POLIE-13 x myc as a negative control for all experiments 

to consider mild growth defect, but there may be a mild defect due to the tagged allele. We 

need to develop an endogenous antibody to validate the results of this study and replicate 

individual experiment to prove that tagged alleles was indeed functional.

POLIE is involved in the regulation of VSG, depletion of which leads to ~3-fold 

higher VSG switching rate when compared to the control strain. T. brucei regularly VSG 

to effectively evade the host immune response. POLIE appears to suppress DNA 

recombination at the telomere and the subtelomere as depletion of POLIE increased the 

frequency of gene conversion-mediated VSG switching and an increased amount of the 

telomeric circles (T-circles). Recombination is a key mechanism for VSG switching. 

However, it is interesting that telomeric and subtelomeric DNA recombination in POLIE 

depleted cells is unlikely to be mediated by the increased telomeric R-loop level as POLIE 

depletion did not significantly increase the telomeric repeat-containing RNA (TERRA) 

level. Further studies are required to understand how depletion of POLIE mediates 

telomeric and subtelomeric DNA recombination without an R-loop. Studying the POLIE - 

mediated VSG regulation could help us to better understand T. brucei pathogenesis and to 

develop better anti-parasite agents to treat trypanosomiasis.

POLIE is essential to coordinate telomere G- and C-strand syntheses as transient 

depletion of POLIE dramatically elongates telomere G-rich 3’ overhangs. These long 

telomeres 3’ overhang could act as a potential inducer of telomeric and subtelomeric 
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recombination. Additionally, this study identified POLIE as a regulator of telomerase as it 

inhibits telomerase-dependent telomere G-strand extension. This implies POLIE is the first 

telomere protein that suppresses telomerase in T. brucei as no other telomerase regulator 

has been identified in T. Brucei. However, how POLIE inhibits telomerase-dependent 

telomere G-strand extension is need studied further. Does it directly affect telomerase 

recruitment? Or does it interact with another telomerase regulator to inhibit telomerase­

dependent telomere G-strand extension? In mammalian, yeast, and plant cells, the OB- 

fold domain bind ssDNA to coordinating telomere G- and C-strand syntheses. We still need 

to explore whether POLIE directly binds to ssDNA similar to OB-fold domain containing 

protein or it interact with other protein to inhibit telomerase-dependent telomere G-strand 

extension.

Depletion of POLIE greatly increases the amount of telomeric C-circle which may 

be derived from C stand stress. However, how POLIE suppresses telomeric C-circle to 

maintain telomere integrity is yet unexplored. Is it directly involved in C strand fill-in? or 

does it work with another polymerase such as PrimPol-like (PPL) proteins to support 

proper C-strand synthesis? The elongated telomere 3’ overhang phenotype and elevated 

telomeric C-circle level phenotypes are independent of the telomerase, which suggests that 

POLIE promotes the telomere C-strand synthesis. Overall, POLIE is likely required for 

telomere C strand fill-in, which is supported by several observations in our study. However, 

further study is required to establish its role in C strand fill-in. We would also like to study 

whether POLIE is the only polymerase involved in C-strand fill-in in T. brucei or if it helps 

other polymerases in C-strand replication. Studies of C-strand replication in T. brucei will 

provide further evidence of unique telomere C-strand synthesis in T. brucei.
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Overall, this study identified a unique pathway by which POLIE regulates antigenic 

variation and maintains telomere integrity in T. brucei which may be applied to 

trypanocidal therapies in the future. Since many aspects of telomere maintenance are 

conserved among eukaryotes, our study in T. brucei has an additional impact on other 

eukaryotes. Understanding the mechanisms of telomere length regulation in lower 

eukaryotes will shed light on telomere regulation in humans, where telomere length has 

been linked to organismal life span.
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