
Wilfrid Laurier University Wilfrid Laurier University 

Scholars Commons @ Laurier Scholars Commons @ Laurier 

Theses and Dissertations (Comprehensive) 

2022 

The Kepler Problem on Complex and Pseudo-Riemannian The Kepler Problem on Complex and Pseudo-Riemannian 

Manifolds Manifolds 

Michael R. Astwood 
Wilfrid Laurier University, astw8140@mylaurier.ca 

Follow this and additional works at: https://scholars.wlu.ca/etd 

 Part of the Dynamical Systems Commons, Dynamic Systems Commons, Geometry and Topology 

Commons, Ordinary Differential Equations and Applied Dynamics Commons, Other Astrophysics and 

Astronomy Commons, and the Other Physics Commons 

Recommended Citation Recommended Citation 
Astwood, Michael R., "The Kepler Problem on Complex and Pseudo-Riemannian Manifolds" (2022). 
Theses and Dissertations (Comprehensive). 2503. 
https://scholars.wlu.ca/etd/2503 

This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for 
inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ 
Laurier. For more information, please contact scholarscommons@wlu.ca. 

https://scholars.wlu.ca/
https://scholars.wlu.ca/etd
https://scholars.wlu.ca/etd?utm_source=scholars.wlu.ca%2Fetd%2F2503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/179?utm_source=scholars.wlu.ca%2Fetd%2F2503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/117?utm_source=scholars.wlu.ca%2Fetd%2F2503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/180?utm_source=scholars.wlu.ca%2Fetd%2F2503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/180?utm_source=scholars.wlu.ca%2Fetd%2F2503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/121?utm_source=scholars.wlu.ca%2Fetd%2F2503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/130?utm_source=scholars.wlu.ca%2Fetd%2F2503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/130?utm_source=scholars.wlu.ca%2Fetd%2F2503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/207?utm_source=scholars.wlu.ca%2Fetd%2F2503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/etd/2503?utm_source=scholars.wlu.ca%2Fetd%2F2503&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca


The Kepler Problem on Complex and

Pseudo-Riemannian Manifolds

By
Michael Robert Astwood

BSc Honours Mathematical Physics, University of Waterloo, 2021

THESIS
Submitted to the Department of Mathematics

Faculty of Science
in partial fulfilment of the requirements for the

Master of Science in Mathematics
Wilfrid Laurier University

2022

Michael R. Astwood 2022 ©



Abstract

The motion of objects in the sky has captured the attention of scientists and

mathematicians since classical times. The problem of determining their motion has

been dubbed the Kepler problem, and has since been generalized into an abstract

problem of dynamical systems. In particular, the question of whether a classical

system produces closed and bounded orbits is of importance even to modern math-

ematical physics, since these systems can often be analysed by hand. The afore-

mentioned question was originally studied by Bertrand in the context of celestial

mechanics, and is therefore referred to as the Bertrand problem. We investigate the

qualitative behaviour of solutions to the generalized Kepler problem, in which parti-

cles travel in an abstract space called a manifold. We find that although Bertrand’s

results do not generalize to even the most simple non-trivial example of a com-

plex manifold, we can partially reduce the problem through the use of a function

called a momentum map. We then study the generalized Kepler problem on pseudo-

Riemannian surfaces of revolution. In this case we are able to demonstrate that a

generalization of Bertrand’s theorem holds, and we compute explicit expressions for

the shape and period of the orbits. Furthermore, we compute a generalization of

the Laplace-Runge-Lenz vector, which allows one to determine all solutions to the

equations of motion in terms of three constant quantities.
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1 Introduction

The Bertrand problem is the century and a half old question: ‘which classical

mechanical systems have the property that all of their bounded orbits are closed?’

[1] The Bertrand property is related to the integrability of a Hamiltonian system.

In particular, a Hamiltonian system is Bertrand if it is maximally superintegrable,

meaning it admits a maximal number of conserved quantities. It is known that

the only Bertrand systems whose configuration space is R3 are the Kepler system,

which classically describes the motion of a particle in a 1/r potential, and the simple

harmonic oscillator. Both of these systems arise in some way from the Green’s

function of the Laplace-Beltrami operator of the configuration space. In general,

the question of whether a system arising from such a Green’s function is Bertrand

is open for many manifolds. The problem has been entirely worked out in the case

where the configuration space is a Riemannian three-manifold [4, 5, 2, 3]. It is also

interesting to study superintegrable systems on surfaces [10, 8, 9, 6, 7]. We study

the integrability of systems on a complex model space, the projective space CP2.

The study of dynamics on complex projective space has been studied [12, 11] and

is relevant to quantum superintegrable systems [13]. Later, we work out an explicit

solution of the Kepler problem on pseudo-Riemannian surfaces of revolution [14],

which have not been extensively studied in the context of the Bertrand problem

[15].
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1.1 Conventions

A variety of conventions are used in this thesis which may not be universally

recognized. This section aims to clarify some of the choices in notation found herein.

First of all, this thesis will use the Einstein summation convention.

Remark 1.1 (Einstein Convention). Consider a mathematical expression contain-

ing two or more indexed quantities to be summed over, such as for example, Wbd =∑M
c=1

∑N
a=1X

c
abdY

ac. We will ignore the summation symbol whenever an index ap-

pears in both the superscripts and subscripts appearing in the expression. So the

previous expression would instead be writtenWbd =
∑M

c=1X
c
abdY

ac, where the index

a is assumed to be summed over.

The following is a table of commonly used symbols and their names/descriptions.

Symbol Description

M Manifold of dimension n

C∞(M) Space of smooth functions from M to R

L2(M) Space of L2-functions on M

TM Tangent bundle of M

T ∗M Cotangent bundle of M

2



T n
k (M) Tensor fields of valence (n, k) over TM

ΛkE = Alt(
⊗k

i=1E) Exterior power of a vector bundle E

Λ•E =
⊕n

k=1 Λ
kE Exterior algebra of a vector bundle E

X(M) = Γ(TM) C∞(M)-Module of vector fields on M

Ωk(M) = Γ(ΛkT ∗M) C∞(M)-Module of differential k-forms on M

Ωk
cl(M) Closed differential k-forms on M

Ω•(M) =
⊕n

k=1Ω
k(M) Algebra of smooth differential forms on M

d : Ωk(M) → Ωk+1(M) Exterior derivative

∧ : Ωk(M)× Ωℓ(M) → Ωk+ℓ(M) Exterior product

: X(M)× Ωk(M) → Ωk−1(M) Interior product

g ∈ Γ(T ∗M ⊗ T ∗M) Riemannian metric on TM

h ∈ Γ(TC ∗M ⊗ T
C ∗
M) Hermitian metric on TCM

♯ : Ω1(M) → X(M) Sharp map induced by g (index raising)

♭ : X(M) → Ω1(M) Flat map induced by g (index lowering)

∇ : X(M)× X(M) → X(M) Levi-Civita connection of g

⋆ : Ωk(M) → Ωn−k(M) Hodge dual on M

gradf = df ♯ Definition of the gradient

3



divX = tr∇X Definition of the divergence

ω ∈ Ω2
cl(M) Symplectic form

Table 1: List of commonly used mathematical symbols and expressions.

Here the Hodge star operator for a Riemannian metric g on an orientable man-

ifold is the unique linear map ⋆ : Ωk(M) → Ωn−k(M) satisfying ⟨α, β⟩dVg = ⋆α∧β,

where dVg is the volume form associated to g.

1.2 Hamiltonian Mechanics of Point Particles

Mechanics is among the oldest disciplines of physics. Out of the many concepts

introduced by mathematical physicists, the phase space first introduced to classi-

cal mechanics has become increasingly relevant to modern physics. While Hamilto-

nian mechanics originally described idealized point particles interacting in Euclidean

space, the advent of symplectic and contact geometry in describing mechanical sys-

tems has allowed for the setting to vary drastically, permitting researchers to de-

scribe complex phenomena in quantum mechanics, statistical mechanics, and other

applications. Additionally, the theory of classical fields allows one to extend Hamil-

tonian mechanics to an infinite-dimensional phase space, which can describe the

motion of extended objects such as strings, deformable solids and fluids, as well as

gravitational and electromagnetic fields. Much of the following section can be found

in standard books on geometric mechanics and symplectic geometry such as those

of Cannas da Silva and Arnold [16, 17].
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A common approach to deriving Hamilton’s equations is to begin with the La-

grangian formulation of mechanics. This is done using the calculus of variations,

which is a way of defining the notion of a critical point for a functional. This frame-

work can be used to reinterpret many important problems as optimization problems,

including the problem of finding the extremal paths of particles on some manifold.

A fully rigorous calculus of variations for functions on a Riemannian manifolds is

defined by the variational bicomplex [18], which defines variations in terms of infinite

jets. Calculus of variations can also be used to study the symmetries of a dynami-

cal system, since there may be infinitely many critical points of a given functional

related by some transformation [19].

We will focus here on the Hamiltonian mechanics of point particles interacting on

a Riemannian manifold M . A point particle consists of two components: a positive

real number m called the mass, and a curve γ : I → M called the trajectory. The

trajectory describes the motion of the particle. For a system of N distinguishable

particles with trajectories {γ1, . . . , γn}, the space of all possible configurations of

the system is the manifold MN . We wish to find a functional of these trajectories

whose critical points model the trajectories of particles in the real world. According

to experimental evidence, a suitable candidate functional appears to be the action

functional, defined below.

Definition 1.1 (Action). Consider a system of N ideal point particles, travelling

along trajectories {x1(t), . . . , xN (t) : t ∈ I ⊆ R} in a Riemannian manifold M of

5



dimension n with metric g. The action functional S : C∞(I × TM)N → R of the

system is defined by the following formula.

S[x1, . . . , xN ] =

∫
I
L(x1(t), . . . , xN (t), ẋ1(t), . . . , ẋN (t), t) dt (1.1)

Here L : TMN → R is called the Lagrangian function. It is most common to consider

Lagrangians of the form L = K − V . Such a Lagrangian is called separable. K :

TM → R denotes the kinetic energy of the system, which only explicitly depends on

the velocities (ẋ1(t), . . . , ẋN (t)) ∈ Tx1(t),...,xN (t)M
N . The function V is the potential

energy of the system, which only depends on the positions {x1(t), . . . , xN (t)}. We

often write S =
∫
I L(x, ẋ, t) dt. The kinetic energy K can be interpreted as a

weighted measure of how much motion is taking place in the system, while the

potential energy V usually describes interactions between the particles as well as

with any extraneous forces.

To determine the critical points of such a functional, we now turn to defining

the variational derivative.

Definition 1.2 (Variational Derivative of Action). Let I be an interval and let

M be a smooth manifold. Consider a space of paths and their tangent vectors,

F ⊆ C∞(I, TM). Define a family of functionals SL ∈ F∗ for each L ∈ C∞(TM×I),

and let F0 ⊆ L2(I) be a suitable space of test functions. For each φ ∈ F0 consider

the functional DφSL on F given by

(DφSL)[f ] = lim
ϵ→0

SL[f + εφ]− SL[f ]

ε
, f ∈ F (1.2)

6



This is called the Gateaux derivative of SL in the direction of φ. If this limit is

independent of φ ∈ F0, we say SL is differentiable. The usual variational derivative

is then defined by the formula

〈
δS

δf
, φ

〉
= DφSL[f ]. (1.3)

This definition takes some dissecting to fully understand. Let us explicitly cal-

culate the functional δS
δf , given SL =

∫
I L(x, ẋ, t) dt as seen above, with I = [a, b]

and M = R. Assume that L is analytic, and assume that φ and φ̇ are bounded.

Then,

〈
δS

δf
, φ

〉
= lim

ε→0

1

ε

(∫
I
L(x+ εφ, ẋ+ εφ̇, t)− L(x, ẋ, t) dt

)
= lim

ε→0

1

ε

(∫
I

[
L(x, ẋ, t) +

∂L

∂x
εφ+

∂L

∂ẋ
εφ̇+O(ε2)

]
− L(x, ẋ, t) dt

)
=

∫
I

∂L

∂x
φ+

∂L

∂ẋ
φ̇dt

=

∫
I

(
∂L

∂x
− d

dt

∂L

∂ẋ

)
φdt+

∂L

∂ẋ
φ̇

∣∣∣∣b
a

Now, if we require from the beginning that the boundary terms vanish, we can

directly read off the usual expression for the functional derivative as presented in

physics textbooks. However, since infinite-dimensional vector spaces are not always

isomorphic to their dual, we should be careful to note that δS
δf only defines a function

from I to R ifDφSL[f ] can be written in integral form as
∫

δS
δf (L)

∣∣
t
h(t)dt. In general,

δS
δf is a distribution, and we should interpret the expression ⟨ δSδf , φ⟩ as the natural

pairing defined between any vector and an element of the dual space. In the case

7



where φ̇ is taken to always vanish at the boundaries, it makes sense to write δS
δf as

a function, and we have

δS

δf
=
∂L

∂x
− d

dt

∂L

∂ẋ
. (1.4)

If the boundary terms do not vanish, the functional derivative can only be inter-

preted in the sense of distributions, and the above equation would include instances

of the Dirac delta distribution. The requirement that L is a critical point of S

is given by the condition that δS
δf = 0. Therefore, we can see that for the simplest

one-dimensional mechanical systems, the equations governing their motion are given

by,

∂L

∂x
=

d

dt

∂L

∂ẋ
(1.5)

For a system of N particles in n dimensions, with trajectories given by {xji (t) : i =

1, . . . , N, j = 1, . . . , n} we have,

∂L

∂xji
=

d

dt

∂L

∂ẋji
(1.6)

A very common model for physical systems is to take the kinetic energy to

proportional to the Riemannian norm of some vector (this is clearly convex). For the

remainder of the section we will consider Lagrangians of this form, where L = K−V .

Definition 1.3 (Separable Lagrangian). If L = K − V with ∂K
∂xi = 0 for all i and

∂V
∂ẋi = 0 for all i, we say L is separable.

Separable Lagrangians are typically easier to study with numerical and analytic

methods than nonseparable Lagrangians. Note that if L is of the form K − V , but

8



K depends on the position variables, then L is not separable. This happens, for

instance, when the metric g depends on xi. Therefore, many systems on curved

manifolds are non-separable.

Definition 1.4 (Natural Kinetic Energy Function). Let M be an n-dimensional

manifold and let {x1, . . . , xN} be the trajectories of N particles on this manifold.

The kinetic energy of the system is defined as,

K =

N∑
i=1

1

2
mig(ẋi, ẋi) (1.7)

Where mi, i = 1, . . . , N are the masses of each particle.

We have so far only discussed the Lagrangian formalism for mechanics, in which

we solve the second order system (1.6) for the trajectories xi on MN . However,

with a particular change of variables we can convert this to a first order system for

trajectories (xi, pi) on TM
N , which we dub the phase space of the system. This is

the foundation of Hamiltonian mechanics. We will often call the curve (xi(t), pi(t))

in TMN the trajectory of the particle in phase space.

Definition 1.5 (Legendre Transform). Let M be a smooth manifold of dimension

n, and let {xji : i = 1, . . . , N, j = 1, . . . , n} be coordinates on some patch U ⊆MN ,

and let L be a Lagrangian function. The Legendre transform of L with respect to

the coordinates {xji} is defined as the following function,

H(x1, . . . , xn, p1, . . . , pn) =
N∑
i=1

n∑
j=1

∂L

∂ẋji
ẋji − L(x1, . . . , xn, ẋ1, . . . , ẋn) (1.8)

9



The Legendre transform of a well-behaved function defines a system of coordinates

{(xji , pij)} on T ∗MN where for all x ∈ MN , if v ∈ TxM
N then p =

(
∂L

∂ẋj
i

∣∣
ẋ=v

∂ji

)♭

.

In this sense the Legendre transform can be seen as an isomorphism between TM

and T ∗M . When L is of the form K − V with K defined by (1.7) we see that

this isomorphism is exactly the musical isomorphism determined by g. It is worth

noting that the Legendre transform can be defined for any form of Lagrangian with

non-vanishing second derivatives, not just those of the form K − V .

There is one small issue if we use the above function H as our definition for a

Hamiltonian. The function is written in terms of coordinates on TMN rather than

T ∗MN . To fix this, we need to invert ∂L
∂ẋi

= pi to find an expression for ẋi, and

substitute this into L. This can be tedious, but luckily if the Lagrangian is of K−V

type we can come up with a shortcut. Observe that

∂L

∂ẋi
=

1

2

∂

∂ẋi
mig(ẋi, ẋi) = miẋ

♭
i .

So we have H = 2K − (K − V ) = K + V .

Theorem 1.1. Let L be a Lagrangian function on TMN . If L is of K − V type,

and K = 1
2

∑
imig(ẋi, ẋi), then the Legendre transform of L is H = K̃+V where K̃

is the pullback of K under the musical isomorphism induced by g. We often write

K̃ = K.

For our choice of kinetic energy function, the equivalent formula in terms of the

10



new variables is given as follows. Note that ∂L
∂ẋi

= ∂K
∂ẋi

= miẋ
♭
i.

K =
∑
i

1

2
mig(ẋi, ẋi)

=
∑
i

1

2
miẋ

♭
i(ẋi)

=
∑
i

1

2mi
pi(p

♯
i)

=
∑
i

1

2mi
g−1(pi, pi)

From this we see that ∂H
∂pi

= 1
mi
p♯i = ẋi (since ♭ is the inverse of ♯). This is the first of

Hamilton’s equations. Meanwhile, ṗi =
d
dt

∂L
∂ẋi

= − ∂L
∂xi

= − ∂H
∂xi

by (1.6). This gives

us the second of Hamilton’s equations. A more general formulation of Hamilton’s

equations can be written in terms of the flow of a vector field called the Hamiltonian

vector field.

Definition 1.6 (Symplectic Form). Let M be a smooth manifold of dimension

m = Nn, and let ω ∈ Ω2(M) be a closed two-form. This two-form is called a

symplectic form if it is non-degenerate. That is, for all X ∈ X(M), ω(X,Y ) = 0 for

all Y ∈ X(M) if and only if X = 0.

A smooth manifold endowed with a symplectic form is called a symplectic mani-

fold. The dimension of a symplectic manifold is always even, and in fact ifM = T ∗N

for some N , then the following normal form characterization for ω exists.

Definition 1.7 (Darboux Coordinates). LetM be a manifold of dimension n. Then

11



in any local trivialization U × Rn ⊆ T ∗M , the standard symplectic form Ω is,

Ω =
n∑

i=1

dxi ∧ dpi. (1.9)

Where {xi : i = 1, . . . , n} is a local system of coordinates on U and pi are the

corresponding coordinates on Rn with respect to dxi.

In general, in a small enough patch U on a symplectic manifold M with sym-

plectic form ω, one can find a coordinate system on U so that ω is of the form (1.9).

Remark 1.2. Observe that the standard symplectic form Ω is exact. That is,

Ω = dλ where λ is defined as

λ =
n∑

i=1

xidpi (1.10)

Definition 1.8 (Tautological One-Form). Let xi, pi be defined as above. Then

λ =
∑n

i=1 x
idpi is called the tautological one-form.

In physics, symplectic manifolds appear as the phase space of a system which

conserves energy. That is, a dynamical system for which the Hamiltonian is constant

in time along each trajectory. In general, a function of the coordinates xi, pi on T ∗M

which is constant along each trajectory is called an integral of motion for the system.

Definition 1.9 (Locally Hamiltonian Vector Field). Let M be a symplectic mani-

fold, let U be an open subset ofM , and let f ∈ C∞(T ∗M). Then f defines a unique

vector field Xf on T ∗U called the Hamiltonian vector field associated to f , defined

12



so that

df = Xf ω (1.11)

Conversely, if X ∈ X(T ∗U) and X ω is exact, we say X is a locally Hamiltonian

vector field. If X ∈ X(T ∗M) and X ω is exact on all of T ∗M , then X is just called

a Hamiltonian vector field.

It is also useful to define the following operation on functions, which makes

computations using Hamiltonian vector fields somewhat simpler.

Definition 1.10 (Poisson Bracket). Let f, g ∈ C∞(T ∗M). The Poisson bracket

{f, g} of f and g is defined as the following formula,

{f, g} = ω(Xf , Xg) (1.12)

In particular, in Darboux coordinates this becomes

{f, g} =
dimM∑
i=1

(
∂f

∂xi
∂g

∂pi
− ∂g

∂xi
∂f

∂pi

)
(1.13)

Remark 1.3. Notice that XHf = df(XH) = ω(Xf , XH) = {f,H} = df
dt .

Using the Poisson bracket we can give a proper definition of an integrable system.

Definition 1.11 (Integrable System). Consider a Hamiltonian system on some

configuration space M of dimension n. Suppose there are n conserved quantities

f1, . . . , fn : T ∗M → R so that df1, . . . ,dfn are linearly independent at each (x, p) ∈

T ∗M , and so that {fi, fj} = 0 for all i, j. Then the system is said to be completely

integrable.
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An integrable system has the remarkable property that it reduces to a much

simpler system of equations on the level sets of the conserved quantities f1, . . . fn.

This is made precise by the Arnold-Liouville theorem.

Theorem 1.2 (Arnold-Liouville). Consider a completely integrable system on an n

dimensional manifold M with n conserved quantities f1, . . . fn. Let Mf = {(x, p) ∈

T ∗M : fi(x, p) = ci, i = 1, . . . n}, where for each i, ci is a constant real number.

Then the following statements hold.

1. If Mf is compact and connected then it is diffeomorphic to the torus Tn =

(S1)n, and in a neighbourhood of Mf we may construct a system of lo-

cal coordinates called action-angle variables I1, . . . In, ϕ1, . . . ϕn, where I1 =

f1(x, p), . . . In = fn(x, p) and ϕ1, . . . ϕn ∈ [0, 2π).

2. The equations of motion become

İk = 0, ϕ̇k = ωk(I1, . . . In), k = 1, . . . n (1.14)

Where ωk is a smooth function of the conserved quantities. Hence the equa-

tions for ϕi are independent and can be solved separately.

In general, the theorem can be extended to the case where the system has more

than n conserved quantities. From this, it is found that if the system is maximally

superintegrable then Mf is one dimensional and therefore diffeomorphic to a circle,

meaning the orbits are closed.

In Darboux coordinates, we can write a particle’s trajectory in phase space as
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(xi, pi) as above, and arrive at Hamilton’s equations as usual.

Theorem 1.3 (Hamilton’s Equations). For a Hamiltonian system with H = K+V ,

the equations of motion d
dt

(
xi, pi

)
= XH((xi, pi)) simplify to the following.

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
(1.15)

Proof. Simply compute {xi, H} = ∂H
∂pi

− 0, and {pi, H} = − ∂H
∂xi .

Now we will describe symmetries of Hamiltonian systems. Let G be a connected

Lie group and let A : G × M → M be a smooth Lie group action preserving

the Hamiltonian H the symplectic form ω. If we write Aϕ : M → M for the

action of some group element ϕ, then for each ϕ ∈ G, A∗
ϕω|q = ω|q for all q ∈ M .

For brevity we write Aϕ(q) = ϕ · q. For a compact, simply connected Lie group

G, any group element ϕ can be written as the Riemannian exponential of some

Lie algebra element ξ ∈ g = Lie(G). This means that the action Aϕ(q) can be

written as exp(tξ) · q. The induced action on T ∗M is called the cotangent lift of

A, and is given by Ãϕ(q, p) = (ϕ · q, ϕ−1 · p). So the action in general is given by

(q, p) 7→ (exp(tξ) · q, exp(−tξ) · p). We can also write the action Aexp(tξ) on T ∗M

parametrized by t as a flow operator associated to some vector field Xξ ∈ X(T ∗M),

so that exp(tξ) · (q, p) = exp(q,p)(tXξ). We call this vector field the infinitesimal

generator of ϕ.

Suppose that for all ϕ ∈ G we have XH◦Aϕ
= XH . Then the functions H

and H ◦ Aϕ determine the same Hamiltonian system. This means that for such a
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Lie group, each solution to Hamilton’s equations determines a family of solutions

induced by the action of A. This family of solutions forms what is known as an

invariant set for the Hamiltonian system.

To characterize the invariant subsets, we can construct a function µ : T ∗M → g∗

called the momentum map for A, which has the property that for each ξ ∈ g, if Xξ

is the infinitesimal generator associated to ξ then,

d⟨µ(x, p), ξ⟩ = Xξ Ω|(x,p) for all (x, p) ∈ T ∗M (1.16)

So if ξ1, . . . , ξk are a complete set of generators for g, we can find µ by solving

the system of ODEs determined by d⟨µ(x, p), ξi⟩ for i = 1, . . . , k. Note here that if

ω = Ω is the standard symplectic form, then we have d⟨µ, ξ⟩ = Xξ dλ = −d(Xξ λ).

So we have ⟨µ, ξ⟩ = Xξ λ. This provides a straightforward way of computing the

moment map.

Definition 1.12 (Momentum Map). Let µ : T ∗M → g∗ be a differentiable func-

tion satisfying (1.16). Suppose that µ is G-equivariant. That is, for all ϕ ∈ G,

ad∗(Aϕ)µ|(x,p) = µ|Aϕ(x,p). Then µ is said to be a momentum map for the action A.

The image of the momentum map is an element of the dual of the Lie algebra.

The quantities ⟨µ, ξ⟩ are to be interpreted as the ‘conserved’ quantities of the system,

as it can be shown that dµ
dt = 0 where d

dt is defined with respect to the Hamiltonian

flow determined by H. The level sets of µ therefore determine some invariant sets

of the Hamiltonian system.
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1.3 Complex Geometry

Complex geometry concerns manifolds with a so-called complex structure. This

is a special kind of linear map related to the manifold which allows one to use

complex coordinates z : U ⊆ M → Cn rather than real coordinates x : V ⊆ M →

R2n. For a self-contained definition, one can begin with a topological space which

is locally homeomorphic to Cn, and perform the usual construction for manifolds

except with the condition that the transition functions are holomorphic. Instead of

a smooth structure, the resulting structure is called a complex structure. Much of

this material is discussed in textbooks on complex geometry or related subjects [22,

20, 21].

Definition 1.13 (Complex Manifold). LetM be a Hausdorff and second-countable

topological space. Suppose there exists n ∈ N so thatM is locally homeomorphic to

Cn. Each local homeomorphism φU : U → Cn is called a chart. Let C be an open

cover of M with the property that for each U ∈ C, U ∼= Cn, and let U and V be

elements of this cover. If for each pair of charts, φU , φV : M → Cn, the transition

function φU ◦ φ−1
V : Cn → Cn is holomorphic, we say the collection ΦC of charts is

a complex atlas (or holomorphic atlas) for M , and we say M is an n-dimensional

complex manifold when endowed with this structure.

We can define the tangent bundle of a complex manifold in a similar way. We

will begin by constructing the real tangent bundle. Let {z1, . . . , zn} be coordi-

nates for M in a patch U . For each i = 1, . . . , n we write zi = xi + iyi. Given
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the real coordinates {x1, y1, . . . , xn, yn}, we can define the tangent bundle of the

underlying 2n-dimensional real manifold. A basis for each fibre is then given by

{∂x1 , ∂y1 , . . . , ∂xn , ∂yn}, which extend to coordinate vector fields locally. Given these,

we can define complex vector fields corresponding to the holomorphic and antiholo-

morphic derivative operators ∂zi and ∂zi .

Definition 1.14 (Complexified Tangent Bundle). We define the complex tangent

bundle by TCM = TM ⊗ C.

Definition 1.15 (Wirtinger Derivatives). LetM be an n-dimensional complex man-

ifold and let {x1, y1, . . . , xn, yn} be real coordinates on U ⊆M . Define the following

sections of TCM |U :

∂

∂zi
=

1

2

(
∂

∂xi
− i

∂

∂yi

)
,

∂

∂zi
=

1

2

(
∂

∂xi
+ i

∂

∂yi

)
(1.17)

Together, the smooth vector fields {∂z1 , ∂z1 , . . . , ∂zn , ∂zn} form a coordinate frame

for TCM |U . These are called the Wirtinger derivatives.

In the coordinate chart U defined above, we can convert our 2n real coordinates

{xi, yi} into n complex coordinates zi defined so that xi = 1
2(z

i+zi) and yi = 1
2i(z

i−

zi). This allows us to generalize many formulas from real differential geometry.

When viewed as a real vector bundle, the complexified tangent bundle has a natural

bundle endomorphism J called a complex structure, which has the property that

J∂xi = ∂yi and J∂yi = −∂xi . In complex coordinates, we then have J∂zi = i∂zi and

J∂zi = −i∂zi .
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Definition 1.16 (Holomorphic/Antiholomorphic Tangent Bundle). LetM be an n-

dimensional complex manifold with complex structure J . The holomorphic tangent

bundle of M is defined to be the +i eigenbundle of J , and is denoted by T (1,0)M .

Similarly, the antiholomorphic tangent bundle is defined as the −i eigenbundle of

J , and is denoted T (0,1)M .

Definition 1.17 (Degree of Complex Differential Form). Let M be a complex

manifold. A degree (p, q) differential form is a section of ΛpT (1,0)∗M ∧ ΛqT (0,1)∗M .

The direct sum decomposition of TCM also allows to decompose the exterior

derivative into a component acting on holomorphic forms and a component acting

on antiholomorphic forms.

Definition 1.18 (Dolbeault Operators). Let d denote the exterior derivative on

Λ•TC ∗M . For a differential form specified in local coordinates by ω = ωIJdz
I ∧dzJ ,

this is given by dω = ∂ωIJ

∂zk
dzk ∧dzI ∧dzJ + ∂ωIJ

∂zk
dzk ∧dzI ∧dzJ , with I and J being

multi-indices denoting the holomorphic and antiholomorphic components of ω. The

holomorphic Dolbealt operator ∂ is then defined in coordinates by

∂ω =
∂ωIJ

∂zk
dzk ∧ dzI ∧ dzJ , (1.18)

and the antiholomorphic Dolbeault operator ∂ by

∂ω =
∂ωIJ

∂zk
dzk ∧ dzI ∧ dzJ (1.19)

The exterior derivative then satisfies the identity d = ∂ + ∂.
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Recall that for a complex vector space, the corresponding notion of a positive

definite inner product is a sesquilinear product. This motivates the following defi-

nition.

Definition 1.19 (Hermitian Metric). LetM be an n-dimensional complex manifold.

A Hermitian metric on M is a section h of TC ∗M ⊗ TC ∗M satisfying the following

properties.

1. For all v, w ∈ TC
z M , we have h(v, w) = h(w, v)

2. For all v ̸= 0 ∈ TC
z M we have h(v, v) > 0

A complex manifold M with a Hermitian metric is often called a Hermitian

manifold. It is the complex generalization of the notion of a Riemannian manifold.

Some remarkable properties of Hermitian metrics are as follows.

Theorem 1.4. Let M be a complex manifold with Hermitian metric h. The bi-

linear form defined by g = 1
2(h + h) = Reh defines a Riemannian metric on TM .

Additionally, the bilinear form ω = 1
2i(h − h) = Imh is a skew-symmetric degree

(1,1) differential form, and is referred to as the fundamental form of M .

A particularly well-behaved subclass of Hermitian manifolds are the Kähler man-

ifolds, defined by the following rule.

Definition 1.20 (Kähler Manifold). Let M be a Hermitian manifold with metric

h. Then M is called Kähler if dω = 0, where ω is the fundamental form associated

with h.
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Definition 1.21 (Hermitian Laplace-Beltrami Operators). Let M be a Hermitian

manifold with metric h. Recall that the exterior derivative on TC ∗M decomposes

into d = ∂ + ∂, where ∂, ∂ are the holomorphic and antiholomorphic Dolbeault

operators. We similarly define the codifferentials ∂⋆ = − ⋆ ∂ ⋆ and ∂
⋆
= − ⋆ ∂ ⋆,

where ⋆ is the Hodge star operator associated to h. With these, we can define the

holomorphic and antiholomorphic Laplace-Beltrami operators,

∆∂ = ∂∂⋆ + ∂⋆∂, ∆∂ = ∂∂
⋆
+ ∂

⋆
∂ (1.20)

Theorem 1.5. If M is a Kähler manifold, the holomorphic and antiholomorphic

Laplace-Beltrami operators defined by a Hermitian metric h agree, and are related

to the Riemannian Laplace-Beltrami operator defined by g = Re(h) according to

the formula [23],

∆g = 2∆∂ = 2∆∂ (1.21)

Proof. Expand ∂ and ∂ in terms of real coordinates and then simplify. See the

lecture notes by Moroianu [23].

This fact is what allows us to generalize the Kepler problem to Kähler manifolds

in complex coordinates, as the Green’s function of the Hermitian Laplace-Beltrami

operator will agree with the Riemannian one.

Consider a Hermitian metric on TCM . Recall that we can construct a Rieman-

nian metric on TM from the Hermitian metric on TCM . Since the Hamiltonian

is real, the existence of this Riemannian metric allows us to relate the complex
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Hamiltonian dynamics on M to the underlying real dynamics.

Theorem 1.6. Let M be a complex manifold with Hermitian metric h and corre-

sponding Riemannian metric g = Re(h). Consider a system of N point particles

with masses {m1, . . . ,mN}, with trajectories {z1(t), . . . , zN (t) | t ∈ R+}. The ki-

netic energy function is given by,

K =
N∑
i=1

1

2mi
g−1(pxi , pxi) =

N∑
i=1

1

2mi
h−1(pzi , pzi). (1.22)

Additionally, in order to define Hamiltonian mechanics on Kähler manifolds

we need to know the expression for the standard symplectic form in complex co-

ordinates. Recall that the standard symplectic form is given by Ω = dλ, where

λ =
∑n

i=1 x
idpxi . For a Kähler manifold there are 2n real coordinates (xi, yi), so we

can write

λ =
n∑

i=1

(xidpxi + yidpyi)

=
1

4

n∑
i=1

((zi + zi) d(pzi + pzi)− (zi − zi) d(pzi − pzi))

=
1

2

n∑
i=1

(zidpzi + zidpzi)

So the standard symplectic form is

Ω =
1

2

n∑
i=1

(dzi ∧ dpzi + dzi ∧ dpzi) (1.23)

Note that the symplectic form Ω and the fundamental form ω both define symplectic

structures, but are otherwise unrelated. When considering the base space M as the
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configuration space, not the phase space, it is more natural to use Ω when defining

Hamiltonian systems, since the fundamental form is not assumed to be related to

the dynamics. Using this as our definition for the symplectic form, we arrive at the

following versions of Hamilton’s equations.

Theorem 1.7. Let M be a complex manifold and let H be a Hamiltonian function

on M . Then Hamilton’s equations take the following form,

żi = 2
∂H

∂pzi
ṗzi = −2

∂H

∂zi
(1.24)

When studying symmetries it is also essential to compute the equation for the

momentum map in complex coordinates. Suppose that G is a connected Lie group

acting onM . Then suppose that ξ ∈ Lie(G), and let Xξ be given in real coordinates

by

Xξ = Xi
ξ∂xi + Y i

ξ ∂yi −Xi
ξ∂pxi − Y i

ξ ∂yi (1.25)

Then in complex coordinates we have

Xξ =
1

2
(Xi

ξ + iY i
ξ )∂zi +

1

2
(Xi

ξ − iY i
ξ )∂zi −

1

2
(Xi

ξ + iY i
ξ )∂pzi −

1

2
(Xi

ξ − iY i
ξ )∂piz

(1.26)

Using this formula we can easily find expressions for momentum maps on complex

manifolds given the required expression in real coordinates. An example we will be

interested in is the complex projective space.

Definition 1.22 (Complex Projective Space). Consider the collection of lines through

the origin in Cn. That is, the set CPn−1 = {[λz, λ ∈ C] : z ∈ Cn}. This set is called
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the complex projective space, and has the structure of a complex manifold. A use-

ful representation of this manifold is as a quotient of Cn \{0} by the equivalence

relation z ∼ w ⇐⇒ ∃λ ∈ C s.t. z = λw.

Since a line in Cn is entirely determined by a single nonzero complex vector

(Z0, . . . , Zn), we often denote the line using so-called homogenous coordinates, Z =

[Z0 : . . . : Zn], where we use colons rather than commas to indicate that only the

ratios between the components matter. To see why this is true, observe that if Zi

is nonzero, then we can define λ̃ = λ/Zi, and then [λ̃z, λ ∈ C] and [λz, λ ∈ C] are

equal as sets.

An atlas for CPn can be constructed as follows. Observe that if one of Zi is

nonzero, we can choose a fixed representative of the line [Z0 : . . . : Zi : . . . : Zn] by

dividing through by Zi, giving us the homogenous representation [Z0/Zi : . . . : 1 :

. . . : Zn/Zi]. The non-fixed coordinates are denoted zj = Zj/Zi, j = 0, . . . , i − 1,

zj = Zj+1/Zi, j = i, . . . , n − 1, and are referred to as affine coordinates. Let Ci be

the (closed) subset of CPn consisting of lines W = [W0 : . . . : Wn] with Wi = 0.

Then the coordinates (z0, . . . , zn−1) define a complex chart CPn \Ci
∼= Cn. This

procedure therefore gives us an atlas for CPn consisting of n charts. Not only is

CPn a complex manifold, it is also Kähler.

Definition 1.23 (Fubini-Study Metric). The Hermitian metric on CPn, given as the

quotient metric of the standard inner product on Cn+1, is called the Fubini-Study
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metric, and takes the following form in affine coordinates,

h =

(
(1 + |z|2)δij − zizj

(1 + |z|2)2

)
dzi ⊗ dzj , (1.27)

where δij = 1 if i = j and 0 otherwise.

1.4 The Kepler Problem

The Kepler problem is the classic problem of predicting the motion of idealized

massive objects obeying a form of the Newtonian law of universal attraction. In

M = R3, this law takes the form,

∆gΦ = 4πkρ, lim
∥x∥→∞

Φ(x) = 0, (1.28)

where ρ is the mass density of the system of particles, k is a constant1, and Φ is the

potential energy function. Here ∆ is the usual Laplacian operator. This determines

the equations of motion via the Hamiltonian H = K + Φ. Since we are taking the

particles to be points, the above equation will contain so-called delta functions on

the right hand side. We should therefore write this in weak form, which allows for

ρ to be interpreted as a distribution.

∀ v ∈W 1,2(R3),

∫
M

(∇Φ · ∇v + ρv) dV = 0 (1.29)

Here, W 1,2(R3) is a Sobolev space, defined as the following subset of L2(R3).

W 1,2(R3) = {f ∈ L2(R3) : ∥f∥2 + ∥∇f∥2 <∞} (1.30)

1We avoid the use of the constant G, since we also use G to denote the Green’s function
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This equation can then be solved using the method of Green’s functions. For each

y in M , we solve the above partial differential equation for an idealized point mass

located at y. The mass density is interpreted as a distribution, and can be thought of

as δy, where δy ∈ (L2(R3))∗ is the Dirac delta distribution defined by δy[f ] = f(y).

This gives us the following integral equation,

∀y ∈ R3, v ∈W 1,2(R3),

∫
R3

∇xG(x,y) · ∇xv(x) dV = 4π (1.31)

We can solve this using a straightforward application of Fourier transforms, resulting

in

G(x,y) = − 1

4π∥x− y∥
(1.32)

The solution G(x,y) is called the Green’s function for the partial differential equa-

tion, and has the property that
∫
R3 G(x,y)ρ(y)dV = Φ(x) is a solution to (1.29).

If ρ is smooth, then Φ is a strong solution to (2.2). More importantly, it defines the

potential energy of a particle in the vicinity of a point mass. It is useful to note

that the Green’s function for the Poisson equation is symmetric: G(x, y) = G(y, x).

We can easily generalize this to a system of many particles by adding together the

potential energies.

Definition 1.24 (Kepler Potential in Rn). The potential energy of a system of par-

ticles, each located at positions x1, . . . , xN and with masses m1, . . . ,mN , interacting
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via a Kepler potential is given by the following function.

V (x1, . . . , xN ) = k
N∑
i=1

∑
j<i

mimjG(xi, xj) (1.33)

With k ∈ R a constant as above.

The total Hamiltonian for such a system is

H(x, p) =
N∑
i=1

1

2mi
∥pi∥2 + k

N∑
i=1

∑
j<i

mimjG(xi, xj). (1.34)

This gives rise to Hamilton’s equations, which are

ẋi =
1

mi
pi, (1.35)

ṗi = −mik
∑
j ̸=i

mj
∂

∂xj
G(xi, xj). (1.36)

This abstract formulation lets us generalize the Kepler problem to arbitrary

Riemannian and Hermitian manifolds by replacing the ordinary Laplacian with the

Laplace-Beltrami Operator.

There are various different versions of the Kepler problem. The simplest is

the restricted two-body problem, in which we study the motion of a point particle

around a fixed mass. We will ignore collisions, since the potential is often singular at

the location of the fixed mass. This reduces the configuration space of the problem

to just M \ {p}. There is a choice we must therefore make when calculating the

dynamics on a manifold. Do we compute the Green’s function for the Laplace-

Beltrami operator on M , or on M \ {p}? They are not the same manifold. In what

follows we assume that the dynamics are defined using the Laplace-Beltrami operator
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on M , which gives us what is sometimes called the intrinsic Kepler problem. It has

been shown that when M is a compact surface the Green’s function for M \ {p} is

related to the Green’s function on M by a straightforward expression [6]. However,

the dynamics on the two manifolds may not match each other completely.

Definition 1.25 (Restricted Two-Body Kepler Problem). Consider a point particle

of mass m located at a position x ∈ R3, orbiting a fixed particle of mass m0 located

at a position y ∈ R3. The dynamics of this problem are determined by the following

Hamiltonian.

H =
1

2m
p2 +mm0kG(x, y) (1.37)

A major problem is to determine which manifolds yield Green’s function po-

tentials whose orbits are closed. If the Green’s function G(x, y) satisfies G(x, y) =

V (d(x, y)) for some V , with d(x, y) the Riemannian distance function [24], we call G

a central potential around the point x. In the restricted two-body case, a change of

variables to r = d(x, y) is often possible. Central potentials for which the solutions

to Hamilton’s equations are closed are called closing potentials.

Definition 1.26 (Closing Potential). Consider a Hamiltonian system of the form

H = K(x, p) + V (x), with x ∈M and p ∈ TxM . The function V is called a closing

potential if all bound solutions to Hamilton’s equation are closed and periodic.

WhenM is a compact rank-one symmetric space, a Euclidean half-space, or any

Riemannian 3-manifold, all closing potentials have been classified [1, 4, 2, 5, 7]. On

these manifolds, any closing potential either takes the form V (d(x, y)) = kG(x, y)
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or V (d(x, y)) = kG(x, y)−2. The former is referred to as a Kepler potential, while

the latter is referred to as an oscillator potential (as it reduces to the potential

of the simple harmonic oscillator in the case M = Rn). It is known that such a

closing potential results in a maximally superintegrable system. That is, a system

which is not only integrable in the Louville sense, but which has a maximal number

of additional conserved quantities that determine the solutions completely. For

instance, the restricted two-body Kepler problem in R3 has a Hamiltonian of the

form

H =
1

2m
(p2x + p2y + p2z)−

k

4πr
,

where we have taken the fixed mass to be located at the origin. This Hamilto-

nian yields four ordinary conserved quantities: the Hamiltonian itself and the an-

gular momenta associated with the infinitesimal generators of the rotation group

SO(3). Since we are working in R3, the angular momenta can be computed as

the components of L = r × p where we have associated TrR3 with R3, and where

p = (px, py, pz). However, this problem acquires an additional three conserved quan-

tities, which form the so-called Laplace-Runge-Lenz vector A = p×L− mk
r r. This

conserved quantity does not arise due to symmetries coming from the isometry group

of R3. Instead, it is a result of a so-called hidden symmetry. A hidden symmetry

does not necessarily arise due to the action of a group G on the configuration space.

One interpretation of hidden symmetries is in terms of Killing tensors. If we

consider the infinitesimal generators associated to each of the ordinary conserved
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quantities, most of them arise as generators of the isometry group of the configu-

ration space, and so they are Killing vectors for the metric g. We then widen our

view to include higher order Killing tensors. That is, tensor fields K ∈ T n
k (M)

satisfying [K, g]S = 0 where [·, ·]S is the Schouten bracket [24]. Using these we

can sometimes find additional conserved quantities. Typically we study rank-two

Killing tensors, whose associated conserved quantities are quadratic polynomials in

the momenta p of the form K|x(p, p)+W (x) for some functionW [25, 26]. Similarly,

if we instead consider the oscillator potential V (r) = kr2 we find that there is an

additional set of conserved quantities generated by a Killing tensor called the Frad-

kin tensor. This leads to an equivalent of the Laplace-Runge-Lenz vector for the

harmonic oscillator system. Hidden conserved quantities can also be found using the

Hamilton-Jacobi formalism. Let H(x, p), with (x, p) ∈ T ∗M , be the Hamiltonian

of some system. The Hamilton-Jacobi equation is a partial differential equation of

the form H(x, ∂S∂x ) = E, where S(x) is an unknown function to be solved for. The

solution S then allows one to recover the momenta p as functions of time, and via

Hamilton’s equations the positions as well. The condition which S must satisfy in

order for this method to yield solutions to Hamilton’s equations is given by Jacobi’s

theorem [17]. If the partial differential equation is separable, we may take the ansatz

S(x, p) = S1(x
1) + . . . Sn(x

n), and the resulting system of equations is of the form

f1(x,
∂S1
∂x1 ) = λ1, . . . , fn(x,

∂Sn
∂xn ) = λn, where each function f1, . . . , fn is conserved, as

we can see from the fact that the separation parameters λ1, . . . , λn are constant by
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definition [27].

2 Integrability of the Kepler Problem

2.1 The Intrinsic Kepler Problem on Complex Projective Space

Definition 2.1 (Riemannian Laplace-Beltrami Operator). Let M be a Rieman-

nian manifold of dimension n with metric g. The Laplace-Beltrami operator ∆g is

equivalently defined by the following formulas,

1. ∆gf = div(gradf)

2. ∆gf = (dd⋆ + d⋆d)f

Here the codifferential d⋆ : Ω•(M) → Ω•(M) is defined by d⋆|Ωk(M) = (−1)k ⋆d⋆ for

each k ∈ {0, . . . , n}. In local coordinates these formulas are written as follows.

∆gf =
1√
|g|
∂i

(√
|g|gij∂jf

)
(2.1)

Definition 2.2 (Poisson Equation). Let M be a Riemannian or Kähler manifold

with Riemannian metric g. The Poisson equation on M is,

∆gf = 4πkρ (2.2)

Where ρ and f are interpreted in the sense of distributions.

The solution to a general Poisson equation can usually found using the method of

Greens’ functions, provided ρ is well behaved. Typically we take ρ to be of compact

support. The Green’s function for such a problem is a function G :M2 → R so that
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G(x, y) solves the partial differential equation

∆g|xG(x, y) = 4πkδ(y − x) (2.3)

Theorem 2.1. Let G be the Green’s function for the general Poisson equation (2.2).

Then,

f(x) =

∫
M

4πkρ(y)G(x, y) dVg(y) (2.4)

is a solution to (2.2).

However, if we are working on a compact manifold there is no boundary data

to specify a unique Green’s function. The boundary conditions are then replaced

by some constraint designed to remove the extra degrees of freedom from the prob-

lem. A common constraint for the Poisson equation on a compact domain with no

boundary is the Gauss constraint.

Definition 2.3 (Gauss Constraint). Let M be a compact Riemannian manifold.

The Gauss constraint is the following contraint on the solution to the Poisson equa-

tion, ∫
M
fdVg = 0 (2.5)

With the Gauss constraint, we can completely determine all weak solutions to

the Poisson equation in terms of a Green’s function.

We extend a theorem of Szábo on the existence of radially symmetric harmonic

functions in order to investigate the existence of radially symmetric potential energy
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functions.

Theorem 2.2. Let M be a simply connected manifold with Riemannian metric g

and associated Laplace-Beltrami operator ∆g. Then the Green’s function G is radi-

ally symmetric if and only ifM is isometric to either a compact rank-one symmetric

space, Rn, or the half-space Hn for some n.

Proof. We begin by considering the solution to (2.2) in a Riemannian normal neigh-

bourhood U of x. Let r(y) = dg(x, y) be the radial distance function defined in

the normal neighbourhood, and suppose G is radially symmetric. Then there exists

f ∈ C2(R+,R) so that G(x, y) = f(r(y)) and so that f satisfies the equation

∆g
y f ◦ r(y) = −V −1 + δx (2.6)

Recall that when applied to a composition of functions, the Laplacian yields the

formula ∆g(ϕ ◦ ψ) = −(ϕ′′ ◦ ψ)∥∇ψ∥2 + (ϕ′ ◦ ψ)∆gψ. Due to the definition of the

Riemannian distance function, we can immediately see that ∥∇r∥2 = 1. Similarly,

it is known from Riemannian geometry that ∆gr = −Tr
(
∇2r

)
= −Tr(∇N), with

N being the normal vector to ∂U . Recalling that −∇N is the shape operator,

we recognize this as an expression for the mean curvature H of ∂U . We have

∆gr = H. Considering Riemannian polar coordinates r, θ at x, we arrive at the

following equation for f .

f ′′(r) + f ′(r)H(r, θ) = V −1 − δx (2.7)
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This equation is only well defined if f ′′(r) is independent of θ, which happens if and

only if H is radially symmetric. But it is known that a manifold M has radially

symmetric mean curvature if and only if it is locally harmonic [28], which means M

is a compact rank-one spherically symmetric space.

Because we are interested in compact rank-one spherically symmetric Kähler

manifolds, the obvious place to start is CP2.

2.1.1 The Green’s Function Potential on Complex Projective Space

The complex projective plane admits a number of useful symmetries. Particu-

larly, the isometry group of CP2 with the usual Fubini-Study metric is the special

unitary group SU(3). The point particle dynamics on this manifold can then be

simplified using Hamiltonian reduction. The Hamiltonian reductions of (CP2)2 and

(CP2)3 with respect to this action have been studied extensively [11, 12], as well as

the implications for point particle and point vortex dynamics.

In this section we will be interested in the restricted two-body problem on CP2

as a toy example of a complex Hamiltonian system. The first step is to derive

the related Green’s function. To do this we can exploit the symmetries of CP2.

Recall that the injectivity radius inj(M) of a manifold is defined as the largest value

of d(x, y) so that x and y are connected by a minimizing geodesic. A Blaschke

manifold is defined as follows.

Definition 2.4 (Blaschke Manifold). Let M be a closed Riemannian manifold.
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Then M is said to be Blaschke if diameter(M) = inj(M).

One also needs the volume density function in order to calculate the Green’s

function. This is defined by,

ωx(y) =
√
deth|exp−1

x (y) (2.8)

Definition 2.5 (Locally Harmonic Manifold). Let M be a Riemannian manifold

and let ωx(y) be the volume density on M . We say M is locally harmonic at x if

for all ε > 0 there exists a function Ωx : [0, ε) → R so that ωx(y) = Ωx(d(x, y)) for

all y ∈ Bε(x). If this property holds at all x, M is called locally harmonic.

Theorem 2.3. [29, Theorem 2.17] Let M be an n-dimensional locally harmonic

Blaschke manifold. The Green’s function for the Laplacian on M is given by

G(x, y) = ϕ(d(x, y)), where

ϕ′(r) = − 1

Vol(M)

∫ inj(M)
r v(t) dt

v(r)
, (2.9)

and v(r) = Vol(Sn−1)rn−1Ω(r).

For CP2, the distance function is given by the great circle distance,

d(z, w) = arccos

√ZαW
α
WβZ

β

|Z|2|W |2

, (2.10)

where Z and W are any homogenous coordinate representatives of z and w. The

volume density function is determined by Ω(r) = 8 sin3 r cos r [29]. We therefore
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calculate the Green’s function on CP2 by solving (2.9), yielding

G(z, w) =
1

8V

 1

1− ZαW
α
WβZ

β

|Z|2|W |2

− ln

(
1−

ZαW
α
WβZ

β

|Z|2|W |2

) (2.11)

The restricted two-body problem has one particle fixed. We can choose this point

arbitrarily, so we will take it to be W = [1 : 0 : 0]. Then the total Hamiltonian for

a single particle at position Z = [1 : z1 : z2] is,

H =
1

2m1(|z|2 + 1)2
(
(1 + |z1|2)|pz1|2 + (1 + |z2|2)|pz2|2 + z1z

2pz2pz1 + z2z1pz1pz2
)

+
km1m2

4π2

(
1

|z|2
+ ln

(
1 + |z|−2

))
(2.12)

The Green’s function is known to give rise to Bertrand systems in the three-

dimensional case [2]. Therefore it is the natural potential energy function to choose

when beginning to study integrable systems on a general manifold.

To investigate the integrability of this system, it is useful to understand the

symmetries of the Hamiltonian. Using a large enough symmetry group, we hope to

construct a reduced space called the symplectic reduction.

2.1.2 Special Unitary Group Symmetry

Let C1 = {[0 : Z2 : Z3] : Z2, Z3 ∈ C} ∪ [1 : 0 : 0]. There is an SU(2) action

on TC ∗(CP2 \C1) which leaves this Hamiltonian invariant. It is induced by the

following action of SU(2) on CP2. Let U ∈ SU(2), with matrix representation given
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by

[U ] =

α −β

β α

 , |α|2 + |β|2 = 1

The formula for the SU(2) action on CP2 is,

U · [z1 : z2 : Z3] = [z1 : αz2 − βZ3 : βz
2 + αZ3] (2.13)

We can see that this is independent of z1, which means there is a single fixed point at

[1 : 0 : 0]. Luckily, in the aforementioned restricted two-body problem the Green’s

function has a singularity at |(z1, z2)| = 0, meaning the group action is free on the

entire domain of H, which is all we need to define dynamics. If we lift this to an

action on TC ∗(CP2 \C1), the induced action on a covector p is from the cotangent

lift of U , which pulls back p by U−1 = U †. So in affine coordinates the total action

is given by,

U · ((z1, z2), (p1, p2)) = ([U ](z1, z2), [U ]†(p1, p2)) (2.14)

To compute the momentum map of this action, the quickest way is to define su(2)

as being generated by the imaginary unit quaternions. That is,

su(2) = {αi+ βj + γk : α, β, γ ∈ R, ijk = −1, i2 = j2 = k2 = −1}. (2.15)

The fundamental representation of H on C2 then provides us the following matrices.

[i] =

0 i

i 0

 , [j] =

0 −1

1 0

 , [k] =

−i 0

0 i

 (2.16)
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In real coordinates, the first infinitesimal generator is,

Xi = x1
∂

∂y2
− y1

∂

∂x2
+ x2

∂

∂y1
− y2

∂

∂x1
− px1

∂

∂py2
+ py1

∂

∂px2

− px2

∂

∂py1
+ py2

∂

∂px1

This calculation simplifies a bit in complex coordinates. In these coordinates, the

associated infinitesimal generators are (up to an irrelevant normalization factor)

Xi = Im
(
z2∂z1 + z1∂z2 + pz2∂pz1 + pz1∂pz2

)
Xj = Im

(
z2∂z1 − z1∂z2 + pz2∂pz1 − pz1∂pz2

)
Xk = Im

(
z1∂z1 − z2∂z2 − pz1∂pz1 + pz2∂pz2

)
(2.17)

Finally, we compute the momentum map associated with the SU(2) action by com-

puting Xξ λ.
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Theorem 2.4 (Momentummap for SU(2) on T ∗CP2). The map µ : TC ∗(CP2 \C1) →

su∗(2) defined by

µ(z1, z2, pz1 , pz2) =
1

2


Im(z2pz1 + z1pz2)

Im(z2pz1 − z1pz2)

Im(z1pz1 − z2pz2)

 (2.18)

is a momentum map for the action (2.13).

Proof. We compute for example,

Xi λ =
1

2i

(
z2∂z1 + z1∂z2 + pz2∂pz1 + pz1∂pz2 (2.19)

−z2∂z1 − z1∂z2 − pz2∂pz1 − pz1∂pz2
) 1

2

∑
i=1

(zidpzi + zidpzi) (2.20)

=
1

4i
(z2pz1 + z1pz2 − z1pz2 − z2pz2) (2.21)

=
1

2
Im(z2pz1 + z1pz2) (2.22)

The rest are similar. The inverse image of each group orbit, µ−1(O(z1,z2,pz1 ,pz2 )
), is an

invariant set for the Hamiltonian system. Unfortunately, progress in understanding

the equations of the level sets algebraically is difficult. In the future it could be useful

to bound the maximum value of |z| attained by the orbit using these equations, given

some initial values for the momenta pz1 , pz2 .

2.1.3 Torus Group Symmetry

The T 2 torus action on CP2 has a well known momentum map, whose image

in g∗ is known as the Delzant polytope of CP2. However, we are interested in an

39



action induced on the cotangent bundle. This is an action on an 8 real-dimensional

manifold, so the momentum map doesn’t completely reduce the system. The action

on CP2 is given by

(θ, φ) · [z1 : z2 : Z3] = [z1 : eiθz2 : eiφZ3] (2.23)

This induces an action on TC ∗(CP2 \C1) via the cotangent lift. The generators of

this action are just diag(i, 0,−i, 0) and diag(0, i, 0,−i), which give us the infinitesi-

mal generators,

Xθ = Im

(
z1

∂

∂z1
− pz1

∂

∂pz1

)
Xφ = Im

(
z2

∂

∂z2
− pz2

∂

∂pz1

)
(2.24)

Theorem 2.5 (Momentum map for T 2 on T ∗CP2). A momentum map for the

action induced on TC ∗(CP2 \C1) by (2.23) is given by,

µ(z1, z2, pz1 , pz2) =
1

2

Im(z1pz1)

Im(z2pz2)

 . (2.25)

Notice that the SU(2) action considered in the previous section coincides with

this action if and only if θ = −φ, since elements of SU(2) must have unit determi-

nant. This means their combined actions reduce to an action of SU(2)× S1 = U(2)

on phase space.
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Theorem 2.6 (Momentum map for U(2) on T ∗CP2). A momentum map for the

action of U(2) on TC ∗(CP2 \C1) is given by,

µ(z1, z2, pz1 , pz2) =
1

2



Im(z2pz1 + z1pz2)

Im(z2pz1 − z1pz2)

Im(z1pz1 − z2pz2)

Im(z1pz1 + z2pz2)


(2.26)

Proof. The Lie algebra u(2) is generated by the imaginary quaternions as well as i1.

The infinitesimal generator associated with i1 is exactly the sum of the vector fields

generated by the two generators of T 2. Therefore, the component of the momentum

map associated with that generator is the sum of the two components of the T 2

momentum map.

Since U(2) is the stabilizer of [1 : 0 : 0] in SU(3), which is the isometry group

of CP2, we can see that all of the usual symmetries have been exhausted. Thus it

may be possible to show that no more integrals of motion exist. Numerical evidence

suggests that some orbits are not constrained to a two-dimensional real submanifold

of CP2, so it is likely that this is the case.

2.1.4 Numerical Solutions

Numerical solutions to the system of equations are given on the following pages.

The numerical solutions were calculated using the implicit partitioned Runge-Kutta

method with Gauss coefficients provided by Mathematica 13.0 [30], which is the
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recommended method for some non-separable Hamiltonian systems. Indeed, we

found that the energy did not drift significantly in the numerical solutions.
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Figure 1: Particle trajectory in CP2, given the initial conditions z1 = 1, z2 = 1, pz1 =
i, pz2 = 0 for 0 ≤ t ≤ 40.
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Figure 2: Particle trajectory in CP2, given the initial conditions z1 = 1, z2 = 1, pz1 =
i, pz2 = i for 0 ≤ t ≤ 40.
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Figure 3: Particle trajectory in CP2, given the initial conditions z1 = 0, z2 = 1 +
i, pz1 = 1 + i, pz2 = 0 for 0 ≤ t ≤ 40.
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Figure 4: Energy drift for a numerical solution to the CP2 system, given the initial
conditions z1 = 2, z2 = 0, pz1 = 0, pz2 = 0.01i for 0 ≤ t ≤ 40.

2.2 Kepler Problem on Surfaces of Revolution in Minkowski Space

2.2.1 Background

The Kepler problem on surfaces of revolution in R3 given the usual Riemannian

metric is well studied [8, 6, 9, 31, 7]. The problem has also been introduced to the

pseudo-Riemannian case and a characterization of Bertrand surfaces of revolution in

R2,1 with a time-like axis of revolution is known [15]. However, many computations

which have been performed in the Riemannian case have yet to be extended to the

pseudo-Riemannian case. The setting is defined as follows.
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Definition 2.6 (Lorentz-Minkowski Space). The Lorentz-Minkowski Space R2,1 is

the vector space R3 = {(x, y, t)} equipped with the metric

η = dx2 + dy2 − dt2

Definition 2.7 (Space-like/Time-like/Null Submanifolds of R2,1). A pseudo-Riemannian

submanifold of R2,1 is a submanifold M of R3 so that the Minkowski metric η re-

stricts to a pseudo-Riemannian metric on TM ⊆ T R3. A null submanifold of R2,1 is

a submanifold of M so that η restricts to a degenerate bilinear form on TM . Some

types of submanifold are as follows.

1. Time-like if for all v ∈ TpM , η(v, v) < 0 unless v = 0

2. Space-like if for all v ∈ TpM , η(v, v) > 0 unless v = 0

3. Null if there exists some non-vanishing vector field v ∈ X(M) so that η(v, v) =

0 for all p ∈M

To construct rotational surfaces in Minkowski space we construct the orbit of

the image of a differentiable curve γ : I → R2,1 under a subgroup of the isometry

group,

SO(2, 1) = {A ∈M3×3(R) : AtA = 1, detA = 1}. (2.27)

Here At is the metric-dual operator defined by the equation

η(Ax,y) = η(x, Aty) ∀x,y ∈ TpR2,1 .

The isometry group has three important one-parameter subgroups, a one param-

eter group of rotations in the x− y plane, S1, the group of hyperbolic translations,
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SO(1, 1), and a group of null rotations. The surfaces generated by the hyperbolic

translations are called rotational surfaces, to emphasize that they are not the same

kind of surface as a usual surface of revolution. We will focus on surfaces generated

by the S1 action. The axis of rotation can be taken to be a null, space-like, or

time-like one-dimensional submanifold of R2,1.

Definition 2.8 (Surfaces of Revolution with a Space-like/Time-like/Null Axis of

Revolution). We begin with a planar curve (a(s), b(s)) in either the x − y or y − t

plane and consider the orbit of the curve under the action of a subgroup of the

isometry group. Any rotational surfaces can be parametrized by either s ∈ (a, b)

and θ ∈ S1 in the time-like case, or θ ∈ R in the space-like or null cases. This results

in one of the following surfaces. [14]

1. Surfaces of revolution with a space-like axis can be written in the form

(x, y, t) = (a(s), b(s) sinh θ, b(s) cosh θ) (2.28)

2. Surfaces of revolution with a time-like axis be written in the form

(x, y, t) = (a(s) cos θ, a(s) sin θ, b(s)) (2.29)

3. Surfaces of revolution with a null axis can be written in the form

(x, y, t) =

(
−θ(a(s)− b(s)), a(s)− θ2

2
(a(s)− b(s)), b(s)− θ2

2
(a(s)− b(s))

)
(2.30)

Where we take the two functions a(s), b(s) to satisfy a′(s)2 − b′(s)2 > 0 as in
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[14].

Theorem 2.7. The metric on a pseudo-Riemannian surface of revolution is,

1. for a surface with a space-like axis:

η|M = (a′(s)2 − b′(s)2)ds2 + a(s)2dθ2 (2.31)

2. for a surface with a time-like axis:

η|M = (a′(s)2 − b′(s)2)ds2 − b(s)2dθ2 (2.32)

3. for a surface with a null axis:

η|M = (a′(s)2 − b′(s)2)ds2 + (a(s)− b(s))2dθ2 (2.33)

Proof. The space-like and time-like cases are straightforward. For the null case,

we have

η|M = θ2(a′(s)− b′(s))2ds2 + (a(s)− b(s))2dθ2

+ θ2(a(s)− b(s))2dθ2 + (a′(s)− θ2

2
(a′(s)− b′(s)))2ds2

− (b′(s)− θ2

2
(a′(s)− b′(s)))2ds2 − θ2(a(s)− b(s))2dθ2

= (a′(s)2 − b′(s)2)ds2 + (a(s)− b(s))2dθ.

2.2.2 Surfaces with a Time-Like Axis

From here on any surface of revolution with a time-like axis will be referred to

as Stimelike. The Lagrangian of a particle on Stimelike is the same as the case of a
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Riemannian manifold, just with a different metric signature. It is,

L =
1

2
m
(
(a′(s)2 − b′(s)2)ṡ2 − b(s)2θ̇2

)
− V (s). (2.34)

From this we derive the equations of motion in Lagrangian form. Beginning with

the Euler-Lagrange equation d
dt

∂L
∂ẋ = ∂L

∂x , we get

(a′(s)2 − b′(s)2)s̈+ (a(s)a′(s)− b(s)b′(s))ṡ2 + b(s)θ̇2 +
1

s

∂V

∂s
= 0 (2.35)

d

dt

(
mb(s)2θ̇

)
= 0 (2.36)

We immediately get two conserved quantities H and pθ = mb(s)2θ̇ which are in

involution (i.e. {H, pθ} = 0). Since the system is two-dimensional, the presence of

two conserved quantities means the system is Louville integrable. It is also useful

to mention a particular change of coordinates which sometimes simplifies the above

metric. Observe that a′(s)2 − b′(s)2 > 0 wherever the metric is well defined, since

we assume the signature is invariant. Let us take u(s) =
∫ √

a′(s)2 − b′(s)2ds. Set

f(u0)
2 = b(u−1(u0))

2. Then the metric is of the form,

η|M = du2 − f(u)2dθ2 (2.37)

Zagryadskii [7, 15] finds that in order for two closing potentials (Kepler-like and

oscillator-like) to exist on such a surface, there should exist coordinates where the

metric is of the form

η1|M = diag

(
µ2

(s2 − c)2
,

1

s2 − c

)
(2.38)

However, if one only requires the existence of a single closing potential, then it was
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found that one can use a more general metric of the form,

η2|M = diag

(
µ2

(s2 − c− ts−2)2
,

1

s2 − c− ts−2

)
. (2.39)

Different values for c, µ, t ∈ R result in different possible potential energy functions.

This metric can be put into the form (2.37) with an appropriate change of variables.

Let us first justify why this choice of metric indeed results in Bertrand surfaces.

We begin with the Lagrangian on an arbitrary surface, using the simplified metric

(2.37).

L =
1

2
m
(
u̇2 − f(u)2θ̇2

)
− V (u) (2.40)

The conserved momentum is pθ = mf(u)2θ̇. So the effective potential is,

Veff(u) = − 1

2mf(u)2
p2θ − V (u) (2.41)

Therefore if we ignore θ as a dynamical variable this system is effectively the same

as a one-dimensional system on R with potential Veff(u), so the proof used in the

classical case applies. Santoprete [3] showed that in the Riemannian case where we

have the metric du2 + f(u)2dθ2, the function f must satisfy (2.42) below.

β4 − 5(−f ′′f + (f ′)2)β2 − 5f ′′(f ′)2f + 4(f ′′)2f2 − 3f ′′′f ′f2 + 4(f ′)4 = 0 (2.42)

In the pseudo-Riemannian case, the metric is therefore the same except with f 7→ if .

− β4 − 5(−f ′′f + (f ′)2)β2 − 5f ′′(f ′)2f + 4(f ′′)2f2 − 3f ′′′f ′f2 + 4(f ′)4 = 0 (2.43)

For the case where the constant t = 0, the metric (2.39) can be written in the form
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(2.37) where we have,

u = − µ√
c
arctanh

(
s√
c

)
+D, (2.44)

fη2(u) =
1

C
cosh

(
Cβ

2
(u+K)

)
. (2.45)

For the case where t ̸= 0, a tractable expression for f(u) can not be obtained.

Luckily, the coordinates (s, θ) lead to a more analytically tractable orbit equation

as we will show in a following section.

2.2.3 Numerical Solutions

It is useful when performing analytic calculations to perform numerical experi-

ments to guide one’s intuition. Numerical methods for time-independent Hamilto-

nian systems are generally required to conserve energy to some degree. That is, the

total energy H of the system should not drift too much as the system is evolved

numerically. This property is satisfied by a certain class of numerical methods called

symplectic methods.

Suppose we have a dynamical system defined by some system of ordinary dif-

ferential equations on a manifold M . The fundamental solution to the system is

then a flow operator Φt on M which we would like to approximate numerically.

A numerical method for calculating Φt is a discrete dynamical system, i.e. a map

φδ :M →M , which takes a point p ∈M and approximates the output of Φδ(p) for

some δ ∈ R. Recursively applying φδ to an initial point p0 results in a sequence of

points pn, n ∈ N which approximate an orbit of Φt. For a Hamiltonian system, we
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would like the sequence of points pn to lie close to a level curve of the Hamiltonian

H, and ideally to level sets of any other conserved quantities. The method φδ is

said to be a symplectic method if φδ preserves the symplectic form. That is, if

φ∗
δω|q,p = ω|φδ(q,p). It is a well known feature of symplectic methods that when H is

a separable Hamiltonian, |H(qn, pn)−H(q0, p0)| is bounded by some ∆E and often

quasi-periodic in n. If the value of ∆E is small enough, the method will result in

accurate solutions to Hamilton’s equations.

In general, symplectic methods are a robust way to bound how much a method

violates conservation of energy. Unfortunately, non-separable Hamiltonian systems

are not well behaved even when solved using ordinary symplectic methods, such

as the Störmer-Verlet methods. Some efforts have been made to make the usual

methods perform better when solving non-separable systems, such as partitioned

Runge-Kutta methods. We found the partitioned Runge-Kutta method to be suf-

ficient in simulating the non-superintegrable CP2 Kepler problem (2.12). However,

in this case the specialized methods such as the methods of Pihajoki [32] and Tao

[33] are required to achieve sufficient numerical stability.

The method of Pihajoki extends an earlier algorithm for solving Hamiltonian

systems called the auxillary velocity algorithm to the case of non-separable Hamil-

tonians. This extended method lifts a non-separable Hamiltonian system from T ∗M

(with coordinates (q, p) to (T ∗M)2 (with coordinates (q, p, q̃, p̃)) by defining the ex-

tended Hamiltonian H̃(q, p, q̃, p̃) = H(q, p̃) + H(q̃, p). We label H1 = H(q, p̃) and
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H2 = H(q̃, p). Hamilton’s equations then read

˙̃q =
∂H1

∂p
, ṗ = −∂H1

∂q̃
, q̇ =

∂H2

∂p̃
, ˙̃p = −∂H2

∂q
(2.46)

The solution to Hamilton’s equations is abstractly given by the flow map Φt =

exp
(
tXH̃

)
. The idea of Pihajoki’s method is then to approximate Φt with an al-

ternating composition of flow maps derived from H1 and H2. For this we need the

Baker-Campbell-Hausdorff formula,

exp(δA) exp(δB) = exp

(
δ(A+B) +

δ2

2
[A,B] +O(δ3)

)
, (2.47)

from which Pihajoki derives the formula

exp
(
δXH̃

)
= exp

(
δ

2
XH1

)
exp(δXH2) exp

(
δ

2
XH1

)
+O(δ3). (2.48)

This is an example of a type of leapfrog method called a splitting method [34].

Expanding the exponential maps to first order in δ then yields the following three-
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step method.

qn+1/2 = qn +
δ

2

∂H2

∂p
(q̃n, pn)

q̃n+1/2 = q̃n +
δ

2

∂H1

∂p̃
(qn, p̃n)

p̃n+1/2 = p̃n − δ

2

∂H2

∂q
(q̃n, pn)

pn+1/2 = pn − δ

2

∂H1

∂q̃
(qn, p̃n)

q̃n+1 = q̃n + δ
∂H1

∂p̃
(qn+1/2, p̃n+1/2)

qn+1 = qn + δ
∂H2

∂p
(q̃n+1/2, pn+1/2)

pn+1 = pn − δ
∂H1

∂q
(qn+1/2, p̃n+1/2)

p̃n+1 = p̃n − δ
∂H2

∂q̃
(q̃n+1/2, pn+1/2)

qn+1 = qn+1/2 +
δ

2

∂H2

∂p
(q̃n+1, pn+1)

q̃n+1 = q̃n+1/2 +
δ

2

∂H1

∂p̃
(qn+1, p̃n+1)

p̃n+1 = p̃n+1/2 −
δ

2

∂H2

∂q̃
(q̃n+1, pn+1)

pn+1 = pn+1/2 −
δ

2

∂H1

∂q
(qn+1, p̃n+1) (2.49)

This kind of method is called a leapfrog method due to the intermediate steps

qn+1/2, pn+1/2. If an exact expression for the partial derivatives is known, this

method is very computationally efficient.

One can show that the numerical solution is an exact solution of the related
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Hamiltonian systems defined by,

H212 = H1 +H2 −
1

24
δ2(2{{H2, H1}, H1} − {{H1, H2}, H2}) +O(δ3) (2.50)

H121 = H1 +H2 −
1

24
δ2(2{{H1, H2}, H2} − {{H2, H1}, H1}) +O(δ3), (2.51)

where δ > 0 is the time-step. By subtracting H̃ from each of these related Hamil-

tonians, we see that this algorithm conserves energy to order O(δ2). The author

demonstrated comparable performance to partitioned Runge-Kutta methods. Un-

fortunately, this method has the problem that the two resulting solutions can diverge

from one another over a large enough range of time. An improved method was de-

veloped by Tao, which adds an additional term to the extended Hamiltonian given

by

HC =
ω

2

(
∥q − q̃∥2 + ∥p− p̃∥2

)
. (2.52)

This term introduces what Tao refers to as phase space mixing. The modified

method is then given by the following extended Hamiltonian,

Ĥ = H1(q, p̃) +H2(q̃, p) +HC(q, p, q̃, p̃) (2.53)

The numerical method is then defined by discretizing the following exponential map,

exp
(
δXĤ

)
= exp

(
δ

2
XH1

)
exp

(
δ

2
XH2

)
exp(δXHC

) exp

(
δ

2
XH2

)
exp

(
δ

2
XH1

)
+O(δ2).

(2.54)

This gives us a five-step method. The only difference between this map and the one
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defined by Pihajoki is the central term, whose discretization is given by

q 7→ 1

2
(q + q̃) + cos(2δω)(q − q̃) + sin(2δω)(p− p̃)

p 7→ 1

2
(p+ p̃)− sin(2δω)(q − q̃) + cos(2δω)(p− p̃)

q̃ 7→ 1

2
(q + q̃)− cos(2δω)(q − q̃)− sin(2δω)(p− p̃)

p̃ 7→ 1

2
(p+ p̃) + sin(2δω)(q − q̃)− cos(2δω)(p− p̃)

Numerical results demonstrate that for appropriate values of ω, the difference be-

tween the two solutions is quasi-periodic for small time scales. The above method

will be denoted by φ2
δ , as the error is second order in δ. A higher order method

can be constructed by recursively computing φℓ
δ = φℓ−2

γδ ◦ φℓ−2
(1−2γ)δ ◦ φℓ−2

γδ , with

γ = 1/(2 − 2ℓ+1). This results in a general ℓ-step algorithm of higher order. For

integrable systems (such as the one under study), the general method has an error

bound of order O(Tδℓω) for t < T ∼ O(min(δ−ℓω−1,
√
ω)). The algorithm de-

scribed was implemented in Python 3 [35] using the just-in-time compiler package

provided by Numba [36]. The main time-stepper function was based on the function

provided in the supplementary materials of the preprint ‘Nonseparable Symplectic

Neural Networks’ by Xiong et al. [37]. The results of numerical simulations imply

that the system does indeed have closed orbits. Furthermore, the orbits are very

close to epicycloids in shape.
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Figure 5: Orbits of the Hamiltonian system on Stimelike with m = 1, µ = 1, c =
10, t = 0, A = −1, B = 0, β = 1, s0 =

√
c/3, ṡ0 = 0.
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Figure 6: Orbits of the Hamiltonian system on Stimelike with m = 1, µ = 1, c =
10, t = 0, A = 1, B = 0, β = −2, s0 =

√
c/3, ṡ0 = 0.
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Figure 7: Orbits of the Hamiltonian system on Stimelike with m = 1, µ = 1, c =
10, t = 0.1, A = 1, B = 0, β = −2, s0 =

√
c/3, ṡ0 = 0.
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Figure 8: Orbits of the Hamiltonian system on Stimelike with µ = 1/5, 1/4, 1/3 and
m = 1, c = 10, t = 0.1, A = 1, B = 0, β = −2, s0 =

√
c/3, ṡ0 = 0, θ̇0 = 0.25. This

plot demonstrates how the number of lobes change with varying µ.
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Figure 9: Orbits of the Hamiltonian system on Stimelike with µ = 1/5, 1/4, 1/3 and
m = 1, c = 10, t = 0.1, A = 1, B = 0, β = −2, s0 =

√
c/3, ṡ0 = 0, θ̇0 = 0.25. The

orbits here are shown in the (u, θ) coordinate system which converts the metric into
the form (2.37).
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Figure 10: Orbits of the Hamiltonian system on Stimelike with µ = 1/5, 2/5, 3/5, 4/5
and m = 1, c = 10, t = 0.1, A = 1, B = 0, β = −2, s0 =

√
c/3, ṡ0 = 0, θ̇0 =

0.25. This plot demonstrates how the number of lobes is only determined by the
denominator of µ in reduced form.
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Figure 11: Orbits of the Hamiltonian system on Stimelike with m = 1, µ = 1, c =
10, t = 0.1, A = −1, B = 0, β = 1, s0 =

√
c/3, ṡ0 = 0. This plot demonstrates

how orbits with t ̸= 0 do not close when β = 1. Additionally, the system exhibits
numerical instabilities for some initial conditions.
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Figure 12: Orbits of the Hamiltonian system on Stimelike with µ = 1/5, 1/4, 1/3 and
m = 1, c = 10, t = 0.1, A = 1, B = 0, β = −2, s0 =

√
c/3, ṡ0 = 0, θ̇0 = 0.25, created

using an ordinary Runge Kutta method. This plot demonstrates how ordinary
methods fail to conserve energy and are generally unstable.
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2.2.4 Exact Expressions for the Orbit

Let us write down the Lagrangian corresponding to the metric in terms of s.

L =
1

2
m

(
µ2

(s2 − c− t/s2)2
ṡ2 +

1

s2 − c− t/s2
θ̇2
)
− V (s) (2.55)

From this we derive the Euler-Lagrange equations.

d

dt

(
m

s2 − c− t/s2
θ̇

)
=

d

dt
pθ = 0

µ2

(s2 − c− t/s2)2
s̈+

2µ2(t/s3 + s))

(s2 − c− t/s2)3
ṡ2 −

p2θ(t+ s4)

m2s3
+

1

m

∂V

∂s
= 0 (2.56)

Equivalently, we can write the system in Hamiltonian form as,

H =
1

2m

(
µ−2

(
s2 − c− t

s2

)2

p2s +

(
s2 − c− t

s2

)
p2θ

)
+ V (s), (2.57)

where Hamilton’s equations become,

ṡ =
1

mµ2

(
s2 − c− t

s2

)2

ps,

θ̇ = − 1

m

(
s2 − c− t

s2

)
pθ,

ṗs = − 2

mµ2

(
s+

t

s3

)(
s2 − c− t

s2

)
p2s −

1

m

(
s+

t

s3

)
p2θ −

∂V

∂s
,

ṗθ = 0. (2.58)

We can also write the equation for s in a form which decouples the ṡ and ṗs equations,

since H and pθ are constants of motion and depend only on initial conditions.

ṡ2 =
1

m2µ4

(
s2 − c− t

s2

)2(
2mH − p2θ

(
s2 − c− t

s2

)
− 2mV (s)

)
(2.59)
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From here, if we assume that s and θ are periodic we can apply the inverse function

theorem to get ds
dt

dθ
dt

−1
= ds

dθ . This gives us the orbit equation,

(
ds

dθ

)2

=
1

µ4

(
2m(H − V )

p2θ
−
(
s2 − c− t

s2

))
. (2.60)

We also solve the equations of motion numerically using the explicit non-separable

symplectic integrator introduced by Tao [33], which extends the work of Pihajoki

[32]. A more detailed description of this method can be found in the next section,

along with plots of the numerical solutions. The numerical data suggests that these

orbits are epitrochoids, which are a generalization of the well known epicycloid. A

large class of epitrochoids can be written as polar curves of the form,

r = a+ b cos(Ω(θ − θ0)) (2.61)

We begin our investigation by noting that this polar curve satisfies the ODE,

(
dr

dθ

)2

= Ω2(b2 − (r − a)2). (2.62)

We can show that this equation matches the orbit equation (2.60) exactly in the

case β = 1, t = 0, while in the case β = −2 we find that the orbit equation is solved

by the square root of (2.61).

Theorem 2.8. Given a pseudo-Riemannian surface of revolution with time-like

axis in R2,1 with the metric (2.39) and µ ∈ Q, if t = 0 then both the Kepler and

oscillator potentials admit closed and bounded orbits. In the Kepler case, these

orbits are epitrochoids transformed by a square root function. In the oscillator case,
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the orbits are simple epitrochoids. If t ̸= 0 then only the Kepler potential admits

closed and bounded orbits.

Proof. Let us begin with the more complicated case: for β = −2 we can rear-

range the orbit equation as follows.

s2
(
ds

dθ

)2

=
1

µ2

(
t

m
− A

p2θ
+

(
2(H −B)

p2θ
+

c

m

)
s2 − 1

m
s4
)
. (2.63)

We then substitute y = s2. Then, dy
dθ = 2sdsdθ , so

1
4

(
dy
dθ

)2
= s2

(
ds
dθ

)2
. After complet-

ing the square, this reduces the orbit equation to the equation of an epitrochoid,

(
dy

dθ

)2

= − 1

4µ4

((
y +

m(H −B)

p2θ
+
c

2

)2

− t+
mA

p2θ
− 1

4

(
2m(H −B)

p2θ
+ c

)2
)
.

(2.64)

With

a =
m(H −B)

p2θ
+
c

2
, (2.65)

b =

√
mA

p2θ
− t− 1

4

(
2m(H −B)

p2θ
+ c

)2

, (2.66)

Ω =
1

2µ
. (2.67)

From this we see that for µ = p
q ∈ Q with q, p coprime, the number of lobes in the

orbit is 2q. In the case β = 1 we get

(
ds

dθ

)2

=
1

µ2

(
2m(H −B)

p2θ
+ c− m2A2

2p4θ
−
(
s− mA

p2θ

)2
)
. (2.68)
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So the orbital parameters are

a = −mA
p2θ

, (2.69)

b =
2m(H −B)

p2θ
+ c− m2A2

2p4θ
, (2.70)

Ω =
1

µ
. (2.71)

This completes the proof. Additionally, we can see that in order for the orbits to

close we require µ ∈ Q, as found by Zagryadskii. One sees that for µ = p
q ∈ Q with

q, p coprime, the number of lobes is q.

Theorem 2.9. For β = 1, t = 0, the orbital period of a periodic orbit is given by,

T =
mη

2(a2 − c)pθΩ∆

(
log
(
2η − k−2

)
− log

(
2η + k−2

)
k−1

+
log
(
2η − k+2

)
− log

(
2η + k+2

)
k+1

)
(2.72)

with constants k±1 , k
±
2 ,∆, η and ζ defined below.

Proof. The period of a bound orbit is given by,

T =

∫ 2π

0

dθ

θ̇
(2.73)

Substituting our known expression for θ̇ in terms of s(θ), this becomes,

T =
m

pθ(a2 − c)

∫ 2π

0

dθ

(a+ b cos(Ω(θ − θ0)))2 − c
(2.74)
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We make the following substitutions to simplify the integral:

η =
b2

a2 − c
, (2.75)

ζ =
2ab

a2 − c
, (2.76)

u = cos(Ω(θ − θ0)). (2.77)

This transforms the integral into the following form,

T =
m

2pθΩ(a2 − c)

∫ 1

−1

du

(ηu2 + ζu+ 1)
√
1− u2

, (2.78)

for which an analytic expression is known [38]. The indefinite integral is

T =
mη

2(a2 − c)pθΩ∆

(
log
(√

1− u2k−1 − uk−2 + 2η
)
/k−1

− log
(√

1− u2k−1 + uk−2 + 2η
)
/k−1

+ log
(√

1− u2k+1 + uk+2 + 2η
)
/k+1

− log
(√

1− u2k+1 − uk+2 + 2η
)
/k+1

)
,

with ∆ =
√
ζ2 − 4η and

k±1 =
√

4η2 + 2ζ(∆± ζ) + 4η + 2η, (2.79)

k±2 = ζ ±∆. (2.80)
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Substituting in the bounds gives,

T =
mη

2(a2 − c)pθΩ∆

(
log
(
2η − k−2

)
− log

(
2η + k−2

)
k−1

+
log
(
2η − k+2

)
− log

(
2η + k+2

)
k+1

)

Which is what we wanted to show.

Theorem 2.10. For β = −2, t ∈ R, the period of an orbit is given by,

T =
−m
2pθ

(
ℓ+3 log

((
2b∆′ + ℓ+2
2b∆′ − ℓ+2

)(
∆′ − 2(b+ a) + c

∆′ − 2(a− b) + c

))
−ℓ−3 log

((
2b∆′ + ℓ−2
2b∆′ − ℓ−2

)(
∆′ + 2(b+ a)− c

∆′ + 2(a− b)− c

)))
(2.81)

with constants ℓ±1 , ℓ
±
2 , ℓ

±
3 ,∆

′ defined below.

Proof. Following the same procedure as above, except without the need to define

new parameters η and ζ, we find that the integral becomes,

T =
−m
2pθ

∫ 1

−1

du

(bu+ a− c− t/(a+ bu))
√
1− u2

.

The indefinite integral is known [38],

T =
−m
2pθ

(
ℓ+3 log

(√
2∆′ℓ+1

√
1− u2 + ℓ+2 u+ 2b∆′

)
−ℓ−3 log

(√
2∆′ℓ−1

√
1− u2 + ℓ−2 u+ 2b∆′

)
+ℓ+3 log

(
−2bu− 2a+∆′ + c

)
− ℓ−3 log

(
2bu+ 2a+∆′ − c

))
,
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with ∆′ =
√
c2 + 4t and

ℓ±1 = 2(b2 + ac− a2 − t)± (c− 2a)∆′,

ℓ±2 = (2a− c)∆′ ±∆′2,

ℓ±3 =
∆′ ± c

2(a2 + a(c±∆′) + b2 − t)− c∆′ − c2
.

The result is then,

T =
−m
2pθ

(
ℓ+3 log

((
2b∆′ + ℓ+2
2b∆′ − ℓ+2

)(
∆′ − 2(b+ a) + c

∆′ − 2(a− b) + c

))
−ℓ−3 log

((
2b∆′ + ℓ−2
2b∆′ − ℓ−2

)(
∆′ + 2(b+ a)− c

∆′ + 2(a− b)− c

)))
.

As required.

2.2.5 Laplace-Runge-Lenz Vector

In the case of a Riemannian or pseudo-Riemannian surface of constant curvature

it is known that the Kepler problem admits two additional conserved quantities

which form the components of the Laplace-Runge-Lenz vector [25].

As we have shown, the Kepler problem on a pseudo-Riemannian surface of rev-

olution with metric (2.39) admits closed bounded orbits. This implies the existence

of one additional conserved quantity.

The components of this conserved quantity are typically assumed to be quadratic

in the momenta, and have the general form

I = Kab(q)papb +W (q) (2.82)
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For such a quantity to be conserved, it is sufficient that Kab is any Killing tensor,

while W must satisfy some partial differential equation in the coordinates [25].

The conserved quantity associated with the Killing tensor K = 1
2mg is simply the

Hamiltonian itself, while any other pair of conserved quantities of the above form is

known as a Laplace-Runge-Lenz vector.

One approach to generating such conserved quantities is to find a local coordi-

nate frame of Killing vectors for the metric, and then in these coordinates the Killing

tensor is constant. However, the metric (2.39) admits only one Killing vector ∂θ.

An alternative approach would be to study the Hamilton-Jacobi equation for

this system. As described in the introduction, the Hamilton-Jacobi equation is a

partial differential equation whose solution allows one to recover the solutions to

Hamilton’s equations by taking appropriate partial derivatives. Conserved quanti-

ties can be constructed by performing a separation of variables on the Hamilton-

Jacobi equation, each constant of separation being a conserved quantity. In the case

of the Kepler problem on R3 it is known that the Laplace-Runge-Lenz vector is a

result of the separability of the Hamilton-Jacobi equation in cylindrical parabolic

coordinates, while the remaining conserved quantities arise by separation in Carte-

sian and spherical coordinates. Unfortunately this approach requires a hypothesis

as to which coordinate system to use, and is intractable for the current problem. If

one were to compute a valence two Killing tensor directly, then such a coordinate

system could be computed. In any case, we must compute the components of K by
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hand.

We therefore assume the form (2.82) holds, and directly compute the Poisson

bracket {H, I}. By collecting like powers of the momenta, one can define a system

of partial differential equations whose solution yields I. This approach has been

used to compute a Laplace-Runge-Lenz vector for constant-curvature Riemannian

surfaces of revolution [10]. We will attempt this approach for t = 0, β = 1, which

is the most tractable version of the problem. Consider a conserved quantity of the

form

I = Kss(s, θ)p2s +Kθθ(s, θ)p2θ + 2Ksθ(s, θ)pspθ +W (s, θ) (2.83)

Then we require that {H,W} = 0, and that

{Kss(s, θ)p2s +Kθθ(s, θ)p2θ + 2Ksθ(s, θ)pspθ, H} = 0 (2.84)

Recall that Poisson bracket is defined by (1.13),

{f, g} =
∑
i

∂f

∂qi
∂g

∂pi
− ∂f

∂pi
∂g

∂qi
=
∂f

∂s

∂g

∂ps
− ∂f

∂ps

∂g

∂s
+
∂f

∂θ

∂g

∂pθ
− ∂f

∂pθ

∂g

∂θ
.

Let us write H = (µ−2h(s)2p2s + h(s)p2θ)/2m+ V (s), with h(s) = s2 − c− t/s2. We
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get,

{Kssp2s, h(s)
2p2s} = 2

∂Kss

∂s
h(s)2p3s − 4Kssh(s)h′(s)p3s

{Kssp2s, h(s)p
2
θ} = −2Kssh′(s)psp

2
θ + 2

∂Kss

∂θ
h(s)pθp

2
s

{Kssp2s, V (s)} = −2
∂V

∂s
Kssps

{Kθθp2θ, h(s)
2p2s} = 2

∂Kθθ

∂s
h(s)2psp

2
θ

{Kθθp2θ, h(s)p
2
θ} = 2

∂Kθθ

∂θ
h(s)p3θ

{Kθθp2θ, V (s)} = 0

{Ksθpspθ, h(s)
2p2s} = 2

∂Ksθ

∂s
h(s)2p2spθ − 2Ksθh(s)h′(s)p2spθ

{Ksθpspθ, h(s)p
2
θ} = −Ksθh′(s)p3θ + 2

∂Ksθ

∂θ
h(s)psp

2
θ

{Ksθpspθ, V (s)} = −∂V
∂s

Ksθpθ

{W (s, θ), h(s)2p2s} = 2
∂W

∂s
h(s)2ps

{W (s, θ), h(s)p2θ} = 2
∂W

∂θ
h(s)pθ

Collecting like terms, we get the following equations,

∂Kss

∂s
h(s)2 − 2Kssh(s)h′(s) = 0,

∂Kθθ

∂θ
h(s)−Ksθh′(s) = 0,

2
∂Ksθ

∂θ
h(s)−Kssh′(s) +

1

µ2
∂Kθθ

∂s
h(s)2 = 0,

µ2
∂Kss

∂θ
h(s) + 2

∂Ksθ

∂s
h(s)2 − 2Ksθh(s)h′(s) = 0, (2.85)

74



as well as some equations for V and W

∂W

∂s
h(s)2 + 2mµ2

∂V

∂s
Kss = 0,

∂W

∂θ
h(s) + 2m

∂V

∂s
Ksθ = 0 (2.86)

We rearrange the first four equations as,

∂Kθθ

∂θ
=
h′(s)

h(s)
Ksθ

∂Kθθ

∂s
= −2µ2

1

h(s)

∂Ksθ

∂θ
+ µ2Kss h

′(s)

h(s)2

∂Ksθ

∂s
=
h′(s)

h(s)
Ksθ − µ2

1

h(s)

∂Kss

∂θ

∂Kss

∂s
= 2

h′(s)

h(s)
Kss (2.87)

So Kss(s, θ) = C1(θ)h(s)
2. If β = 1 then we must have the following consistency

condition from (2.86),

−µ2C ′
1(θ) =

1

h(s)

(
∂Ksθ

∂s
− h′(s)

h(s)
Ksθ

)

Meanwhile, the last equation of (2.85) requires that

µ2C ′
1(θ)h(s)

3 + 2h(s)2
(
∂Ksθ

∂s
− h′(s)

h(s)
Ksθ

)
= 0

So we must have C ′
1(θ) = −C ′

1(θ), or C
′
1(θ) = 0. Therefore in this case we can

set Kss = 0 without loss of generality, since any terms in the conserved quantity

of the form h(s)2p2s can be absorbed into the Hamiltonian, which only requires a

corresponding modification of Kθθ and W which would be reflected by removing

Kss from the above equations.
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Now let us solve the system of equations completely. In the simplest case we

have t = 0 and β = 1, so V (s) = As+B, and h(s) = s2− c. From the first equation

of (2.85) we have Ksθ = K1(θ)(s
2 − c). Cross differentiating the second and third

equations of (2.85) then gives us

∂2Ksθ

∂θ2
= − 1

2µ2
(s2 − c)

(
2s

s2 − c

∂Ksθ

∂s
+

2

s2 − c
Ksθ − 4s2

(s2 − c)2
Ksθ

)
,

Which reduces to the simple form

∂2Ksθ

∂θ2
= − 1

µ2
Ksθ.

So,

(s2 − c)K ′′
1 (θ) = − 1

µ2
K1(s

2 − c).

This is solved by,

K1(θ) = E1 cos(θ/µ) + E2 sin(θ/µ).

Plugging this into the second equation of (2.85) gives,

∂Kθθ

∂θ
= 2sK1, (2.88)

which is solved by,

Kθθ = 2µs(E1 sin(θ/µ)− E2 cos(θ/µ)) +K3(s). (2.89)

Here K ′
3(s) vanishes since

∂Kθθ

∂s = − 1
h2µ

2 ∂Ksθ

∂θ . Since K3 is a constant we can ignore
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it as pθ is known to be conserved. Finally we solve for W . We have,

∂W

∂θ
= − 2mA

s2 − c

(
(s2 − c)(E1 cos(θ/µ) + E2 sin(θ/µ))

)
,

∂W

∂s
= 0, (2.90)

so,

W (θ) = −2mAµ(E2 cos(θ/µ)− E1 sin(θ/µ)). (2.91)

All in all we have found two conserved quantities corresponding to the choices E1 =

0, E2 ̸= 0 and E2 = 0, E1 ̸= 0. These are the components of the Laplace-Runge-Lenz

vector of our system.

I1 = (s2 − c) cos

(
θ

µ

)
pspθ + (µsp2θ −mAµ) sin

(
θ

µ

)
, (2.92)

I2 = (s2 − c) sin

(
θ

µ

)
pspθ − (µsp2θ −mAµ) cos

(
θ

µ

)
. (2.93)

This is quite similar to the form of the Laplace-Runge-Lenz vector components

for the Riemannian case [10], which were computed in a coordinate system where

the metric is of the form du2 + f(u)dθ2 while our metric is instead of the form

µ−2h(s)−2ds2 + h(s)−1dθ2. Observe that if we square these two quantities and add

them, we find

I21 + I22 = 4(s2 − c)2p2sp
2
θ + (2sp2θ + 2mA)2µ2,

which reduces to,

I21 + I22 = 8mµ2(H −B)p2θ + 4µ2cp4θ + 4m2A2µ2. (2.94)

So we can see that there are three independent conserved quantities for the system.
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This provides direct proof that the system (2.56) is superintegrable in the β = 1

case.

Now let us attempt to solve the case when β = −2. In this case, t does not

necessarily have to be zero. Equations (2.86) become,

∂W

∂s
h(s)2 = −4mAµ2

1

s3
Kss,

∂W

∂θ
h(s) = −4mA

1

s3
Ksθ. (2.95)

This results in the following consistency condition

− µ2

2h(s)2s3
∂Kss

∂θ
=

1

h(s)s4
Ksθ. (2.96)

From the first equation of (2.85) we again get

Kss(s, θ) = C1(θ)h(s)
2.

So Ksθ = −1
2sµ

2h(s)C ′
1(θ). We then get,

2
∂Kθθ

∂θ
+ µ2sh′(s)C ′

1(θ) = 0 (2.97)

Which means that,

Kθθ(s, θ) = −1

2
µ2sh′(s)C1(θ) +K(s) (2.98)

The additional factor K(s) is then required to be of the form Kh(s). So this term

can also be absorbed into W . Substituting in h(s) = s2 − c − t/s2 then yields the
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following remaining equations,

C ′′
1 (θ) = − 4

µ2
C1(θ),

∂W

∂s
=

4Amµ2C1(θ)

s3
,

∂W

∂θ
= −2Aµ2mC ′

1(θ)

s2
(2.99)

So we have C1(θ) = F1 cos(2θ/µ) + F2 sin(2θ/µ), and W (s, θ) = −2Aµ2ms−2C1(θ).

Putting this together, we find that there are two quadratic conserved quantities of

the form

Ĩ1 =

(
s2 − c− t

s2

)2

cos

(
2θ

µ

)
p2s + µs

(
s2 − c− t

s2

)
sin

(
2θ

µ

)
pspθ

− µ2s

(
s+

t

s3

)
cos

(
2θ

µ

)
p2θ − 2Aµ2m

1

s2
cos

(
2θ

µ

)
, (2.100)

Ĩ2 =

(
s2 − c− t

s2

)2

sin

(
2θ

µ

)
p2s − µs

(
s2 − c− t

s2

)
cos

(
2θ

µ

)
pspθ

− µ2s

(
s+

t

s3

)
sin

(
2θ

µ

)
p2θ − 2Aµ2m

1

s2
sin

(
2θ

µ

)
. (2.101)

Due to the factors of 1/s2, the expression relating Ĩ1, Ĩ2, H and pθ is intractable. In

conclusion, we have the following main result.

Theorem 2.11. The intrinsic Kepler/oscillator Hamiltonian system defined by sys-

tem (2.58) admits 3 independent conserved quantities, making it superintegrable.

Furthermore, the additional conserved quantity is determined by a generalized

Laplace-Runge-Lenz vector (I1, I2) ∈ C∞(T ∗M,R2). In the case where β = 1 the
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components are given by (2.93),

I1 = (s2 − c) cos

(
θ

µ

)
pspθ + (µsp2θ −mAµ) sin

(
θ

µ

)
,

I2 = (s2 − c) sin

(
θ

µ

)
pspθ − (µsp2θ −mAµ) cos

(
θ

µ

)
,

while in the case β = −2, the components are given by (2.101),

Ĩ1 =

(
s2 − c− t

s2

)2

cos

(
2θ

µ

)
p2s + 2µs

(
s2 − c− t

s2

)
sin

(
2θ

µ

)
pspθ

− µ2s

(
s+

t

s3

)
cos

(
2θ

µ

)
p2θ − 2Aµ2m

1

s2
cos

(
2θ

µ

)
,

Ĩ2 =

(
s2 − c− t

s2

)2

sin

(
2θ

µ

)
p2s − 2µs

(
s2 − c− t

s2

)
cos

(
2θ

µ

)
pspθ

− µ2s

(
s+

t

s3

)
sin

(
2θ

µ

)
p2θ − 2Aµ2m

1

s2
sin

(
2θ

µ

)
.

3 Conclusion

The Bertrand problem involves finding potential energy functions whose cor-

responding Hamiltonian systems yield closed orbits. This has been well studied

on Riemannian model spaces and surfaces of revolution. Extending these results

to Riemannian homogenous spaces as well as complex manifolds would result in a

much larger class of manifolds being understood. Additionally, a classification on

pseudo-Riemannian spaces is known but major calculations are not stated clearly

in the literature. We have provided an explicit solution to the orbit equation for

any Bertrand pseudo-Riemannian surface of revolution. Additionally, we provide

explicit expressions for the orbital period and the Laplace-Runge-Lenz vector for
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the system. An expression relating the components of the Laplace-Runge-Lenz vec-

tor to the Hamiltonian and angular momentum was calculated in the case where the

potential energy is of the form V = As+B. However, an equivalent expression for

the case where V = As−2 +B has not been computed, and further work is required

to construct such an expression. In the future, it would be useful to work back-

wards from our expression for the Laplace-Runge-Lenz vector in order to construct

a coordinate system on this surface which separates the Hamilton-Jacobi equation.

It should also be investigated whether there exist analogues of Kepler’s second and

third laws for this system.
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Appendix I: Python Code

The following is a snippet of python code including the definition of the Hamil-

tonian system as well as the symplectic integrator constructed by Tao [33].

import numpy as np

from numba import j i t , n j i t

@nj i t # Use ju s t−in−t ime compi ler f o r numerics

def Equation (q , p , params ) :

”””

Computes d e r i v a t i v e s o f q and p us ing

Hamilton ’ s equa t i ons ( wr i t t en out e x p l i c i t l y )

Inputs :

q : Array<f l o a t ,2>

p : Array<f l o a t ,2>

params : Tuple<f l o a t ,7>

ou tpu t s :

qdot , pdot : Tuple<Array<f l o a t ,2>>

”””

mu, c , a ,A,B, beta ,m=params

s = q [ 0 ]

p s = p [ 0 ]
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theta = q [ 1 ]

p theta = p [ 1 ]

sdot = p s ∗ (1/(m∗mu∗mu) )∗ ( s ∗ s−c−a /( s ∗ s ) )∗ ( s ∗ s−c−a /( s ∗ s ) )

p sdot = (2/(m∗mu∗mu) )∗ ( s+a/( s ∗ s ∗ s ) )∗ ( s ∗ s−c−a /( s ∗ s ) )∗ p s ∗ p s +\

(1/m)∗ ( s+a/( s ∗ s ∗ s ) )∗ p theta ∗ p theta + A∗beta ∗np . abs ( s )∗∗ ( beta−1)

thetadot = (1/m)∗ ( s ∗ s−c−a /( s ∗ s ) )∗ p theta

return np . array ( [ p sdot , 0 . 0 ] ) , np . array ( [ sdot , thetadot ] )

@nj i t

def Nonsep SymInt 2step (q , p , x , y , dt , n s teps , params , w) :

”””

Compute n s t e p s s t e p s o f Tao ’ s second order method .

Inputs :

q : Array<f l o a t>

p : Array<f l o a t>

x : Array<f l o a t>

y : Array<f l o a t>

dt : f l o a t

−−−− The parameter d e l t a in the t h e s i s

n s t e p s : i n t

params : Tuple<f l o a t>

w : f l o a t
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−−−− The parameter omega in Tao (2016)

Outputs :

qn , pn , xn , yn : Tuple<Array<f l o a t>>

”””

h = dt / n s t ep s

for i s t e p in range ( int ( n s t ep s ) ) :

x1 , p1 = Equation (q , y , params )

p = p − x1 ∗ h ∗ 0 .5

x = x + p1 ∗ h ∗ 0 .5

q1 , y1 = Equation (x , p , params )

q = q + y1 ∗ h ∗ 0 .5

y = y − q1 ∗ h ∗ 0 .5

q1 = 0 .5 ∗ ( q − x )

p1 = 0 .5 ∗ (p − y )

x1 = np . cos (2 ∗ w ∗ h) ∗ q1 + np . s i n (2 ∗ w ∗ h) ∗ p1

y1 = −np . s i n (2 ∗ w ∗ h) ∗ q1 + np . cos (2 ∗ w ∗ h) ∗ p1

q1 = 0 .5 ∗ ( q + x)

p1 = 0 .5 ∗ (p + y)

q = q1 + x1

p = p1 + y1

x = q1 − x1

y = p1 − y1

q1 , y1 = Equation (x , p , params )
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q = q + y1 ∗ h ∗ 0 .5

y = y − q1 ∗ h ∗ 0 .5

x1 , p1 = Equation (qn , yn , params )

p = p − x1 ∗ h ∗ 0 .5

x = x + p1 ∗ h ∗ 0 .5

return q , p , x , y

@j i t

def Nonsep SymInt 4step (q , p , x , y , dt , n s teps , params ,w) :

”””

Fourth order four−s t ep method .

”””

gamma = 1/(2 −2∗∗(1/(5)))

q1 , p1 , x1 , y1 = Nonsep SymInt 2step (q , p , x , y , dt∗gamma, n steps , params ,w)

q2 , p2 , x2 , y2 = Nonsep SymInt 2step ( q1 , p1 , x1 , y1 ,

dt∗(1−2∗gamma) , n steps , params ,w)

return Nonsep SymInt 2step ( q2 , p2 , x2 , y2 ,

dt∗gamma, n steps , params ,w)

@j i t

def Nonsep SymInt 6step (q , p , x , y , dt , n s teps , params ,w) :

”””

S i x t h order s ix−s t ep method .
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”””

gamma = 1/(2 −2∗∗(1/(7)))

q1 , p1 , x1 , y1 = Nonsep SymInt 4step (q , p , x , y , dt∗gamma, n steps , params )

q2 , p2 , x2 , y2 = Nonsep SymInt 4step ( q1 , p1 , x1 , y1 ,

dt∗(1−2∗gamma) , n steps , params ,w)

return Nonsep SymInt 4step ( q2 , p2 , x2 , y2 ,

dt∗gamma, n steps , params ,w)

def I t e r a t e S o l v e r ( q0 , p0 , tmin , tmax , dt , n s teps , params ,w) :

”””

Generates a f u l l numerical s o l u t i o n .

Inputs :

q0 : Array<f l o a t>

p0 : Array<f l o a t>

tmin : f l o a t

tmax : f l o a t

d t : f l o a t

n s t e p s : i n t

params : Tuple<f l o a t>

w : f l o a t

Outputs :

s ou t : Array<f l o a t>
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−−−− s va l u e s o f s o l u t i o n

p s ou t : Array<f l o a t>

−−−− p s va l u e s o f s o l u t i o n

t h e t a ou t : Array<f l o a t>

−−−− t h e t a va l u e s o f s o l u t i o n

hami l t on ian er r : Lis t<f l o a t>

−−−− energy d r i f t

t v a l s : L i s t<f l o a t>

−−−− t v a l u e s f o r each da tapo in t

”””

t = tmin

q = q0

p = p0

x = q

y = p

data = [ [ ∗ q0 ,∗ p0 ] ]

hami l t on i an e r r = [ 0 ]

t v a l s = [ tmin ]

while t<=tmax :

print ( ” [{} %]\ r ” . format (round(100∗ t /tmax , 4 ) ) , end=’ ’ )

q , p , x , y = Nonsep SymInt 6step (q , p , x , y , dt , n s teps , params ,w)

data . append ( [ q [ 0 ] , q [ 1 ] , p [ 0 ] , p [ 1 ] ] )

hami l t on i an e r r . append (np . abs ( q [0]−x [ 0 ] ) ∗ ∗ 2 \

+np . abs (p [0]−y [ 0 ] ) ∗ ∗ 2 )
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t += dt

t v a l s . append ( t )

print ( ’ \n ’ )

s ou t = np . array ( [ d [ 0 ] for d in data ] )

the ta out = np . array ( [ d [ 1 ] for d in data ] )

p s ou t =np . array ( [ d [ 2 ] for d in data ] )

return s out , p s out , theta out , hami l ton ian er r , t v a l s
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