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Abstract 

Agent based modeling (ABM) is a powerful tool for examining complex systems in many 

scientific applications, including maritime transport systems.  Growing demands for freight 

transport and increased industry emphasis on reducing environmental impacts have 

heightened the focus on vessel and port efficiency.  This research aimed to create a maritime 

route planning model to simulate vessel movement in all waterways.  The goal of the ship 

routing model developed in this research was to develop a simulation tool capable of 

reproducing real world shipping routes useful for navigation planning, with emphasis on port 

scheduling and potential application for further use and exploration. A modified breadth-first 

search algorithm was implemented as a NetLogo ABM in this research. With increasing volumes 

of ship location monitoring data, new approaches are now possible for examining performance-

based metrics and to improve simulations with more precise verification and analysis. A 

Satellite Automatic Identification System dataset with over 500,000 vessel logs travelling across 

the Pacific Ocean and into the Port of Metro Vancouver was used as the focal area for model 

development and validation in this study.  Automatic identification system (AIS) is the global 

standard for maritime navigation and traffic management, and data derived from AIS messages 

can be used for calibrating simulation model scenarios.  In this analysis, the results examined 

how changes in simulation parameters alter route choice behaviour and how effective large AIS 

datasets are for validating and calibrating model results.  Using large AIS datasets, model results 

can be quantified to examine how closely they resemble real-time vessels in the same region. 

Heatmaps provide a data visualization tool that effectively uses large data sets and calculates 

how closely model results resemble AIS data from the same region. In the case of PMV, the 
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Maritime Ship Routing Model (MSRM) was able to replicate path likeness with a high level of 

accuracy, generating realistic navigation paths between the many islands on the eastern side of 

southern Vancouver Island, B.C., a busy marine traffic region and sensitive ecological area. This 

research highlights the use of ABM as a powerful, user-friendly tool for developing maritime 

shipping models useful for port scheduling and route analysis. The results of this study 

emphasize the use of large data sets that are applicable, clean, and reliable as a crucial source 

for validating and calibrating the MSRM.    
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1. Introduction  

1.1. Big data GIS  
The ability to acquire, share and process large quantities of data has fundamentally 

changed the way researchers study the world.  The term big data has been coined to represent 

increasingly large datasets that have outstripped our ability to manage and preform analysis, 

requiring new techniques and tools that take advantage of this new paradigm(Haug, 2016).  For 

geospatial research, growing sources and variety of data via satellites, location sensors, online 

activity, and other ubiquitous sensors has significantly increased the volume and variety of data 

available to with location information (Graham & Shelton, 2013). These new data sources 

expand research capabilities by utilizing modern technological advancements, allowing 

researchers to effectively use big data to study new problems or tackled existing research 

problems from new perspectives (Mirovic, Milicevic, & Obradovic, 2018).   Often, big data is 

described using the three V’s: (1) volume— the amount of data that can be collected and 

stored; (2) velocity— the speed at which data can be captured; and (3) variety— encompassing 

both structured (organized and stored in tables and relations) and unstructured (text, imagery) 

data (Miller, Goodchild, 2015).  Further descriptions of big data expand on the 3 V’s, touching 

on several key features including, value— increased amounts of data does not provide value 

without methods of extracting useful information and providing outcomes. Veracity— the 

accuracy of the data, including the quality, integrity, and credibility.  Collaboration can be 

required to collect big data and merging sources may be difficult; thus, attention to accuracy 

across sources is crucial. Variability— the changing nature of data. In geography this can include 

the differences in scale, temporal and spatial distribution and attributes (Kitchin, 2013).  
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 New software and sensors are collecting large amounts of data, much of which contain 

a geographic context and provide a valuable resource for researchers and industries (Graham & 

Shelton, 2013). Domain-specific applications of geographical analysis and modelling such as the 

logistics and transportation industry can benefit greatly from new research techniques that 

help to facilitate the adoption of new data sources. It has been noted that the steep decrease in 

storage costs, new wireless technology development and the low-cost widespread usage of 

sensors, both personal and industrial, have provided researchers with the ability to gain 

valuable insight into the transportation industry (Torre-Bastida et al., 2018). Location data 

collected from global positioning systems (GPS) and more specifically automatic identification 

systems (AIS), have become standard in the maritime sector.    

The growing amount of data regarding maritime navigation and performance brings 

many possibilities including; detecting and predicting vessel activities, enhancing safety, 

detecting anomalous activities and to support critical decision-making (Vouros, Doulkeridis, 

Santipantakis, & Vlachou, 2018).  AIS data have been used to enrich many facets of maritime 

research examples of which are discussed further in section 1.5 Agent Based Modelling and Big 

Data GIS: Maritime Examples. 

1.1.1. Big Data GIS: Challenges 
The use of big data has created many hurdles for researchers to overcome, including 

having to deal with messy unorganized datasets, ignoring spurious patterns, limited access, and 

effectively using big data to build data driven models (H. J. Miller & Goodchild, 2014).   

All data sources require processing to acquire and store, convert to new formats, and 

identify missing and/or anomalous values. These common tasks become more complicated 
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with big data where there is much more data to handle (Blazquez-Soriano & Domenech, 2017). 

Erroneous data are also of concern as sensors and satellites can malfunction, failing to collect 

data or incorrectly record. Other possibilities include mistakes in manual entry. In the 

transportation sector, there is also the prospect of deliberate errors reporting misleading data 

which may be in favor of operators for economic incentives or illegal activity (Mirovic et al., 

2018). Solutions include using more frequent automated data collection however, this does not 

guarantee improvement in all contexts. Alternatively, extensive validity checks can be applied 

to minimize errors. This includes replacing incorrect data where possible, anomaly detection 

and filling incomplete data (Mirovic et al., 2018). Methods for automated and manual cleaning 

strategies may not always be suitable. Certain approaches may remove useful information by 

cleaning noise and data outliers that may be pertinent to the dataset (Vlahogianni, 2015). 

Finally, even with clean data flawed inferences can be drawn from spurious correlations 

obtained from the analysis of big data (Calude & Longo 2017). 

Access to big data sources may be difficult to acquire for many independent 

researchers, academic institutes, and small businesses. Many big data sources are collected by 

large private businesses and governments with restricted, limited, or expensive access requiring 

researchers to negotiate access (Kitchin, 2013). Furthermore, when access is gained there are 

often several securities and ethical challenges required to work with such data sets. When large 

data sources happen to be shared more readily, they are often void of sensitive or important 

data.      

The increase in shipping demand and the globalization of the world economy has 

increased the number of vessels at sea and consequently the amount of AIS data (Norris, 2006). 
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However, too much data can be a concern as it may be harder to interpret, process, store, and 

data collection can place strain on existing infrastructure (Sui, Goodchild, & Elwood, 2012).   

  

1.2. Data Visualization and Heatmaps 
 Data visualization tools are important for graphical representation and effective 

interpretation of datasets. The goal of data visualization is to explore data by discovering 

relationships, patterns and differences that may be impossible to identify with statistical 

procedures or viewing spreadsheets.  Secondly, data visualization tools can provide important 

context when interpreting data that aid users’ understanding and inspire further ideas and new 

hypotheses. These tools support the presentation of data that helps tell a story and provide a 

visually appealing method for discovering and conveying patterns or relationships in data.    

 The strengths of data visualization tools are well suited to big data presentation and 

analysis. Evan Sinar (2020) compares the benefits of data visualization tools with the main 

facets of big data: volume, velocity, and variety. Volume- increasing amount of information can 

be too large to interpret effectively without visual representation. Velocity- visualization tools 

provide a data structure that is easily and quickly updated as the speed of data retrieval is 

important for users understanding the new, incoming data. Variety- the ability to show trending 

and time-series data is a strength of data visualization tools and provides the ability to visually 

align and integrate data from a variety of scales and sources.  

Heatmaps are graphical representations of the spatial variation in density of a spatial 

process (Słomska-Przech, Panecki, & Pokojski, 2021). Heatmap analysis can be applied to all 

types of geographic vector data (point, line, polygon), however is most frequently used to 
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explore spatial variation in spatial point process data (Kulyk & Sossa, 2018). Heatmaps are the 

visualization of data points using a color gradient to represent the weight or influence of a 

certain point. Areas of influence surrounding each point can overlap, further impacting the 

values and color gradient (Netek, Pour, & Slezakova, 2018). With reliable data cleanup, 

heatmaps can be used to explore and identify single instances or clusters of important data in 

large datasets. Without such visualization techniques, effectively using large datasets may be 

challenging(Anderson, 2009). Transportation problems are particularly suited to heatmap 

analysis using GIS platforms (Słomska-Przech et al., 2021), which can provide a tool for 

examining changes in spatial patterns of vessel traffic over time (Netek et al., 2018).  

1.3. Needs of the Maritime and Transportation domain   
A maritime port has many safety, efficiency, and environmental concerns that are 

heavily regulated and constantly monitored.  The Maritime port authority enforces certain rules 

and regulations to ensure the smooth running of all traffic and activity in a port and collects 

ongoing data to improve functions and inform policy for the future.   

The regulations and policies include restrictions on speed/ size/ weight, anchorage, fuel 

consumption and efficiency, right of way, scheduling and routing, bridge usage and scheduling, 

interactions with local wildlife particularly endangered species, unsafe cargo management, 

waste management, traffic control/ collision avoidance/ safety, preventing nefarious activity, 

documentation, and immigration (Port Metro Reference Guide, 2016).  The optimization of port 

efficiency and enforced regulation is imperative to the financial success of the port economy, 

the wellbeing and safety of the human population living in the area as well as those on the 

ships, the survival of the wildlife, and limiting damage to the natural ecosystems.  
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Data analysis is a necessary method of making use of collected records of activity in the 

port to improve policy, regulation, and enforcement. There are several ways in which data can 

be used and analysed to improve functionality and policy in a Port, several examples are 

covered in section 1.5 Agent Based Modelling and Big Data GIS: Maritime Examples. Agent 

based modeling (ABM) has the capacity to simulate ship pathways and produce improved path 

plotting to save time, money, and increase fuel efficiency (Helmreich & Keller, 2011). 

Simulation modelling methods are particularly useful for studying the maritime and 

transportation domain. They demonstrate a state of movement, examine interactions amongst 

agents, and calculate various time parameters to determine influences on the flow of 

transportation systems, making it possible to study and improve operations (Guo & Hu, 1994). 

Many applications of simulation modelling are used in the transportation domain. For example, 

Goerlandt and Kujala (2011) examine ship collision probability using AIS data to obtain realistic 

input data for traffic simulation using a collision detection algorithm. Their findings provide 

detailed information on the circumstances of ship encounters including; location, encounter 

angle, time, size and speed of vessels etc. The results are valuable for consequence analysis 

which can be incorporated with probability analysis directly obtained from the model to 

provide an idea of risk level in different ship encounters (Goerlandt & Kujala, 2011). Often 

transportation systems are comprised of large-scale networks with complex interactions. They 

are also driven in part by unpredictable behaviour. These circumstances lend themselves well 

to the implementation of  Agent Based Modelling (ABM)(Kagho, Balac, & Axhausen, 2020). ABM 

has the capacity to simulate ship pathways and produce improved path plotting to save time, 
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money, and increase fuel efficiency (Helmreich & Keller, 2011). Detailed description of ABM is 

covered in 1.4 and subsequent sections.  

 Big data analytics can be used to explore many challenges in maritime traffic analysis. 

Freight markets as a field of academic study have increased in relation to the commodity price 

boom of the early 2000’s.  They are an integral part to the success of globalization and the 

global economy.  Specific shipping routes and cargo flows can be studied to capture economic 

trends and processes movement.  This has implications for market analysis forecasting freight 

rates and ship capacity. 

There are many environmental and sustainability related concerns in the maritime 

system including waste management, fuel usage, and conservation and protection of 

endangered species.  Reduction of fuel consumption is one of the areas of research that has 

received the most attention in recent years.  The ability to design ships and routes more 

efficiently has huge implications for reducing greenhouse gas emissions from freight 

transportation in North America and water quality/ habitat conservation in the area, which as 

been estimated at 4% of global CO2 emissions (Bialystocki & Konovessis, 2016).   

The commercial shipping Industry has a negative impact on natural habitats and the 

safety of endangered sea life. Marine mammal conservation is a priority for the Canadian 

Government and various environmental groups exist such as the Institute of Cetacean Research, 

The American Cetacean Society, Whale and Dolphin Conservation, The Ocean Alliance, and the 

Ocean Conservation Research. The government of Canada has invested in scientific research 

under “The Whales Initiative.”  The Whales initiative seeks to increase knowledge of locations, 

movement, and population of Whales in Canada. One of the projects the Canadian Government 
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is currently investing $9.1 Million dollars in is The Whale Detection and Avoidance Initiative, 

which is part of Canada’s Oceans Protection Plan("Report to Canadians: Investing in our coasts 

through the Oceans Protection Plan," 2021).  The Whale Detection and Avoidance Initiative is 

funding various projects that are developing new technologies to detect whale locations in real-

time.  Having better information on where whales are located could help mariners avoid colliding 

and thus injuring or killing them.  The current projects are utilizing underwater microphones on 

fixed and mobile platforms, and infra-red cameras. One possible avenue for expanding on the 

currently collected data would be to gather the information of the whales' locations and simulate 

potential interactions with vessel traffic.  Simulating likely routes for whales in relation to most 

frequent routes for ships would highlight areas where collision is most likely to occur. 

The Government of Canada is also investing $26.6 million into the “Marine Environmental 

Quality” (MEQ) initiative ("Report to Canadians: Investing in our coasts through the Oceans 

Protection Plan," 2021) through the Oceans Protection Plan. In collaboration with outside 

partners, Department of Fisheries and Oceans Canada researchers are conducting research 

exploring the impact of shipping-related noise on marine mammals. These projects are focused 

on endangered St. Lawrence Estuary Beluga, North Atlantic Right Whale, and Southern Resident 

Killer Whale. The data collected on noise and its effects on marine life could similarly be used to 

create ABMs and explore how various changes made to shipping routes may affect the noise level 

on marine life. A further $3 million dollars is currently being invested by the government of 

Canada into projects that are working to understand risk factors for marine mammals and inform 

policy and protection. Better understanding and promoting conservation of sensitive marine 

ecosystems is a research area of increasing significance in Canada and around the world. Given 
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the capabilities of ABM to explore ‘what-if’ scenario planning, there may be significant 

application of these tools in the marine/environment domain. 

 1.4. What is Agent Based Modelling?  
 Agent Based Modelling is a computational tool used for modeling and simulating 

complex systems by representing the behaviors of agents and the processes by which they 

interact. The objects, also known as agents, follow specific sets of rules that can be observed 

and manipulated.  ABM is well suited for examining heterogenous and dynamically changing 

processes, assessing the interactions of agents and overall impact on complex systems (J. 

Huang et al., 2022). This is particularly useful for situations where agents are in motion and 

behaviour can be predicted, such as navigation or traffic analysis (Davidsson, Henesey, 

Ramstedt, Törnquist, & Wernstedt, 2005). Simulations can run many scenarios by altering 

parameters to examine how small changes can appear at the macro level.  Analyzing model 

results can provide a better understanding of a problem and determine further courses of 

action. 

 One benefit to ABMs over other forms of modelling such as mathematical modelling, is 

the ability to model more abstract non-mathematical forms such as verbal models. Verbal 

Models can help describe the relationships informally as rules or principles in natural language. 

This can make it possible to model system behaviours which are not known prior to model 

development(Scheutz & Mayer, 2016).   

1.4.1. What is an agent? 
 Agent Based Models are dependent upon the incorporation of autonomous entities 

called agents. Agents are individuals, groups of individuals or organizations represented in the 
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model, attributed with decision making entities and governed by a set of rules. Each agent is 

programmed to be defined with specific properties as well as its relationship to other 

agents. All actions and interactions carried out by agents are directed by the behaviours initially 

attributed to them.  Stochasticity can be applied to agent behaviour when randomness of 

behaviour patterns is necessary.  Using the set of rules and objectives assigned to each agent, 

the agent makes decisions on its behaviour based on situational assessments. Some actions 

that an agent may take are producing, consuming, selling, moving, recording, spawning, living 

and dying, etc. 

 ABM allows for extreme diversity and heterogeneity to be programmed into agent 

characteristics and agent interactions, as well as in dynamics, adaptation, and feedbacks (Yu, 

2002).  Traditional statistical models are unable to accommodate and represent this level of 

variety and detail (Barbati, Bruno, & Genovese, 2012).  Thus, research questions which involve a 

substantial amount of heterogeneity and diversity in agent interactions and scope are well 

suited to ABMS. Complex behaviour patterns, emergent behaviour and information about the 

dynamics of real-world systems can be produced with simple ABMs (Kagho et al., 2020). 

Emergent behaviour is that which arises from the interactions of discrete parts of a system and 

cannot be easily determined or extrapolated from the individual behaviour of agents(Helbing & 

Balietti, 2015).  

1.4.2. History of Cellular Automata and The Game of Life 
Cellular Automata (CA)  is a model theory that consists of an array of cells that represent 

a discrete spatial confine (typically two-dimensional) where each cell processes inputs on 

characteristics resulting in various “states”(Crooks, 2017). This spatially distributed process is 
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governed by a set of rules that determine the state of cells based on that of their neighbouring 

automata. CAs can appear simple however, they have the potential to complete various 

computations and simulate real-world processes (Crooks, 2017). The History of cellular 

automata begins with John von Neumann who proposed the idea as a model of self-

reproducing organisms (Sarkar, 2000). CAs are a simpler version of agent-based models, 

however they provide an effective introduction to dynamic simulation modelling in general and 

how complexity can emerge from a small set of static rules. ABMs are multi-agent systems with 

emphasis on platform development and do not have a discrete spatial extent or a fixed number 

of cells (Clarke, 2014). CAs typically follow a smaller set of rules that are always governed by 

neighbours, providing fewer applications.  

A classic example of a CA model that also exhibits the properties of ABM is “The Game 

of Life.” This simulation is a straightforward model that produces complex results with 

interesting potential for experimentation. “The Game of Life” is a simple two-dimensional grid. 

Each cell on the grid can be either alive or dead. One set of cells are randomly assigned their 

state (living or dead) at the commencement of each game. Each game iteration generates a 

new assigned state for the cells at random. The Agents in this model are the cells, and their 

basic behaviour options are that they are either alive or dead. 

The rules governing how the agents react during the game are as follows, 

“1. Any live cell with fewer than two neighbours alive dies. 

  2. Any live cell with two or three neighbours’ alive lives on to the next generation. 

  3.Any live cell with more than three neighbours alive dies. 

  4. Any dead cell with exactly three neighbours alive becomes a living cell” 
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(Adamatzky, 2010) 

ABM and CA models, even those with a simple set of rules such as “The Game of Life” 

produce observable patterns over time that can be extrapolated on, studied, and experimented 

with. This ability to simulate activity and interactions throughout a system over time to discern 

emergent patterns is one of the key strengths of ABMs. These complex interactions and macro 

effects of the system cannot be easily determined from analyzing the rules of the game (Mi Yu, 

2015). Refer to figure 1.1 for a visualization of patterns that can emerge from Conway’s Game 

of Life.  

 

Figure 1.1: Introduction to agent-based models and cellular automata. Highlighting repetitive 

complex patterns that can emerge after many iterations of Conway’s Game of Life.  (Stevens, 

2019) 

1.4.3. Agent Based Modelling Applications  
Agent based modelling is actively being applied in many fields of academic study and 

commercial research. A few examples are in the field of medical research, the dynamics and 

spread of diseases have been explored using agent-based models. (e.g., Eubank et al., 2004). 
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Energy flows through a power grid were examined by Pacific Gas and Electric using an agent-

based model (Bonabeau, 2003a). The effects of hiring strategy on corporate culture were 

examined using agent-based models at Hewlett-Packard (Bonabeau, 2003). The effect of 

changes to decimalization on the stock market was explored using agent-based modeling by 

NASDAQ (Bonabeau, 2003b; Darley and Outkin, 2007). In ecology, agent-based models have 

been used to simulate the migration and evolution of salmon populations (Railsback and 

Harvey, 2002). Emergency response planning has used agent-based modelling to simulate and 

improve processes around wildfire training.  This includes implications for incident command 

and community outreach (Guerin and Carrera, 2010). The dynamics and flow of vehicle and 

pedestrian traffic were explored using agent-based models (Helbing and Balietti, 2011). Agent-

based Models were used in the drug development process by Eli Lilly (Bonabeau, 2003a).  

 Transportation systems are well suited for agent-based studies because they are 

geographically distributed in a dynamic changing environment (Bo & Cheng, 2010). All 

disciplines of transportation research have examples of well-known ABM platforms. Some 

examples include Transportation Analysis and Simulation System (TRANSIMS), Multi-Agent 

Transport Simulation Toolkit (MATSim), Sacramento Activity-Based Travel Demand Simulation 

Model (SACSIM), Simulator of Activities, Greenhouse Emissions, Networks, and Travel 

(SimAGENT), Open Activity-Mobility Simulator (OpenAMOS),and Integrated Land Use, 

Transportation, Environment (ILUTE) (Hong Zheng, 2013).  Most examples follow a similar 

structural design. All modelling platforms contain agents that represent an individual traveller 

(human or vehicular) with attributes and characteristics that govern their behaviour.  Activity 
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plans adhere to system demands and can be revised to meet the needs of various constraints 

(spatial, temporal, etc.).   

1.5. Agent Based Modelling and Big Data GIS: Maritime Examples  

The ability to validate and calibrate existing simulation models with AIS and other 

geographic data has created many possibilities. Tesfatsion et al. (2006) describe three methods 

of validating computational models (Tesfatsion & Judd, 2006).   

1. Descriptive output validation - analyzing computational data by comparing 

results to available real-life data. This is the most intuitive of all methods and is 

fundamental in accurate calibration of computational models.  

2.  Predictive output validation - this method uses computationally generated data 

to predict data that has not been captured yet. This can be a problem as model 

calibration and validation may not be possible at the time of conception. 

However, many models need to be predictive as their implementation is useful 

for future forecasts and preparation. 

3.  Input validation - By analyzing actual data, researchers can introduce the correct 

parameters to the model before operation. This can be valuable for creating 

realistic model environments, but also the most difficult to apply when 

accompanied with ABM (Bianchi, Cirillo, Gallegati, & Vagliasindi, 2007). 

The majority of research uses descriptive output validation as a means for analysis. 

Navigation and ship performance efficiency often uses past data to conduct research for supply 

chain, environmental and other maritime queries. Perera et al. (2015) examines various vessels 

and environmental factors (wind speed, direction, engine power, shaft speed and fuel 
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consumption) to optimize trim configuration. Trim configuration has a direct impact on energy 

efficiency and with the available data, statistical analysis can compare minute changes. By 

analyzing past trends in weather and ship movement, optimizing route and more specifically 

trim position can increase fuel efficiency and improve logistics (Perera, Mo, & Kristjánsson, 

2015). 

Examples are less frequent but do exist using the other validation methods described by 

Tefatsion et al. 2006. For example, The Maritime Research Institute Netherlands (MARIN) used 

an existing simulation technology “Dolphin” and incorporated the ability to read AIS data. Using 

Dolphin and real data, researchers attempted to replicate traffic scenarios to test decision 

making processes of autonomous ships.  With a focus on risk assessment and collision 

avoidance, the findings are capable of contributing to the greater dynamic safety assessment 

model (Brake, Iperen, Looije, & Koldenhof, 2015). 

A recent example by Kanamoto et al. (2021) using predictive output validation, 

estimated the global trade flow pattern of dry bulk cargo using AIS data. Combining different 

data sources, the authors were able to forecast vessel type demand and trade volumes (of 

certain commodities).  Due to the variety of sources and amount of data needed, research of 

this nature would not be possible without big data analytics and AIS data(Kanamoto, Murong, 

Nakashima, & Shibasaki, 2020).  

Ali Akbar Safaei et al (2019) used AIS data from ships to create models that explored fuel 

consumption predictions.  The study used data from the Noon Report (NR) and AIS in its 

study.  The data characterizing four Very Large Crude Carriers (VLCC), was used to create a 

prediction model. The fuel consumption rate was determined by considering several factors, ship 
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displacement, ballast water and bunker, average daily sailing speed, trim and sea conditions 

(wind, wave and current) and cargo. The formula proposed: 

𝐹𝑐 =  1393 +  116.6𝑉𝑣 +  0.001𝐷𝑠 +  4.94𝑊𝑣    (1) 

Where Fc is fuel consumption (tons/day), Vv is ship velocity (k), Ds is ship displacement 

(metric tons), and Wv is Wave height (Beaufort scale). This formula predicted the fuel 

consumption of the vessels in various conditions and these predictions agreed with the recorded 

fuel consumption data. The researchers’ recommendations were that in future studies, nonlinear 

regression methods should be applied to increase accuracy of predictions (Safaei, Ghassemi, & 

Ghiasi, 2019). 

Nefarious activities, such as the smuggling of illegal cargo such as drugs, human 

trafficking, and piracy is an age-old problem that international organizations and national security 

organizations are concerned with tracking, preventing, and ending. Piracy activity in particular 

costs the shipping industry billions of dollars in losses. In 2008 pirate activity led to a loss of 16 

billion dollars (Jakob, Vanĕk, & Pĕchouček, 2011; O. H. Ondrej Vanek, Michal Jakob, Michal 

Pechoucek, 2011).   

A recent study utilizing Agent-Based traffic management techniques by a team of 

engineers at the Czech Technical University in Prague tackled the problem of Pirate attacks on 

vessels in the Gulf of Aden (Michal Jakob, 2012). The team combined agent-based modelling 

methods and simulation of maritime traffic and novel route planning and scheduling algorithms. 

An ABM called Agent-C: Agent-based System for Securing Maritime Transit was developed to 
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anticipate the movements of modern maritime pirates in relation to international shipping 

routes. The Agent-C model focuses on three types of behaviours, patrolling, shipping, and piracy. 

The shipping aspect of the program tracked the routes that vessels use to transport cargo 

between multiple locations.  This aspect is relatively straightforward and is programmed to 

choose pre-existing routes that are most efficient in both time and cost (fuel consumption), 

however, factoring in security of the passage significantly increases complexity. 

Piracy behaviour preys on the reliable and predictable nature of shipping routes, and 

therefore choosing routes that only factor in efficiency of time and fuel create route paths that 

are more likely to be targeted by pirate ships. Pirate vessels discover, approach, and attack other 

small to medium size vessels.  They then hijack the vessels and escort it to pirate bases.  Pirate 

operations have varying levels of technology at their disposal, from basic roaming the area for 

victims to employing radars, AIS data monitoring, and mothership gangs that work in unison 

(Michal Jakob, 2012). Agent-C included patrolling behaviour in their modelling simulation, 

currently utilized by various security forces.  Security vessels patrol pirate infested waters to 

discourage and halt piracy behaviours. Patrolling is one of the most effective deterrents of piracy 

behaviours. 

The results of programming shipping, piracy, and patrolling into a single ABM created an 

incredibly complex system (Jakob et al., 2011; Michal Jakob, 2012; M. J. Ondrej Vanek, Michal 

Pechoucek, 2013; O. H. Ondrej Vanek, Michal Jakob, Michal Pechoucek, 2011; O. H. Ondrej 

Vanek, Michal Pechoucek, 2014; Vanek, 2013; Vaněk, Jakob, Hrstka, & Pěchouček, 2013). The 

systems created were so complex that arriving at a clear solution was determined to be infeasible 
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due to the large number of vessels involved and the complexity of their relationships with their 

scheduling and route paths.   

Three recommendations were made based on the results of the simulations.  Ideally all 

three recommendations would be implemented together for the best possible results to improve 

maritime security.  Employing transit routes and patrolling patterns that can minimize the 

likelihood of attack.  The ABM was able to simulate these possibilities by maximizing utility and 

minimizing the importance of risk and time.  The simulations that employed stochasticity into the 

routes experienced a twofold drop in attack rate.  

The Agent-C model ended up modelling significant complexity between ships, pirates, 

patrols, and their environment leading to a very computationally demanding model.  Finding the 

optimum patrolling policy was not straightforward and designing the optimal routing policy to 

ensure security was not feasible.  Agent based techniques deployed in the Agent-C experiments 

demonstrated potential for improving maritime security, although also revealed the challenges 

and limits of overly complex simulations in a real-world setting. 

1.6. Agent Based Modelling Challenges 

The application of ABM provides a useful tool for researchers but is not without its own 

set of challenges.  Anticipating whether a model is suited to a particular theory or application, in 

advance, can be difficult and at times impossible.  In ABM the outcomes of interactions are 

inherently unpredictable.  Identifying how programming directly affects emergent model 

behaviour is challenging due to the complex and open-ended nature (Railsback, Lytinen, & 

Jackson, 2006).  
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Replicating scientific research is pertinent in all fields of study. The more instances where 

a model can be replicated indicates a greater ability to inform our understanding of the 

phenomenon.  By studying independent situations and repeating analysis with different software 

and programming, researchers can ensure repeatability.  However, ABM may be hard to replicate 

using different software and programming languages. Due to the nature of ABMs, issues with 

transparency can make it hard to explain and replicate results (Kagho et al., 2020). Detailed 

information regarding commands and primitives are often not available to consumers (Hong 

Zheng, 2013). Without knowing how certain functions operate at a detailed level, it may be hard 

to reimplement coding from one language to another.  

Many ABMs aim to simulate a real-world problem where plentiful data sources can be 

used to validate and calibrate results. Using a good, representative dataset is needed to provide 

useful and accurate information for model production and analysis.  Validation identifies to what 

extent the model represents the system being studied.  The validity of a model should not be 

treated as a binary event but rather involve a goodness of fit test to examine how well it answers 

the research question (Crooks, Castle, & Batty, 2008).  Calibration involves adjusting key model 

parameters to reflect the behaviour of a real system more closely (M. J. Ondrej Vanek, Michal 

Pechoucek, 2013).  This is related to validation as adjusting model parameters relies on 

identifying the goodness of fit.  Validation and calibration are crucial in the development of any 

effective model but are only possible where data already exists and can be gathered.  

The goal of agent-based modeling is to create simulations that hopefully produce 

outcomes useful to researchers. Developing model simulation environments from scratch was 
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once necessary to study agent-based modeling applications. This is effective as it allows 

developers access to all minute details of computation. However, it can be difficult to generalize 

models to other situations. The development of agent-based modelling toolkits such as Repast, 

Swarm and Netlogo provide an excellent environment for implementing geo-spatial ABMs. They 

help researchers focus on the construction of models without having to also build the 

fundamental tools and building blocks required to produce computer simulation (Railsback et al., 

2006).  

GIS is a pertinent tool in analyzing input and output of a geo-spatial nature. They are not 

developed with dynamic modelling such as ABM as their primary concern (Maguire, 2005), 

however, linking GIS software and ABMs is important to facilitate analysis of simulations and take 

advantage of the strengths of both software types. Modern toolkits provide options to output 

data and communicate directly to GIS software platforms. For example, Netlogo has a GIS 

extension, that contains commands providing external functions necessary for combining GIS 

analysis.  

1.7. Path Finding Algorithms 

  Path finding algorithms exist as a method to search nodes in a weighted graph and find 

the shortest path. This is accomplished by using a starting node and selecting new nodes until a 

desired destination is reached. In graph theory, the shortest path problem is defined as finding a 

path between two vertices such that the sums of the weights of path edges is minimized 

(Mathew, 2015).  The 2 objectives of path finding algorithms are; successfully finding a path 
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between two nodes and, choosing the route with the smallest cost(Delling, Sanders, Schultes, & 

Wagner, 2009).   

Basic algorithms such as breadth-first (BFS) and depth-first search (DFS) will calculate and 

explore all possible solutions. BFS involves an iterative loop over a queue of vertices computing 

the cost from the given source vertex to all other reachable vertices in a layered fashion 

(Holdsworth, 1999). The algorithm will visit, check and or update all un-visited nodes in a tree-

like structure.  Figure 1.2 is an example of BFS traversing through a series of nodes layer by layer. 

 

Figure 1.2: BFS search algorithm queue order (Garg, 2022). 
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A graph G is typically represented as G = (V, E) where V are vertices and E are edges. In 

BFS, the edges of G connected to a source node are traversed computing the distance to all 

reachable vertices. This process repeats iteratively until the final node has been located, when 

the search will stop and the path with the shortest cost is determined.  The BFS approach is often 

used as a building block for other algorithms as it has low computational intensity but can result 

in low overall performance when compared to other algorithms (Beamer, Asanovic, & Patterson, 

2012). Optimized algorithms such as Djikstra’s and A* are more efficient as they ignore previously 

examined nodes and will only choose nodes with the lowest value, eliminating less optimal paths 

once the entire graph has been calculated (Rachmawati & Gustin, 2020). Figure 1.3 provides 

graphical representation of both algorithms in the presence of an obstacle.  

 

Figure 1.3: Graphical representation of BFS and A* search algorithm in the presence of an 

obstacle.  Yellow line represents the chosen path, light blue is the search area and dark blue is an 

obstacle (Mihailescu, 2019). 

Breadth First Search 

(BFS) 

A* 

Search 
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 A* path finding algorithm is a variant of Djikstra’s algorithm that includes heuristics. 

Heuristics is defined as a rule (or set of rules) intended to increase the probability of solving some 

problem. In the case of A* the heuristic determines the approximate distance to the destination 

as  the minimum possible distance between the node and the end (Mathew, 2015). This enables 

the algorithm to eliminate longer paths once it determines the initial path.   Figure 1.4 gives a 

visual representation using a network of nodes to show how the A* algorithm works.   

 

Figure 1.4: A* path finding example. Where node 0 (green) is the starting node, and node 19 
(blue) is the destination. Red nodes represent the path selected according to the A* algorithm. 
Gray nodes represent an obstacle.(Swift, 2020) 

 

A* is calculated using the formula f = g + h, where f is the total cost of each node, g is the 

distance from the current node and start node, and h is the heuristic, in this case is the estimated 

Euclidean distance from the current node to the end node.  There are three main forms of 

distance heuristics: Euclidean, diagonal shortcut, and Manhattan. Manhattan distance is the 
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standard heuristic used with a square grid, as it only allows for movement in cardinal directions 

(4 directions). Diagonal shortcut can be applied when the grid allows for movement in 8 

directions.  Euclidean distance allows for movement at any angle regardless of grid directions - 

providing straight line distance between points. Because of this, Euclidean distance is always 

shorter than Manhattan or diagonal distance.   Euclidean distance is calculated as follows: 

𝑑𝑒𝑢𝑐 = √(𝑥𝑝𝑎𝑡ℎ − 𝑥𝑔𝑜𝑎𝑙)
2 − (𝑦𝑝𝑎𝑡ℎ − 𝑦𝑔𝑜𝑎𝑙)

2    (2) 

where (xpath, ypath) are the coordinates of the current node and (xgoal, ygoal) are the coordinates of 

the goal. In this heuristic the distance between 2 points is a straight line. This is a simple approach 

to calculating heuristics but more computationally expensive (Leigh, Louis, & Miles, 2007) than 

other heuristics.  
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1.8. Research Objectives 

The objectives of this research are as follows. 

1. Explore potential path finding algorithms to use in a maritime ship routing scenario.   

2. Discover how ABM can be used to simulate maritime ship routing by developing a 

modified path finding algorithm to suit a maritime ship routing scenario.  

3. Evaluate different scenarios of model parameters and data cleaning/preparation to 

determine what modifications provide the best representation of ship behaviours 

observed in AIS data. 

4. Identify future model functions and research directions to address key issues for 

maritime routing in the context of global-scale S-AIS based data.  
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2. Methods  

2.1. Model Objectives 

The overall aim of modelling was to recreate vessel movement at port or in hard to 

navigate waterways by combining spatially explicit AIS and bathymetric data in an ABM 

environment. By modifying the BFS path-finding algorithm to suit a maritime example, simulation 

results attempt to replicate in situ route selection.  Modification will identify boundaries where 

ground and water deep enough for cargo vessels meet based on bathymetry data.  

Various path finding algorithms were tested in early model development. Informed 

algorithms such as A* provided more efficient path finding, determining the shortest path using 

single start and end points faster than uninformed search algorithms like BFS. However, they do 

not provide the specific needs for algorithm modification and maritime simulation. To replicate 

realistic shipping routes the algorithm should not prioritize finding the optimal path, but instead 

modify the selected path to resemble the route taken by shipping vessels in the same region. 

Furthermore, A* will not calculate shortest path values for all nodes in the waterway, potentially 

failing to identify ground boundaries necessary for algorithm modification. The MSRM allows for 

ships to visit many anchors before a final destination, replicating the various anchors maritime 

shipping vessels may encounter before reaching port. With BFS each anchor can act as the new 

start point as the cell it occupies contains shortest path values for all other anchors and ports.  

Without a search algorithm that exhausts all cells in the network, path finding values for anchors 

at any location would not be possible. This also allows hundreds of ships to be added at any 

location in the network without having to calculate shortest path values as each start cell already 

obtains BFS values for all anchors and ports.  
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GIS techniques via NetLogo extensions and QGIS are utilized to analyze and visualize 

simulation results and compare them to the AIS dataset of the same region.  Using large datasets 

as a basis for verification of model results is an effective and relatively new phenomenon (Kavak, 

Padilla, Lynch, & Diallo, 2018). AIS data set with hundreds of thousands of signals collected in 

2012 are used to verify model results. The modular architecture of the model aims to be useful 

for implementing additional simulation criteria such as ship-to-ship interaction, port/anchorage 

procedures, and fuel consumption analysis.   

2.2. Data and Software 

2.2.1. What is AIS data?  

 Automatic Identification System (AIS) is a form of communication used by maritime 

vessels to broadcast and receive information regarding ship identity and location. Sharing 

information between ships and land-based receivers that govern maritime traffic is pertinent for 

recording ship activity and to ensure safety. A ship’s AIS transponder (the device that sends and 

receives signals) uses a very high frequency (VHF) RF transmitter to broadcast important 

information to receiver devices on other ships or land-based receivers. The information includes 

positional data displayed on radars along with ship details and metadata. Positional data also 

includes the course, rate of turn and speed of a ship. Secondary data or metadata will include 

information such as destination, ETA, type of vessel, ship contents and name. AIS transponders 

integrate a standardized VHF transponder with a positioning system, such as a long-range 

navigation system or global positioning system (GPS) receiver, with other electronic navigation 

sensors, such as a gyrocompass (Smith, O’Keeffe, Aldous, & Agnolucci, 2013). By maintaining a 
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standard protocol for communication internationally, vessels can maintain communication 

across national borders.   

2.2.2. Regulations and Procedures 

In 2004, the International Maritime Organization (IMO) implemented laws regarding the 

mandatory use of AIS transponders aboard most vessels. The Safety of Life at Sea (SOLAS) 

Convention, Chapter V, states: “All ships of 300 gross tonnage and upwards engaged on 

international voyages and cargo ships of 500 gross tonnage and upwards not engaged on 

international voyages and passenger ships irrespective of size shall be fitted with an automatic 

identification system (AIS).” 

AIS devices do not send constant signals regarding position; instead, signals are sent at 

specified intervals. By automatically sending messages, ships can ensure safe course and avoid 

collision without the need to see other vessels. AIS communication is based on time division 

multiple access (TDMA) systems. TDMA is a channel access method used in networks. With 

multiple devices communicating on the same channel, TDMA allows for devices to use time slots 

and share the same transmission medium (e.g., radio frequency channel). Self-organizing TDMA 

(SOTDMA) is the system responsible for maintaining order when transmitting signals between 

devices. With SOTDMA, devices must declare what time slots they will use when transmitting 

signals to avoid interference. This allows AIS devices to organize communications to optimize 

efficiency. Depending on where the vessel is located and the speed of travel, the SOTDMA 

protocol will adjust the time interval. Time slots can vary from less than 3 seconds, when vessels 
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are traveling fast or changing course, to 3 minutes, when they are at anchor. Figure 2.1 depicts 

the use of time slots.  

 

Figure 2.1: SOTDMA protocol for reporting timeslots. Variable timeslots exist depending 
on the ships sped and where it is going. (Ball, 2013) 

 

Multiple classes of AIS devices exist and vary based on the vessel's requirements. For this 

research, all data is limited to Class A vessels. Class A vessels are 300 gross tonnage and upwards, 

and engaged on international voyages (Ball, 2013). Almost all cargo ships travelling across 

international waters fall under the IMO’s regulations regarding mandatory use of Class A AIS 

devices.  



32 
 

AIS data is limited to approximately 50 nautical miles due to the curvature of the earth. 

Satellite-based Automatic Identification System (SAIS) solves this issue by using satellites to 

receive and transmit AIS signals. Moreover, it allows for the collection of data from many vessels 

across large distances. This is useful for big data applications as messages from thousands of 

vessels can be sensed by one satellite, thereby being more cost effective and greatly improving 

the monitoring of vessel traffic patterns and identification of potential threats (Ball, 2013).      

2.2.3. Study Region 
 The dataset used in this research was centered on the eastern side of the north Pacific 

Ocean. The Port Metro Vancouver (PMV) was selected as the research area for model 

development and evaluation. Port Metro Vancouver is the largest Canadian port by tonnage 

and the fourth largest in North America. Cargo ships proved ideal for analysis as the majority of 

traffic is shipping-related and fall under IMO regulations (19 of SOLAS Chapter V: mandatory AIS 

devices on all large shipping vessels and all commercial passenger vessels). On January 1, 2008, 

the Fraser River Port Authority, North Fraser Port Authority and Vancouver Port Authority 

combined to become Port Metro Vancouver. Positioned on the Southwest coast of British 

Columbia, PMV covers more than 600 kilometres of shoreline and extends from Point Roberts 

at the Canada/U.S. border eastward to the Fraser Valley and includes the North and middle 

arms of the Fraser River. Bordering 16 municipalities, PMV works with elected officials, city 

staff, residents, and businesses to balance the needs of the shipping and tourism industries and 

local communities. The Port is committed to sustainable operations and development and 

mindful of economic, social, and environmental impacts (Port Metro Reference Guide, 2016). 



33 
 

2.3. ABM Software 
The use of Agent-Based Modeling (ABM) as a form of research has been growing in 

several fields. As a result, many ABM toolkits have been developed for a variety of applications. 

While each toolkit has a variety of characteristics, there is a common set of criteria they all 

follow. Serenko and Deltor (2003) provide a summary as to why ABMs toolkits are useful:  

• provide abstractions in which programmers can build from  

• incorporate features of visual programming, which saves time and makes 

development easier, more attractive, and enjoyable 

• offer run-time testing and debugging environments 

• allow programmers to reuse classes (definition of objects) created by libraries or 

other programmers (Serenko & Detlor, 2003). 

Several toolkits are popular amongst researchers. Toolkits can be categorized into two 

main categories, the first of which follows the “framework and library” model. Examples 

include AnyLogic, Ascape, MASON, Swarm and Repast. This category of software is built with a 

set of standard concepts for designing ABMs along with a library of simulation tools used for 

modelling. This differs from the Logo family of models, most notably NetLogo. This group of 

software aims to provide a high-level platform that allows for a wider range of 

applications. NetLogo was designed for simple and rapid model development, but has, over 

time, developed into a sophisticated modelling platform with many capabilities that the 

framework and library models also contain (Railsback et al., 2006).  
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2.3.1. NetLogo Overview 

NetLogo is a free and open-source ABM programming language and integrated 

modeling environment. Authored by Uri Wilensky in 1999, it has been in continuous 

development at the Center for Connected Learning and Computer-Based Modeling at 

Northwestern University (Hong Zheng, 2013). It is designed for both education and research 

and is used across a wide range of disciplines. NetLogo runs on the Java virtual machine; thus, it 

works on all major platforms (Mac, Windows, and Linux) and runs as a standalone application, 

or from the command line. NetLogo also provides a classroom participatory-simulation tool 

called HubNet. Models and HubNet activities can be executed as Java applets in a Web 

browser.  NetLogo was modelled on the Logo programming language and aimed to have a low 

threshold to entry requiring less programming knowledge. Although the primary purpose of 

NetLogo has been to provide a high-level platform allowing users to build and learn from simple 

agent-based models, it now contains many sophisticated capabilities. 

  Railsback et al. (2006) commented that NetLogo is suitable for developing models that 

are compatible with its paradigm of short-term, local interaction of agents and a grid 

environment, and not extremely complex. It is even recommended for developing prototyping 

models that may be implemented later by using lower-level platforms; starting to build a model 

in NetLogo can be a quick and thorough way to explore design decisions. Its intermediate 

execution speed may not be a significant limitation for many applications, especially compared 

with the potential reduction of programming time. On one hand, with its heritage as an 

educational tool, NetLogo stands out for its ease of use and excellent documentation. On the 

other hand, its simplified programming environment restricts experienced programmers when 
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making a detailed or large-scale model. For instance, it requires having all code in one file and 

enforces less organizational discipline than is required in Java or Objective-C and thus can be 

cumbersome for large models. 

 NetLogo is built around the environment interface and the code section. The code 

section is one area where users can program their models in addition to a command center 

dialog box present on the environment interface. The environment interface includes most 

importantly the "world" box or a 2d space divided into a grid of patches. The environment 

interface is also where users can add a variety of built in "buttons" or inputs where variables 

can be defined, represented, or adjusted for use in the simulation. The world box is populated 

with different agents than can follow a variety of instructions. 

 In NetLogo there are four types of agents: turtles, patches, links, and the observer. In 

relation to CA, turtles represent mobile CA cells, patches are CA cells, links are aggregated to 

the CA cells (turtles or patches), and the observer acts as an all knowing “god” that can dictate 

behaviours and report on CA states.  Each patch agent is a square cell in the world box that 

bears unique coordinates. The patch at coordinates (0, 0) is called the origin and the 

coordinates of the other patches are the horizontal and vertical distances from this one (i.e., a 

local planar coordinate system) with coordinates denoted pxcor and pycor.  

The world of patches can be unbounded and allow turtles to move past the edge of the 

world and appear on the opposite edge (i.e., similar to a plane mapped onto a torus).  Turtles 

are agents capable of moving around the grid of patches. Turtles also have coordinates which 

represent the patch they inhabit. Turtles have a unique identifier called "who" which allows 
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them to identify themselves or other turtles in the simulation.  Links are agents that connect 

two or more turtles. The observer is the final agent; however, this agent does not occupy any 

space on the world. Instead, the observer gives instructions to other agents or communicates 

directly with the command center serving as an output for various information. 

When NetLogo starts up there are no turtles, the observer can create turtles or patches 

can "hatch" their own turtles. With the use of commands and reports the user can tell agents 

what to do.  Commands are actions for the agents and reporters carry out some operation and 

report a result to a command or another reporter.  Commands and reports built into NetLogo 

are called primitives. There are hundreds of primitives used to carry out a variety of functions. 

NetLogo also offers extensions that are created by the NetLogo team or members of the 

NetLogo community. These extensions contain their own list of primitives that can be useful for 

accomplishing tasks that the built-in set of primitives fail to cover. Commands and reports that 

are user defined are called procedures.  

2.3.2. Variables 

Agent variables are places to store values. Each agent type has its own variable 

class.  With a global variable there is only one value to the variable and all agents can access 

this value. An example of a global variable would be something used in many parts of the 

program such as time.  All other agentypes (turtles, patches, and links) differ as each agent has 

its own unique value.  For example, every patch has coordinates that are different from one 

another.  Some variables are built into NetLogo for instance all patches have a x and y 

coordinate, a color value, a label, and a label color. All turtles have a who value (identifier), 
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color, heading, x and y coordinate, shape, label, and label color.   There can be many different 

types of turtles in a given model. The user can define each type of turtle by creating a different 

breed. The breeds are defined using the breeds keyword, at the top of your model, before any 

procedures.   Each breed can have "breeds-own" variables which are unique user defined 

variables that are only common to that specific breed. Using the "set" and "let" commands the 

user can define specific variables. Set is a global variable and is applied and stored not only in 

the procedure it belongs to but for the entirety of the model. "Let" is for local variables and 

used only in the context of a particular procedure or part of a procedure. If the user applies let 

at the top of a procedure, the variable will exist throughout the procedure. If you use it inside a 

set of square brackets, then it will exist only inside those brackets. 

  Besides breeds, an agentset is a set of agents the user can isolate to perform a specific 

task.  Agentsets can contain any kind of agent but no more than one type (turtle or patch, not 

both).  The user can construct agentsets that contain only some turtles or some patches. For 

example, all the red turtles, or only the patches with an x coordinate equal to one. 

2.3.3. Ask & Context 

NetLogo uses the "ask" command to give commands to turtles, patches and links.  When 

using the ask command, all code that is asked of the specific agent must be in the correct 

context. Context is set in one of three ways; With a button, by choosing the agent type from the 

popup menu, in the command center by choosing the agent type from the menu, or by 

following the ask command with the name of the agent the user wishes the procedure to be 

applied to.  
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2.3.4. Tick Counter 

In NetLogo models, time passes in discrete steps, called "ticks".   The built-in tick 

counter (location) is above the world box and keeps track of how many ticks have 

passed.  Using the tick command, the user can identify when the tick counter will increase 

according to a certain action in the code. For example, increase the tick by 1 every time "x" 

turtles move.  You can also reset the ticks when necessary, using the reset-ticks command.  

2.3.5. Lists 

In the simplest models, each variable holds only one piece of information, usually a 

number or a string. Lists let the user store multiple pieces of information in a single value by 

collecting that information in a list. Each value in the list can be any type of value: a number, or 

a string, an agent or agentset, or even another list.  Lists allow for the convenient packaging of 

information in NetLogo. If agents carry out a repetitive calculation on multiple variables, it 

might be easier to have a list variable, instead of multiple number variables. Several primitives 

simplify the process of performing the same computation on each value in a list. 

2.4. Model Description 

2.4.1. Setup 

Loading extensions and setting global- and turtle-specific variables are the first steps in 

creating a model in NetLogo. Extensions allow NetLogo to load user-created commands that can 

be written in Java or other languages. Users can create their own extensions or find extensions 

created by NetLogo or members of the NetLogo community. These extensions provide a variety 

of new functions not included in the default set of NetLogo primitives. Many users import 

extension libraries for abilities that do not exist in NetLogo or to provide better performance 
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when accomplishing specific tasks. The MSRM requires the use of the GIS extension for loading 

raster imagery, applying elevation values and exporting appropriate files.  

The next step is "breeding" the different kinds of agents. Each breed has its own set of 

variables that behave in different ways.  

2.4.1.1. Borders 

 Borders represent any patch in the model with elevation less than 0 and a neighboring patch 

with elevation greater than 0. This breed is used to populate areas of the map where water 

borders land and is useful when creating a threshold for ships when trying to av oid land during 

route selection. With the ability to locate border patches, the cost of patches within a certain 

distance of the “border” can be increased efficiently and can ultimately alter the path selection 

to avoid unrealistic trajectories.  

2.4.1.2. Waypoints 

Waypoints are the agents created to represent the starting point for all ships in the 

simulation. They will “hatch” vessels in the model. Hatch is a primitive in NetLogo used to instruct 

a specific patch or agent to create a turtle (agent). Waypoints also contain information that will 

be given to any ships they hatch. This includes the speed of the ship and the fuel variables. 

Waypoints are created in two ways: 1) through the ship-source input on the environment 

interface (Figure 2.2 -Netlogo interface (see red dot 1)), which is executed by the import-

elements function in the draw-map procedures, or 2) by using the place-item button on the 

environment interface (Figure 2.2 -Netlogo Interface (see red dot 2)). 
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Figure 2.2: Netlogo interface with icons indicating functions of interest. 

2.4.1.3. Ships 

 Ships is the agent responsible for traveling the list of patches from source to destinations and 

creating footprints along the way. Ships contain all the information used in path finding and some 

initial variables set by their waypoint or starting location.  Some of the path finding variables 

include the current patch, the previously visited patch, the time interval, and the total time. Some 

of these variables are Boolean and only used to identify states of the ship (reached destination 

etc.), while some are variables responsible for correct movement. For example, with multiple 
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anchorages and ports, each patch will obtain a separate value for its cost associated to each 

destination. The ship will have information on its destination (or current layer) and will choose 

the correct path for each destination. Since the ship can have multiple destinations, once it has 

arrived at its first destination, it will select a new destination along with the layer or cost for all 

the patches associated with the new destination. Ships are also responsible for creating 

footprints every time it reaches a new patch. This is necessary for exporting the data and to have 

a permanent history of the ship’s movement and variables.  

2.4.1.4. Anchorages 

Anchorages are the destinations in the model. There can be many anchorages on the path of a 

given ship. The final anchorage of the model is known as the port. Once the ship reaches the port, 

the simulation is over. There can be many ports and anchorages, each created in the same fashion 

as waypoints – that is, using either the input (ports-file, anchorages-file) or place-item button on 

the environment interface. Anchorages include information on the wait time and wait list. As the 

ships arrive to anchorage, they will occupy a spot on the list (i.e., the first ship occupies spot one 

and so on) and depending on the wait time dictated by the port, it will hold the ship until the wait 

time has expired. This is to ensure an orderly progression when entering port and is crucial for 

experimenting with anchorage wait times.   

2.4.1.5. Banners 

Banners are the function required to place labels on the waypoints while being able to control 

the banners  location, size, and style. The banner acts as an agent that is linked to a chosen 

anchorage. This agent is invisible but contains a label allowing it to be at any angle or distance 
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relative to the agent. This allows for more flexibility when creating labels based on the scale of 

the map and the size of the waypoint. You can create a separation from the destination and place 

the label at any angle, which allows the user to view the model without obstruction.  

2.4.1.6. Footprints 

Footprints represent the path a ship has taken to reach the destination. They are created once a 

ship has reached a new patch. Footprints store all the relevant ship data including ID, time, 

heading, speed, and fuel consumption. The footprints are useful for multiple purposes - they act 

as the dataset that is exported as a point shapefile and can be analyzed elsewhere and they 

provide a history of all the locations the ship has previously traveled. This is crucial when telling 

ships not to return to their previous location and plays a crucial role in the move function.  

2.4.2. Draw Map 

After initializing the variables in the model, the patches are given elevation values and the 

map is rendered. ‘Elev’ is the name given to the elevation value of each patch in the model. This 

value is drawn from the UTM raster file that is loaded as a data source with the GIS extension. A 

variable called elevation is given to the data series in the file and the world envelope is set to 

“elevation”. This copies values from the given raster dataset to the given patch variable, 

resampling the raster as necessary so that its cell boundaries match with NetLogo patch 

boundaries. Applying color to the map greatly increases the visual appeal and makes the 

simulations easier to interpret. By setting a scaled color for blue below sea level and green above 

sea level, the model begins to resemble a map. This section includes the code for importing the 
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model elements (import-elements). This is where data from the input buttons on the 

environment interface are loaded into the model.  

2.4.3. Create 

The create section is for placing all the agents on the map and initializing the variables. It 

includes the code for placing and modifying the ship and anchorages. 

2.4.3.1. Place-Item Button 

 Once selected, the user can place a point on the map by clicking on any location in the 

"world" with the cursor. The place-item button is set as a forever function, which allows the 

command to run its code repeatedly. This is necessary as a "once button" only applies the code 

once and stops. This does not allow the user to select a point on the map because once the button 

is selected, the command is applied, making it impossible to simultaneously select a point on the 

map. With a forever function, it repeats the code until it is told to stop, giving the user as much 

time as needed to select a location. One downfall, however, is that if the mouse button is held 

down, many waypoints will be created on any patch the cursor is on. To prevent the creation of 

multiple unwanted waypoints, the place-item function stops after it has created one item, 

allowing the user to select the button again and place another item. Due to the order of 

operations in the model, the waypoints can be created after calculating the cost for all patches. 

Furthermore, since the cost for each patch is already stored, an infinite amount of waypoints can 

be created without much of an increase in computational time. The options for placing an item 

include an anchorage, port, ship and an obstacle. Obstacles are unique as they must be added 

before other objects as they change the BFS values during the path finding section of the model. 
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Obstacles act as an “unreachable” node and are crucial to ensure the algorithm can navigate 

waterways with a variety of obstacle shapes, sizes, and positioning. 

2.4.3.2. Modify-Item Button 

The modify button is used to change certain variables of the ship or port without having to reset 

the simulation. This is useful for adjusting the speed and fuel parameters of the ship, allowing 

the user to output many model iterations with changes in speed and fuel consumption but with 

the same path finding variables. This saves time and allows the user to compare changes in speed 

and wait times.  

2.4.4. Path Finding 
The path finding section uses a modified BFS path finding algorithm to calculate the 

shortest path with obstacles. Figure 2.3 provides a diagram describing the broad functionality of 

the MSRM. 
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Figure 2.3: MSRM concept map. Including all input parameters and various outcomes. 
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The BFS algorithm provides a basis for determining the shortest path in the MSRM; 

however, in the presence of obstacles, modification is necessary. When ships are travelling at 

sea, many obstacles such as islands or ground must be avoided for safe travel. With the BF 

algorithm, obstacles are recognized but the path selected will always choose nodes with the 

smallest cost, and these nodes will be adjacent to the obstacle. This is visible in Figure 1.3 

graphical representation of BFS and A* search algorithm.  For maritime traffic simulation, this 

representation is not accurate as ships will avoid obstacles with caution and adjust their 

trajectories accordingly to maximize efficiency while safely avoiding any obstacle.  By identifying 

the obstacle boundaries using the border agent initialized in the setup section, modification to 

the algorithm can be applied to replicate maritime traffic more realistically. This modification will 

essentially change the cost of nodes surrounding obstacles using several of the inputs on the 

interface tab. These include Min-depth, the minimum elevation required for a given node to be 

considered an obstacle, Land-Prox (LP), the distance in nodes from the obstacle or border that 

will be affected by the cost modification, and Land-Prox-Weight (LPW), the value used to multiply 

the cost of any nodes that fall under the LP distance.  

The BFS path finding algorithm typically begins calculating values from the start of the 

path. In the MSRM simulation, the algorithm calculates values from the destination. Each 

anchorage in the model can be used as a destination and calculates its own shortest path values. 

By using the anchorages as the starting points in the path finding algorithm, all nodes in the map 

will acquire values corresponding to each destination. These values will act as a list when a ship 

is selecting its path to a given anchorage. By using the destination as the starting point for the 

simulation, it allows for ships to be added at any location on the map without requiring a new 
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path finding algorithm to be executed as each cell in the waterway contains BFS values pertaining 

to all other anchors or ports. This allows for many ships to be added to the simulation without 

additional processing. Calculating path finding values is the most time consuming and 

computationally demanding process of the model. By starting from the destination, it avoids 

having to calculate path values when a new ship is added to the simulation, allowing the user to 

test many simulation scenarios without increasing the execution time required to determine 

shortest path. 

The path finding section begins by asking each of the destination agents (anchorage or 

port) to execute the ‘find-shortest-path-to-ships’ function. This is initialized by identifying the 

patch it inhabits and determining if it is on land (true or false) and whether it is “reachable”. 

Reachable is a variable used for patches that may not be on land but whose elevation is greater 

than the min-depth value. The next operation is the ‘calculate-costs’ command that starts by 

creating a list for the nodes in the map. Each list entry is increased by adding the value of either 

1 or 1.4142 each time the operation is executed. If the node occupies a space that is vertical or 

horizontal from the last node, it will add a value of 1. If the node is diagonal, it will add a value of 

1.4142 because the length of the diagonal distance of a square is √2 or approximately 1.4142. 

Since a ship can travel diagonally, the values must accurately represent the difference is distance. 

These nodes are colored grey for the duration of the path finding algorithm to help visualize the 

procedure.   

Recalculate cost is the function that modifies the A* algorithm by recalculating the cost 

of any node that is within the predetermined distance to land (LP) and increases the value.  This 
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function asks any node that is not land and is adjacent to a border patch to be selected if they 

are within the distance determined in the LP input on the interface. These nodes are colored red 

- not only to help visualize the pathfinding portion of the simulation, but also as a way of 

identifying the difference between patches that do not fall within the LP boundary (grey 

nodes).  The red nodes have their cost altered according to the following formula  

𝑅𝑒𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝐶𝑜𝑠𝑡 =  𝐶𝑜𝑠𝑡 +  (𝐿𝑃𝑊 ∗ (𝐿𝑃 −  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡𝑜_𝑙𝑎𝑛𝑑) /𝐿𝑃))  (3) 

Distance-to-land is the minimum distance to the closest border patch (in cells). By 

subtracting the distance-to-land from the LP value and dividing the sum by the same LP value, 

cells further from the border will have their cost adjusted less than cells closer to border agents 

when multiplied by the LPW. At distances beyond the desired LP the maximum value is 

subtracted from the shortest path scores. Without this formula, all patches within the LP will 

have the same cost increase. This is crucial for BFS modification to produce as realistic shipping 

routes as possible. Furthermore, when the LP is large enough to affect many or all cells in a given 

waterway, this modification will ensure the path created will still prioritize avoiding obstacles. 

These operations are executed for each new patch on the map using the expand border function 

to continue selecting new nodes.   

The final operation used for path finding is the ‘find-exit’ function. The ‘find-exit’ function 

is used to further recalculate values for any node that has been colored red. This procedure is  

very important for proper functionality of the simulation. After the recalculate cost function, path 

finding values for the red nodes are much larger than the nodes that are not recalculated. This 

can create a scenario where a ship can get “stuck” and fail to reach the destination. When a ship 
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is selecting the next node in a path, it chooses a neighbouring node that is reachable with the 

smallest cost.  Since the recalculate cost function increases the values for certain nodes, it will 

change the original path finding values and many nodes closer to the destination may no longer 

possess the smallest cost of all adjacent neighbours. A neighbor that is farther away from the 

destination may have a lower cost because it is not increased by the recalculate cost function as 

much or at all. In this scenario, the ship will fail to reach the destination and repeatedly visit the 

nodes with smaller costs around the destination and the simulation will continue to run until the 

user is forced to stop the program. The ‘find-exit’ function starts from the destination and will 

only change the cost of nodes that are red, stopping once it has reached a node that is grey 

(outside the land boundary). It will change the color of the node to green to make sure it does 

not select any of the previously used nodes and so that it finds a correct path to open water (grey 

nodes). Since it uses the color of the node to verify if a node can be used as the next selection 

from the list, changing the color of the node in the ‘find-exit’ function is an easy way to identify 

whether nodes have been used in the past, preventing the ship from failing to find an exit.  

 

2.4.5. Movement 

All potential destinations have populated lists for path finding values and the ship agents 

are ready to use the data for movement. This part of the model includes all the functions required 

for the ships to move from any node on the map to the destination. This part of the model is 

recursive, similar to the path finding algorithm functions. However, the tick counter is now 

utilized to determine how many iterations of code have been processed. This is the first line of 

code and will count every time the ship moves. The ticks are used as a time and total time 
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function in the model as one tick is set to the time-interval (in seconds) input on the interface. 

This means that for each second of “real time”, the ship will execute one iteration of the move 

function. This is done by using the scale of the map and changing the distance the ship travels in 

each tick or iteration of the code. By determining the speed of the ship in knots (selected with 

the input dialogue box when creating a ship), the distance the ship travels will change based on 

the time interval in order to create real time in the model. The move section outputs to the 

command center with the speed in knots and the distance the ship will travel in the time interval 

in ticks. This is useful for troubleshooting and ensuring the ship distance is correctly calculated 

for all ships in the simulation.  This is also verified outside of NetLogo to ensure accuracy. The 

move function includes the creation of footprints. Footprints are agents that are created along 

the path the ship takes. Due to the modularity of the time interval and the variable speed 

(velocity), the ships can move a small fraction of a patch during one tick of the simulation. To 

avoid the ship from creating a footprint every time it moves such a small distance, the function 

only calls for a footprint to be created once the ship has landed on a unique patch. By creating 

footprints, the data can be collected in an easy way and exported for further analysis.  This is 

shown in Figure 2.4 Model Movement. 
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Figure 2.4: Footprints and command centre. Example of footprints created for several ship 

pathways and multiple anchors. Highlights information gathered in the command centre.  

2.4.5.1. Fuel Consumption  
Determining the amount of fuel a ship will use on a given journey at sea can be 

complicated.  Many factors such as the ships draft, displacement, weather force and direction, 

hull and propellor roughness are all factors that need to be considered (Bialystocki & 

Konovessis, 2016).  Nicolas BIalystocki et al. 2016, have proposed a prediction algorithm using 
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statistical analysis of 418 Pure Car and Truck Carrier (PCTC) transport ships. In their analysis 

they were able to determine the average values necessary to provide an equation for 

calculating rough fuel consumption of PCTC vessels. The equation proposed is as follows: 

  𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠 =  0.1727 × 𝑆𝑝𝑒𝑒𝑑^2 – 0.217 × 𝑆𝑝𝑒𝑒𝑑 (Bialystocki & Konovessis, 2016)  (4) 

The AIS data utilized for MSRM comparison consists of bulk shipping vessels including 

pure car and track carriers. Although the data source used has a variety of bulk cargo vessels, 

the same assessment can be used as a rough estimation on the amount of fuel consumed by 

each ship in the MSRM. Without any parameters in the MSRM regarding weather parameters, 

ship displacement due to currents and changes in speed or rutter positioning determining 

accurate fuel usage is not possible. By using and average calculation for all simulations, a 

comparison amongst ships in the model can be assessed. This may provide useful for anchorage 

scheduling analysis and further implementation of the MSRM. The code for implanting the 

calculation is as follows: 

𝑠𝑒𝑡 𝑓𝑢𝑒𝑙_𝑐𝑜𝑛𝑠 (((𝐴_𝑓𝑢𝑒𝑙_𝑐𝑜𝑛𝑠 ∗  𝑠𝑝𝑒𝑒𝑑 ∗  𝑠𝑝𝑒𝑒𝑑) − (𝐵_𝑓𝑢𝑒𝑙_𝑐𝑜𝑛𝑠 ∗  𝑠𝑝𝑒𝑒𝑑)) / (24 ∗  60 ∗  60)) ∗  𝑡𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒  (5) 

  

Where fuel-cons is the final estimation on fuel used in tonnes per segment.  A-fuel cons and B-

fuel cons are input during ship creation and the same value is used for all model iterations in 

this study.  The total time using the standard 24-hour clock is calculated to present the fuel 

consumption value as a function of time as opposed to number of segments, or ticks in Netlogo.  

The ability to change the A and B fuel cons parameters can be performed to compensate for 

experimentation with different ship types, changes in weather etc. This may provide useful for 
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further implementation of the MSRM as different A and B fuel cons parameters can be used to 

examine changes in various weather/current patterns or ship parameters.   

2.4.6. Other 

The final section includes extra functions that are used at the end of the model. The first 

is determining the miles per patch of the map. Miles are used instead of kilometers due to the 

formula used to determine the fuel consumption of the ships. This section also includes applying 

the haversine formula to account for the curvature of the earth.  Without this calculation 

distances, velocity or ships, time and as a result fuel-consumption calculations would not be 

accurate.  The GIS plugin in Netlogo ensures correct projection and distance measurements when 

exporting shapefiles to account for the curvature of the earth. However, the metadata in the 

footprints created by the ships would not calculate correct fuel or time parameters without 

implementing the haversine formula into the miles per patch calculations. The calculation is as 

follows. 

𝑀𝑖𝑙𝑒𝑠_𝑝𝑒𝑟_𝑝𝑎𝑡𝑐ℎ =  (𝑖𝑡𝑒𝑚 1 𝑤𝑜𝑟𝑙𝑑 −  𝑖𝑡𝑒𝑚 0 𝑤𝑜𝑟𝑙𝑑) / (𝑚𝑎𝑥_𝑝𝑥𝑐𝑜𝑟 −  𝑚𝑖𝑛_𝑝𝑥𝑐𝑜𝑟)  ∗  𝑝𝑖 / 180 ∗  𝑒𝑎𝑟𝑡ℎ_𝑟𝑎𝑑𝑖𝑢𝑠 (6) 

The world items are used to determine the scale of the map which in turn changes the 

size of the nodes. This is divided by the max extent of the world to determine the exact distance 

per node regardless of the scale of the map. The result is multiplied using the haversine formula 

to calculate the distance between two coordinates on the earths plane (pi/180 * earth radius 

which is 3959 miles). The unit of measurement is changed back to kilometers in QGIS during the 

analysis.   
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The next function is the ‘export-shp’ command. This is used to name the files as they are 

exported. The files are named after the LP and LPW for each model iteration. These names were 

selected for easy comparison when analyzing the results. By labeling the shapefile before 

importing to other software, it reduces mistakes when identifying each model iteration.  

 
2.5. Data collection 

2.5.1. Model iterations 

 To verify the accuracy of the MSRM, results were collected and compared to a large AIS 

dataset that included data from 2012 of ships travelling across the Pacific.  Several iterations of 

the model were selected for comparison. The values for land-proximity (LP) and land-proximity-

weight (LPW) were used to distinguish and name each iteration of the model. The changes in 

these values alter the calculations of the algorithm, generating different paths. The amount of 

change is directly related to the increase in LP and LPW values. By using PMV as a case study, AIS 

data was used to compare different model iterations for path likeness. 

 Careful selection of model iterations was performed to help illustrate the changes in the 

path finding algorithm and how they affected the model results. The iterations included LP values 

of 5, 3 and 2. Other LP values were tested in model development however, the upper and lower 

range of values (5, 2) provide the extent to which the modified BFS algorithm can correctly 

perform.  Applying LP values larger than 5 does not function well with such a congested 

waterway, as some channels in the Port Metro region are narrower than 10 patches.  As a result, 

all the cells will have BFS costs modified, traversing farther from islands, preventing the model 

from selecting the desired path. LP Values below 2 do not provide enough modification of 
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patches, creating paths like an unmodified BFS algorithm. An example of this is analyzed using 

model iteration LP2 LPW2, where the low weight combined with smaller LP creates incorrect path 

replication. This is covered in more detail in the results section. The functionality of the MSRM 

does not allow for much variation in LP due to waterway restrictions and the significant influence 

larger values have on simulation functionality.  Smaller deviations in LP weight (0.1-0.5) were 

tested during development and although they provide interesting results, narrowing down 

selection was necessary for assessment.  

The LPW values selected for analysis have a greater range, with a maximum of 5 and a 

minimum of 1.5.  These differ more than LP values as they do not drastically change route 

selection and slight changes in LPW provide more detailed pathfinding, useful for analysis. As 

with LP, upper and lower boundaries limit the range to which LPW values can be selected. The 

lower range (2) provides minimum change to patches in the LP distance, and LPW values smaller 

than 2 do not change route selection sufficiently in the Port Metro scenario.  The upper range of 

LPW values with low LP values will reach a limit and increasing LPW beyond a certain point will 

not change the path. Larger LP values in a different waterway scenario would allow for higher 

LPW values, but still a limit exists where route selection will not change as the shortest path may 

not be within the LP range and such large changes in LPW values have no effect.  In most port 

situations the LPW limit will be rather low (<10), depending on scale, as waterways are usually 

narrow, and navigation is more difficult.   

The choice of model iterations used for analysis depend on the scale and shape of the 

given waterway. Different ports or maps of vastly different scales require changes to the LP and 
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LPW values to most accurately replicate ship movement. By exporting and comparing the results 

to AIS data, the pathfinding values can be optimized to replicate shipping routes of any waterway. 

This is exemplified with the Port Metro case study and discussed in more detail in the results 

section.   

2.5.2. AIS data  

The original AIS dataset contained a variety of vessel types and messages. To effectively 

analyze traffic patterns, the data was separated into categories based on vessel type, date and 

region.  The vessels’ navigation status included dynamic and static messages, but for the purpose 

of traffic analysis, only dynamic messages were necessary. When analyzing maritime traffic 

patterns, it is important to isolate regions or ports as they remain unique due to logistical and 

spatial characteristics (Martineau & Roy, 2011).  The data was accessed through a SQL server 

where queries were applied to extract the necessary values. This included setting a bounding box 

around the region of Port Metro, pulling only cargo vessel results, analyzing results in month-

long portions, and discarding any static messages.  After the results were filtered, several comma 

separated value (one per month) files were created that included the identified criteria. The 

results were projected in QGIS to ensure the correct region was included and the attributes were 

verified.  

2.6. GIS Analysis 

2.6.1. Visualize & Organize 

QGIS was used to visualize, organize, edit and analyze the data. QGIS is an open-source 

geographic information system (GIS) software where users can analyze and edit spatial 
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information. It may lack some functionality when compared to other GIS platforms; however, like 

NetLogo, its accessibility and being open source provided its own benefits. Such benefits include 

the fact that it is freely available, it can be installed on different operating systems, it does not 

require expensive hardware, it is developed by different users worldwide, users have access to 

the source code and there is less processing time and better rendering capabilities (Tisue, 2004). 

For the purpose of this analysis, it provided all the required tools. 

Before the presentation of data, basemaps are needed to visualize the study area. This 

included a raster image containing the bathymetry data for the Port Metro area (the same data 

used for the NetLogo raster) and a vector shapefile of North America. The data was first imported 

to ensure accuracy in scale and location. This was done by illustrating all the model data on the 

basemap and visually identifying alignment with the same coordinate system (Figure 2.5 Raw 

Model Data).  
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Figure 2.5: Raw model data. This is the original output from Netlogo in QGIS before any 
adjustments are made. 

The bathymetry data consists of an average value of elevation across an entire pixel. The 

North America vector shapefile is not necessary for analysis but allows for better visual 

identification of land. However, the North America shapefile is overlapping pixels where the 

average elevation is below sea level. This makes some of the ship nodes appear to cover land. 

Having a raster image with a smaller scale improves the results and imagery; however, the 

computational time and power required increases significantly (Figure 2.6 Vector Overlap).  
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Figure 2.6: Ship node vector overlap. Due to the scale of various maps, nodes can appear 
on land. 

 

The metadata was analyzed to ensure the model had exported the correct information. 

By opening the attribute table, all the metadata from the model can be verified (Figure 2.7 Meta 

Data).  
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Figure 2.7: Meta Data. Attributes table of simulation results in QGIS.  

 

 A subsample of the data where the ship travelled in a straight line was clipped and 

analyzed to ensure accurate velocity of the model. The ship speed in knots was converted to 

kilometres and the distance of the line (36.33 km) was determined with the measurement tool 

in QGIS. The time variable in the metadata was subtracted to indicate the total time from the 

beginning of the line until the end (11686 seconds or 3.24 hours). The total time was multiplied 

by the kph to determine the expected distance (37.3556 km). Although the distances are not 

exact, the difference of 2.7% is admissible and most likely due to inaccuracies in line 

measurement.   

A manual selection of several ship point data from an individual trip is used for ship-wise 

error calculations (covered in section 3.2.6 Ship Wise Errors) and exhibiting how analysis with 

several ship point data compares to using large AIS data sets. The data was added to the map 

and given the correct coordinate system. By isolating individual ships, it became clear that in 

much of the single ship data location points are separated by large distances. A selection of 
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several ships was chosen to help illustrate the gaps in the data (Figure 2.8 Selected AIS 

Data).   Due to the sporadic nature of the AIS location data and the limited metadata, analysis 

would prove most useful utilizing as much of the subsample as possible. 

Figure 2.8: AIS Data: Selected Vessels. Manual Selection of several ships from the AIS data. 
Highlights the sparse nature of AIS data recordings.  

 

Both the model and AIS data include the entire port region extending past the Strait of 

Juan de Fuca and into the North Pacific. However, for the purpose of comparing path likeness, a 

subsection of the region was chosen. The selected path, starting at the Haro Strait and continuing 

to Port Metro just past Saturna Island, was chosen due to the narrow channel and abundance of 
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obstacles. Waterways with more obstacles offer the model’s algorithm more choices and proves 

to be the most challenging to simulate. Open waters are not as strictly navigated and ships tend 

to navigate where weather is advantageous, or simply along predefined paths (Tam, Bucknall, & 

Greig, 2009). This can be observed when illustrating all the AIS data. Data existing beyond the 

Salish Sea and into the Pacific does not appear to follow such a defined route. Once the vessels 

enter the Salish Sea and the Strait of Juan de Fuca, they very clearly follow a given 

pathway (Figure 2.9 All AIS Data). 

 

Figure 2.9: AIS data: all vessels. This shows how much data was included in the original 
selection of AIS messages. Clean up was necessary to make sense of the overabundance of 
information. 
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It is important to note that the nature of the model will not provide the most accurate 

path likeness in waterway scenarios with a large variety in size and depth. The algorithm must be 

modified by adjusting shore distance and weight parameters to simulate open waters or narrow 

channels more accurately. This weakness is described further in the Results section. By clipping 

the AIS data to only represent the selected region, we can more accurately analyze the 

relationship. Furthermore, due to the number of points in the dataset, any reduction significantly 

improves rendering time and prevents errors in execution. The desired location was digitized as 

a polygon to act as boundaries for the clipping process. The clipping tool was used to create a 

subset of the AIS data that only included the desired region.  The region selected includes the 

entirety of PMV and a small amount of the Pacific Ocean where it meets the Salish Sea.  It is the 

same location and size as the region of extracted AIS data. This process is straightforward and 

clips a vector layer (AIS data) using the polygons of an additional layer (digitized polygon). Only 

the parts of AIS data that fall within the polygons of the clipping layer are added to the output 

(Figure 2.10 AIS Data Clipping). 
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Figure 2.10 Data clipping of raw AIS data (before manual removal of erroneous points)    

 

2.6.2. Heatmaps 

With the abundance of point data in the subsample, a heat map was chosen to best 

quantify different iterations of the model for path likeness (Netek et al., 2018). By creating a 

heatmap, the model data can be resampled for consistency and using point sampling techniques, 

given values according to their location on the heatmap. The heatmap function uses Kernel 

Density Estimation to produce a density raster (heatmap) of a point vector layer (AIS data). The 

density is calculated based on the number of points in a location, with larger numbers of 
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clustered points resulting in greater values. Heatmaps allow for easy identification of clustered 

points and provide values that can be used for quantifying the accuracy of each model iteration. 

When producing the ideal heatmap, there are several parameters that affect the resulting raster 

image, with the most important being the radius. Radius is used to specify the heatmap search 

radius (or kernel bandwidth) in map units (meters). The radius specifies the distance around a 

point at which the influence of the point will be felt. Larger values result in greater smoothing, 

but smaller values may show finer details and variation in point density.  These differences can 

impact comparison with model results. For this analysis, three different radiuses were chosen: 

500, 1000, and 2000 meters (Figures 2.11-2.13 Heatmaps).  
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Figure 2.11 Non-Directional heatmap with 500-meter search radius  
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Figure 2.12 Non-Directional heatmap with 1000 meter search radius  
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Figure 2.13 Non-Directional heatmap with 2000 meter search radius  

 

The model iterations used for analysis simulate port inbound travel. This differs from the 

AIS data used for comparison as the dataset includes any ship in the selected location, regardless 

of direction.  To make an accurate comparison, the AIS data was filtered to only include ships 

travelling towards port. Filtering the data was accomplished by using the heading value to 

determine the direction of travel for every point in the dataset. All data with an outbound 

heading was removed from the selection, leaving only ships travelling towards port. This 
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excluded a few erroneous data points that were manually selected and removed from the 

dataset. The clipping, merging and heatmaps were applied to both directional AIS data and non-

directional AIS data.    

2.6.3. Resample 

To utilize the heatmaps most effectively, all the model data were resampled. This is done 

using several native and third party QGIS plugins. All simulations have the same velocity or speed 

(10kn); however, due to slight changes in the path finding algorithm, not all iterations have the 

same number of points in a given space. Resampling is also necessary to address gaps between 

model point vector data. The nodes exported from the model are sampled less frequently and 

create gaps in the heatmap where significant information may be neglected (Figure 2.14 

Heatmap Model Data Gaps). 
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Figure 2.14 Heatmap model data gaps.  Emphasizing the importance of resampling as gaps in 

the model data can skew heatmap results.  

 

 The first step in resampling is to create a vector line feature out of the point data. Using 

the Points2one plugin, the input vector point layer (model iterations) can be output to a line, 

connecting all the data in a user defined order (sequential) (Figure 2.15 Vector Line Model Data).  
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Figure 2.15 Vector line model data. Changing original data output to line data before 

resampling.   

To resample the vector line features back to point data, the Qchainage plugin was utilized. 

Qchainage operates by creating point data at a given interval along a polygon or line. The interval 

was set to 0.0005 degrees for a more detailed output without an overabundance of redundant 

points (Figure 2.16 Resampled Model Data).  
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Figure 2.16 Resampled Model Data. Final step of resampling process, evenly distributing model 

data to avoid slight inconsistencies in each iteration.   

With the resampled model data, a more informed comparison with AIS heatmap results 

can be performed. Using the point sampling plugin collects raster values from a given layer 

(heatmaps) at the specified sample points (resampled model data). The output creates a new 

point layer with existing locations taken from the underlying raster image. The new data contains 

only one column representing its corresponding heatmap value. The metadata was lost when the 

Points2one function was used, as the vector line feature cannot contain point metadata. The 

results are used for comparison with AIS heatmaps for path accuracy, and the metadata is no 
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longer needed. These results are then saved as .csv files and opened in Excel for further analysis 

and visualization.  

2.6.4. Ship-Wise Errors 

Ship-Wise Errors (SWE) manually select several individual ship point data to determine 

how model results compare to the selection and how well this type of analysis can inform model 

route replication (Figure 2.8 Selected AIS data).  6 individual ships (using the MMSI) on a single 

inbound trip were selected with emphasis on selecting a variety that reduced gaps in the data. 

The selection was merged and clipped before performing the NNJoin function in QGIS. The 

NNJoin function uses two vector layers to calculate the distance between the two layers. The 

results were output as .csv files and exported to Excel for further analysis.   
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3. Results 

3.1. Preliminary Assessment  
The MSRM requires human input to find the correct parameters for different 

waterways. As each location for simulation is unique, the ideal parameters for LP and LPW 

require adjustment to provide simulation results that resemble existing shipping pathways. A 

preliminary assessment of the waterway is required to make an informed guess as to what 

range of values are most suitable for the study area.  

 For LP, the assessment is based on the width of the narrowest channel in the waterway, 

amount of variation in channel width and the scale of the map.  The evaluation of the waterway 

is performed by applying a rough starting LP and running the simulation to visualize how many 

cells the waterway are colored red, indicating that they fall within the LP range. The starting LP 

will depend on the width of the narrowest channel along the desired path. At this point using 

the full AIS dataset is not necessary as a rough idea of shipping pathways is sufficient to get a 

starting point for the parameters in the simulation. Once the route has been identified the LP 

should ideally be at most, half the number of cells form border to border in the narrowest 

channel of the route.  If the LP is greater than half the number of cells in a given waterway the 

simulation may select an alternate path. This is dependent on the LPW and the specific 

waterway in question.  If no other route provides a shorter path to the destination (accounting 

for LP modifications), the algorithm can select a waterway where all cells are within the LP 

range. In the case of Port Metro, the Haro Strait and waterway around Stuart Island contains 

the most obstacles and therefore provides the most complicated path finding scenario with the 

narrowest channel width. Once the LP value is chosen by visual assessment, multiple test runs 
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are performed to help narrow down the ideal LP selection. This is accomplished with visual 

analysis of AIS data and comparing it to the test model iterations.  The same process is applied 

to determine an ideal range of LPW values.  

After the initial assessment of the MSRM three different LP values were chosen. Each 

land proximity value was chosen to illustrate important aspects of the MSRM. Due to the 

variety in the waterway, many different LPs were tested until the best values for analysis were 

identified. 

LP3 displays how the model can function when the land proximity is appropriate for the 

entirety of the given waterway. With an appropriate LP, the LPW can be adjusted by smaller 

increments and provide more variation in path selection.  As a result, five LPWs values were 

selected to show the variety in path selection - more than any other LP used for analysis. LP4 

was also experimented with but provided similar results to that of LP3. It was not included in 

the analysis as having a variety of model iterations examining model functionality in all cases, 

especially at its limits, is of more importance. 

 LP2 was chosen because it shows how the model functions with minimal adjustment to 

the default BFS algorithm. A land proximity of 2 does not alter many cells in the waterway 

creating paths most similar to an unmodified BFS algorithm. This is most noticeable with a low 

weight, for example LP2 W2. With these parameters the model would select a completely 

different path when navigating the Haro Strait past Stuart Island (Figure 2.5 Raw model data). 

As a result, the LPW would have to alter the original BFS values by a large enough sum to 

choose a path that avoids areas near land.  
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LP5 illustrates how the model performs when the algorithm modifies too many cells for 

the width of the given waterway. When the LP is set above 4 the model begins to produce 

inaccurate route replication. This is due to the narrow width of many of the waterways through 

the study area. Because the distance in some areas is less than 10 cells from island to island, an 

LP of 5 or higher creates pathways where every cell is multiplied by the LPW.  

  The same process of trial and error was applied to identify the ideal LPW range for each 

LP value. Once the LP is chosen the LPW is experimented with to see what value creates the 

most accurate path. Careful selection of LPWs were chosen to best analyze the study 

area.  When adjusting the LPW, small deviations will not change the BFS values enough to alter 

route choice.  A variety of LPW’s are examined in analysis to see how changes in LPW effect 

model route replication.   

 When importing the MSRM data from QGIS to Excel, several data clean up procedures 

are necessary. Data cleaning is needed to address slight differences in the start and end points 

of model iterations and to adjust model results with null values for points that fail to occupy the 

area of the heatmap radius. Excel was used to modify all the null values in the data series to 0’s 

and to align the model iterations so they share the same start and end cells.  

3.2. Model Results 
  The results compare simulation iterations in the following ways: average heatmap 

scores, sequential point data compared to heatmap scores, ship-wise errors, and directional AIS 

data vs non directional AIS data. All the data collected in QGIS were imported to Excel for 

further analysis and data presentation.  
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The average heatmap scores can help determine which model iterations perform better 

for the entirety of the simulation length. Using a different heatmap search radius allows for 

more flexibility when analyzing the model iterations and illustrates the change varying radii has 

on the model results. Sequential point data from model iteration in relation to heatmap scores 

is important for identifying location specific model scores. Examining average heatmap scores 

does not provide an adequate representation of model performance however, in tandem with 

sequential point data results, it is possible to identify where the model performs better and 

how it impacts average scores. Without the need for visual assessment of model iterations, the 

average scores and sequential results can provide a basis for analyzing model iteration 

performance. 

 Ship-wise errors use a small subset of data to analyze model iteration performance. 

This can help show how individual ship journeys compare to model results however, due to the 

nature of AIS data, gaps and insufficient location data hinder effectiveness.  Using heat maps is 

crucial for accurate analysis and helps emphasize the benefits of using large data sets for 

comparison.   Including directional and non-directional results highlight the need for data 

cleaning when using large data sets and when comparing the two, provide more information on 

model iteration route selection. 

3.2.1. Average Heatmap Scores  
Heatmap scores were derived for all model iteration points within the heatmap range. 

The heatmap value for the cell that the MSRM point data is occupying is sampled using the 

‘sample from raster data’ function in QGIS.  Point data from model iterations are given a new 

attribute field that corresponds with each of the heatmap radii (500m, 1000m, 2000m). These 
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values are considered heatmap scores and used for analyzing how well model iterations 

replicate the AIS data. For Average heatmap scores, the average for each model iteration and 

heatmap radii is graphed using excel. 

 

 

Figure 3.1.1 Directional Heatmap Results 500 Meter Radius  
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Figure 3.1.2 Directional Heatmap Results 1000 Meter Radius  
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Figure 3.1.3 Directional Heatmap Results 2000 Meter Radius  
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the results.  Before looking at the performance of individual model iterations, the changes in 

heatmap radius must be addressed. There are several reasons different heatmap radii are 

important to consider, especially when using a database with thousands of points. With big 

data there needs to be considerable data clean up to most effectively analyze the results (Netek 
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data points that are accidental with ships travelling through the study location but on route to a 

different destination. Even with the most stringent data clean up there may still be erroneous 

data points that exist without possible identification (Gunnar Aarsæther & Moan, 2009).  Using 

heat maps can help reduce the impact of data errors when analyzing large-scale datasets, as it 

will reduce the impact unusual ship routes will have on the results. 

 The nature of maritime travel and AIS data accuracy creates slight inconsistencies 

between the actual path ships take opposed to the predefined route set by Port authority. 

Heatmaps use cluster analysis to apply higher values to areas with an abundance of points to 

signify where ships most frequently travel. This can also create issues as AIS data collected from 

static ships will have many points overlapping giving it very high heat map scores. To avoid this, 

all ships with a speed of 0 were removed from the data set.  3 heatmap radii were carefully 

chosen for analyzing model results. 500 m (figure 3.1.1), 1000 m (figure 3.1.2) and 2000 m 

(figure 3.1.3) were selected to show how applying different radii will affect the results.   

 With a smaller heatmap radius, any model iteration points that fall outside the search 

radius are given a null value regardless of their proximity to the heatmap range. This provides 

another reason to analyze multiple heatmap search radii as some model results may only 

slightly fall outside the heatmap radius but will receive the same score as model points that are 

much farther from the heatmap radius.   

The different heat map radii emphasize two major observations. First is that the changes 

in the average heatmap score is more variable the smaller the radius is. The smaller the radius, 

the more precise the model iteration scores will be, slight deviations from the AIS data will 
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change average scores more drastically. By examining the average scores for 2000m radius the 

variation in the average heatmap scores is reduced. The average scores for 2000m radius 

heatmap are within a range 0.5 for LP3(high score of 7.48 and a low of 7.02), where the average 

scores for 500 m radius heatmap have a range greater than 0.8 (high score of 0.571, low of 

0.481). The greatest amount of variation in the 500m radius map is due to LP3 W2 scoring 

particularly low in comparison to the other model iterations with a LP of 3. By comparing the 

sequential data for LP3, when the radius for the heatmap is set to 500m, LP3 W2 has low heat 

map scores for the beginning of the simulation route. When examining the raw model data, it is 

evident that LP3 W2 fails to match the AIS data with the same level of accuracy as other model 

iterations with LP3. When the radius is increased, the amount of variation is reduced as slight 

routing discrepancies around Stuart Island are not as impactful on average heatmap scores. LP3 

W2 continues to perform better as the heatmap radius is increased. 

The second observation is that LP order from best performing to worst is the same 

across all Heatmap radii. The order of LP performance is expected as the different LP values 

were selected to illustrate model functionality. The LPW however, changes quite considerably 

between the different heatmap radii.  

When looking at the results of the average heatmap scores, the differences that are 

seen in the radius changes are not conclusive on their own. Due to the nature of heatmap 

comparison, average scores are not always indicative of the best overall model performance in 

terms of route replication. The model path may be very accurate for a small portion of the 

route which will greatly increase the scores for a certain area. This can be seen in LP3 W5 and 

will be addressed further in the following section. This is largely mitigated by resampling with a 
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small enough distance between points to reduce skewing the average results due to single 

points with very high scores. Although the high scores in certain areas may indicate the best 

route selection for the specific area in question, when looking at model performance, 

consistent route replication for the entire heatmap range can be considered more valuable 

depending on how you are looking at the results. By having larger radii, the impact of data 

outliers can be mitigated by increasing the effective score range of large data clusters. This 

increases the scores for model iterations that may have received lower scores with a smaller 

heatmap radius.  Visually analyzing the model results and heatmaps in GIS software can help 

identify model iteration performance at different points of the simulation.  Although this can 

provide enough information to help identify strong and weak points in model iterations, having 

a numerical representation can greatly benefit analysis. By using sequential point data from 

model iterations in comparison to average heatmap scores, it becomes possible to determine 

model performance at different points in the simulation.      

3.2.3. Sequential Point Data Heatmap Comparison (SPDHC) and Model Iteration 

Performance 
SPDHC uses the same heatmap scores calculated with the sample from raster data 

function, however it only includes heatmap analysis of the 500m radius. The extent of the 

heatmap includes model iteration point data from an approximate range of 4500 to 5500 in the 

data series. The SPDHC graph for each LP shows where the model has higher scores and is 

therefore in closer proximity to hot spots in the AIS data heatmap. 

  SPDHC is useful for comparing how model iterations perform at different locations in 

the study area. Any change to LP or LPW will alter the route generated for each waterway 
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scenario. Examining performance at different points in the waterway is crucial as it can indicate 

how well the model replicates AIS data at different stages of the simulation. When looking at 

maps with simulation results and heatmap data, it can be difficult to determine heatmap 

scores. The SPDHC can assist in locating exact scores throughout the simulation area. This 

information can help determine how location specific performance affects the average 

heatmap scores.  The SPDHC can help provide information that average heatmap scores cannot. 

By using SPDHC, detailed analysis of each model iteration can be performed. This section will 

focus on the different heatmap iteration performance. The preliminary assessment provided a 

basis for analyzing how each model iteration performed compared to predetermined maritime 

shipping pathways. Without comparing the results to a large AIS dataset, it is not immediately 

evident how the model iterations perform. 
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Figure 3.2.1 Sequential Data 500M Heatmap Directional Land Proximity 3 
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Figure 3.2.2 Sequential Data 500M Heatmap Directional Land Proximity 2 
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Figure 3.2.3 Sequential Data 500M Heatmap Directional Land Proximity 5 
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waterway around Stuart Island. Due to the collection protocols for AIS data, more point data is 

collected when ships are turning - as mentioned in the AIS Data section.  This creates clusters of 

AIS data which skew average heatmap scores. SPDHC comparison provides insight into overall 

model performance by identifying data spikes. Visual analysis of model iterations shows that 

LP3 is the most consistent for the entirety of the simulation as it navigates the Stuart Island turn 

more accurately than the other LPs.     

The average heatmap scores at 2000m radius for LP3 provide insight into model 

functionality. When the heatmap radius is increased, it reduces the impact of data spikes where 

model iterations receive high scores for one section of the model.  This allows average scores to 

be more indicative of overall route replication when compared to lower heatmap radii.  These 

results also back up what can be visually seen when analyzing the model results. The average 

heatmap scores for 2000m show that the increase in LPW provides better overall route 

replication until the weight is higher than LP3 W2.2 - where model performance begins to 

degrade.  A limit exists as too much obstacle avoidance will create pathways that encroach on 

incoming traffic lanes. Non-directional results support these findings as LP3 W5 scores the 

highest amongst all model iterations for the non-directional heatmap examples. Due to LP3 W5 

having the highest weight, it selects a path that at times occupies opposing traffic lanes.   

  LP3 W5 performs better at directional analysis when the heatmap radii is reduced. This 

is mainly due to other LP3 models receiving lower scores around Stuart Island, where a large 

cluster of AIS data points exist.  LP3 W5 scores highest at one small section, which is 

emphasized with a smaller radius. When looking at the SPDHC (Figure 3.2.1), LP3 W5 receives 

maximum scores more than double any other model with LP3 (21 to 45).  This allows LP3W5 to 
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seemingly perform better with 500m radius when looking at average heatmap scores on their 

own. Once the corner around Stuart Island is navigated, having a LPW of 5 negatively affects 

the heatmap scores. The South Pender Islands on route to the Strait of Georgia create a buffer 

that pushes the route outside of the 500m heatmap. This is evident when looking at the SPDHC 

graph for LP3, all model iterations except LP3W5 receive scores at data series 5100-5200. 

LP3W2 is an outlier as it performs worse than other LP3 models with lower weight. 

When examining model results, LP3 W2 occupies a wider turn at the end of the Haro Strait 

approaching Stuart Island, explaining the lower average heatmap score. Analyzing the SPDHC 

for LP3, scores at data series 4800-4900 are responsible for the performance difference. This is 

like LP3W5 however, LP3W5 scores much higher due to having a large spike in scores when it 

navigates the Stuart Island turn. As a result, LP3W2 scores much lower than the other LP3 

model iterations with 500m and 1000m heatmap radii.  

When examining model iterations with LP3, the changes in LPW effectively increase the 

amount of obstacle avoidance - in this case Stuart Island. As the LPW is increased the model 

iterations take a wider turn around the island. This is even more evident when looking at model 

iterations with LP2.  LP2 takes a more direct path cutting through Stuart Island (due to the scale 

of the bathymetry map the model identifies these cells as reachable). This proves correct model 

functionality as an increase in obstacle avoidance is expected as the weight and land proximity 

are increased. A limit to the amount of obstacle avoidance (LP value) exists in waterways with 

more than one obstacle. With only one obstacle, the LP can be as high as the map limits allow. 

Large modifications to BFS values with high LPW’s will not create errors as the simulation will 

be able to find a route outside the range of affected cells. If the study area has multiple 
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obstacles the affective LP zones can overlap causing errors when trying to choose a path. LP5 is 

a good example as the LPW cannot be much higher than 2 to avoid any errors from occurring. 

Figure 3.2.4 (LP5 path finding algorithm example) shows that much of the waterway in the 

study is colored red and therefore falls under the influence of the LP. More analysis of LP5 will 

be addressed in the LP5 section.  

 

Figure 3.2.4 LP5 path finding algorithm example. The number of red pixels indicate how many 

nodes in the waterway are being affected by the LP distance.   

  The effects of changing the LPW are most noticeable with LP3. For instance, the order of 

performance from best to worst at 500m is LP3W1.8, LP3W5, LP3W2.2, LP3W1.5, LP3W2. For 
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1000m the model performance order is LP3W2.2, LP3W1.8, LP3W1.5, LP3W5, LP3W2. Finally, 

for 2000m the model performance order is LP3W2.2, LP3W5, LP3W2, LP3W1.8, LP3W1.5. 

Model iterations with LP2 and LP5 have less variation when changing the heatmap 

radius.  Accurate choice of LP for a given waterway can be indicated by an increased variation in 

scoring.  Altering heatmap radius causes model points that are within proximity to AIS data to 

experience the most variation in scoring. When the route chosen selects a path more like AIS 

data, changes in the heatmap radius will vary scores more significantly than model iterations 

that fail to replicate routes as effectively.  

3.4. LP2 
LP2 performs second best and experiences the least amount of score variation as the 

heat map radii is increased. However, LP2 has the largest score discrepancy due to LP2 

W2.   LP2 W2 is a good example of what happens if the standard BFS algorithm is not modified. 

With these parameters the model selects a completely different path when navigating the Haro 

Strait region (Figure 2.5 Raw Model Data). With an LP of 2, the LPW needs to be large enough to 

select a path that is possible for large vessel transit.  The shortest path with an unmodified BFS 

algorithm is unlikely to take the same route as maritime vessels. The most obvious reason is 

that the model lacks any traffic rules or safety protocols where, ships could not safely travel the 

shortest path to their destination. Furthermore, inaccurate basemap values allow pixels above 

land to appear safe for travel but, maritime vessels are unable to travel the same route. If the 

scale of the raster image is too large, the average depth of a pixel may appear lower than sea 

level however in reality a large ship may ground.  
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As the LPW is increased for LP2, the model creates pathways more like model iterations 

with LP3 and as a result has increased heatmap scores for the entirety of the simulation area. 

This is evident when looking at the results for LP2 W3, 3.5 and 5. These model iterations 

perform substantially better than LP2W2 and have scores close to model iterations with LP3. 

Although LP2 fails to accurately navigate the Stuart Island turn, by analyzing the SPDHC for LP2, 

high scores at the beginning and the end of the simulation improve performance. This is 

supported with visual analysis of the model results (Figure 2.5 Raw Model Data).  LP2 W3, 3.5 

and 5 travel through a cluster of AIS data before navigating Stuart Island that LP3 models do 

not. This slight change in route provides high scores for LP2 increasing average heatmap scores. 

Towards the end of the simulation there are less obstacles to avoid and path selection is most 

similar for all model iterations.   

Excluding LP2W2, all model iterations with LP2 take the same path for the entirety of 

the simulation. The scores are separated by less than 0.002 at 500m, 0.01 at 1000m and 0.01 at 

2000m. This is due to slight routing changes towards the end of the simulation. This is evident 

when analyzing the SPDHC for LP2, as small score discrepancies can be seen around data series 

5300. For the remainder of the simulation, model results overlap as they take the exact same 

route. With a low LP, fewer cells in the simulation have altered BFS values. Changes to LPW 

values must be much larger to see any changes in route selection. Without as many cells in the 

waterway under the influence of the LPW, route selection remains the same even with 

different LPW’s.  
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3.5. LP5 
   LP5 provides insight into model functionality when many of the cells in the waterway 

are altered by the LPW (Figure 3.1 LP5 path finding algorithm example). Narrow waterways in 

the study area prohibit LP values higher than 5. Furthermore, the weight for LP5 cannot be 

higher than 2 to prevent the model from running into errors. This is directly related to the find 

exit function, explained in the Methods section. The find exit function allows for ships to reach 

destinations by recalculating BFS values for the remainder of the trip. This only applies to ports 

or anchorages that are close to land that are impossible to reach in some scenarios - even with 

a lower LP and LPW.  Solutions to this problem are addressed in the discussion section.  

Visual analysis of model results depicts route selection like LP2 when navigating the 

Stuart Island turn. This goes against perceived model functionality as a larger LP would suggest 

more obstacle avoidance and therefore a wider turn around Stuart Island.  Due to the larger LP, 

other obstacles (islands) near Stuart Island alter BFS values of patches that are not modified 

with a smaller LP. The route around Stuart Island is no longer favored as all the BFS values in 

the waterway have been modified. As seen in LP2, the shortest path will select a route that 

turns through Stuart Island instead of correctly navigating around it.  As a result, LP5 selects a 

path that does not take a wider turn when navigating Stuart Island and instead takes a path 

that resembles LP2.  

Analyzing the SPDHC shows similar scores for LP5W2 and LP5W1.5 at the start and end 

of the simulation (data series 4500-4600 and 5100). The difference in scores comes from data 

series 4700-4800 where LP5W2 receives much higher scores providing it with a better average 

heatmap score. A higher LP creates more variation in BFS values and will result in increasing 
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route selection variation with small changes to LPW. Larger LPs also create more frequent 

direction change when selecting a path. Both findings can be seen with visual analysis of model 

iterations with LP5 (Figure 2.5 Raw Model Data). 

3.6. Ship wise errors 
 Several ship trips from the AIS dataset were handpicked to produce a complete route 

through the study area. By comparing nearest neighbour (NN) values for model iterations, 

performance characteristics can be assessed (Figure 3.3.0). Nearest neighbour values are 

determined by measuring the distance between sample point data and the closest point data in 

each model dataset. The x-axis corresponds to every point in the sample data set and the y-axis 

is the distance to the closest point for the corresponding model iteration. Examining ship wise 

errors provides a simplistic analysis of model iterations.  These findings are less accurate than 

heatmap results and do not provide the same level of insight into model performance.  
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Figure 3.3.0 Ship-Wise Errors and Model Iterations. Provides spatial context 
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LP2 SWE results provide the most similar findings to heatmap results when compared to 

other model iterations. This is due to the obvious differences between LP2 model iterations. 

The large difference in route selection from LP2W2 and other LP2 iterations can be deduced 

from analyzing the SWE results. Furthermore, the identical path taken by all other LP2 

iterations can be seen in SWE results as W5, 3.5 and 3 have the exact same values, appearing as 

one line in the graph below (LP2 W3).  

Figure 3.3.1 Ship Wise Errors Results Land Proximity 2 

LP5 SWE results are less detailed than heatmap analysis but provide some insight. 

Although LP5W2 and LP5W1.5 have very similar routes, LP5W2 scores better for the middle 

portion of the simulation. It can also be identified the point at which LP2 and LP5 models differ 
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most from LP3. The same areas of weak performance in the middle of the simulation for LP2 

and LP5 are seen in heatmap analysis.  

Figure 3.3.2 Ship Wise Errors Results Land Proximity 5 

 LP3 model iterations have the most variety in route selection when changing the LPW. 

However, SWE analysis does not provide the same level of detail. Major changes are all that can 

be identified when looking at LP3 SWE results. The dip in LP3W5 can be seen at approximately 

data series #260 but any more detail is much harder to determine.  This corresponds with 

SPDHC analysis (Figure 3.2.1 Sequential Data 500M Heatmap Directional Land Proximity 3) 

where a spike in scores can be seen around data series #4900. This is again due to LP3W5 

having a closer proximity to a small cluster of AIS data.  
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Figure 3.3.3 Ship Wise Errors Results Land Proximity 3 
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3.8 Multi-Directional Analysis 

3..4.1 Non-Directional Heatmap Results 500 Meter Radius 
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3.4.2 Non-Directional Heatmap Results 1000 Meter Radius 
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3.4.3 Non-Directional Heatmap Results 2000 Meter Radius 

Looking at directional vs non directional results provides insight into the importance of 

data cleaning to use big data effectively. The non-directional results score differently than 

directional results. The model performance order is significantly changed emphasizing the need 

for accurate AIS data. The directional analysis in the Port Metro case study is limited to inbound 

traffic as it provides more complex and pertinent information for port research. For example, 

the ability to have anchorage sites and scheduled port arrivals would not be necessary for 

outbound travel.  During development, route selection tests were performed in the other 

direction (leaving Port Metro). With low LP and LPW values, the model would select a path (like 

LP2 LPW2) which is not viable for vessels and does not appear in the AIS data. Increasing the LP 
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and LPW values was successful in altering path selection, simulating the correct route, south of 

Saturna island around Stuart Island and into the Haro Strait.  

The LP and LPW values chosen for analysis are ideal for use in tight waterways. These 

values may not be suitable for study areas with less obstacles. Visual analysis of model 

iterations and heatmap results show that all the model iterations fail to accurately navigate the 

turn around Saturna Island.  At the end of the simulation, all model iterations turn into 

oncoming traffic and do not follow directional traffic lanes. Increased scores at this location are 

the primary reason for the performance differences when comparing directional and non-

directional results.  Once ships travel past Saturna Island, the waterway opens without as many 

islands or obstacles to influence route selection. As a result, the model iterations take a more 

acute angle when navigating the island, traveling along incoming traffic lanes.    

Future analysis could compare outgoing traffic to model results to see how the MSRM 

performs. This would provide insight into the entire journey of vessels travelling to port. 

Furthermore, inspecting inbound and outbound data can provide detailed analysis at the most 

complex locations during navigation (i.e., the turn at Stuart Island in the Port Metro case study).  

Without much space, route choice must be precise to stay in traffic lanes and avoid 

obstacles.  The LP values would likely remain the same for both directions of traffic as the width 

of the channel is the same.  However, LPW values require slight changes to ensure route 

selection with good directional performance. Specific functionality to identify oncoming traffic 

lanes as an obstacle is not implemented in the MSRM but refining LP and LPW parameters 

could provide adequate representation of simultaneous traffic lanes. Other solutions would 

include validating one direction of traffic and using the results as obstacles for simulating 
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oncoming traffic. This would require changing the approach to selecting LP and LPW values for 

a given waterway but could ensure model results for both directions of traffic.   
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3.9. Anchorage location and scheduling 
A vessel traffic service (VTS) is a maritime traffic monitoring system that is designed to 

improve efficiency and safety. VTS authorities are responsible for creating logistic schemes 

regarding navigation rules and port procedures that provide effective and safe scheduling with 

maritime traffic growth, inbound and outbound traffic experience significant waiting times, 

causing negative environmental and economic impacts (Li, Zhang, Yang, & Wang, 

2020).  Optimizing traffic procedures is a priority for VTS operators and simulating anchorage 

scenarios can assist in the development and verification of anchorage scheduling. To determine 

how the MSRM can be used to experiment with anchorage scenarios, an assessment of 

anchorage locations and wait times was performed. With the ability to add many ports (final 

destinations) and anchors(waypoints), experimentation with number, location and scheduling 

of anchorages and ports is possible.  The current list of available anchors for cargo vessels for 

PMV (69 anchors) was converted from a .csv (comma-separated value) file to a .shp (shapefile) 

file to be used in the model. Test runs were performed to determine if all anchorage locations 

could be reached with LP and LPW weight parameters used in prior analysis . With an LP of 3 

and LPW of 5 all waterways leading to the 69 anchors were successfully navigated and with the 

find-exit function, all anchorage locations were reachable. Figure 3.5 shows the MSRM with all 

the anchorage locations.  Wait times provide implementation of scheduling as port wait times 

dictate how long ships remain at anchor with priority given to ship id order. Anchorages also 

have wait times but are only implemented when the port or the next anchor in the list is 

occupied. Simulations could test adding new anchorages or removing old ones, providing an 

assessment on changing wait times. Fuel estimations could indicate the amount of fuel used at 
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anchor and how it pertains to overall shipping efficiency. Precise location of anchors could 

provide information on scheduling efficiency while prioritising environmental impacts and 

public opinion of anchor location. In the case of PMV, the whale initiative would benefit from 

identification of anchor wait times and whale sightings to prevent vessels from idling near 

whale habitats. Adding basemap data regarding whale location data or implementing agents in 

Netlogo simulating whale movement could provide further research into the problem.  

 

Figure 3.5 All Anchorage Locations  
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4. Discussion 

4.1. Research Implications 
 In the case of maritime route simulation, the results have shown that the modified BFS 

algorithm used in the MSRM can replicate maritime route selection in confined waterways to a 

measurable degree of accuracy. Furthermore, it shows that large AIS datasets are necessary for 

accurately calibrating the model to optimize route replication. The research goal of replicating 

existing shipping pathways using a proprietary modified BFS algorithm is novel in the maritime 

shipping modelling field. Literature reviews such as “review of maritime traffic models from 

vessel behaviour modeling perspective” (Zhou, Daamen, Vellinga, & Hoogendoorn, 2019) 

categorize and summarize many publicly available models. Commercial models were excluded 

due to limited information provided to researchers. Their findings support that of this research, 

emphasizing that models without calibration via AIS data limit their applicability and can not 

accurately replicate historical ship movement(Zhou et al., 2019). Other researchers outside the 

maritime field support the finding that many ABMs aim to replicate real world phenomenon 

where using big data is an ideal way to calibreate and validate simulations (Kavak et al., 2018). 

The SWE assessment supports these findings by detailing the inadequacies of using small 

amounts of individual ship data for model calibration. Although information on ship routes and 

model performance can be identified using small amounts of AIS data, the results of this 

research have shown that detailed insight into route replication requires large AIS datasets. 

Data quality is a primary focus when using large datasets to calibrate simulation results 

(H. J. Miller & Goodchild, 2014).  Comparing directional vs non-directional results highlight the 

importance of using an appropriate dataset. The MSRM simulates inbound port traffic where 
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the AIS dataset utilized includes both inbound and outbound traffic. The directional vs non-

directional results show that filtering the dataset to isolate inbound AIS data provides better 

route anlaysis than using non-directional AIS data.  

Addional findings from Zhou et al.(Zhou et al., 2019) provide insight into the modelling 

techniques used in the majority of maritime traffic models. In the 25 models they examined all 

but three represent the vessles as an agent. However, this does not mean agent based 

modelling was used as the simulation environment. Only a small number of models examined in 

the literature review utilize detailed manoueverabuluty with sub-modules – requiring the 

stregnths of ABM  (Zhou et al., 2019).   The only study assesed in the literature review that does 

utilize ABM is the piracy modelling by Vaenk et al. (O. H. Ondrej Vanek, Michal Jakob, Michal 

Pechoucek, 2011). Their simulation focused on the interaction of various vessel types in piracy 

scenarios (merchant vessel, navy vessel, and pirate vessel) and simplified sailing behaviour as it 

was not the goal of the research.  The findings of the MSRM show that ABM can effectively be 

used to simulate maritime shipping with a single type of vessel.  Other strenghts of ABM 

highlighted by this research include; the grid envirmonent featured in agent based modelling 

toolkits can easily traslate to GIS Raster imagery,  ABM toolkits provide excellent primitives and 

extensions that allow for easier programming, ABM allows for autonomous behavior of vessles 

providing emergent phenomenon that may not be easily predicted. 

 The majority of current research in the maritime shipping modelling field examines 

detailed ship to ship interactions and protocols (including navigation procedures in ship 

encounters, fuel consumption based on rutter changes and engine usage, the effects of 

weather on maneuverability etc.) collision and accident modelling, piracy prevention and 
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supply chain scheduling at port (Zhou et al., 2019).  For example, Huang et al. (S. Huang, Hsu, 

Fang, & Song, 2016) use existing pathways to simulate complex traffic at large-scale hub ports. 

Simulating various types of vessels and effectively modelling the interactions amongst the 

vessels following existing protocol was the primary goal. Additional model application assesses 

the impacts of accidents causing partial lane closures under emergency scenarios.  Many other 

studies focus on similar detailed ship interactions in different waterway scenarios (open-water 

and confined), with different vessel types and including the impacts of weather on vessel 

behaviour.  Few studies model ship movement with the goal of replicating existing routing data. 

A commercial research project focusing on open water traffic density replication along 

predefined historical vessel trajectories is most like this research as its primary focus is 

replicating shipping routes. Known as MATRICS and developed by the Defence Research and 

Development Canada – Centre for Operational Research and Analysis(DRDC CORA) - The goal of 

the research is to “autonomously generate vessel tracks that tend to reproduce historical 

densities over time” (Hilliard & Pelot, 2012).  Although similar in the fact that its replicating 

existing shipping routes, the focus is on open water way navigation through global shipping 

channels and not route choice behaviour in confined waterways. Furthermore, it does not use 

ABM and does not use a path finding algorithm for simulation instead travelling along 

predefined routes according to historical data via radar, traffic data and AIS data.   

Commercial maritime shipping data is hard to acquire (Bourdon, Gauthier, & Greiss, 

2007). When the data is publicly available it may be incomplete or inaccurate and often has 

many redacted fields removing important data.  The implications of this research provide a 

starting point for conceptualizing how more advanced modelling can produce AIS data with the 
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possibility of it being indistinguishable from real AIS data. This output can be used in the 

absence of real AIS data, or it can supplement current datasets, filling in gaps or providing 

additional information. 

Port policy and management can utilize agent-based modeling to study the needs of the 

maritime domain (Li et al., 2020). The MSRM explores the use of anchorage scheduling to 

determine how the model can be used in a practical application. Vessel traffic services can 

experiment with a variety of anchorage related scenarios to inform policy. Furthermore, the 

modularity of the MSRM allows for experimentation with any waterway, providing application 

to other geographical contexts.  Other case study specific examples include the Government of 

Canada’s “Whale Initiative”. Future experimentation can add new agents that represent 

whales.  By analyzing whale sighting data, seasonal migration, and whale hotspots it is possible 

to examine the interaction of commercial shipping vessels and local wildlife.     

4.2 Ship wise errors vs heatmap analysis  
 Heatmaps are a great way to examine the accuracy of model iterations to large AIS 

datasets. Big data allows for model results to be verified using a representative dataset with 

real ship location data.  The ability to analyze and store large databases without the need for 

supercomputers has allowed more researchers to take advantage of big data.  Random 

sampling was once the main strategy for dealing with information overload (H. J. Miller & 

Goodchild, 2014).  Unfortunately, due to the nature of AIS data, individual sequential ship data 

from a single trip does not include sufficient point density to represent an accurate route.  Due 

to AIS data collection protocol (SOLAS) and data quality, the frequency of location data 

collection produces less accurate representation of the path ships take in the study area. 
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Depending on the actions of the ship (speed, course etc.), data will be collected more or less 

frequently creating inconsistent gaps in the data.  Having a larger data set allows for higher 

frequency of location data in the study area allowing for more accurate representation of AIS 

signals. This provides for a better assessment of model results.  Furthermore, by using large AIS 

datasets, inconsistencies in ship routes due to; slight navigation changes, AIS location data 

accuracy and error, position of data collection, are reduced.  This is visible when comparing 

SWE results to heatmap results.   

The dataset includes 1 month of AIS data for cargo ships. Having access to more data 

was possible, due to computational limitations and processing efficiency the data set had to be 

limited to the chosen selection.  More data would improve the heatmap density and allow for 

potential seasonal adjustments taken by ships to be analyzed.  By analyzing the results, it would 

appear that the amount of data used was large enough for accurate representation.   

Nearest Neighbour analysis requires manual selection of AIS data which may not be an 

accurate representation of ship routing. Human selection of data introduces inconsistencies 

and is less likely to provide the same level of detail. The most simplistic changes in model 

iterations i.e., LP2 changes and minor differences in LP5W1.5 and LP5W2, can be deduced from 

the SWE results. More detailed changes like those present in LP3 model iterations are not 

visible in SWE results. The changing heatmap radius and analyzing directional vs non directional 

results provide further insight into model iterations that is not provided by SWE analysis. Using 

several thousand AIS data points and heatmaps emphasize clusters of signals.  These data 

clusters often occur when ships are turning. Model results in these scenarios are harder  to 

produce so increasing the value of scores for these sections is useful. Data clusters also indicate 
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areas more frequently travelled; SWE data selection does not provide the same level of 

analysis. 

4.3. Limitations 
The MSRM is a useful tools for simulating maritime traffic as described thoroughly in 

this research. However, limitations do exist regarding ABM, the MSRM, big data analytics and 

heatmaps.  

4.3.1. ABM and MSRM Limitations 
Identifying ideal LP and LPW weight values for a given waterway requires human input 

with trial and error. This limits the effectiveness of the MSRM as selecting ideal parameters can 

be difficult. Human input can be inherently flawed and less reliable for determining model 

parameters compared to automated computer functions (A. Miller, 2019).  Selecting model 

parameters for appropriate simulations is tedious as many possibilities must be tested. Only 

then can ideal LP and LPW values be selected with confidence. Valuable model iterations in 

certain waterway scenarios may not be tested during initial model selection. This can limit 

analysis as crucial model functionality may be gathered from analysing model iterations that 

are not tested.  

The MSRM requires large AIS datasets to support detailed analysis of vessel route 

replication.  This is exemplified when comparing SWE analysis with a small selection of AIS data, 

to heatmap analysis with large datasets. This limits the opportunity to simulate other 

areas.  Rough verification of model parameters can be performed using basic shipping routes. 

This information is readily accessible on the internet for all major ports. This allows for basic 

comparison of model iterations without the need to access restricted, expensive, AIS datasets. 
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However, verification and calibration of the MSRM is limited without big data analytics. Results 

in the Port Metro case study support findings that the MSRM is capable of accurate route 

replication. Without AIS data from other ports the MSRM lacks reliability as only one case study 

can be performed.  

The complex nature of ABM and potential for diverse waterways in the MSRM can 

provide inconsistent results. With many calculations and unknown details to primitives, 

identifying where changes in programming affect changes in model output can be complicated. 

Netlogo supports effective troubleshooting by identifying agents and areas of code when an 

error occurs. This can still be confusing as errors can occur with similar model parameters 

executed successfully in prior models. 

The modified BFS algorithm for maritime traffic provides efficient and accurate route 

replication. The find exit error mentioned previously is a limitation of the MSRM. This error 

prevents the model from correctly functioning in all waterway scenarios with certain LP and 

LPW parameters. Model iterations can incur errors where they are unable to proceed. The 

model will not identify this as an error, causing the model to run indefinitely until  halted by the 

operator. This error only occurs when LP and LPW values are higher than needed for the given 

waterway. This will rarely occur as LP and LPW values can be modified with the theoretical 

exception of specific waterway scenarios with large changes in channel width.  

The scale of the map in Netlogo determines the level of accuracy when compared to AIS 

data. With computational demand proportional to the number of patches in the waterway, and 

limitations to world size in Netlogo, the scale of the basemap is limited. This can provide 
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inaccurate results as model production may follow patches that do not align with AIS data at a 

higher resolution. This will also change BFS calculations as the location of boundaries are crucial 

for determining the shortest path. As a result, the MSRM produces data that can appear to 

travel on land when overlaid by continental shape files or AIS data.   

4.3.2. Big Data and Heatmap Limitations 
 Big data analytics is crucial for verifying and calibrating the MSRM. There is a 

limit to the amount of data needed to provide accurate analysis of model results. With too 

much data, computational times suffer, data cleanup can be more complicated, and results may 

not benefit from the increase in data. A limit exists to how much data is needed for the 

application of the MSRM. This also applies to other computational models as too much data can 

cloud analysis (Sui, Goodchild, & Elwood, 2012). 

 GIS tools are useful for cleaning large AIS datasets. The process involves selecting 

vessels based on various data values and manually removing them from the dataset. In the Port 

Metro example, vessels with speeds of zero are removed to prevent ships that are idle or at 

anchor from affecting heatmap calculations. Directional analysis removed vessels with headings 

indicating outbound port travel. However, some data can be removed that is pertinent for the 

research question. For instance, accidents or abnormal ship behaviour can provide useful 

information related to the research objective. By identifying this data as not useful, anomalies 

crucial for detailed waterway analysis may be neglected.  This also applies to noise or spurious 

data that is removed manually due to its proximity to the expected path. 

 Heatmap radii greatly affects model results. There is not one suitable setting for 

all scenarios, and it is hard to determine what heatmap radius provides the best representation 
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of model comparison. Smaller heatmap radii emphasize slight deviations from AIS data. Larger 

heatmap radii are more generous, providing scores to model iteration points that fall further 

away from AIS data.  Where and when heatmap radii should be used depends on detailed 

analysis of the waterway. The Port Metro Case study shows that the radii can change the 

rankings of model iterations. LP values tend to remain the same as altering values creates more 

drastic simulation changes, and consistent results regardless of radii is to be expected. LPW 

rankings are more complicated and small changes to LPW create slight differences in simulation 

results. The heatmap radius will change LPW rankings and determining how trends in LPW 

change with heatmap radius is complicated.  

4.4. Model Improvements  
Current model results provide the necessary insight to examine the use of big data 

analytics and ABM for Maritime simulation scenarios. Potential model improvements include 

reducing human input, improving model efficiency, and reducing errors. 

4.4.1. Reduce Human input 
The need for human input to select suitable LP and LPW values for analysis can be 

tedious. Applying the MSRM to a waterway requires a preliminary assessment where manual 

selection of parameters is needed.  The process can become more difficult with complex 

waterways. Incorporating the ability to automate initial parameter selection would reduce the 

time required to select LP and LPW values and avoid trial and error when running simulations. 

This would limit the need for human input and optimize the initial waterway 

assessment.  Developing a script to analyse AIS data along the simulation route, information 

could be gathered regarding the narrowest channel or the area with the smallest number of 
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pixels between opposite or adjacent land borders. This could provide a starting point for 

selecting LP values that would be ideal for further analysis. 

The process of comparing, importing/exporting data and running simulations could be 

incorporated into one operation, automating the process.  Although hypothetical, this would 

require extensive programming that would need to run model iterations automatically based 

on results from computing heatmap scores.  By calculating the shortest path algorithm without 

any modification, (default BFS) the results can be compared to large AIS datasets using 

heatmap analysis. By repeating this process with increasing LP and LPW values, an ideal 

heatmap score can be reached indicating optimal replication of the AIS data.  The average 

heatmap score and SPDHC can be determined for different model iterations and inform 

parameters for new model output. Netlogo’s online “Hub-net” could be used to update LP and 

LPW values. This would allow for python scripts or other tools in GIS software to communicate 

with Netlogo to provide a way to automate model creation. 

4.4.2. Improve Model Function 
The modified BFS algorithm is not suited for heterogenous waterways. Transitioning 

from open water navigation with few islands to tight waterways with many obstacles would 

require vastly different LP values to replicate AIS data. The Port Metro case study provides an 

example of this, as simulations fail to accurately replicate AIS data at the end of the 

simulation.  Addressing this problem with current model functionality would be complicated 

and require significant changes to core model functions. A simpler solution would be to run 

several simulations at different portions of the route. With a greater LP, more patches on route 

to the destination would be affected, producing path likeness more accurately for open water 
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navigation. For tight waterways, reducing LP and increasing LPW is needed.  For instance, LP10 

LPW2 for open waterways and LP2 LPW3 for tight sections. Creating berth and anchorage sites 

with GIS software, the user can ensure that the MSRM simulates all sections of the waterway. 

Although this would add significant time to process and analyse, combining the various models 

would allow for route replication in changing scenarios and ultimately, more accurate path 

replication. 

The Find-Exit function is crucial for allowing vessels to travel to port regardless of its 

proximity to land; if the destination is still “reachable” (above the min depth specified). This 

allows for LP and LPW values needed for navigation, without restricting access to port or 

anchorages near land. Without this function, errors would occur where the ship would be 

unable to reach the destination. Hypothetically a situation could exist where the model would 

encounter a similar situation without being close to the destination. This would create errors 

and not allow the ship to continue even if the specific channel is used in real-life navigation. 

Implementing a function that occurs in the movement stage of the model, similar to “find-exit”, 

could identify areas where the simulation would get stuck. However, without any knowledge of 

real data it would be impossible to know where this is necessary or where altering LP and LPW 

values would provide the same adjustment needed to reach the destination. A possible solution 

would be to recalculate BFS values if the ship returns to the same pixel more than once. Using 

the point at which the model is stuck to recalculate BFS values from the destination, a find-exit 

function could be applied to the start point with the destination being a next most favourable 

path that does not lead to the same point.   
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The precise movement of simulation results appear to have many small route 

adjustments that are not present in AIS data. Due to the frequency of point capturing in 

Netlogo, slight changes in route choice reduce the smoothness of the path.  Increasing the tick 

duration of the model would reduce density of points when collecting footprints and produce 

smoother lines when resampling in GIS software. However, this would reduce the amount of 

route selection detail when observing model results.   

4.5. Analysis changes 

4.5.1. Simulate Multiple Locations  
During model development, other waterways (Victoria Harbour in HK and the Gulf of 

California) were tested to ensure correct model performance in all scenarios. Both examples 

were more simplistic as less obstacles and a more direct choice of path selection allowed for 

less modification of BFS values to navigate.  Without AIS data from these regions a full analysis 

was not possible. Acquiring AIS data from other ports would allow similar case studies to be 

performed. This would improve the reliability of the MSRM, as a variety of tests can increase 

confidence in strong model performance. Other ways to improve model analysis would include, 

analyzing a greater variety of heatmap radii, applying different heat map estimation 

calculations, increasing the amount of model iterations used in analysis, redoing SWE 

calculations with a different selection of AIS data. Most of these solutions improve model 

analysis by increasing confidence of the findings with more data and more research angles to 

explore.      

4.5.2. Simplify SPDHC Comparison  
SPDHC provides information about model performance at various points of the 

simulation; Without this, detailed analysis of model performance would not be 
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possible.  Comparing SPDHC data points in graphs or spreadsheets to locations on the map or 

model output can be challenging. Manual reference of data series ID and point ID is required to 

identify where the data aligns with simulation points.  Creating a function in R or other 

programming languages designed for statistical computing and graphics, could help automate 

the process. This would simplify model iteration analysis by allowing the user to compare areas 

of interest quickly and confidently in the data series or map output.  

4.5.3. Linear Trajectory Analysis  
 AIS point data can be seen as a representation of trajectories each ship takes in a 

continuous journey.  This allows static position or trajectory density maps to be produced. 

Heatmap analysis uses point density to determine model results however, this can be 

problematic as heatmaps may be difficult to interpret especially when quantifying the intensity 

of maritime traffic (Tixerant, Guyader, Gourmelon, & Queffelec, 2018). To deal with this, an 

estimation on ship trajectories as line data can be an effective way to compare MSRM model 

results to AIS data. This would allow model routes to be represented as trajectories addressing 

some of the key issues with point data. For example, static ships sending a greater number of 

messages, disproportionately affecting the distribution of point data density.  However due to 

the quality of much of the individual vessel data and the small scale of the case study region 

(PMV), larger gaps in AIS data can negatively impact many vessel trajectories. Many studies 

primary focus is determining the trajectories of ships between AIS data points. For example 

Borokowki (2017) presents a algorithm to predict ship movement trajectories (Borkowski, 

2017). 
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4.6. Additional functions 
The simplicity of the BFS algorithm and efficient implementation in the MSRM allows for 

quick computation with thousands of nodes (patches in Netlogo). The MSRM can add as many 

vessels as there are patches (in theory), without the need to calculate each agent's shortest 

path to various destinations. This is very important for further implementation as it allows for 

efficient BFS calculations for many destinations without increasing computational demand 

based on the number of vessels.  This also allows for separation of route calculation and 

movement functionality. Without reducing the execution speed of Netlogo, simulations 

complete the entire ship journey (>100,000 ticks) faster than the ability to update the image; 

requiring a reduction in execution speed to observe simulations live. The headroom in the 

move section is intentional, providing the option to add additional functionality with ease. The 

operations in the MSRM were designed with the intention of having additional simulation 

criteria. Significant effort into ensuring compatibility with increased movement complexity and 

port/anchorage interaction was a priority during development.   

4.6.1. Altering Ship Movement 
Addressing the potential “find-exit” error during navigation would provide similar 

functionality needed to incorporate ship to ship interaction. Large BFS values can create a 

scenario where vessels cannot proceed. The simplest solution to this problem would be to alter 

a vessel's course to return to the desired trajectory from its new location (Wu, Peng, Ohtsu, 

Kitagawa, & Itoh, 2012). The same requirement is needed to provide ship to ship interaction 

and other shortest path deviations due to weather or other obstructions.  
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Netlogo provides agents the ability to identify various parameters including the location 

of other agents. Avoiding moving obstacles can be complicated as the agents must be aware of 

the ship's future location and direction of travel. Using the list of patches assigned to each 

agent provides information regarding future patch selection. However, determining where and 

when vessels meet may be difficult.  

 Assigning priority to vessels based on real traffic procedures provides a set of rules to 

be followed in various traffic scenarios. This includes providing weather data and other events 

that may change vessel course. Following applicable traffic rules and weather events, ships 

could alter their route and continue shortest path calculations from their new location.  The 

new location would need to adhere to the “reachable” clause ensuring it remains safe for 

travel. This requires reducing speed parameters to represent stopping and slowing down to 

provide safe passage. To replicate realistic movement, data on rudder motion, wind speed and 

direction of wave/currents is necessary (Wu et al., 2012).  Furthermore, multiple ships 

interacting significantly increases complexity. These problems are difficult to describe and 

require extensive research and programming to provide even the most basic level of ship 

interaction and on-the-fly route selection. 
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5. Conclusion 
Analysis of the MSRM proves that a modified BFS algorithm designed for maritime 

navigation, can accurately and efficiently produce route selection that replicates cargo vessel 

AIS data. Identifying land or shallow water using bathymetry data and GIS analysis, provides 

boundaries for manipulating BFS values and ultimately route selection. In the MSRM, LP is used 

to determine the number of nodes in proximity to land that will be modified. LPW acts as a 

multiplier, increasing BFS values linearly as the distance from land increases. These simple 

modifications allow for efficient functionality and quick computation. Using various analysis 

techniques, details how different parameters for route selection affect replication of real 

shipping routes. Analysis using QGIS and Excel prove the MSRMs ability to accurately replicate 

shipping routes in hard to navigate waterways and provides insight into the detailed 

functionality of the algorithm.  

 AIS data is necessary for comparing simulations to real data. Detailed examination of 

model performance can be determined by using big data analytics in the form of heatmap 

analysis, not possible without large datasets. SWE analysis using a small amount of hand 

selected AIS data, highlights the benefits of big data when analyzing maritime route replication. 

Heatmaps utilize big data effectively by showing where vessels travel more frequently providing 

enhanced detail over basic shipping routes.  Heatmaps also reduce errors present in big data as 

outliers do not significantly affect simulation comparison.  Directional versus non directional 

analysis emphasizes the need for extensive data cleaning when using big data.  Heatmap 

analysis and SPDHC present detailed insight into changes model parameters have on route 

selection.  
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ABM tends to replicate phenomena where real world data can be used to validate and 

calibrate simulation models. Big data is particularly useful as it provides many options for 

analysis and increases confidence in the results. However, Big datasets increase the difficulty of 

model comparison as extensive data cleaning can be required. Furthermore, limits to the 

amount of data often exists when using various software such as ABM toolkits. The results of 

the MSRM show that analysis using big datasets increases the detail of model performance 

characteristics.  Determining exactly how much data is needed to best replicate vessel 

behaviour is difficult. The amount of detail in comparing AIS data to model results will reach a 

limit before any increase of data may not have a significant change if any on route analysis. 

Future analysis could experiment with incrementally reducing the amount of data used for 

comparison.  By reducing the amount of data, it is possible to determine how much is required 

to provide similar results to that of this study.    

In the Port Metro case study, narrow channels and many islands provide complicated 

route selection, ideal for testing the MSRM. The LP and LPW parameters will differ amongst 

waterways but in the case of Port Metro, a LP of 3 was most effective. LPW rankings were less 

predictable and depended heavily on the heat map radii used for analysis. LP values higher than 

5 failed to create accurate paths with such narrow waterways in the simulation region. LP 

values lower than 3 provided degrading performance with smallest LPW values failing to choose 

the correct route (LP2 LPW2).  Overall, results show that larger LP and LPW parameters increase 

the amount of obstacle avoidance. This was hypothesized during algorithm development and is 

supported by the findings in the Port Metro case study.  When ports or anchorages exist within 

LP boundaries, additional modification is necessary for vessels to reach their destination. The 
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“find-exit” function allows vessels to reach the destination regardless of proximity to land and is 

crucial for a model designed to simulate maritime port navigation. However, simulations have 

the possibility to run into a similar error when high BFS values cause the vessel to get stuck. 

Solutions to this problem can provide potential applications for further research.  Altering 

routes during the movement phase of the simulation would require extensive programming. 

Possible solutions would present functionality necessary for mid-navigation obstacle avoidance. 

This would provide the ability to include additional functions to the MSRM, for example, ship to 

ship interaction, weather, and other safety assessments. 

Route calculations and movement procedures are programmed as separate functions 

for a variety of reasons. First, it allows for simple addition of waypoints (anchorages and ports) 

and ships by importing GIS data or with manual selection on the Netlogo interface. Researchers 

can test various scenarios by adding agents as they wish, without requiring additional models. It 

also enables changing parameters for different waypoints, as BFS calculations are accomplished 

after each waypoint is created. Isolating movement parameters allows for fast execution of 

route selection. This provides potential experimentation of maritime scheduling, as fast 

execution time allows for quicker, more efficient simulations. Reducing computational demand 

in the movement section leaves ample space to add more complex movement 

experimentation.  

Netlogo and other ABM toolkits provide a useful and simplistic approach to modelling 

that assists in the creation of the MSRM or similar models.  Without ABM toolkits, 

programming the MSRM would be out of scope for this research and require significantly more 

expertise and time. ABM toolkits simplify the process but also create difficulties for researchers. 
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Primitive function is often not accessible and limitations in Netlogo or other ABM toolkits can 

be harder to overcome or avoid without full control of all functions.  

GIS analysis is a useful tool for presenting and analysing model and AIS data. It allows for 

connection to Netlogo using extensions and greatly improves the ability to analyse model 

results. QGIS accommodates visual representation of model results and the creation of maps 

for output. It also provides heatmap calculations that are exported to Excel for further graphing 

and analysis.  
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8. MSRM Code 
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9. Glossary  
 

BFS- breadth first search 

A*- A *(star)  

ABM- agent based model 

SPDHC- sequential point data heatmap comparison 

MSRM- Maritime Ship Routing Model  

GIS- Geographic Information Systems 

AIS- Automatic Identification System 

SAIS- Satellite based Automatic Identification System 

GPS- Global Positioning System 

PMV- Port Metro Vancouver 

LP- Land Proximity 

LPW- Land Proximity Weight 

NN- Nearest Neighbor 

SWE- Ship-Wise Errors 

CA- Cellular Automata 
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