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Presumably, many learners of German would agree to the following sug-
gestion to improve on the German gender system as brought forward by
Abbas Khider, a by-origin Iraqi writer who learned German in his twenties
and now writes mostly in German:

I have a simple and practical suggestion: one introduces a
universal article for the whole language. [...] So — for mas-
culine, feminine and neuter there will be only one definite
article and one indefinite article.

Definite article: de
Indefinite article: e
Plural: die

When the foreigners in Germany will hear about this sugges-
tion, I presume that they will all go out into the streets, dance,
celebrate and cheer for days. Certainly some of them will let
loose all their contempt for the articles and scream: “Wir sind
de Volk!” [We are de people!].1 (Khider, 2019, p. 33)

Choosing the correct article for a German noun is a challenging task,
given that the complex and seemingly arbitrary German gender system is
notoriously hard to master, especially for second language learners. What
makes the German gender system so difficult to learn is that, although
it is possible to identify formal rules for gender assignment, those rules
are relatively complex and have frequent inconsistencies and exceptions
regarding both semantic properties (e.g., most fruit are feminine but
the German nouns for apple or peach are masculine) and phonological
features (e.g., most German nouns ending in a nasal and a consonant,
such as nouns ending in “-nd”, are masculine but “die Hand”, the hand, is
feminine, Köpcke & Zubin, 1983, 1996).

Notably, the article paradigm suggested by Abbas Khider resembles
more the English system which lacks noun gender and indeed seems much
more easily acquired. In fact, there seems to be a reason why gender
systems have prevailed in languages like German but not in English (which

1Quote translated from German; note that the correct German translation of “the people”
would be “das Volk”
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used to have such a system until the Norman invasion in the 11th century,
Dawson, 2003): statistical corpus analyses suggest that languages, such
as English, that are spoken by large populations with frequent contact to
other linguistic communities evolve into systems which are more learnable,
for example by exhibiting less grammatical complexity (Lupyan & Dale,
2010).

Languages can, thus, be assessed by how learnable they are. However,
some of these features of languages which seem challenging to learn may
actually make communication smoother, quicker and less costly — or in
other words, may help to increase communicative efficiency. German
gendered articles, for example, can help a listener to anticipate the noun
that a speaker is going to produce, which means that depending on the
situation she might already infer the message that the speaker intended to
get across. For example, given the fact that fork, knife, and spoon all have
different genders in German (i.e., “die Gabel” is feminine, “das Messer”
neuter, and “der Löffel” masculine), a listener sitting across the table, can
already infer upon hearing “Kannst du mir den...” (‘Can you give me the...’)
that the speaker would like to have the spoon. (In this case, “den” is the
German masculine accusative article contrasting the feminine and neuter
accusative articles “die” and “das”.). While the same fork-knife-spoon
example has been previously used to illustrate the lack of systematicity in
the German gender system (e.g., van Berkum, 1997), the way in which
highly frequent nouns within a specific context are usually the ones being
gender exceptions could be argued to actually be systematic (Köpcke &
Zubin, 1996): on the one hand, highly frequent nouns are probably easier
learned to be gender exceptions than less frequent nouns; on the other
hand, when aiming to increase communicative efficiency on average, it
might be especially important to reduce ambiguity when frequently used
nouns come up in speech, for instance by systematically preceding those
nouns with differently gendered article.

Whether a language settles on a feature such as noun gender, hence,
seems to be the result of a tug-of-war between learnability and commu-
nicative efficiency. With introducing a solution as suggested by Abbas
Khider, the German language would presumably become easier to learn,
however at the same time, much of the functionality of articles would
be lost. (Rather paradoxically, I will suggest in the course of this thesis
that one of those functions of gender might be to actually help learning,

3
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in particular, single noun meanings.) Yet, what exactly are the kind of
structures that are more easily learned and which ones make communica-
tion efficient? And how do languages such as English or Khider-German
compensate for their lack of hard-to-learn but efficient features?

1. Aims of this thesis
In this thesis I aim to investigate the learnability and communicative
efficiency of different linguistic structures. I will restrict the scope of this
investigation to a basic unit of language — noun phrases — and to a basic
factor which has been found to affect both learning and communication:
the linear order of the words (e.g., nouns, articles, and adjectives) and
parts of words (e.g., prefixes and suffixes) in the noun phrase. In particular,
I will examine how linear order affects the learning of noun categories
and their function in communication.

1.1. Modeling expectation-based learning

To investigate how linear order in noun phrases affects learning and
communication, I will use cognitive modeling to simulate how learners
of a language come to learn specific noun phrase structures. Specifically,
I will use simple error-driven learning models, which consist of a very
simple neural network architecture that connects a set of defined input
units with a set of defined output units and calculates the strength of
these input-output connections with an error-driven learning rule — the
so-called delta rule (Widrow & Hoff, 1960).

One reason for using this kind of model is that error-driven learning
rules seem to be cognitively plausible learning mechanisms. Error-driven
learning mechanisms are expectation-based processes which means that
they rest on the assumption that learning is a process which constantly
adjusts expectations about future states of the world by making and testing
predictions. That this mechanism might indeed correspond to learning
processes in human and animal brains is supported by the fact that humans
and most animals are sensitive to temporal order in the environment and
that they are able to learn sequences and to predict future states of the
world based on the current situation, as is suggested by countless learning
studies (in animals, e.g.: Kamin, 1969; Krechevsky, 1932; Pavlov, 1927;
Rescorla, 1968; and in humans, e.g.: Gluck & Bower, 1988; Price &
Yates, 1995; Reed & Johnson, 1994) and neurophysiological evidence

4
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(Davachi & DuBrow, 2015; Schultz, 2000; Schultz et al., 1997; Waelti et al.,
2001). In fact, learning to predict what’s coming next and, consequently
being prepared to react can be seen as essential in a constantly changing
environment (Montague & Sejnowski, 1994).

A second reason to use this modeling framework is that it is ubiq-
uitous in today’s computational modeling landscape. The delta rule is
widely applied not only in psychology and ethology but it is also at the
core of today’s most popular “deep” machine learning architectures (in its
generalized form backpropagation, see, e.g., McLaren, 1993; Rumelhart
et al., 1987). However, while these applications usually share the same
underlying learning mechanism, the model architectures and input and
output representations used to model similar problems often vary consid-
erably. Error-driven learning is therefore a field in which — albeit most use
the same error-driven learning rule — the theoretical directions haven’t
always been quite clear. In fact, I will discuss how the different ways
of framing learning problems frequently leads to diametrically opposed
conclusions about how to conceptualize the learning process.

I therefore begin this thesis, in Chapter 2, with a thorough exploration
of the error-driven learning mechanism as defined by the delta rule, with
the aim of clearing up some confusions about the scope of error-driven
learning models. I will argue that, frequently, the framing of these models
— especially the input and output representations specified by the mod-
eler — restricts the full scope of the error-driven learning mechanism. I
will suggest a theoretical direction to avoid this problem and allow the
learning mechanism to develop all its possible dynamics. In particular, the
suggested theoretical interpretation of error-driven learning processes are
that they are discriminative processes, which means that their aim is to
learn to represent the environment such that the learned representations
can be used to reliably tell apart likely and unlikely future states of the
environment that might be relevant for a learner to fulfill a given task or
reach a certain goal.

This exploration can also serve as an introduction to using error-driven
learning in simple two-layer networks to investigate the dynamics that
arise from an error-driven learning mechanism, and as such is comple-
mented by a practical tutorial and the R package edl (van Rij & Hoppe,
2021), which offers an easy-to-use implementation of two-layer error-
driven learning networks.

5
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1.2. Taking an expectation-based perspective on language

One consequence of assuming an error-driven learning mechanism which
is crucial for the present investigation, is that the expectation-based nature
of error-driven learning has implications not only for the conceptualization
of learning — in this case language learning — but also for the conceptual-
ization of what kind of systems languages are and how they serve commu-
nication. In particular, the assumption that an expectation-based learning
mechanism underlies language learning implies that also language use,
or communication, is an expectation-based mechanism. In order to opera-
tionalize and quantify speaker expectations in communication systems, I
will use tools from information theory, a field concerned with the design
and optimization of artificial communication systems which explicitly con-
ceptualizes communication as an incremental, expectation-based process.
In the remainder of this thesis I will thus apply this expectation-based
perspective on language to the analysis of different noun phrase structures
and their consequences for learning and communication.

In Chapter 3 and 4 the expectation-based learning process will be
central: in those two chapters I will investigate how linear order in the
noun phrase affects learning of differently structured noun class systems
and single noun meanings. In particular, I will manipulate the linear order
(and as such also the temporal order) of parts of the noun phrase, which,
critically, should also directly affect the predictive relations between them.
I will then model and behaviorally test the effect of manipulating the
predictive structures within the noun phrase in this way on learning of
both noun class systems and noun meanings.

In Chapter 5 I will focus on the expectation-based communication
process with the aim of deriving a way to assess the communicative
efficiency of differently structured noun phrases in order to predict noun
phrase production behavior of English and German speakers in different
contexts. In order to quantify communicative efficiency I will use the
information-theoretic notion of entropy, which can be used to measure the
uncertainty about the continuation of a speech signal given the current
context. Specifically, I will use this measure to examine how easily and
smoothly speech signals with different structures can be processed and
produced. Besides drawing conclusions about efficient speaker behavior
in different languages, I will try to work out a few details of how messages
are communicated in an expectation-based communication system.

6
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In what follows, I will begin by introducing the linguistic phenomenon
treated in this thesis, linear order in noun phrases, and based on this
derive more detailed research questions for Chapters 3-5.

2. Linear order in noun phrases
Noun phrase structure can differ substantially between languages. Con-
sider for example the following sentence in English (a), German (b),
Norwegian (c), Italian (d), and Albanian (e):

(1) a. Do you see the white rabbit?
b. Siehst du das weiße Kaninchen?
c. Ser du den hvite kaninen?
d. Vedi il coniglio bianco?
e. A e shihni lepurin e bardhë?

At first glance, we can observe that noun phrases in the five languages
differ in word order: both articles (highlighted in purple) and adjectives
(highlighted in green) can either appear before the noun (prenominally) or
after the noun (postnominally). Norwegian articles2 even appear prenom-
inally and postnominally at the same time.

Further, these languages differ in whether they categorize nouns into
different noun classes or not: in this example, all of the above languages
except for English group nouns into different grammatical gender classes.
Having this feature manifests itself usually in that specific parts of the
noun phrase need to agree with the class of the noun. The different
languages in Example (1) show different ways in which noun class can be
marked: there are, for example, gendered articles (as in 1b–e), gendered
adjective endings (as in 1b and 1c) and gendered noun endings (e.g., the
“-o” ending in 1d).

2.1. Linear order effects on learnability

Seen from a learning perspective, learners of German, Norwegian, Italian
and Albanian (see Example 1b-e) which have a noun class system such as

2Note that although the postnominal articles (often referred to as postpositive articles)
in Norwegian and Albanian look in this example as if they were parts of the nouns, they
are omitted in their indefininte form: e.g., “a rabbit” would translate to “en kanin” or
“një lepur”.

7



Introduction | 1

grammatical gender need to somehow learn to categorize nouns into dif-
ferent classes and connect them with specific noun class markers. Notably,
evidence suggests that the linear order in which noun class markers appear
with nouns affects how easily they are learned: in particular noun class
systems with postnominal marking seems to be learned more easily. This
has been first suggested by evidence from cross-linguistic comparisons of
how fast children learn noun class systems in languages that mark noun
classes prenominally and ones that mark them postnominally (E. V. Clark,
2001; Kuczaj, 1979; Slobin, 1973), and later corroborated by results from
artificial language learning studies (Nixon, 2020; Ramscar, 2013; St Clair
et al., 2009).

However, learners not only need to learn to categorize nouns, they
also need to learn the meanings of the single nouns. Apparently while
prenominal noun class markers are disadvantageous when it comes to
noun category learning, they seem to facilitate learning the single nouns’
meanings, as is suggested by evidence from two artificial language learning
studies (Arnon & Ramscar, 2012; Ramscar, 2013).

Together, this suggests that it might be useful to differentiate between
prenominal (highlighted in blue) and postnominal noun class markers
(highlighted in pink):

(2) a. Do you see the white rabbit?
b. Siehst du das weiße Kaninchen?
c. Ser du den hvite kaninen?
d. Vedi il coniglio bianco?
e. A e shihni lepurin e bardhë?

Critically, an expectation-based view on language suggests that the predic-
tive relations between noun class markers and nouns changes with linear
order:

• In noun class systems with prenominal gender marking (which I will
refer to as premarking systems), noun class markers can be used to
predict what kind of nouns can follow, for example after the Italian
article “il” only masculine nouns can follow.

• In contrast, in noun class systems with postnominal gender marking
(which I will refer to as postmarking systems), a given noun needs

8
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to be used to predict the correct noun class marker, for example the
Albanian “lepur” needs to be followed by “-in” and not “-un”.

In Chapter 3 and 4 I aim to investigate whether and how the different
predictive relations created by pre- and postmarking affect learning. In
particular, I will examine how the linear order of noun class markers
and nouns affects both noun class learning and learning single nouns’
meanings.

In Chapter 3 I will first present two error-driven learning simulations
of noun class and noun meaning learning in premarking and postmarking
systems investigating the underlying expectation-based learning dynam-
ics. I will then test the predictions of these simulations in an artificial
language learning experiment with human learners. I will further extend
previous experimental evidence of the postmarking advantage for noun
class learning by investigating how the structure of the underlying noun
class system (i.e., whether noun classes are highly confusable or more or
less distinct) affects this effect.

Finally, until now research on linear order effects in noun class mark-
ing has mostly contrasted exclusive premarking (e.g., as in the German
example 2b) and exclusive postmarking systems (e.g., as in the Albanian
example 2e). Given that simultaneous pre- and postmarking is highly
prevalent in natural languages (e.g., as in the Norwegian or Italian exam-
ple 2c and d), I will extend this research to test also how double marking
systems are positioned in this dichotomy, which will be the focus of Chap-
ter 4.

2.2. Linear order and communicative efficiency

Given that languages are communication systems, the way they are struc-
tured is likely to be shaped not only by how learnable they are but also
by how efficiently they can be used to communicate (see, e.g., Gibson
et al., 2019). Communication is usually thought to be efficient when
production cost for the speaker is low and at the same time listeners can
easily understand the message intended by the speaker. Both listeners
and speakers have been found to benefit from anticipating upcoming
parts of the speech signal: listeners for example orient more quickly to
a referent when they can predict it based on previous sentence context
(e.g., Altmann & Kamide, 1999; Eichert et al., 2018) and speakers are
quicker to name an image in a predictive context (e.g., Gollan et al., 2011;

9
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Hintz et al., 2016). Especially nouns are difficult to predict and retrieve
given that they are usually the largest word class, which means that before
a noun comes up in speech, the set of possible choices is large. Noun
predictability therefore might be crucial for making communication more
efficient.

Given that these facilitation effects are based on predictability, prenom-
inal information seems to be key when it comes to making communication
more efficient. Two ways to make nouns more predictable are the use
of prenominal noun class markers or prenominal adjectives, which are
highlighted here in our five example sentences:

(3) a. Do you see the white rabbit?
b. Siehst du das weiße Kaninchen?
c. Ser du den hvite kaninen?
d. Vedi il coniglio bianco?
e. A e shihni lepurin e bardhë?

First, the English example sentence illustrates how prenominal adjectives
can make following nouns more predictable. The prenominal adjective
“white”, for example, can generate the expectation that the noun “rabbit”
is likely to follow and at the same time eliminate other nouns that are
unlikely to follow: first of all, rabbits are frequently white, and therefore,
the adjective “white” is more frequently followed by the noun “rabbit”
than by, for example, the nouns “tree” or “garden”. In addition, fur color
is a property that is used to discriminate different rabbits and therefore
“white rabbit” is a word combination which is more commonly found than
for example “white sheep”, although both are white. Notably, experimen-
tal evidence suggests that speakers of English, which places adjectives
prenominally, more frequently produce adjective-noun combinations to
refer to an object than speakers of Spanish, which places adjectives post-
nominally (similar to Italian in Example 3d); instead, Spanish speakers
more frequently produce noun phrases without adjectives to refer to an
object (Rubio-Fernandez et al., 2021; S. A. Wu & Gibson, 2021).

Second, as I have already mentioned above, also prenominal noun
class markers such as the articles highlighted in the German, Norwegian
and Italian examples can reduce uncertainty about the upcoming nouns,
in that they reduce the amount of possibly following nouns by predicting
a specific noun class and eliminating all contrasting noun classes. In-

10
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terestingly, it has been suggested that the presence of prenominal noun
class markers in a language might affect the kind of noun phrases that
speakers produce: English text corpora have been found to contain more
prenominal adjectives than German corpora, which might be due to the
fact that English doesn’t have informative prenominal articles such as
German and has to compensate for this lack of prenominal information
(Dye et al., 2018). This hypothesis has, however, not yet been investigated
experimentally.

In Chapter 5, I will integrate the evidence on adjective production
into an expectation-based account of communicative efficiency, which
predicts that not only adjectives but also prenominal articles play a crucial
role in making nouns more predictable, which is due to their predictive
relation with the noun. I will investigate the interaction of prenominal
information provided by articles and adjectives by comparing English and
German speakers’ noun phrase production in a reference production task.

Crucially, while in some way prenominal articles and adjectives seem
to provide information about upcoming nouns, this information is often
conceptualized to be functionally different: articles are frequently assumed
to provide grammatical information, while adjectives are assumed to add
meaning to a phrase. Hence, in this chapter I not only aim to investigate
how differently structured languages can achieve efficient communciation
— in particular, how languages lacking noun classes, such as English, can
make up for their lack of prenominal noun class markers — but I also
seek to draw more general conclusions about the nature of meaningful
messages in natural languages and how those messages are communicated.

3. Chapter guide
To summarize then, this thesis aims to investigate the effects of linear
order on both learnability and efficient communication in noun phrases.
In particular, I take an expectation-based perspective on learning and com-
munication. Based on this account, I argue that the inherent directedness
of expectations entails that the linear order of functional units in noun
phrases is likely to affect both how easily components of noun phrases are
learned and what kind of noun phrases speakers produce.

Expectation-based learning can be simulated with error-driven learn-
ing models. In Chapter 2, I will address the problem that despite — or
maybe because of — the ubiquity of error-driven learning mechanisms

11
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(in particular, the delta rule) in fields such as psychology and machine
learning, the precise model implementations and theoretical assumptions
and consequently, the theoretical conclusions vary considerably. I there-
fore begin this thesis with a systematic exploration of the delta rule in
its most basic form, a simple two-layer feed-forward network architec-
ture. I conclude that this error-driven learning mechanism is theoretically
most productive when it is acknowledged to be a discriminative learning
mechanism, which in essence is a process that aims to represent the en-
vironment in a way that most reliably predicts likely outcomes that are
relevant for a given task and, at the same time, eliminates expectations
of unlikely outcomes. I also thoroughly discuss the role of the input and
output representations chosen to model a given learning problem, which
apart from the chosen learning rule and network architecture are the third
crucial pillar of a model specification.

In combination with this theoretical exploration I provide a more
practical introduction to using simple error-driven learning models for
investigating learning in form of a practical tutorial3 which comes with
an easy to use R package (van Rij & Hoppe, 2021)4.

I then proceed to investigating the effects of linear order in noun
phrases on learning to discriminate both different noun classes and the
meanings of single nouns. In Chapter 3, I develop an artificial noun
class paradigm in which nouns can be optionally marked by premarkers
or by postmarkers. I first use error-driven learning simulations of both
noun class learning and learning of single noun meanings to compare
the learning process triggered by exclusive pre- and postmarking, and
then compare the learning outcomes of these simulations to the learning
behavior of human learners being taught either a premarking or a post-
marking version of the artificial language. Overall, I find that postmarking
has a crucial role in noun class learning, which is due to the fact that in
this marking order, learners are forced to identify the properties of the
preceding nouns which most reliably predict the correct marker and at the
same time eliminate the likelihood of a postmarker from another noun
class to follow. While this competition process (which is often referred
to as cue competition) is most needed when nouns from different noun
classes also share a lot of features which make the classes highly confus-

3https://edl-tutorial.web.rug.nl/
4https://CRAN.R-project.org/package=edl
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able, the marking order makes less of a difference when noun classes
are less confusable and more distinct. Premarking, on the other hand, is
shown to facilitate learning single noun meanings both in the error-driven
learning simulation and the behavioral data. In particular, we assume that
premarkers can anticipate upcoming sub-classes of nouns (i.e., the noun
class they mark) and therefore reduce the size of the set of competing
nouns, which in turn facilitates learning their meanings.

In Chapter 4, I further investigate the phenomenon of linear order
effects on noun class and noun meaning learning, but with a focus on
how premarking and postmarking interact in a double marked noun class
paradigm. In an artificial language learning experiment using the same ar-
tificial language as in Chapter 3, I find that double marking appears to lead
to similar learning outcomes as exclusive postmarking. I discuss several
underlying processes that might lead to this effect. On the one hand, I con-
sider the possible timeline of when learners might make use of processes
triggered by postmarking and premarking in a double marked system.
On the other hand, I take into account possible perceptual constraints on
short time working memory that might differently affect processing of
premarkers and postmarkers.

In Chapter 5, I turn to communicative efficiency, with the aim of
investigating how differently structured noun phrases can be used to
communicate efficiently — again with a focus on noun class systems and
the linear order of noun phrase constituents. I begin by elaborating on
how communicative efficiency can be conceptualized based on concepts
from information theory and design principles of artificial communication
systems. Based on this, I derive how noun phrases can be structured
efficiently focusing on German — a language with gendered articles —
and English — a language without gendered articles. I then investigate
in a written reference production task whether speakers of English and
German produce efficient noun phrase structures by observing in what
kind of contexts and to what proportion they produce articles and prenom-
inal adjectives. I find that English speakers produce more prenominal
adjectives than German speakers, but only in contexts in which German
articles are informative about the target object. Whenever German arti-
cles are uninformative, German and English speakers produce prenominal
adjectives to a similar extent. Further, I observe that speakers produce ar-
ticles according to how informative they are: while English speakers omit
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most articles, German speakers omit more uninformative than informative
articles.

Finally, Chapter 6 provides a general discussion of the findings of this
thesis. I will begin by synthesizing the findings of the single chapters by
presenting an overview of the different structural phenomena investigated
in this thesis, in particular different ways of noun class marking and
category structure, and their effects on learning and communication. I
will further discuss a few implications of an expectation-based perspective
on language, specifically, how listeners and speakers might benefit from
efficiently structured utterances, and how effects of linear order in noun
class marking can be generalized to other parts of speech and to other
languages.
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2
A discriminative perspective on

error-driven learning

Error-driven learning algorithms, which iteratively adjust expectations based
on prediction error, are the basis for a vast array of computational models
in the cognitive and brain sciences that often differ widely in their precise
form and application: they range from simple models in psychology and
cybernetics to complex deep learning models currently dominating discussions
in machine learning and artificial intelligence. However, despite the ubiquity
of these algorithms, detailed analyses of their basic workings uninfluenced
by existing theories or specific research goals are rare in the literature. To
address this, we present an exposition of error-driven learning – focusing on
its simplest form for clarity – and relate this to the historical development of
error-driven learning models in the cognitive sciences. Although historically
error-driven models have been thought of as associative, such that learning
is thought to combine preexisting elemental representations, our analysis
will highlight the discriminative nature of learning in these models and the
implications of this for the way learning is conceptualized. We complement
our theoretical introduction to error-driven learning with a practical guide
to the application of simple error-driven learning models in which we discuss
a number of example simulations, that are also presented in detail in an
accompanying tutorial.

This chapter has previously been published as:

Hoppe, D.B., Hendriks, P., Ramscar, M. & van Rij, J.(2022). An exploration of error-
driven learning in simple two-layer networks from a discriminative learning perspective.
Behavior Research Methods, 2022. https://doi.org/10.3758/s13428-021-01711-5

https://doi.org/10.3758/s13428-021-01711-5
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1. Introduction
Error-driven learning models have been widely used in the fields of animal
and human learning for several decades (see, e.g., Carpenter & Grossberg,
1987; McClelland & Rumelhart, 1981; Pearce & Hall, 1980; Rescorla
& Wagner, 1972; Rosenblatt, 1962; Rumelhart et al., 1987; Sutton &
Barto, 1998; Widrow & Hoff, 1960). They have also become the dominant
approach in machine learning research, with error-driven learning mech-
anisms forming the core of today’s most popular AI applications based
on artificial neural networks (such as, e.g., OCR reading, LeCun et al.,
1998; machine translation, Y. Wu et al., 2016; or autonomous driving,
Pomerleau, 1988). However, given the high complexity of most of these
latter models, theoretical discussions of applications of error-driven learn-
ing mostly focus on the further optimization of network architectures,
while the core learning mechanisms receive little attention, being largely
taken for granted. As a result, despite their omnipresence, error-driven
learning mechanisms are rarely the subject of theoretical investigation in
the domains in which they are applied.

Given the fundamental role of error-driven mechanisms in cognitive
science, and, as we describe below, the somewhat haphazard way in
which this role has emerged, we suggest that there is much to be gained
from taking a step back and revisiting the core mechanism, its workings
and their relation to theories of cognition in more detail. Although an
understanding of the basic error-driven mechanism should be a critical
prerequisite to the application and generation of learning models on
any level of complexity, it is clear (see Ramscar et al., 2010) that many
misapprehensions about error-driven learning — for example, that it is a
form of associative learning (as it is conceptualized by, e.g., Rescorla &
Wagner, 1972) — persist in the literature.

Note that model simplification is perhaps easily stated as a general so-
lution; it is still important to acknowledge that while error-driven learning
mechanisms are deceptively simple, models based on these mechanisms
only tend to be useful in the context of complex architectures. This is an
old theoretical issue. While complex models often provide a higher de-
gree of performance, interpretability is usually lost with increasing model
complexity (Bonini’s paradox; Dutton & Starbuck, 1971). Accordingly,
much of our focus here will be on the basics of the simple mechanism at
the heart of these models, rather than on complex architectures.
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A further issue complicating the understanding of error-driven learning
mechanisms is that information about them tends to be scattered over
the literature of different fields and appears in many different theoretical
contexts. The fact that error-driven learning models have been integrated
in many different theories makes it especially difficult to differentiate
between theory- or application-specific parts of model specifications and
parts that are in fact essential to the basic error-driven learning mechanism
(which is a known problem in modeling, Cooper & Guest, 2014; McCloskey,
1991). Proposed error-driven models differ widely, not only in their
network architecture, but also in their specific implementation of the
learning mechanism, in the way model responses are interpreted and,
last but foremost, in how they define a learning problem in terms of the
input and output representations given to the model. Accordingly, we will
describe how understandings of basic error-driven learning have been
diluted by varying specifications in countless applications, which has often
led to the potential of simple architectures being ignored. Yet, as we
will show, many recent investigations have been successful in generating
theoretical predictions and explanations employing only the simplest
error-driven learning architectures, underlining the importance of careful
theoretical analysis in this domain.

In what follows, we present a critical theoretical review of the basic
error-driven learning mechanism and its relation to human cognition.
Our aim will not be to offer an extensive literature review, but rather to
present a theoretical characterization of the core error-driven learning
mechanism, based on which we will then provide an overview of the
scope of this learning mechanism. To this end, we will seek to contrast
historical use and interpretation of simple error-driven learning models
with recent advances, highlighting the way that current explorations of the
basic dynamics of the learning mechanism have informed new theoretical
insights about learning.

An important point that we will emphasize in presenting this model
is that it — and all error-driven learning models that enforce cue and
outcome competition (discussed in more detail in Section 2 and 3) —
belong to the class of discriminative models and implement a discriminative
learning mechanism. As a preliminary, it will be important to clarify some
historical ambiguities regarding the definition of discriminative learning.

• The term discrimination learning was initially used in the literature
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on animal learning and behavior (refer to, e.g., Hilgard & Bower,
1975). Consistent with the behaviorist principles that dominated
theory in the earlier parts of the twentieth century, it was used in
an externally grounded, mechanism-neutral way, to describe the
requirement for animals and humans to be able to learn different
responses to different stimuli.

• Later, in machine learning, the notion of a discriminative model was
introduced to provide a more mathematical and more concrete con-
ceptualization of discrimination learning in relation to classification
problems. Unlike generative models — which they are contrasted
with — discriminative models are simply defined in terms of their
capacity to learn to maximize the conditional probabilities of output
units given input units (Ng & Jordan, 2002). Importantly, this defini-
tion is once again neutral with regards to the mechanism, and while
most classification problems in which discriminative models are em-
ployed also tend to implement discriminative algorithms (discussed
below) this does not need to be the case (in fact, discriminative
models are also sometimes referred to as conditional models as a
reflection of this as, for example, in Gudivada, 2018)

• Finally, the mechanism which in most cases is implemented in dis-
criminative models is some kind of discriminative learning algorithm,
such as the error-driven learning algorithm we will analyze in this
chapter. In most learning situations these kinds of learning mecha-
nisms enforce cue and outcome competition, which together serve
to discriminate against or in favor of the units that serve as inputs
— by re-weighting the influence of individual units — according to
how informative they are about different outputs (Ramscar et al.,
2010).

Note, however, that it follows from all this that a discriminative learn-
ing algorithm is not always necessary to explain discrimination learning
phenomena or to solve the classification problem stated by a discrimina-
tive model. As we will seek to elaborate in the course of this chapter, these
points are highly dependent on the task and task structure in question.
Although these different notions of discriminative learning have crucial
implications for our conceptualization of the learning process, histori-
cally they have been obscured or ignored when models of “discrimination

20



Error-driven learning | 2

learning” have been applied to behavior, leading to a number of confu-
sions about the strengths and weaknesses of the discrimination learning
algorithms actually implemented in error-driven learning models.

Importantly, while historical treatments of learning have often em-
ployed error-driven learning mechanisms, at a theoretical level these
treatments (e.g., Rescorla & Wagner, 1972) have still tended to be framed
from an associative perspective guided by compositional principles, such
that representations given to these models have been assumed to be com-
binations of preexisting low-level input representations (i.e., features,
elements, or even microfeatures). However, as we discuss in detail below,
this directly contradicts the logic of learning in error-driven learning mod-
els which indicates that representations depend on the learning process,
which is guided by principles of discrimination rather than compositional-
ity. Accordingly, one goal of this chapter will be to clarify this point, not
only when examining the learning mechanism but especially when think-
ing about the nature of input representations and how the representations
given to a model affect what this model can learn (Bröker & Ramscar,
2020).

In order to perform this theoretical review, it will be necessary to
thoroughly discuss all of the important methodological components of
simple error-driven learning models. Accordingly, as well as provid-
ing a theoretical introduction to the topic, this chapter also serves as
a practical introduction to the method of modeling with minimal error-
driven learning networks, especially together with the practical tutorial
(https://edl-tutorial.web.rug.nl/) that we have compiled to accompany
the article. Our aim is thus not just restricted to giving an idea of the
scope of error-driven learning; we also hope to suggest ways to further
explore the many possibilities offered by this mechanism.

1.1. A brief history of error-driven learning

We will begin by briefly reviewing the development and subsequent use
of error-driven learning in the fields of cognitive modeling and machine
learning over the last 60 years.

Error-driven learning mechanisms were first introduced into cogni-
tive science in order to provide a formalism which could account for
the findings of early experiments in classical conditioning (e.g., Kamin,
1969; Pavlov, 1927; Rescorla, 1968) and discrimination learning (e.g.,
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Krechevsky, 1932). In particular, one basic principle informed by experi-
mentation changed the earlier understanding of associative learning and
built the base of the theory behind error-driven learning: learning de-
pends on how well a stimulus predicts a following response or a subsequent
stimulus and not on mere temporal contingency (Rescorla, 1988). This
principle followed directly from the observation that during learning not
only stimuli that occur together are associated but also stimuli that do not
occur together are dissociated (Rescorla, 1968). Subsequently developed
models implemented these learning dynamics using a simple feed-forward
two-layer1 artificial neural network in which weights between an input
and output layer were updated with a learning mechanism that minimizes
prediction error.

One of the first formulations of this error-minimization technique that
gained widespread attention was the so-called “delta rule” by Widrow
and Hoff (1960). A different formulation of this idea was subsequently
presented by Rosenblatt (1962) integrated in one of his perceptron models
(γ-perceptron). A decade later, Rescorla and Wagner (1972) published
their model which basically implements a version of Widrow and Hoff’s
(1960) delta rule with some additional assumptions. While these three
simple models differed in some assumptions and parameters, they all em-
ployed two-layer feed-forward networks and an error-minimizing learning
rule.

Soon, the field of interest of these early models outgrew animal learn-
ing (R. R. Miller et al., 1995) and error-driven learning models were used
to investigate human cognition (Gluck & Bower, 1988; McClelland &
Rumelhart, 1981). From there, the models had been extended in many
directions, among others: the addition of hidden layers and recurrent
connections led to modern artificial neural networks with a generalized
delta rule — backpropagation (McLaren, 1993; Rumelhart et al., 1987);
representations of input and output units developed from elemental (low-
level perceptions; McLaren & Mackintosh, 2000; Rescorla & Wagner,
1972; Wagner & Brandon, 2001) to configural (combinations of elemental
features; Pearce, 1987, 2002); attention modulation mechanisms were

1This kind of network architecture is often also referred to as a single-layer network,
following a convention of not counting the layer of input units in order to contrast
multi-layer architectures which include at least one layer of hidden units. However,
given that there is a layer of input and an output units, we use the term two-layer for
this architecture.
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added to account for more learning phenomena, such as latent inhibition
(Harris, 2006; Mackintosh, 1975; Pearce & Hall, 1980); furthermore,
temporal generalization (Sutton & Barto, 1987) led to the development
of reinforcement learning (Sutton & Barto, 1998).

Early on, the simple two-layer error-driven learning networks were
harshly criticized for being too restricted and limited in scope, starting with
a review of Rosenblatt’s (1962) basic perceptron by Minsky and Papert
(1969). Especially regarding practical applications, multi-layer networks
turned out to be much more powerful and successful with their ability
to learn non-linear structure in the input by constructing intermediate
abstract representations. The further exploration of the scope of the
basic underlying error-driven learning rule bare of any extensions or
modifications was, therefore, put on hold.

While research on the fundamentals of error-driven learning has never
completely stopped, recent advances have revisited the original, simple
models, in particular the Rescorla-Wagner model, and questioned the
theory and assumptions behind them. This has led to a number of new
insights about fundamental properties of learning in developmental psy-
chology (Ramscar, Dye, Gustafson, et al., 2013; Ramscar, Dye, & Klein,
2013; Ramscar et al., 2007; Ramscar et al., 2010), aging research (Ram-
scar et al., 2014; Ramscar et al., 2017) and linguistics (Arnold et al.,
2017; Arnon & Ramscar, 2012; Baayen et al., 2011; Baayen, Shaoul, et al.,
2016; Linke et al., 2017; Milin, Divjak, et al., 2017; Nixon, 2020; Nixon
& Tomaschek, 2020; Ramscar & Dye, 2009; Ramscar, Dye, & McCauley,
2013; Ramscar & Yarlett, 2007; St Clair et al., 2009). Surprisingly, many
of these simple models turn out to be able to explain seemingly complex
phenomena of human cognition and sometimes even predict behavior
that more optimal and rational models or more complex networks fail to
explain (Gluck & Bower, 1988; Gureckis & Love, 2010). Hence, while
error-driven learning is used in cognitive modeling and machine learning
since over 60 years and integrated in highly complex models, the current
findings with minimal error-driven models suggest two things: first, that
the scope of the basic error-driven learning mechanism has still not been
sufficiently explored; and second, that such a fundamental exploration
is best done with radically simplified models. One likely reason for the
former is, as we noted above, the widespread misconception that error-
driven learning is associative (see, e.g., Harris, 2006; R. R. Miller et al.,
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1995; Rescorla & Wagner, 1972), and a further advantage of the latter
is that the discriminative logic of error-driven learning can be illustrated
most clearly in a simple model.

1.2. Focus on the core learning mechanism

In order to make the workings of simple models more straightforward and
easy to understand, in this chapter we will present an error-driven learning
model that is stripped off all unnecessary assumptions and parameters
(and layers).

In complex modern artificial neural network models it is becoming
increasingly difficult to pinpoint which part of a model contributes to its
behavior, and interestingly, there is currently a trend towards developing
methods for analyzing the workings of complex neural networks (e.g.,
Adi et al., 2016; Lei et al., 2016). The present approach is consistent with
this in that our focus will be on the very simplest form of error-driven
learning that nevertheless lies in the heart of these more complex systems.

That previous approaches of studying error-driven learning in two-
layer network models haven’t advanced much over the last decades might
have been partly due to scarce computational resources in the last century
and partly due to the sociological dynamics surrounding the debate about
the limitations of simple error-driven learning models (Olazaran, 1996).
However, we will argue here that, to a large part, this was also caused
by the too restricted specification of models, especially of the prominent
Rescorla-Wagner model. On the one hand, we will show how the Rescorla-
Wagner learning rule can be further simplified (see Section 2.2). On the
other, we will show how the specific assumptions about the input and
output representations used, strongly limited the scope of previous models
(see Section 5).

The aims of this chapter are to systematically introduce a simplified
modeling framework to study error-driven learning and to summarize
the resulting learning dynamics including their implications for learning
theory. Crucially, this analysis of simple error-driven learning models
will emphasize the discriminative logic of learning in them which, as
we will highlight in the following, differs considerably from traditional
conceptualizations of these models. In the course of this we thus seek to
highlight the connections and, more importantly, the differences between
this analysis and previous research with simple error-driven learning
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models.
We will start with a derivation of a simplified network architecture

and learning rule which can effectively isolate the error-driven learning
mechanism. Then, we will present the main learning dynamics arising
from this setup and discuss how simulation results can be related to data
of real learners to inform theories about learning. Finally, we will discuss
the important role of input and output representations for the scope of the
present discriminative error-driven learning model compared to historical
models.

For readers interested in the practical implementation of cognitive
modeling with minimal two-layer error-driven networks, we have prepared
a tutorial which complements the theoretical aspects of the paper and
provides the code and practical details about the employed examples
(https://edl-tutorial.web.rug.nl/; find the source code to the tutorial
at https://git.lwp.rug.nl/p251653/error-driven-learning-tutorial). An
implementation of the present approach is available with the R package
edl (van Rij & Hoppe, 2021).

2. Network architecture and learning mechanism
The simple form of error-driven learning we will present here is a fully
connected two-layer feed-forward neural network with a linear identity ac-
tivation function and an incremental error-driven updating of connection
weights, most widely known as the delta rule (McClelland et al., 1987;
Widrow & Hoff, 1960).

In the course of presenting this basic form of error-driven learning, we
will also analyze its conceptual logic, and highlight the similarities and
differences between our analysis and previous, historical work employing
this mechanism. Before we begin, however, there is one important point
we need to foreshadow: As we will see later (e.g., in Section 5), the defini-
tion of the network architecture and learning mechanism is not enough to
specify an error-driven learning model. The crucial part that sets the new
discriminative perspective on these models off from previous perspectives
is the treatment and interpretation of the input representations these
models operate on.
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2.1. Error-driven learning is discriminative

Error-driven learning implements the idea that learning is based on ex-
pectations and is basically a process of making and testing predictions.
Ultimately its aim is to reduce uncertainty about upcoming states of the
world, which is also the objective of the larger class of discriminative
models. In the following we will elaborate on the basic components of
error-driven learning models that give rise to a mechanism satisfying this
aim.

First of all, just as predictions, error-driven learning is directional and
crucially, its unidirectional dynamics can only arise in a feed-forward net-
work, in which connections are directed from input to output units. Hence,
the basic model architecture we discuss in this chapter is a feed-forward
two-layer network that fully connects a layer of discrete input units (cues)
with a layer of discrete output units (outcomes)2 as illustrated in Figure 1a.
As defined by the feed-forward property, weights from cues to outcomes
are always directional, from a cue to an outcome, never bidirectional,
between a cue and an outcome. This is the most basic architecture of a
neural network, employed by most early error-driven learning models,
for example, Widrow and Hoff’s (1960) ADALINE, Rosenblatt’s (1962)
simple perceptron, and Rescorla and Wagner’s (1972) model.

Furthermore, as opposed to generative models which estimate a prob-
ability distribution over all previous data points, discriminative models
update expectations primarily based on the most recent data point, while
previous experience is captured only indirectly by the current state of the
network. A key feature of error-driven learning is therefore also that it
is an incremental algorithm that updates weights online: over discrete
training trials, weights are incrementally updated recording a weight
matrix for every point in time. The weight matrix V between cues i and
outcomes j at time t is updated by adding a weight adjustment to yield
the new state of the network at time t + 1:

V t+1
i j = V t

i j +∆V t
i j (2.1)

To motivate how the weight adjustment ∆V t
i j is calculated, we need to

2In terms of classical conditioning, conditioned stimulus (CS) corresponds to cue and
unconditioned stimulus (US) corresponds to outcome. Often, only two outcomes are
considered: reinforcement (+) or non-reinforcement (-) of the US, leading to notations
such as “CUE1+” and “CUE2-”.
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Figure 1. A fully connected error-driven learning network, with incoming con-
nections to one outcome highlighted in blue (a). Consider an example of learning
to discriminate animals by first seeing an animal, for example a dog, and then
hearing it’s species name. (b) shows how the activation of the outcomes dog
and other animals develops given the cue set {tail-wagging, a specific fur color},
maximizing certainty to expect one specific outcome. (c) shows a hypothetical
weight update after seeing a dog and hearing “dog”. Black dashed lines show
positive weight adjustments and red dashed lines negative adjustments. The
dashed box shows the current cue set in which weights compete with each other.
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consider the goal of error-driven learning, which ultimately makes it dis-
criminative, in more detail: to reduce uncertainty about the occurrence of
states in the world (Gallistel, 2003; Ramscar, 2013; Rescorla, 1988). This
means that ideally, at any point in time, the current state of the world will
be expected with full certainty, given the current context or conditions. In
order to reach this goal, a learner needs to learn to discriminate structures
in the world according to how they predict different states of the world.
For example, with what we have learned by seeing many different dogs
and rabbits we are normally able to tell the difference between a dog and
a rabbit with full certainty, taking into consideration their appearance
and behavior. In terms of an error-driven learning system this means that
ideally weights develop such that every possible set of cues, which can
for example represent the features of an instance of a specific dog, fully
predicts exactly one outcome, for example the word “dog” (see Fig. 1b).

Error-driven learning tries to achieve optimal discrimination of cue
structures by minimizing the error between the desired state of full cer-
tainty about an outcome and the actual current expectation of this outcome
to occur given the cues that are present at that point in time.

The desired full expectation of an outcome or the target value of the
optimization process is usually formalized as the maximal activation (here,
1) of a specific outcome unit, and the minimal activation (here, 0) for not
expected outcome units, respectively.

The actual current expectation of an outcome is captured by the ac-
tivation of the outcome given the currently present cues. The activation
of an outcome unit in an artificial neural network is conventionally a
function of the input received from incoming connections (see highlighted
connections in Fig. 1a), also called net input. The most simple version
of a net input function net t

j of an outcome j is the sum of weights v t
x j of

all cues x present at the current time t to an outcome j (McCulloch &
Pitts, 1943; e.g., also used in Rescorla & Wagner, 1972; Rosenblatt, 1962;
Widrow & Hoff, 1960):

net t
j =
∑

x∈cues(t)

v t
x j (2.2)

In neural network architectures, the net input to an outcome is then
further transformed by an activation function, which can significantly
influence the learning behavior of the network. At this point, error-driven
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learning models diverge. For example, a so-called heavy-side step function
which equals zero below a specific threshold and one above this threshold
can implement the assumption that outcome units can only be on or off
(McCulloch & Pitts, 1943; Rosenblatt, 1962). Widrow and Hoff (1960)
and Rescorla and Wagner (1972) assumed that the input of an outcome
unit would not be transformed for the error calculation (or transformed
with a linear identity function). Finally, modern neural networks usually
assume a nonlinear activation function which allows to capture non-linear
structures in the input (e.g., Rumelhart et al., 1987). With our aim
of simplifying the error-driven learning model as much as possible, we
however opt for the linear identity function (equal to no transformation)
in line with Widrow and Hoff’s (1960) and Rescorla and Wagner’s (1972)
original model). We therefore define the activation as equal to the net
input:

act t
j = net t

j =
∑

x∈cues(t)

v t
x j (2.3)

The formulation of the learning rule for the actual error-minimization
process also differs slightly between different suggested error-driven learn-
ing models. The version with the least free parameters is the Widrow-Hoff
rule commonly referred to as the delta rule. (In the following Subsection
2.2 we will discuss mathematically similar formulations and alternatives to
this rule, especially also the differences with the Rescorla-Wagner learning
rule which is mostly used in the context of current research employing
two-layer error-driven learning networks.)

In a network with discrete cue and outcome units with activation
boundaries between 0 and 1, the delta learning rule differentiates between
three possible learning situations to calculate the weight difference ∆V t

i j
at every time step t:

∆V t
i j =











0 , cue i absent

η(1− act t
j ) , cue i and outcome j present

η(0− act t
j ) , cue i present but outcome j absent

(2.4)

In the first of the three cases, when a cue does not occur, no weights
are updated. The second case describes the situation when a cue and an
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outcome co-occur. In this case, weights are adjusted according to the error
between the maximal possible weight value 1 and the current activation
of the outcome j modulated by a learning parameter η (per default, we
suggest to set η= 0.01, as in: Baayen, Shaoul, et al., 2016; Hoppe et al.,
2020; Ramscar et al., 2010). In the third case, the weights from the
current cue to every absent outcome in the network are adjusted following
the error between the activation of the absent outcome j and 0.

The main characteristic that makes the delta rule discriminative is
that weights are always updated respective to the whole network system
(see Figure 1a), in particular, regarding all currently present cues and all
outcomes (present and absent). On the one hand, all present cues in a
learning event influence each other’s weight adjustment in the activation
term
∑

x∈cues(t) v
t
x j (see Eq. 2.3 and Fig. 1c). Together with the fact that 1

defines a maximal weight value, which restricts the error term 1− act t
j

in Eq. 2.4, this leads to the dynamic of cues competing with each other
for predicting a specific outcome, or in other words, for their share of
the maximal weight value. On the other hand, weights from one cue
are always updated respective to all outcomes in the network, also the
outcomes that are absent in the current learning event (see Fig. 1c).

What follows from updating the whole network after every learning
event is that the delta rule can associate and dissociate cues from outcomes
(see Fig. 1c). Association, the process of increasing weights from cues
to outcomes, is a process mainly driven by positive evidence, thus, when
cues and outcomes co-occur. However, perhaps more importantly, the
delta rule also allows for dissociation of cues from outcomes. First, the
limit 1 on weight increase creates the need to down-regulate overshooting
weights. Second and more importantly, the third case of Equation 2.4
decreases weights when cues wrongly predict an absent outcome, thus,
when the learner is confronted with negative evidence. As a consequence
of this interplay between association and dissociation, weights will not
only depend on how often a cue occurs with an outcome but also on how
often it does not occur with that outcome. Learning is therefore not only
depending on cue and outcome frequency but also on how predictive, or
in other words, how informative a cue is for an outcome (Gallistel, 2002,
2003; Rescorla, 1968, 1988; “information” is here used as defined by
Shannon, 1948), meaning how much a cue can reduce the uncertainty
about the outcome and so contribute to a maximal discrimination of cue
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structures.
In sum, when analyzing error-driven learning in such a simplified

framework we can observe its discriminative nature: input is processed
incrementally in order to directly learn predictive structures in the environ-
ment with the aim of fully reducing uncertainty. To simulate this process,
it is sufficient to use a two-layer feed-forward network in which outcome
units are activated directly by summing up incoming weights, without any
further transformation. The weights are learned in an error-minimization
process which incrementally updates the whole network by applying two
mechanisms: first, outcome competition not only increases connections
between co-occurring items or events, but more importantly also simulta-
neously decreases connections between non co-occurring items or events;
and second, cue competition evaluates the informativity of single cues
relative to all currently present cues. Together these two mechanisms
ensure that at any point in time ideally only one outcome is expected
while all others are discarded3. (However, as we will illustrate in more
detail in Section 3, depending on the learning problem at hand, this ideal
goal is often not reached.) In particular, we suggest that this minimal
error-driven model is not only sufficient but also most suited to study the
basic mechanisms of learning because the minimized parameter space
decreases the risk of confounding the underlying reasons for any observed
behavior of the model.

2.2. Mathematically similar learning rules

It is important to note that the Widrow-Hoff learning rule or delta rule
presented in Equation 2.4 is mathematically equivalent to linear regression
(Evert & Arppe, 2015; Gluck & Bower, 1988) and very closely related to
logistic regression (Evert & Arppe, 2015), which uses a logistic activation
function instead of an identity activation function.

All of these accounts provide a least-squares solution (minimizing the
squared differences between the target outcome activation 1 or 0 and
the actual outcome activation summed over all training trials) that an
incremental learner will fluctuate around or asymptote towards. In cases
in which the learning trajectory is not of interest, there are several ways
to directly calculate this solution or the equilibrium state (see e.g., Danks,
2003; Evert & Arppe, 2015).

3Note that this only holds for outcomes that are not fully contingent.
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The delta rule is also very closely related to the Rescorla and Wag-
ner (1972) learning rule, which comes, however, with some additional
parameters. Because this rule is often referred to in the context of sim-
ple two-layer error-driven learning networks, we shall briefly discuss
why the simpler delta rule should be preferred over the Rescorla and
Wagner (1972) learning rule when studying basic error-driven learning.
The Rescorla and Wagner (1972) learning rule makes several additional
assumptions, which are implemented in additional parameters:

∆V t
i j =











0 , cue i absent

αiβ1(λ− act t
j ) , cue i and outcome j present

αiβ2(0− act t
j ) , cue i present but outcome j absent

(2.5)

First, in this formulation the upper target value of an outcome’s acti-
vation is not restricted, but defined by a more general parameter λ. As it
is applied to all outcome units, λ acts only as a scaling parameter and can
therefore be generally set to 1.

Second, in contrast to the general learning rate η in the delta rule,
the Rescorla-Wagner rule allows for a more detailed specification of a
salience parameter αi, which can vary by cue, and for two learning rates,
one for positive evidence (case 2 of Eq. 2.5), β1, and one for negative
evidence (case 3 of Eq. 2.5), β2

4. The parameter αi has been used
to, for example, account for overshadowing (Rescorla & Wagner, 1972).
However, in modeling blocking, which is essentially a special case of
overshadowing, this effect can be more directly explained by previous
learning experience captured by the weights between cues and outcomes
in the network (see Section 3.1), an explanation that provides more
insight about underlying processes than capturing the effect by tuning
an αi parameter. This in turn raises a question: to what extent should
one seek to explain phenomena by constantly modifying a given learning
mechanism, and to what extent should one select a learning mechanism
or architecture appropriate to the phenomena in question? When the
Rescorla-Wagner rule was originally proposed, there were few alternative

4Theoretically Rescorla and Wagner (1972) had assumed different learning rates for
different outcomes but practically they presented only models considering two outcomes,
reinforcement and non-reinforcement.
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formal models of learning, and computational resources were extremely
limited. Accordingly, modelers were forced by necessity to work only with
simple learning mechanisms and only with very simple representations. By
contrast from a modern perspective, the costs associated with processing
more complex input representations using the delta rule (which can exert
an enormous influence on model outcomes, Bröker & Ramscar, 2020)
are now trivial, while a range of models with different strengths and
weaknesses now exists for modeling tasks where use of the simplified
delta rule may be inappropriate (this is discussed in detail further below).

Accordingly, many of the original modifications to the delta rule asso-
ciated with the Rescorla-Wagner learning rule might be best understood
in terms of the limited options available to modelers at the time. For
example, the use of different β1 and β2 has been mainly motivated by the
assumption that the presence of outcomes is inherently more salient than
the absence of outcomes, which is why originally Rescorla and Wagner
(1972) set β1 = 0.2 and β2 = 0.1. While this assumption is broadly sensi-
ble from a discriminative perspective, given that it is difficult to determine
reliable cues for an outcome which occurs in many situations and that
most outcomes are more frequently absent than present, there are also
situations in which the absence of an outcome is more salient, for example,
when it is more frequently present than absent (McKenzie & Mikkelsen,
2007). This suggests such general assumptions leading to specific param-
eter settings need to be made very carefully, and that other options, such
as attending more closely to the representation of the learning task and
its context should be examined first. Overall, we suggest that error-driven
learning models can be used to investigate cue and outcome salience —
which is still an evasive concept in the literature — by manipulating the
training data or input representations while keeping learning parameters
constant, instead of hard coding such dynamics.

We conclude that the free setting of these parameters contribute only
little to the aim of using an error-driven learning model to understand
a given mechanism. Only a very strong theoretical motivation or the
lack of computational power might necessitate such modulations. In
order to explain observed behavior with error-driven learning dynamics,
it is sensible to keep the number of parameters to a minimum to avoid
confounding.

In contrast, using the simpler delta rule (Eq. 2.4), all learning dynamics
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can be attributed to the core mechanism, which comprises the processes
of association, dissociation and cue competition, and to the underlying
frequency distribution of cues, outcomes, and learning events. In the
following section we will now isolate the main learning dynamics that
result from the basic error-driven learning mechanism. However, we
need to foreshadow: the employment of the delta learning rule is not
sufficient for an error-driven learning network to show the dynamics of
discriminative learning. Rather, discriminative learning unfolds from an
interaction between the learning rule and the structure of the input (see
section 5).

3. Learning dynamics
Having presented a simplified network architecture and learning mech-
anism, we next turn our attention to the details of basic error-driven
learning dynamics. In the following we will lay out how they arise from
the basic setup we have described in the previous section.

In order to understand the basic learning dynamics in an error-driven
learning model, we need to, first of all, return to our main assumption from
the previous section that error-driven learning serves to minimize uncer-
tainty about upcoming states of the world. The prediction error is reduced
maximally, when the summed weights of a set of cues approximates 1.
Consequently, cues have to compete for their share of the limited outcome
activation, a process called cue competition. However, full certainty about
outcomes cannot be achieved in every situation, due to ambiguous cues or
missing information. For example, when seeing a bird in a tree (without
having access to binoculars), we only can use the bird’s size to classify
the bird, which is often not a reliable predictor. In this case, we would be
more likely to conclude that this bird was a Great Tit rather than a Coal Tit,
because the first species is much more commonly seen in the Netherlands
than the latter. Thus, in situations in which uncertainty cannot be fully
decreased, the best alternative is to expect outcomes according to their
probability under the current circumstances. In error-driven learning, the
updating of weights to absent outcomes (see Eq. 2.4, case 3) leads to
outcome competition, which makes sure that the most probable outcome
in a situation is favored.

Importantly, situations in which only cue competition or only outcome
competition play a role, are very unlikely. Usually we are confronted with
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situations in which these two mechanisms interact. However, to explain
the two dynamics, we will first discuss cue and outcome competition
separately and then investigate how they work together in error-driven
learning.

Thereafter, we will discuss how the qualitative difference between cue
and outcome competition gives rise to asymmetry effects and touch on
the temporal dynamics in error-driven learning models.

3.1. Cue competition

Cue competition occurs when multiple cues appear with the same outcome.
A very simple example of cue competition is Kamin’s (1969) blocking
paradigm in which rats were trained to expect a shock by either presenting
a light or presenting a tone (“noise”) together with a light before a shock.
Kamin observed that after the rats had learned to expect a shock after a
light, they would not subsequently learn the predictive value of a new cue,
the tone, appearing together with the light. In the following, we will use
this example (replacing the shock with food, see Fig. 2a) to illustrate the
dynamics of cue competition and to analyze how these dynamics change
under different training regimens.

First of all, cue competition serves the function of maximizing the
activation (i.e., the expectancy) of an outcome given every possible set of
cues by optimizing the cue weights to this outcome. In our example, this
means that the weights of the cues tone and light to the outcome food
will be optimized such that both the expectancy of food given only the
light and the expectancy of food given the light together with the tone
will be maximal.

This optimization process entails that whenever a set of cues appears
together with an outcome, the cues within the set compete for their share
of the prediction of this outcome depending on how informative the single
cues are about the outcome averaged across all learning events. Crucially,
this competition arises from the fact that the weight update for each single
cue is calculated proportionally to the activation, which is the sum of the
weights of all currently present cues. Therefore, the magnitude of the
weight adjustment of each single cue is affected by the weights of all other
cues it co-occurs with. If one of the cues enters the competition with a
high weight value, because it appears more frequently with the outcome
than the other cues, the weight update will be small. As a result, the other
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cue(s) in the cue set will never be able to reach a similarly high weight.
This happens for example in situations in which one cue appears more
frequently with the outcome than the other cues, such as the light which
is twice as frequent as the tone in the blocking paradigm (see Fig. 2b).

If the frequencies of the cues presented to a model are held constant,
the effect of cue competition can be modulated by the temporal sequence
of training trials. In the blocking paradigm this can be illustrated by
observing how the training sequence influences how well the less frequent
cue in the compound is learned, in our case the tone. First of all, the
classic blocking effect (see Fig. 2c), where this cue is completely blocked,
occurs when the light is pretrained until it fully or almost fully predicts the
outcome by itself. Then, no share of the outcome activation is left for the
tone in the compound with light and the tone becomes almost completely
redundant. However, when training trials are completely randomized (see
Fig. 2b), the tone will carry part of the outcome prediction at first and
only over time, the overall more frequent light cue will fully predict the
outcome by itself. Finally, when the classic blocking training sequence is
reversed such that the compound cue is trained first (see Fig. 2d), the
tone will, in theory, not decrease5 its weight when later the single light
cue is trained (until light and tone would appear again as a compound
cue). This illustration shows how the training sequence can influence cue
competition and that it can be worthwhile to study the learning effects
over time, an issue that we will come back to again later.

In the previous example, frequency determined the outcome of cue
competition as a function of the order in which the cues were presented.
However, it is crucial to see that frequency only matters within sets of cues.
To illustrate this important point, consider another example: a light cue is
either paired with a loud or a soft tone preceding food, with the former set
of cues being more frequent than the latter (Fig. 3a). After randomized
training, the light will be the strongest and also the most frequent cue,
however, both tones, the more frequent and the less frequent one, will
have the same weight. In this example, not the different frequency of the
two tones determines the learned weights but the identical way in which
they compete with light within the set of cues.

These two examples (see Fig. 2 and 3a) serve to illustrate some basic

5This illustrates that error-driven learning does not assume that weights between cues
and outcomes decay over time.
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Figure 2. Illustration of the cues and outcome in Kamin’s (1969) blocking
paradigm (a). During randomized training the weight from the more frequent
light cue to the outcome food is increased until light completely predicts food by
itself (b). This effect is amplified when the light is trained first by itself to predict
food (c). While in b) the tone can temporarily increase its weight, it almost can’t
increase its weight in c). When the compound cue consisting of light and tone is
trained first (d), the weight of the tone cue stays constant (until a new training
regimen, e.g. as in b) would be applied).
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Figure 3. Different examples of cue competition. a) shows how frequency only
determines weight differences within sets of cues, as the more frequent loud
tone develops the same weight to the outcome food as less frequent soft tone.
b) illustrates how frequency effects in cue competition can be canceled out by
the structure of cue interactions. Here, every cue interacts with every other
cue, which results in all cues having the same weight despite their different
frequencies.

mechanisms of cue competition: first, only cues that co-predict the same
outcome as a set can compete with each other; second, within these sets,
frequency of occurrence with the outcome determines which cue will
develop the strongest weight; third, temporal organization of training
modulates this effect, as cue competition is temporally restricted until the
outcome is maximally predicted by all sets of cues. With these mechanisms
cue competition can identify the most relevant cues to be able to fully
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predict an outcome across all possible situations (i.e., cue set - outcome
occurrences).

Still, the dependencies in cue competition can quickly become very
complex. Figure 3b shows what happens when not only the two different
tones interact with light independently but also when they interact with
each other. In that case, when all cues interact with each other, all fre-
quency effects vanish and all cues develop the same weight to the outcome
because all cues influence each other to the same extent. Hence, how
cues interact with each other can take precedence over the different cue
frequencies and in this way cue competition can even cancel out frequency
effects.

3.2. Outcome competition

Thus far, we have only considered situations in which there can be multiple
cues but only a single outcome. Only in such cases can we observe pure cue
competition (i.e., in the absence of effects resulting from the competition
of outcomes). To observe the opposite case, pure outcome competition, we
need to construct a situation in which there is only one cue, but multiple
outcomes (note that these are highly idealized examples).

When multiple outcomes are being predicted by one or only a few
cues, a complete optimization of outcome activations with the aim of full
uncertainty reduction will not be possible as in the previous examples.
One cue cannot fully predict more than one outcome as would be the
hypothetical aim in an example where a light cue predicts both food and
water delivery (see Fig. 4a). While it seems to be intuitively possible to
predict two outcomes from one cue set, this does not comply with the
assumption that the aim of learning is to maximize the certainty with which
an outcome can be expected. Thus, in such situations a mechanism is
needed which maximizes the likelihood of choosing the correct outcome.
This is exactly the objective of outcome competition: it approximates
the conditional probabilities of outcomes given a cue (Ramscar, 2013;
Ramscar et al., 2010).

Outcome competition in error-driven learning results from the updat-
ing of cue weights to absent outcomes (case 3 of Equation 2.4). This
mechanism decreases the weights from all currently present cues to all
outcomes that are absent in a specific learning event. Figure 4b shows
how this results in learning conditional probabilities of all outcomes given
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Figure 4. Illustration of outcome competition. In situations with less cues than
outcomes (as in a), not all outcomes can be fully predicted. In that case, the
updating of absent outcomes as in case 3 of Equation 2.4, leads to the learning of
conditional probabilities of outcome given a cue. Here, food is twice more likely
to occur after the light than water (b). Without this mechanism (for illustration
purposes), the single weights will both increase to the activation limit of 1 (c), a
result which theoretically violates the aim of maximizing certainty of outcome
predictions.

the present cue. Here, light predicts food two thirds of the time and water
one third of the time. If the updating of absent outcomes is disabled, the
weights to both outcomes, food and water, will rise to 1 as shown in Figure
4c, a learning outcome which would, again, contradict the aim of maxi-
mal uncertainty reduction. Furthermore, Figure 4 shows that outcome
competition reduces weights more easily than cue competition, which
can reduce weights only if the maximal outcome activation is reached.
The weight development with outcome competition (see Fig. 4b) appears
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therefore less stable than without outcome competition (which we re-
moved from the learning algorithm for illustration purposes as described
in Appendix A; see Fig. 4c). Outcome competition is thus an inherently
different process than cue competition. While cue competition depends
on the predictive value of cues, outcome competition depends entirely on
the distribution of a set of outcomes relative to a set of cues.

3.3. Interactions of cue and outcome competition

While it is important to note that learning should always be considered in
the context of a system, we should also acknowledge that the “systems”
presented as examples in the previous section, are far from ‘realistic’.
However, limited models like these aim to capture sub-parts of larger
learning systems in order to make important local interactions in the over-
all learning process comprehensible. Accordingly, after having illustrated
the isolated mechanisms we will now focus on how cue and outcome
competition interact.

Let us consider an example which illustrates the interaction of cue
and outcome competition: learning to discriminate different animals from
each other. In Figure 5, learning the difference between dogs and rabbits is
simulated: in this example (dog-rabbit example 1), the learner encounters
big and small tail-wagging dogs, small barking dogs, and small hopping
rabbits. Note that this example is rather similar to the light-tone example
in Figure 3b, except that this example includes a second outcome (see Fig.
5a).

To illustrate the contributions of both cue and outcome competition in
this example, Figure 5 compares the weight development during error-
driven learning as defined in Equation 2.4 with weight development when
either cue or outcome competition is turned off during learning (see
Appendix 6). After training with normal error-driven learning (see Fig.
5b), dogs are discriminated by the cues tail-wagging and barking and
rabbits by hopping. Size (as captured by the cues small and big), however,
is learned to be an overall less informative cue dimension. Remarkably,
the cue barking is learned to be more predictive for dogs than being small,
although small dogs are defined to be more frequent in this example (see
Fig. 5a) than barking dogs. As the cue small, however, also appears with
the outcome rabbit, this cue is overall less useful as compared to the cue
barking to discriminate dogs from rabbits — which is correctly captured
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Figure 5. Illustration of the interaction of cue and outcome competition in
dog-rabbit example 1. In this example, the weights learned with full error-
driven learning (b) show that species-specific features (e.g., tail-wagging) are
more relevant for species discrimination than shared features (i.e., size). When
outcome competition is turned off during learning (c), the model does not
discover that size is a feature dimension shared between the two species and cue
competition leads to the same weights from all features (as in Fig. 3b). When
cue competition is turned off during learning (d), weights correspond to the
conditional probabilities of the label, here, “dog”, given a feature (small has a
lower weight because in some cases it also precedes the label “rabbit”).
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in the learned weights when the full error-driven learning mechanism is
applied.

Figure 5c shows the weight development when outcome competition
is turned off during learning by skipping the updating of absent outcomes,
thus the entire third case of Equation 2.4. In this case, the weight de-
velopment resembles the light-tone example in Figure 3b. This shows
that without outcome competition, cue competition optimizes weights
per outcome, but not across outcomes. Therefore, the simulation does
not pick up on the fact that small is a cue which is not discriminating well
between rabbits and dogs and that it should therefore have a lower weight
than other discriminating cues, for example barking.

On the other hand, Figure 5d shows weight development during learn-
ing without cue competition by allowing each weight to independently
reach a limit of 1, as opposed to restricting the sum of weights of all cues
currently present to 1 (as in Equation 2.4). Without cue competition,
outcome competition makes the weights mirror the conditional probabili-
ties of the outcomes given the single cues. Here, the cue big develops an
equally high weight as tail-wagging and barking as they are all predicting
a dog with full certainty. The cue small however, predicts a dog only in
two out of three cases.

Hence, as opposed to learning without outcome competition, learning
with enabled outcome competition takes into account how cues appear
with other outcomes in the network, such as the cue small appears with
both outcomes, dog and rabbit. Learning without cue competition differs
from learning according to the full error-driven mechanism (see Fig. 5b)
in that the cue big will also be disregarded as a predictive cue with error-
driven learning. Crucially, this happens although, evaluated by itself, it is
fully predictive for the species discrimination. Yet, in contrast to assessing
the predictive value of cues in isolation, the full error-driven learning
mechanism discovers which cue dimensions are informative as a whole -
here for example both big and small are learned to be uninformative. In
particular, if cues are completely complementary, such as in Figure 5 where
every cue set contains a size cue (either big or small), they will develop the
same weight and will be treated by the system as one dimension (see also
Fig. 3a where the visual dimension is learned to be more reliable than the
acoustic dimension). This shows once more how error-driven learning is
a process which is influenced by and acts on the whole system of cues and
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outcomes over time and is never processing events in isolation.
On its own, cue competition can serve to compare cues within sets

of cues regarding how well they can predict a specific outcome, whereas
it is only together with outcome competition that it serves to maximize
the outcome activation in real-world learning situations in which cue
sets need to be discriminated from each other based on their occurrence
with different outcomes. Accordingly, only the two processes working in
conjunction form a discriminative mechanism which allows learning to
find the cue dimensions which are most informative given a whole system
of predictive relations.

3.4. Asymmetry effects

The qualitative differences between cue and outcome competition predict
an important characteristic of error-driven learning - it is potentially
asymmetric, depending on the ratio of cues and outcomes (Ramscar, 2013;
Ramscar et al., 2010). Intuitively, this already follows from the assumption
that error-driven learning is prediction-based, as predictions are inherently
asymmetric. Indeed, behavioral research has shown that changing the
presentation order of cue and outcome stimuli in a task changes learning,
e.g., human learning of visual categories (Ramscar, Dye, Gustafson, et
al., 2013; Ramscar et al., 2010) and various linguistic categories (e.g.,
Chinese tones, Nixon, 2020; lexical stress, Hoppe et al., 2020; number
words, Ramscar et al., 2011; or noun class, Ramscar, 2013).

If we take a task, such as the dog-rabbit example in Figure 5 and switch
cues and outcomes, the task changes and with it the learning (compare
Fig. 5b and 6b). The first cue-outcome order, when objects precede
words (object-first, comparable to feature-label in Ramscar et al., 2010;
or postmarking in Hoppe et al., 2020), simulates a learner who has to
decide whether a specific animal is a dog or a rabbit (Fig. 5a). The second
cue-outcome order, when labels precede objects (label-first, comparable
to label-feature in Ramscar et al., 2010; or premarking in Hoppe et al.,
2020), simulates a learner who has to decide which animal a speaker
refers to when saying either “dog” or “rabbit” (Fig. 6a). The difference
in weight development between these two learning situations illustrates
again the difference between cue and outcome competition: the learned
weights clearly differ when animal features compete for labels as cues or
as outcomes. When the features compete as cues for the labels, weights
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correspond to how relevant a feature dimension is for the categorization
(Fig. 5b); when the features compete as outcomes for the labels, weights
correspond to the conditional probabilities of the features given a category
(Fig. 6b).
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Figure 6. Learned weights after label-first training mirror conditional probabil-
ities of features given a label (in this case, “dog”). Here, features that are less
frequent in dogs (barking and big) receive a lower weight than features that are
more frequent in dogs (small and tail-wagging). This differs from weight develop-
ment in object-first training (Fig. 5), where weights correspond to the relevance
of features for discrimination (in that case, size features are less relevant than
the other features).

Also the resulting choice behavior of a learner in this example is
affected by the different cue-outcome order in the object-first and label-
first situation. In both cases, a maximally discriminating learner would be
completely certain about his choice. In Figure 7a we can see that this is the
case after object-first training, where the activations show that the learner
expects a small barking animal always to be dog but never a rabbit (choice
probabilities averaged over 100 simulations: pc(dog|{small, barking}) =
1, pc(rabbi t|{small, barking}) = 0). After label-first training, however,
predictions are not that clear (see Fig. 7b): while a small hopping animal
is least predicted after the label “dog” is heard, it is still predicted in some
cases (pc({small, barking}|dog) = 0.25, pc({small, hopping}|dog) =
0.17).
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Figure 7. Outcome activations after a) object-first and b) label-first training on
dog-rabbit example 1 (see Section 3.3). When objects precede labels in training
(a), dogs (here shown: small, barking dogs), can be discriminated optimally: the
activation of the label “dog” given a dog exemplar approaches 1 and the activation
of the label “rabbit” approaches 0. However, when labels precede objects (b),
optimally discriminative activations cannot be reached: given the label “dog”,
dogs with most frequent features (small and tail-wagging) are expected more
than dogs with less frequent features (barking and big); crucially, also rabbits are
expected to a certain extent after hearing the label “dog”.

However, the difference in learning between the two different orders
of labels and objects in this example is not very large, as cue competition
does not have such a strong advantage over outcome competition here. A
slightly adjusted situation which is illustrated in Figure 8 shows a more
dramatic difference. In this second example (dog-rabbit example 2), low
frequency items of one category share a feature with high frequency items
of the other category (as in Ramscar et al., 2010): while dogs are mostly
large animals, only a few large rabbits exist. When animal features com-
pete as outcomes for the species labels, this leads to misclassification of low
frequency items, such as big rabbits and small dogs (Fig. 8b, pc({small,
barking}|dog) = 0.06, pc({small, barking}|rabbi t) = 0.29). However,
when animal features compete as cues, low and high frequency exem-
plars can be classified correctly (Fig. 8a, pc(dog|{small, barking}) =
1, pc(dog|{big, tail −wag ging}) = 1)).
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These two examples illustrate how asymmetry can affect some learning
situations more than others (see experimental evidence in Hoppe et al.,
2020). What both examples have in common is the asymmetric network
structure which is necessary to observe an asymmetry effect in learning.
In general, we can observe that when the cue layer has more features
than the outcome layer, thus when the network is convergent, learning
can be maximally discriminative because features can compete as cues for
outcomes (as in Figures 2, 3, 5). When the cue layer has fewer features
than the outcome layer, thus when the network is divergent (Greenberg,
1957; Osgood, 1949), learning cannot be maximally discriminative and
approaches conditional probabilities instead, because features compete as
outcomes for cues (as in Figures 4, 6).

This discussion of asymmetry effects in learning serves to highlight
two points that are important to consider when evaluating an error-driven
learning model: first, it is important to pay attention to subtle differences
in temporal order when determining which entities are coded as cues and
which as outcomes; second, it is important to consider the resulting net-
work structure which can determine whether cue or outcome competition
will govern the learning process.

3.5. Temporal dynamics

In the previous section we discussed how the temporal characteristics of
predictions, which are at the base of error-driven learning, transfer to the
learning process. We have seen that time matters for the relation between
cues and outcomes, as learning can be temporally asymmetrical. Time
also needs to be considered for other parts of an error-driven learning
simulation. Network weights are usually updated incrementally, which
makes it possible to observe learning over time. This at the same time
creates the need to consider the order of training trials, as it can have a
significant effect on the learning outcome (see, e.g., the blocking effect,
Arnon & Ramscar, 2012; Kamin, 1969). Ultimately, in building models,
one has to decide how long a network is trained and whether the whole
time course or only the point of convergence of the network is of interest in
a simulation. Furthermore, time becomes a defining factor when modeling
sequence learning, where detailed temporal relations can be considered
during the learning process or else later during model evaluation.
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Figure 8. Outcome activations after a) object-first and b) label-first training
on dog-rabbit example 2 (see Section 3.4). As opposed to example 1 (Fig. 7),
misclassifications occur here after label-first training (b): after hearing a label,
e.g. “dog”, low frequency exemplars of the wrong species, here, big rabbits, are
expected more than low frequency exemplars of the correct species, here, small
dogs. This is due to the particular kind of feature structure, in which one feature
of low frequency exemplars in one species (i.e., here big in the species of bunnies)
also occurs in high frequency exemplars of the other species (i.e., dogs).
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Time course of learning and convergence
The blocking example illustrates how trial order, either blocked (Fig. 2c)
or randomized (Fig. 2b), does not change the convergence point of the
network but does change the time course of learning. Importantly, in
a constantly changing environment, the point of convergence is just an
abstract construct, which is probably never reached. Usually a learner
is never a blank slate and new information will interfere with already
learned information, as for example in language attrition, when a speaker
switches from one dominant language to another. On the one hand, the
kind of forgetting that interference in an error-driven learning network
over time can produce has been framed as a weakness of the learning
algorithm, the sequential learning problem (McCloskey & Cohen, 1989;
Ratcliff, 1990). On the other hand, interference offers an explanation of
forgetting, which we need to account for when modeling human or animal
learning, without assuming decay of weights over time (e.g., McLaren &
Mackintosh, 2000).

Furthermore, a closer look at some of our previous examples can reveal
how learning dynamics change over time. In Figures 3 and 5, we can
observe how frequency can have an influence on learning early in training,
such that more frequent cues are associated or dissociated faster from
outcomes, while later in training, frequency effects are canceled out by
cue and outcome competition. Considering the amount of training of the
model is therefore always an important step when building or evaluating
an error-driven learning simulation.

To be clear, the learning procedure according to Equation 2.4 is al-
ways iterative, in line with the aim of simulating online human or animal
learning. Thus, although it would be theoretically possible, weight up-
dates are not performed in batches as it is often done in machine learning
procedures to minimize noise in the learning trajectory and maximize
computational efficiency. However, in cases in which the time course of
learning is not of interest for a simulation, the point of convergence or
equilibrium of an error-driven network, which equals the least-squares
solution of the input matrix (Evert & Arppe, 2015), can be directly calcu-
lated with, e.g., Danks’s (2003) equilibrium equations (implemented in R
package ndl).
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Sequence learning
While in simulations of clearly delimited tasks (for example, animal clas-
sification) time is an additional modeling parameter which needs to be
considered, it is the most crucial factor when modeling sequence learning.
In our previous examples the definition of cues and outcomes was mainly
dependent on two aspects: first, the task that determines the relevant
outcomes; second, temporal ordering, which is crucial in defining cues
and outcomes, as predictions can only be based on earlier occurring ele-
ments. The latter is also crucial for sequence learning where the task is
not focused on predicting a single correct outcome or outcome set, such
as, when making a medical diagnosis or choosing a word to communicate
a specific meaning, but on the temporal sequence itself, such as, when
mounting a bicycle or singing a melody.

One way of modeling sequence learning with a simple two-layer learn-
ing network has been suggested by Gureckis and Love (2010) who imple-
mented an associative chain in which each element predicts the following
element as an outcome, which then turns into a cue for the next following
element. In its simplest form such an associative chain model has no
memory, however to add short-term memory to the model, Gureckis and
Love (2010) added a shift register which can add a specified number of
preceding elements as cues to the current outcome.

This simple two-layer associative chain model with short-term memory
turned out to be a good predictor of human performance in two sequence
learning tasks (Gureckis & Love, 2010). Like human participants, the
model could solve a sequential problem with low statistical complexity
(sequences consisting of a concatenation of random samples of a sequence
of integers, here 0 to 3, e.g., [0-1-2-3]-[2-1-0-3]-[1-3-2-0]), but both
human participants and the model struggled with learning sequences
with higher-order statistical dependencies (where every third element of
the sequence is an XOR evaluation of the preceding two elements, e.g.,
[0-0-0]-[1-1-0]-[1-0-1]).

Crucially, Gureckis and Love (2010) suggest that the limited capacity
of such simple models in learning complex sequences might depict human
learning more realistically than more complex models, such as recurrent
networks. Historically, the problems that associative chain models show
in learning sequences with higher-order statistical dependencies have
been a source of critique (e.g., Lashley, 1951) and led to a concentration
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on more powerful models with hidden layers and recurrence which are
able to transform input representations. However, in comparing their
simple associative chain model with a recurrent network Gureckis and
Love (2010) conclude that these higher-level representations constructed
by hidden layers of recurrent networks are not always used by humans:
while a simple recurrent network with a hidden layer was indeed able
to learn the sequence that the associative chain model could not learn,
also the human participants did not pick up on the pattern. Moreover,
the recurrent network was much slower in learning the sequence with
low statistical complexity, in which the higher-level transformations of the
network seemed to be a hindrance to solving the task. Thus, surprisingly,
the simpler two-layer associative chain model clearly outperformed the
more complex recurrent network in predicting human performance in the
sequence learning tasks.

Gureckis and Love’s (2010) approach shows how two-layer error-
driven learning networks can be used to model sequence learning. An
interesting question that arises from the comparison of two-layer and
multi-layer sequence models relates to higher-order representations. Un-
der which circumstances should the events encountered in a learning
situation be represented as undiscriminated sequential chunks, as op-
posed to sequences of elemental items? This is a point we will discuss in
detail in Section 5.

Sequential processing
Another interesting example of using two-layer networks to model the
learning of sequential processes is presented by Baayen, Shaoul, et al.
(2016) who show how a network trained non-sequentially, can neverthe-
less still offer insight into the processes that give rise to the understanding
of continuous speech.

The aim of Baayen, Shaoul, et al.’s (2016) work was to show how
a network that does not implement word segmentation can understand
continuously presented speech. Understanding speech was here simplified
to activating the correct sequence of word forms when encountering
a specific sequence of triphones. In order to not train the model on
segmentation, the authors trained it non-sequentially creating a learning
event for every sentence, in which all triphones of the sentence were given
as cues and the sentences’ word forms as outcomes to the model. In the
following step, they evaluated how the model would process a continuous
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stream of speech split up into triphones. Sequential processing, in this
case, was simulated by moving a fixed-size window over the input stream
of triphones, similar to the learning and evaluation procedure of Gureckis
and Love (2010). In the end, although the network was trained without
sequential information, it could segment the speech stream and give rise
to behavior usually thought to occur at later stages of processing (after a
segmentation stage), such as long-distance dependency processing.

These two examples (Baayen, Shaoul, et al., 2016; Gureckis & Love,
2010) show how simple error-driven learning models can simulate sequen-
tial learning and processing. For modeling these phenomena, the temporal
order of events is obviously a crucial factor, however, since all learning
happens in time, the incremental updating mechanism of error-driven
learning can also illuminate the temporal dynamics of learning situations
that may not at first glance seem either sequential or time-related. The
issue of interference (see Section 3.5), for example, serves to highlight
the fact that because learning is a process in which cue and outcome
competition interact over time, temporal dynamics are a factor in almost
all real world learning situations.

4. Relating model outcomes to behavior
To better understand the underlying learning dynamics in a given learning
situation, it is possible to directly analyze the output of an error-driven
learning simulation, which is usually the weight matrix between cue
and outcome layer after completed training, or a list of weight matrices
for every time step. However, in order to test whether a simulation is
capturing a given phenomenon, the model output has to be related to
behavioral data.

The first step in determining how a given model will respond (activate
an outcome) to a given input (in the form of a set of cues), is to determine
the strength of support for possible outcomes, which is defined as the
outcome activation (Equation 2.3). This makes it possible to get the
model’s response to a realistic input, thus a set of cues and not only
isolated single cues, which can then be compared to the response of a
human or animal learner. Calculated over all possible sets of cues and
outcomes, the resulting activation matrix can then be used to predict
specific response data, such as accuracy or reaction times.

To simulate accuracy, a choice rule needs to be applied to the outcome
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activation vector, to derive the probabilities of outcomes being chosen as
a model response to an input. As outcome activations are ordinal data,
potential transformations of outcome activations to response probabilities
should be functions that preserve order (Church & Kirkpatrick, 2000;
Rescorla & Wagner, 1972). Transformations that have been used are,
amongst others, a step function with a specific threshold (e.g., Church
& Kirkpatrick, 2000), a logistic function (e.g., Gluck & Bower, 1988;
McClelland et al., 1987), or the Luce choice rule (R. D. Luce, 1959;
e.g., used by Gureckis & Love, 2010; Hoppe et al., 2020; Ramscar et
al., 2010). Two important points to consider when calculating choice
probabilities from activations are, first, that outcome activations can be
negative, which needs to be corrected for to apply, for example, the Luce
choice function (e.g., by setting negative activations to zero as in Hoppe
et al., 2020; Ramscar et al., 2010) and, second, to be aware of the choice
baseline, which could differ from the baseline in the empirical data set
(and which is dependent on the number of outcomes or possible choice
alternatives). Note that the property of error-driven learning models
to output activations instead of probabilities makes them more flexible
than models that directly estimate probabilities as, for example, choice
probabilities can be calculated based on a specific (sub-)set of choice
options (Harmon, 2019; P. A. Luce & Pisoni, 1998).

To simulate empirical reaction time to an outcome for smaller data
sets, the (negative) activation of that outcome given the present cues can
be used directly. For larger data sets, reaction times can better be approxi-
mated by a log transformation of inverse activations (log(1/act ivat ion))
to remove skew from the data (Baayen et al., 2011). Note, however that
this does not automatically extend to other types of continuous response
data. Recent work by Lentz et al. (2021), for example, suggests that error-
driven learning activations have to be handled differently to predict EEG
data than to predict reaction time data. Hence, overall, the simulation
of various kinds of behavioral responses based on error-driven learning
activations is still very much work in progress.

The output of an error-driven learning model, that is, the learned
weight matrix and the outcome activation matrix, has furthermore been
used to derive more abstract measures than the direct simulation of be-
havioral responses (as, e.g., employed in Baayen, Milin, & Ramscar, 2016;
Hendrix, 2015; Milin, Feldman, et al., 2017). However, it needs to be
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stressed that the trade-off between trying to model a problem as precisely
as possible and trying to derive an explicit contribution to theory (Bonini’s
paradox) can also be extended to the analysis of a model’s output. While
more abstract measures can be used to derive alternative predictors for
behavioral data, it is also more difficult to clearly interpret them.

5. Cue and outcome representations
The error-driven learning mechanism formulated in Equation 2.4 is a
mechanism which discriminates cues from each other by associating and
dissociating them from outcomes, leading to the learning of positive,
neutral or negative expectations. However, while error-driven learning,
in theory, is a discriminative process, the full mechanism can only arise
in a model operating on suitable cue and outcome representations which
actually define a discrimination problem (Hoppe et al., 2020; Ramscar,
2013; Ramscar et al., 2011; Ramscar et al., 2010).

First and foremost we need to be explicit about the theoretical role that
we assume representations to fulfill in error-driven learning models: that
they are supposed to capture accessible information in the environment
that can potentially be used to reliably predict upcoming items or events.
This means we do not assume representations to actually mirror concrete
neurobiological states of the brain, especially given the fact that “detailed,
empirically grounded theories of how the brain encodes complex inputs
are rare in the literature” (Bröker & Ramscar, 2020, p.1).

Given this basic assumption about the theoretical role of representa-
tions, we next need to distinguish between two different ways of concep-
tualizing representations on varying levels of granularity. Historically, the
error-driven learning model by Rescorla and Wagner (1972) was used to
observe how weights between cues and outcomes develop depending on
how these cues appear with each other in compounds. For this reason
only cue representations on one (not clearly defined but suggested low)
level of granularity — so-called elemental cue representations — were
given as input to the model. These elements were assumed to compo-
sitionally combine to represent stimuli combining elemental properties
(i.e., the combination of stimuli A and B would be represented as {A, B}).
Subsequent work, reacting to limitations of this purely elemental (or
compositional) approach, allowed also novel representations for cue com-
binations (i.e., the combination of stimuli A and B would be represented
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as {AB}) — also referred to as configural cue representations (see, e.g.,
Pearce, 1987). Importantly, the configural conceptualization of represent-
ing cue combinations is in line with the idea of learning being a process
of abstraction (Ramscar et al., 2010; Rosch et al., 1976): in this process,
unpredictive input representations are unlearned, potentially (but not
necessarily) leading to more abstract output representations instead of
detailed compositional representations. In the following, we therefore
refer to configural representations as representations on higher levels of
abstraction than combinations of elemental representations.

Whether (and sometimes when) associations are learned between
more abstract configural representations or combinations of elemental
representations, has been widely discussed in the literature (Harris, 2006;
Pearce, 1987, 2002; Wagner & Brandon, 2001). Importantly, from a
discriminative perspective, focus is put less on whether but on when repre-
sentations on different levels of abstraction are used for discrimination,
as we will argue in this section. First of all, discrimination is assumed to
be a process of uncertainty reduction which, beginning on high levels of
abstraction that allow only for coarse discrimination leads to lower levels
of abstraction that allow for more detailed discrimination (Ramscar, Dye,
& McCauley, 2013; Ramscar et al., 2010). This idea runs counter to the
elemental view which assumes that predictive structure between items or
events in the environment can be uncovered starting from low levels of
granularity. In addition, the aim of discriminative models is to learn the
predictive structure between items or events in an environment. We will
argue in this section that only a model presented with a sufficiently vast
set of cues and outcome representations on different levels of abstraction
can discover the relevance of specific cue representations to optimally
predict the given outcomes. Hence, in this section we will first focus on
the limitations connected to the definition and historic applications of the
Rescorla and Wagner (1972) model based on an elemental view of the
formation of associations in an environment. Then, we will sketch out how
cue and outcome representations should be defined from a discriminative
point of view.

Given the asymmetry in error-driven learning networks, we split this
discussion up into separate considerations about cue representations and
outcome representations. We will first focus on cue representations, where
the main task of a discriminative model is to discover the optimal dis-
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criminative structure given a set of outcome representations. Note that
the discussion of cue representations is especially important for simple
two-layer networks, which cannot transform the predefined input repre-
sentations, such as in networks with hidden layers or recurrence. Later,
we will then focus on outcome representations, which can be seen as
dictating the task and therewith the discrimination of cue representations.

5.1. Elemental and configural cue representations

We begin with a review of the historical approach to representation in
learning models which originates in the associative/compositional tradi-
tion of learning in psychology and assumes that association is a purely
elemental process in which the relevant granularity levels of stimulus rep-
resentation can be built up gradually starting from low levels of abstraction
by combining some kinds of elemental stimuli.

Accordingly, when Rescorla and Wagner (1972) first presented their
error-driven learning model it was applied to so-called elemental cue
representations. The question, which levels of percepts can be classified
as sufficiently “low-level” or “elemental” is never really discussed, so that
we would suggest to interpret this term in a relative sense contrasting
representations on higher levels of granularity. In fact, to explain learn-
ing phenomena observed in simple animal studies such as the blocking
effect (Kamin, 1969) no further considerations of stimulus representation
is needed. For example in simulating blocking, the combination of the
blocking and the blocked stimulus coded compositionally as two separate
cues successfully explains the learning dynamics (see also Section 3.1).
However, this kind of coding of cue configurations soon reached a limit
in explaining effects with more complex, conditional relations between
stimuli such as negative patterning (A→ reinforcement; B→ reinforce-
ment; AB→ no reinforcement, also written as A+; B+; AB- in the context
of classical conditioning) or biconditional conditioning (AB+; CD+; AC-;
BD- Harris, 2006; Melchers et al., 2008; R. R. Miller et al., 1995).

The crucial assumption that was necessary to explain some of these
basic learning phenomena, such as blocking, but that posed problems for
others was that the weights of different cues are independent from each
other and thus can be simply combined by summation. On the one hand,
summation is a crucial concept which enables competition between cues
as seen in Equation 2.4, in which weights are summed up in the activation
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Figure 9. Different cue structures to model negative patterning, in which sin-
gle stimuli predict a different outcome than their combination (a). When the
stimulus compound is coded compositionally as a combination of its elements
({Tone, Light}), the two outcomes cannot be discriminated from each other (b).
When the stimulus compound is coded by a single configural cue ({LightTone}),
discrimination is optimal but not realistic (c). The combination of a configural
cue and its elements ({Tone, Light, LightTone}) captures discrimination and gen-
eralization (d). See also the interactive interface in the tutorial.
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term. Empirically, findings of summation effects, for example, that the
compound of two stimuli evokes a stronger response than the stimuli in
isolation, are mixed (Melchers et al., 2008). While summation is mostly
observed for stimuli that are clearly separable (Lachnit, 1988) or from
different modalities (Aydin & Pearce, 1997; Kehoe et al., 1994), it is less
observed for integral (compositely perceived) and same-modality stimuli.
(We need to note here that these concepts that have been put forward to
explain the presence or absence of summation effects might be equally
difficult to define as the concept of elemental percepts. From a discrimi-
native perspective, these differences between cue representations might
also be connected to how relevant single representations are regarding
discrimination in a current or previously experienced task.)

On the other hand, the summation principle alone makes it difficult
to explain how the weight or activation given a configuration of cues
could be different from the sum of its parts. Yet, for instance, this is a
necessary prerequisite to explain negative patterning. Figure 9 shows
an example of negative patterning, where two cues, a tone and a light,
presented by themselves predict one outcome, food, but in combination
predict another outcome, water. When the combination is coded elemen-
tally/compositionally (i.e., with the cue representations Light and Tone;
Fig. 9b), the distinction between these two outcomes cannot be learned
because the elemental cues become associated to a similar extent to both
outcomes.

In reaction to the limitations of models with purely elemental cue
representations, different extensions were suggested (for comprehensive
reviews refer to Harris, 2006; or Melchers et al., 2008). Most importantly,
many extensions include the addition of cue representations on higher
levels of abstraction, for example, non-compositional representations for
combinations of lower-level cue representations (e.g., a cue LightTone that
combines the cues Light and Tone). One suggestion contrasting a purely
elemental approach was put forward by Pearce (1987), who suggests a
purely configural approach in which cues that appear together are only
represented by one configural cue omitting cue representations on lower
levels of abstraction. Figure 9c shows how this can lead to very good
(too good according to Harris, 2006) learning in the negative patterning
problem. However, to be able to account for generalizations between
cue configurations sharing lower-level elements, additional mechanisms
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were needed, such as a similarity measure between cue configurations.
A simpler approach is to allow for both elemental and configural cue
representations, or in other words, cue representations on multiple lev-
els of abstraction (e.g., used by Ramscar & Dye, 2009; Ramscar, Dye, &
McCauley, 2013; Ramscar et al., 2011). Figure 9d illustrates how this
approach also leads to successful learning of negative patterning, as the
model learns which cue representations on which level of abstraction are
informative for which outcomes, while still accounting for interference
between cue combinations. One major problem with the latter approach
is, however, that aiming to include all possible abstract configural cue
representations in a model’s input representations quickly leads to a com-
binatorial explosion (Gluck & Myers, 2001)

Besides these extensions, more complex elemental models based on
Rescorla and Wagner (1972) and Widrow and Hoff (1960) have been
proposed, in which parsimony is traded for more explanatory power.
McLaren and Mackintosh (2000), for example, refined the elemental cue
representation approach by assuming continuous probabilistic sampling of
“microfeatures”, which was also able to explain conditional discrimination,
such as negative patterning. However, together with an added weight
decay and stimulus salience mechanism, this model outsourced dynamics
that could in theory be explained by simple error-driven learning. On the
one hand, to avoid confounding, we suggest to always carefully weigh
the advantages of such extensions that risk to come with a loss of un-
derstanding of the underlying mechanisms. On the other hand, we do
not want to discourage exploring low-level cue representations (see also
Ghirlanda, 2005), as depending on the problem at hand, we certainly
need representations on all levels of abstraction.

A final way to include cue representations on multiple levels of ab-
straction into an error-driven learning model is to change the network
architecture and add hidden layers to the network (e.g., Delamater, 2012;
McLaren, 1993; Schmajuk et al., 1998). These models directly address the
question of how higher-level, “configural” representations arise in a model,
for example, a node in a hidden layer can represent the combination of
two cues in the input layer. One advantage of this is that in this way they
solve the combinatorial explosion problem, with which two-layer models
are confronted. However, the disadvantage of this approach is that it
is not directly observable what kind of representations are learned in a

59



Error-driven learning | 2

hidden layer. Therefore such models make it difficult to understand what
kind of representations, i.e., on what level of abstraction, are relevant for
a specific learning situation.

At this point, we need to elaborate on a principled problem with the
associative approach to cue representations: its theoretical commitment
to specifically defined input representations. As by definition, elemental
representations on all levels of granularity can be traced back to a set of
elemental representations, associative learning theories need to provide a
theoretical motivation for specifying these elements. This is problematic
given that the approach of trying to concretely and compositionally de-
fine input representations is inherently regressive (Ramscar et al., 2010),
especially given that the goal of the endeavor of identifying neurobiolog-
ically plausible elemental input representations for such simple models
is questionable considering the complex and still ill-understood myriads
of networks underlying higher-level processing in the brain (Bröker &
Ramscar, 2020). In contrast, within a discriminative theory the theoretical
commitment to specific representations is neither necessary nor wanted,
as learning models are explicitly conceptualized as tools to investigate
what kind of representations are theoretically needed to predict a given
set of outcomes (these are often referred to as distributed representations
in the connectionist literature as, e.g., in Rumelhart et al., 1986). Impor-
tantly, the set of hypothetically possible representations is not restricted
to a particular form or level of abstraction. They are only required to con-
form to discriminative principles, which means that they should capture
contrastive patterns in the environment, which can be of any form and on
any level of abstraction.

In summary then, this discussion about elemental and configural rep-
resentations in fact raises questions about the kind of levels of abstraction
in cue representations that are best employed in two-layer error-driven
learning models. The fact that two-layer models cannot construct higher-
level representations during learning permits only one conclusion, namely
that such representations have to be explicitly given to a model in order
for it to veridically simulate problems, such as negative patterning. Thus
in the next section we will argue that, among other factors, only if a model
is confronted with cue representations on different levels of abstractions,
it can make a realistic estimation about which cues on what levels of
abstraction are informative for solving a given task, which should exactly
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be the objective of learning from a discriminative perspective. This idea is
furthermore supported by previous evidence and models which suggest
that cue representations on different levels of abstraction are learned to be
relevant based on task demands (e.g., Dye & Ramscar, 2009; Hoppe et al.,
2020; Melchers et al., 2008; Ramscar, 2013) and depending on learning
experience (e.g., Arnon & Ramscar, 2012; Ramscar, Dye, & McCauley,
2013).

5.2. Defining discrimination-friendly cue representations

All representations are wrong but some are useful.
–adapted from George E. P. Box

As the foregoing discussion hopefully makes clear, there is no one
right way to represent the cues involved in a learning situation, just as
there is no right way to formulate a model (Box, 1976). The usefulness
of specific representations strongly depends on the problem at hand and
factors such as task demands, prior experience, experimental instructions
and stimulus properties (Melchers et al., 2008). In fact, this is exactly the
task of learning from a discriminative perspective: learning to represent
the environment in a way that suffices for a given task (translated into
outcome representations), rather than assuming a fixed set of low-level
representations that compositionally combine, as it is usually conceptual-
ized from an elemental/associative point of view (see, e.g., Harris, 2006;
Smolensky, 1988). Accordingly, this makes it even more important to
thoroughly consider what kind of cue structure is suited to model a given
problems.

As we have noted above, although historically, error-driven learning
models have been described as associative, they are in fact discriminative
(Ng & Jordan, 2002; Ramscar et al., 2010). In the light of this, it is worth
considering the kind of cue and outcome representations that best support
discriminative learning. Therefore in this section, we will describe some
guidelines and heuristics for defining cue and outcome representations
that can trigger discriminative learning dynamics. Generally the aim of
a discriminative learning model is to discover a weighted combination
of cues which best predicts the present outcome, or in other words, to
discriminate the best cue structure given the present outcomes (Ramscar
et al., 2010). Although the cue and outcome representations that are
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given to a model should be informed by theory, in order that the model can
also contribute to theory, it can be useful to give it some leeway to discover
a realistic structure in the cue weights within these representations. In
contrast, if the scope of a defined cue structure in a model is too limited,
the model will probably be less able to generate novel predictions and
robust generalizations.

In what follows, we illustrate three important points that help improve
cue representations with the aim of allowing a two-layer error-driven
model to unfold its full discriminative mechanism, using Ramscar, Dye,
and McCauley’s (2013) model of English plural acquisition. The task of this
model was to predict the plural form of a noun, for example, “mice”, based
on cues from the environment or the items referred to by a specific noun,
for example, the presence of multiple mouse items. First, we conclude
from the discussion about which levels of abstraction should be considered
for the specification of cue representations, that including representations
on multiple levels of abstraction can considerably increase the possibilities
of a model to find predictive structure in cue representations given a
set of outcome representations. Crucially, in addition, the discriminative
view suggests that discrimination proceeds from high to low levels of
abstraction, which can also be interpreted as coarse and detailed levels of
discrimination.

Ramscar, Dye, and McCauley’s (2013) model of English plural acqui-
sition is directly based on this idea. It includes representations of cues
from the environment on multiple levels of abstraction in order to predict
the plural form of an English noun (which can be regular or irregular):
Ramscar, Dye, and McCauley (2013) observed that early in learning, when
the model has mainly seen regular plural forms (together with the objects
appearing with them), the general cue multiple items is rated by the model
to reliable predict the regular plural ending “-s”, leading to quick overreg-
ularization of the less frequently occurring nouns with irregular plural
formation; only later, the model discovers more reliable, lower-level cues,
such as multiple mouse items to predict specific plural forms (i.e., “mice”).
Thus, in their case, the inclusion of representations on multiple levels of
abstraction leads to the finding that during the process of discrimination,
effects such as overregularization can occur.

Another example of the importance of considering levels of abstraction
of cue representations in two-layer error-driven learning models comes
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from a recent proposal by Baayen and Hendrix (2017) who present a
series of models that challenge Minsky and Papert’s (1969) historical
claim that two-layer perceptrons (equivalent to the framework presented
here) can solve only linearly separable problems. Contrary to this, Baayen
and Hendrix (2017) show that when representations of an abstract non-
linear problem are beforehand transformed into a linear domain, they
can be solved by a two-layer error-driven learning network. Hence, while
two-layer error-driven models cannot construct abstractions from the cue
representations that they have access to, problems requiring such abstrac-
tions can still be investigated with such models, given that abstract cue
representations are explicitly given to a model.

A second point, directly related to the different levels of abstraction of
cue representations, is that only a cue structure where sets of cues overlap
between different outcomes can trigger the full error-driven learning
mechanism with cue and outcome competition. Notably, overlap can often
be added to a set of cue representations by including representations on
higher and lower levels of abstraction than seem intuitively necessary to
predict different outcomes reliably (e.g., see: Baayen, Shaoul, et al., 2016;
Hoppe et al., 2020; Ramscar et al., 2010). On the one hand, creating
overlap with cue representations on higher levels of abstraction can be
important for simulating the process of discrimination in an error-driven
learning model: for example, in Ramscar, Dye, and McCauley’s (2013)
model, the overregularization effect arises because, initially, more general
and less informative cue representations are poorly discriminated from
more detailed and more informative cue representations. On the other
hand, overlapping low-level cues (e.g., the cue representations {small,
hopping} in addition to {dog}) can be particularly useful when investigating
how abstract representations might be learned (e.g., Baayen, Shaoul, et
al., 2016; Hoppe et al., 2020; Ramscar et al., 2010).

A further important thing to note is that all representations in two-layer
networks should intersect (i.e., no two sets of cues should be disjoint). The
simplest way of ensuring this is to include a cue that occurs in all learning
contexts (sometimes referred to as a context, environmental, or a constant
cue6). Conceptually this cue can be thought of as corresponding to the

6Note that in our example simulations we deliberately did not include a constant cue in
order to make them easier to understand, also when they included disjoint cue sets,
such as the examples in Fig. 6, 7b, and 8b. Crucially, however, activations in these cases
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properties of the environment that are constant, for example the presence
of the learner, or that are undiscriminated, for instance in Ramscar, Dye,
and McCauley’s (2013) model, the cue stuff was added to every cue
set. Critically, from the perspective of the actual learning mechanism, the
addition of this cue ensures that no sets of cues can be disjoint and that the
amounts of error produced in different learning events always add up to
zero. As a result, the cue weights learned will be in proportion to the whole
learning system — basically this cue plays the same role as the intercept
term in a regression model. Moreover, the inclusion of a representation for
generally undiscriminated properties of the environment makes a model
more realistic given the assumption that learning proceeds from perceiving
the world as an undiscriminated set of items and events to learning to
perceive predictive structures in the environment.

Third, Ramscar, Dye, and McCauley’s (2013) example illustrates how
important it can be to consider the larger context of a problem, for ex-
ample, multiple modalities. While at a first glance, noun inflection might
seem to be a problem that could be modeled using only phonological
or morphological units (such as e.g., MacWhinney & Leinbach, 1991;
Rumelhart & McClelland, 1987), the involvement of cues from the physical
environment (i.e., semantics) have been shown to be essential to solving
the problem (Ramscar, 2002). In addition, the larger context can also
literally be just a larger system of cues and outcomes, which does not only
involve the specific entities involved in the problem. Ramscar et al. (2014),
for example, investigate age effects in paired-associate learning of a small
subset of noun associations by looking at how associations between words
in the whole language develop over time for a single speaker. In this way,
they show that the associations which a noun has built over a lifetime of
language learning, directly influence how easily it can be associated with
the nouns used in the paired-associate learning test, some of which are
highly unlikely to appear in vicinity to the target noun in natural language.

To summarize then, these three factors, representations on multiple
levels of abstraction, overlapping sets of cues, and inclusion of the larger
context can make cue representations more discrimination-friendly in the
sense that they define a problem which actually requires a discriminative
learning mechanism. Crucially, even with a large number of cues, the

would not be affected by adding a constant cue to each cue set, given that the constant
cue is also included in the calculation of the activations.
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model dynamics usually still stay accessible as only a small amount of
the learned connection weights will be significantly different from zero
(Arnold et al., 2017). In the light of these considerations, we would
suggest that representations should err in the direction of richness rather
than sparseness. The idea being that a model provided with sufficient
“data” will probably learn to mirror predictive relationships between real
items or events more closely and robustly than a model provided with a
more limited context.

5.3. Outcome representations

Thus far, we have mostly focused on cue representations and disregarded
the impact of outcome representations, which are rarely discussed in
the literature. Regarding discrimination they also have a less prominent
role, as they are not the object of the discrimination process, such as cue
representations, but the subject. Hence, usually outcome representations
define the task at hand, for example, naming an object (where outcome
representations would be word forms) as opposed to inferring what a
speaker was communicating with a specific word (where outcome repre-
sentations would be items of events from the environment or semantic
representations). Furthermore, the level of abstraction of outcomes has a
direct impact on the learned cue structure, as usually discrimination on
different levels of abstraction stands in a trade-off: either focus has to be
put on features which discriminate categories from each other, thus that
are shared between items within a category, for example, features that
discriminate dogs from rabbits, or focus has to be put on features which
differ between items to discriminate them, for example, unique features of
different dog breeds (Dye & Ramscar, 2009; Hoppe et al., 2020; Ramscar,
2013). Overall, the outcome structure determines what, that is, which
cue structure, a model is going to learn. This also means that a two-layer
error-driven learning model can only capture one learning process with
one objective and cannot be compared with a process model or a cognitive
architecture (e.g., ACT-R, Anderson, 1996, 2005).

Finally, it’s important to stress that the cue and outcome representa-
tions employed are a defining part of a model (Bröker & Ramscar, 2020)
which can set apart different kinds of models based on the same error-
driven learning mechanism and on the same network architecture (Note
that we use the term model here in its more specific sense as consisting
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not only of a learning mechanism and a network architecture, but also of
specific cue and outcome representations). Because of this, and because
cue and outcome representations inevitably embody the theoretical as-
sumptions of modelers it seems fair to say that the various error-driven
learning models in cognitive science do not form a coherent theoretical
class of models, a point illustrated, for example, by the vast differences
between error-driven grammar learning models (MacWhinney & Leinbach,
1991; Ramscar, Dye, & McCauley, 2013; Rumelhart & McClelland, 1987),
which vary widely in their data structure and theoretical assumptions and
in to what extent they treat their tasks as discrimination problems.

6. Discussion
Historically, not long after two-layer error-driven learning networks were
initially introduced into the cognitive sciences, the focus of the field shifted
to multi-layer networks. One reason for this was that it was thought that
only they could resolve the limitations of two-layer networks that have
been highlighted at the time (Minsky & Papert, 1969). One consequence
of this was that the degree to which two-layer networks might still con-
tribute to our understanding of cognition was largely left unexplored
over the following decades (a factor that was further compounded by the
limited available computational resources at the time). It is only recently
that researchers have begun to reexamine the degree to which two-layer
networks might still contribute to theoretical understanding. On the one
hand, new evidence suggests that some of the originally claimed limita-
tions can be overcome, or rather that they do not need to be overcome
if we, for example, can assume different stimulus representations (e.g.,
Baayen & Hendrix, 2017). On the other hand, some aspects of simple
error-driven learning models that have been claimed to be limitations
can in fact be interpreted as advantages when it comes to using these
models to understand the concrete mechanisms underlying human or
animal behavior.

In this regard it is important to note that the main point of exploring
a learning phenomenon with a simple two-layer network is to maximize
its interpretability. This means that the problem must be abstracted to a
degree which, first, makes the workings of the model directly accessible,
and second, makes it possible to relate them directly to the basic error-
driven learning mechanism. Two-layer models achieve this goal by their
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very simplicity, which minimizes free parameters and in this way makes
transparent the basic error-driven learning mechanism. This simplicity
helps to ensure that a model’s behavior can be directly attributed to the
main error-driven learning mechanisms (association and dissociation) and
the resulting dynamics (cue and outcome competition). Consider, for ex-
ample, different approaches to modelling the process of forgetting: on the
one hand in error-driven learning, forgetting is simulated via interference
dynamics, which directly result from the process of dissociation; on the
other hand, there is evidence (Ramscar et al., 2017) that this produces
behavior very similar to behavior produced by time decay dynamics, which
are usually implemented as a separate process in learning models based
solely on association (Anderson, 1996; Pavlik Jr & Anderson, 2005). The
question whether or to what extent interference or time decay can account
for forgetting is still discussed in the memory literature (e.g., Hardt et al.,
2013; Oberauer & Lewandowsky, 2008). However, comparing the two
models shows how in the interference model, forgetting arises out of the
basic model dynamics, while in the time decay model, the mechanism
of forgetting needs to assume an additional process. While (and maybe
also because of the fact that) it is rather difficult to separate the passing
of time and interference, the interference explanation seems to be more
parsimonious since it suggests that forgetting is actually inherent to the
learning mechanism itself.

It is clear that the increased interpretability of these models comes at
the cost of scope, and historically, many problems that researchers have
tried to tackle might simply not be suited to be modeled this way. If we, for
example, look at the long list of “failures” brought forward by R. R. Miller et
al. (1995), while a few of them might be solved by reframing the learning
problem or input and output representations, for most of these problems
it is likely that they are simply not really suitable for modeling in a two-
layer error-driven learning network. One solution, that has been often
applied but comes with the problem of not contributing much theoretical
insights (see also Section 2.2), is to keep the learning mechanism and add
additional parameters that can make the mechanism work for problems,
such as overshadowing (as it is, e.g., done by Rescorla & Wagner, 1972).
Another solution is to acknowledge the limitations of these simple models
and to draw on different, or additional mechanisms or more complex
network architectures. Regarding the case of overshadowing, Rokers et al.
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(2002) provide an example of how a combination of two multi-layer error-
driven networks connected by a feedback mechanism can simulate how
more or less salient cues act differently in a blocking paradigm tested on
rats. Their model is directly informed by research on cortico-hippocampal
networks and implements a postulated mechanism in the septal region
that modulates input representations during learning. Importantly, this
highlights another limitation of simple two-layer networks: although they
can discriminate between input representations (potentially at different
levels of abstraction) and in this sense learn which representations they
need to predict the outcomes defining a given task, they cannot learn (in
the sense of form) these representations during the same learning process
with the same outcomes (Ramscar, 2021). In order for the latter process
to occur, the more abstract cue representations that need to be learned
would somehow need to be given to the model as outcomes (besides the
representations defining the task at hand) and as cues. It is far from clear
how this can be done in a two-layer network, yet it is exactly what happens
in a multi-layer network, where hidden units can serve both as outcomes
to input representations and cues to output representations (or further
hidden units).

This leads directly to another point which is important for understand-
ing the scope of these models: they do not (or should not) aspire to be
complete process models. Although error-driven learning was first intro-
duced into psychology in what were essentially blackbox empiricist terms
(i.e., as models of "the learning process"), our increasing understanding of
the neurobiology of learning and the inherent complexity of human neu-
rocognitive architecture makes clear that no single error-driven learning
network, regardless of its complexity, can be realistically considered to
be a ’complete’ model of how the cognitive system learns. However, in
contrast to more holistic symbolic cognitive architectures, simple error-
driven learning models have nevertheless turned out to be particularly
helpful regarding the investigation of the neural underpinnings of more
complex cognitive processes: the fact that they are able to capture in
some detail the specific aspects of learning given a specific situation and
a specific set of assumptions has enabled researchers to employ these
models to predict the behavior of specific neural mechanisms in learning
(Schultz, 2000; Schultz et al., 1997; Waelti et al., 2001). This work has
allowed to relate the behavior of different brain regions in learning to
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the different subprocesses of more complex network architectures (Mack
et al., 2016, 2018; Mack et al., 2020), as well as to connect observed
changes in learning in childhood to the development of a more complex
network learning architecture in development (Ramscar & Gitcho, 2007;
Thompson-Schill et al., 2009).

These findings further support the idea that while simple error-driven
learning networks are ultimately limited in their computational power as
compared to more complex modeling approaches, it remains to be seen
whether the specific characteristics causing this reduction in power are in
fact limitations. One such arguable limitation is, for example, that error-
driven learning based on the delta rule, as we present it here, is a discrete
process, and thus cannot directly process continuous input. However,
it can still be the case that — given that from a scientific perspective,
simulations are ultimately aimed at increasing understanding — this
simplification can nevertheless illuminate mechanisms of learning from
continuous input. In fact, whether mechanisms in cognitive processing and
learning are discrete or continuous is often a question under discussion
and, interestingly in many cases, such mechanisms can be modeled by
both discrete and continuous models (e.g., J. Miller, 1988; Van Der Wel
et al., 2009). If we assume that discretization is a process of abstraction
from what are originally continuous sensory signals, this then raises the
question what kind of levels of abstraction are necessary to model a
problem, which can be investigated very well with two-layer error-driven
learning models. First, because of the fact that in modeling with two-layer
networks, representations on different levels of abstraction have to be
chosen explicitly, this question is often naturally considered during the
modeling process. Second, as computational resources have grown, it has
become possible to approximate a continuous signal surprisingly closely
with a two-layer error-driven model (i.e, a continuous acoustic speech
signal: Arnold et al., 2017), hence enlarging the range of possible levels of
abstract representations to explore. Two recent studies investigating the
required levels of abstraction in language processing with two-layer error-
driven learning models find that surprisingly low levels of abstraction
are required for word processing: Baayen, Shaoul, et al. (2016) find
that a model with speech input which is not segmented into words but
into a of triphones shows behavior which has been before explained by
segmentation; Arnold et al. (2017) find that a model trained on a close
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approximation of a continuous speech signal shows similar performance in
word recognition to human participants. In summary then, it seems that
although simple two-layer error-driven models cannot model continuous
processing directly, they can be used to explore questions in relation to
the kind of representations and levels of abstraction that are theoretically
needed to solve problems of cognitive processing or learning even when
it comes to continuous processes.

Another important characteristic of simple two-layer error-driven learn-
ing models is that they by definition are unable to transform their input
representations during learning (beyond simple weight adjustments). The
advantages that multi-layer networks bring in this regard is one of the
main reasons for their success in many engineering applications. Crucially,
multi-layer networks solve two problems that emerge in two-layer net-
works: the problem that researchers are constrained by their theory and
underlying assumptions in choosing a set of input representations and
the problem that any attempt of hand coding a complete set of possible
representations leads to a combinatorial explosion whenever cue repre-
sentations on multiple levels of abstraction are required. However, at the
same time and somewhat paradoxically, this weakness may actually be
a strength when it comes to using simple networks as theoretical tools.
On the one hand, the fact that two-layer models cannot learn internal
representations, clearly limits their capacity to solve a complex task by
considering only simple input representations especially when the abstract
representations actually required to solve the task are unknown. On the
other hand, because in simple two-layer networks all cue and outcome
representations have to be chosen explicitly, researchers are forced to at-
tend more closely to the cue and outcome representations selected, which
in turn facilitates the generation of concrete theoretical insights in this
regard. In particular, the very simplicity of these models can serve to make
explicit the consequences of representational assumptions — for example,
whether a stimulus is likely to be perceived as a chunk or as a set of ele-
ments, or the degree to which two given outcomes are in fact discriminable
to a learner — that can be obscured by more powerful models. In contrast,
because representations learned internally in complex hidden layers are
not directly accessible to researchers, the use of multi-layer networks can
lead to situations where researchers are able to simulate hypothesized
behavior in a given task without fully understanding exactly why a given
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simulation actually works. Hence, while multi-layer networks can simu-
late the construction of abstract representations, two-layer networks use
explicitly chosen representations to investigate how specific representa-
tions are related to a learned behavior. Consequently, both approaches
contribute to the understanding of the learning process on different levels
of abstraction and therefore, in the best case, they should inform research
in a complementary way. For current purposes, the combination of these
approaches also helps clarify how in fact the learning of predictive input
representations in an abstract non-linear space is ultimately the key mech-
anism of error-driven learning: first, this is exactly what happens in the
hidden layers of deep neural networks and, second, we have seen that
already to model simple behavioral results, such abstract and non-linear
representations can also be helpful in a simple two-layer model.

These last considerations show again the trade-off between detail
and abstraction in modeling. As Bonini’s paradox suggests, increasing
complexity often comes at the cost of understanding. Notwithstanding the
fact that approaches of different degrees of complexity and abstraction
are necessary to resolve this modeling paradox, two-layer error-driven
networks can, when sensitively and appropriately employed, serve as an
opposing force to the tendency towards increasingly complex models. By
placing the focus on the learning process itself, this simple framework
is a valuable tool for the study of error-driven learning, which is not
only an ubiquitous mechanism in today’s models of learning but also
clearly has much to contribute when it comes to the development of
theories of cognition. In this way, a careful analysis of the basic error-
driven learning mechanism leads to the conclusion that this learning
mechanism is inherently discriminative which in turn implies that it might
be most productively applied within a discriminative theory of learning
and processing.

71



Error-driven learning | 2

Appendix

A. Adjusted EDL weight updates for illustration purposes

To illustrate the contributions of both cue and outcome competition
(see Fig. 5), we created two adjusted versions of the weight update, one
with disabled cue competition and one with disabled outcome competition.

To disable cue competition, errors are not calculated relative to the
outcome activation, but only relative to the weight of the current cue to
the current outcome:

∆V t
i j =











0 , cue i absent

η(1− v t
i j) , cue i and outcome j present

η(0− v t
i j) , cue i present but outcome j absent

(2.6)

To disable outcome competition, the third case of the weight update
is ignored during learning. As a result, only weights to present outcome
are updated:

∆V t
i j =











0 , cue i absent

η(1− act t
j ) , cue i and outcome j present

0 , cue i present but outcome j absent

(2.7)
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3
Learning noun categories with

pre- and postmarking

Linguistic category learning has been shown to be highly sensitive to linear
order, and depending on the task, differentially sensitive to the information
provided by preceding category markers (premarkers, e.g., gendered articles)
or succeeding category markers (postmarkers, e.g., gendered suffixes). Given
that numerous systems for marking grammatical categories exist in natural
languages, it follows that a better understanding of these findings can shed
light on the factors underlying this diversity. In two error-driven learning
simulations and an artificial language learning experiment, we identify two
factors that modulate linear order effects in linguistic category learning:
category structure and the level of abstraction in a category hierarchy. Re-
garding category structure, we find that postmarking brings an advantage
for learning category discriminating noun features, an effect not present
when categories are non-confusable. Regarding levels of abstraction, we find
that premarking of superordinate categories (e.g., noun class) facilitates
learning of subordinate categories (e.g., single nouns). We present detailed
computational simulations suggesting a plausible mechanism for the observed
effects, along with a comprehensive analysis of linear order effects within an
expectation-based account of learning. Our findings indicate that pre- and
postmarking guide linguistic category learning in different ways, and that
the influence of each is modulated by the specific characteristics of a given
category system.

This chapter has previously been published as:

Hoppe, D.B., van Rij, J., Hendriks, P., & Ramscar, M. (2020). Order matters! Influ-
ences of linear order on linguistic category learning, Cognitive Science, 44(11), e12910.
https://doi.org/10.1111/cogs.12910
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1. Introduction
Natural languages abound with regularities, patterns and conventions.
Indeed, philosophers have long noted that to say language is ruled by
convention is something of a platitude (Lewis, 2008). Accordingly, in
attempting to understand the conventionalized nature of human communi-
cation, linguists have expended a great deal of effort on taxonomizing the
regularities and patterns observable in the world’s languages into various
lexical and grammatical categories (such as word class, case, gender, tense,
aspect, mood, etc.) based on their form features, or their distributional
characteristics, for example their combination with grammatical markers.
Interestingly, the case of grammatical markers highlights a dimension
highly important for the analysis of regularities in language: linear order.
In the case of noun gender, for example, gender markers can either pre-
cede the noun (premarking, e.g., gendered articles in German: “das Kind”,
or noun class prefixes in Swahili: “mtoto”, English: the child), follow the
noun (postmarking, e.g., noun suffixes in Russian: “kartina”, painting) or
even occupy both positions (e.g., gendered articles and relative pronouns
in German: “das Kind, das...”, ‘the child who...’). According to typological
analyses, postmarking is the most frequent grammatical marking pattern
in languages across the world (irrespective of whether the markers are
bound morphemes, e.g., Hawkins & Gilligan, 1988, or free morphemes,
Bybee et al., 1990). This observation has triggered a considerable debate
about whether and how the linear order in which categories are marked
makes a difference to language processing, to language production, or —
as we will investigate here — to language learning.

Previous work on marking order and learning have mainly focused on
the advantage of postmarkers for learning grammatical categories. One
suggested explanation for this postmarking advantage is that postmark-
ers are perceptually more salient than premarkers (based, e.g., on the
observation of final syllable lengthening in French, English, and Russian,
Vaissière, 1983; and the rare omission of word-final unstressed sylla-

bles by children, Slobin, 1973; Snow, 1998), and that this promotes
learning in general. However, a recent theoretical account suggests that
premarkers and postmarkers serve different functions regarding learning
and informativity within category systems in language (Ramscar, 2013).

This proposal of separate functions of pre- and postmarking stems
from the assumption that language learning is based on a mechanism of
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adjusting learners’ expectations (i.e., that learning is expectation-based).
Upon hearing the noun stem “kartin-” (painting) a speaker of Russian
will, for example, expect a specific postmarker, the feminine noun ending
“-a”. However, while words can be used to predict a following postmarker,
the relation is reversed with premakers: they predict the words following
them. Upon hearing the German neuter article “das”, for example, a
listener will expect to hear a neuter noun, as opposed to expecting any
noun. These two examples illustrate that due to their differing linear
order relations, premarkers and postmarkers stand in different predictive
relations to the words that they are associated with in the grammar. From
this expectation-based learning perspective, it has thus been proposed that
premarkers and postmarkers may have different influences on language
processing and learning.

The current study investigates how linear order interacts with the struc-
ture and level of abstraction of categories in language learning. Although
previous work has investigated the different functions of premarking and
postmarking, offering evidence in support of an expectation-based learn-
ing account, the vast diversity and intricate hierarchies of categories in
natural languages calls for further exploration of this phenomenon. Our
aim here is to provide a more complete picture of the effects of linear
order on language learning by testing the generalizability of linear or-
der effects to different kinds of category systems, and to clarify the kind
of processes that lead to these effects. In the remainder of this section,
we begin by reviewing expectation-based learning theory and evidence
addressing how linear order affects learning categories in language, in
both first and second language learning situations, before explaining the
rationale behind the present study, which was specifically set in a second
language learning context.

1.1. An expectation-based learning explanation of the postmarking
advantage

The expectation-based learning account largely accords with accounts
based on salience in predicting a postmarking advantage in category learn-
ing. A crucial difference, however, is the wider scope of the expectation-
based learning account as it can potentially provide an explanation for
the general function of categories in language and for the processes that
underlie category learning.
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From an expectation-based learning perspective, category learning is
best characterized as a discrimination problem, simply because compu-
tationally, learning from prediction is a discriminative learning process
based on prediction-error minimization (Ng & Jordan, 2002; Ramscar
et al., 2010). Seen from this perspective, the aim of category learning
is to find out which item features are most relevant to discriminate one
category from another rather than clustering items into categories accord-
ing to similarity. Support for this idea comes from observations showing
that many common categories cannot be defined in terms of shared defini-
tive features, which contradicts the idea of clustering by similarity. For
example, people easily learn semantic categories such as fish, that include
category members that do not share seemingly defining features (e.g., mud
skippers are fish that can live outside of water), and exclude items that do
share common features (e.g., dolphins are mammals but look like fish).
Another observation that mitigates against the idea of similarity within
categories is that there are many categories, including those typically
associated by grammatical gender, which comprise items that do not share
any features. German gender, for example, has initially been thought
to be a mere evolutionary artifact, because its structure has appeared to
be so random to many observers. Furthermore, evidence suggests that
seemingly unrelated items can be learned to be members of common
categories (Ramscar, 2013). Accordingly, it has been suggested that these
various findings do not support the idea that categories cluster together
things with somehow inherently similar characteristics, but rather that
categories are sets of items that share a common label (Ramscar & Port,
2019). This view proposes that learning to associate a set of items with
a category label is not merely a process of recognizing similarities, but
rather is a process of increasing discrimination between items that share
a given label and those that do not (see also Rescorla, 1988).

Expectation-based (or error-driven) learning models have been both
influential and widely employed in psycholinguistic research and in psy-
chology in general (e.g., Aizenberg et al., 2013; Dayan & Daw, 2008;
Hannun et al., 2014; Rescorla & Wagner, 1972; Rumelhart & McClelland,
1987). Critically all error-driven learning models implement discrimina-
tive learning algorithms (Ng & Jordan, 2002; Ramscar et al., 2010). A first,
basic assumption of a discriminative account of category learning is that
this kind of learning does not simply involve the tracking of contingencies
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between stimuli (for example, between animal features and a species label,
or between noun features and a gender marker) but that it estimates how
much information one item or event, a cue, can provide about another
item or event, an outcome (Rescorla, 1988). The aim is to produce an
estimate of how informative a cue is for an outcome, and this is achieved
by a learning mechanism that uses the informativity of cues to gradually
reduce its uncertainty about the likelihood of an outcome. This process
not only associates informative cues with an outcome, it also dissociates
uninformative cues from that outcome. A second, basic assumption at
the core of error-driven learning rules is that cues are competing with
each other for informativity, which is a demising resource as learning
progresses. The interplay of association, dissociation and cue competi-
tion yields a process that is guided by the informativity rather than the
frequency of cues. A critical function of this mechanism is to dissociate
irrelevant features which are nevertheless shared between many items
in a category, for example that fish live in water, but are still not most
relevant for discriminating the category from other categories on the same
level of abstraction, for example, fish from mammals.

Third, because the discriminative form of learning implemented in
expectation-based models is ultimately determined by prediction-error,
it is asymmetric. Accordingly, learning is not assumed to determine the
association between cues and outcomes (↔) but rather the association
of a cue with an outcome (→). Crucially, there is evidence that the
asymmetry of learning results in a cue-outcome order effect of learning
(or feature-label order effect, Ramscar et al., 2010): learning potentially
differs whenever the order of two items or events, such as first seeing a
fish and then hearing someone say "fish", is reversed. In a task in which
learners had to learn the names of novel object categories, Ramscar et
al. (2010) found that learning was facilitated whenever object images
preceded category labels during training, as compared to when object
images were shown after the category labels. This suggests that we need to
consider two possible learning situations for a categorization task: either
the category labels follow the items1 that have to be categorized, or the
category labels precede the items.

If we transfer these expectation-based learning principles to gram-
matical category learning, which is the focus of this chapter, we can
differentiate between two kinds of learning situations: premarking and
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postmarking situations. In a premarking situation, the grammatical marker
can be operationalized as cue to the features of the following word. In a
postmarking situation, the grammatical marker can be interpreted as an
outcome cued by preceding word features.

Figure 1 illustrates how marking order could affect learning of noun
class categories depending on their specific form and semantic features.
An analysis of the contrasting premarking and postmarking situations
from a discriminative learning perspective suggests that they can give rise
to different learning dynamics (and learning outcomes) although the basic
mechanisms – association, dissociation, and cue competition – are active
in both marking orders. In a postmarking situation, cue sets are larger
and potentially overlapping, and cues and outcomes are in a convergent
relation (Osgood, 1949, see Fig. 1a). Therefore, more cues compete for
an outcome which makes cue competition more effective in postmarking.
This leads to a process which is driven mainly by the informativity of
features for a category marker (e.g., Ramscar et al., 2010). In contrast,
in premarking situations cues and outcomes are usually in a divergent
relation with more outcomes than cues (see Fig. 1b). In such a situation,
noun features do not compete for the labels as cues but as outcomes.
Outcome competition is more driven by frequency than by informativity
and this leads to the learning of conditional probabilities of features given
a category marker (Chapter 2 of this thesis; Ramscar, 2013).

A number of findings in linguistics show indeed an advantage of post-
marking over premarking in category learning. Evidence from language
acquisition suggests that children learn suffixes faster than prefixes (E. V.
Clark, 2001; Kuczaj, 1979) and in particular, that inflectional systems are
learned earlier when they are encoded by suffixes than when they are
encoded by preceding markers (Slobin, 1973). Further support for a post-
marking advantage is provided by a number of recent artificial language
learning studies. For example, St Clair et al. (2009) demonstrated that
participants were significantly better at recognizing previously trained
compatible and incompatible affix-word combinations when those affixes
were suffixes rather than prefixes; Ramscar (2013) found that words that
shared a suffix were rated more similar to each other than words that
shared a prefix; and Nixon (2020) showed that English learners were bet-

1Henceforth, “item” is used to be contrasted with the term “category”. However, on a
potential lower-level of abstraction, items can also be seen as categories.
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Figure 1. Illustration of the difference between learning in a) a premarking
situation and b) a postmarking situation. In this example, based on the materials
used in the simulations and behavioral experiment (see Table 2), a learner either
needs to associate noun class markers (e.g., ima) with a noun and its form features
(e.g., stress or phones) and semantic features (e.g., animal) or the other way
around. In the divergent premarking situation (a), there is little cue competition
(dashed black box). In the postmarking situation (b), the relation between cues
and outcomes is convergent, which leads to many cues competing with each
other (dashed black box). Moreover, the pattern of association (black dashed
lines) and dissociation (red dashed lines) is not mirrored between a) and b)
which shows the asymmetry of the discriminative learning mechanism. Note that
capitals mark syllable stress.

ter at learning to discriminate tonal syllables from Southern Min Chinese
when category markers (in this case, geometrical shapes) followed the
training syllables than when they preceded them.

Thus, in the context of an expectation-based learning account the
postmarking advantage follows from the cue competition in a convergent
learning situation. Next, we will explore whether and how this postmark-
ing advantage extends to differently structured categories and categories
at different levels of abstraction in a category hierarchy, an investigation
which will bring us also to the function of premarking in category learning.
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1.2. Category structure and the postmarking advantage

The first aim of the present study is to investigate whether the postmarking
advantage generalizes to differently structured categories. Regularities
in language differ highly in their structural characteristics, for example,
how informative item features are for a category (cue validity, Rosch
et al., 1976; feature diagnosticity, Minda & Smith, 2001), the ratio of
within-category similarity and between-category similarity (structural
ratio, Minda & Smith, 2001), or the number of bits that are needed to
code a category (entropy, Shannon, 1948). Not surprisingly, these factors
have been found to affect how easy it is to learn a specific category system
(e.g., Lafond et al., 2007; Reeder et al., 2013).

We suggest that in expectation-based learning theory, the amount
of overlap between categories determines the need for postmarking in
contrast to premarking: the postmarking advantage for category discrimi-
nation might be reduced when categories share less overlapping features.
In experiments in which a postmarking advantage has been observed,
category systems showed a high amount of overlap, for example, highly
frequent features that are shared across categories and that are therefore
uninformative for category discrimination (Nixon, 2020; Ramscar, Dye,
Gustafson, et al., 2013; Ramscar et al., 2011; Ramscar et al., 2010). In
these cases, cue competition during postmarking helps to dissociate such
frequent uninformative features. In contrast, more distinct categories
elicit less cue competition and, as a consequence, the dissociation of un-
informative cues is reduced. In such situations, the resulting learning
relation with a marker should be more symmetric than in Figure 1, leading
to a less pronounced asymmetry effect between marking orders.

It is important to note here that defining the amount of overlap between
categories is not a trivial task given that categories are not inherently
grounded in objective properties of the world (Ramscar & Port, 2019).
Assuming that categories are rather functional units in a communication
system, a specific category representation is more likely determined by
the whole system of category contrasts acquired by a specific learner. This
can, for example, be illustrated with the learning of new phonological
categories in a second language: While to a native speaker of a tone
language phonemes differing only in tone appear completely distinct,
native speakers of English can only master the discrimination of tones
by relearning acoustic cues as informative which have been unlearned
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under a predominant exposure to English (as in Nixon, 2020). Indeed,
direct evidence suggests that which cues learners rely on to discriminate
categories is determined by learning history (Arnon & Ramscar, 2012;
Culbertson et al., 2017; Ramscar, Dye, Gustafson, et al., 2013). Hence,
with "overlap" between categories we, here, refer to the perceived amount
of overlapping (i.e., confusable) features between previously learned
category representations.

From an expectation-based learning perspective, we do not expect that
the postmarking advantage generalizes to any and every type of category
learning situation. In particular, we hypothesize that the more categories
overlap (such that members of different categories are more confusable),
the stronger the advantage that postmarking brings for category discrim-
ination. As a consequence, we predict that categories already learned
to be distinct, will subsequently not profit more from postmarking than
from premarking. Concerning the underlying learning mechanism, such a
finding would corroborate the idea that category discrimination is mainly
a process of dissociating overlapping and therefore confusable features in
search for the features that are most informative for the discrimination.

1.3. The premarking advantage

In mastering a language, learners are not only confronted with different
category structures, they are simultaneously required to learn category
contrasts at various levels of abstraction. These levels of abstraction in
a category hierarchy can be characterized in terms of their inclusiveness
(meaning how many specific entities a category includes, Rosch et al.,
1976). In order to examine linear order effects across the full diversity of
category systems, we will further investigate how marking order affects
category learning at different levels of abstraction.

Thus far, we have seen that dissociation of features that are uninfor-
mative for a category contrast clearly facilitates categorization. However,
for other tasks this kind of information loss can become detrimental: for
example, while in learning to discriminate fish from mammals, living in
water is not always an informative feature, it is in fact useful to discrimi-
nate a sardine from a mud skipper. Note that in this example, the contrast
between the type of fish is on a lower, more fine-grained level of abstrac-
tion than the contrast between types of species. Similarly, we might expect
that the features that are relevant to discriminate feminine from masculine
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German nouns (in this case, the super-ordinate category contrast) differ
from the features that are relevant to discriminate single feminine nouns
from each other (the subordinate category contrast). This suggests that
there is a trade-off between optimally discriminating super-ordinate and
subordinate categories, due to the information loss which is necessary for
the discrimination process (Dye & Ramscar, 2009).

This trade-off suggests further that knowledge gained on one level
of abstraction does not always generalize to other levels of abstraction.
In particular the facilitation of postmarking on super-ordinate category
levels cannot be transferred to subordinate levels. This idea is supported
by the findings of Ramscar (2013), who performed an artificial language
learning task comparing noun learning and noun category learning. In
this study, participants were first trained to associate invented nouns with
random known objects, the subordinate category contrast. After that,
they heard sentences consisting of phrases containing the noun labels
paired with different markers signaling a super-ordinate category contrast.
A subsequent similarity test confirmed that postmarkers helped super-
ordinate category discrimination: participants rated objects to be more
similar to each other when their corresponding nouns shared a postmarker
than when they shared a premarker. However, a grammaticality judgment
task showed that participants were better at learning the nouns’ meanings
— here the subordinate category contrast — when nouns were marked on
the super-ordinate category contrast by a premarker and not a postmarker
during training.

Results from a study by Arnon and Ramscar (2012) suggest that this ef-
fect of improved noun learning after a noun class premarker is indeed due
to the presence of premarking and not merely the absence of postmarking.
This study investigated a different question, namely, whether the learning
of article-noun associations in a second language could be blocked by pre-
vious learning of the nouns’ meanings, a hypothesis which their findings
corroborate. They also observed that learners were significantly better at
learning to associate objects with invented nouns when the nouns were
preceded by previously learned noun class articles, than when they had
to learn the object-noun associations without article support. Hence, the
previous knowledge of the super-ordinate noun classes in combination
with the articles seemed to have facilitated noun meaning discrimination.

Here, we aim to investigate in detail what processes underlie this
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premarking advantage that super-ordinate premarkers seem to have on
learning subordinate categories. An explanation for the premarking ad-
vantage put forward in Ramscar (2013) and Arnon and Ramscar (2012) is
that premarkers serve a communicative function in that they reduce uncer-
tainty about following words, by eliminating words that do not belong to
the marked category from the set of possibly following words (Dye et al.,
2017). A basic assumption of the expectation-based learning account
is that communication has the general aim of reducing uncertainty, for
example, a listener’s uncertainty about the intention of a speaker. Seen
from this perspective, different levels of abstraction in a category hierarchy
would coincide with different levels of uncertainty reduction: on the level
of noun classes, for example, uncertainty is reduced from all possible
nouns to the subset of nouns from one class. Learning nouns in such a
reduced set seems to be advantageous as compared to learning them in
the full set of possible nouns. However, why this is the case is not clear,
yet. To investigate this question, we will therefore simulate noun learning
within and across noun classes with a discriminative learning model using
error-driven learning and then seek to confirm this effect in a behavioral
experiment.

1.4. The present study

The present study investigates how linear order interacts with the structure
and level of abstraction of categories in language learning. While there is
evidence that the various factors introduced so far — linear order, category
structure, and levels of abstraction — all influence learning of linguistic
categories, thus far these effects have been studied in isolation. In what
follows, we will seek to examine the degree to which these factors interact
and/or complement one another in a second language learning situation.

By investigating category structure and level of abstraction, we want to
link the discussion about linear order effects with the discussion about the
functional role of category markers and hope to contribute also, indirectly,
to a better understanding of the functional role of categories in language.
In particular, we assume that categories in language serve their function
as part of a system of communication. From this perspective postmarkers
serve to help in the discrimination of relevant category contrasts, while
premarkers serve to guide the process of uncertainty reduction about an
intended message and at the same time focus the discrimination problem
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to subordinate levels of abstraction in a category hierarchy.
In Section 2 we will first discuss two simulations of discriminative

learning that we implemented to examine how linear marking order
affects learning categories with different structures and at different levels
of abstraction in an artificial category system. In Section 3 we present the
results of an experiment in which adult participants were trained on the
same artificial language in order to test the predictions of the simulations.

2. Modeling linear order effects in category learning
To examine how linear marking order affects learning categories with
different structures and at different levels of abstraction, we designed an
artificial language built around a noun class system that varied in both of
these factors. In this section we present two computational models that
simulate how a language learner would acquire this noun class system,
from an expectation-based perspective using error-driven learning. The
first model simulates how premarking and postmarking of noun class
affect noun class learning (the super-ordinate category contrast), whereas
the second model simulates how premarking and postmarking of noun
class influence noun learning (the subordinate category contrast) within
the same artificial language. We will start with presenting the structure
of the artificial language.

2.1. Artificial language

The artifical language consisted of a differentially structured and hier-
archical artifical noun class system. This system was built around two-
and three-syllabic imaginary nouns (see Table 1) describing different vi-
sualizable real-life concepts (see Table 2 and 4). These nouns were then
systematically assigned to different noun classes which were either all
marked by a specific premarker or by a specific postmarker.

We manipulated marking order in that a noun always followed a
premarker and preceded a postmarker. Two different marking versions
determined whether the premarker or the postmarker aligned with the
four noun classes or not. In the premarking version, four premarkers ima,
imo, ime, and imi were consistent with their noun class and one unspecific
postmarker, agi, was used for all nouns. In the postmarking version, one
premarker, imo, appeared with all nouns and four postmarkers ovu, ira,
agi, and epo were consistent with their noun class. The combinations of
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Table 1. The training nouns for the simulations and the behavioral experiment.

Noun class 1 Noun class 2 Noun class 3 Noun class 4 Frequency

Premarker ima imo ime imi

Noun oksham kanjur anveal jajosan 32
luobar ennovis psondew serim 23
anhatar ruis hatrumir erkefal 16
simad lopranik kilal vimeros 11
nechran aftong repis burbad 8
kekunam palneng tokran ksoster 6
kitsogis tivitkal istefur natrul 4
magril meromer merkatim rutonak 3

Postmarker ove/ovu ira/ire agi/ago epo/epa

Note. The vowel alternation of the postmarkers was dependent on the carrier phrases unta
boltohe (appearing with ove, ira, agi, and epo) and ena dikanhe (appearing with ovu, ire, ago,
and epa).
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markers and nouns were then embedded into a context by a sentence-
initial carrier phrase (ena dikanhe, which could mean ‘he is talking about
...’, or unta boltohe, which could mean ‘he is dreaming of ...’). In both
versions, the last vowel of each postmarker was dependent on the carrier
phrase, e.g. ovu would turn into ove for carrier phrase two. An example
sentence of the premarking version is given in (1).

(1) Unta boltohe
Carrier phrase1

ima
premarker1

OKsham-
“dog/dogs”

agi.
unspecific postmarker

He is dreaming of dogs.

To address our first question of how category structure interacts with
linear marking order, the nouns and their associated images were ma-
nipulated on two dimensions; on their form by assigning them to one of
three syllable stress categories (form categories: stress on first, second,
or prefinal2 syllable), and on their meaning by assigning them to one of
three different semantic categories (meaning categories: animals, plants,
or random objects). For instance, the noun oksham in Example sentence
(1) from Noun class 1, was stressed on the first syllable (capitals mark the
stressed syllable) and used to refer to dogs (the artificial language was
not specific about number). Note that during the recording of stimuli for
the behavioral experiment, postmarkers were read as suffixes attached to
the nouns. For nouns from Noun class 2 and 4, stress therefore fell on the
postmarker.

We assumed that the form categories were perceived as more overlap-
ping than the semantic categories based on the differing learning context
and an adult learner’s previous knowledge about the two category types.
Both, the meaning and form categories we used are contrastive – thus,
already learned – categories in the L1 of the Dutch learners3. However,
the meaning features were integrated in images showing already familiar
objects in a familiar context, whereas the stress features were part of
a very complex speech stream that consisted of many unknown sound
combinations. Thus, the familiar context in the images should facilitate
the transfer of the meaning category knowledge but the unfamiliar lan-

2Depending on the length of the word stem, the prefinal syllable could be the third or
fourth syllable. Note that in Hoppe et al. (2020) the prefinal syllable was incorrectly
referred to as the last syllable. This, however, does not affect the interpretation of the
presented results.
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guage context should hinder such a transfer of category knowledge for
the form categories. We therefore assumed that the meaning categories
were perceived as already learned and therefore distinct categories, while
the form categories still had to be formed in this new context and should
be perceived as overlapping categories.

The form and meaning categories were then combined pairwise to form
three noun classes. To increase the complexity of our artificial noun class
paradigm and to make it more comparable to real noun class paradigms we
induced marking ambiguity by adding a fourth marked noun class category
that shared the stress category from one and the meaning category from
another noun class. In this way we simulated ambiguity of some of the
linguistic features similar to, for example, marking syncretisms in the
German case and gender system. Overall, this yielded four noun classes
with all levels of ambiguity (1: completely unambiguous, 2: ambiguous in
distinct feature set, 3: ambiguous in overlapping feature set, 4: completely
ambiguous) as illustrated in Table 2. In addition, the frequency of nouns
within each noun class followed an exponential (or strictly speaking a
geometric) distribution in order to provide a distribution of words within
categories which matches natural word distributions (Guo et al., 2011;
Kim & Park, 2005; Linke & Ramscar, 2020; Ramscar, 2020).

To address our second question of how linear marking order interacts
with different levels of abstraction, the category system of this artificial
language has two levels of abstraction. On the noun level (subordinate
category), nouns categorize specific meanings (e.g., the set of dogs or the
set of cats) and on the noun class level (super-ordinate category), the noun
classes categorize nouns. This structure allows us to compare the effects of
linear order on learning the noun classes and the specific noun meanings.
Crucially, only the order of the noun class marking was manipulated,
while the order of nouns and images (meanings) was kept constant (in
the behavioral experiment nouns and images were presented at the same
time). Another important point is that the meaning categories (i.e., plants
and animals) are familiar and therefore non-confusable categories for
adult learners. Therefore, we assume that noun class premarking reduces
the uncertainty about the possible meanings of a noun. For example, we
assume that after hearing “ima” (i.e., the premarker for the animal noun
class, see Table 2) the listener will learn to expect an animal as a possible

3Stress can alter word meaning in Dutch: “beDElen” vs. “BEdelen”
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Table 2. The four noun classes of the artificial language and their combination of meaning and form
category features.

Form categories

unambiguous ambiguous

stress on 1 stress on 2 stress on 3/4

Meaning
categories

unam-
biguous

animal Noun class 1

ima X agi
or
imo X ove

- -

plant - - Noun class 2

imo X agi
or
imo X ira

ambiguous random - Noun class 3

ime X agi
or
imo X agi

Noun class 4

imi X agi
or
imo X epa

Note. In the premarking version, the unspecific postmarker agi was added to all nouns, in the post-
marking version, the unspecific premarker imo. Moreover, ambiguous categories are shared with
another noun class while unambiguous categories only appear in one noun class.
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outcome for the upcoming noun. Furthermore, it is important to note
that features discriminating nouns within a noun class are potentially
overlapping between categories because the nouns were pseudorandomly
assigned to noun classes, leaving nouns with similar characteristics, such
as identical starting sounds, distributed over the noun classes (see Table
1).

This artificial noun class system offers two different category structures,
the distinct meaning categories and the overlapping form categories, and
two levels of abstraction, noun categories on the subordinate level and
noun class categories on the super-ordinate level. Both computational
models (and later our participants in the behavioral experiment in Section
3) were trained and tested with either noun class premarking or noun
class postmarking on the different category contrasts implemented in the
artificial category system.

2.2. Simulation 1: linear order and category structure

We begin this investigation of order effects with a simulation of discrimi-
native learning using an error-driven learning rule to investigate the effect
of linear marking order and its interaction with category structure, our
first main question. We implemented two versions of the simulation, one
in which noun class was marked by premarkers and one in which it was
marked by postmarkers. The task of the model was to categorize the
artificial nouns into the noun classes that were defined by the distinct
meaning categories and the overlapping form categories. During training,
the respective marking version of the model was simultaneously presented
with both noun class dimensions, form and meaning. During testing, we
separated the feature dimensions, to analyze how these features con-
tributed to the categorization. We hypothesized that both premarking and
postmarking use the distinct meaning features to determine the noun class,
but that postmarking is more successful than premarking at categorizing
nouns using the overlapping form features.

Error-driven learning
The error-driven learning rule we use in our simulations is the delta rule
originally defined by Widrow and Hoff (1960) (which is also a simplified
version of the learning rule by Rescorla & Wagner, 1972, see, e.g., Stone,
1987). This simple form of error-driven learning assumes that cues and
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outcomes are connected in a fully connected two-layer network. The
association strength or weight from cues to outcomes is computed over
discrete training trials, saving a weight matrix for every point in time. The
weight matrix V between cues i and outcomes j at time t + 1 is updated
as follows:

V t+1
i j = V t

i j +∆V t
i j (3.1)

The weight difference ∆V t
i j at every time step t is thereby calculated

depending on one of three possible learning situations:

∆V t
i j =







0 , cue i absent

η(1− act t( j)) , cue i and outcome j present

η(0− act t( j)) , cue i present but outcome j absent

(3.2)

In this discriminative learning process, both positive and negative
evidence is considered. In the case of positive evidence (second case of
Equation 3.2), when a cue appears with an outcome, the weight will be
increased relative to the difference of the activation act t( j) of outcome
j given the currently present cues and the maximally possible outcome
activation of 1. The outcome activation is calculated as follows with v(i, j)
determining the weight between a cue i and and outcome j at time t:

act t( j) =
∑

x∈cues(t)

v t(x , j) (3.3)

In the case of negative evidence (third case of Equation 3.2), when
an outcome does not appear after a cue, the outcome activation will be
subtracted from 0 so that the summed cue values in the outcome activation
act t( j) will have a negative impact. For all absent cues, there will be no
change in weight to any outcome. The learning parameter η determines
the learning rate and is typically set to the value 0.01.

The characteristic behavior of discriminative learning arises in this
error-driven learning network due to three factors. First, the processing
of negative evidence leads to dissociation of cues with a high background
rate, which means that these cues occur frequently in general, but do not
reliably predict a specific outcome. Second, weights are always updated
relative to the sum of the weights of all present cues to an outcome (i.e.,
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the activation act t( j)); if an outcome is already highly predicted by other
cues, a new predictive cue will have more difficulties to approach a high
weight and will only do so if it proves to be more predictive over a period
of time. Third, the possible increase of weights is restricted by the maximal
cue value of 1 and it is inversely related to the activation, which makes the
network very flexible. For example, a set of low frequency cues can quickly
become highly predictive, because their low activation value results in a
large increase in weight. Overall, the combination of these three factors
results in cues competing for specific outcomes such that weights will
approach the predictive value of a cue for an outcome irrespective of
cue frequency. Crucially, this mechanism is asymmetric and outcomes
compete differently than cues: when outcomes compete for cues, weights
will mirror the conditional probabilities of the outcomes given a cue (see
Ramscar, 2013; Ramscar et al., 2010, for empirical support of these model
predictions).

Both simulations employ a version of the learning rule specified in
Equations 3.1-3.3 implemented in R (R Core Team, 2019) using the edl
package (van Rij & Hoppe, 2021) and the ndl package (Arppe et al., 2018).
The scripts are available in the supplementary materials.4

Training
The premarking and postmarking models were both trained on the same
representations, which were created to capture all of the features of the
artificial language. The representations consisted of the artifical nouns
(see Table 1) to which we added representations of the meaning and
form features as well as the specific noun meanings. Given that in the
behavioral experiment (presented in Section 3) nouns were presented
acoustically, the nouns were split up into uniphones that were marked for
word beginning and ending (e.g., #o, k, S, a, m#). Our assumption
was that the meaning categories would be perceived as distinct. Therefore,
we represented the meaning features as three distinct feature sets consisting
of a single feature each (D1meaning, D2meaning, D3meaning) which
corresponded to the three semantic categories in the artificial language
(animal, plant, or random). On the other hand, we assumed the form
features to be perceived as overlapping. Therefore, we represented these

4The supplementary materials are available at https://git.lwp.rug.nl/p251653/
linear-order-and-category-structure.
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as three partly overlapping feature sets, consisting each of one category-
distinct feature (D1form, D2form, D3form) and two features that were
shared with one of the other categories (O1form, O2form, O3form) as
shown in Table 3. Although these features were abstract representations,
the category-distinct features could be interpreted to correspond to the
position of the stressed syllable in a stress pattern and the non-distinct
features to the positions of the unstressed syllables, which are partly shared
between different stress patterns. For example, the abstract form feature
set {D1form, O1form, O2form} of noun class 1 then corresponds to
the features {1st syllable stressed, 2nd syllable unstressed, 3rd syllable
unstressed}. Note that this translation of abstract features into stress
features of the artificial language does not consider the variation in word
stem length (i.e., that stems could have two or three syllables) in the
artificial language but only considers the short two-syllable word stems
with a postmarker suffix. Every noun instance was then defined by a
combination of a distinct meaning feature set, a partly overlapping form
feature set, noun uniphones, and noun meaning (e.g., {D1meaning,
D1form, O1form, O2form, #o, k, S, a, m#, dog}).

The two models were then trained on these feature sets in combination
with a noun class marker (marker1, marker2, marker3) according to
the noun category paradigm of the artificial language5. In the premarking
model, noun class markers were given as cues to the model and the noun
features were given as outcomes, such that the model’s task was to predict
a noun from a marker, for example:

{marker1, constant} →
{D1meaning, D1form,
O1form, O2form, #o,
k, S, a, m#, dog}

In the postmarking model, noun features were given as cues to the
model and noun class markers as outcomes, such that the model’s task
was to predict a marker from a noun, for example:

{D1meaning, D1form,
O1form, O2form, #o,
k, S, a, m#, dog,
constant}

→ {marker1}

5Note that the carrier phrases were not included in the simulations but were only used in
the behavioral experiment to evoke a more natural learning situation with full sentences.
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Table 3. The category system of Simulation 1 and 2 and its combination of distinct feature sets
(meaning categories) and partly overlapping feature sets (form categories).

Partly overlapping feature sets

unambiguous ambiguous

{D1form,
O1form,
O2form}

{D2form,
O2form,
O3form}

{D3form,
O1form,
O3form}

Distinct
feature
sets

unam-
biguous

{D1meaning} Noun class 1

marker1 X
or
X marker1

- -

{D2meaning} - - Noun class 2

marker2 X
or
X marker2

ambiguous {D3meaning} - Noun class 3

marker3 X
or
X marker3

Noun class 4

marker4 X
or
X marker4
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We, furthermore, added a constant cue (constant) to every training
trial, which accounts for additional constant background information that,
for example, a learner brings to a learning situation. Typically, weights in
an error-driven learning model asymptote at a level that minimizes the
sum-of-squares prediction error for a set of outcomes over a set of observed
cue sets. The presence of the constant cue serves a function that can be
linked to that of the intercept term in a regression model, in that it serves
to ensure that the mean of these errors is zero. In addition, this cue ensures
a minimal amount of cue competition in the premarking condition, as
learning situations entirely lacking cue competition are highly unrealistic.

Model evaluation
First, we inspected the weight development over time to get a closer un-
derstanding of the dynamics during premarking and postmarking learning.
After the model had been trained to asymptote, we inspected the model’s
ability to discriminate between the categories based only on the distinct
or the overlapping dimensions, depending on whether it had been trained
with premarking or postmarking.

Second, to be able to make predictions about the categorization per-
formance of a learner after premarking and postmarking training, we
calculated the probability with which the model would predict the correct
postmarker from a feature set or the correct feature set from a premarker.
Probability of making a correct choice was calculated based on the models’
outcome activations (see Equation 3.3).

One problematic point in comparing categorization performance after
premarking and after postmarking is in our case that the choice baselines
differ between the training conditions. While in the premarking model,
the premarker cue makes predictions about three possible outcomes (noun
feature sets), resulting in a baseline of 1/3, in the postmarking model, a
cue set consisting of the noun features makes predictions about four possi-
ble outcomes (postmarkers), resulting in a baseline of 1/4. To circumvent
this issue, we calculated the probabilities of choosing the correct outcome
set in the premarking and the postmarking model compared to each of
the other possible outcome sets and then defined the accuracy of choosing
this outcome set as the mean over the probabilities of these binary choices.
This resulted in a baseline of 1/2 over all conditions. Probabilities were
then calculated according to Luce’s choice axiom (R. D. Luce, 1959) after
applying a rectified linear activation unit (ReLU) to the activation data
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which set all negative activations to zero. In sum, the probability Pc of
choosing the correct outcome (set) x in a set of choice alternatives O
including competitor outcomes y ∈ C ⊂ O, was calculated as follows:

Pc(x) = mean(
∑

y∈C

ReLU(act(x))
ReLU(act(x)) + ReLU(act(y))

) (3.4)

For postmarking predictions, the probability of a correct choice was
calculated over the activations of a postmarker given a feature set and
the constant cue. As due to the ambiguity manipulation some feature
sets correctly predicted two postmarkers (e.g., the overlapping feature set
{D3form, O1form, O3form} appeared in category 2 and category 4),
we excluded these binary choices from the choice probability calculation.
For premarking predictions, the probability of a correct choice was calcu-
lated over the summed activations of all features from a feature set given
a premarker and the constant cue.

Results and discussion
The results of our simulation suggest that linear order of marking affects
only categories that share overlapping features. Figure 2 summarizes the
probabilities of correct categorization for all categories and by premarking
and postmarking training. Categorization performance for overlapping
feature sets (e.g., for Noun class 1, {D1form, O1form, O2form}) was
higher after postmarking than after premarking (Fig. 2b). In turn, for
distinct feature sets (i.e., for Noun class 1, {D1meaning}) we observed a
small premarking advantage (Fig. 2a).

An inspection of the learned weights of both models offers insight
into the learning processes leading to these results. Weight development
clearly differed between premarking and postmarking training (see Fig. 3)
and shows that while postmarking seems to rely mainly on informativity,
premarking seems to rely more on frequency. Before reaching asymptote,
the premarking weights are ordered by frequency, with the least frequent,
distinct features being learned slowest, the lower frequency overlapping
features (that appear in less categories) being learned at medium speed
and the higher frequency overlapping features (that appear in more cate-
gories) being learned fastest (see Fig. 3a). This is in line with the idea that
learning in a divergent learning relation is mainly driven by frequency
(Ramscar, 2013). In our premarking model, the noun features compete
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premarking

postmarking

noun

class 2

noun

class 3

noun

class 4

(ambiguous) (ambiguous)

b) partly overlapping dimension (form)

noun

class 1

noun

class 2

noun

class 3

noun

class 4

a) distinct dimension (meaning)

Figure 2. Probabilities of correct categorization a) on the distinct dimension
and b) on the partly overlapping dimension after premarking training and after
postmarking training to asymptote (1600 trials) in Simulation 1. Blue bars show
the probability of correctly choosing a feature set given a premarker and the
constant cue. Orange bars show the probability of correctly choosing a postmarker
given a feature set and the constant cue. Baseline performance, which assumes a
completely naive model making a random choice, is marked by the horizontal
line. The dashed lines show probabilities of correct choice after the same amount
of training trials as in the behavioral experiment (412 trials). See Table 3 for all
possible feature combinations.

with each other as outcomes for the small set of marker cues and learning
does indeed seem to be driven by the frequency of the noun features.
During postmarking training, the weights are arranged in the reverse
order, with the least frequent but most informative distinct features being
learned fastest (see Fig. 3b). In this case, the noun features are com-
peting as cues for the marker outcomes in a convergent learning relation.
Cue competition is therefore helping to dissociate the less informative
overlapping features and concentrate on the more informative distinct
features. As a consequence, less misclassification of feature sets with
overlapping features (e.g., {D3form, O1form, O3form}) occurred in
the postmarking model as compared to the premarking model, which was
advantageous in the partly overlapping dimension but not in the distinct
dimension (e.g., feature set {D1meaning}).

Note that the prominent difference in overall magnitude of premarking
and postmarking weights emerges due to the restriction of the possible
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Figure 3. Learned weights of Noun class 1 in Simulation 1 a) between pre-
markers (i.e., marker 1) and item features (i.e., {D1form, O1form, O2form,
D1meaning}) and b) item features and postmarkers (i.e., also marker 1).
Orange lines show the weight between a distinct feature (i.e., D1form or
D1meaning) and a marker, blue lines the weight between a low frequency (LF)
overlapping feature (i.e., O2form; LF because occurring in two noun classes) and
a marker, and violet lines the weight between a high frequency (HF) overlapping
feature (i.e., O1form; HF because occurring in three noun classes) and a marker.
Solid lines mark the correct features and dotted lines the features of the wrong
Noun class 2. The vertical dashed lines show 412 training trials, as administered
in the behavioral experiment.

outcome activation in the learning algorithm to 1. As the outcome activa-
tion equals the summed weights of cues in a set to an outcome and as cue
sets are larger in postmarking (e.g., {D1meaning, D1form, O1form,
O2form, #o, k, S, a, m#, dog, constant}) than in premarking
(e.g., {marker1, constant}), single weights in postmarking are much
lower.

To be able to observe the complete learning process over time, we
trained the models until weights between markers and noun features
had reached asymptote. Clearly, in simple models like these, simulated
learning time cannot be taken to predict actual learning in our participants.
However, since the learning rates were held constant in the models, these
training times can still play an informative role for the purpose of model
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comparison. Accordingly, we inspected the models’ performance at an
earlier stage in which the number of simulated training trials equaled the
number of empirical training trials in the behavioral experiment. This
revealed that the probabilities of correct choice in both models and both
category dimensions were already relatively constant at this earlier stage
of training (see Fig. 2 and 3).

Finally, the ambiguity manipulation had almost no effect on the models’
categorization performance. While premarking was not at all affected, the
postmarking models showed a very small effect with a slightly higher prob-
ability to choose the correct postmarker for items of ambiguous categories.
This effect probably originates in the higher frequency of ambiguous
features, which therefore get dissociated more strongly from competing
category markers.

To assess the significance of the observed results, we performed two
randomization tests comparing mean differences between the premarking
and postmarking models in the reported simulation and in 1000 random
baseline simulations (see, e.g., Edgington & Onghena, 2007, and Ap-
pendix 5). The first randomization test performed on the overlapping
category evaluation showed that the difference between the means of
the postmarking and premarking model significantly differed between
the reported simulation and the random baseline simulations, with a
postmarking advantage only appearing in the reported simulation but
not in the random simulations (0.226 vs. -0.019, p = .001). The second
randomization test performed on the distinct category evaluation showed
that the result of the reported simulation was not significantly different
from the baseline models, confirming the absence of a difference between
premarking and postmarking regarding the evaluation of distinct category
learning (-0.019 vs. -0.040, p = .192).

In sum, on top of a postmarking advantage in line with with previous
findings (Nixon, 2020; Ramscar, 2013; Ramscar et al., 2010; St Clair et al.,
2009), this simulation suggests an interaction effect with category struc-
ture: whenever frequency and informativity coincide, such as in learning
of the distinct feature sets, premarking and postmarking training lead to
similar categorization performance; only if informativity does not parallel
frequency, postmarking training leads to an advantage for categorization
supported by the mechanism of cue competition. The outcome of our sim-
ulation supports our first hypothesis that the postmarking advantage for
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learning categories does not generalize to categories which are perceived
as distinct from each other. Besides this direct influence of linear marking
order on discriminating the marked categories (noun class), we assume
that it also has an indirect influence on learning subordinate category
contrasts (noun meaning), which we explore in the following, second
simulation.

2.3. Simulation 2: linear order and levels of abstraction

Simulation 2 investigates the influence that linear marking order has
beyond the directly marked level, in this case, noun class. In particular, it
simulates the way that linear order at a super-ordinate level (noun class)
influences learning of subordinate categories (noun meanings).

Learning categories at different levels of abstraction, in this case,
noun class and noun meaning, are clearly distinct tasks: while noun
class learning involves associating a grammatical marker with a noun
and its associated features, noun meaning learning involves associating
a noun with items or events in the world. Although noun class markers
are hence not directly involved in noun meaning learning, super-ordinate
category markers may have an indirect influence on subordinate category
learning via their hierarchical connection. Specifically, premarkers, such
as gendered articles, might lead to a facilitation of subordinate category
discrimination by reducing uncertainty about items that follow them, such
as nouns (Arnon & Ramscar, 2012; Ramscar, 2013) and their associated
features. Accordingly, the noun class markers in our artificial language
can be expected to serve to reduce uncertainty about the nouns and noun
meaning pictures that will follow them in the behavioral experiment (see
Section 3) in the same way, a process that this simulation seeks to model
explicitly.

Technically, uncertainty reduction can be seen as a gradual reduction of
the size of a set of expected outcomes that progresses as new information is
received, with the set of expected outcomes itself being a function of prior
learning. Accordingly, learners that have already acquired some form of
hierarchical category structure might already expect a specific noun class
— and thus a specific subset of nouns and noun meanings — after hearing
a noun class premarker. This (implicit) set size reduction is important
for the discrimination process because the updating mechanism of the
error-driven learning rule considers positive and negative evidence: after
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every learning event not only weights to present outcomes are adjusted
but also weights to absent outcomes (third case of Eq. 3.2 in Section 2.2).
This mechanism can therefore differentiate between cues that appear only
with specific outcomes — informative cues — and cues that appear with
many different outcomes — less informative cues. As the size of learning
networks increases, it becomes more likely that cues occur with many
different outcomes. Therefore, in larger networks individual cues are less
likely to be informative about specific outcomes. The size of the set in
which the discrimination problem needs to be solved can thus be expected
to directly influence how cue sets are associated with outcomes.

Accordingly, if noun discrimination was only performed within and not
across noun classes in our artificial language, the discrimination process
would not be influenced by the nouns from other noun classes. The
example in Figure 4 illustrates this idea. In our artificial category system,
nouns with similar features occur in different noun classes. For example,
some animal and plant nouns start with the letter “l” or “k” 6. When trying
to solve the noun discrimination problem across noun classes (i.e, in the
set of all nouns of all noun classes), features that discriminate nouns
within a noun class would be dissociated as cues to specific objects of one
noun class, when these features are shared with nouns from other noun
classes, as depicted in Figure 4b. However, if the set size is reduced (e.g.,
by premarking), as shown in Figure 4c, also features that might be shared
with other noun classes will be informative for the noun discrimination
within a noun class and will not be dissociated.

The second simulation thus modelled the learning of noun-object
associations in two ways: 1) the postmarking model was trained on the full
set of nouns in one run; 2) the premarking model was trained separately
on each noun class including only the respective subset of nouns; after
training we then merged the results of the separate premarking runs. This
manipulation was based on the assumption that the perceived set size on
the subordinate level is only reduced in the premarking condition but not
in the postmarking condition.

After training, both models were tested on how well they could discrim-

6This kind of category structure can often be found among natural linguistic category
systems. For example, in the German gender system, semantic features widely overlap
between genders, such that, for instance, furniture items can be masculine (“der Stuhl”,
the chair), feminine (“die Lampe”, the lamp), or neuter (“das Sofa”, the sofa).
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a) Examples noun class 1: Examples noun class 2:

OK�am

LUobar
oveima

lopranik

anveal
Iraimo

b) Noun learning (postmarking condition):

imo LUobar

   #l

   #o

stress on 1

stress on 4

ove

 ...

...

imo lopranik Ira

stress on 1

 ...

stress on 4

#a

#l

...

c) Noun learning (premarking condition):

LUobar-agiima

#l

#o

stress on 1

...

.

lopranik-Agiimo

stress on 4

...
#l

#a

Figure 4. Illustration of the difference between learning to discriminate subordi-
nate categories, here artificial nouns, with b) postmarking or c) premarking. a)
shows example nouns from two noun classes, with their associated premarkers
and postmarkers (see Table 2). In postmarking (b) discrimination is performed
across noun classes, which can lead to dissociation (red dashed line in black
dashed box) of features relevant for noun discrimination but overlapping be-
tween classes, e.g. the first sound of a noun #l. Noun class premarkers (c) can
reduce uncertainty about following items such that discrimination is performed
within a noun class.
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inate nouns within noun classes. Crucially, besides the set size difference
during training, all other variables were kept the same between the pre-
marking and the postmarking model: the number of noun-object events,
the employed cue and outcome representations, and the linear order of
noun and object representations. Regarding linear order of the noun and
object representations, we considered the perceived order in the behav-
ioral experiment (see Section 3). There, nouns and images of objects were
presented at the same time (i.e., both follow immediately after the pre-
marker, see Figure 6). However, under the assumption that acoustic noun
processing generally precedes visual object processing (e.g., Jaśkowski
et al., 1990), we coded noun features as cues and noun meanings as
outcomes in both models.

Training
The noun stimuli used in this simulation were the same as used in the cate-
gory learning simulation (Simulation 1, see Table 1). Both the premarking
and the postmarking model were trained with noun form features as cues
and objects as outcomes, for example:

{D1form, O1form,
O2form, #o, k, S, a,
m#, constant}

→ dog

While the postmarking model was trained on all nouns at the same
time, the premarking model was trained separately on the nouns of every
noun class assuming that only a premarker can reduce uncertainty about
possibly following nouns and objects. However, during the first quarter
of training also the premarking model was trained on the full set of
nouns because we assumed that premarker–object and premarker–noun
associations first had to be learned to perform uncertainty reduction.

Note that we assume in this simulation that premarkers reduce the size
of the set of nouns and objects associated with their meaning, thus cues
and outcomes in the noun learning task. However, theoretically only the
reduction of the outcome set, thus of the objects, matters for the learning
process because the discriminative learning algorithm in Equation 3.2
updates weights to absent outcomes but not weights from absent cues.

Finally, as defined in the artificial language, also in this simulation noun
frequencies within every noun class followed an exponential distribution.
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Learning parameters were set equally to the category learning simulation,
and also here, a constant cue was added to every cue set.

Model evaluation
To test the noun learning performance of the premarking and postmarking
model, a noun feature set was shown to the model and the activation of
the target object and competitor objects was calculated after the model
had been trained to asymptote. In the postmarking model all other ob-
jects were counted as competitors and in the premarking model only
competitors within a noun class were considered. These activations were
then normalized first with a rectified linear unit to correct for negative
activations and then with the Luce choice rule to estimate the probability
of a correct choice as in the category learning simulation. In the noun
learning simulation there was no problem of differing baselines between
the premarking and postmarking model. Therefore, the probability Pc of
choosing the correct outcome x was calculated directly over the whole
set of choice alternatives O and was not averaged over all possible pairs
of target and competitors:

Pc(x) =
ReLU(act(x))
∑

y∈O(ReLU(act(y))
(3.5)

Results and discussion
In the noun learning simulation, nouns in the premarking model were
associated stronger to their target object than in the postmarking model,
as illustrated in Figure 5. This suggests that optimization within smaller
sets of nouns performs better than optimization in larger sets, which seems
reasonable as in larger sets more random variation will lead to more noise
during the learning process.

To reach asymptote these models needed to be trained longer than in
Simulation 1, due to the larger number of outcomes in this simulation. For
the same reason, the premarking advantage also took longer to arise than
the postmarking advantage in Simulation 1. We also inspected learning
after the same number of trials as in the behavioral experiment. At this
earlier point in training, the premarking advantage was still absent and
overall the probability of correct choice was significantly lower in both
the premarking and postmarking model.
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Figure 5. Median probability of choosing the target object in the noun learning
simulation (Simulation 2) after weights of frequent noun features to objects have
reached asymptote. Error bars show the interquartile ranges (i.e., 25%-75% of
data). Dashed lines show median probability of choosing the target after the
same amount of training trials as in the behavioral experiment (412 trials).

To assess the significance of the observed premarking advantage, we
performed a randomization test comparing mean differences between the
premarking and postmarking model in the reported simulation and 1000
random baseline simulations in which the outcomes in the training data
were randomly shuffled (see Appendix 5). The results of this randomiza-
tion test indicated that the premarking advantage was significantly higher
than in the baseline simulations with randomized outcomes (0.088 vs.
-0.001; p < .001). This suggests that our reported simulation results were
not due to random associations between single cues and outcomes.

Simulations 1 and 2 explored the generalizability of the postmarking
advantage for learning categories using an error-driven, discriminative
learning mechanism. Simulation 1 showed that the postmarking advan-
tage may not generalize to distinctly structured categories, and Simulation
2 showed that the postmarking advantage may not generalize to levels
of abstraction subordinate to the marked category contrast. In addition,
Simulation 2 suggests that premarking can facilitate discrimination by
focusing the optimization problem on a smaller set of items. Regarding
the underlying mechanisms we found that cue competition determines
when postmarking has an advantage in the marked domain (when item
features overlap), and the global nature of the error-driven learning pro-
cess results in an advantage of super-ordinate premarking for subordinate
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categories (because premarking can reduce the set size for the discrimina-
tion process). These findings form concrete and testable predictions for
human learners when presented with the same artificial language. In the
following section we present the results of an artificial language learning
study which tested these predictions on human learners.

3. Behavioral experiment
In an artificial language learning task using the same artificial language
as in the simulations, we tested also linear order effects in differently
structured categories and at different levels of abstraction. Participants
were asked to listen to sentences in an artificial language, which was the
same as the one presented in Section 2.1. In the sentences the type of
noun class marking was manipulated, a participant was either presented
with only the premarking or only the postmarking version of the artificial
language. After the training phase, we tested to what extent participants
had implicitly learned to categorize nouns into different noun classes
along two dimensions (one distinct and one overlapping) and to associate
nouns with object images. In this way we could address both of our main
questions in the behavioral experiment: First, we could test how category
structure and linear order interact in learning by comparing the effect
of linear order in learning the overlapping and distinct noun categories
(which were combined to form four noun classes, see Table 2). Second,
we could test the interaction of linear order with level of abstraction
by investigating how marking order affected the learning of the noun
meanings, a learning process which is subordinate to the noun class
categorization.

The behavioral experiment was designed as a multi-modal artificial
language learning task in which we tested participants’ ability to generalize
implicitly learned category knowledge to new items (as in, e.g., Mirković
& Gaskell, 2016). Participants were trained by listening to sentences while
seeing corresponding images on the screen. To ensure that participants
watched the screen, we tracked their gaze during the whole experiment.
A training and test trial would only start when the participant had fixated
the fixation cross for 500 ms without interruption.

We expected to observe an effect of linear marking order on how well
noun classes were learned, in line with previous studies (e.g., Ramscar,
2013; St Clair et al., 2009). Moreover, based on our two simulations
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Table 4. The training objects of the behavioral experiment.

Animals Plants Random 1 Random 2 Frequency

dog rose car airplane 32
cat sunflower chair shelf 23
chicken tulip banana apple 16
horse orchid lake mountain 11
pig dandelion sewing machine flat iron 8
mouse poppy kite ball 6
sheep daisy fence umbrella 4
rabbit forgetmenot foot ear 3

we expected two interaction effects: first, a postmarking advantage only
for the overlapping form categories, but not for the distinct meaning
categories; second, a premarking advantage for noun learning, because the
discriminability of subordinate categories (noun meanings) will increase
by premarking of super-ordinate categories (noun class).

3.1. Participants

After excluding 2 participants because their gaze behavior indicated that
they did not look at the pictures on the screen, we analyzed data of 30
participants from the Groningen area (22 female, 10 male) who had
participated for 8 Euro in this one-hour experiment (mean age 22.5,
range 18-28). All participants were Dutch native speakers. Eight of the
participants were raised bilingually: six with Frisian, one with German
and one with Spanish.

3.2. Training stimuli

For training, the 32 imaginary nouns (50% two-syllabic and 50% three-
syllabic) summarized in Table 1 were used. They were built into sentences
according to the rules of the artificial language and recorded by a female
speaker, who read them according to German orthographic rules and
following the stress patterns specified for each noun class. A participant
was either trained on the premarking or on the postmarking version. The
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carrier phrase premarker noun postmarker

400 ms

Figure 6. Sample training trial of the behavioral experiment. The image on the
left depicts the sentence context matching the carrier phrase (he is dreaming of
. . . ) and the image on the right shows the context image with the noun meaning
(apples) included.

presentation frequency was modulated across items in each noun class
fitting an exponential distribution (frequencies: 32, 23, 16, 11, 8, 6, 4, 3).

For every presentation instance of a noun, a different photograph of
the denoted object was shown (farm animals, flower plants, or random
objects), integrated in a context image matching the carrier phrase (see Fig.
6). The images were chosen to produce high variation in background, color,
image section and number of items. Two context images matching the two
carrier phrases (one version shown in Fig. 6) were combined evenly with
instances of every noun and frequency subcategory. To eliminate bias for
objects or categories, a different mapping between images and nouns was
used for half of the participants. This yielded four experimental conditions:
premarking Version 1, premarking Version 2, postmarking Version 1, and
postmarking Version 2.

The order of the sentence stimuli was pseudo-randomized: To assure
that low frequency items would not appear too early, at first, 28 items
were randomly picked from the four higher frequency categories of every
noun class (112 items in total) and shuffled. The rest of 300 items was
then randomized and appended. This order of sentences was maintained
for all participants and conditions.
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3.3. Test stimuli

We tested learning of the distinct and overlapping categories as well as
learning of the noun items in three two-alternative forced choice tasks with
two auditorily presented full sentences as choice alternatives. Figure 7
illustrates the three tasks. The participants were instructed to make a
grammaticality judgment on these two alternatives by deciding which of
the sentences sounded more correct. All test items were presented in the
same randomized order in all four conditions. The three types of stimulus
sets are presented below.

Noun Test
All stimuli from training (see Tables 1 and 4) were presented with 50% old
images and 50% new images (depicting an unseen token of the trained
referent, e.g. an unseen dog species), which yielded 32 trials. Answer
options were either a training sentence that matched the depicted referent
or a training sentence that referred to another item within the same noun
class (e.g. a cat instead of a dog). Note that the stress pattern was the
same in both choice alternatives conforming to the specific noun class.

Form Category Test
We created eight new nouns for every noun class (see Table B2) and
incorporated them into two kinds of sentences presented as answer options
(yielding in total 32 trials); in correct answer options, marking matched
the stress pattern of the noun and in wrong answer options, markers
of another stress pattern were presented. Importantly, all images were
replaced by a loudspeaker icon, so that participants would only base their
grammatical judgment on acoustic cues.

Meaning Category Test
For each of the two semantically consistent noun classes, images of six
new objects (farm animals or flower plants as in the training set) and six
related new objects (safari animals or flowerless plants) were presented
with new nouns embedded into sentences. In correct answer options,
marking and stress were consistent with the class of the noun, and in
wrong options, marking and stress were consistent with another noun
class. For the two semantically random noun classes, six new objects and
nouns were presented in a similar way. This yielded 36 trials in total (see
Tables B2 and B1).
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Figure 7. Sample test trials for the Noun, Form Category and Meaning Category
Test in the premarking version (i.e., premarker varying with noun class and
unspecific postmarker agi). Syllable stress is marked by capitals. The green boxes
signal the correct answer options.

3.4. Procedure

The participants were trained and tested in a quiet room in which they
listened to the recorded sentences with headphones, seated in front of
a computer screen. To limit eye strain, all images appeared on a grey
background. Participants were instructed in written form that they would
learn a language from a fictive planet and that they should just listen to
the playback sentences and watch the images on the screen attentively.
They were kept naive regarding any information about the language and
sentence structure and regarding details about the tests following the
training. The training block was split into four blocks of 103 trials.

In training trials, first, the empty context image appeared, followed
by the carrier phrase after 400 ms (see Fig. 6). The frame in the context
image stayed empty for the length of the carrier phrase and the premarker
and was then filled at onset of the noun. The mean length of a sentence
recording was 2487 ms (range 2247 - 2953 ms), the mean length of a
trial was therefore 2887 ms. After every trial, a blank screen was shown
for 100 ms, followed by a central fixation cross for 500 ms. Although the
noun and object image were shown at the same time, to make sure that
semantic and form categories could be premarked and postmarked, we
assumed that the object image was processed slightly before the noun,
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based on evidence that visual stimuli are processed faster than acoustic
stimuli (e.g., Jaśkowski et al., 1990). This matters for our assumption
that during premarking the possible number of objects as referents for a
noun is reduced to the members of the noun class, as depicted in Figure 4.

The test block started with the Noun Test, followed by the Form Cate-
gory Test and then the Meaning Category Test. Between every test type,
participants had the opportunity to take a self-paced break.

In forced choice trials, context and object image were presented si-
multaneously and two answer options were played after each other. The
participants had to press one of two keys on a keyboard to indicate which
sentence sounded more correct. To make the mapping between the pre-
sented answer options and the two keys for the answer options more clear,
an icon on the lower left of the screen lighted up during the presentation
of the first sentence and an icon on the lower right when the second sen-
tence was presented. In half of the trials, the correct sentence was played
first and in the other half, the incorrect sentence. After both sentences
had been presented (again around 2487 ms per sentence), the participant
could press one of the two answer buttons in a time window of 2000 ms.
In the Form Category Test, the context and object image were replaced
with a loudspeaker icon.

3.5. Results

Figure 8 shows the result of the Noun Test, the Form Category Test, and
the Meaning Category Test in the behavioral experiment. In the Noun
Test, higher accuracies were observed after premarking training, but in the
Form Category Test higher accuracies were observed after postmarking
training. No accuracy difference was found in the Meaning Category Test.
These observations are all in line with the predictions of our simulations.

The accuracy data of the forced choice tests was analyzed with gener-
alized additive mixed-effects regression modeling (Wood, 2011, 2017),
which is a nonlinear regression method that allows us to include non-
linear effects of frequency and non-linear random effects. We built two
models predicting accuracy, one comparing the form and meaning tests
and one investigating the noun test (see supplementary materials for code
and output). The models had been constructed in an iterative backward
fitting procedure using model comparison with χ2 tests and evaluation of
Akaike’s Information Criterion (AIC, Akaike, 2011), implemented in the
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Figure 8. Model estimates (excluding random effects, CI ± 1SE, inverse logit
transformed; using R package itsadug) of accuracy in the Noun Test, Form
Category Test, and Meaning Category Test for correct answer options preceding
wrong answer options in the forced choice task (See results for wrong answer
options preceding correct answer options in Fig. B1). Dots represent the actual
data, namely mean accuracies by participant.

R package “itsadug” (van Rij et al., 2017). We did not analyze reaction
time data as the auditory forced choice task resulted in a forced delay of
participants’ reactions.

The first model investigated the hypothesis about how linear marking
order interacts with category structure by contrasting the data from the
Form and Meaning Category Test including the predictors Marking (pre-
marking/postmarking), Task (form/meaning) and Target Position in the
forced-choice tasks (correct sentence played first/second). The random
effects structure included a random intercept for items (pairing of target
sentence and picture) and participants, and random slopes for Task and
Target Position by participants.

The best-fitting model comparing the form and meaning task included
a significant three-way interaction of Marking, Task and Target Position
(χ2(1)=2.213, p=.035; AIC difference: -1.78; compared to a model
with only two-way interactions). We found a significant postmarking
advantage for learning the form categories. In the Form Category Test,
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accuracy after premarking training was lower than after postmarking
training (βPremarking=-0.73, SE=0.36, z-value=-2.00, p=.045; see Fig.
8). After postmarking training, accuracy was significantly above chance
level (βIntercept=1.05, SE=0.27, z-value=3.91, p<.001). However, this
postmarking advantage was not present when correct answer options
were presented second (β2nd=-0.95, SE=0.30, z-value=-3.14, p=.002;
see Fig. B1). Also, the Meaning Category Test did not show a postmarking
advantage, with accuracy after premarking training being higher than in
the Form Category Test (βPremarking:Meaning=0.98, SE=0.44, z-value=2.22,
p=.026), but not the accuracy after postmarking training (βMeaning=-0.43,
SE=0.32, z-value=-1.35).

To test the second question about how linear marking order interacts
with levels of abstraction we ran a separate model on the noun learn-
ing accuracy data. This allowed us to include predictors unique to the
Noun Test. We tested the predictors Marking, Target Position, Stress (on
first/second/prefinal syllable), Frequency (3, 4, 6, 8, 11, 16, 23, 32) of
nouns during training, and whether a picture in the test was new (New,
levels: new/old). We included random intercepts for participants and
items as well as a random slope for Target Position. The best-fitting model
showed main effects of the predictors Marking (χ2(1)=3.761, p=.006;
AIC difference: -0.83), Target Position (χ2(1)=3.902, p=.005; AIC differ-
ence: -1.31), Stress (χ2(4)=13.690, p<.001; AIC difference: -9.21) and
Frequency (χ2(4)=13.964, p<.001; AIC difference: -5.07). The predictor
Marking showed a premarking advantage for the Noun Learning Test: after
premarking training, accuracy was significantly higher than after post-
marking training (βPremarking=0.92, SE=0.34, z-value=2.75, p=.006).
Moreover, when correct answer options were presented second in the
forced choice task, accuracy was significantly lower than when correct
answer options were presented first(β2nd=-0.96, SE=0.33, z-value=-2.88,
p=.004). For Stress we observed that when nouns were stressed on the
prefinal syllable, they were learned less accurately than compared to nouns
stressed on the second syllable (βSt ress3=-0.96, SE=0.29, z-value=3.27,
p=.001). Furthermore, accuracy increased linearly with increasing Fre-
quency (χ2

F requenc y(1)=18.702, p<.001).
Note that in both regression models we did not find any difference

in accuracy between the four noun classes and their ambiguity status, as
also predicted in Simulation 1 (see Section 2.2).
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3.6. Discussion

In the behavioral experiment, we found that, overall, learners were able
to generalize learned category knowledge to new items exhibiting the fea-
tures that were informative about the trained categories. Concerning our
two hypotheses, we found evidence for interactions of linear order with
both category structure and levels of abstraction. First, as in Simulation 1,
we observed that linear marking order interacts with category structure.
Postmarking facilitated learning the overlapping form categories more
than premarkers (in line with Ramscar, 2013; St Clair et al., 2009) but,
crucially, no facilitatory effect of postmarking was visible for learning the
distinct meaning categories. While for discriminating noun classes by
stress pattern, postmarking was advantageous, premarking and postmark-
ing training led to a similar performance for discriminating noun classes
by the meaning features. This suggests that although the postmarking
advantage is an effect frequently found and cited in the literature, it does
not generalize to every kind of category structure.

Second, our behavioral results show that this postmarking advantage
does not generalize to categories at levels of abstraction subordinate to
the postmarked category contrast. While we found that postmarking
facilitates learning the super-ordinate noun class categories, we found
that premarking facilitates learning the subordinate noun categories. This
effect is in line with the hypothesis we based on Simulation 2 and previous
evidence that premarking of super-ordinate categories brings an advantage
in learning subordinate categories. In Simulation 2 we assumed that
learners could use the premarkers to reduce the discrimination process
to a single noun class, which enhanced noun learning. As our learners
already had category representations for the semantic categories prior
to the experiment and probably quickly learned to associate premarkers
with a semantic category, they could use premarkers to predict a subset
of objects, for example, animals. Subsequently associating an unknown
noun with an object within a noun class (e.g., a noun with a dog within
the animal category) was then easier for the learners than across all noun
classes, as suggested in Simulation 2.

Regarding the premarking advantage for noun learning, a next step
could be to further investigate in what situations premarkers can reduce
uncertainty about following information. In our behavioral study, pre-
markers were presumably used to reduce uncertainty about following
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information, in our case noun semantics in the object images, although
this association was not separately trained before. Also Arnon and Ram-
scar’s (2012) findings suggest that in an immersive learning situation it
is possible to associate premarkers with familiar noun semantics fairly
quickly, such that they can be directly used to enhance learning artificial
nouns’ meanings in the same training session. This quick association
was probably facilitated by previous knowledge of the learners about the
objects and semantic categories in the experiment. In contrast, it might
be more difficult to learn to associate premarkers with unknown objects,
resulting in less uncertainty reduction and, thus, less facilitation for learn-
ing to associate nouns with these objects. A positive effect of premarking
as we observe it here might therefore be restricted to specific learning
situations, such as second language learning, or might take more time to
emerge for completely naive learners.

Further predictors we found to influence learning of the noun mean-
ings, here the subordinate category contrast, were noun frequency and
stress. The facilitative effect of noun frequency shows that frequency of
occurrence of a cue-outcome pair can lead to faster learning of an associa-
tion, also when this factor should not be regarded on its own irrespective
of other factors, such as informativity (cf. Rescorla, 1988). Regarding the
different stress patterns of the nouns, we observed that nouns with stress
on the second syllable, a frequent stress pattern in Dutch, were learned
better than nouns that were stressed on the first or prefinal syllable. It
seems that it was easier for our learners to link this familiar stress feature
to a new word meaning than an unfamiliar stress pattern. This suggests
that frequency of presentation during training can positively influence
learning and that features that are infrequent in a native language might
be harder to integrate into a new language system.

For form category learning and noun item learning, we furthermore
found an effect of the order in which the answer options appeared in the
forced-choice task. We suspect that using a forced-choice task with audi-
tory instead of visual stimuli imposes a processing order and a the same
time a processing limit without allowing for regressions. As a consequence,
if the gap in time between two answer options is not big enough, the first
answer option might still be processed when the second answer option
is presented. In our study, we found that when correct answer options
preceded wrong answer options in the test, accuracies were higher and
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therefore differences between the conditions were also more pronounced
(compare results for correct answer option coming first in Fig. 8 and
results for wrong answer option coming first in Fig. B1). In the Form Cat-
egory Test and Noun Test we therefore found a clear difference between
marking conditions, with either postmarking (in the Form Category Test)
or premarking (in the Noun Test) showing accuracies significantly above
chance, when the correct answer option was presented first. When the
wrong answer option was presented first, we found that accuracies in both
marking conditions were overall lower (for noun recognition) or even
at chance level (for form categories). We presume that wrong answer
options are processed more slowly than correct answer options, given
that learners had had more exposure to the correct patterns during the
training phase. Therefore, while for the correct answer options the short
processing window of the first answer option might have been sufficient,
it probably was not long enough for the wrong answer options. In turn,
the resulting lack of processing of one answer option presumably impeded
the comparison of the two answer options. We are not aware of many
studies applying this kind of acoustic forced choice task, except for the
related testing procedure of Arnon and Ramscar (2012). They did not
report such an effect of answer option order, however, given that their
task was overall easier than our task, we assume that the limited amount
of processing for the first answer option did not lead to an effect in their
study. While they tested the nouns presented during the training phase,
we tested novel nouns and in addition, our learners were exposed to a
more complex category system with more feature dimensions. Overall, we
suggest that the effect of the order of answer options in our study reflects
an increased task difficulty which causes problems when wrong answer
options are presented first in a restricted time window. Importantly, this
pattern of results does not seem to suggest a general bias, as neither the
first nor the second answer was preferred more over the other option.

Thus to summarize, the interactions of marking order with category
structure and levels of abstraction we observe in the behavioral experi-
ment suggest that linear order effects such as the prominent postmarking
advantage for category learning do not generalize to distinctly structured
categories and to subordinate categories. Furthermore, we confirmed
the previous finding of a premarking advantage for learning subordinate
categories.
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4. General discussion
This study sought to investigate the effects of premarking and postmarking
on learning linguistic categories of different structures and at different
levels of abstraction. In addition to offering a formal account of these ef-
fects, the findings of our investigation also offer insights into the functions
that premarking and postmarking have in category learning.

Our manipulation of category structure in the behavioral study showed
that the often cited postmarking advantage (e.g., E. V. Clark, 2001; Kuczaj,
1979; Ramscar, 2013; Ramscar et al., 2010; Slobin, 1973; St Clair et
al., 2009) for learning categories does not generalize to distinctly struc-
tured categories. Only when categories are perceived to have overlap-
ping/confusable features, they were more easily associated with post-
markers than with premarkers. Simulation 1 showed a similar effect and
suggests that the convergent learning relation present during postmarking
is particularily suitable to dissociate non-discriminating features from a
postmarker according to their informativity for the category contrast. In a
divergent learning relation usually found during premarking, learning is
more dependent on the frequency of markers and features, and less on the
informativity of features for a marker and the connected category contrast.
Whenever dissociation of uninformative features is not needed, as in the
case of categories which are already perceived as distinct because they
have already been formed, postmarking does not show this advantage. In
that case, learning of the category contrast will proceed comparably in
pre- and postmarking.

We conclude from these findings that postmarking has a functional role
in learning to form new categories by providing distributional information
in the linguistic input which can be directly used to build discriminative
category representations as opposed to probabilistic category represen-
tations that are built from premarking (which is in line with previous
evidence: see Ramscar, 2013; Ramscar et al., 2010).

As a second main finding we found that while during postmarking
training, categorization of the marked noun class categories was facili-
tated, categorization of the subordinate noun categories was inhibited.
This corroborates the assumption that categories at different levels of ab-
straction stand in a trade-off relation with each other as, depending on the
task, contrasts at different levels might be relevant (Dye & Ramscar, 2009).
Our second discriminative learning simulation shows how premarking can
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facilitate learning of subordinate categories. We assumed that premarkers
can reduce uncertainty about following information when they are trained
to predict, for example, following words or their meanings. Given this
assumption, premarking probably leads to discrimination in a smaller set
of nouns than postmarking and Simulation 2 shows how discrimination
in a smaller set can be more effective than in a larger set. Hence, pre-
marking seems to have an important role in discriminative processing (i.e.,
uncertainty reduction) which in turn can facilitate learning by restricting
the discrimination process to a specific set of cues and outcomes.

More generally, our findings contribute to a growing body of evidence
that discriminative learning is not only influenced by how frequently a
cue and an outcome co-occur. While we do find a facilitatory effect of
frequency for noun learning, we observed three crucial additional factors.
First, learning can be influenced by the ratio between cues and outcomes.
Second, when there are more cues than outcomes, learning might also
strongly depend on the informativity of single cues for outcomes. Third,
Simulation 2 suggests that learning success can be determined by the size
of the set in which the discrimination problem needs to be solved.

4.1. Generalization to natural languages

Working with artificial languages always raises the question how they
are representative of natural languages. Our noun class system partly
resembles natural languages but is partly also too simplified. In natural
languages, noun class can align with form features (e.g., as Hohlfeld,
2006, suggests, in German gender) or semantic features (e.g., noun classes
in Swahili) as in our artificial language. However, categories in natural
language often do not align directly with other perceptional or concep-
tual categories. German gender, for example, partly aligns with semantic
features but partly also violates these rules. While the partial alignment
in features does facilitate learning in general, the highly frequent outliers
(e.g., fork, knive, and spoon have three different genders in German) are
better learned in a process of discrimination. Thus, in natural languages
it becomes even more apparent that categories are not merely a taxo-
nomic but a discriminative system which probably requires mechanisms
of clustering by both similarity and discrimination.

We should however sound a note of caution when it comes to directly
generalizing the results from a restricted experimental setup to the full
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complexity of natural language learning. As our results show, linear
order is of importance only when categories show overlap that leads to a
confusion of item features that are highly frequent with item features that
are informative about a category. Other factors that might influence effects
of linear order in natural languages are, for instance, the distance between
a word and its category marker (e.g., in longer agreement dependencies7)
or the within-category item distribution. Given the complexity of natural
languages, it follows that we clearly need variations of this experiment
to better understand exactly which category characteristics apart from
linear order influence learning, and how they influence it. For example,
tests of other modalities, of different relations of category contrasts and a
comparison of children and adults could all be informative in this regard.

4.2. Linear order in natural language learning situations

In order to generalize our findings in an artificial language learning sit-
uation, it is also important to consider how linear order of stimuli can
be established in natural language learning situations. In our case the
order of markers and noun features was set artificially to exactly lead to a
pre- and postmarking situation for auditory and visual features. In the
domain of auditorily presented speech, this order comes naturally but in
the domain of visually presented semantics, we had to force this order.
While objects are usually constantly present in a visual scene, our object
images appeared only after the premarker had been auditorily presented.
It is however possible that in a natural language learning situation, for
example, when a child learns the names of toys, real premarking might
be rather rare, even in premarking languages, because, for example, the
child has the possibility to play and see the objects before any speech is
uttered by a parent. On the other hand, there might be several factors
which modulate the operationalization of sequence in a natural learning
situation, such as joint attention mechanisms or task effects. Also note
that we restrict our reasoning here to the learning of concrete nouns with
directly accessible semantics and do not consider abstract noun learn-
ing. Crucially, the temporal dynamics of a natural learning situation are
probably dependent on multiple temporal cues beyond word order.

7For example, when gender postmarking appears on word n+2, as in the following
French example, where the gendered adjective “belles” marking gender on the noun
“fleurs” appears after the verb “sont”: “les fleurs sont belles” (‘the flowers are beautiful’).
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4.3. Generalization to language acquisition

Lastly, we would like to shortly discuss how our findings can be generalized
to second and first language acquisition. Our manipulation of category
structure assumed that general semantic categories, such as animals or
plants, have already been learned by our adult participants who would
therefore perceive them as distinct. We observed that the participants in
our behavioral experiment could readily associate these categories with
a new category marker, irrespective of whether it was a premarker or a
postmarker. We suggest that this situation occurs frequently in second
language learning when category systems of the first and second language
are aligned. For example, an adult native English learner of French has
already learned to discriminate dogs from other animals, and therefore just
has to learn a new word form (“chien”) and map it to the already existing
category representation. As no further dissociation of uninformative
features is needed, postmarking will probably not bring an advantage for
learning this new French category label. In turn, this also suggests that if
we had tested infants on our artificial language, we might have found a
postmarking advantage also for learning the for adults distinct semantic
categories.

However, categories between different languages do not always align
neatly. Much more often category systems differ significantly and many
difficulties in second language learning stem from these differences. Fre-
quently, second language learners have to learn new category contrast,
which means that existing categories need to be split up into a more
discriminative category system. This can be the case at different levels
of abstraction, for example, when learning new sound contrasts such as
tone (Nixon, 2020), when learning new grammatical contrasts such as
noun class, or when learning new semantic contrasts such as new verb
dimensions (Gullberg, 2009). In addition, category boundaries often
need to be shifted to accommodate to a new category system of the new
language (e.g., Boersma & Escudero, 2008). As opposed to situations in
which previously learned categories can be reused, these situations require
relearning of categories. We suspect that postmarking might facilitate
this process. This would mean that we have to take linear order into
account not only when it comes to newly building categorical perception,
such as when infants learn their first language, but also when learned
categorization preferences need to be overcome and restructured, such as
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when adults learn a new language with different category contrasts.

5. Conclusion
We have presented a unified account of linear order effects in different
kinds of category systems that provides more insight in the role of cat-
egories and category marking systems in language. Given the present
evidence and our interpretation within an expectation-based learning
account, we conclude that whenever category-relevant features are in
competition with irrelevant features, postmarking facilitates category for-
mation. We suggest that this could be whenever categories have to be
formed from a completely naive point of view, such as in first language
acquisition, or when category systems need to be reshaped, as often
necessary in second language learning. When it comes to learning of
subordinate categories, premarking shows its advantages, as it does not
abstract away from features that are important for discrimination of more
fine-grained category contrasts, as it focuses the discrimination process
on these subordinate category contrasts.

Our findings connect previous evidence about different characteristics
of the learner input influencing the learning of linguistic categories within
an expectation-based theory of language learning. The interactions of
linear order that we found with category structure and with levels of
abstraction illustrate how linguistic categories need to be studied as part
of a complex system of contrasts. These contrasts arise out of a need for
discrimination and depending on the situation, their importance shifts
within and between levels of abstraction. We suggest that grammatical
markers have an important role in balancing this system and guiding a
learner to the contrasts that are relevant within a specific context.
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Appendix

A. Randomization tests performed for model evaluation

To assess the significance of the simulation results, we performed
randomization tests (cf., e.g., Edgington & Onghena, 2007). Significance
levels were computed by comparing mean differences of the probability
of choosing the correct outcome between premarking and postmarking
models in the reported target simulation meanDi f ft and n competitor
simulations meanDi f fc. For overlapping categories in Simulation 1 and
in Simulation 2 competitor runs had to produce larger mean differences
in order to challenge the target run:

p =
count(meanDi f fc ≥ meanDi f ft)

n
(3.6)

For distinct categories in Simulation 1 competitor runs were counted
when the mean differences were closer to zero than in the target run:

p =
count(|meanDi f fc| ≤ |meanDi f ft |)

n
(3.7)
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B. Additional tables and figures

Table B1. The test images of the behavioral experiment.

Animals Plants Random 1 Random 2

Meaning close cow snowlily
Category goat lily
Test duck crocus

donkey daffodil
goose hibiskus
hedgehog buttercup

far elephant fir
tiger cactus
antelope reed
giraffe beech
zebra grass
crocodile boxwood

random cross circle
fire water
sun snow
drum violin
hat gloves
hammer saw

Note. For the Noun Test, all training images were used as test stimuli. In all
trials of the Form Category Test, a loudspeaker icon was shown instead of a
picture. In the Meaning Category Test, test nouns either referred to a close or
far category member, or to a random object for the two random noun classes.
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Table B2. The test nouns of the artificial language in the behavioral experiment.

Noun
class 1

Noun
class 2

Noun
class 3

Noun
class 4

Form egadan issater vosshartin meatok
Category later borlaw nirmal klertash
Test tseglar kambral sormanir senhar

rishtar atpos biskrot tunalig
heflas noemen loer resham
seniter impras sutkar naelis
kurken harmenat elemor liens
doar bukes trame rombad

Meaning close heflas wodnim
Category netad tenglarol
Test ragun bukes

bearel sagav
seniter fegon
ferutam noemen

far kurken kalmen
igaral impras
eivomal eanor
doar daspal
ustiged ograg
tamrog harmenat

random loer resham
sutkar naelis
elemor liens
porfenet grimnes
trame rombad
guskar lakafer

Note. In the Noun Test, all training nouns (see Table 1) were used as test stim-
uli. Note that while a few nouns orthographically look like Dutch words, they
were read according to German orthographic rules and connected with a pre-
and postmarker so that they didn’t sound like Dutch words.
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Nouns
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Figure B1. Model estimates (excluding random effects, CI ± 1SE, inverse logit
transformed; using R package itsadug) of accuracy in the Noun Test, Form Cate-
gory Test, and Meaning Category Test models for wrong answer options preceding
correct answer options in the forced choice task. Dots represent the actual data,
namely mean accuracies by participant. The only significant difference between
premarking and postmarking was an advantage of premarking for noun learning.
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4
Learning noun categories with

double marking

The simultaneous marking of noun class by preceding and succeeding gram-
matical markers (premarkers and postmarkers), here referred to as double
marking, is a common feature in natural languages. Previous evidence
suggests that postmarkers play a crucial role in learning novel linguistic
contrasts, such as noun classes, while premarkers can make use of learned
contrasts by reducing uncertainty about upcoming subsets of nouns, which
has been found to benefit learning single noun meanings. Yet, there has been
little research on how these two processes interact in a double marked noun
class paradigm. In an artificial language learning experiment we observed
that double marking had a similar effect on learning as exclusive postmark-
ing, when both were compared to exclusive premarking. In particular we
found that compared to exclusive premarking, double marking facilitated
learning of novel noun class contrasts, while it led to less successful learning
of individual noun meanings. Taking into consideration expectation-based
learning principles as well as perceptual factors, we suggest that the for-
mation of category contrasts with postmarking should take precedence at
the beginning of the learning process, given that premarkers can be more
effectively used with already learned abstract category representations.
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1. Introduction
Languages that differentiate between different noun classes, such as gram-
matical gender, can either mark the class of a noun with a morphological
marker before the noun (premarking, e.g., German “das Kind”, or Swahili
“mtoto”, English: the child) or after the noun (postmarking, e.g., Russian
“kartina”, the painting). Evidence suggests that the order of marking af-
fects language learning, and that both premarking and postmarking have
particular learning advantages. On the one hand, postmarking has been
found to facilitate learning contrasts between linguistic categories, such
as noun classes, by highlighting features that discriminate categories from
each other (e.g., in language acquisition: E. V. Clark, 2001; Kuczaj, 1979;
Slobin, 1973; and in artificial language learning studies: Chapter 3 of this
thesis; Nixon, 2020; Ramscar, 2013; St Clair et al., 2009). Premarking,
on the other hand, has been shown to enable shifting focus on upcoming
subsets of nouns (e.g., noun classes) during processing, making single
nouns more accessible than in the full set of nouns. As a consequence,
premarking has been found to improve discrimination of individual nouns,
making them easier to learn (Chapter 3 of this thesis; Arnon & Ramscar,
2012; Ramscar, 2013).

Early theoretical accounts have focused mainly on the learning advan-
tage of postmarking, which has been proposed to be due to the fact that
for learners, postmarkers are inherently more salient than premarkers and
that they are therefore learned first (Slobin, 1973; Snow, 1998; Vaissière,
1983). Another explanation also accounting for the learning advantages
of premarking has been offered by error-driven learning theory (Ram-
scar et al., 2010). This account suggests that effects of linear order in
learning arise directly from an interaction of the inherently asymmetric
error-driven learning mechanism with the predictive relations between
nouns and noun class markers, which differ between premarking and
postmarking paradigms. In Chapter 3, also pursuing this latter approach,
we showed with simulations of error-driven learning (for an introduction
to error-driven learning see Chapter 2 or, e.g., Baayen et al., 2011; Ram-
scar et al., 2010; Rescorla & Wagner, 1972) how a model trained on a
premarked noun class paradigm performed differently on learning noun
categories and single nouns than a model trained on a postmarked noun
class paradigm which was basically a mirrored version of the premarked
paradigm. In particular, our premarking simulation showed an increased
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performance on noun learning and our postmarking simulation an advan-
tage in learning noun categories, two findings which we corroborated in
an artificial language learning experiment with human learners trained
either on an artificial premarked noun class paradigm or a postmarked
paradigm.

In this behavioral experiment reported in Section 3 of Chapter 3 that
pitted exclusive postmarking against exclusive premarking, we could
directly observe whether the learning outcomes and thus the underlying
learning processes triggered by the two marking orders differed. However,
the separation of the learning processes triggered by premarking and
postmarking is not always that clear in natural language learning. In
fact, double marking of noun class (i.e., simultaneous marking with a pre-
and a postmarker) is fairly common in languages across the world: for
example, most Romance languages have noun class consistent articles
combined with noun suffixes (e.g., in Italian: “la mela”, the apple, vs. “il
libro”, the book); a similar pattern can be found in Gurma, where definite
articles have the same form as the co-occurring noun suffix (e.g., “ba
nitiba”, the men; see Greenberg, 1957); in Russian, demonstratives can
complement the postmarking of gender on nouns (e.g., “eta kartina”, this
painting); in Swahili, nouns are premarked for noun class but similarly
premarked adjectives normally appear in post-nominal position, resulting
in additional postmarking of the nouns (e.g., “mtu mvivu”, lazy man; see
Zwart, 1997); and in German, relative pronouns can lead to additional
postmarking of gender (e.g., “das Kind, das...”, ‘the child who...’). This
means that, in order to be able to generalize results from previous artificial
language learning experiments to natural language learning, it would
be important to test what learners learn when noun classes are double
marked. In particular, an investigation of double marking would provide
insights into how the learning processes triggered by premarking and
postmarking interact with each other, eventually contributing to a better
understanding of how learning proceeds in more naturalistic and complex
learning situations.

There is little research on how double marking, particularly in noun
class paradigms, affects language learning. The only finding we know of
suggests that double marking might have a similar beneficial effect on
noun categorization as postmarking: in an artificial language learning
experiment, Ramscar (2013) found that when noun classes are double
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marked, learners judge nouns of the same class as more similar to each
other than when they are only premarked, while similarity ratings of
double marked nouns seem to be comparable to those of exclusively
postmarked nouns. There is, however, no evidence how double marking
might affect learning the meanings of single nouns.

In order to more thoroughly test how learning results after double
marking training compare to results after exclusive premarking and post-
marking training, we ran an artificial language learning experiment di-
rectly following up on the experiment reported in Chapter 3, which com-
pared the effects of training with exclusive pre- or postmarking on learning
noun categories and single nouns’ meanings. Instead of training partici-
pants either with an exclusively premarking language or an exclusively
postmarking language, participants in the present experiment were either
trained with exclusive premarking or with double marking (Below we will
argue that testing exclusive postmarking training was not needed for our
present purposes). We will begin by recapping the methods, findings and
implications of the artificial language learning experiment of Chapter 3.
Then we will derive and test a set of possible scenarios for how processes
triggered by premarking and processes triggered by postmarking might
interact with each other in a double marked noun class paradigm. Note
that the follwoing Section 1.1 summarizes and reiterates content already
described in Chapter 3. Readers already familiar with the previous Chapter
can therefore safely skip ahead to Section 1.2.

1.1. Learning from exclusive pre- and postmarking

From an error-driven learning perspective, the main factor that determines
the difference between learning a premarked or postmarked noun class
paradigm, is the asymmetry of the underlying learning mechanism. What
makes this error-driven learning mechanism asymmetric is that it imple-
ments a process of making and testing predictions, which are inherently
directional. This means that the predictive relation between marker and
noun differs between premarking and postmarking: in postmarked noun
class paradigms, learners are assumed to learn how to best predict the
correct postmarker (e.g., the suffix “-a” but not suffixes such as “-o”, “-ik”,
etc.) from a noun (e.g., the Russian stem “kartin-”), while in premarked
paradigms, learners are assumed to learn how to best predict a possi-
bly following noun (e.g., German “Kind”, child, “Telefon”, telephone, or
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“Sofa”, sofa) from a premarker (e.g., the neuter article “das”). To show
how this leads to actually differing learning dynamics in premarking and
postmarking, we will first need to introduce the formal error-driven learn-
ing learning mechanism. The version used in the simulations reported in
this thesis is the so-called delta rule defined by Widrow and Hoff (1960)
(which is closely related to the learning rule by Rescorla & Wagner, 1972).

The error-driven learning mechanism
The delta rule defines how a learner develops a set of expectations with a
specific strength (weights) about a set of items or events (outcomes) based
on a temporally preceding set of items or events (cues), all based on the
pairings of cues and outcomes the learner experiences over time. To this
end, the mechanism updates a matrix of weights from all possible cues to
all possible outcomes each time a learner is experiencing a combination
of cues and outcomes. In particular, this weight matrix V between cues i
and outcomes j at time t + 1 is updated as follows:

V t+1
i j = V t

i j +∆V t
i j (4.1)

Crucially, the weight difference ∆V t
i j at every time step t is calculated

differently for one of three possible weight types, a) for weights from
absent cues to all outcomes, b) for weights from present cues to present
outcomes, and c) for weights from present cues to absent outcomes:

∆V t
i j =







0 , cue i absent (a)

η(1−
∑

x∈cues(t) v
t(x , j)) , cue i and outcome j present (b)

η(0−
∑

x∈cues(t) v
t(x , j)) , cue i present but outcome j absent (c)

(4.2)
In this formula, the learning parameter η determines the learning

rate and is typically set to the value 0.01. The sum of weights v t(x , j)
from all present cues to a given outcome

∑

x∈cues(t) v
t(x , j) captures the

expectation of an outcome j given the set of current cues (also referred to
as the outcome activation).

While weights from cues that were not present at the current time step
(Equation 4.2a) are not adjusted, it is crucial for our present purposes
to acknowledge the differing adjustment for weights from present cues
to present outcomes (Equation 4.2b) and to absent outcomes (Equation
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4.2c). In particular, when an outcome is expected at a given time point
(which means that the current activation of this outcome captured by
the term
∑

x∈cues(t) v
t(x , j) is between 0 and 1) and the outcome actually

appears, the weights from all the currently present cues to this outcome
increase (because the term 1−

∑

x∈cues(t) v
t(x , j)will be positive). However,

if the outcome is expected but does not appear, the weights from all
currently present cues to this outcome decrease (because the term 0 −
∑

x∈cues(t) v
t(x , j) will be negative). Hence, one characteristic of the error-

driven learning mechanism is that it assumes that learners do not only
strengthen their expectations when they experience positive evidence
but that they also weaken expectations when they experience negative
evidence. How this is important for explaining the different learning
processed active during premarking and postmarking, will be illustrated
in the following using the artificial language learning experiment from
Chapter 3.

Artificial language learning experiment reported in Chapter 3
In order to investigate the effects of premarking and postmarking on
language learning, the experiment reported in Section 3 of Chapter 3
used a miniature artificial noun class paradigm which was presented
multi-modally to a group of adult participants. The participants were
presented with short sentences in an artificial language consisting of
one of two alternative carrier phrases and a noun phrase while seeing
images depicting the nouns’ meanings on the screen (see Figure 1). Each
noun was preceded by a premarker and followed by a postmarker, which
depending on the experimental condition matched four noun classes
we will describe below. In the postmarking condition, all nouns were
preceded by the same unspecific premarker and postmarkers were noun
class specific (i.e., there was one postmarker marking each noun class).
In the premarking condition, premarkers were noun class specific and one
unspecific postmarker was added to all nouns, as in the following example
sentence:

(1) Unta boltohe
Carrier phrase1

ima
premarker1

OKsham1-
“dog/dogs”

agi.
unspecific postmarker

He is dreaming of dogs.

1Capitals mark syllable stress on the noun.
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Figure 1. Sample training trial of the behavioral experiment reported in Chapter
3 that we reused in the present study. The image on the left depicts the sentence
context matching the carrier phrase (‘He is dreaming of...’) and the image on the
right shows the context image with the noun meaning (apples) included. The
vertical dashed lines show the temporal alignment of parts of the sentence and
the visual stimuli; the sentence started playing 400 ms after the context image
was presented.

The first aim of this study was to investigate how the effects of linear
marking order on learning noun categories are modulated by the struc-
ture of the marked categories. In particular, we wanted to test whether
only confusable noun category systems, in which nouns show similarities
not only within but also across different noun categories, would benefit
from postmarking training. The set of artificial nouns was therefore de-
signed such that it could be categorized into four noun classes along two
dimensions as shown in Table 1: each noun had one of three2 acousti-
cally presented syllable stress features (i.e., stress on the first, second or
prefinal syllable) and one of three visually presented semantic features
(i.e., whether the noun referred to a plant, an animal or a random object).
We assumed that the semantic features, which corresponded to simple
semantic categories, would be perceived as relatively distinct by our partic-
ipants because we assumed that all of them were already familiar with the
concepts of animals, plants, and objects. The stress features, on the other
hand, were presumably perceived as more confusable: although stress
is contrastive in Dutch, we assumed that in the context of the unknown
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Table 1. The training nouns and their categorization from Chapter 3, which were also used in the present study.

Noun class 1 Noun class 2 Noun class 3 Noun class 4 Freq.

Premarker ima imo ime imi

Noun oksham kanjur anveal jajosan 32
luobar ennovis psondew serim 23
anhatar ruis hatrumir erkefal 16
simad lopranik kilal vimeros 11
nechran aftong repis burbad 8
kekunam palneng tokran ksoster 6
kitsogis tivitkal istefur natrul 4
magril meromer merkatim rutonak 3

Postmarker ove/ovu ira/ire agi/ago epo/epa

Stress category on 1st on 3rd or 4th on 2nd on 3rd or 4th

Meaning category plant animal random random

Note. The vowel alternation of the postmarkers was dependent on the carrier phrases “Unta boltohe” (appearing
with “ove”, “ira”, “agi”, and “epo”) and “Ena dikanhe” (appearing with “ovu”, “ire”, “ago”, and “epa”). In addition,
note that the stress assignment always refers to a noun-postmarker combination, which means that while in Noun
class 1 and 2 stress fell on the specified syllable of the noun (stem), in Noun class 2 and 4 stress fell on the first
syllable of the postmarker; given that nouns were either 2 or 3 syllables long, the latter corresponded to the 3rd or
4th syllable of the noun-postmarker combination, which was always the prefinal syllable of the combination.
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language the complex acoustic features of the different stress patterns
would strongly compete with other acoustic features of the unfamiliar
nouns. Note that, in order to make the distribution of nouns more natural,
nouns were presented with frequencies following a geometric distribution
in each noun class.

After the training phase of the experiment we assessed in two separate
tests, how well participants had learned to associate a marker (depending
on the condition a pre- or a postmarker) with the correct stress feature
and with the correct semantic feature. We found that learners especially
benefitted from postmarked noun classes during training when learning
to discriminate the nouns by the more confusable stress features, a task
which most participants that were trained only with premarking could
not master at all. In contrast, the distinct semantic features were learned
equally well in both marking conditions.

A closer inspection of the error-driven learning algorithm shows that
postmarking benefits more than premarking from the fact that the al-
gorithm not only increases weights from cues to present outcomes (see
Equation 4.2b) but also decreases weights to absent outcomes (see Equa-
tion 4.2c). This eventually promotes — during postmarking but not during
premarking — an unlearning of features that are shared between noun
classes and that are therefore unreliable cues for identifying the correct
marker from a specific noun class. Figure 2b illustrates this process dur-
ing postmarking: for example, when a learner hears the word “LUobar”
followed by the postmarker “ove”, the weights from the features stress on
1st syllable and #l (word beginning with sound “l”) to the postmarker are
increased, and at the same time the weights from these two features to the
incorrect postmarker from the other noun class are decreased. Conversely,
when hearing the word “lopranik” followed by the postmarker “Ira”, the
same happens with the feature stress on prefinal syllable and again with
the feature #l. Over time, in particular the feature #l which is shared
between the two noun classes and, in theory, cannot discriminate between
postmarkers because it can precede both of them, is (correctly) unlearned
as a cue to both postmarkers. Figure 2c shows what happens when the

2Note that the artificial language had four noun classes but only three stress and meaning
features. One of the three features for each feature dimension therefore appeared in two
noun classes, as we had initially aimed to also test whether the ambiguity of category
features would affect learning. We, however, did not find an effect of category ambiguity
in Chapter 3 and to foreshadow, also not in the present study.
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same nouns are learned with premarking: now, the weights from the cur-
rent premarker, e.g., “ima”, are increased to the features of the currently
present noun, e.g., stress on 1st syllable and #l and decreased to features
that are not present, e.g., stress on prefinal syllable. As the shared feature
#l is, however, present in both nouns from different noun classes, the
connection from both premarkers to this feature never decreases. This
feature, therefore, does not become unlearned but can lead to a later
confusion of nouns after hearing a premarker. (Note that this becomes
especially problematic when features that are shared between categories
are more frequent than the features that actually are informative about
the category contrast, see, e.g., Ramscar et al., 2010; Vujović et al., 2021).

Thus, the example in Figure 2 illustrates how premarking and post-
marking lead to different learning dynamics, and how only postmarking
can effectively guide learning to separate noun features that are informa-
tive about a contrast between noun classes from uninformative features
- a process that we more formally presented in Simulation 1 of Chapter
3. Thus, under the assumption that the participants tested in Chapter
3’s experiment perceived the stress features of nouns as more confusable
than the meaning features, we concluded that while postmarking might
have been particularly useful in learning to categorize nouns into stress
categories, it was less needed for learning to categorize nouns into the
distinct meaning categories. Crucially, this is in line with our finding of
a postmarking advantage for the former task and no difference between
training conditions for the latter task.

The second aim of the study presented in Chapter 3 was to investigate
how effects of linear order on category learning were modulated by the
level of abstraction of the category system by contrasting learning of the
noun classes with learning the category contrasts between individual
nouns. In particular, while noun classes group together a set of nouns
and their meanings on a higher level of abstraction, individual nouns
group together different instances of a more specific concept (e.g., cats
vs. dogs) on a lower, more detailed level of abstraction. Therefore,
besides assessing learners’ accuracy in discriminating noun categories by
confusable form (i.e., the stress features) and easily discriminable semantic
features, we also tested how well our participants could learn the meanings
of single nouns. Although in the noun learning task, learners were above
chance in both training conditions, we found a significant advantage of
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a) Examples noun class 1: Examples noun class 2:

OK�am

LUobar
oveima

lopranik

anveal
Iraimo

b) Noun Category learning (postmarking condition):

imo LUobar ove

ove

Ire

stress on 1 

...

stress on 4

#l

imo lopranik Ira

ove

Ire

stress on 1 

...

stress on 4

#l

c) Noun Category learning (premarking condition):

LUobar -agi

ima

imo

stress on 1 

...

stress on 4 

#l

ima lopranik -Agi

ima

imo

stress on 1 

...

stress on 4

#l

imo

Figure 2. Illustration of the difference between learning to discriminate
confusable noun categories with b) postmarking or c) premarking. a) shows
example nouns from two noun classes, with their associated premarkers and
postmarkers (see Table 1). In postmarking (b) discrimination is performed across
noun classes, which can lead to dissociation (red dashed lines in box) of features
that are shared between classes, e.g. the first sound of a noun #l. In premarking
(c) these shared and therefore confusable noun features are not unlearned but
associated with a premarker (black dashed lines in box). Capitals mark syllable
stress.
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premarking training, for which we suggested a second computational
model (Simulation 2 of Chapter 3).

The mechanism that we suggested can account for a premarking advan-
tage to learn individual noun meanings is based on findings that listeners
seem to be able to anticipate subsets of correctly gendered nouns or objects
upon hearing a gendered article or adjective (e.g., Arts et al., 2011; Lew-
Williams & Fernald, 2007, 2010; Rubio-Fernandez, 2021). In Simulation
2 of Chapter 3, we found that training noun meanings in a reduced set
turned out to benefit learning more than training in the set of all words
and objects, as is illustrated in Figure 3. In postmarking (see Figure 3b),
where we assumed that noun meanings would be contrasted with the set
of all nouns druing learning, features that are shared between nouns of
different noun classes but are contrastive within each noun class, such
as “#l”, would become unlearned over time, as each time the feature
appears with one meaning, its weight with the alternative meaning would
decrease. However, in premarking (see Figure 3c), where we assumed that
nouns would only be contrasted within their noun class, these features,
wouldn’t be unlearned and could still be used for noun discrimination.
We therefore assumed that already after being presented with only a few
examples of a premarker and an object image during the initial training
phase of the experiment, participants could, based on hearing a premarker,
anticipate a subset of objects (corresponding to the semantic category of
the signaled noun class) that a noun could refer to, which then in turn
might have facilitated learning the nouns’ meanings.

In sum, we found in Chapter 3 that participants trained with post-
marking seemed to show an advantage in learning to discriminate nouns
along the confusable form dimension, while participants trained with pre-
marking seemed to benefit from premarkers predicting subsets of possible
noun meanings, which increased their noun learning performance. We
suggested that the postmarking advantage for learning the noun classes
stems from the fact that only with postmarking confusable features are
consistently unlearned. The premarking advantage for learning the noun
meanings, on the other hand, might be explained by the fact that pre-
marking can be used to anticipate subsets of nouns and possible meanings,
which leads to a preservation of more detailed features, which are poten-
tially uninformative about noun class contrasts but crucial to discriminate
single nouns from each other.
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a) Examples noun class 1: Examples noun class 2:

OK�am

LUobar
oveima

lopranik

anveal
Iraimo

b) Noun learning (postmarking condition):

imo LUobar

   #l

   #o

stress on 1

stress on 4

ove

 ...

...

imo lopranik Ira

stress on 1

 ...

stress on 4

#a

#l

...

c) Noun learning (premarking condition):

LUobar-agiima

#l

#o

stress on 1

...

.

lopranik-Agiimo

stress on 4

...
#l

#a

Figure 3. Illustration (taken from Chapter 3) of the difference between learning
to discriminate noun meanings, with b) postmarking or c) premarking. a) shows
example nouns from two noun classes, with their associated premarkers and
postmarkers (see Table 1). In postmarking (b) discrimination is performed across
noun classes, which can lead to dissociation (red dashed line in black dashed
box) of features relevant for the noun discrimination but overlapping between
classes, e.g. the first sound of a noun #l. Noun class premarkers (c) can reduce
uncertainty about following items such that discrimination is performed within a
noun class.
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1.2. Possible interactions of pre- and postmarking in a double marked
noun class paradigm

Deriving a set of predictions for what to expect when learners are con-
fronted with premarking and postmarking at the same time is not so
straightforward given that, following our previous analysis, the processes
triggered by pre- and postmarking can be seen as competing, if not even
conflicting. While premarking helps to predict subsets of following nouns
and states of the world — or in other words, reduces uncertainty about
them —, and as such, can shift focus on a specific noun class, postmarking
triggers a process in which noun features compete with each other across
noun classes. For example, the premarking advantage for noun mean-
ing learning and the postmarking advantage for learning the noun stress
categories found in Chapter 3 could be explained as follows: on the one
hand, premarking could concentrate focus on the subclass of animals and
facilitate discriminating the noun form for chicken from the noun form
for cats, while this reduction in scope was detrimental for learning how
animal nouns overall show different sound patterns from plant nouns;
on the other hand, postmarking might have triggered a comparison of
(e.g., acoustic) features of different nouns across classes and therefore
potentially led participants to pay less attention to along which contrasts
nouns differ within a noun class. Hence, looking at what learners learn
when they are trained on a double marked noun class paradigm might
give us some clues with regard to the hierarchy of the processes triggered
by premarking and postmarking. The main possible relations we might
observe between processes triggered by pre- and postmarking are that
they either run in parallel or that one process overrides the other, at least
initially.

Hence, the first option would be that learners can juggle both premark-
ing and postmarking in parallel and thus benefit from both of them in a
double marked noun class paradigm. What would favour this hypothesis
is evidence from artificial language learning experiments which suggests
that humans can simultaneously learn various types of predictive relations
in parallel: for example, predictive relations on different levels of abstrac-
tion, in particular, word meanings and word categories (Chen et al., 2017);
or different regularities involving the same element, for example, adjacent
and non-adjacent dependencies with the same word (Romberg & Saffran,
2013). Also in Chapter 3 we had found that participants had learned
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regularities not only on different levels of abstraction, but also across
different modalities and between different parts of the artificial utterances
after just around 40 minutes of training: for example, participants in the
postmarking condition had learned both the different form and semantic
categories of nouns, as well as the noun meanings to an acceptable and
more or less comparable degree (around 65%-80% accuracy over all three
tasks, see Figure 6).

(a) premarking with confusable
items

(b) postmarking (c) premarking with items that lear-
ning has made non-confusable

Figure 4. Illustration of premarking learning a) without and c) with preceding
postmarking learning: a) illustrates how learning to predict confusable items
(in this example, nouns share features with nouns from other noun classes,
such as word beginnings and endings) from premarkers leads to learning of the
conditional probabilities of individual items and their features, and how that
does not always lead to clear categorization; b) shows how postmarking supports
learning of abstract category representations (in this case, stress patterns) and c)
shows how previously learned abstract representations can be used by premarking
to make more effective predictions.
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Alternatively, assuming that both processes are indeed competing and
cannot run in parallel, one could expect that one of the two processes
overrides the other, or at least that one precedes the other. One factor that
might affect whether premarkers or postmarkers are initially dominating
the learning process is that, before premarkers can be used to reduce
uncertainty about one of a set of alternative sub-categories, first the rele-
vant category contrasts and the predictive relations between premarkers
and specific category representations need to be learned. Crucially, as
discussed above, forming abstract category representations is, in turn,
usually more easily achieved with postmarking: while premarking alone
can be used to learn conditional probabilities of single nouns and noun
features following specific premarkers (see Figure 4a), only postmarking
can shift focus on features that are specific for a category contrast (e.g.,
the stress features used in the experiment in Chapter 3, see Figure 4b) and
away from other, uninformative features (e.g., features that are shared by
nouns of different noun classes). Taken together, this means that instead
of directly starting with learning predictive relations from premarkers to
a set of confusable noun representations, it might be more effective to
first learn to discriminate noun features with postmarking and then form
predictive relations from premarkers to the more abstract and distinct
representations of specific subsets of nouns (see Figure 4c).

Notably, however, the findings presented in Chapter 3 suggest that
postmarking might only bring an advantage for learning to form new
category contrasts, which are not yet distinguished well, such as the
artificial stress categories, but not when it comes to merely matching a
marker to an already learned category contrast, such as the distinct and
familiar semantic categories used in the artificial language. Critically, this
implies that in the latter case premarkers can presumably be readily used
by learners in that they can directly map premarkers to the already clearly
discriminated categories, as shown in Figure 4c. If in a double marking
situation premarkers were indeed to be used by our participants to predict
a specific set of objects (i.e., a set of plants, animals, or objects) from one
of the already familiar semantic categories early on in training, this might
then interfere with the learning of the confusable form categories.

Thus in general, learners need to learn to predict (subsets of) upcom-
ing nouns or objects based on a premarker before they can use these
learned predictive relations to reduce uncertainty. Together with the fact
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that premarkers are much less suitable than postmarkers for learning to
discriminate relevant category contrasts (see, e.g., Ramscar et al., 2010),
this suggests that ideally the learning trajectory should begin with the
process of learning the category contrasts triggered by postmarking. Still,
when learners don’t really start from a ‘blank slate’, but already have ex-
isting knowledge about relevant category contrasts, postmarking becomes
less important at the beginning of the learning process. Therefore, in our
specific experimental design, it is also possible that premarkers could be
used already at the beginning of the learning process. In that case we
might observe a learning pattern more in line with premarking than with
postmarking when nouns are double marked.

Another factor which might either determine an initial premarking or
an initial postmarking dominance in a double marked noun class paradigm
are perceptual processing constraints. Especially the restricted capacity
of phonological short term memory (often referred to as the phonological
loop) might be relevant when considering naive learners that are con-
fronted with relatively long unknown strings, as it was the case in our
experiment in which utterances were up to twelve syllables long. Two
possible effects that are frequently found to be caused by perceptual pro-
cessing constraints is the primacy effect, where learners tend to recall
more the beginning of sequences, and the recency effect, where learners
tend to recall more the ends of sequences. While these effects have been
mostly studied in list learning (i.e., where learners are trained on a list
of, e.g., word pairs) or word learning (i.e., investigating whether learners
focus more on the beginning or ends of novel words), there is also some
evidence from sentence processing. A pattern that seems to emerge from
studies employing sentence repetition tasks is that young children seem
to show more of a recency bias, which disappears with age and turns into
a primacy bias (Alloway & Gathercole, 2005; Pineo, 2014; Stadtmiller
et al., 2021). Under more difficult processing conditions, however, it
appears that also older children show again a recency bias (Coady et al.,
2010). Similar results have been found in studies investigating biases in
answering questions of the form “X or Y?”, in particular, that children
show a bias of choosing Y that decreases with age and increases with
the novelty of the choice options (Sumner et al., 2019) and that adults
show a bias to choose X (Bar-Hillel et al., 2014; Mantonakis et al., 2009).
As the findings on these effects — especially ones that are transferable
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to a more immersive language learning situation — are relatively scarce
and none of them investigated adults learning a completely unknown
language, we cannot clearly determine whether we would expect partici-
pants in our experiment to show either a primacy or a recency effect. On
the one hand, given that adults usually seem to show a primacy effect
it seems possible that they show an initial focus on premarkers with a
reduced capacity to process the postmarker at the end of the utterance.
On the other hand, it also seems quite plausible that the incoming speech
masks the beginning of utterances such that learners cannot retain the
premarker in their phonological buffer and therefore initially focus more
on postmarkers. This might be especially relevant at the beginning where
learners are completely unfamiliar with the language, which would be in
line with findings that children seem to ‘fall back’ on a recency bias under
more difficult processing conditions.

Taken together, we have identified arguments for three possible inter-
actions of premarking and postmarking in our double marked noun class
paradigm. First of all, they could be used by learners in parallel, which
would be supported by other findings of simultaneous learning of differ-
ent predictive relations in sequences (Hypothesis A). However given that
processes triggered by pre- and postmarking are conflicting and can both
potentially hinder each other, premarking might override postmarking
(Hypothesis B) or postmarking might override premarking (Hypothesis C),
at least in the beginning of the learning trajectory. Whether we observe re-
sults in line with Hypothesis B or C might be dependent, on the one hand,
on how readily learners can use premarkers to reduce uncertainty and,
on the other hand, on how they are influenced by perceptual constraints
leading to either a primacy or recency bias in their sentence processing.

In what follows, we present a variation on the artificial language
learning experiment presented in Chapter 3 with the aim of clarifying
what can be expected when learners are confronted with a double marked
noun class paradigm. We suggest that it is sufficient to compare learners
trained with exclusive premarking to learners trained with double marking
in order to tease apart our three competing hypotheses. Table 2 provides
an overview over the expected results in each of the alternative possible
scenarios. If participants showed learning benefits in both form category
and noun learning (i.e. an increased performance in the confusable stress
category task for double marking learners, with no difference in the other
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Table 2. Our three competing hypothesis in comparison to the findings
reported in Chapter 3.
Hypothesis A: double marking shows benefits of pre- and postmarking;
Hypothesis B: double marking shows only benefit of premarking;
Hypothesis C: double marking shows only benefit of postmarking.

Meaning
Category

Form
Category

Nouns

Experiment
Chapter 3:

Hypothesis A:
premarking
+ postmarking

Hypothesis B:
premarking
> postmarking

Hypothesis C:
postmarking
> premarking

premarking

double marking

postmarking

Note. Bars show only the direction of effects. Lower bars are near chance
level and higher bars are significantly above chance.
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two tasks), we would conclude that learners can benefit from premarking
and postmarking in parallel (Hypothesis A); if there was no difference
between the premarking and double marking training condition across
all three tests, we would conclude that, initially, premarking overrides
postmarking (Hypothesis B); and finally, if learning in the double marking
condition would compare in a similar way to the premarking condition
as the postmarking in the previous experiment, we would conclude that,
initially, postmarking overrides premarking (Hypothesis C);

2. Experiment

2.1. Participants

We tested 32 participants from the Groningen area in the Netherlands
who had participated for 8 Euro in this one-hour experiment. Two of the
participants were raised bilingually, one with English and one with French
as their second language. After excluding two participants because they
reported they had strategically looked away from the screen to test their
noun knowledge during training, we analyzed data of 30 participants (25
female, 5 male; mean age 22.1, range 18-30). All participants were Dutch
native speakers.

2.2. Stimuli and procedure

In the present experiment we used the same artificial language, design and
procedure as in the experiment reported in Chapter 3, with the exception
that participants’ gaze was not tracked in the present experiment. In short,
participants were exposed to acoustically presented sentences from the
artificial language described in the introduction while seeing images on
the screen depicting the sentence context and noun meanings. Sentences
were recorded by a female speaker, who read them according to German
orthographic rules and following the stress patterns specified for each
noun class. A sample trial is depicted in Figure 1 — note that acoustic and
visual stimuli were presented in a strict linear order, such that premarkers
always preceded not only the nouns but also the object images, and
postmarkers were heard after the images appeared on the screen.

We compared two between-subjects conditions: either participants
were trained on the premarking version of the articifical language (in
which all nouns were marked with premarkers consistent with a noun’s
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Figure 5. Sample test trials for the Noun, Form Category and Meaning Category
Test in the premarking version (i.e., premarker varying with noun class and
unspecific postmarker agi). Syllable stress is marked by capitals. The green boxes
signal the correct answer options. This Figure is taken from Chapter 3.

class, as specified in Table 1, and the unspecific postmarker agi) or on
a version combining premarking and postmarking (in which all nouns
were marked with noun class specific pre- and postmarkers, as specified
in Table 1).

After training, participants were tested on how well they had learned
the noun meanings, the form categories and the semantic categories. For
all three tests we used an acoustic forced-choice task in which participants
saw an image on the screen and heard two possible sentences, of which
they had to choose the one which sounded more correct to them (see Figure
5). In the Noun Test, the correct sentence contained a noun that matched
the presented image and the incorrect sentence contained another noun
from the same noun class. In the Form Category Test, there was no image
presented on the screen and the sentence contained an unknown noun;
the marker (depending on the condition the premarker or the pre- and
postmarker) either matched the stress pattern of the noun or not. In the
Meaning Category Test, an image of a new object of one of the semantic
categories was presented on the screen and the sentences contained a
new noun. The correct and incorrect sentence option differed in whether
the marker matched the semantic category of the object or not.
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2.3. Results

Figure 6 and A1 show the results of the three forced-choice tasks in com-
parison with the data from the same tasks in the experiment in Chapter 3.
Overall, accuracy after double marking was comparable to the accuracy
after exclusive postmarking in this experiment: for learning the noun
meanings, both experiments show an advantage of premarking over dou-
ble marking and exclusive postmarking, respectively (see Figure 6a); for
learning the form categories, the present data shows a double marking
advantage instead of a postmarking advantage (see Figure 6b). It was
only when it came to learning the semantic categories that the results
from the two experiments differed: while in the previous experiment,
no difference between marking conditions was found, the present data
showed an advantage of premarking over double marking for learning to
categorize nouns into noun classes by meaning (see Figure 6c).

Note that the results shown in Figure 6 are only from trials in which
correct answer options preceded incorrect answer options in the forced-
choice task (an effect also present in Chapter 3). This was because the
order of answer options had a significant effect on participants’ choice.
Apparently, forced-choice trials in which incorrect answers appeared as
the first choice were more difficult for participants to judge. In particular,
performance in the Form Category Test was at chance level in both training
conditions for trials in which incorrect answers preceded correct answers,
while the difference between training conditions in the Noun Meaning
Test disappeared and the Noun Test was not affected by this factor (see
Figure A1). We will discuss details of this effect below.

The accuracy data of the three forced choice tests was analyzed with
generalized additive mixed-effects regression modeling (Wood, 2011,
2017). We built two models predicting accuracy, one comparing the Form
and Meaning Category Tests and one investigating the Noun Test3. The
models had been constructed in an iterative backward fitting procedure
using model comparison with χ2 tests and evaluation of Akaike’s Informa-
tion Criterion (AIC, Akaike, 2011), implemented in the R package itsadug
(van Rij et al., 2017).

For the model investigating the Form and Meaning Category Tests
we tested the predictors Marking (premarking/double marking), Task

3Code and output of the analysis can be found at https://git.lwp.rug.nl/p251653/
double-marking-learning
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Figure 6. Model estimates (excluding random effects, CI ± 1SE; inverse logit
transformed; R package itsadug used for plotting) of accuracy in the a) Noun
Test, b) Form Category Test, and c) Meaning Category Test in the present ex-
periment and the experiment presented in Chapter 3. Mean measured accuracy
by participants are presented as dots. Note, that these are only the results for
forced-choice trials in which correct answer options preceded incorrect answer
options. For the results for incorrect answer options preceding correct answer
options, see Fig. A1.
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(form/meaning) and Target Position in the forced-choice tasks (correct
sentence played first/second). The random effects structure included a
random intercept for items (pairing of target sentence and picture) and
participants, and random slopes for Task and Target Position by participant.

As in the experiment in Chapter 3, the best-fitting model comparing
the Form and Meaning Category Tests included a significant three-way
interaction of Marking, Task and Target Position (χ2(1)=4.089, p=.004;
AIC difference: -4.49; compared to a model with only two-way interac-
tions). In the Form Category Test we found a double marking advantage
in the same direction as the postmarking advantage in the experiment
of Chapter 3 (see Figure 6b): while accuracy did not differ from chance
level after premarking training (βIntercept=0.20, SE=0.23, z-value=0.85,
p=.398), accuracy was significantly higher after double marking training
(βDoubleMarking=0.64, SE=0.33, z-value=1.97, p=.049). In the Meaning
Category Test we found a reversed effect (see Figure 6c): premarking
accuracy was significantly higher than chance (βMeaning=1.34, SE=0.30,
z-value=4.49, p<.001) but double marking accuracy was lower than in
the Form Category Test (βDoubleMarking:Meaning=-1.34, SE=0.41, z-value=-
3.25, p=.001). A relevelled model showed that this premarking advantage
in the Meaning Category test was significant with double marking accuracy
being lower than premarking accuracy (βDoubleMarking=-0.70, SE=0.30,
z-value=-2.34, p=.019).

Furthermore, also in this experiment, Target Position had an influ-
ence on participants’ performance in the Form and Meaning Category
test. Firstly, we did not find a premarking advantage in the Meaning
Category Test when correct answers were presented as the second answer
option (βDoubleMarking:Meaning:2nd=1.22, SE=0.44, z-value=2.78, p=.005).
Second, a relevelled model showed that the double marking advantage
for the Form Category Test was not present when correct answers were
presented second (βDoubleMarking=0.40, SE=0.30, z-value=1.33, p=.183).

For the accuracy data from the Noun Test we included random inter-
cepts for participants and pictures as well as a random slope for Target
Position. We tested the predictors Marking, Target Position, Stress (on
first/second/prefinal syllable), Frequency (3, 4, 6, 8, 11, 16, 23, 32) of
nouns during training, and whether a picture in the test was new (New,
levels: new/old).

The best-fitting model investigating the Noun Test data showed main
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effects of the predictors Marking (χ2(1)=4.944, p=.002; AIC difference:
-1.68), Stress (χ2(2)=3.971, p=.019; AIC difference: -2.50), Frequency
(χ2(2)=5.894, p=.003; AIC difference: -2.83) and New (χ2(1)=2.109,
p=.04; AIC difference: -0.39). The predictor Marking showed a premark-
ing advantage in the Noun Test, thus again an effect in the same direction
as in the experiment of Chapter 3 (see Figure 6a): after premarking train-
ing accuracy was significantly higher than after double marking training
(βPremarking=1.30, SE=0.41, z-value=3.17, p=.002), similar as compared
to postmarking training in Chapter 3’s experiment. For Stress we ob-
served that when nouns were stressed on the prefinal syllable, they were
learned more accurately compared to nouns stressed on the second sylla-
ble (βSt ress3=0.78, SE=0.30, z-value=2.65, p=.008). Furthermore, accu-
racy increased linearly with increasing Frequency (χ2

F requenc y(1)=12.28,
p<.001). The predictor New turned out to be confounded with how much
the frequency between the target and the lure differed (close: difference of
1 step in frequency/far: difference of 3 steps in frequency): always when
the frequency between the target and the lure differed more (e.g., target
with frequency of 23 and lure with frequency of 8), always a new picture
was shown. In trials in which new pictures were shown and the frequency
difference between target and lure was larger participants responded
more accurately (βNew/F requenc yDi f f erence=0.65, SE=0.32, z-value=2.03,
p=.043).

2.4. Discussion

The comparison with premarking training showed that double marking in
this study led to similar effects as exclusive postmarking in the experiment
reported in Chapter 3. In particular, we replicated the two main effects of
category structure (i.e., whether the categories were confusable or easily
discriminable) and level of abstraction (i.e., whether noun categories or
single noun meanings had to be learned) from Chapter 3: on the one hand,
regarding category structure, we found an advantage of double marking
— or in other words, an advantage of added postmarking — for learning
to discriminate the confusable stress categories but not for learning the
distinct meaning categories; on the other hand, we observed a premarking
advantage for learning single noun meanings contrasting the postmarking
advantage for the higher-level form categories.

Notably however, in the present experiment, we found an advantage
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of premarking over double marking not only for learning single noun
meanings but also for learning the meaning categories. This contrasts with
the previous experiment, in which we had found no difference between
training conditions in the Meaning Category Test. Although we did not
observe this effect in the behavioral experiment reported in Chapter 3,
the effect appears to be in line with one of the two error-driven learning
simulations presented in Chapter 3 (i.e., Simulation 1), which modeled
the learning of form and meaning categories with premarking and with
postmarking. This simulation shows a shift from a small postmarking
advantage to a small premarking advantage for learning to discriminate
the distinct meaning features with increasing numbers of training trials.
This effect of training duration emerges because postmarking at first drives
faster learning of the meaning features, but later limits the increase of
weights of single cues due to cue competition, while in premarking cues
are competing less, and therefore weights of single cues can increase
towards a higher asymptotic level (for further details, see comparison of
weight development in Figure 3 in Chapter 3. Thus, according to this
simulation, we should have found a similar effect on learning the meaning
categories in the present experiment and the one reported in Chapter
3, given that participants were trained on the same number of training
trials in both experiments. We can only speculate why we found different
effects in the two experiments: perhaps the effect of training duration
might be dependent on individual participants’ learning rate, and/or it
might not be very stable, also given that the effect disappeared in trials in
which incorrect answers were presented as the first answer option.

Furthermore, as in the previous experiment, the order in which the two
options in the acoustic forced-choice task were presented (i.e., whether
the correct or incorrect sentence was presented first) affected the accuracy
in the Form and Meaning Category Test. When targets appeared as the
second answer option, the effect of marking order in these two tasks was
leveled out. In Chapter 3 we had suggested that the nature of the auditory
forced-choice task might be the cause of this effect. Different from a visual
forced-choice task, the two answer options were presented acoustically in
close succession, restricting the time window in which participants could
process each answer option. Assuming that correct answer options were
processed quicker than incorrect options (as, e.g., suggested by Mirault
& Grainger, 2020), this probably posed a larger problem for participants
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when the incorrect answer option came first and could not be processed
completely to be compared to the second answer option. Our finding, that
performance in the presumably easier Noun Test was not affected by this
factor suggests that the difficulty of the task might modulate this effect.

In conclusion, compared to premarking, double marking seems to
have similar linear order effects on category learning as postmarking,
modulated by both category structure and level of abstraction. In the
following we will discuss how we can interpret these results regarding the
possible learning processes present when noun classes are marked with
premarkers and postmarkers at the same time.

3. General Discussion
At first glance, double marking in noun class paradigms, with one marker
preceding the noun and one following it, might appear to be redundant.
Accordingly, it might seem puzzling that many natural languages never-
theless employ double marking. Yet, evidence from artificial language
learning experiments suggests that premarkers and postmarkers have
different, complementary functions for language learning: while post-
marking has been found to be important for category formation, as it
benefits learning to discriminate feature dimensions that determine cate-
gory contrasts, premarking is more important for preserving subordinate
category contrasts during learning, in that it can focus attention on the
contrasts between items within a category (see, e.g., Arnon & Ramscar,
2012; Nixon, 2020; Ramscar, 2013). In this study we investigated how
these distinct processes triggered by pre- and postmarking interact when
they appear together in a double marked noun class paradigm.

First of all, our results suggest that the processes triggered by pre- and
postmarking do not run in parallel during training, as participants didn’t
show benefits of both marking types (which would rule out Hypothesis
A). Instead, we observed that compared to the premarking condition,
learning results after double marking showed a similar pattern as the
learning results after exclusive postmarking in the experiment in Chapter
3: double marking training seemed to benefit learning the confusable form
categories while exclusive premarking training increased performance in
learning the noun meanings. This pattern of results suggests that at least
initially during double marking training, learning processes triggered by
postmarkers have more influence on learning, while premarkers have less
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of an effect (which would be in line with Hypothesis C, and rules out
Hypothesis B).

This findings is in line with a discriminative conceptualization of the
learning process. First of all, discrimination is a process which is assumed
to proceed from coarse to more detailed levels of abstraction (see Chapter
2, as well as Ramscar, Dye, & McCauley, 2013; Ramscar et al., 2010). In
line with this idea, learners in the double marking condition seem to first
focus on learning the higher-order category contrasts such as the form
and meaning categories, instead of starting with learning the meanings
of specific nouns. In addition, what might favor the idea that learning is
initially governed by postmarking, is that theoretically premarkers can
better fulfill their function of reducing uncertainty about the continuation
of an utterance and its meaning with already preexisting category repre-
sentations — which are in general more easily formed with postmarking
(Nixon, 2020; Ramscar et al., 2010; St Clair et al., 2009).

It is important to note, however, that in the present experiment (as
well as in the experiment reported in Chapter 3) the meaning category
contrast was already known by the participants, which suggests that pre-
markers could be readily used to focus attention on a specific category
— essentially making postmarking redundant. The finding that learners
didn’t show benefits of premarking is therefore at odds with the fact that
their previous experience with the meaning category contrast might have
facilitated learning processes triggered by premarking, in particular learn-
ing individual noun meanings. It therefore seems that an additional factor
might have led learners to focus mostly on postmarkers in the present
experiment. Our suggested explanation for this is that they experienced a
perceptual bias towards the end of sentences. Given that the presented
artificial sentences were relatively long and complex, it seems plausible
that the beginning of each utterance was partially ‘masked’ by the subse-
quently incoming signal, which would have impeded processing of the
premarker — especially in the beginning of the training session where
all words were still unknown to learners. Notably, this kind of percep-
tual bias seems to be modulated by the experience learners have with a
specific language. In particular, evidence from sentence repetition tasks
suggests that young children show a recency bias in processing speech,
which with age turns into a primacy bias (e.g., Pineo, 2014; Sumner et al.,
2019). However, while older children fall back on the recency bias when
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confronted with novel or unknown words (Sumner et al., 2019), this has
not yet been found in adults. To conclude, it might be possible that while
the prior experience that learners had with the semantic categories should
theoretically benefit uncertainty reduction by premarkers already early in
training, the lack of experience they had with the novel language might
have impeded processing of premarkers and might have led to a focus
on postmarkers, or in other words, a recency bias. Yet, to support this
hypothesis, future investigations of these perceptual biases under different
learning conditions, for example, when confronting adults learners with
completely unknown sequences of sounds, are needed.

These considerations might also be relevant regarding differences
between learning in first and second language acquisition. Generally,
postmarking appears to be especially important for first language learners
who still need to learn all the contrasts that are relevant in their language.
However, while second language learners often can draw on their expe-
rience when category distinctions are the same in their first and second
language, for example, in the case of common semantic categories (e.g.,
“cat” in English and “Katze” in German refer to the same concept/species),
they also often need to learn new categories, for example, new phonetic
contrasts (e.g., learning Southern Min tones as a native English speaker,
see Nixon, 2020). The present experiment suggests that in the latter case,
second language learning might be determined by the same principles as
first language learning.

Furthermore, we have until now tacitly assumed that postmarking
would not completely override or suppress processes triggered by pre-
marking, an assumption that we cannot confirm with our present findings.
In order to test whether eventually learners would also show premarking
benefits for learning in the double marking condition, it would there-
fore be interesting to train participants for a longer time and see how
the learning performance changes with increasing training both in an
exclusive pre- and postmarking condition as well as in a double marking
condition. In particular, it would be interesting to see whether learners
in the double marking condition would, over time, show an increased
performance in learning the single noun meanings in comparison to an
exclusive postmarking condition.

Hence overall, the present results open up several new questions re-
garding how pre- and postmarking might be integrated in the process of
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language learning, especially when they appear together in, for instance,
a double marked noun class paradigm. Besides further experimental in-
vestigation of perceptual constraints on processing speech in an unknown
language and, in addition, of how learning proceeds over time in different
marking conditions, also computational modeling might be a useful tool
to further explore these questions. Note, however, that using simple two-
layer error-driven learning models as in Chapter 3 to simulate learning
from double marking poses a challenge, since double marking not only
involves one set of cues that temporally precedes one set of outcomes, but
instead involves a sequence of sets of items which incrementally guide
expectations about following items in the sequence. Hence, in a sim-
ulation with two-layer networks, learning processes would need to be
broken down into several sub-processes. In order to simulate the process
in one network, at least a three-layer network would be needed, in which
premarkers first activate a set of noun features and then those features
activate a set of postmarkers. Another alternative to using stand-alone
error-driven learning networks might be to employ a more general cog-
nitive architecture such as PRIMs (Taatgen, 2013) in combination with
an error-driven learning algorithm, which could be useful to simulate the
effects of perceptual constraints on the error-driven learning process.

To conclude, our finding that double marking leads to similar learning
results as exclusive postmarking when compared to exclusive premarking
suggests that postmarking, and with it the discrimination of category
contrasts, plays an important role when learners begin to learn a novel
language, particularly when new categories still need to be formed. As
such, an initial focus on postmarkers might be particularly important
during first language acquisition, but also when new category contrasts
need to be learned in second language learning, such as in the present
experiment. The finding that children exhibit a recency bias when they
are still unfamiliar with specific language materials, in that they appear to
initially focus on the end of utterances, might be a factor that supports a
learning process that starts from postmarkers. This connection, however,
still needs a more solid foundation in additional experimental research
on how language experience might affect sentence processing in adults,
perhaps in combination with additional computational modeling research.
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Appendix

A. Additional Figure
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Figure A1. Model estimates (excluding random effects, CI ± 1SE; inverse logit
transformed) of accuracy in the a) Noun Test, b) Form Category Test, and c)
Meaning Category Test in the present experiment and the experiment presented
in Chapter 3. Mean measured accuracy by participants are presented as dots.
Note, that these are only the results for forced-choice trials in which incorrect
answer options preceded correct answer options. The only significant difference
between premarking and postmarking/double marking was an advantage of
premarking for noun learning, which was present in both experiments (a).
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5
Prenominal information in

efficient communication

German and English make an interesting ‘minimal pair’ when it comes to
their management of information in the noun phrase: while both languages
position adjectives prenominally and both use articles, only German nouns
are gendered. This makes German articles more informative about upcoming
nouns than English articles. Here we used this language pair to investigate
whether speakers’ noun phrase productions follow efficient coding principles,
in particular the principle of constant entropy rate. In two online reference
production tasks we found that both article omissions and adjective omissions
were systematically dependent on article and adjective informativity, respec-
tively. We found that English speakers omitted more articles and produced
more prenominal adjectives than German speakers. Critically, we also found
that in situations in which the German article was not informative about the
target noun (i.e., when the presented target and competitor objects all had
the same gender in German), German speakers showed article and prenomi-
nal adjective proportions similar to the English speakers. We integrate our
findings into a discriminative account of communication and communicative
efficiency. We conclude from our findings that speakers produce noun phrases
that distribute uncertainty smoothly across the signal, which in turn makes
communication more smooth and efficient.

This chapter is a version of the following unpublished manuscript:

Hoppe, D.B., Gibson, E., van Rij, J., Hendriks, P., & Ramscar, M. (2022). Uncertainty
mangement in German and English noun phrases. Manuscript in preparation.
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1. Introduction
Many psycholinguistic theories assume that speakers behave efficiently as
they communicate, in that they carefully weigh production cost against
what is necessary to communicate their message to the listener (Gibson
et al., 2019; Grice, 1975; Zipf, 1949). From this perspective, a speaker
ought to say no more and no less than is sufficient to transmit the meaning
of a message in context. In the literature, this assumption has often
been tested in noun phrase production experiments, which explore, in
relatively controlled contexts, the circumstances in which speakers add
adjectives to noun phrases. An interesting finding from these studies is
that adjectives are frequently produced in situations in which the noun
could successfully communicate the intended message by itself, without
any further modification (e.g., Deutsch & Pechmann, 1982; Engelhardt
et al., 2006; Koolen et al., 2011; Rubio-Fernández, 2016; Tourtouri et
al., 2019). For example, in scenes in which the target object is the only
one of its type, e.g., when referring to a dog in a group of rabbits (see
Fig. 1), any mention of other dimensions such as size or color would
appear to be redundant. This finding seemingly contradicts the efficiency
assumption, at least when taking a classic compositional perspective on
how noun phrases communicate meaning, because this perspective would
appear to assume that an efficient noun phrase is one which contains only
those words that are required to specify or identify an intended referent.
Accordingly, in the utterance “the blue dog” the adjective “blue” would be
superfluous (as it is seen as overly specific) and the ‘minimal’ expression
“the dog” should be sufficient and thus preferred.

To account for this mismatch, it has been suggested that a simple
compositional account like this ignores the incremental nature of lan-
guage processing, and that when this is taken into account, adjectives
that appear prenominally can be seen as efficient, as they provide in-
formation about the message intended by the speaker, for example, by
discriminating a target from competitors in a set of possible referents
(Rubio-Fernandez et al., 2021). Hence, an utterance such as “the blue
dog” can in some contexts (e.g., in Figure 1) be seen to be efficient be-
cause the use of the color adjective can help the listener to search for the
referent before the noun is uttered, which in turn can facilitate the whole
communicative process. Indeed, in support of this view, a series of studies
comparing Spanish and English reference production in visual contexts
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showed that adjectives which from a non-incremental perspective would
seem superfluous are produced to a higher proportion in English, which
places adjectives prenominally (e.g., “calm sea”), than in Spanish, which
places them postnominally (e.g., “mar tranquilo”; Rubio-Fernandez, 2019;
Rubio-Fernandez et al., 2021; Rubio-Fernández, 2016; S. A. Wu & Gibson,
2021). Furthermore, listeners seem to benefit from noun phrases includ-
ing adjectives when searching a given scene for the intended referent (e.g.,
Arts et al., 2011; Rubio-Fernandez, 2021).

Figure 1. Given a visual context as shown here, should speakers produce the
utterance “the blue dog” or “the dog” and “the green rabbit” or “the green one”?

However, focusing only on the information that words provide about
messages, in particular when defined as the set of possible referents, seems
to raise other problems, not the least being that one might argue that in
order to guide communication to refer to the green rabbit in Figure 1,
“green” should be sufficient. This then raises the question why the noun
“rabbit” is not now redundant in this context (and should, for example,
be substituted by “one”). Similarly, instead of merely questioning the
efficiency of prenominal adjectives, one might also query the necessity of
adding the article “the” to the phrase “the dog”. While these objections
might not be fatal to this particular account of communicative efficiency,
— answering them will depend on what the words “green” or “the” are
supposed to be communicating in this context — they do help to illustrate
some of the problems inherent in the whole idea of communicative effi-
ciency itself. These problems are easily summarized; because they boil
down to the fact that there is little agreement in the literature on what
‘messages’, ‘content’, or ‘meaning’ actually are, or indeed on how they are
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‘communicated’.
Here, we explore the processes associated with communication from a

discriminative perspective. This view conceptualizes communication as
a process of incremental uncertainty reduction, in which speakers and
listeners rely on a shared system of probabilistic relations between speech
signals and intended messages, similar to a code in artificial communi-
cation systems (Ramscar, 2019, 2021; Shannon, 1948). Crucially, from
this perspective, words are assumed to incrementally guide (and restrict)
expectations about not only the message (i.e., the environment) but also
the signal. Hence, while most accounts of reference production focus on
content words, which are commonly conceptualized as direct pointers to
specific (sets of) referents, this account blurs the traditional distinction
between content and function words by also considering the information
that words provide about the upcoming signal. Consider, for example,
gendered articles. In languages in which nouns are gendered, such as
German, gendered articles can be informative about following nouns and
corresponding states of the world that can be expected when hearing
these nouns, in much the same way as we shall suggest that prenominal
adjectives do: the neuter article “das” in German predicts that only a
neuter noun can follow, for example, “Meer” (sea) but not “Sand” (sand)
or “Sonnenschirm” (parasol). This is no different from the way that a
prenominal adjective can serve to predict a subset of nouns that are likely
to follow it, such as the English “calm” can predict “sea”, “person”, or “mu-
sic”, while hardly anyone would expect nouns such as “sand”, “parasol”,
or “sunglasses” to follow this adjective.

In what follows, we will examine whether by guiding expectations
about the upcoming signal in this way, traditional function words con-
tribute to efficient communication of messages in a similar way as tradi-
tional content words do. To do this, we will investigate the communicative
function of articles and prenominal color adjectives by comparing noun
phrase production in German and English, two languages which both place
adjectives prenominally but which differ in that only German articles (and
prenominal adjectives) are gendered

(1) a. Hast du die rote Sonnenbrille?
Have you the.FEM red.FEM sunglasses

b. Hast du den roten Sonnenschirm?
Have you the.MASC red.MASC parasol
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(2) a. Do you have the red sunglasses?
b. Do you have the red parasol?

Seen from a discriminative perspective, the distribution of information
in German and English noun phrases differs as a result of this typological
difference. In German both articles and prenominal adjectives are informa-
tive about following nouns, whereas in English articles are, as compared
to German articles, relatively uninformative and most information about
following nouns is provided by prenominal adjectives. Evidence that En-
glish corpora contain more prenominal adjectives than German corpora
(Dye et al., 2018) suggests that the different distribution of information in
English and German affects noun phrase production in the two languages:
while German speakers have the option of using articles and prenomi-
nal adjectives to reduce uncertainty about nouns, English speakers are
constrained to prenominal adjectives. Building on these findings, we will
explore how the test case of German and English noun phrases can offer
further insights into when and why speakers add prenominal adjectives
to noun phrases and, more generally, into some of the principles that
govern communicative efficiency. We suggest that both an incremental
view on language processing (which is also assumed by many other lin-
guistic theories, e.g., De Hoop & Lamers, 2006; Nieuwland et al., 2010;
Steedman, 2001) and a discriminative approach to the function of words
— in particular, that they can also provide information about the signal
— are key to explaining noun phrase production patterns in these two
languages.

1.1. What do articles communicate?

Many psycholinguistic accounts of reference production differ fundamen-
tally from the present discriminative account in the way in which they
conceptualize messages and, as a result, in how they view the role of
articles and prenominal adjectives in communication. In particular, many
of these accounts operate on word forms in relation to sets of referents
(e.g., Degen & Franke, 2012; Frank & Goodman, 2012; Rubio-Fernandez
et al., 2021). This means that they mostly focus on content words, such as
adjectives, which are assumed to be pointers to specific referents, for ex-
ample, the adjective “green” could be assumed to refer to the set of green
objects. Messages are, thus, directly defined as the reference of a word.
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Usually, in these kinds of referential accounts, those ‘word meanings’ are
assumed to be stored in a lexicon of form-meaning pairs, which speakers
use to select a combination of forms based on the meaning they intend to
transmit and which listeners use to decode a string of forms to infer the
intended meaning, for example, to identify objects in the environment
carrying the feature denoted by a given adjective, such as “green”. How-
ever, ‘function’ words, such as articles, are often disregarded within these
referential frameworks because the referential relation to the world is
much less clear for these words. To be able to account for evidence that,
for example, not only prenominal adjectives (e.g., Rubio-Fernandez, 2019;
Tourtouri et al., 2019) but also articles (e.g., Lew-Williams & Fernald,
2007) have been found to guide visual search, such accounts need to
revert to additional processes by which function words contribute to the
message of an utterance.

In contrast, the discriminative perspective suggests a more direct ex-
planation for these findings by integrating the function of all word types
into the same process of communication. In particular, it assumes that
languages systematically capture modality-agnostic predictive relations
between and among speech signals and the world, and that people learn
these patterns of relations by encountering signals and messages in con-
text. That is, speakers and listeners are assumed to converge on a set
of expectations learned from their experiences — a discriminative code
— which they use to incrementally narrow the search space of possible
relationships between a signal and a message by increasingly eliminating
alternative relations with every incoming new bit of information.

First of all, it is important to note here that the idea that words elim-
inate sets of alternatives is fundamentally different from the idea that
words act as pointers to some kind of target (e.g., referents). Moreover, as
it is assumed to be modality-agnostic, the discriminative code does include
(see e.g., evidence by Federmeier & Kutas, 2001) but is not confined to
relations between signals and events or states of the world, such as the
form-meaning pairs in a compositional lexicon (i.e., “dog” - some kind of
dog object). Critically, language users are assumed to also learn expec-
tations between events or states of the world and, as will be crucial for
our present hypotheses, between parts of the signal used to communicate
about them. Thus, depending on the specific code, both a gendered article
such as the German neuter article “das” and a prenominal adjective such
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as “red” can potentially eliminate alternatives, for example, the former
can exclude masculine and feminine nouns from the search space, and
the latter can exclude nouns that are unlikely to be preceded by “red” or,
generally, by a color adjective. Indeed, language users have been found
to make predictions about words based on previous sentence context (as,
e.g., in van Berkum et al., 2005; Willems et al., 2016) and, specifically, also
about nouns based on a preceding article (e.g., DeLong et al., 2005; Wicha
et al., 2004) or a preceding adjective (e.g., Lau et al., 2016; Tribushinina
& Mak, 2016). Moreover, experimental evidence indicates that children
seem to learn to use articles and adjectives to facilitate noun processing
at around the same age (compare Fernald et al., 2010; Lew-Williams &
Fernald, 2007), which further suggests that both word types are used in a
similar way.

The idea that language users learn to expect parts of upcoming signals
and intended messages based on multi-modal cues from both the speech
signal, the situational and the message context, in turn points to a far
more abstract conceptualization of what a ‘message’ is in communication.
The learning process by which linguistic codes are learned is essentially
one which comes to represent both signals and the world in a way that
they can best predict sequential relations between abstractions over the
signal (on different levels of granularity, e.g., on the phonological level:
Baayen, Shaoul, et al., 2016; Nixon, 2020; Nixon & Tomaschek, 2021;
Ramscar & Port, 2016; the morphological level: Chapter 3 of this thesis;
Ramscar, 2013; or the argument level: Ramscar, 2021) and over states of
the world (see, e.g., Ramscar et al., 2010). Thus, while a message can
be a rather concrete representation, such as of the type of animals that
can be expected after hearing the word “dog”, it can also correspond to a
more abstract representation, such as of a set of German nouns or states
of the world that can and cannot be expected after hearing the feminine
article “die”1. This means, in particular, that messages might not always be
clearly separable from signals, as a message can also consist of or include
a representation of the expected upcoming signal. Accordingly, while
this more abstract and highly context-dependent conceptualization of
messages resolves some of the problems associated with assuming specific
and concrete meanings (Ramscar & Port, 2016), it also predicts that

1For a discussion of how representations on different levels of abstraction are assumed
to be formed during a discriminative learning process see, e.g., Chapter 2 of this thesis
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prenominal adjectives and articles have a similar role in communication,
namely to reduce uncertainty, or, in other words, guide expectations about
the continuation of the signal, states of the world, speaker intentions, or
abstract representations of all of the latter. As it will be crucial for our
present purposes, the exact nature of these expectations are defined by a
given code, that is, the experience of a language user with a language.

1.2. Uncertainty reduction in efficient communication

In order to quantify uncertainty in a communication system, information
theory adopts the measure of entropy (Hartley, 1928; Shannon, 1948).
Entropy is defined as the average predictability of choosing an option from
a set of items given their probability distribution and it can, therefore,
capture the uncertainty at a given point in the signal about possible con-
tinuations given previous context up to that point. This can be especially
useful when comparing the predictability of possible sentence continua-
tions at different points in the signal. For example, the uncertainty about
possible continuations after hearing “Could you please give me...” could
be captured by the entropy over the conditional probabilities of the set
of determiners, while after hearing “Could you please give me the...” it
could be approximated by the entropy over a plausible set of adjectives
and nouns.

High entropy is associated with a highly unpredictable choice. This
means that entropy typically increases as the size of a set increases (or as its
distribution makes individual items more equally predictable). Therefore
in noun phrases, the entropy of a set of nouns (without preceding context)
is usually quite high, while the set of articles in languages such as English
and German have a relatively low entropy and prenominal adjectives can
be located somewhere between articles and nouns. Together with the fact
that articles and prenominal adjectives can incrementally restrict possible
sentence continuations, and thus decrease the set of possibly following
nouns, it appears that, empirically, German and English noun phrases are
structured in a way which systematically redistributes entropy over the
course of the signal (Dye et al., 2018).

Both production and comprehension have been found to be affected
by predictability. In comprehension, evidence suggest that listeners are
able to anticipate an intended referent given previous sentence context
(e.g., Altmann & Kamide, 1999; Eichert et al., 2018) and that high word
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predictability comes with decreased reading times (e.g., Ehrlich & Rayner,
1981; Kliegl et al., 2004; McDonald & Shillcock, 2003). Also production
appears to be facilitated by decreased uncertainty: picture naming, for
example, has been found to be positively affected by previous context,
in fact, even more than reading times (Gollan et al., 2011; Hintz et al.,
2016); moreover, children appear to be able to produce more correct
irregular plurals in familiar sentence-frames (Arnon & Clark, 2011). Thus,
if we assume that processing is easier when things are predictable and
harder when things are unpredictable, then it follows that avoiding high
peaks in entropy, for example, before a noun comes up in the signal, might
be highly beneficial when it comes to ensuring fluent communication.

From an information-theoretic perspective, incremental entropy re-
duction in the signal is a critical strategy when it comes to making source
codes more efficient (Shannon, 1948). On the one hand, it reduces signal-
ing cost, as entropy peaks in the signal can be avoided and, in addition,
code words can be reused in different conditioning contexts such that the
overall set of code words required in a given system can be minimized (it
has been argued that ambiguity in natural languages serves a similar func-
tion when it comes to systematically optimizing communication efficiency,
see Piantadosi et al., 2012). This in turn allows entropy to be distributed
over signals so that it is possible to design systems that, on average, stay
close to the maximal entropy tolerated by their hardware (in information
theoretic terms, the channel capacity) such that all available resources can
be used while error is kept low (see also Aylett & Turk, 2004; Fenk & Fenk,
1980; Fenk-Oczlon, 2001; Jaeger, 2010; Levy & Jaeger, 2007). Although
measuring entropy conditioned on preceding context in natural speech is
challenging, because human communication is highly context-dependent
and because (non-linguistic) context itself is quite challenging to quantify,
there is at least some evidence that natural languages appear to distribute
entropy in this way (this is sometimes called the principle of entropy rate
constancy), as it has been shown that the entropy of unconditioned word
alternatives reliably increases over the course of sentences, passages, and
texts (Genzel & Charniak, 2002).

To return to our discussion of communicative efficiency in German
and English noun phrases, these considerations lead to clear predictions
about the structure of efficient noun phrase codes in German and En-
glish. We could, for example, consider a code which always produces
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noun phrases without prenominal adjectives: while we would expect
that German articles can keep the potentially high entropy of following
nouns mostly within bounds, English noun phrases would be more likely
to risk overshooting the channel capacity right before the noun — partic-
ularly when the current context leaves uncertainty about the noun at a
high level. In contrast, a code which always places both an article and a
prenominal adjective before each noun would probably decrease entropy
in English to a manageable limit in most cases. In German, however, it
would lead to a frequent underuse of the channel capacity, in particular
after an informative article that already sufficiently decreases noun en-
tropy. Ultimately, only a code that takes article informativity into account
can balance entropy efficiently over the course of German and English
noun phrases by avoiding both overshooting and underuse of the channel
capacity. This means that overall, since in English article informativity is
relatively low, English should produce more prenominal adjectives than
German. However, also in German, articles can not always sufficiently
decrease uncertainty about the noun: for example, in situations in which
most possible noun continuations have the same gender, prenominal ad-
jectives need to be added before the noun to prevent overshooting channel
capacity.

These considerations highlight another factor, which is critical for our
exposition of communicative efficiency: the non-linguistic context. In
particular, since words are conditioned both on words and on the envi-
ronment, a discriminative notion of efficiency needs to be conceptualized
as a function of both the signaling system and its relation to the environ-
ment. The informativity of a German article, for example, is determined
by properties of the environment: if there are only objects of one gender
in a scene, the article won’t be informative; however, if the gender of
objects is mixed, the article would be informative. Accordingly it is not
only the ability of German articles to hypothetically reduce uncertainty
about upcoming nouns, but, in fact the information they provide in con-
text which determines whether they can efficiently reduce uncertainty or
whether an additional prenominal adjective is needed in order to facilitate
communication.

It is worth adding that this notion of communicative efficiency is clearly
different from what has been suggested by previous referential accounts.
On the one hand, both accounts roughly agree on how the environment
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and word order influence the information that adjectives can provide
about an intended message: both assume that adjectives are more useful
in facilitating communication when they appear prenominally and that
prenominal adjectives are especially needed in more complex scenes to
reduce uncertainty about the target noun and object (see e.g., Rubio-
Fernandez et al., 2021). However, given that referential accounts take into
account only the information that words provide about a specific target
object, makes it difficult for them to assess the contribution of articles to
efficient communication — unless they find a way to integrate gendered
articles into the referential process. Since both German and English place
adjectives prenominally and properties of the environment are factors
independent of the specific language, this account would predict that a
code that is efficient in German should therefore be equally efficient in
English. Thus, in fact, what distinguishes the discriminative notion of
communicative efficiency from previous referential accounts is not only
that it extends the concept of efficiency from content to function words,
but also that in doing so it assumes that cues from the signal (e.g., articles)
and the environment (e.g., the current scene) interact in determining the
efficiency of words, such as prenominal adjectives.

1.3. The present study

The aim of the present study is to examine whether speakers manage
uncertainty reduction when producing noun phrases in a reference pro-
duction task. In particular, we seek to investigate whether Dye et al.’s
(2018) finding that English copora contain more prenominal adjectives
than German corpora is due to speakers’ sensitivity to the informativity of
the linguistic context that precedes nouns, in particular, the informativity
of articles and prenominal adjectives. Because a corpus-based study is lim-
ited in offering behavioral evidence and cannot account for non-linguistic
context, we created an experimental setting in which we manipulated
article informativity in context.

We adapted the paradigm used by Rubio-Fernandez et al. (2021) and
S. A. Wu and Gibson (2021) in which participants are asked to produce
a reference for one of four different shapes that also differ in color (i.e.,
that are discriminable both by shape and by color). Following Dye et
al. (2018) we compared German and English speakers’ propensity to
produce prenominal color adjectives. We expected that English speakers
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would make up for the lack of informative articles by producing more
prenominal adjectives. However, in order to show that speakers are indeed
sensitive to uncertainty in the signal and to ensure that the difference
observed between the two languages is not due to an unknown structural
difference but indeed to the differing informativity of the article, we also
manipulated informativity of the German article with the aim of observing
a context-specific increase or decrease in prenominal adjective production
in German. Specifically, we predicted (as also specified in a preregistration
of this study2):

1a When German articles are informative in context, in that the target
shape has a different gender than the competitor shapes, German
speakers will produce fewer prenominal color adjectives than the En-
glish speakers, for which articles are always (mostly) uninformative
about the shape.

1b When German articles are uninformative in context, in that the
target shape has the same gender as the competitor shapes, German
speakers will produce as many prenominal color adjectives as English
speakers.

If speakers do indeed behave as we predict, we can conclude that
speakers produce efficiently structured noun phrases, in which uncertainty
is distributed over time in order to balance the risk of communication
errors and increased processing cost due to high information load with
the invested cost in the form of additional words.

2. Pilot study
Before running the first experiment according to our preregistered plan2,
we performed a pilot study to test the intended experimental paradigm,
in which participants had to complete the sentence “Please click on ...” in
written form with a reference to a shape marked on an image showing
four different shapes (see Section 3.2 for a detailed description of the task
later employed in the two main experiments). Contrary to our initial naive
expectation that participants would produce fully grammatical sentence
completions, we observed in 20 English and 42 German pilot participants

2For our preregistration refer to https://osf.io/bskuc.
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that, frequently, English as well as German speakers omitted the article,
which often yielded sentences such as “Please click on red cross” (or in
German: “Bitte klicke auf rotes Kreuz”; underlined text produced by par-
ticipants). In addition, prenominal color adjective proportion seemed to
depend on the presence of an article: speakers appeared to have produced
more prenominal adjectives after produced articles than after omitted
articles.

Based on these observations we formulated two additional research
questions which we aimed to test in an additional experiment, taking into
account not only how our manipulation of article informativity affected
the proportion of produced prenominal adjectives but also the proportion
of produced articles. First, article omissions would be consistent with a
discriminative view if they occur when the article is not informative in
a given context, such as in the German uninformative and the English
condition, as in these cases the article cannot reduce uncertainty about
the target shape and noun. We therefore predicted:

2a German speakers will produce more articles when they are informa-
tive about the intended shape than when they are not.

2b German speakers will produce more articles in contexts where arti-
cles are informative about the intended shape than English speakers
(where articles are always relatively uninformative).

Second, regarding the question whether adjective production will be
affected by the presence of an article, we need to consider the information
that articles provide about following adjectives in the two languages.
Under closer inspection, in German, a gendered article does not only
reduce uncertainty about the following noun but also about the following
adjective, as prenominal adjectives are gendered in German (see example
(1)). In particular, the article (e.g., “den”, acc. m.) provides information
about the gendered form of a following adjective (e.g., on “den” only the
adjective “roten” but not “rote” can follow). In contrast, in English no
such relation exists between articles and following adjectives. Thus, while
in German the set of possible adjective forms after a missing article is
larger than after a produced article (see Table A3), this is not the case in
English. This means that given that entropy increases with set size, the
entropy about a following adjective in German should be lower after an
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article than without one. Further assuming that entropy affects production
fluency, German speakers might therefore have more problems retrieving
and producing a color adjective without a preceding article. Consequently,
seen from a cost-benefit perspective, the cost of producing an adjective
increases when no article is produced, which in turn decreases the benefit
gained by retrieving it to reduce uncertainty about the following noun.
Critically, a speaker can always either retrieve a noun directly based on
contextual cues other than a preceding adjective (e.g., in the present
experiment, participants knew that they had to produce shape nouns
and were presented with images of shapes) or the speaker can ‘invest’
in producing a preceding adjective and use it as an additional cue to
facilitate noun retrieval. This means that in situations in which a German
speaker omits the article, the relative cost of directly retrieving the noun
as compared to facilitating noun retrieval by retrieving the adjective first
might be reduced. Accordingly, we further predicted:

3a German speakers in both conditions will produce fewer prenominal
color adjectives after an omitted article than after a produced article.

3b English speakers’ prenominal color adjective production will be less
affected by the presence of articles.

Thus, in sum we set out to test three effects of article informativity
on noun phrase production: first, we predict that speakers produce more
prenominal color adjectives when they are preceded by uninformative
articles (Hypothesis 1); second, we predict that they omit more uninfor-
mative articles than informative articles (Hypothesis 2); and third, we
predict that when articles are omitted, German speakers will produce
fewer adjectives (Hypothesis 3). We investigated these hypotheses as
follows: in Experiment 1, we examined Hypothesis 2 and 3, the effects of
our manipulations on the production of articles, before examining Hypoth-
esis 1 in Experiment 2, where we explicitly asked participants to produce
grammatical noun phrases.

3. Experiment 1
This experiment served to test Hypotheses 2 and 3 by eliciting noun phrases
in a sentence completion task from English and German participants,
comparing both German and English overall as well as German participants
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in situations in which gendered articles are informative about the target
objects with German participants in situations in which gendered articles
are not informative about the target objects.

3.1. Participants

We tested 100 US-based native speakers of English and 200 native Ger-
man speakers living in Germany recruited on Prolific, for a reward of £
0.50 given an estimated completion time of 4 minutes (in reality, mean
completion time was 154 s; range = 45-1488 s). We excluded one English
participant who did not produce noun phrases.

3.2. Procedure

The task participants had to perform was a written sentence completion
task, similar to S. A. Wu and Gibson (2021). Each participant completed
five trials as depicted in Figure 2. Participants were asked to complete the
sentence “Please click on ...”.

Before the start of the experiment, participants were instructed to
produce a description of the indicated shape, such that someone else
could identify this shape in the same image without the marking. We
stressed that the four shapes in the four images were always different. The
experiment was implemented in Qualtrics and could only be performed
on a desktop computer or laptop.

3.3. Stimuli and Design

As stimuli we used arrays of four geometrical shapes drawn from a list of
nine shapes, with which we could cover two of the German genders as
listed in Table A1 (there are only few feminine shape nouns, we therefore
only used masculine and neuter shapes). The shapes were colored in one
of nine colors as shown in Table A2. The four shapes in an array were
combined in a 2x2 grid, with one marked with a red box as the target to
be described (see Table 1).

Table 1 shows how the shapes were combined to form the stimuli
for the three experimental conditions, which we tested between partici-
pants. Our aim was to create two types of arrays: one type in which the
German gendered article would be informative about the target shape
(different-gender shape arrays), and a second type in which German arti-
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a) Instruction Experiment 1:

Complete the sentence with a description of the �gure boxed un red so that someone else 

can identify it without the box later.

Please click on ...

b) Instruction Experiment 2:

Complete the sentence so that someone else can identify the �gure boxed in red without 

the box later. Please make sure that the whole sentence is grammatically correct!

                "Please click on "

Figure 2. Sample trial with instructions from a) Experiment 1 and b) Experiment
2.

cles would not be informative about the target shape (same-gender shape
arrays). These two types of shape arrays were directly aligned with the
two German conditions: participants in the German informative condition
were presented with different-gender shape arrays, and participants in the
German uninformative condition with same-gender shape arrays. Regard-
ing our English condition it is important to note that the English definite
article is uninformative about noun categories such as grammatical gender,
thus definite English articles would be uninformative in both shape array
types3. As everything except the shape of the competitors was kept con-

3Note that the indefinite article does subdivide English nouns as, for example, “arrow”
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stant between the two shape array types, we did not expect a difference
in English answers between these two conditions. We therefore presented
only one type of array to English participants and chose different-gender
shape arrays to be able to directly contrast the English condition with the
German informative condition.

Between the two shape array types, position and color of the target
as well as the colors of the competitors were kept constant, hence, only
the form of the competitor shapes was manipulated (see Table 1). In
different-gender shape arrays, the target was either commonly denoted by
a neuter German noun and the competitors by masculine German nouns,
or the reverse. In same-gender shape arrays, all four shapes were either
commonly denoted by neuter German nouns or by masculine German
nouns. Shape positions and colors were randomly determined with the
constraint that each shape and each color appeared twice as a target in
the stimulus set of each condition. Crucially, both color and shape were
always unique in an array, meaning that both color adjectives and shape
nouns would, independently of each other, be fully informative about the
target shape. This yielded 18 stimuli for both different- and same-gender
shape array types (in total 36 stimuli), with different-gender shape arrays
being presented in the German informative and the English condition and
same-gender shape arrays being presented in the German uninformative
condition only.

Finally, five experimental trials for each participant were drawn ran-
domly from the list of 18 stimuli created for each condition, with the
restriction that each participant was seeing five different target shapes.

3.4. Analysis

We had initially set out to analyse article and prenominal color adjective
proportions with logistic linear mixed regression models (see also in pre-
registration). The data, however, turned out to be problematic for this type
of regression model. Given that most participants were quite consistent in
producing or not producing both articles and prenominal color adjectives
(see Figure 3), the models generated overconfident random participant
intercepts with a very high standard deviation (e.g., SD = 23.45 for the

would be preceded by “an” but “star” by “a”. However, this should not have affected
our results, given that in the present experiments participants mainly (in 95% of trials
in Experiment 1 and in 99% of trials in Experiment 2) produced definite articles.
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Table 1. Example trial in the three experimental conditions.

Condition Image Target Competitors

German
informative

das Kreuz, n.
den Ring, m.
den Pfeil, m.
den Kreis, m.

German
uninformative

das Kreuz, n.

das Rechteck,
n.
das Dreieck,
n.
das Herz, n.

English
uninformative

the cross
the ring
the arrow
the circle

Note. In the German informative condition competitor nouns have a dif-
ferent gender from target nouns and therefore also take different articles
(here given in the expected accusative form: “das” for neuter nouns and
“den” for masculine nouns. Images used in the English condition were
always the same as in the German informative condition.

model estimating the log odds of the probability of producing an article).
This led to extremely large fixed effect coefficients (e.g., log odds ranging
between 10 and 20 or −10 and −20, respectively, which corresponds to
a probability of either 0 or 1), predicting either a floor or ceiling effect
for the experimental conditions. Moreover, residuals were close to zero
for a large part of the data (see supplementary materials4). We there-
fore concluded that the models with random participant intercepts had
difficulties fitting the data. Instead, we performed a simpler analysis in

4https://osf.io/x2cmj/
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which article and color productions and omissions were either aggregated
by participant or by item (similar as in an F1 and F2 analysis, see, e.g.,
H. H. Clark, 1973) and then analysed in a generalized linear model (GLM)
without random effects.

a) Consistency in article use 
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Figure 3. Histogram of counts of a) articles and b) prenominal color adjectives
produced per participant in the five experimental trials of Experiment 1. Most
participants either consistently produced or omitted articles as well as consistently
produced or omitted prenominal color adjectives.

3.5. Results and Discussion

First of all, we found that the participants had mostly produced shape
nouns that we had intended and, in most cases in which they had pro-
duced a different target noun, the German gender matched the gender
of the intended noun, such that our manipulation of article informativity
remained valid (see Table A1). Also the color adjectives were mostly pro-
duced as we had intended. There was only some variation for describing
the colors orange and brown (see Table A2), which however should not
have affected our results, as the specific color adjective produced did not
affect our hypotheses.

Figure 4 shows the proportion of articles used over the three conditions,
which suggests that English speakers produce fewer articles than German
speakers overall and that German speakers in the uninformative condition
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produce slightly fewer articles than in the informative condition.

Article use
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Figure 4. Mean proportions of produced articles in Experiment 1 for the German
informative (DE inf.), the German uninformative (DE uninf.) and the English (EN
uninf.) condition. Black lines indicate the model estimates (CI ±1.96 SE).

To test the significance of these observations, we ran two GLMs, one
aggregated by participant and one by item. We constructed the models in
a forward-fitting procedure comparing models with χ2 tests and Akaike’s
Information Criterion (AIC, Akaike, 2011). The predictor Condition sig-
nificantly contributed to both the by-participant (χ2(1) = 4.95, p = .026,
AIC difference = −2.95) and the by-item model (p = .023, AIC difference
= −3.14; in comparison to a model containing only Language as a predic-
tor). We corrected the models’ estimates for multiple comparisons with a
Tukey test. In the following we report the corrected estimates. Both mod-
els predict that English speakers produce fewer articles than Germans in
the informative condition (by-participant estimates: βEN−DE:in f = −0.725,
SE = 0.131, z-value = −5.555, p < .001) and that there is no difference
between the German uninformative and the German informative condi-
tion. Regarding the difference between English speakers and Germans in
the uninformative condition, only the by-participant model predicts that
English speakers produce fewer articles (βEN−DE:unin f = 0.433, SE = 0.128,
z-value = −3.384, p = .002), while the by-item model predicts no dif-
ference between these two conditions. A post-hoc power simulation5

5We tested sample sizes between 10 and 350 participants per condition by randomly
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suggests that with our sample size, the power to detect the difference
between the two German conditions and the English condition is at 100%,
while the power for detecting a difference between the two German con-
ditions is too low at 49%. We therefore conclude from this analysis that
Germans in the informative condition produce significantly more articles
than English speakers but that Germans in the uninformative condition
seem to not differ from English speakers in their propensity to produce
articles.

As we were interested in how the production of articles influences the
proportion of produced prenominal adjectives in the three conditions, we
labelled each participant either as an article user or an article dropper:
article users produced articles in at least three out of five trials (mostly, in
reality, in all trials, see Fig. 3a) and article droppers produced articles in
less than three out of five trials (mostly, they omitted articles in all trials).
Figure 5 shows the proportion of prenominal color adjectives produced
by article droppers (a) and by article users (b). For article droppers, the
data show a step-wise increase of produced color adjectives in the English
and the German uninformative condition over the German informative
condition. For participants who mostly produced an article, the proportion
of color adjectives did not differ between the three conditions. Crucially,
in both German conditions, more color adjectives are produced by article
users than by article droppers. In English, we don’t see this effect.

These observations were tested only in a by-participant analysis, as
we could not determine article use as a predictor aggregated over items.
The model was again constructed in a forward-fitting procedure and
estimates were corrected by a Tukey test. The best-fitting model analyz-
ing the proportion of produced prenominal color adjectives includes an
interaction of Condition and Article use (χ2(−2) = −34.71, p < .001,
AIC difference: -131.86). For article droppers, the model shows a sig-
nificant increase of produced color adjectives in the German uninforma-
tive condition (βDE:unin f −DE:in f = 0.928, SE = 0.218, z-value = 4.256,
p < .001) and the English condition (βEN−DE:in f = 1.717, SE = 0.219,
z-value = 7.830, p < .001) as compared to the German informative
condition. In addition, prenominal color adjectives are produced more

drawing 5 trials per simulated participant based on the proportion observed in the
data, and then repeating this procedure 1000 times for each sample size. See the
supplementary materials for further details.
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Figure 5. Mean proportions of prenominal color adjectives by a) “article droppers”
(produced article less than 3/5 trials) and b) “article users” (produced articles
in at least 3/5 trials) in Experiment 1 for the German informative (DE inf.), the
German uninformative (DE uninf.) and the English (EN uninf.) condition. Black
lines indicate the model estimates (CI ±1.96 SE).

frequently in the English condition than in the German uninformative
condition (βEN−DE:unin f = 0.789, SE = 0.207, z-value = 3.814, p < .001).

For article users, there is no significant difference between conditions.
However, there is a significant increase in produced color adjectives as
compared to utterances produced by article droppers in the two German
conditions (German informative: βAr ticle = 1.121, SE = 0.202, z-value
= 5.558, p < .001; German uninformative: βAr ticle = 1.172, SE = 0.208,
z-value = 5.634, p < .001). We did not observe an effect of article use
for the English condition, although we had too little power to detect a
difference there (46%, while we calculated 100% power for the other
reported effects). Hence, while we cannot exclude the existence of a small
increase of color adjective proportions for article users as compared to
article droppers in the English condition, we can conclude that this effect
is significantly smaller than in the two German conditions.

In sum, we find evidence for both of our additional Hypotheses (2
and 3) in Experiment 1. Regarding the proportion of produced articles,
we find that participants omit articles according to how informative they
are about the target shape: English speakers omit significantly more
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articles than Germans in the informative condition, and Germans in the
uninformative condition are in between those two conditions tending to
be more similar to English speakers when it comes to article omissions.
Further, we find that German articles are not only informative about
following nouns but also about following adjectives. Because German
articles provide information about gender and case, the number of possibly
following adjectives is clearly reduced after an article. In line with this,
we assumed that German speakers seem to have difficulties retrieving a
prenominal color adjective without a preceding article, given that German
article droppers produce significantly fewer prenominal color adjectives
than German article users. In English, which does not inflect adjectives,
we observe that the difference in prenominal color adjective production
between English article users and droppers is significantly smaller than
for the two German groups.

Interestingly, we find that German article droppers in the uninforma-
tive condition produce more prenominal adjectives than article droppers
in the informative condition, an effect for which we don’t have a clear-cut
explanation. On the one hand, it could be that in the restricted context of
the uninformative condition, it is easier to retrieve a correctly inflected
color adjective. On the other hand, assuming that the difficulty of retriev-
ing a color adjective does not differ between the two German conditions,
speakers in the uninformative condition might be more motivated to pro-
duce a prenominal color adjective in order to reduce uncertainty about
the noun.

4. Experiment 2
After testing the interaction of article and prenominal color adjective
production, we aimed to answer our initial research question, whether
speakers produce more prenominal color adjectives in situations in which
they don’t get any gender information from the article than in situations in
which they get information from the article (see Hypothesis 1). Given that
in Experiment 1 we primarily observed the effect of our manipulation on
article production, which turned out to be an additional predictor of color
adjective production, we now aimed to observe color adjective production
while keeping article production constant and therefore needed to prevent
the omission of articles. We indirectly influenced participants to produce
articles, by highlighting in the instructions that their answer needed to be
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grammatically correct. In this way, we were able to follow our initially
preregistered study plan2.

Again, our manipulation in this experiment is the amount of informa-
tion that the article provides about the shape noun, comparing English
with German in a situation where gender is informative and in a situation
in which gender is not informative about the shape noun. Thus, except
for the slight change in the instructions, the experiment materials, design
and conditions are exactly the same as in Experiment 1.

4.1. Participants

A power simulation6 suggested that 260 participants are needed per con-
dition in order to detect a difference of not more than 5% in prenominal
color adjective proportion between conditions. Expecting that some par-
ticipants would still omit articles and needed to be excluded, we therefore
tested 301 English-speaking and 602 German-speaking participants on
Prolific, selected according to the same constraints and paid as in Exper-
iment 1. First, we excluded eight English and six German participants
who either consistently produced relative clauses (such as, e.g., “the sym-
bol that looked like...” or gave totally unrelated answers. Subsequently,
to analyse prenominal color adjective proportions we also excluded all
participants that did not produce articles, leaving 568 German and 239
English participants for analysis.

4.2. Procedure, Stimuli and Design

Procedure, stimuli, and experimental design were the same as in Experi-
ment 1, except that we added a highlighted note in the instruction and in
each trial that the answers should complete the sentence grammatically.
In addition, we made the sentence prompt with the blank answer field
(i.e., “Please click on...”, or “Bitte klicke auf...”, in German) visually more
coherent (see Figure 2).

6Performed similarly as in Experiment 2 but based on an a priori estimated effect of 70%
produced prenominal adjectives produced in the German informative condition and
75% in the German uninformative and English condition

184



Noun phrase efficiency | 5

4.3. Results

First of all, Figure 6 shows that our adjusted instructions seem to work.
All participants produce much more articles than in Experiment 1, English
speakers however still a bit fewer than German speakers. For the rest of
the analysis we excluded all participants who omitted the article in more
than 3 trials and then additionally excluded all remaining trials without
an article.
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Figure 6. Proportion of articles produced in Experiment 2 with the adjusted
experimental instructions. All trials without articles were excluded from the data
for further analysis.

Figure 7a shows the proportion of prenominal color adjectives pro-
duced in the three conditions, which shows that both English speakers and
Germans in the uninformative condition produce more prenominal color
adjectives than Germans in the informative condition. Again, participants
were quite consistent in their tendency to produce a prenominal adjective
(see Fig. 7b). We therefore analyzed the data with two GLMs, one over
the data aggregated by participant and one by item.

The predictor Condition significantly contributes to both the by-partici-
pant (χ2(1) = 17.17, p < .001, AIC difference = −15.17, as com-
pared to the more simple predictor Language) and to the by-item model
(χ2(1) = 17.17, p < .001, AIC difference = −10.63). Both models predict
fewer produced color adjectives in the German informative condition as
compared to the two other conditions (Tukey estimates of by-participant

185



Noun phrase efficiency | 5

a) Adjective use Experiment 2 
P

ro
p
o
rt

io
n

0.0

0.5

1.0

DE

inf.

DE

uninf.

EN

uninf.

b) Consistency in adjective use 
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Figure 7. a) Mean proportions of prenominal color adjectives produced in Exper-
iment 2 (black lines indicate the model estimates, CI ±1.96 SE) and b) number
of trials in which a prenominal color adjective was produced by a participant
(shows their consistency). Data is shown excluding trials in which article was
omitted.

model: βDE:unin f −DE:in f = 0.354, SE = 0.086, z-value = 4.130, p < .001;
βEN−DE:in f = 0.461, SE = 0.092, z-value = 5.009, p < .001), but they
do not predict a difference between the German uninformative and the
English condition. These results directly support our Hypothesis 1 that
speakers produce more prenominal color adjectives when articles are
not informative about the noun — either in context, as in the German
uninformative condition, or in the language, as in English.

5. General discussion
In this study we have taken a discriminative perspective to shed more
light on how principles of communicative efficiency shape noun phrase
production. In particular, we aimed to provide a new view on when
and why speakers produce ‘overspecifying’ adjectives, a historical puzzle
in reference production research (e.g., Ford & Olson, 1975; Pechmann,
1989). Our account adopts the concept of uncertainty from artificial com-
munication systems combined with the assumption that speakers produce
utterances in which uncertainty is systematically reduced. This led us to
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focus on the production of prenominal adjectives, which — as opposed to
postnominal adjectives — can reduce uncertainty about following nouns.
Crucially, our account also extends the scope of previous accounts of
communciative efficiency to articles, which are assumed to also play an
important role in reducing uncertainty in noun phrases. We investigated
noun phrase production in German and English, two languages in which
articles and prenominal adjectives both potentially contribute to reduc-
ing uncertainty in the signal. Accordingly, we expected speakers of both
languages to add or omit articles and prenominal adjectives according
to how much they contribute to incremental uncertainty reduction in
the speech signal. In addition, we predicted that speakers would add or
omit prenominal adjectives depending on the uncertainty in the set of
adjectives, in the context of the preceding signal (i.e., the presence of an
article) and given the specific language code (i.e., German or English).
Overall, our data from English and German speakers seems to confirm
these predictions.

In Experiment 1, we found that participants omit articles according to
how informative they are about the target noun: German speakers omit
fewer articles than English speakers, however, only when the German
articles are informative about the target noun. Furthermore, we found
that the fact that German articles are not only informative about following
nouns but also about following adjectives has an effect on German noun
phrase production: only in the two German conditions, article omissions
decreased the proportion of produced prenominal adjectives, while in
English we did not observe such an effect.

In Experiment 2, we found evidence in line with previous corpus data
(Dye et al., 2018) showing that English speakers produce more prenominal
adjectives than German speakers. Beyond observing this cross-linguistic
difference, the results of our manipulation of German article informativity
suggest that this difference arises because speakers react to local uncer-
tainty in the signal, which is higher after an uninformative article than
after an informative article. While English articles are generally less infor-
mative about the upcoming signal than German articles, German articles
can be, dependent on the context, more or less informative. Accordingly,
when German articles were uninformative about the target noun, German
speakers produced color adjectives more often than when articles were
informative. Crucially, prenominal adjective proportions in the German
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uninformative condition closely resembled the proportions produced by
English speakers.

Taken together, our finding that production proportions of both articles
and prenominal adjectives appeared to be affected by their potential
to reduce uncertainty in the signal, supports the idea that English and
German have developed to be efficiently structured discriminative codes.
Theoretically, an efficient code distributes uncertainty as evenly across
signals as possible while staying close to the maximal uncertainty which
can be processed close to error-free by a given communication system. In
this way, the processing capacity of the system can be used to the (ideally)
full extent while error and signaling cost are kept as low as possible. Hence,
practically, an efficiently structured language should on average keep
uncertainty smooth over utterances and close to an amount which ensures
fluent and cheap processing in both production and comprehension. The
English and German noun phrases our participants produced seemed to
trade uncertainty and signaling cost at two choice points: at the position
of the article and at the position of the prenominal adjective. We therefore
suggest that both our German and English speakers used a code which
is designed to keep noun phrases on average as smooth as possible, and
which therefore ensures efficient communication.

That production is indeed more costly (i.e., that the given processing
capacity is surpassed) when uncertainy is high is supported by our finding
that German speakers seemingly struggle to produce prenominal adjectives
after omitted articles, thus when adjective uncertainty is higher than after
a produced article. And although we can only draw conclusions about
speaker behavior based on the present data, it is worth noting that in theory
the reduction in signaling cost should not only translate to a reduction
in production cost, but also in comprehension cost. Assuming that both
listeners and speakers should converge on a shared discriminative code,
and that both incrementally process the signal, also listeners should benefit
from a smooth signal. Evidence showing that listeners use language to
predict not only states of the world but also parts of the upcoming signal
already corroborates this idea (e.g., as previously mentioned, DeLong et
al., 2005; Lau et al., 2016; Rohde & Rubio-Fernandez, 2021; Tribushinina
& Mak, 2016; van Berkum et al., 2005; Wicha et al., 2004; Willems
et al., 2016). If, in addition, it could be confirmed in future research
that listeners benefit from longer but smoother noun phrases, this would
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further suggest that a smooth signal benefits the communication process
as a whole, including speakers and listeners.

Our results also contribute to a better understanding of the function
of articles and prenominal adjectives. The traditional distinction between
content and function words assumed by many psycholinguistic theories
implies that adjectives have a semantic and articles a grammatical function.
If we, however, consider the information that articles or adjectives can
provide about the signal or the non-linguistic environment, we can see that
there might be more nuances to this functional distinction7. First of all,
our finding that speakers seem to make up for uninformative articles by
producing additional prenominal color adjectives suggests that articles and
prenominal adjectives can both provide information about the upcoming
signal. This observation directly ties in with previous evidence that people
use both word types to predict upcoming nouns (DeLong et al., 2005; Lau
et al., 2016; Tribushinina & Mak, 2016; Wicha et al., 2004).

Notably, in our study, the prenominal color adjectives that speakers
produced could not only be informative about the target noun (i.e., the
signal) but also about the target shape (i.e., a state of the world). While we
held the informativity about the target shape constant across conditions,
there is evidence that the information an adjective can provide about, for
example, a target in a set of competitor objects, is a crucial factor that
influences prenominal adjective production: speakers have, for example,
been found to produce more prenominal color adjectives in polychrome
displays, in which color is informative about a specific referent, than in
monochrome displays, where color is uninformative about a target referent
(e.g., Koolen et al., 2013; Rubio-Fernández, 2016). In our study, this
could have been the reason for the high baseline of produced prenominal
color adjectives (roughly 70% in the German informative condition).

Crucially, however, Rubio-Fernández (2016) found that also in mono-
chrome displays, proportions of produced prenominal color adjectives are
still substantial and significantly higher than proportions of postnominal
color adjectives. This became evident when comparing speakers of English
with speakers of Spanish, a language with mainly postnominal adjective
placement. Thus, while in monochrome displays English prenominal color

7Other linguistic theories which assume that function and content words are functionally
similar are, for example: Abrusan et al. (2019), Hendriks et al. (2010), and Winter
(2016)
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adjectives were uninformative about the target referent, they did reduce
uncertainty about the target noun which in Rubio-Fernández’s (2016)
study was always a clothing item — a noun category which is likely to be
preceded by a color adjective (Rohde & Rubio-Fernandez, 2021). Thus to-
gether with the clear effect of article informativity on prenominal adjective
production we have observed in our study, we suggest that prenominal
color adjectives can provide information both about the signal and the
non-linguistic environment.

Regarding articles, which have clearly been found to provide infor-
mation about the upcoming signal, there is less conclusive research on
whether they can also directly provide information about the non-linguistic
environment. In theory, articles do not only systematically co-occur with
following nouns (e.g., “dog”) but also with states of the world (e.g., in-
dividual dog tokens). Thus, especially in an already restricted context,
such as in our experiment, it seems at least theoretically plausible that
articles can discriminate between, for example, objects with different gen-
ders without having to access a specific noun. Findings that participants
orient towards a correctly gendered target object already after hearing a
gendered article (e.g., in Spanish: Lew-Williams & Fernald, 2007, 2010)
suggest that this might indeed possible.

Another distinction which is often made in lexical taxonomy is that
adjectives are optional in noun phrases while articles are not — which is
probably the reason that before this study there was to our knowledge
no research on ‘overspecifying articles’. Our findings of frequent article
omissions (around 50% in the English condition), albeit dependent on
their informativity about the continuation of the signal, therefore might
seem surprising. On first glance, also language usage patterns seem to
suggest that articles cannot be omitted from noun phrases: for example,
a sentence such as “They painted door” would be clearly perceived as
ungrammatical in a conversation in most English variants. Hence, if
articles are so uninformative in a language such as English, how can they
still be the norm? First of all, it is important to note that there are English
dialects, such as York English, in which article omissions as in the previous
example are widely used and accepted (Rupp & Tagliamonte, 2019). This
might be a sign that articles often only marginally contribute information
to noun phrases in English. In addition, article omissions are in fact quite
common in newspaper headlines (not only in English but also, e.g., in
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German, Dutch or Italian, see, e.g., De Lange et al., 2009), a register with
a strong pressure to produce a short signal. Interestingly, in line with our
theoretic account, an information theoretic analysis of German headlines
showed that article omissions are dependent on the predictability of the
noun (Lemke et al., 2017). Finally, we need to consider that in contexts
that are more varied than our experimental items, the English definite
article often can in fact reduce uncertainty in the signal because it stands
in contrast with other forms, such as indefinite articles, quantifiers or zero
articles. In our experiment, however, these contrasts were all irrelevant,
which notably seems to have led participants to show ungrammatical but
efficient behavior in Experiment 1. Thus, on the one hand, articles seem
to be more optional than they seem at first glance. On the other hand,
we might speculate that adjectives aren’t always optional — especially
in situations in which uncertainty about the upcoming noun is high in
context, they might be mandatory.

To conclude, taking a discriminative approach to noun phrase pro-
duction offers new insights in the principles that govern the structure
of noun phrases produced in different contexts. First of all, taking into
account the information that current parts of the signal can provide about
the upcoming signal in a specific context — besides the information that
the signal provides about the non-linguistic environment — revealed that
speakers are influenced by uncertainty in the signal while producing noun
phrases. Crucially, this suggests that we need to redefine the concept
of a message in (natural) communication: while the ultimate aim of a
speaker may be to commmunicate ‘content’, thus to lead the listener in
discriminating between representations over possible states of the world,
our findings suggest that the messages of (incrementally incoming) single
words in a phrase do not only include expectations about semantic con-
tent, but also about the upcoming signal. In particular, the way in which
speakers seem to use articles and prenominal adjectives interchangeably
to reduce uncertainty in the signal implies that they are functionally more
similar than their traditionally assigned distinct functions would suggest.
Finally, our finding is in line with the conceptualization of communicative
efficiency as a property of source codes in information theory: efficiency
has been defined to increase with the closeness of the actual rate of in-
formation transmitted by a code to the rate maximally possible given the
specific transmission (i.e., processing) constraints of a communication
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system. Although this hypothesis is notoriously difficult to test, given that
formal information-theoretic measures are difficult to capture in natural
languages — mainly because they are highly dynamic systems dependent
on multi-modal context and individual experience — we suggest that our
results offer encouraging new evidence for this perspective.
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Appendix

A. Additional tables and figures
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Figure A1. Mean proportions of prenominal color adjectives produced in Experi-
ment 2 by target shape.
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Table A1. Shapes employed in the experiment and the nouns with
which they are most commonly referred to in English and German.

Shape English noun
German
noun

German alterna-
tive

plus
sign/cross

das Kreuz, n.
das Plus(-zeichen),
n.

heart das Herz, n. -

rectangle
das Rechteck,
n.

das Viereck, n.

square
das Quadrat,
n.

das Viereck, n.

triangle
das Dreieck,
n.

-

circle den Kreis, m. den Punkt, m.

star den Stern, m. -

arrow⋆ den Pfeil, m. -

circle/donut den Ring, m. den Donut, m.

Note. German articles are given in their accusative form as would be
grammatical in the present task. The shapes in the upper half of the
table are most commonly referred to by neuter (n.) nouns in German,
the shapes in the lower half by masculine (m.) nouns. In the last col-
umn we also mention frequent alternative German nouns, which have
been produced in the experiment above a rate of 5%. ⋆Note that “ar-
row” in English can be preceded by the indefinite article “an” which is
more informative than “a” or “the”.
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Table A2. Shape colors employed in the experiment and
prenominal color adjectives that German and English
participants produced to refer to them with frequencies
collapsed over Experiment 1 and 2.

Color English German

yellow (100%) gelb (100%)

yellow (50%)
orange (39%)
gold (11%)

gelb (56%)
orange (42%)

red (85%)
maroon (8%)
brown (5%)

rot (88%)
braun (9%)

red (100%) rot (100%)

pink (98%) rosa (75%)
pink (21%)

purple (97%) lila (69%)
violett (29%)

blue (98%)
purple (2%)

blau (100%)

green (99%) grün (100%)

grey/gray(98%) grau (98%)

Note. Percentages are given relative to trials in which a
color adjective has been produced. For colors for which
percentages do not add up to 100, postnominal color ad-
jectives were produced, which sometimes also referred to
neighbouring shapes, or adjectives production rate was
below 2%. The most frequently produced adjective for a
color is marked in bold.
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Table A3. All possible forms of German prenominal color
adjectives in object position as used in Experiment 1 and
2, compared to the set of forms constrained by the German
accusative masculine article (“den”) and to the set of English
color adjectives.

German
without article

German
after article

English

blauen blauen blue

blaue

braunen braunen brown

braune

gelben gelben yellow

gelbe

grauen grauen grey

graue

grünen grünen green

grüne

lila lila purple

orangen orangen orange

orange

rosa rosa pink

roten roten red

rote

Note. In the accusative case, German prenominal adjectives
are the same in feminine and neuter gender (both have the
ending “-e”), therefore the first column always shows two
forms of each adjective (with the exception of “rosa” and
“lila”, which often are not inflected).
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What determines the structure of languages? Two likely pressures on
language structure are communicative efficiency and learnability, assum-
ing that on the one hand, the purpose of languages is to communicate,
and on the other hand, languages need to be accessible for learners from
following generations and different language backgrounds alike. In this
thesis I focused on noun phrases as an exemplary unit of language and
investigated how their structural characteristics affect learnability and
communicative efficiency. In particular I explored two main structural
factors: the presence and structure of noun class systems in languages
and the different linear orders in which noun class markers, adjectives,
and nouns can appear in noun phrases.

With the aim of grounding this investigation in a cognitively plausible
theory, I took an expectation-based perspective on language learning and
communication. This perspective assumes that producing and understand-
ing language are based on language users’ expectations about changes in
their environment, including the occurrence of both non-linguistic and
linguistic events. These expectations are assumed to be learned from im-
plicit experience of systematic predictive relationships between different
events or states of the environment, for instance, parts of the speech signal,
the presence of specific objects, or the occurrence of particular actions.
Critically, this means that this expectation-based account assumes that the
expectations that language users have in communication can be directly
traced back to the learning dynamics arising during the expectation-based
learning process.

In this chapter, I will synthesize and discuss all the findings presented
in this thesis, highlighting the way in which linear order in noun phrases
and the structure of different noun class systems affect learning and
communication. I will begin by summarizing the main characteristics of
expectation-based learning processes, which are central to the present
exposition of noun class systems and effects of linear order in noun phrases.

1. Central characteristics of expectation-based learning
processes

To be able to test predictions of the expectation-based account against
the learning and communication behavior of human language users, I
simulated expectation-based learning processes with error-driven learning
models. By seeking to minimize prediction-error, error-driven learning
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mechanisms constantly adjust expectations by taking into account how
successfully they can predict upcoming states of the world based on the
cues they encounter. Since the theoretical framing of error-driven learning
mechanisms has led to quite different interpretations of these mechanisms
in the past, I began this thesis with a thorough investigation of error-driven
learning as implemented in the prominent delta rule. Seeking to keep
the influence of confounding parameters and processes low, we analyzed
the learning dynamics triggered by the error-driven learning mechanism
in simple feed-forward two-layer neural networks. This investigation
presented in Chapter 2 led us to conclude that the often underestimated
scope of error-driven learning models can be expanded significantly by
acknowledging the fact that they are discriminative models and that error-
driven learning mechanisms, such as the Rescorla-Wagner model or the
delta rule have the potential to trigger discriminative learning dynamics.
One way to make sure that these models can learn discriminatively is by
giving them representations that allow for discriminative learning, as I
also sought to convey in the practical tutorial, in which I suggest how
to use two-layer error-driven models to explore discriminative learning
processes.

Concerning the present investigation of noun class systems and linear
order in noun phrases, two central discriminative characteristics of error-
driven learning processes need to be highlighted. First, delta-rule learning
is clearly different from correlational or associative learning rules, for
example, simple Hebbian learning (as presented by, e.g., Montague &
Sejnowski, 1994). While these kinds of learning rules are symmetric
and can only track correlations between cues, delta-rule learning is an
asymmetric process capturing predictive relations from cues to outcomes.

Second, error-driven learning processes, as used in this thesis, need
to be set apart from statistical learning (see, e.g., Frost et al., 2015;
Siegelman et al., 2018), given that the error-driven learning process can
go beyond estimating conditional probabilities of outcomes given cues, as
it instead re-weights cues according to how well they can predict given
outcomes. It is worth noting here that more generally, this also means
that error-driven learning does not simply combine representations of
cues that appear together, but forms more abstract representations during
the learning process: although the ‘principle of summation’ is central
to the process of cue competition, it is important to acknowledge that
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error-driven learning always works with weighted combinations of cues,
which means that some cues can become completely irrelevant for a given
task and therefore end up not being a part of a learned representation
of a set of cues that appear together. Thus, ultimately, by re-weighting
combinations of co-occurring cues, error-driven learning leads to a re-
representation of these cues according to how well they can discriminate
different outcomes. In this way, the error-driven learning process results
in a formation of abstract representations which are maximally contrastive
according to the contrasts dictated by the given outcomes.

In this thesis I argued that together these two points provide a plau-
sible explanation for how linear order is a crucial factor in learning and
processing noun phrases, modulated by the distribution of noun features
over noun categories (i.e., noun classes as well as individual noun repre-
sentations). In the following I will begin by synthesizing and discussing
the conclusions of my investigations of noun phrase structure, learning
and communication.

2. Effects of linear order on learning and communication
Based on the domain-general implications of error-driven learning mecha-
nisms for learning and processing developed in Chapter 2, I derived more
detailed principles for an expectation-based conceptualization of language
and, specifically, of noun phrases.

An assumption that directly follows from the idea that expectation-
based learning and processing are based on prediction error and therefore
asymmetric processes, is that different linear orders in noun phrases
affect the predictive relations between noun phrase constituents, such
as noun class markers, adjectives, or nouns. I specifically differentiated
between the two different linear order relations of noun class markers
and nouns, premarking and postmarking, and how those affect learning
and processing in noun phrases — both when they appear in exclusive
pre- or postmarked noun class paradigms and when they appear together
in double marked paradigms.

2.1. A postmarking advantage in category discrimination

A key characteristic of the error-driven learning mechanism is that it treats
cues and outcomes differently: while cues are re-weighted according to
how informative they are about given outcomes, outcomes are evaluated
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by how likely they are given the present cues. Simulation 1 in Chapter 3
illustrated how this seemingly subtle difference between the treatment of
cues and outcomes affects noun class learning with premarking as opposed
to with postmarking. On the one hand, in a postmarked noun class
paradigm, noun features are evaluated according to their informativity for
the different postmarkers. This means that features that can discriminate
between different postmarkers are weighted the most — note that those
often might not be the most frequent features (see also Ramscar et al.,
2010; Vujović et al., 2021). On the other hand, in a premarked noun class
paradigm, noun features are evaluated according to how likely they are
given a specific premarker. This means that in that case frequent noun
features would be expected most and, crucially, irrespective of whether
they also occur after other premarkers. As a result, postmarking leads to a
re-weighting (and thus a re-representation) of noun features according to
how well single features can discriminate the marked category contrasts,
while premarking leads to learning the conditional probabilities of specific
noun features given that they appear in a specific category (see also
Ramscar, 2013).

Based on the results of Simulation 1 in Chapter 3, we therefore ex-
pected to find that postmarking would also bring human learners an
advantage for noun class learning, as has been suggested by previous
evidence (Nixon, 2020; Ramscar, 2013; St Clair et al., 2009; and, more
generally, Ramscar et al., 2010). In contrast to previous studies, we
however had made an additional, more detailed prediction, namely that
postmarking would only show its advantage in noun class paradigms in
which noun classes are highly confusable. Our behavioral results sup-
ported this hypothesis: participants in the artificial language learning
experiment in Chapter 3 benefitted from exclusive postmarking for learn-
ing to discriminate nouns by syllable stress, a feature that we assumed
to compete strongly with other highly confusable acoustic features of the
artificial nouns; however, for learning to discriminate nouns according to
the clearly distinct semantic concepts they referred to, we didn’t find a
difference between participants being trained on a premarking version
of the artificial noun class paradigm and participants being trained on
the postmarking version. This difference in the effect of marking order
we find between learning distinct and confusable noun features suggests
that the error-driven learning process (i.e., as implemented in a two-layer
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delta-rule network model) modeled in Simulation 1 might be a plausible
explanation, given that it would predict that the linear order of category
marking matters (only) when a given categorization problem requires
discriminative learning and pure probability matching is not sufficient.

2.2. Premarking and uncertainty reduction

The findings from the artificial language learning experiment in Chapter
3 together with Simulation 1 suggest that, in contrast to postmarking,
premarking triggers discriminative learning dynamics to a lesser extent.
This means in particular that while with postmarking noun features that
cannot discriminate different noun classes from each other are unlearned
(or dissociated), premarking preserves representations of these kinds of
non-discriminating noun features. However, while premarking appears
to bring a disadvantage for learning to discriminate noun categories, the
prenominal position of premarkers might become more important for
processing noun phrases: as opposed to postmarkers, premarkers can
serve to predict upcoming subsets of nouns and consequently facilitate
processing of the upcoming noun — under the assumption that processing
a smaller set of nouns is easier than processing a larger set. In Chapters 3
and 5, I have investigated in more detail how the ability of premarkers to
reduce uncertainty about nouns in this way seems to bring advantages
both for learning, particularly for noun discrimination (Chapter 3) and
for an efficient communication process (Chapter 5).

A premarking advantage in noun discrimination
Premarking has previously been found to be advantageous for learning
to discriminate individual noun forms from each other when learning
noun meanings, and this has been suggested to be due to the ability
of premarkers to predict subsets of upcoming nouns (Arnon & Ramscar,
2012; Ramscar, 2013). In Simulation 2 of Chapter 3, I proposed a way to
model this premarking advantage for learning single noun meanings with
error-driven learning: in particular, I showed that when noun meanings
are trained in smaller sets, the accuracy of the model of choosing the
correct meaning when seeing a specific noun is higher than when all
nouns are trained in one large set. I suggested that this is due to the fact
that in larger training sets there is more outcome competition and that
this results in an unlearning of noun features that co-occur with many
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different meanings (i.e., outcomes), which means that these noun features
cannot reliably predict specific meanings. In contrast, in smaller training
sets, noun features co-occur with a smaller set of meanings which means
that, as a result, also fewer noun features are unlearned. In this way, more
detailed representations of the single nouns are preserved which, in turn,
are crucial to discriminate different nouns from each other.

We confirmed the prediction of Simulation 2 in a noun learning test
which was also part of the artificial language learning experiment in
Chapter 3, finding that participants who were trained with the premarking
version of the noun class paradigm were better at learning to predict
specific meanings from individual noun forms than participants who were
trained with the postmarking version. Together with Simulation 2 and
previous evidence by Arnon and Ramscar (2012) and Ramscar (2013),
this finding suggests that premarkers might play a role in concentrating
the focus of learners on subsets of nouns, which may facilitate learning to
discriminate single noun forms from each other.

Premarkers in efficient communication
Besides investigating the advantage for noun discrimination, I also in-
vestigated the role of premarkers in supporting efficient communication,
which was the focus of Chapter 5. Specifically, I worked with the as-
sumption that by reducing uncertainty about upcoming nouns, noun class
premarkers can redistribute uncertainty in the noun phrase such that
processing capacities of speakers and listeners are more evenly used over
time. That a constant uncertainty rate across the speech signal (i.e., a
smooth signal) makes communication more efficient is a hypothesis de-
veloped in information theory, a formal framework for designing efficient
(artificial) communicative codes and communication systems (Hartley,
1928; Shannon, 1948). From an information-theoretic perspective on
natural language, the uncertainty about the continuation of the speech
signal at a given point in time can be operationalized as the average
predictability (i.e., the entropy) of the set of possibly following words
given the preceding context. In particular, entropy is central to the assess-
ment of the efficiency of a communicative code. The basic assumption
is that communication is constrained by the (processing) capacity of the
communication channel, which defines the maximum entropy that can
be transmitted by a signal at one point in time without too much loss or
error. Further, an efficient code is usually assumed to trade off successful
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communication with production cost. An efficient code should therefore
produce signals with an average entropy that stays as close to the given
channel’s capacity as possible (without overshooting the capacity and
leading to communication errors, and without underusing the capacity
and thus, increasing production cost).

In Chapter 5, I sought to investigate the question whether noun phrases
in natural languages are structured in line with efficient coding princi-
ples. In particular, I aimed to investigate how noun class premarkers
might influence the distribution of uncertainty across the noun phrase
and consequently, how this would lead speakers to produce differently
structured noun phrases. In Experiment 1 of Chapter 5, the first of two
online reference production experiments comparing German and English
noun phrase production, I found that speakers seemed to trade-off cost
and benefit when producing articles: we found that speakers produced
more articles in situations where these articles were informative about
the upcoming noun (i.e., in German, when the target object had a differ-
ent gender than the competitor objects) than when they provided little
information about the noun in context (i.e., in English, and in German
when target and competitor objects had the same grammatical gender).
Notably, in the latter case articles were frequently omitted, although that
led to formally grammatically incorrect sentences.

In Experiment 2 of Chapter 5, I found that the informativity of articles
about the upcoming noun also influenced the proportion of produced
prenominal adjectives following the article: in particular, prenominal
adjectives were produced to a higher proportion when preceding articles
were not informative about upcoming nouns (i.e., in English or in the
German same-gender condition), as compared to when articles were
informative about following nouns (i.e., in the German different-gender
condition). This finding that speakers tended to produce more prenominal
adjectives when the article was not sufficiently informative about the
upcoming noun suggests that prenominal adjectives can be used as a
substitute system for gendered articles to reduce uncertainty about nouns.
Notably, the observation that German speakers produced more prenominal
adjectives — at a rate comparable to English speakers — in situations
where the article was uninformative about the noun, further suggests
that the general difference in prenominal adjective proportions between
English and German corpora (Dye et al., 2018) might be due to the
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difference in how informative the article is in the two languages.
That this behavior – or rather the efficient noun phrase code that

speakers used – might not only be beneficial for (in this case, hypotheti-
cal) listeners but also for the speakers themselves, was supported by the
additional finding in Experiment 1 that German speakers produced signif-
icantly less adjectives when they had omitted the preceding article than
when they hadn’t: apparently, it was more difficult for German speakers to
retrieve the correctly gendered adjective form when competing forms were
not excluded from the search space beforehand by a preceding gendered
article. In line with the fact that English adjective forms are not gendered
and thus the overall smaller set of competing English adjective has a
lower entropy than the overall larger set of German adjectives, we did
not observe such an effect of English article omission. Overall, given that
it should be more difficult to retrieve a German than an English prenom-
inal adjective, this finding supports the hypothesis that the presence of
an informative article should be more needed when speakers produce
prenominal adjectives in German than in English.

Taken together, the evidence presented in Chapter 5 suggests that
premarkers, in this case gendered prenominal articles, might have an
important role in making noun phrase codes more efficient by decreasing
the high entropy of the set of likely upcoming nouns. Notably, this function
can also be performed by prenominal adjectives, which can, in a similar
way, guide expectations about following nouns. Interestingly, we also
found that the prenominal adjectives themselves can be conditioned on the
preceding article, which is in line with an incremental, expectation-based
view on noun phrase processing. In general, these findings contribute
to the body of evidence supporting the general hypothesis that natural
languages show properties of efficient communicative codes (for a review
see Gibson et al., 2019).

2.3. Learning and processing of double marked noun classes

After having investigated learning and processing with exclusive postmark-
ing and exclusive premarking, I considered in Chapter 4 how premarking
and postmarking interact when they appear together in a double marked
noun class paradigm.

When seeking to understand the processes triggered by double mark-
ing, the challenge is to generalize findings from the single chain links
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between premarker, noun, and postmarker (i.e., premarker→ noun and
noun→ postmarker) to the whole sequence connecting premarker, noun
and postmarker (i.e., premarker → noun → postmarker). This espe-
cially poses a challenge for simple two-layer error-driven learning models,
which cannot transform or dynamically change initially specified cue and
outcome representations, and therefore in their simplest form can only
simulate one chain link of a sequence.

Nevertheless, the behavioral evidence from teaching participants a
double marked version of the artificial noun class paradigm from Chapter
3 in a second artificial language learning experiment, together with
theoretical considerations based on the separate error-driven learning
simulations and findings of exclusive pre- and postmarking in Chapter 3,
offer some initial direction as to what kind of factors might affect learning
in a double marked noun class paradigm.

Overall, we observed that the learning results of participants trained
in the double marking condition was quite similar to the performance of
participants trained in the exclusive postmarking condition in Chapter 3,
when assessed by the way in which both groups compared to participants
trained in an exclusive premarking condition. Critically, this suggests
that in the double marking condition, the processes triggered by pre- and
postmarking appeared to not have affected the overall learning process in
a similar way, but rather that postmarking seemed to have had a larger
impact on what participants learned.

Considering the way in which the complementary processes triggered
by pre- and postmarking might interact during learning this appears
plausible: in particular, we proposed that premarkers might be more
effective in their function of reducing uncertainty about following subsets
of nouns when the category contrasts that discriminate these subsets have
already been learned; critically, given that postmarking appears to be more
suitable for learning category contrasts than premarking, this suggests
that the processes triggered by postmarking are more important earlier in
learning than the processes triggered by premarking. Notably, this also
implies that probably later in learning, when relevant category contrasts
are already established, premarkers might be able to shift focus on subsets
of nouns more effectively, and premarking benefits, such as improved
noun meaning learning, might take effect. I therefore hypothesized that
this initial postmarking dominance during double marking might dissolve
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with more training — a hypothesis that I leave to be tested in future
research.

Further, our results seem to be in line with findings of perceptual
constraints on sentence processing which suggest that less experienced
speakers seem to focus more on the ends of sentences. In particular, given
that also the participants in our experiment had no experience with the
artificial language materials, the ‘postmarking bias’ they experienced when
processing these materials could also be interpreted as a recency bias.
However, whether these biases are in fact the result of the same underly-
ing process, or whether perceptual constraints constitute an additional
factor modulating the learning process, is still unclear and requires more
research.

In sum, the findings from the double marking experiment highlight
once more the complementary functions of pre- and postmarking and
suggest a way in which they might interact in more complex learning
situations that may occur in natural languages: while postmarking is more
suitable for discriminating marked category contrasts, premarking can
make the processing of following nouns easier and therefore benefit noun
meaning learning. However, to effectively anticipate subsets of upcom-
ing nouns, premarking might benefit from already established category
contrasts, and therefore from preceding learning guided by postmarking.
Furthermore, the theoretical considerations in this chapter open a couple
of concrete questions for future directions, in particular, how training du-
ration might affect learning in a double marked noun class paradigm, or
how the learning effects observed here might be connected to perceptual
constraints on processing.

3. Implications of an expectation-based perspective on
language

In this thesis I have presented evidence that noun phrase structure appears
to be in line with expectation-based principles of learning and commu-
nication. One the one hand, I found evidence that learning linguistic
contrasts on different levels of abstraction, such as noun classes or individ-
ual noun meanings, follows predictions of an expectation-based learning
process which gives rise to discriminative learning dynamics. On the other
hand, I found evidence that speakers — at least in English and German —
use discriminatively learned expectations when producing noun phrases
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and that, more generally, noun phrase codes distribute the uncertainty
connected to these expectations across the noun phrase.

In general, an expectation-based view on communication entails that
communication is a process of navigating a system of predictive relations
between speech signals and the linguistic and non-linguistic environment,
which speakers learn by experiencing speech in context. Assuming that
these predictive relations are learned based on an implicit, discriminative
learning mechanism, this suggests that languages capture discriminative
contrasts in the environment. Further, given that this view doesn’t formally
differentiate between linguistic and non-linguistic items or events, this
indicates that also languages themselves are organized as systems of
contrasts. Below I will discuss a few implications of an expectation-
based theory of learning, processing, and communication for the study of
noun phrases in natural languages: first, how speakers can benefit from
producing signals in which uncertainty is evenly distributed, and second,
how the findings from linear order effects in noun class marking can be
generalized to prenominal and postnominal adjectives.

3.1. Who benefits from smooth signals?

As outlined in Chapter 5, information-theoretic principles of efficient
coding suggest that the efficiency of a code should increase the more the
code manages to evenly distribute uncertainty across produced signals
(i.e., to make signals smoother). However when taking such an efficient
coding perspective, it is not directly clear how this principle of entropy
rate constancy translates to benefits for human language users. One
of the present findings that might be relevant to this question is the
observation that in the noun phrase production experiment in Chapter
5, German speakers produced less prenominal adjectives after omitting
an article than after producing one. Given that in German, gendered
articles reduce entropy in the subset of following adjectives, which are
also marked for grammatical gender in German, our finding suggests
that producing a gendered article might have facilitated retrieval and
production of a subsequent adjective. In particular, after producing an
article, the uncertainty in the set of following adjectives should have been
reduced, and as a result it might have been easier to retrieve an adjective
in order to help to subsequently reduce uncertainty about an upcoming
‘high-entropy’ noun. In contrast, when participants didn’t produce an
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article they more frequently opted to directly produce a ‘high-entropy’
noun, instead of reducing uncertainty about the noun by producing a
prenominal adjective from a set with a slightly lower but still high entropy.

On the one hand, while this effect suggests that speakers benefit from
reduced uncertainty in the signal, the evidence about effects of predictabil-
ity and uncertainty is heavily skewed towards studies investigating effects
on comprehension (such as, e.g., Altmann & Kamide, 1999; Ehrlich &
Rayner, 1981; Lau et al., 2016; Tribushinina & Mak, 2016; van Berkum
et al., 2005; Willems et al., 2016), also when it comes specifically to the
effect of articles on processing the upcoming signal (DeLong et al., 2005;
Wicha et al., 2004). In addition, many linguistic theories focus on how
speakers’ productions depend on the assumed knowledge of the listener,
for example, by assuming that speakers follow principles of audience
design by taking the listener’s perspective. While I don’t intend to cast
doubt on the ideas that efficient communication must ensure smooth com-
prehension and that speakers can take a listener’s perspective if needed, I
would like to briefly discuss the question whether often what might benefit
comprehension by the listener might also benefit the speaker during the
production process.

From an expectation-based perspective it seems probable that listeners
and speakers can benefit in a similar way from an efficient code and, espe-
cially, from reduced uncertainty in the speech signal. This directly follows
from the assumptions that speakers and listeners have access to the same
learned expectations based on their experience of communication in both
roles, and that speakers and listeners process language incrementally. In
particular, production cost might not only depend on the length of a word
or an utterance, but also on the cost of retrieving a word, which in turn
might depend on the uncertainty in the set of possible word alternatives.
For example, using a gendered article as a cue in addition to the repre-
sentation of a specific concept or other context, might help a speaker to
retrieve a following noun (or adjective) from a reduced set of options.
In general, this idea is in line with other proposals and accompanying
evidence that speakers and listeners both benefit from grammar optimized
for communication (Ferreira, 2008) and that production and comprehen-
sion systems are closely intertwined (Martin et al., 2018; Pickering &
Garrod, 2013).

In addition, our finding suggests that language users (irrespective of
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their role as speaker or listener) can predict a gendered article before they
have predicted the noun form, since otherwise it seems less clear how the
article might still help noun processing. At first glance, this might seem
controversial because intuitively gender appears to be a property of nouns.
However, also here it seems plausible from a discriminative perspective
that language users can learn to predict a specific gendered article based
on cues from the preceding context and from the representation of the
concept they intend to refer to, without needing the specific noun form
as an additional cue. For example, a German person might expect the
German article “einen” (indef. masc. acc.) in a situation in which there is
a bowl of soup on a table and the partial phrase “Ich brauch noch...” (‘I
still need...’) has been uttered, without first having to hear or access the
target masculine noun form “Löffel” (spoon). While the body of evidence
is rather small and debated, there is some evidence from ERP studies that
language users specifically predict articles based on previous context (e.g.,
DeLong et al., 2005; Fleur et al., 2020; Ito et al., 2020; Wicha et al.,

2004; see Nieuwland et al., 2018, for contradicting evidence). Additional
evidence that particularly speakers benefit from producing a gendered
article comes from a study by Vigliocco et al. (1997) showing that Italian
speakers can frequently guess the correct gender of a noun in tip-of-the-
tongue situations, which, in turn, frequently helps them to eventually
retrieve the noun.

Hence overall, to better understand the effects of efficient noun phrase
codes on listeners and speakers, it would be insightful to further investigate
two points: on the one hand, whether speakers benefit themselves from
producing ‘smoother’ utterances, in which uncertainty is more evenly
distributed, and on the other, whether language users can predict articles
before actually accessing the following noun form.

3.2. A functional characterization of noun phrase structures: pre- and
postnominal information

In addition, I would like to discuss how the findings about the different
functions of pre- and postmarking from Chapters 3 and 4 generalize to
other parts of speech, in particular to pre- and postnominal adjectives,
as suggested in Chapter 5. To this end, I would like to return to the five
example sentences from the introduction:
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(1) a. Do you see the white rabbit?
b. Siehst du das weiße Kaninchen?
c. Ser du den hvite kaninen?
d. Vedi il coniglio bianco?
e. A e shihni lepurin e bardhë?

On the one hand, postnominal adjectives (such as in Italian or Alba-
nian, see Example 1d and e) should provide an advantage for learners in
facilitating to identify the relevant noun feature dimensions they capture
— due to similar processes as the ones identified for learning noun cate-
gories with postmarkers. This is an important point, given that learning
the meaning of adjectives has been found to be significantly more diffi-
cult than learning noun meanings, given that they usually are connected
to more abstract feature dimensions (Gasser & Smith, 1998). Indeed,
evidence suggests that children learn color adjectives better when they
appear in a postnominal position during training (Ramscar et al., 2010).

On the other hand, the investigation in Chapter 5 suggested that the
information that prenominal adjectives can provide about following nouns
makes them a possible substitute to gendered article systems (e.g., in
English) and that they can be used when the information by the gendered
article is not sufficient (as it can be the case in German). In particular,
we have suggested that this might explain why prenominal adjectives are
so frequently used in English, a language which has lost its grammatical
gender system. Additional evidence for this view comes from recent
work (Risse, 2021) suggesting that prenominal adjectives might also
play a crucial role in Norwegian, a language which is currently in the
process of simplifying its gender system from three to two gender classes
(Rodina & Westergaard, 2015). While example sentence (1c) suggests that
Norwegian might always mark gender on nouns with pre- and postnominal
articles, in fact articles are only placed prenominally when there is also
an adjective preceding the noun — otherwise, nouns are only marked by
a postnominal gendered article, for example, in the following sentence:

(2) Ser du kaninen?
‘Do you see the rabbit?’

In addition, also Norwegian prenominal adjectives are not marked
for the contrast between masculine and feminine nouns, the two gender
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categories that are currently in the process of being merged into one
common gender noun class. They should therefore — much like English
prenominal adjectives — be more easily retrievable than, for example,
German prenominal adjectives. Thus since they always appear together
with a prenominal adjective, which should be comparably easy to retrieve,
Norwegian gendered prenominal articles seem to add little additional
information both about the following adjective and the upcoming noun.
In line with this observation, a corpus analysis of prenominal adjective use
within a set of semantic domains by Risse (2021) suggests that prenominal
adjective use in Norwegian is already at the present stage comparable
to English and significantly higher than in German. Hence, given these
considerations it might seem unsurprising that Norwegian is simplifying
its gender system. Critically, this suggests that although Norwegian and
German have three grammatical gender classes, Norwegian gender seems
to play less of a role when it comes to efficient structuring of noun phrases
and that ‘having grammatical gender’ might not always be a particularly
informative typological label for languages, given that gender can have
different functions, depending on how it is marked.

4. Conclusion
Taken together, the findings presented in this thesis suggest that the mere
word type might often not be sufficiently informative for assessing the
function of words such as articles or adjectives. Instead, a perhaps more
important functional feature might be the linear position of these words
in the speech signal, which determines a) the way in which they affect
how learners come to represent the language and the non-linguistic en-
vironment during the learning process, and b) the information that they
can provide online during the communication process, in particular about
the continuation of the speech signal or about states of the non-linguistic
environment. Regarding the former, I have presented evidence that post-
nominal noun class markers shift focus on the contrasts between nouns
from different classes, which facilitates forming novel category contrasts
and learning abstract, discriminative representations of those categories.
Regarding the latter, I concluded that prenominal constituents of noun
phrases, such as prenominal articles and adjectives, play an important
role in making noun phrase grammars resemble efficient communicative
codes, in that they ensure that produced utterances, on average, distribute
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uncertainty evenly across the speech signal.
The present findings corroborate the idea that not only learning but

also processing, and thus the whole communication process, can be traced
back to a simple implicit expectation-based learning mechanism: on the
one hand, I found that language learners appear to learn to categorize
nouns discriminatively on different levels of abstraction, and on the other
hand, I found that the noun phrase structures they produce are in line
with expectations that have been learned by experiencing language in
context.

The vast structural differences across natural languages suggest that
languages are incredibly flexible when it comes to ensuring that they
are both learnable and efficient for communication. In this thesis I have
presented an account of how efficient communication can be achieved in
different ways: while prenominally marked noun gender, as in German,
has an important function in making communication efficient, English
can achieve the same goal with prenominal adjectives. Thus, to return to
Abbas Khider’s suggestion for simplifying German, how would the German
language change if we would remove grammatical gender? Probably, its
use of prenominal adjectives might increase drastically, perhaps it would
keep the unspecific article suggested by Khider if it can serve to mark
remaining contrasts between nouns, or perhaps articles would disappear
completely if the information they can provide is only marginal. In any
case, learners of German would surely be thrilled.
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Mirković, J., & Gaskell, M. G. (2016). Does sleep improve your grammar?
Preferential consolidation of arbitrary components of new linguistic
knowledge. PLoS One, 11(4), e0152489.

Montague, P. R., & Sejnowski, T. J. (1994). The predictive brain: Temporal
coincidence and temporal order in synaptic learning mechanisms.
Learning & Memory, 1(1), 1–33.

228



Bibliography

Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs. generative clas-
sifiers: A comparison of logistic regression and naive Bayes. In
T. G. D. S. B. Z. Ghahramani (Ed.), Advances in neural information
processing systems 14 (pp. 841–848). MIT Press.

Nieuwland, M. S., Ditman, T., & Kuperberg, G. R. (2010). On the incre-
mentality of pragmatic processing: An erp investigation of informa-
tiveness and pragmatic abilities. Journal of Memory and Language,
63(3), 324–346.

Nieuwland, M. S., Politzer-Ahles, S., Heyselaar, E., Segaert, K., Darley,
E., Kazanina, N., Zu Wolfsthurn, S. V. G., Bartolozzi, F., Kogan, V.,
Ito, A., et al. (2018). Large-scale replication study reveals a limit
on probabilistic prediction in language comprehension. eLife, 7,
e33468.

Nixon, J. S. (2020). Of mice and men: Speech sound acquisition as discrim-
inative learning from prediction error, not just statistical tracking.
Cognition, 197, 104081.

Nixon, J. S., & Tomaschek, F. (2020). Learning from the acoustic signal:
Error-driven learning of low-level acoustics discriminates vowel
and consonant pairs. In S. Denison, M. Mack, Y. Xu, & B. C. Arm-
strong (Eds.), Proceedings of the 42nd annual meeting of the cognitive
science society (pp. 585–591). Cognitive Science Society.

Nixon, J. S., & Tomaschek, F. (2021). Prediction and error in early in-
fant speech learning: A speech acquisition model. Cognition, 212,
104697.

Oberauer, K., & Lewandowsky, S. (2008). Forgetting in immediate serial
recall: Decay, temporal distinctiveness, or interference? Psychologi-
cal Review, 115(3), 544–576.

Olazaran, M. (1996). A sociological study of the official history of the
perceptrons controversy. Social Studies of Science, 26(3), 611–659.

Osgood, C. E. (1949). The similarity paradox in human learning: A reso-
lution. Psychological Review, 56(3), 132–143.

Pavlik Jr, P. I., & Anderson, J. R. (2005). Practice and forgetting effects
on vocabulary memory: An activation-based model of the spacing
effect. Cognitive Science, 29(4), 559–586.

Pavlov, I. P. (1927). Conditioned reflexes: An investigation of the physiologi-
cal activity of the cerebral cortex. Oxford University Press.

229



Bibliography

Pearce, J. M. (1987). A model for stimulus generalization in Pavlovian
conditioning. Psychological Review, 94(1), 61–73.

Pearce, J. M. (2002). Evaluation and development of a connectionist
theory of configural learning. Animal Learning & Behavior, 30(2),
73–95.

Pearce, J. M., & Hall, G. (1980). A model for Pavlovian learning: Variations
in the effectiveness of conditioned but not of unconditioned stimuli.
Psychological Review, 87(6), 532–552.

Pechmann, T. (1989). Incremental speech production and referential over-
specification. Liguistics, 27(1), 89–110.

Piantadosi, S. T., Tily, H., & Gibson, E. (2012). The communicative function
of ambiguity in language. Cognition, 122(3), 280–291.

Pickering, M. J., & Garrod, S. (2013). An integrated theory of language
production and comprehension. Behavioral and Brain Sciences,
36(4), 329–347.

Pineo, R. (2014). Sentence repetition performance in bilingual children with
SLI compared to age and language-matched peers [Master Thesis].
McGill University (Canada).

Pomerleau, D. A. (1988). Alvinn: An autonomous land vehicle in a neural
network. Proceedings of the 1st International Conference on Neural
Information Processing Systems, 305–313.

Price, P. C., & Yates, J. F. (1995). Associative and rule-based accounts of
cue interaction in contingency judgment. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 21(6), 1639–1655.

R Core Team. (2019). R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing. Vienna, Austria.
https://www.R-project.org/

Ramscar, M. (2002). The role of meaning in inflection: Why the past tense
does not require a rule. Cognitive Psychology, 45(1), 45–94.

Ramscar, M. (2013). Suffixing, prefixing, and the functional order of
regularities in meaningful strings. Psihologija, 46(4), 377–396.

Ramscar, M. (2019). Source codes in human communication. arXiv. https:
//doi.org/10.48550/arXiv.1904.03991

Ramscar, M. (2020). The empirical structure of word frequency distribu-
tions. arXiv. https://doi.org/10.48550/arXiv.2001.05292

230

https://www.R-project.org/
https://doi.org/10.48550/arXiv.1904.03991
https://doi.org/10.48550/arXiv.1904.03991
https://doi.org/10.48550/arXiv.2001.05292


Bibliography

Ramscar, M. (2021). How children learn to communicate discriminatively.
Journal of Child Language, 48(5), 984–1022. https://doi.org/10.
1017/S0305000921000544

Ramscar, M., & Dye, M. (2009). Error and expectation in language learn-
ing: An inquiry into the many curious incidences of ‘mouses’ in
adult speech. Proceedings of the 31st annual conference of the Cog-
nitive Science Society, 485–90.

Ramscar, M., Dye, M., Gustafson, J. W., & Klein, J. (2013). Dual routes to
cognitive flexibility: Learning and response-conflict resolution in
the dimensional change card sort task. Child Development, 84(4),
1308–1323.

Ramscar, M., Dye, M., & Klein, J. (2013). Children value informativity over
logic in word learning. Psychological Science, 24(6), 1017–1023.

Ramscar, M., Dye, M., & McCauley, S. M. (2013). Error and expectation
in language learning: The curious absence of “mouses” in adult
speech. Language, 760–793.

Ramscar, M., Dye, M., Popick, H. M., & O’Donnell-McCarthy, F. (2011).
The enigma of number: Why children find the meanings of even
small number words hard to learn and how we can help them do
better. PLoS One, 6(7), e22501.

Ramscar, M., & Gitcho, N. (2007). Developmental change and the nature
of learning in childhood. Trends in Cognitive Science, 11(7), 274–
279.

Ramscar, M., Hendrix, P., Shaoul, C., Milin, P., & Baayen, H. (2014). The
myth of cognitive decline: Non-linear dynamics of lifelong learning.
Topics in Cognitive Science, 6(1), 5–42.

Ramscar, M., & Port, R. (2019). Categorization (without categories). In
E. Dąbrowska & D. Divjak (Eds.), Cognitive linguistics - foundations
of language (pp. 87–114). De Gruyter Mouton.

Ramscar, M., & Port, R. F. (2016). How spoken languages work in the
absence of an inventory of discrete units. Language Sciences, 53,
58–74.

Ramscar, M., Sun, C. C., Hendrix, P., & Baayen, H. (2017). The mismea-
surement of mind: Life-span changes in paired-associate-learning
scores reflect the “cost” of learning, not cognitive decline. Psycho-
logical Science, 28(8), 1171–1179.

231

https://doi.org/10.1017/S0305000921000544
https://doi.org/10.1017/S0305000921000544


Bibliography

Ramscar, M., Thorpe, K., & Denny, K. (2007). Surprise in the learning
of color words. Proceedings of the Annual Meeting of the Cognitive
Science Society, 29(29).

Ramscar, M., & Yarlett, D. (2007). Linguistic self-correction in the absence
of feedback: A new approach to the logical problem of language
acquisition. Cognitive Science, 31(6), 927–960.

Ramscar, M., Yarlett, D., Dye, M., Denny, K., & Thorpe, K. (2010). The
effects of feature-label-order and their implications for symbolic
learning. Cognitive Science, 34(6), 909–957.

Ratcliff, R. (1990). Connectionist models of recognition memory: Con-
straints imposed by learning and forgetting functions. Psychological
Review, 97(2), 285–308.

Reed, J., & Johnson, P. (1994). Assessing implicit learning with indirect
tests: Determining what is learned about sequence structure. Jour-
nal of Experimental Psychology: Learning, Memory, and Cognition,
20(3), 585–594.

Reeder, P. A., Newport, E. L., & Aslin, R. N. (2013). From shared contexts
to syntactic categories: The role of distributional information in
learning linguistic form-classes. Cognitive Psychology, 66(1), 30–
54.

Rescorla, R. A. (1968). Probability of shock in the presence and absence
of cs in fear conditioning. Journal of Comparative and Physiological
Psychology, 66(1), 1–5.

Rescorla, R. A. (1988). Pavlovian conditioning: It’s not what you think it
is. American Psychologist, 43(3), 151–160.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning:
Variations in the effectiveness of reinforcement and nonreinforce-
ment. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II:
Current research and theory (pp. 64–99). Appleton-Century-Crofts.

Risse, A. (2021). What adjective use reveals about the function of gram-
matical gender: An analysis of German, English and Norwegian
(Bachelor’s Thesis). University of Tübingen.

Rodina, Y., & Westergaard, M. (2015). Grammatical gender in Norwegian:
Language acquisition and language change. Journal of Germanic
Linguistics, 27(2), 145–187.

232



Bibliography

Rohde, H., & Rubio-Fernandez, P. (2021). Color interpretation is guided by
informativity expectations, not by world knowledge about colors.
PsyArXiv. psyarxiv.com/jmd9w

Rokers, B., Mercado III, E., Allen, M. T., Myers, C. E., & Gluck, M. A.
(2002). A connectionist model of septohippocampal dynamics dur-
ing conditioning: Closing the loop. Behavioral neuroscience, 116(1),
48.

Romberg, A. R., & Saffran, J. R. (2013). All together now: Concurrent
learning of multiple structures in an artificial language. Cognitive
Science, 37(7), 1290–1320.

Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P.
(1976). Basic objects in natural categories. Cognitive Psychology,
8(3), 382–439.

Rosenblatt, F. (1962). Principles of neurodynamics: Perceptrons and the
theory of brain mechanisms. Spartan Books.

Rubio-Fernandez, P. (2019). Overinformative speakers are cooperative:
Revisiting the Gricean Maxim of Quantity. Cognitive Science, 43(11),
e12797.

Rubio-Fernandez, P. (2021). Color discriminability makes over-specification
efficient: Theoretical analysis and empirical evidence. Humanities
and Social Sciences Communications, 8(1), 1–15.

Rubio-Fernandez, P., Mollica, F., & Jara-Ettinger, J. (2021). Speakers and
listeners exploit word order for communicative efficiency: A cross-
linguistic investigation. Journal of Experimental Psychology: General,
150(3), 583–594. https://doi.org/doi:10.1037/xge0000963

Rubio-Fernández, P. (2016). How redundant are redundant color adjec-
tives? an efficiency-based analysis of color overspecification. Fron-
tiers in Psychology, 7, 153.

Rumelhart, D. E., Hinton, G. E., McClelland, J. L., et al. (1986). A general
framework for parallel distributed processing. Parallel distributed
processing: Explorations in the microstructure of cognition, 1(45-76),
26.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1987). Learning internal
representations by error propagation (J. A. Feldman, P. Hayes, &
D. E. Rumelhart, Eds.; tech. rep.). Cambridge, MA, MIT Press.

233

psyarxiv.com/jmd9w
https://doi.org/doi: 10.1037/xge0000963


Bibliography

Rumelhart, D. E., & McClelland, J. L. (1987). On learning the past tenses
of English verbs. In J. A. Feldman, P. Hayes, & D. E. Rumelhart
(Eds.), Parallel distributed processing (pp. 216–271). MIT Press.

Rupp, L., & Tagliamonte, S. A. (2019). “They used to follow Ø river”: The
zero article in York English. Journal of English Linguistics, 47(4),
279–300.

Schmajuk, N. A., Lamoureux, J. A., & Holland, P. C. (1998). Occasion
setting: A neural network approach. Psychological Review, 105(1),
3–32.

Schultz, W. (2000). Multiple reward signals in the brain. Nature Reviews
Neuroscience, 1(3), 199–207.

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of
prediction and reward. Science, 275(5306), 1593–1599.

Shannon, C. E. (1948). A mathematical theory of communication. Bell
System Technical Journal, 27, 379–423.

Siegelman, N., Bogaerts, L., Kronenfeld, O., & Frost, R. (2018). Redefining
“learning” in statistical learning: What does an online measure re-
veal about the assimilation of visual regularities? Cognitive Science,
42, 692–727.

Slobin, D. I. (1973). Cognitive prerequisites for the development of gram-
mar. In C. A. Ferguson & D. I. SLobin (Eds.), The handbook of
morphology (pp. 175–208). Holt, Rinehart & Winston.

Smolensky, P. (1988). On the proper treatment of connectionism. Behav-
ioral and Brain Sciences, 11(1), 1–23.

Snow, D. (1998). A prominence account of syllable reduction in early
speech developmentthe child’s prosodic phonology of tiger and
giraffe. Journal of Speech, Language, and Hearing Research, 41(5),
1171–1184.

St Clair, M. C., Monaghan, P., & Ramscar, M. (2009). Relationships between
language structure and language learning: The suffixing preference
and grammatical categorization. Cognitive Science, 33(7), 1317–
1329.

Stadtmiller, E., Lindner, K., Süss, A., & Gagarina, N. (2021). Russian–
German five-year-olds: What omissions in sentence repetition tell
us about linguistic knowledge, memory skills and their interrela-
tion. Journal of Child Language, 1–28.

Steedman, M. (2001). The syntactic process. MIT press.

234



Bibliography

Stone, G. O. (1987). An analysis of the delta rule and the learning of
statistical associations. In J. A. Feldman, P. Hayes, & D. E. Rumelhart
(Eds.), Parallel distributed processing (pp. 444–459). MIT Press.

Sumner, E., DeAngelis, E., Hyatt, M., Goodman, N., & Kidd, C. (2019).
Cake or broccoli? Recency biases children’s verbal responses. PLoS
One, 14(6), 1–13. https://doi.org/10.1371/journal.pone.0217207

Sutton, R. S., & Barto, A. G. (1987). A temporal-difference model of
classical conditioning. Proceedings of the 9th Annual Conference of
the Cognitive Science Society, 355–378.

Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning
(1st). MIT Press.

Taatgen, N. A. (2013). The nature and transfer of cognitive skills. Psycho-
logical Review, 120(3), 439.

Thompson-Schill, S. L., Ramscar, M., & Chrysikou, E. G. (2009). Cognition
without control: When a little frontal lobe goes a long way. Current
Directions in Psychological Science, 18(5), 259–263.

Tourtouri, E. N., Delogu, F., Sikos, L., & Crocker, M. W. (2019). Rational
over-specification in visually-situated comprehension and produc-
tion. Journal of Cultural Cognitive Science, 3(2), 175–202.

Tribushinina, E., & Mak, W. M. (2016). Three-year-olds can predict a
noun based on an attributive adjective: Evidence from eye-tracking.
Journal of Child Language, 43(2), 425–441. https://doi.org/10.
1017/S0305000915000173

Vaissière, J. (1983). Language-independent prosodic features. In A. Cutler
& D. Ladd (Eds.), Prosody: Models and measurements (pp. 53–66).
Springer.

Van Der Wel, R. P., Eder, J. R., Mitchel, A. D., Walsh, M. M., & Rosenbaum,
D. A. (2009). Trajectories emerging from discrete versus continuous
processing models in phonological competitor tasks: A commentary
on Spivey, Grosjean, and Knoblich (2005). Journal of Experimental
Psychology: Human Perception and Performance, 35(2), 588–594.

van Rij, J., Wieling, M., Baayen, R. H., & van Rijn, H. (2017). itsadug:
Interpreting time series and autocorrelated data using GAMMs
[R package version 2.3]. https://CRAN.R-project.org/package=
itsadug

van Berkum, J. J. (1997). Syntactic processes in speech production: The
retrieval of grammatical gender. Cognition, 64(2), 115–152.

235

https://doi.org/10.1371/journal.pone.0217207
https://doi.org/10.1017/S0305000915000173
https://doi.org/10.1017/S0305000915000173
https://CRAN.R-project.org/package=itsadug
https://CRAN.R-project.org/package=itsadug


Bibliography

van Berkum, J. J., Brown, C. M., Zwitserlood, P., Kooijman, V., & Hagoort,
P. (2005). Anticipating upcoming words in discourse: Evidence
from ERPs and reading times. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 31(3), 443–467.

van Rij, J., & Hoppe, D. B. (2021). Edl: Toolbox for error-driven learning
simulations with two-layer networks [R package version 1.1]. https:
//CRAN.R-project.org/package=edl

Vigliocco, G., Antonini, T., & Garrett, M. F. (1997). Grammatical gender is
on the tip of Italian tongues. Psychological Science, 8(4), 314–317.
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Een moeilijkheid van de Duitse taal is dat zelfstandige naamwoorden
altijd worden gecombineerd met verbogen lidwoorden die moeten over-
eenkomen met onder andere het grammaticale geslacht (genus) van het
zelfstandig naamwoord (bijv. die Gabel ‘de vork’ vs. der Löffel ‘de lepel’).
Veel mensen die Duits leren zijn het waarschijnlijk eens met auteur Abbas
Khider. Deze auteur, wiens moedertaal Iraaks-Arabisch is, schrijft in het
Duits, maar heeft de taal pas na zijn twintigste geleerd. Hij komt met een
concreet voorstel om het Duitse systeem van lidwoorden te vereenvoudi-
gen:

Ik heb een eenvoudige en praktische suggestie: je introduceert
een universeel lidwoord voor de hele taal [...] Voor mannelijk,
vrouwelijk en onzijdig zal er dus maar één bepaald lidwoord
en één onbepaald lidwoord zijn.

Bepaald lidwoord: de
Onbepaald lidwoord: e
Meervoud: die

Als de buitenlanders in Duitsland van mijn voorstel horen,
vermoed ik dat ze allemaal de straat op gaan, en dagenlang
dansen, feesten en juichen. Ongetwijfeld zullen sommigen
hun lidwoordenhaat de vrije loop laten en roepen: “Wir sind
de Volk!” [Wij zijn de volk!].1 (Khider, 2019, p. 33)

Terwijl moedertaalsprekers van het Duits het genus van een zelfstan-
dig naamwoord intuïtief kennen, worden tweede-taalsprekers vaak tot
wanhoop gedreven door het complexe en schijnbaar willekeurige systeem.
Het probleem is dat het wel ten dele mogelijk is om formele regels voor de

1Citaat vertaald uit het Duits; merk op dat de correcte Duitse vertaling van “het volk”
zou zijn “das Volk”
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toewijzing van het geslacht op te stellen, maar er zijn altijd uitzonderin-
gen. Zelfstandige naamwoorden voor vruchten zijn bijvoorbeeld meestal
vrouwelijk (zoals “die Kirsche”, de kers, “die Birne”, de peer, “die Orange”,
de sinaasappel) en die voor alcoholische dranken meestal mannelijk (zo-
als “der Schnaps”, de sterke drank, “der Wein”, de wijn, “der Sekt”, de
champagne), maar de zelfstandige naamwoorden “der Apfel” (de appel)
en “das Bier” (het bier) zijn in strijd met deze twee regels.

Abbas Khiders systeem van lidwoorden is daarentegen veel gemak-
kelijker te leren. Het lijkt meer op het Engelse systeem, dat zelfs nog
eenvoudiger is (omdat het Engelse bepaalde lidwoord hetzelfde is in enkel-
voud en meervoud). Hoewel het Engels vroeger een vergelijkbaar complex
systeem van lidwoorden had als het Duits, worden Engelse lidwoorden
sinds de Normandische verovering van Engeland in de 11e eeuw niet
meer verbogen (Dawson, 2003). Met name talen met veel contacten met
andere taalgroepen vertonen vermoedelijk de neiging zich zo te ontwik-
kelen dat ze gemakkelijker te leren zijn, bijvoorbeeld door grammaticale
complexiteit te verminderen (Lupyan & Dale, 2010).

Het Duitse genussysteem is er echter niet alleen voor om generaties
tweede-taalsprekers te pesten, maar het lijkt er voor te zijn om het com-
municatieproces — de basisfunctie van taal — efficiënter te maken. Een
luisteraar kan aan de hand van een verbogen Duits lidwoord het volgende
zelfstandig naamwoord vaak al deels voorspellen en daardoor de bedoeling
van de spreker sneller begrijpen. Zo kan bijvoorbeeld aan de keukentafel
uit de Duitse uiting “Kannst du mir noch einen...” (‘Kun je me nog een...’)
al meteen geconcludeerd worden dat de spreker “einen Löffel” (een lepel)
en niet “ein Messer” (een mes) of “eine Gabel” (een vork) wil hebben. Het
is belangrijk om het aantal mogelijke zelfstandige naamwoorden al tijdens
het verwerkingsproces te verminderen omdat zelfstandige naamwoorden
in het Duits (zoals in de meeste talen) de grootste woordklasse zijn en de
onzekerheid over de keuze van een zelfstandig naamwoord meestal nogal
groot is. Als de onzekerheid groot is, hebben sprekers langer nodig om
een woord te vinden en uit te spreken, en hebben luisteraars langer nodig
om de betekenis van een woord te begrijpen. Hoewel het systeem van het
Duits op het eerste gezicht chaotisch lijkt, is het genus in het Duits vaak
zo verdeeld dat veel zelfstandige naamwoorden vooraf kunnen worden
uitgesloten: met name zelfstandige naamwoorden die in vergelijkbare
situaties worden gebruikt, verschillen vaak van geslacht, zoals “Gabel”
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(vork), “Messer” (mes) en “Löffel” (lepel).
Of een taal nu een grammaticale eigenschap als een genussysteem

ontwikkelt en in stand houdt, lijkt dus de uitkomst van een touwtrek-
wedstrijd tussen leerbaarheid en de efficiëntie van de communicatie. Als
de raadscommissie voor de Duitse spelling, der Rat der deutschen Recht-
schreibung, het voorstel van Abbas Khider zou uitvoeren en de verbuiging
van Duitse lidwoorden zou afschaffen, zou de Duitse taal waarschijnlijk
toegankelijker worden voor tweede-taalleerders; aan de andere kant zou
de communicatieve functie van lidwoordverbuiging verloren gaan.

1. Onderzoeksvragen
In dit proefschrift heb ik onderzocht welke soorten grammaticale structu-
ren en eigenschappen gemakkelijker te leren zijn en welke het communica-
tieproces efficiënter maken. Ik heb me daarbij beperkt tot naamwoordgroe-
pen en onderzocht hoe de categorisering van zelfstandige naamwoorden
in sommige talen, zoals het genussysteem in het Duits, het leerproces
en de communicatie beïnvloeden. Daarnaast heb ik een andere factor
onderzocht waarin talen vaak sterk verschillen: de volgorde van woor-
den en andere grammaticaal relevante elementen in de zin. Zo is de
ondersteunende functie van Duitse verbogen lidwoorden vooral geba-
seerd op het feit dat ze vóór het zelfstandig naamwoord staan — alleen
zo kan een luisteraar vooraf zelfstandige naamwoorden uitsluiten die niet
overeenkomen met het geslacht van het lidwoord en daarmee het aantal
mogelijke zelfstandige naamwoorden verkleinen. Terwijl lidwoorden in
het Nederlands of Duits (1a & b) voor het zelfstandig naamwoord staan
(prenominaal, blauw gemarkeerd), staan ze bijvoorbeeld in het Noors (1c)
als achtervoegsel na het zelfstandig naamwoord (postnominaal, rood ge-
markeerd) en kunnen daarom minder goed bijdragen aan een efficiëntere
communicatie:

(3) a. Kun je me de lepel geven?
b. Kannst du mir den Löffel geben?
c. Kan du gi meg skjeen?

Postnominale lidwoorden, zoals in het Noors, lijken echter een andere
functie te hebben: onderzoek van taalleerexperimenten suggereert dat
zelfstandig-naamwoordcategorieën zoals grammaticale geslachten met be-
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hulp van lidwoordverbuiging na het zelfstandig naamwoord gemakkelijker
te leren zijn.

In mijn proefschrift onderzoek ik de hypothese dat mensen taal leren
met een eenvoudig, niet-taalspecifiek leermechanisme dat niet alleen
het impliciete leren bij mensen, maar ook leerprocessen bij dieren kan
verklaren. Aan de hand van dit mechanisme kunnen we beter begrijpen
hoe mensen prenominaal en postnominaal gemarkeerde constructies leren
en hoe ze naamwoordgroepen structureren tijdens het spreken. Om
nauwkeurige voorspellingen voor mijn hypothese te genereren, heb ik dit
leermechanisme nagebootst met behulp van een wiskundig model. De
resultaten van deze simulaties heb ik vervolgens experimenteel getest:
aan de ene kant heb ik onderzocht hoe proefpersonen in het laboratorium
zelfstandig-naamwoordcategorieën leren en aan de andere kant hoe ze
tijdens de communicatie naamwoordgroepen structureren.

2. Wiskundige modellering
Het wiskundige model dat ik voor mijn leersimulaties heb gebruikt, be-
staat uit een kunstmatig neuraal netwerk dat een reeks inputeenheden
verbindt met een reeks outputeenheden (een tweelaags neuraal netwerk).
De verbindingssterkte tussen afzonderlijke input- en outputeenheden is
een maat voor hoezeer het model een output (bijv. een woord als “Löffel”,
lepel) na een gegeven input (bijv. het Duitse bepaalde mannelijke accusa-
tieve lidwoord “den”) verwacht. Het model leert deze verwachtingen met
een zogenaamd verwachtingsgebaseerd of foutgestuurd leermechanisme.
Dit berekent, telkens wanneer een model met een input-output-paar ge-
confronteerd wordt, de fout tussen de voorspelling van het model en de
werkelijk geproduceerde output (bijv. in het begin verwacht het model
misschien ten onrechte dat het onzijdig zelfstandig naamwoord “Messer”
(mes) op het mannelijk lidwoord “den” volgen kan). Op basis van deze
fout past het foutgestuurde leermechanisme vervolgens de verwachting
van mogelijke outputs aan, dat wil zeggen de verbindingssterkte tussen
input- en outputeenheden. Het foutgestuurde leermechanisme wordt als
cognitief plausibel beschouwd: in talrijke leerexperimenten met dieren
(bijv. ratten en duiven) en mensen kon dit mechanisme het leergedrag
van de proefpersonen nabootsen en correct voorspellen.

Voor de stelling dat ‘primitieve’ foutgestuurde leermodellen leerver-
schijnselen bij mens en dier kunnen verklaren, bestaat tot op de dag van
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vandaag geen unaniem oordeel. Zo denken veel critici dat eenvoudige
tweelaagse neurale netwerken niet toereikend zijn om complexe leer-
verschijnselen te verklaren. Hun voorstel is om complexere netwerken
toe te passen (bijv. netwerken met veel tussenlagen die de input kunnen
manipuleren en veranderen voordat ze de outputeenheden bereiken, zoge-
noemde ‘diepe neurale netwerken’) of om ingewikkelder leermechanismen
te gebruiken. Een deel van mijn werk was daarom ook gericht op me-
thodologische kwesties in de modellering met eenvoudige foutgestuurde
leermodellen. Ik heb met name geanalyseerd waarvoor deze modellen in
het onderzoek kunnen worden gebruikt.

De keuze tussen een eenvoudig en een complex model is altijd afhanke-
lijk van het doel van de onderzoeker. Aan de ene kant kunnen complexere
modellen nauwkeuriger voorspellingen doen over een verschijnsel. Maar
hoe meer een model het fenomeen zelf in zijn complexiteit benadert,
hoe minder de processen die tijdens een simulatie plaatsvinden begrepen
kunnen worden en hoe minder het model nog echt een abstract model is.
(Dit wordt ook wel de paradox van Bonini genoemd.) Aan de andere kant
zijn eenvoudige, relatief abstracte modellen gemakkelijker te begrijpen
en kunnen ze vaak beter bijdragen aan het begrip van het onderzochte
verschijnsel. Ze hebben echter het nadeel dat ze vaak onnauwkeuriger en
beperkter zijn.

Om de processen die ten grondslag liggen aan het leren en verwerken
van taal beter te begrijpen, heb ik daarom bewust gekozen voor een zo
eenvoudig en dus zo abstract mogelijk model. Door gebruik te maken
van een zo eenvoudig mogelijke netwerkarchitectuur kon ik met name
het foutgestuurde leermechanisme beter onderzoeken. Uit dit onderzoek
heb ik de volgende twee conclusies kunnen trekken.

Ten eerste is foutgestuurd leren een abstractieproces. Terwijl we con-
stant worden geconfronteerd met een overvloed aan indrukken, helpt dit
onbewust verlopende leermechanisme ons om belangrijke van onbelang-
rijke indrukken te onderscheiden. Het mechanisme leert welke indrukken
bepaalde veranderingen in onze omgeving (bijv. het voorkomen van een
bepaald woord) kunnen voorspellen en welke geen betrouwbare indica-
toren zijn. Het mechanisme leidt er uiteindelijk toe dat de representatie
van een object of een situatie gereduceerd wordt tot een verzameling
van weinig, maar bruikbare eigenschappen, in plaats van een allegaartje
van talloze eigenschappen. Om bijvoorbeeld te beslissen of een dier kat
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of hond genoemd moet worden, is het meestal voldoende om de vorm
van het dier te identificeren, maar het soort vacht of de oogkleur is niet
relevant en hoeft niet te worden gebruikt.

Bovendien heb ik in mijn simulaties gemerkt dat dit abstractieproces
gericht is. Dit betekent dat de representatie van voorafgaande elementen
(bijvoorbeeld objecten, situaties of andere waarnemingen) bepaald en
aangepast wordt aan de hand van hoe betrouwbaar ze de eropvolgende
elementen kunnen voorspellen. De representatie van navolgende elemen-
ten kan op zijn beurt alleen worden aangepast met behulp van verder
volgende elementen, maar niet op basis van voorafgaande elementen.
Doordat het hele leerproces gebaseerd is op verwachtingen die gericht zijn
op de toekomst, leert dit mechanisme dus anders wanneer de volgorde
van elementen wordt verwisseld.

Hieronder zal ik kort samenvatten hoe deze twee punten samen kun-
nen verklaren waarom de woordvolgorde zowel het leren van taal als het
communicatieproces beïnvloedt.

3. Woordvolgorde en leren
Op basis van de bevinding dat foutgestuurd leren gericht is en dat een
verwisseling van opeenvolgende elementen daarom kan leiden tot een
ander leerresultaat, volgt de stelling dat ook de woordvolgorde het leren
van grammaticale structuren kan beïnvloeden.

Om te onderzoeken hoe de woordvolgorde het leren van naamwoord-
categorieën beïnvloedt, heb ik proefpersonen verschillend gestructureerde
kunsttalen laten leren. Deze ‘miniatuurtalen’ bestonden uit een verza-
meling zelfstandige naamwoorden, die in vier categorieën waren onder-
verdeeld. In de leerfase hoorden de proefpersonen eenvoudige naam-
woordgroepen, waarvan de betekenis als afbeelding op een scherm werd
getoond; in de daaropvolgende testfase werd getest hoe goed elke proef-
persoon de woordbetekenissen en de zelfstandig-naamwoordcategorieën
had geleerd. Een van de kunsttalen leek op het Noors, met zelfstandig-
naamwoordcategorieën met een markeerder (suffix) die achter het zelf-
standig naamwoord was geplakt (suffixtaal); een andere taal markeerde
zelfstandig-naamwoordcategorieën zoals het Duits met een verbogen lid-
woord vóór het zelfstandig naamwoord (lidwoordtaal).

In een simulatie met foutgestuurde neurale netwerken heb ik de
suffixtaal-leerders en de lidwoordtaal-leerders met twee modellen gesimu-
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leerd. Het eerste model (suffixmodel) moest de juiste categoriemarkeerder
voorspellen op basis van een bepaald zelfstandig naamwoord. Het tweede
model (lidwoordmodel) moest op basis van een categoriemarkeerder een
zelfstandig naamwoord uit de juiste zelfstandig-naamwoordcategorie voor-
spellen. De twee modellen verschilden dus alleen in de vraag of de zelf-
standige naamwoorden en categoriemarkeerder als input of als output
aan het netwerk werden gepresenteerd:

Input → Output

Suffixmodel: Zelfstandig
naamwoord

→ Categorie-
markeerder

Lidwoordmodel: Categorie-
markeerder

→ Zelfstandig
naamwoord

Vergelijking van de twee modellen wees uit dat het suffixmodel leert om
de eigenschappen van afzonderlijke zelfstandige naamwoorden in te schat-
ten in verband met hoe betrouwbaar ze een categoriemarkeerder (d.w.z.
een suffix) kunnen voorspellen. Het lidwoordmodel daarentegen leert hoe
waarschijnlijk het is dat zelfstandige naamwoorden en afzonderlijke ei-
genschappen van zelfstandige naamwoorden na een categoriemarkeerder
(d.w.z. een lidwoord) verschijnen.

3.1. Postnominale categoriemarkeerders

Doordat het suffixmodel leert welke zelfstandig-naamwoordeigenschappen
een passende categoriemarkeerder goed kunnen voorspellen en welke
niet, leert het categorie-relevante zelfstandig-naamwoordeigenschappen
te scheiden van categorie-irrelevante (in mijn kunsttaal bijvoorbeeld ver-
schilden zelfstandige naamwoorden van verschillende categorieën in hun
klemtoonpatroon, maar de specifieke klankvolgorde van elk zelfstandig
naamwoord was toevallig). Dit is belangrijk voor het indelen van zelf-
standige naamwoorden in de verschillende categorieën. Zo heb ik in
mijn experiment gezien dat proefpersonen die de suffixtaal hadden ge-
leerd, zelfstandig naamwoorden beter konden indelen in categorieën dan
proefpersonen die de lidwoordtaal hadden geleerd.

Ik zag dit effect echter alleen als de zelfstandig-naamwoordcategorieën
nog onbekend waren voor de proefpersonen, bijvoorbeeld als zelfstandige
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naamwoorden uit verschillende categorieën verschilden in klemtoon (zelf-
standige naamwoorden van de eerste categorie hadden bijvoorbeeld de
klemtoon altijd op de eerste lettergreep, zelfstandige naamwoorden van
de tweede categorie altijd op de tweede lettergreep). Als de taallerders
de categorieën al kenden en ze alleen maar het juiste achtervoegsel of
lidwoord voor een categorie hoefden te leren, kon ik geen verschil vinden
tussen de lidwoordtaal en de suffixtaal. Dit was bijvoorbeeld het geval
wanneer zelfstandige naamwoorden werden ingedeeld in categorieën op
basis van hun betekenis (bijvoorbeeld alle zelfstandige naamwoorden in
de eerste categorie benoemden dieren en alle zelfstandige naamwoorden
in de tweede categorie benoemden planten).

Dit betekent dat met name bij het leren van nieuwe naamwoordcate-
gorieën postnominale categoriemarkeerders zoals verbogen suffixen of
postnominale lidwoorden nuttig zijn, bijvoorbeeld wanneer peuters hun
moedertaal aan het leren zijn. Hoewel in het tweede-taalonderwijs leerlin-
gen vaak nieuwe woorden leren voor concepten die al in hun moedertaal
bestaan (bijvoorbeeld het Duitse “Hund” en Nederlandse “hond” beteke-
nen hetzelfde), is het soms ook bij het leren van een tweede taal nodig
om nieuwe concepten te leren of om categorieën uit de moedertaal te
herstructureren (de genussystemen in het Duits en Nederlands verschillen
bijvoorbeeld sterk van elkaar).

3.2. Prenominale categoriemarkeerders

Om te leren hoe waarschijnlijk zelfstandige naamwoorden (en dus ook
afzonderlijke zelfstandig-naamwoordeigenschappen) na een bepaalde
categoriemarkeerder optreden, leert het lidwoordmodel afzonderlijke
zelfstandig-naamwoordeigenschappen eerder te beoordelen op basis van
hun frequentie dan op basis van hun relevantie voor de zelfstandig-
naamwoordcategorisering. Omdat veelvoorkomende eigenschappen in
een zelfstandig-naamwoordcategorie ook vaak in andere categorieën voor-
komen, kon het lidwoordmodel zelfstandig-naamwoordcategorieën slech-
ter onderscheiden dan het suffixmodel. Ook zij die een lidwoordtaal
leerden, waren slechter in het categoriseren van zelfstandige naamwoor-
den dan leerders van een suffixtaal.

Hoewel proefpersonen die de lidwoordtaal hadden geleerd, minder
goed waren in het leren van nieuwe zelfstandig-naamwoordcategorieën,
leerden ze het belang van afzonderlijke zelfstandige naamwoorden met
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meer succes dan de suffixtaalleerlingen. Dit kan op zijn beurt worden
verklaard aan de hand van foutgestuurde leersimulaties. Terwijl in het
suffixmodel zelfstandig-naamwoordeigenschappen die niet relevant zijn
voor de categorisering, minder zwaar worden gewogen en dus als het
ware worden ‘afgeleerd’, blijven zelfstandig-naamwoordeigenschappen
in het lidwoordmodel met meer detail behouden. De verwerking van
gedetailleerde eigenschappen is op zijn beurt noodzakelijk om afzon-
derlijke zelfstandige naamwoorden binnen een categorie uit elkaar te
houden. Daarnaast heb ik in een andere simulatie laten zien dat een
verder voordeel van lidwoorden is dat ze kunnen worden gebruikt om
een deelverzameling van zelfstandige naamwoorden (dat wil zeggen de
zelfstandige naamwoorden van slechts één categorie) te voorspellen en
dat zelfstandige naamwoorden beter in kleinere groepen geleerd kunnen
worden.

Samenvattend kan worden geconcludeerd dat prenominale en post-
nominale categoriemarkeerders verschillende functies hebben tijdens het
leerproces: postnominale categoriemarkeerders, zoals achtervoegsels,
zijn nuttig om categorierelevante van categorie-irrelevante zelfstandig-
naamwoordeigenschappen te onderscheiden, en zelfstandige naamwoor-
den zodoende gemakkelijker in categorieën te kunnen indelen; prenomi-
nale categoriemarkeerders, zoals lidwoorden, kunnen gedetailleerdere
eigenschappen opslaan en deelverzamelingen van zelfstandige naamwoor-
den voorspellen. Beide zijn processen die het leren van de betekenissen
van zelfstandige naamwoorden vereenvoudigen.

4. Woordvolgorde en efficiënte communicatie
Doordat prenominale categoriemarkeerders zelfstandige naamwoorden
voorspelbaarder maken, dragen ze ook bij aan efficiëntere communicatie.
In het bijzonder kunnen prenominale categoriemarkeerders, zoals Duitse
lidwoorden, de onzekerheid over mogelijke eropvolgende zelfstandige
naamwoorden verminderen. Uit onderzoeksresultaten blijkt dat sprekers
bij geringe onzekerheid zelfstandige naamwoorden gemakkelijker uit het
geheugen halen en produceren, en dat luisteraars deze sneller verwerken.

Niet alleen lidwoorden kunnen de onzekerheid over eropvolgende
zelfstandige naamwoorden verkleinen. Ook bijvoeglijke naamwoorden —
zelfs zonder informatie over het genus — kunnen helpen om de waarschijn-
lijkheid van daaropvolgende zelfstandige naamwoorden in te schatten.
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Zo lijken bijvoorbeeld in het Duits na het bijvoeglijk naamwoord “grüne”
(groene) zelfstandige naamwoorden zoals “Musik” (muziek), “Straße”
(straat) of “Kaffeepause” (koffiepauze) intuïtief tamelijk onwaarschijn-
lijk in vergelijking met “Hose” (broek), “Energie” (energie’) of “Tonne”
(bak). Er is bewijs dat het Engels van dit proces gebruik maakt: Engelse
teksten bevatten gemiddeld meer prenominale bijvoeglijke naamwoor-
den dan Duitse teksten. Dit zou toegeschreven kunnen worden aan het
feit dat Engelse lidwoorden minder onzekerheid wegnemen dan Duitse
lidwoorden.

In een taalproductie-experiment heb ik onderzocht of Engelse en Duitse
sprekers binnen dezelfde communicatieve situatie naamwoordgroepen in-
derdaad anders structureren en of dit afhankelijk is van de informativiteit
van de lidwoorden. Hiervoor liet ik proefpersonen beschrijvingen produce-
ren voor een geometrische vorm die samen met drie andere vormen in een
raster werd gepresenteerd. De taak van de proefpersonen was om de zin
“Bitte klicke auf...” (‘Klik alstublieft op. . . ’) af te maken. Omdat de vier
vormen verschilden in kleur en vorm (vierkant, driehoek, kruis, etc.), kon-
den de proefpersonen naamwoordgroepen produceren met én zonder een
prenominaal kleuradjectief (zoals “Bitte klicke auf das grüne Quadrat”,
‘Klik alstublieft op het groene vierkant’, of “Bitte klicke auf das Quadrat”,
‘Klik alstublieft op het vierkant’) — beide mogelijkheden beschrijven de
bedoelde vorm op een unieke manier en zouden dus hun communicatieve
doel vervullen.

Ik vond dat de proefpersonen vaker woordgroepen met prenominale
bijvoeglijke naamwoorden produceerden wanneer de bedoelde vorm niet
vooraf door het lidwoord kon worden onderscheiden van de andere vor-
men in het raster. In het Duits kon het lidwoord deze functie vervullen als
de gemarkeerde vorm een ander genus had dan de andere drie vormen
in het raster (zoals “der Stern”, de ster, vs. “das Kreuz”, het kruis, “das
Rechteck”, de rechthoek, “das Dreieck”, de driehoek). In het Engels kon
het lidwoord the deze functie niet vervullen, en inderdaad produceerden
de Engelse proefpersonen meer prenominale bijvoeglijke naamwoorden
dan de Duitse proefpersonen. Wanneer de vormen in het raster echter
allemaal hetzelfde genus in het Duits hadden, leek de keuze van Duitstali-
gen op die van de Engelstaligen. In deze versie van het experiment kon
het Duitse lidwoord de onzekerheid over de vier mogelijke zelfstandige
naamwoorden (zoals “das Herz”, het hart, “das Kreuz”, het kruis, “das
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Rechteck”, de rechthoek, “das Dreieck”, de driehoek) niet wegnemen
en de Duitse proefpersonen bleken net zo veel prenominale bijvoeglijke
naamwoorden te produceren als de Engelse proefpersonen.

Hoewel prenominale lidwoorden en dito bijvoeglijke naamwoorden
de efficiëntie van de communicatie kunnen verhogen, kan het produce-
ren van een extra woord ook bijdragen aan hogere productiekosten. De
efficiëntie van de communicatie kan dus niet alleen worden beoordeeld
op de voordelen van een grammaticale constructie, maar moet ook een
kosten/baten-analyse omvatten. In een ander taalproductie-experiment
vond ik dat sprekers niet alleen woorden toevoegen om onzekerheid in de
zin te verminderen, maar ook woorden weglaten die niet bijdragen aan
het verminderen van onzekerheid. Zo vond ik onder andere dat Engelse
proefpersonen in vergelijking met de Duitse proefpersonen vaak naam-
woordgroepen zonder lidwoord produceerden, hoewel de zinnen daardoor
niet meer grammaticaal correct waren (bijv. “Click on yellow star”, ‘Klik
op gele ster’). Opmerkelijk is dat de principes volgens welke onze proef-
personen naamwoordgroepen structureerden, in overeenstemming zijn
met de principes volgens welke efficiënte codes voor kunstmatige com-
municatiesystemen (bijv. in de telecommunicatie) worden ontwikkeld:
een efficiënte code wordt onder andere gekenmerkt door het feit dat de
onzekerheid over de continuering van een uitgezonden signaal over de
tijd heen zo constant mogelijk wordt gehouden. Aan de ene kant vereist
een hoge mate van onzekerheid meestal meer cognitieve middelen en
leidt deze ook tot een hoger foutenpercentage. Aan de andere kant zal een
te grote vermindering van onzekerheid in combinatie met te hoge kosten,
bijvoorbeeld door een te lang signaal, cognitieve middelen verspillen en
daarom inefficiënt worden.

De twee taalproductie-experimenten suggereren dus dat zowel preno-
minale lidwoorden met genusverbuiging als niet-verbogen prenominale
bijvoeglijke naamwoorden door sprekers worden gebruikt om de onze-
kerheid in naamwoordgroepen te verkleinen. Daarnaast bleek uit mijn
experimenten dat sprekers van het Engels en Duits de structuur van hun
naamwoordgroepen dynamisch aanpassen aan de onderhavige situatie en
context. Daarbij lijken ze de efficiëntie van de communicatie te optimali-
seren door een afweging te maken van kosten en baten.
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5. Conclusie
Waarom ontwikkelen talen bepaalde grammaticale structuren en waarom
verliezen ze andere? Mijn resultaten suggereren dat het vermogen van het
menselijk brein om temporele verbanden waar te nemen en te leren, zowel
het leren van taal als de verwerking van taal beïnvloedt. Eenvoudige, on-
bewuste processen, zoals het foutgestuurde leermechanisme, hebben dus
waarschijnlijk ook invloed op de manier waarop talen zich ontwikkelen.
Met name de woordvolgorde speelt hierbij een belangrijke rol. Aan de
ene kant beïnvloedt woordvolgorde hoe taalleerders de taal representeren
en categoriseren. Categorieën, zoals grammaticale geslachten, zijn het
gemakkelijkst te leren door middel van postnominale categoriemarkeer-
ders. Aan de andere kant beïnvloedt de woordvolgorde wat voor soort
informatie woorden kunnen overbrengen tijdens het communicatieproces.
Prenominale lidwoorden of bijvoeglijke naamwoorden dragen onder an-
dere bij aan het verkleinen van de onzekerheid over de voortzetting van
een zin en maken zodoende het communicatieproces efficiënter.

Met het oog op de moeilijkheden die het Duitse genussysteem voor
leerders van het Duits veroorzaakt, bevestigen mijn onderzoeksresultaten
dat het inderdaad moeilijk is om dit systeem te leren. Omdat het genus
van een zelfstandig naamwoord in het Duits wordt gemarkeerd door
lidwoorden, dus door prenominale categoriemarkeerders, zijn we al in
het nadeel vanwege de onbewust verlopende leermechanismen in onze
hersenen. De bevinding dat lidwoordverbuiging het communicatieproces
efficiënter kan maken, zal tweede-taalsprekers wellicht weinig troost
bieden. Naast de radicale oplossing van Abbas Khider, zouden ook nieuwe,
eenduidige, geslacht-markerende achtervoegsels het leerproces kunnen
vergemakkelijken. Of de raadscommissie voor de Duitse spelling zich door
een van deze voorstellen laat overtuigen, valt echter te betwijfelen.
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Error-driven learning
tutorial

This tutorial presents a practical introduction to two-layer error-driven
learning models in R. The aim of this tutorial is to introduce all tools needed to
build an error-driven learning model that simulates discriminative learning.

The interactive tutorial can be found at:

https://edl-tutorial.web.rug.nl/

The source code to the tutorial can be found at:

https://git.lwp.rug.nl/p251653/error-driven-learning-tutorial
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Links to online code and
materials

Chapter 2
• Error-driven learning tutorial:

https://edl-tutorial.web.rug.nl/

• Source code for tutorial:

https://git.lwp.rug.nl/p251653/error-driven-learning-tutorial

• R package edl, Version 1.1 (van Rij, J. and Hoppe, D.B., 2021):

https://CRAN.R-project.org/package=edl

Chapter 3
• Code for analysis:

https://git.lwp.rug.nl/p251653/linear-order-and-category-structure

Chapter 4
• Code for analysis:

https://git.lwp.rug.nl/p251653/double-marking-learning

Chapter 5:
• Preregistration:

https://osf.io/bskuc

• Code for analysis and materials:

https://osf.io/x2cmj/
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