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High‑dimensional multinomial 
multiclass severity scoring 
of COVID‑19 pneumonia using CT 
radiomics features and machine 
learning algorithms
Isaac Shiri1, Shayan Mostafaei2, Atlas Haddadi Avval3, Yazdan Salimi1, Amirhossein Sanaat1, 
Azadeh Akhavanallaf1, Hossein Arabi1, Arman Rahmim4,5 & Habib Zaidi1,6,7,8*

We aimed to construct a prediction model based on computed tomography (CT) radiomics features 
to classify COVID‑19 patients into severe‑, moderate‑, mild‑, and non‑pneumonic. A total of 1110 
patients were studied from a publicly available dataset with 4‑class severity scoring performed 
by a radiologist (based on CT images and clinical features). The entire lungs were segmented and 
followed by resizing, bin discretization and radiomic features extraction. We utilized two feature 
selection algorithms, namely bagging random forest (BRF) and multivariate adaptive regression 
splines (MARS), each coupled to a classifier, namely multinomial logistic regression (MLR), to 
construct multiclass classification models. The dataset was divided into 50% (555 samples), 20% (223 
samples), and 30% (332 samples) for training, validation, and untouched test datasets, respectively. 
Subsequently, nested cross‑validation was performed on train/validation to select the features and 
tune the models. All predictive power indices were reported based on the testing set. The performance 
of multi‑class models was assessed using precision, recall, F1‑score, and accuracy based on the 
4 × 4 confusion matrices. In addition, the areas under the receiver operating characteristic  curves 
(AUCs) for multi‑class classifications were calculated and compared for both models. Using BRF, 23 
radiomic features were selected, 11 from first‑order, 9 from GLCM, 1 GLRLM, 1 from GLDM, and 1 
from shape. Ten features were selected using the MARS algorithm, namely 3 from first‑order, 1 from 
GLDM, 1 from GLRLM, 1 from GLSZM, 1 from shape, and 3 from GLCM features. The mean absolute 
deviation, skewness, and variance from first‑order and flatness from shape, and cluster prominence 
from GLCM features and Gray Level Non Uniformity Normalize from GLRLM were selected by both 
BRF and MARS algorithms. All selected features by BRF or MARS were significantly associated 
with four‑class outcomes as assessed within MLR (All p values < 0.05). BRF + MLR and MARS + MLR 
resulted in pseudo‑R2 prediction performances of 0.305 and 0.253, respectively. Meanwhile, there 
was a significant difference between the feature selection models when using a likelihood ratio test (p 
value = 0.046). Based on confusion matrices for BRF + MLR and MARS + MLR algorithms, the precision 
was 0.856 and 0.728, the recall was 0.852 and 0.722, whereas the accuracy was 0.921 and 0.861, 
respectively. AUCs (95% CI) for multi‑class classification were 0.846 (0.805–0.887) and 0.807 (0.752–
0.861) for BRF + MLR and MARS + MLR algorithms, respectively. Our models based on the utilization of 
radiomic features, coupled with machine learning were able to accurately classify patients according 
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to the severity of pneumonia, thus highlighting the potential of this emerging paradigm in the 
prognostication and management of COVID‑19 patients.

Abbreviations
CT  Computed tomography
COVID-19  Coronavirus disease 2019
AUC   Area under the receiver operating characteristic curve
CV  Cross-validation
BRF  Bagging random forest
FS  Feature selection
IV  Importance value
ML  Machine learning
GGO  Ground glass opacity
IBSI  The image biomarker standardization initiative
MARS  Multivariate adaptive regression splines
MLR  Multinomial logistic regression
RT-PCR  Reverse transcription polymerase chain reaction
GLCM  Gray-level co-occurrence matrix
GLSZM  Gray-level size-zone matrix
NGTDM  Neighbouring gray tone difference matrix
GLRLM  Gray-level run-length matrix
GLDM  Gray-level dependence matrix

The highly contagious SARS-CoV-2 virus has led to significant morbidity and mortality  worldwide1. Pneumonia 
is regarded as one of the main complications of COVID-19 disease, which can lead to lethal conditions while 
escalating the cost of  healthcare2. The most popular diagnostic test considered as the gold standard for coro-
navirus disease is the reverse transcription polymerase chain reaction (RT-PCR)  assay3. While highly specific, 
RT-PCR has shown low sensitivity, as studies have reported significant false-negatives in patients who had abnor-
malities in their chest CT images confirmed with secondary follow-up RT-PCR to be positive for COVID-194.

CT aids in the diagnosis and management of COVID-19 patients and could be potentially used as an outcome/
survival prediction tool, towards enhanced treatment  planning5. CT scanning has been utilized as a highly sensi-
tive tool for COVID-19  diagnosis6 since it is fast and generates quantifiable features (e.g., the extent to which 
lung lobes are involved) and non-quantifiable features (e.g., ground-glass opacities and their laterality) to assess 
COVID-19 pneumonia, besides the enhanced sensitivity compared to RT-PCR7.

Severity can be defined as an index that depicts the effects of a disease on mortality, morbidity, and comor-
bidities and has the potential to help physicians manage the patients more decently whether in patients with 
cancer or with non-cancer  diseases8,9. A number of severity scoring systems have been proposed to quantify 
disease advancement in patients, including general assessments (e.g., APACHE score) and disease-specific ones 
(e.g., Child–Pugh score)10. Several conventional scoring systems have been proposed for COVID-19 severity 
 assessment11. These include the usage of patient clinical, comorbidity, and laboratory data, which are all helpful 
in constructing predictive models for severity assessment in COVID-1912.

There has also been a growing interest in using imaging data of patients, such as thoracic CT images. For 
example, a study by Sanders et al.13 computed the score of CT images in patients with cystic fibrosis and evalu-
ated the prognostic ability. A promising line of research that emerged recently reported on the CT severity index 
and its correlation with acute pancreatitis  severity14–16. The COVID-19 Reporting and Data System (CO-RADS) 
was suggested for standardized visual assessment of COVID-19 pneumonia to enhance agreement between 
 radiologists17. This system includes features for the diagnosis of COVID-19 and consists of a 6-point scale for 
categorizing patient CT images. In addition, other guidelines aiming to reach consensus when interpreting 
COVID-19 suspected chest CT images were  proposed18. These guidelines are mostly based on visual assessment 
of images; e.g. the amount to which lung lobes are involved, the volume of which is infected, and anatomical 
assessments.

Francone et al.19 reported a study on the correlation between CT score and the severity of coronavirus disease. 
Zhao et al.20 also conducted research on the measurement of the extent to which lung lobes are infected and 
evaluation in COVID-19 patients’ prognosis. Li et al.21 also confirmed the association between chest CT score 
and COVID-19 pneumonia severity. At the same time, most scoring systems involve visual assessment and hence 
are time-consuming20,21. In this regard, medical image analysis using machine learning (ML) and radiomics has 
been applied to quantify features to tackle these main  challenges22.

The field of radiomics opens pathways for the study of normal tissues, cancer, cardiac disease, and many other 
diseases, including potentially the newly emerging COVID-19  disease23–30. Specifically, Xie et al.31 evaluated the 
potential of a radiomics framework to diagnose COVID-19 from CT images. Di et al.32 also studied whether 
radiomics features can help to distinguish between pneumonia of COVID-19 and that of other viral/bacterial 
causes. A number of studies reported on the application of radiomics analysis to CT images towards COVID-19 
classification and  prognostication33–36. Homayounieh et al.37 assessed the prognostic power of CT-based radiom-
ics features to determine severe and non-severe cases. In another study, Li et al.38 proposed a radiomics model 
based on CT images and classified patients based on the criticality of their disease. A recent study by Yip et al.39 
applied a robust radiomics model to CT images to predict the severity of COVID-19 disease in patients. All 
above models pursued binary task performance, which reduced multiclass classification to two class approaches. 
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However, in the real clinical triage situation, scoring systems consist of multi-class datasets. In the present study, 
involving a large cohort of patients, we aimed to construct a CT radiomics-based multi-class classification model 
to predict the severity of COVID-19 pneumonia.

Materials and methods
Data description. Figure 1 presents the different steps performed in this study. All experiments were per-
formed in accordance with relevant guidelines and regulations.

Datasets and segmentation. This study is based on the MosMed  Dataset40 consisting of 1110 patient 
CT scans, also utilized in other  efforts39,41. Ethics approval and consent to participate were not needed since the 
study was preformed on open access online dataset. In the class zero, the patient has neither clinical symptoms 
(e.g. fever) nor CT findings in favor of any kind of pneumonia (Class 0, non-pneumonic)40. The 1st class contains 
patients who have a low-temperature fever (t < 38 °C) in addition to a mild increase in respiratory rate (RR < 20) 
while showing none or < 25% ground-glass opacity (GGO) involvement (Class 1, COVID-19 with mild sever-
ity)40. Patients in the 2nd class have a higher body temperature (t > 38.5 °C) with a RR of 20–30, while CT scan 
shows 25–50% involvement of lung parenchyma (Class 2, COVID-19 with moderate severity)40. Patients in the 
3rd class have high body temperature and RR of 30 or more, with CT findings of 50% to diffuse involvement in 
addition to organ failure and shock signs (Class 3, severe COVID-19)40. Each of the classes, namely 0, 1, 2, and 3, 

Figure 1.  Different steps of the current study, including data acquisition, image segmentation using COLI-
Net, image preprocessing and feature extraction, machine learning and evaluation method and metrics. GGO: 
ground glass opacities, T: Temperature, RR: Respiratory Rate,  SpO2: Peripheral Capillary Oxygen Saturation, 
 PaO2: Partial Pressure of Oxygen.  FiO2 = Fraction of Inspired Oxygen.
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included 254, 684, 125, and 47 patients,  respectively40. The median age was 47 (ranging from 18 to 97), and 42% 
of patients were female. Figure 2 shows an example of representative CT images for each  class40.

All CT images were automatically segmented using a deep learning-based algorithm for whole lung 
 segmentation42. After whole-lung 3D segmentation, all images were reviewed and modified to ensure correct 
3D-volume lung segmentation.

Image preprocessing and feature extraction. To preserve image resolution and efficient radiomics 
feature extraction, all images were cropped to lung region and then resized to 296 × 216 matrix  size33,43. Sub-
sequently, image voxels were resized to an isotropic voxel size of 1 × 1 × 1  mm3 (for invariant texture feature 
extraction) and image intensity were discretized to 64-binning  size44. The extracted features from the whole-
lung segmented regions, totalling 110, included shape (n = 16), intensity (n = 19), and texture features, namely 
second-order texture of gray-level co-occurrence matrix (GLCM, n = 24), and high-order features, namely gray-
level size-zone matrix (GLSZM, n = 16), neighbouring gray tone difference matrix (NGTDM, n = 5), gray-level 
run-length matrix (GLRLM, n = 16) and gray-level dependence matrix (GLDM, n = 14). Radiomics feature 
extraction was performed using the Pyradiomics Python  library45, which is compliant with the image biomarker 
standardization initiative (IBSI)44. In addition, feature maps were generated using voxelwise feature extraction.

Feature selection and classification and evaluation. In this study, we used two different feature 
selection algorithms, including Bagging Random Forests (BRF) and Multivariate Adaptive Regression Splines 
(MARS)46. BRF and MARS algorithms were implemented in "VSURF" and "earth" R packages, respectively. 
Importance values (IVs) were calculated using generalized cross-validation criterion with normalization. For 
multiclass classification, we implemented multinomial logistic regression (MLR) using the "mnlogit" R package. 
The MLR model fitness indices included p value of the Wald test (corrected for false-discovery rate via Benja-
mini and Hochberg method), pseudo  R2, as well as Akaike information criterion (AIC, goodness of fit indices in 
generalized linear regression models). In the MLR model, class 0 served as a reference class whereas statistical 
comparison between two predictive models was performed by the Likelihood Ratio Test.

The dataset was divided into 50% (555 samples), 20% (223 samples), and 30% (332 samples) as training, 
validation, and untouched test datasets, respectively. The nested fivefold cross-validation with grid search was 
used to validate models and estimate tuning hyper-parameters based on the minimization of GCV error rate. 
In our nested fivefold cross-validation processing, there were 5 outer folds (i.e., training and testing sets) and 5 
inner folds (i.e., training and validation sets) where the total number of trained models was 25 for each classifier. 
We report mean precision, recall, F1-score, and accuracy and their standard deviation (SD) for different classes 
in each model based on the 30% untouched test set with bootstrapping (n = 1000) to ensure reproducibility. In 
addition, the areas under the receiver operating characteristic (ROC) curve (AUCs) for multi-class classification 
models were calculated and compared for both models using “multiROC” and “pROC” R packages, respectively.

Figure 2.  Examples of patient CT images belonging to different classes with different scores.
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Results
Table 1 summarizes the selected features and their relative importance value by BRF and MARS for multiclass 
classification. These features were selected in train/validation sets using nested cross validation and grid searches. 
Twenty-three radiomic features were selected by BRF, including 11 from first-order, 9 from GLCM, 1 from 
GLRLM, 1 from GLDM, and 1 from shape features. Among these features, Correlation (IV: 100%) and Cluster 
Tendency (IV: 88%) from GLCM, Mean Absolute Deviation (IV: 80%), Robust Mean Absolute Deviation (IV: 
72%) and variance (IV: 70%) from first-order features were selected as the most important ones. In the MARS 
algorithm, 10 features were selected with high IVs, including 2 from first-order, 1 from GLDM, and 1 from 
GLCM. The highest IV was achieved by mean absolute deviation (IV: 100%) and skewness (IV: 55%) from first-
order, Gray Level Variance from GLDM (IV: 53%), and Correlation from GLCM (IV: 54%). The mean absolute 
deviation, skewness, variance from first-order, flatness from shape, cluster prominence from GLCM features, 
and Gray Level Non Uniformity Normalize from GLRLM were selected by both BRF and MARS algorithms. 
Figure 3 depicts the feature map of different radiomics features in different classes (10Precentile from first order, 
Gray level Non-Uniformity Normalized from GLRLM, Idm from GLCM and Zone Entropy from GLSZM).

Table 2 summarizes the adjusted p value (by Benjamini and Hochberg method) of the Wald test and AIC for 
both feature selection algorithms using MLR model. All selected features yielded a significant p value (< 0.05). 
BRF + MLR and MARS + MLR resulted in pseudo  R2 values of 0.305 and 0.253, respectively. However, there 
were significant differences between both predictive models when using a likelihood ratio test (p value = 0.046).

Table 3 summarizes classification power indices, including mean (SD) Precision, Recall, F1-score, Accuracy, 
and AUC via multinomial logistic regression with 1000 bootstrapping samples for each model in untouched test 
dataset. In terms of F1-score, four-class mean F1-scores were 0.854 and 0.724 for BRF + MLR and MARS + MLR 

Table 1.  Selected features by Bagging Random Forests (“VSURF” R package) and multivariate adaptive 
regression splines (“earth” R package) for multi-class classification using nested fivefold cross validation based 
on the training set (50% of the samples, N = 555) and the validation set (20% of the samples, N = 223). Relative 
importance value calculated using generalized cross-validation (GCV) criterion with normalization.

Algorithm Selected variables Feature type Relative importance value (%)

Bagging Random Forests

First Order Mean Absolute Deviation 80

First Order Robust Mean Absolute Deviation 72

First Order Variance 70

First Order Interquartile Range 68

First Order Kurtosis 62

First Order Skewness 61

First Order Entropy 42

First Order 10Percentile 40

First Order 90Percentile 36

First Order Energy 30

First Order Mean 20

GLCM Correlation 100

GLCM Cluster Tendency 88

GLCM Sum Squares 66

GLCM Inverse Variance 60

GLCM Cluster Shade 55

GLCM Cluster Prominence 54

GLCM Joint Entropy 52

GLCM Idm 48

GLCM Id 44

GLDM Dependence Variance 65

GLRLM Gray Level Non Uniformity Normalize 51

Shape Flatness 18

Multivariate Adaptive Regression Splines

First Order Mean Absolute Deviation 100

First Order Skewness 55

First Order Variance 11

GLCM Correlation 54

GLCM Cluster Prominence 47

GLCM Difference Entropy 36

GLDM Gray Level Variance 53

GLRLM Gray Level Non Uniformity Normalize 10

GLSZM Zone Entropy 20

Shape Flatness 48
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algorithms, respectively. The mean precision was 0.856 and 0.728, whereas the mean recall was 0.852 and 0.722 
for BRF + MLR and MARS + MLR algorithms, respectively. BRF + MLR and MARS + MLR algorithms achieved an 
accuracy of 0.921 and 0.861, respectively, in four-class classification. AUCs (95% CI) for multi-class classification 
were 0.846 (0.805–0.887) and 0.807 (0.752–0.861) for BRF + MLR and MARS + MLR algorithms, respectively. 
According to the results of the classification metrics, the predictive power of the BRF + MLR model is higher 
than MARS + MLR. Figure 4 depicts the confusion matrices for both predictive models based on the testing set 
whereas Fig. 5 shows the ROC curves for our four-class classification methods.

Discussion
In the current study, we constructed a CT radiomics-based model to predict the severity of COVID-19 patients 
in a large cohort of patients. To this end, we extracted radiomics features from whole lung segmentations and 
selected high-importance features utilizing two different algorithms, namely BRF and MARS. The selected fea-
tures were then fed to a multinomial logistic regression classifier for multiclass severity scoring. We achieved 
0.846 (0.805–0.887) and 0.807 (0.752–0.861) for AUC, and 0.921 and 0.861 for accuracy in BRF- and MARS-
selected features, respectively. We used an automatic model to segment chest CT images for two reasons. First, 
most CT scans performed in the COVID-19 pandemic era are low-dose. In addition, these scans are acquired 
with a high pitch. Hence, it is difficult for radiologists to find and follow lung fissures to manually detect or seg-
ment the anatomical lobes. As such, we used our previously constructed and validated deep learning model to 
fully segment the entire lung of each  patient33,34,42,43,47.

Yip et al.39 conducted a study on the same dataset utilized in this work, aiming to evaluate some radiomics 
features towards severity class prediction in patients. They included all 1110 patient CT scans and extracted 107 
radiomics features. The maximum relevance minimum redundancy (MRMR) and recursive feature elimination 
(RFE) algorithms were exploited for feature selection and analysis of the selected features using univariate and 
multivariate approaches using a logistic regression model to classify as accurately as possible. In their study, 
the patients were categorized into three severity categories, namely mild, moderate, and severe, to perform 
two-class classification tasks (mild vs. severe and moderate vs. severe) by splitting the data into training (60%) 
and test (40%) sets. The authors obtained an AUC of 0.65 in differentiating between moderate and severe cases, 
while their model performed better (AUC = 0.85) in distinguishing mild vs. severe forms of COVID-19 disease. 
In this work, we reached an overall AUC of 0.846. In our study and the one by Yip et al.39, feature extractions 
were performed using  Pyradiomics45 as applied to the entire lung. Interestingly, there were some commonly 
selected features arrived at via feature selection in both studies, including Mean Absolute Deviation, 10Percentile, 

Figure 3.  Examples of selected features (10Precentile from first order, Gray level Non-Uniformity Normalized 
from GLRLM, Idm from GLCM and Zone Entropy from GLSZM) in different class cases and different slices.
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Table 2.  Multinomial logistic regression for the selected features by “mnlogit” R package and the model’s 
fitness indices based on the testing set (N = 332). p value by Wald chi-square test, Adj. p value: P value adjusted 
by Benjamini and Hochberg method, statistical comparison between two models showed non-significant 
difference by Likelihood Ratio Test: P value = 0.046, AIC: Akaike information criterion.

Algorithm Feature type Adj. p value Pseudo  R2 AIC

Bagging Random Forests

First Order Mean Absolute Deviation  < 0.001

0.305 782.6

First Order Robust Mean Absolute Deviation  < 0.001

First Order Variance  < 0.001

First Order Interquartile Range  < 0.001

First Order Kurtosis  < 0.001

First Order Skewness  < 0.001

First Order Entropy 0.001

First Order 10Percentile 0.002

First Order 90Percentile 0.001

First Order Energy 0.005

First Order Mean 0.025

GLCM Correlation  < 0.001

GLCM Cluster Tendency  < 0.001

GLCM Sum Squares  < 0.001

GLCM Inverse Variance  < 0.001

GLCM Cluster Shade  < 0.001

GLCM Cluster Prominence  < 0.001

GLCM Joint Entropy  < 0.001

GLCM Id 0.001

GLCM Idm 0.001

GLDM Dependence Variance  < 0.001

GLRLM Gray Level Non-Uniformity Normalize 0.009

Shape Flatness  < 0.001

Multivariate Adaptive Regression Splines

First Order Mean Absolute Deviation  < 0.001

0.253 972.8

First Order Skewness  < 0.001

First Order Variance  < 0.001

GLCM Cluster Prominence  < 0.001

GLCM Correlation  < 0.001

GLCM Difference Entropy  < 0.001

GLDM Gray Level Variance  < 0.001

GLRLM Gray Level Non-Uniformity Normalize  < 0.001

GLSZM Zone Entropy  < 0.001

Shape Flatness  < 0.001

Table 3.  The classification power indices (SD) based on the testing set (N = 332) with 1000 bootstrapping 
samples based on the feature selection methods.

Algorithm Class Precision Recall F1-score Accuracy AUC (95% CI)

Bagging Random Forests

Class 1 0.881 (0.098) 0.855 (0.085) 0.868 (0.079) 0.918 (0.109)

0.846 (0.805–0.887)

Class 2 0.800 (0.039) 0.828 (0.037) 0.812 (0.019) 0.852 (0.049)

Class 3 0.864 (0.105) 0.843 (0.079) 0.853 (0.096) 0.928 (0.117)

Class 4 0.882 (0.103) 0.882 (0.088) 0.882 (0.109) 0.988 (0.119)

Average/total 0.856 0.852 0.854 0.921

Multivariate Adaptive Regression 
Splines

Class 1 0.731 (0.099) 0.760 (0.101) 0.745 (0.089) 0.837 (0.116)

0.807 (0.752–0.861)

Class 2 0.671 (0.039) 0.688 (0.033) 0.679 (0.026) 0.750 (0.031)

Class 3 0.802 (0.119) 0.734 (0.101) 0.767 (0.098) 0.888 (0.121)

Class 4 0.706 (0.109) 0.706 (0.109) 0.706 (0.109) 0.970 (0.136)

Average/total 0.728 0.722 0.724 0.861
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90Percentile, and Mean from first order and Correlation from GLCM. These selected features in both studies 
could potentially be used as predictors as they provide information about the intensity and heterogeneity of the 
lung in COVID-19 patients.

A noticeable advantage of the study by Yip et al.39 was the use of a second radiologist observer who classified 
patients’ images into mild, moderate, and severe classes without paying attention to the default classification of 
the dataset provider. This method helped to observe the prediction power of the models in both “provider” and 
“radiologist” datasets. In addition, the study by Yip et al.39 may have reduced generalizability as it only predicts 
mild versus severe, and moderate versus severe disease, having reduced multiclass classification into two-class 
approaches. In the real clinical triage situation, the radiologist may benefit from a multiclass classification scheme 
for enhanced patient management, as provided by our study.

Multi-class classification is a difficult machine learning  task48. Different studies have shown that ML/DL algo-
rithms are capable of predicting much more decently when classifying binary categories, compared to multiple 
categories. For example, a study by Senan et al.49 showed that a specific DL network achieved an accuracy of 99% 
and AUC of 97.5% for binary classification (COVID-19 vs healthy) compared to an accuracy and AUC of 95% and 
97.1%, respectively, for classifying CXRs into COVID-19, viral pneumonia, lung opacity, and healthy individuals.

Regarding multi-class classification studies on COVID-19, some studies showed promising  results50–52. For 
instance, Wu et al.53 and Qian et al.54 evaluated the power of CXR-based and CT-based CNN models for differ-
entiating between multiple classes of patients, including COVID-19, viral pneumonia, bacterial pneumonia, and 
healthy individuals, respectively. In addition to CNN models, some studies investigated multi-class categorization 

Figure 4.  Four-by-four confusion matrix for (a) Multivariate Adaptive Regression Splines (MARS) and Bagging 
Random Forests (BRF).

Figure 5.  (a) ROC curve for assessing power of multi-class classification of the selected features in Bagging 
Random Forests (AUC = 0.846), and (b) Multivariate Adaptive Regression Splines (AUC = 0.807). Statistical 
comparison of ROC curves by “pROC” R package indicated significant difference (Z = 3.834, p value < 0.001).
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power of ML models. For example, Hussain et al.55 assessed COVID-19, bacterial, viral, and healthy CXRs using 
extracted features and five ML algorithms. These algorithms classified each CXR into one of the four aforemen-
tioned CXR categories. They reached an accuracy and AUC of 0.79 and 0.87, respectively. A study by Khan et al.56 
evaluated CT-based ML algorithms, such as multi-class SVM. In a recent study by Moradi Khaniabadi et al.34, 
two-step ML algorithms were proposed for diagnosis and severity scoring from COVID-19 CT images. They 
performed three-class classification for two different diagnostic tasks (normal, other pneumonia, and COVID-
19 pneumonia) and severity scoring (mild, moderate and severe). They extracted radiomic features form whole 
lungs and used multiple machine learning algorithms for feature selection and classification purposes. They 
reported 0.909 ± 0.026, 0.907 ± 0.056, and 0.982 ± 0.010 for precision, recall, and AUC for diagnostic purposes 
and 0.868 ± 0.123 precision, 0.865 ± 0.121 recall, and 0.969 ± 0.022 AUC for severity scoring using a random 
forest algorithm.

Homayounieh et al.57 included 315 patients in their study and extracted CT-based radiomics features from 
the lung to show that radiomics can predict patients’ outcome (inpatient vs. outpatient management) with an 
AUC of 0.84 while the radiologist assessment alone achieved an AUC of 0.69. Feature extraction was performed 
by applying the different preprocessing algorithms on images, with classification performed using logistic regres-
sion. They reported that adding clinical variables to the radiomics model can notably improve the predictability 
of a model for patient outcome prediction (AUC improved from 0.75 to 0.84). Another study conducted by Wei 
et al.58 evaluated the predictive ability of two models (one CT texture-based and one clinical) for determining 
the severity of each of the 81 COVID-19 patients. They showed that CT texture features could modestly predict 
whether the patient has common COVID-19 pneumonia or a severe one with an AUC of 0.93, which is com-
parable to that of the clinical-only model (AUC = 0.95). They also observed that several texture features had a 
moderate correlation with the clinical variables of patients.

Chaganti et al.59 studied Ground Glass Opacity (GGO) and consolidations that appear on a CT image of 
COVID-19 patients in an attempt to propose an automated method for segmenting and quantifying COVID-19 
lesions. Their proposed method calculated the percentage of opacity and lung severity score using deep learning 
algorithms and was able to predict the severity with a decent performance. However, Chaganti et al.59 proposed 
a method trained only on the mentioned abnormalities and had a limited performance in other abnormali-
ties quantification. Even with improving segmentation algorithms, this method would be limited because of 
the highly heterogeneous nature of COVID-19 pneumonia in addition to ignoring the shape and texture of 
segmented lesions. Moreover, providing accurate lobe segmentation of COVID-19 patients would be challeng-
ing from typical low-dose and high pitch chest CT scans. In the current and previous  studies37,39,58, radiomics 
features, as extracted from the entire lung (less challenging segmentation task for deep learning algorithms), 
were evaluated to provide fast and robust severity scoring in COVID-19 patients.

In this work, chest CT was used for assessment. At the same time, there are few studies on other modalities 
such as chest X-ray radiography in prognostication and outcome prediction evaluation of COVID-19 patients. 
For example, Bae and  colleagues60 utilized radiomics features and modeled them on chest X-rays of 514 patients 
and found out that their radiomics- and deep learning-based model can accurately predict mortality and the need 
for mechanical ventilation in patients (AUCs = 0.93 and 0.90, respectively). Providing a severity score using chest 
X-rays is a valuable venue to explore. Yet, such work requires extensive comparisons with CT-based frameworks 
to assess the relative value of each modality for different tasks.

A number of radiomic features were selected with different IVs by two different algorithms. The 10Percentile, 
90 Percentile and Mean from first-order features, which show the different percentile and Mean intensity within 
a region of interest were the selected features. The 10Percentile, 90 Percentile and Mean from first-order, despite 
max and min intensity, which are affected by noise, could be correlated with the involvement of the lung by 
infection as in severe cases, the infected lungs have high HU values. Other features selected by both algorithms 
was the Mean Absolute Deviation from first-order, achieving the highest IV in both algorithms. This feature is 
defined as the mean distance of image intensities from the mean value. As different stages of Covid-19 disease 
had different CT manifestations from no lesions, and medium to highly affected by infectious lesions, this feature 
could be correlated by stage of disease with different levels of infection demonstrated by the intensity of HUs. 
In addition to our study, these three features were selected by Yip et al.39 using the same datasets with different 
machine learning algorithms.

Zone Entropy (ZE) from GLSZM was another radiomics feature selected with high IV. This feature measures 
the randomness in distribution of the zones where a higher value indicates higher heterogeneity. Different stages 
of COVID-19 indicate different manifestations, including bilateral, multifocal, peripheral ground-glass opacities, 
consolidation, and crazy paving. These manifestations provide different textures where ZE could potentially be 
correlated with initial different heterogeneity generated by different stages. Dependence Variance (DV) from 
GLDM which measures the intensities variance had the highest IV in BRF algorithms. This feature could poten-
tially be correlated with heterogeneities in different scores as severe cases had multiple types of lesions with high 
heterogeneity across the whole lung.

Gray Level Non-Uniformity Normalize from GLRLM was selected by both algorithms with high IV, which 
represents the spatial intensity changes in images. In severe COVID-19 cases, the lungs reveal more infections 
containing different types of manifestations resulting in high heterogeneity textures. In the case of high vari-
ability of intensity and high spatial change, such as high severe cases, the GLNUN feature value would be high. 
Gray Level Variance (GLV) from GLDM was another feature selected by MARS algorithm as high IV. GLDM 
calculates the coarseness of the texture whereas GLV feature measures the variance in dependence counts over 
intensities. This feature also quantifies the heterogeneity of regions of interest. In our study, this could be cor-
related with severe cases as the lung involves coarse textures of infection manifestation.

We presented the voxelwise feature map for three different features in different classes of severity. These 
features map visualize the different patterns of features across the different COVID-19 cases. In this study, we 
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attempted to clinically interpret selected features, similar to previous  studies61–64 with the aim to hypothetically 
correlate the selected features and biological phenomena in different classes of severity. We should note that 
multivariate analysis uses different information from the selected features and using only one feature as univariate 
analysis doesn’t yield high performance for scoring. The combination of these selected features could provide 
complementary information toward robust multiclass severity scoring modeling.

This study suffered from a few limitations, including the fact that our model was trained on single-center data. 
Further research should be conducted on large-scale and multi-centric data and patient images with multiple 
observers for improved training of the models and enhanced generalizability. In the current study, the developed 
models were compared only to previous studies. Further work should focus on the comparison of ML-based 
scoring models with conventional scoring approaches.

Conclusion
We evaluated high-dimensional multinomial multiclass severity scoring of pneumonia using CT radiomic fea-
tures and machine learning algorithms. We applied two feature selectors coupled to a classifier on a large cohort 
of COVID-19 patients. Our radiomics model was validated to depict accurate classification of patients accord-
ing to multi-class pneumonia severity assessment criteria, highlighting the potential of this emerging paradigm 
in the assessment and management of COVID-19 patients. The selected radiomic features could be visualized 
to highlight the affected regions for better understanding of images, toward interpretable machine learning 
models. We proposed radiomics and machine learning-based high-dimensional multinomial multiclass severity 
scoring systems which could be potentially used in real clinical situations for severity assessment of COVID-19 
patients. The proposed methods could be useful for highly affected (severe) COVID-19 patients management 
(ICU admission and treatment assessment).
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