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Abstract
This paper considers the problem of Nash equilibrium (NE) seeking in aggrega-
tive games, where the cost function of each player depends on an aggregate
of all players’ actions. We present a distributed continuous-time algorithm
such that the actions of the players converge to NE by communicating to
each other through a connected network. As agents may deviate from their
optimal strategies dictated by the NE seeking protocol, we investigate robust-
ness of the proposed algorithm against time-varying disturbances. In particular,
we provide rigorous robustness guarantees by proving input-to-state stabil-
ity (ISS) and 2-stability properties of the NE seeking dynamics. A major
concern in communicative schemes among strategic agents is that their pri-
vate information may be revealed to other agents or to a curious third party
who can eavesdrop the communications. Motivated by this, we investigate
privacy properties of the algorithm and identify to what extent privacy is pre-
served when all communicated variables are compromised. Finally, we demon-
strate practical applications of our theoretical findings on two case studies;
namely, on an energy consumption game and a coordinated charging of electric
vehicles.

K E Y W O R D S

aggregative games, Nash equilibrium seeking, robustness, privacy

1 INTRODUCTION

Game theory is the standard tool for studying the interaction behavior of self-interested agents/players and has attracted
considerable attention due to its broad applications and technical challenges. An active research topic in this area con-
cerns aggregative games that model a set of noncooperative agents aiming at minimizing their cost functions, while the
action of each individual player is influenced by an aggregation of the actions of all the other players.1 These games
have appeared in a broad range of applications such as networked control systems,2 demand-side management in smart
grids,3 charging control of plug-in electric vehicles,4 and flow control of communication networks.5 The common char-
acteristic is that if noncooperative agents are left uncoordinated, their aggregate actions can negatively affect the shared
architecture.

Abbreviations: NE, Nash equilibrium; ISS, input-to-state stability; VI, variational inequality; HVAC, heating ventilation air conditioning; PEV,
plug-in electric vehicle; KKT, Karush–Kuhn–Tucker
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
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In the context of noncooperative games, existence of a solution, Nash equilibrium (NE), and its computation have been
extensively studied in the literature.6 Earlier works considered the case where each agent has full access to the actions
of all other agents, that is, all-to-all interactions.6,7 However, recent works have attempted to relax this assumption due
to computational and scalability issues. In this regard, the authors in References 8-11 presented distributed NE seeking
algorithms where each player computes an estimation of the actions of all the other players by communicating to its
neighbors. Although those algorithms are applicable to aggregative games, they are inefficient as they require that each
player estimate the actions of all other players. In aggregative games, on the other hand, it is sufficient that each player
estimates the aggregation term. This has led to various algorithms tailored for aggregative games, which can be classified
as gather and broadcast12-14 and distributed algorithms.15-19 The former is based on the exchange of information with a
central aggregator, whereas the latter relies on a peer-to-peer communication. This paper falls into the second category
and presents a fully distributed NE seeking algorithm for aggregative games.

From a different perspective, distributed NE seeking algorithms for aggregative games can be divided into
discrete-time15-17,20,21 and continuous-time.18,19,22,23 The discrete-time algorithms are based on gradient dynamics (syn-
chronous algorithm in Reference 15), gossip technique (asynchronous algorithm in Reference 15), double-layer itera-
tions,16,20 forward-backward iteration,17 and optimal response.21 Tuning of the step sizes in these algorithms, however,
is generally a hard task or it may require global information shared among all players. More specifically, diminishing
step sizes are used in Reference 15, which typically slow down the convergence speed, and References 16,17,20 employ
fixed step sizes, where global information is needed for selection of the step sizes. The continuous-time gradient-based
algorithms in References 18,19,22,23, on the other hand, employ some tuning parameters shared among all players. In
comparison to those works, we present a fully distributed NE seeking algorithm where the players need not to share any
design parameters or their actions, and more importantly, equip our algorithm with rigorous robustness guarantees and
study its privacy preserving properties as discussed below.

The players are not always rational in a game and deviation of their actions from a fully rational behavior is possible.
Some examples are “stubborn players”22,24 who do not fully obey the NE seeking dynamics, or “almost" rational players
whose decisions are determined by their “bounded rationality”.25 Therefore, it is crucial that an NE seeking algorithm
has suitable robustness properties. Additionally, having a robust algorithm is required when there exists uncertainty in
a game. Robustness of an NE seeking algorithm with respect to slowly-varying channel gain in code division multiple
access systems is studied in Reference 26. We refer the reader to References 27-29 for studies on robustness of gradient
systems, saddle-point dynamics, and frequency regulation of power networks, respectively.

To investigate robustness, we add bounded time-varying disturbances to the dynamics of the algorithm, and show that
the proposed distributed NE seeking algorithm is robust against such perturbations. We use input-to-state stability (ISS)
as a notion of robustness, which examines whether the state trajectories of the system are bounded by a function of the
perturbation.30 In our robustness analysis, the main technical challenge is the existence of undamped communicating
variables in the algorithm. We address this by including a sufficiently small cross-term in the ISS Lyapunov function. In
addition to establishing ISS, we exploit 2-stability and explicitly analyze the effect of disturbances on convergence error
to the NE of the game.

Generally speaking, NE seeking algorithms rely on communication either with a central aggregator12 or among
neighboring agents.15 In the former, it is often assumed that the aggregator is trustworthy, whereas, in reality, private
information can still be leaked by an aggregator either willingly or unwillingly. In the latter, private information can be
revealed to other players through direct communication, or leaked to curious adversaries as a result of eavesdropping.
More generally, for convincing strategic players to participate in any cooperative policy, privacy guarantees need to be put
in place.

Motivated by the above concerns, we investigate the proposed distributed NE seeking algorithm from the viewpoint of
privacy. Roughly speaking, privacy is preserved if private variables of the players cannot be uniquely reconstructed based
on the available information on the structure of the algorithm, the class of cost functions, and communicated variables.
To make sure this is the case, we will show that there are replicas of private quantities that are indistinguishable from the
original ones in view of the available information. An alternative approach would be to use data perturbation techniques
and rely on differential privacy.31-33 The idea behind this technique is to add noise with appropriate statistical properties
to the process under investigation in order to limit the ability of a curious party in estimating the private quantities of
the system. Differential privacy is recently exploited in Reference 34, and a distributed NE seeking algorithm is proposed
that preserves privacy of the player’s objective function. A drawback of adding noise, however, is that the solution of
the algorithm asymptotically diverges from the NE of the game. Our approach, on the contrary, uses an “observability”
or “identifiability” principle, that is, private variables/quantities cannot be inferred from the information accessible to
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the curious adversary. We perform a worst-case privacy analysis by considering the scenario where the structure of the
algorithm and all communicated variables are available to the adversary.

Contributions: The main contribution of the article is threefold. First, we present a fully distributed algorithm in
continuous-time that obtains the NE in aggregative games. The algorithm does not require the players to share their
actions or any design parameters; and we provide sufficient conditions for its convergence, which can be verified in
a distributed manner. As the second contribution, by using ISS and 2-stability, we show that the algorithm is robust
against bounded time-varying disturbances. Third, we demonstrate that the proposed algorithm preserves privacy of the
players’ private information against adversaries with full knowledge on all communicated variables and the structure
of the algorithm. All features combined, this manuscript delivers a fully distributed NE seeking algorithm with formal
robustness and privacy guarantees.

The rest of the article is organized as follows: Section 2 includes preliminaries and the problem formulation. In
Section 3, a distributed NE seeking algorithm is proposed and its convergence analysis is provided. Robustness and pri-
vacy guarantees of the algorithm are established in Section 4. The rate of convergence and the 2-gain of the system are
analytically provided. Two detailed case studies of an energy consumption game and coordinated charging of electric
vehicles are provided in Section 5. The paper closes with conclusions in Section 6.

2 NOTATIONS, PRELIMINARIES, AND PROBLEM FORMULATION

2.1 Notations

We use 𝟘 to denote a vector/matrix of all zeros, and 1n for the vector of all ones in Rn. The identity matrix
of size n is denoted by In. We omit the subscript whenever no confusion arises. The Kronecker product is
denoted by ⊗. For given vectors x1, … , xN ∈ Rn, we use the notation x ∶= col (x1, … , xN) =

[
x⊤1 , … , x⊤N

]⊤ and x−i ∶=
col (x1, … , xi−1, xi+1, … , xN). Similarly, for given matrices X ∈ Rm×n and Y ∈ Rp×n, we write col(X ,Y ) = [X⊤,Y⊤]⊤. We
use A ∶= blockdiag (A1, … ,AN) to denote the block diagonal matrix constructed from the matrices A1, … ,AN . The
image and kernel of a matrix A ∈ Rn×m are denoted by imA and ker A, respectively. A continuous function 𝛼 ∶ R≥0 →
R≥0 is class  if it is strictly increasing and 𝛼(0) = 0. In addition, it is class ∞ if 𝛼(s) → ∞ as s → ∞. A function
F ∶ Rn → Rn is (strictly) monotone if (x − y)⊤(F(x) − F(y)) ≥ 0 (> 0) for all x ≠ y ∈ Rn, and it is 𝜇-strongly monotone if
(x − y)⊤(F(x) − F(y)) ≥ 𝜇||x − y||2 for all x, y ∈ Rn and some𝜇 ∈ R>0. The space of piecewise continuous square-integrable
functions that map R≥0 into Rn is denoted by n

2 . Equivalently, a piecewise continuous function x ∶ R≥0 → Rn belongs
to n

2 if its 2 norm, defined as ||x||2 ∶= (∫ ∞
0 x(t)⊤x(t)dt)

1
2 , is bounded. The extended space n

2e is defined as n
2e ∶= {x ∶

R≥0 → Rn|x𝜏 ∈ n
2 ,∀𝜏 ∈ R≥0} where x𝜏 is a truncation of x such that x𝜏(t) = x(t) for all 0 ≤ t ≤ 𝜏 and x𝜏(t) = 0 for all t > 𝜏.

2.2 Algebraic graph theory

Let Gc = (, ) be an undirected graph that models the network of N agents with  = {1, … ,N} being the node set
associated to the agents, and  denoting the edge set. Each element of  is an unordered pair {i, j} with i, j ∈ . The graph
is connected if there is a path between every pair of nodes. The set of neighbors of agent i is i = {j ∈ |{i, j} ∈ }. The
Laplacian matrix of Gc is denoted by L with Lii equal to the cardinality of i, Lij = −1 if j ∈ i, and Lij = 0 otherwise.
The matrix L of an undirected graph is positive semidefinite and 1N ∈ ker L. If the graph is connected, L has exactly one
zero eigenvalue, and im1N = ker L. The Moore–Penrose inverse of L is denoted by L+.

2.3 Projection and variational inequality

Given a closed convex set  ⊆ Rn, the projection of a point v ∈ Rn to  is denoted by proj (v) ∶= arg miny∈ ||y − v||.
Given a point x ∈  , the normal cone of  at x is the set  (x) ∶= {y ∈ Rn|y⊤(z − x) ≤ 0,∀z ∈ }. The tangent cone of
 at x ∈  is denoted by  (x) ∶= cl

(
∪y∈ ∪h>0 h(y − x)

)
where cl(⋅) denotes the closure of a set. For v ∈ Rn and x ∈  ,

the projection of v at x with respect to  is given by Π (x, v) ∶= limh→0+
1
h

(
proj (x + hv) − x

)
, and it is equivalent to

the projection of v to  (x), that is, Π (x, v) = proj (x)(v). By using Moreau’s decomposition theorem (theorem 3.2.5 in
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Reference 35), a vector v ∈ Rn can be decomposed as v = proj (x)(v) + proj (x)(v) for any point x ∈  . Given a mapping
F ∶  → Rn, the variational inequality problem VI( ,F) is to find the point x ∈  such that (x − x)⊤F(x) ≥ 0 for all x ∈  .

2.4 Aggregative games

We consider a set of players  = {1, … ,N} where each player i ∈  aims at minimizing a cost function Ji ∶ Rn × Rn → R

by choosing its action variable xi in a set i ⊆ Rn. The value of the cost function depends on xi and an aggregation of all
the other action variables. In particular, each player i ∈  attempts to solve the following minimization problem

min
xi∈i

Ji(xi, s(x))

s(x) ∶= 1
N
∑
j∈

xj =
1
N

(
1⊤N ⊗ In

)
x, (1)

where x ∶= col(x1, … , xN) and s(x) is the aggregation term. We use the compact notation agg = (, (Ji)i∈ , (i)i∈) to
denote the aggregative game in (1). By definition, a point x∗∶= col

(
x∗1 , … , x∗N

)
is a Nash equilibrium (NE) of the game if

x∗i ∈ arg miny∈i
Ji

(
y, 1

N
y + 1

N
∑
j≠i

x∗j

)
, ∀ i ∈ .

This means that at the NE, there is no player that can decrease its cost by unilaterally changing its action. We note that x∗i
depends on the optimal actions of all the other players, and therefore several coupled optimization problems need to be
solved to obtain x∗. Consequently, standard distributed optimization techniques cannot be used for solving this problem.
In the next section, we derive local sufficient conditions for existence and uniqueness of NE and present a distributed
algorithm that asymptotically converges to this point.

3 DISTRIBUTED NE SEEKING DYNAMICS

First, we discuss some auxiliary results that are instrumental to prove convergence properties of the NE seeking algorithm
proposed later in the section.

Assumption 1 (assumption 2(ii) in Reference 10). For all i ∈ , the action set i ⊂ Rn is nonempty, convex, and
compact, and the cost function Ji is 1 in all its arguments. •

Let 𝜎i ∈ Rn be a local variable associated to each player i ∈ , with the cost function written as Ji(xi, 𝜎i), and define

fi(xi, 𝜎i) ∶=
𝜕

𝜕xi
Ji(xi, 𝜎i) +

1
N

𝜕

𝜕𝜎i
Ji(xi, 𝜎i). (2)

It is easy to see that 𝜕

𝜕xi
Ji(xi, s(x)) = fi(xi, s(x)). To proceed further, we need the following assumption:

Assumption 2. For all i ∈ , the mapping xi → fi(xi, 𝜎i) is 𝜇i-strongly monotone, and the mapping 𝜎i → fi(xi, 𝜎i) is
𝓁i-Lipschitz continuous with 𝜇i > 𝓁i. •

The assumption above is a decentralized version of assumption 1 in Reference 12, and its conditions can be replaced
by less conservative, yet more implicit, conditions; see Remark 2.

In game theory, the pesudo-gradient mapping defined as col ((fi(xi, s(x)))i∈) plays a fundamental role in designing NE
seeking algorithms. Motivated by this and the fact that the players may not have access to s(x), we introduce the following
mapping:

F(x,𝝈) ∶=

[
K col ((fi(xi, 𝜎i))i∈)

𝝈 − x

]
, (3)
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where K ∶= blockdiag(k1In, … , kN In) with design parameters ki > 0, and 𝝈 ∶= col(𝜎1, … , 𝜎N). In the literature,17 the
term col ((fi(xi, 𝜎i))i∈) is referred to as “the extended pesudo-gradient mapping” where each player uses its local vari-
able 𝜎i instead of the aggregation s(x). The matrix K is added for additional flexibility and motivated by privacy reasons;
see Remark 1. This mapping is further extended in (3) with the term 𝝈 − x to construct an augmented map that is
strongly monotone with respect to (x,𝝈). The latter property is instrumental in proving convergence of the algorithm (see
Theorems 1 and 2). The following lemma summarizes some properties of (3).

Lemma 1. Let Assumption 2 hold and choose ki such that

ki ∈

(
1
𝓁2

i

(√
𝜇i −

√
𝜇i − 𝓁i

)2
,

1
𝓁2

i

(√
𝜇i +

√
𝜇i − 𝓁i

)2
)

(4)

is satisfied for each i ∈ . Then,

(i) the map F in (3) is 𝜖-strongly monotone.
(ii) the map K col ((fi(xi, s(x)))i∈) is 𝜖-strongly monotone.

Proof. See Appendix A. ▪

Remark 1. The condition in (4) can be equivalently expressed as 4ki𝜇i − (ki𝓁i + 1)2 > 0. Therefore, setting ki = 1, for each
i, returns the inequality

√
𝜇i > (𝓁i + 1)∕2 which is a more restrictive condition than the one in Assumption 2, that is,

𝜇i > 𝓁i. Introducing the gain ki yields a milder assumption and, as we will see later, contributes to the privacy of the
proposed algorithm. •

We note that the results of the preceding lemma are sufficient for the existence and uniqueness of the NE. This is
formally stated next.

Lemma 2. Let Assumptions 1 and 2 be satisfied, then the aggregative game agg = (, (Ji)i∈ , (i)i∈) with the cost
function (1) has a unique NE x∗ ∈  which is the solution of the variational inequality VI( ,K col ((fi(xi, s(x)))i∈)) with
 ∶=

∏
i∈ i, the function fi(⋅) defined as (2), and ki selected as (4).

Proof. See Appendix A. ▪
Remark 2. To guarantee existence and uniqueness of the NE, it suffices that the pseudo-gradient mapping
col ((fi(xi, s(x)))i∈) is strongly monotone (Theorem 3(d) in Reference 36). Assumption 2, on the other hand, provides a
decentralized condition that simultaneously guarantees existence of a unique NE and assists us later in proving conver-
gence of our algorithm to the NE. We also note from the proof of Lemma 2 that Assumption 2 can be relaxed to any cost
function Ji(xi, s(x)) that is strictly convex in xi for all x−i ∈ −i (assumption 2(ii) in Reference 10) and results in strong
monotonicity of the mapping col(kifi(xi, 𝜎i), 𝜎i − xi) for some ki > 0. We will show how to use such a relaxation in the case
studies discussed in Section 5. •

Having established existence and uniqueness of the NE, next we propose continuous-time distributed dynamics that
converges to this points at the steady state. Motivated by privacy considerations, we assume that the players do not com-
municate their action variables xi’s, neither to the other players nor to a central unit. Instead, auxiliary variables will
be communicated through a connected communication graph Gc. This motivates the following distributed NE seeking
policy:

ẋi(t) = Πi (xi(t),−kifi (xi(t), 𝜎i(t))) ,

𝜎̇i(t) = −𝜎i(t) + xi(t) −
∑
j∈i

(
𝜓i(t) − 𝜓j(t)

)
,

𝜓̇ i(t) =
∑
j∈i

(
𝜎i(t) − 𝜎j(t)

)
, (5)

where i ∈ , i denotes the set of neighbors of player i, and Πi(xi, ⋅) is the projection operator on to the tangent cone
of i at the point xi ∈ i. We note that Πi(xi,−kifi(xi, 𝜎i)) = −kifi(xi, 𝜎i) at any point xi in the interior of i. At any
boundary point of i, the projection operator restricts the flow of −kifi(xi, 𝜎i) such that any solution xi(t) of (5) remains
in i. It is worth mentioning that, at any point xi, the value of the projection Πi(xi, ⋅) can be computed using lemma 2.1
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in Reference 37.* Notice that the players only use the local parameter ki, and communicate the variables 𝜎i and 𝜓i. The
variable 𝜎i is, in fact, a local estimation of s(x), and the state components 𝜓i’s are defined to enforce consensus on 𝜎i’s.
Let 𝝍 ∶= col(𝜓1, … , 𝜓N) and L be the Laplacian matrix of the graph Gc. Then, the algorithm can be written in vector
form as

ẋ(t) = Π
(

x,−K col
(
(fi(xi(t), 𝜎i(t)))i∈

))
,

𝝈̇(t) = −𝝈(t) + x(t) − (L ⊗ In)𝝍(t),
𝝍̇(t) = (L ⊗ In)𝝈(t). (6)

Note that (6) is a discontinuous dynamical algorithm due to the projection operator. Therefore, we briefly discuss
existence and uniqueness of solutions for this system. Consider the collective projected-vector form of the algorithm
as follows

col(ẋ, 𝝈̇, 𝝍̇) = Π×RnN×RnN (col(x,𝝈,𝝍),−Fext(x,𝝈,𝝍)) ,

where

Fext(x,𝝈,𝝍) ∶=

[
F(x,𝝈) + G𝝍
−(L ⊗ In)𝝈

]
,

with F(x,𝝈) given by (3) and G ∶= col(𝟘,L ⊗ In). Using Assumption 1 and the fact that RnN is a clopen set (closed-open
set), the set  × RnN × RnN is closed and convex. It also follows from Lemma 1 that Fext is continuous and monotone.
Therefore, from theorem 1 in Reference 38, we conclude that for any initial condition (x(0),𝝈(0),𝝍(0)) ∈  × RnN × RnN ,
the system (6) has a unique solution which belongs to  × RnN × RnN on the time interval [0,∞).

We now characterize the equilibria of (6) and then proceed with the results concerning convergence. For clarity, note
that Assumptions 1 and 2 are treated as standing assumptions and ki’s are selected as (4).

Proposition 1. Let x∗ be the NE of the game agg. Then, any equilibrium point of (6) is given by (x,𝝈,𝝍) = (x∗,1N ⊗

s(x∗),𝝍) where 𝝍 ∈ 𝛹 with

𝛹 ∶=
{
𝝍 ∈ R

nN | 𝝍 = (L+ ⊗ In)x∗ + 1N ⊗ 𝜁, 𝜁 ∈ R
n} , (7)

and L+ is the Moore–Penrose inverse of L.

Proof. At any equilibrium point (x,𝝈,𝝍), we have

𝟘 = Π
(

x,−K col
(
(fi(xi, 𝜎i))i∈

))
, (8a)

𝟘 = −𝝈 + x − (L ⊗ In)𝝍 , (8b)

𝟘 = (L ⊗ In)𝝈. (8c)

As the graph is connected, from (8c), we have 𝝈 = 1N ⊗ 𝛾 for some 𝛾 ∈ Rn. Therefore, (8b) becomes

𝟘 = −(1N ⊗ 𝛾) + x − (L ⊗ In)𝝍 .

Left-multiplying both sides by 1⊤N ⊗ In gives 𝛾 = 1
N

(
1⊤N ⊗ In

)
x = s(x). This means that 𝝈 = 1N ⊗ s(x) and in turn, 𝜎i =

s(x). Now, we use (8a) and Moreau’s decomposition theorem to get

𝟘 = Π
(

x,−K col
(
(fi(xi, s(x)))i∈

))
= −K col

(
(fi(xi, s(x)))i∈

)
− proj (x)

(
−K col

(
(fi(xi, s(x)))i∈

))
,

where  (x) is the normal cone of  at x ∈  . Thus, we have −K col
(
(fi(xi, s(x)))i∈

)
∈  (x). In other words, x is the

solution of VI( ,K col ((fi(xi, s(x)))i∈)), and from Lemma 2, we conclude that x = x∗ and 𝝈 = 1N ⊗ s(x∗). In addition, by
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substituting the obtained values and using (A4), equality (8b) yields

(L ⊗ In)𝝍 = x∗ − 1N ⊗ s(x∗) = (Π⊗ In)x∗.

Noting that Π = LL+ = L+L, we conclude that 𝝍 belongs to the set 𝛹 given by (7). ▪

Proposition 1, shows that equilibria of (6) are crafted as desired, namely x and 𝝈 return the NE of the game and
the aggregation value s(x∗), respectively. The next theorem establishes convergence of the solution of (6) to such an
equilibrium.†

Theorem 1. Consider the NE seeking algorithm (6) with initial condition (x(0),𝝈(0),𝝍(0)) ∈  × RnN × RnN . Then, the
solution (x,𝝈,𝝍) converges to the equilibrium point (x,𝝈,𝝍) = (x∗,1N ⊗ s(x∗),𝝍∗) where x∗ is the unique NE of the
aggregative game agg and

𝝍∗ = (L+ ⊗ In)x∗ + 1
N

(
1N1

⊤
N ⊗ In

)
𝝍(0). (9)

Proof. Let 𝝃 ∶= col(x,𝝈),Λ ∶=  × RnN , G ∶= col(𝟘,L ⊗ In), and with a little abuse of the notation F(𝝃) ∶= F(x,𝝈). Then,
we can rewrite (6) as follows

𝝃̇ = ΠΛ (𝝃,−F(𝝃) − G𝝍) ,
𝝍̇ = G⊤𝝃. (10)

Let 𝝃̃ ∶= 𝝃 − 𝝃 and 𝝍̃ ∶= 𝝍 − 𝝍 where col(𝝃,𝝍) is an equilibrium point of (10). Note that 𝝃 = col(x,𝝈), and by Proposi-
tion 1, we have x = x∗, 𝝈 = 1N ⊗ s(x∗), and 𝝍 ∈ Ψ with Ψ given by (7). Considering the Lyapunov candidate V(𝝃̃, 𝝍̃) ∶=
1
2
||col(𝝃̃, 𝝍̃)||2, we have

V̇ ∶ = ∇V(𝝃̃, 𝝍̃)⊤col(𝝃̇, 𝝍̇)

= 𝝃̃⊤ΠΛ (𝝃,−F(𝝃) − G𝝍) + 𝝍̃⊤G⊤𝝃,

where col(𝝃̇, 𝝍̇) stands for the right hand side of (10). By Moreau’s decomposition theorem, we find that

𝝃̃
⊤ΠΛ (𝝃,−F(𝝃) − G𝝍) = 𝝃̃⊤

(
−F(𝝃) − G𝝍 − projΛ(𝝃) (−F(𝝃) − G𝝍)

)
.

Noting 𝝃, 𝝃 ∈ Λ, we have −𝝃̃⊤projΛ(𝝃)(−F(𝝃) − G𝝍) ≤ 0, and V̇ admits the following inequality

V̇ ≤ −𝝃̃⊤F(𝝃) − 𝝃̃⊤G𝝍 + 𝝍̃⊤G⊤𝝃. (11)

Moreover, from (8) and Moreau’s decomposition theorem we get

0 = 𝝃̃⊤ΠΛ

(
𝝃,−F(𝝃) − G𝝍

)
= 𝝃̃⊤

(
−F(𝝃) − G𝝍 − projΛ(𝝃)

(
−F(𝝃) − G𝝍

))
.

Since −𝝃̃⊤projΛ(𝝃)
(−F(𝝃) − G𝝍) ≥ 0, we conclude that 𝝃̃⊤(F(𝝃) + G𝝍) ≥ 0. Consequently, we use (8c) and the 𝜖-strongly

monotonicity of F(𝝃) (Lemma 1(i)) to rewrite (11) as

V̇ ≤ −𝝃̃⊤
(

F(𝝃) − F(𝝃)
)
− 𝝃̃⊤G𝝍̃ + 𝝍̃⊤G⊤𝝃 ≤ −𝜖||𝝃̃||2,

It then follows from the invariance principle for discontinuous systems (proposition 2.1 in Reference 39) that (x,𝝈,𝝍)
converges to Ω = {(x,𝝈,𝝍)|x = x, 𝝈 = 𝝈,𝝍 ∈ Ψ} where Ψ is given by (7). Note that (1⊤ ⊗ In)𝝍(t) is a conserved quantity
of the system and 1⊤L+ = 0. Then, by (7), we find that the vector𝝍 converges to𝝍∗ = (L+ ⊗ In)x∗ + 1

N

(
1N1

⊤
N ⊗ In

)
𝝍(0),

which completes the proof. ▪
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Remark 3. The NE seeking algorithm (6) can be extended to strongly connected‡ directed communication graphs as
follows:

ẋ(t) = Π
(

x,−Kcol
(
(fi(xi(t), 𝜎i(t)))i∈

))
,

𝝈̇(t) = −𝝈(t) + x(t) − (B⊗ In)𝝍(t),
𝝍̇(t) = (B⊤ ⊗ In)𝝈(t),

where the matrix B is the incidence matrix of the graph. Convergence of the above algorithm to the NE follows from
arguments analogous to those used for Theorem 1. We note, however, that the extension is at the expense of assuming
that each player i has access to the aggregated information of its neighboring edges. This is due to the presence of the
term (B ⊗ In)𝝍(t) in the modified dynamics. •

4 ROBUSTNESS AND PRIVACY ANALYSIS

In this section, we investigate robustness of the proposed algorithm with respect to additive time-varying disturbances
and carry out privacy analysis. Throughout this section, we consider the case where i = Rn and the cost function Ji is
2 in all its arguments for all i ∈ , and Assumption 2 holds.

Then, the NE seeking dynamics (6) become smooth as follows

ẋ(t) = −Kcol ((fi(xi(t), 𝜎i(t)))i∈) ,
𝝈̇(t) = −𝝈(t) + x(t) − (L ⊗ In)𝝍(t),
𝝍̇(t) = (L ⊗ In)𝝈(t). (12)

This enables us to provide robustness guarantees using the notions of input-to-state stability (ISS) and 2-stability. More-
over, we remark that to our best knowledge, there is no theory for ISS of projected dynamical systems, which led us to
work with Rn rather than i.

4.1 Robustness analysis

We analyze robustness of the dynamical algorithm (12) against additive perturbations. The perturbations can cap-
ture possible deviation of the players from a fully rational behavior or a deliberate addition of noise to improve
privacy.

Let 𝝃 ∶= col(x,𝝈), G ∶= col(𝟘,L ⊗ In), and with some abuse of the notation F(𝝃) ∶= F(x,𝝈) with F(x,𝝈) given by (3).
Then, we can compactly rewrite (12) with the disturbance 𝝂 ∶ R≥0 →∈ R2nN as follows

𝝃̇(t) = −F (𝝃(t)) − G𝝍(t) + 𝝂(t),
𝝍̇(t) = G⊤𝝃(t). (13)

To analyze performance of the above algorithm, we resort to the notion of input-to-state stability (ISS).40 The next theorem
presents our main results in this regard.

Theorem 2. Consider the NE seeking algorithm (13) with initial condition (𝝃(0),𝝍(0)) ∈ R2nN × RnN . Suppose the distur-
bance t → 𝝂(t) is piecewise continuous and bounded for all t ∈ [0,∞), and assume that there exists some positive constant
𝛾i such that ||∇fi(xi, 𝜎i)|| ≤ 𝛾i for all xi, 𝜎i ∈ Rn and i ∈ . Let 𝝃∗ ∶= col(x∗,1N ⊗ s(x∗)) and 𝝍∗ be given by (9). Then, the
corresponding solution of (13) satisfies

||col(𝝃̃(t), 𝝍̃(t))|| ≤ 𝛽0e−𝜆t||col(𝝃̃(0), 𝝍̃(0))|| + 𝛽1 sup
0≤𝜏≤t

||𝝂(𝜏)||, ∀t ≥ 0, (14)

where 𝝃̃ = 𝝃 − 𝝃∗, 𝝍̃ = 𝝍 − 𝝍∗, and 𝛽0, 𝛽1, 𝜆 ∈ R>0.
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Proof. Note that 𝝍∗ ∈ 𝛹 with 𝛹 given by (7), thus it follows from Proposition 1 that the pair (𝝃∗,𝝍∗) satisfies

𝟘 = −F(𝝃∗) − G𝝍∗, (15a)

𝟘 = G⊤𝝃∗. (15b)

Consider the solution (𝝃(t),𝝍(t)) of (13) initialized at (𝝃(0),𝝍(0)). Using the above equalities, we notice that this solution
satisfies

̇̃𝝃 = −(F(𝝃) − F(𝝃∗)) − G𝝍̃ + 𝝂,
̇̃𝝍 = G⊤𝝃̃, (16)

where 𝝃̃ and 𝝍̃ are given in the statement of the theorem. Define 𝚷 ∶= Π⊗ In where Π = I − 1
N
1N1

⊤
N . We next show

that 𝝍̃(t) ∈ im 𝚷 for all t ≥ 0. Recall the definition of 𝝍∗ given by (9), it then follows from 𝝍̃(0) = 𝝍(0) − 𝝍∗ that (1⊤N ⊗
In)𝝍̃(0) = 𝟘. Thus, bearing in mind that (1⊤N ⊗ In)𝝍̃(t) is a conserved quantity of the dynamics (16), we obtain 1N ⊗

(1⊤N ⊗ In)𝝍̃(t) = 𝟘 for all t ≥ 0. The latter can be written as (1N1
⊤
N ⊗ In)𝝍̃(t) = 𝟘, which results in 𝚷𝝍̃(t) = 𝝍̃(t), that is,

𝝍̃(t) ∈ im 𝚷.
In view of the ISS result of theorem 4.19 in Reference 41, while bearing in mind that (𝝃̃(t), 𝝍̃(t)) ∈ R2nN × im𝚷 for all

t ≥ 0, it suffices to find a Lyapunov function satisfying a suitable dissipation inequality. Namely, to find a continuously
differentiable function V ∶ R2nN × im 𝚷 → R, for which there exist class ∞ functions 𝛼1, 𝛼2, a class  function 𝜌, and a
continuous positive definite function W(𝝃̃, 𝝍̃) such that

𝛼1(||col(𝝃̃, 𝝍̃)||) ≤ V(𝝃̃, 𝝍̃) ≤ 𝛼2(||col(𝝃̃, 𝝍̃)||), (17)

𝜕V
𝜕𝝃̃

⊤
̇̃𝝃 + 𝜕V

𝜕𝝍̃

⊤

̇̃𝝍 ≤ −W(𝝃̃, 𝝍̃), ∀ ||col(𝝃̃, 𝝍̃)|| ≥ 𝜌(||𝝂||) > 0, (18)

for all (𝝃̃, 𝝍̃) ∈ R2nN × im 𝚷 and 𝝂 ∈ R2nN . Choose the Lyapunov candidate V(𝝃̃, 𝝍̃) ∶= 1
2
col(𝝃̃, 𝝍̃)⊤P0 col(𝝃̃, 𝝍̃) where

P0 ∶=

[
I 𝜅G

𝜅G⊤ I

]
, 𝜅 > 0.

By considering 𝛼1(||col(𝝃̃, 𝝍̃)||) = 𝛼1||col(𝝃̃, 𝝍̃)||2 with some 𝛼1 > 0, the first inequality of (17) is satisfied if and only if
P0 − 2𝛼1I ≽ 0 which is equivalent to

1 − 2𝛼1 > 0, (1 − 2𝛼1)2I − 𝜅2GG⊤ ≽ 0.

Let 𝜅1 ∶= 1∕𝜆max(L) where 𝜆max(L) is the maximum eigenvalue of L, then the above inequalities are satisfied for 𝜅 ∈
(0, 𝜅1) and 𝛼1 = (1 − 𝜅𝜆max(L))∕2. For the second inequality of (17), an analogous argument can be used to obtain
𝛼2(||col(𝝃̃, 𝝍̃)||) = 𝛼2||col(𝝃̃, 𝝍̃)||2 with 𝛼2 = (1 + 𝜅𝜆max(L))∕2.

We take the derivative of V along (16) and use the 𝜖-strong monotonicity of F(𝝃) to obtain

𝜕V
𝜕𝝃̃

⊤
̇̃𝝃 + 𝜕V

𝜕𝝍̃

⊤

̇̃𝝍 ≤ −𝜖||𝝃̃||2 + 𝜅||G⊤𝝃̃||2 − 𝜅𝝍̃⊤G⊤(F(𝝃) − F(𝝃∗)) − 𝜅||G𝝍̃||2 + (𝝃̃ + 𝜅G𝝍̃)⊤𝝂. (19)

Define U(𝝃, 𝝃∗) ∶= ∫ 1
0 ∇F(𝝃∗ + h(𝝃 − 𝝃∗)) dh. Then, by the fundamental theorem of calculus, we have F(𝝃) − F(𝝃∗) =

U(𝝃, 𝝃∗)𝝃̃. Consequently, the equation (19) becomes

𝜕V
𝜕𝝃̃

⊤
̇̃𝝃 + 𝜕V

𝜕𝝍̃

⊤

̇̃𝝍 ≤ − 𝜖
2
||𝝃̃||2 − 𝜅

2
||G𝝍̃||2 − col(𝝃̃,G𝝍̃)⊤P(𝝃, 𝝃∗) col(𝝃̃,G𝝍̃) + col(𝝃̃, 𝝍̃)⊤R 𝝂, (20)

where

P(𝝃, 𝝃∗) ∶= 1
2

[
𝜖I − 2𝜅GG⊤ 𝜅U(𝝃, 𝝃∗)⊤

𝜅U(𝝃, 𝝃∗) 𝜅I

]
, R ∶=

[
I

𝜅G⊤

]
.
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Clearly, the matrix P is positive definite if and only if

𝜅 > 0, 𝜖I − 2𝜅GG⊤ − 𝜅U(𝝃, 𝝃∗)⊤U(𝝃, 𝝃∗) ≻ 𝟘,

for all 𝝃 ∈ R2nN . By using ||∇fi(xi, 𝜎i)|| ≤ 𝛾i, it is straightforward to investigate that ||U(⋅, ⋅)||2 ≤ 𝛾
2 + 2 where 𝛾 ∶=

maxi∈(𝛾iki). We then conclude that P ≻ 𝟘 if 𝜅 ∈ (0, 𝜅2) with 𝜅2 ∶= 𝜖∕(𝛾2 + 2 + 2𝜆max(L)2). Moreover, note that for all
𝝍̃ ∈ im𝚷, we have ||G𝝍̃|| ≥ 𝜆min(L)||𝝍̃||,
where 𝜆min(L) is the smallest nonzero eigenvalue of L. Thus, we deduce from (20) that for any 𝜅 ∈ (0, 𝜅2) and all (𝝃̃, 𝝍̃) ∈
R2nN × im𝚷, the following inequalities hold:

𝜕V
𝜕𝝃̃

⊤
̇̃𝝃 + 𝜕V

𝜕𝝍̃

⊤

̇̃𝝍 ≤ − 𝜖
2
||𝝃̃||2 − 𝜅

2
𝜆min(L)2||𝝍̃||2 + col(𝝃̃, 𝝍̃)⊤R 𝝂

≤ −𝜅
2
𝜆min(L)2||col(𝝃̃, 𝝍̃)||2 + ||R||||col(𝝃̃, 𝝍̃)||||𝝂||,

where ||R|| = √
1 + 𝜅2𝜆max(L)2. Hence, (18) is obtained by setting W(𝝃̃, 𝝍̃) = 𝛼3||col(𝝃̃, 𝝍̃)||2 and 𝜌(||𝝂||) = 𝛼4||𝝂||with 𝛼3 =

𝜅

4
𝜆min(L)2 and 𝛼4 = 4

𝜅𝜆min(L)2
||R||. Consequently, (17) and (18) are satisfied for any 0 < 𝜅 < min{𝜅1, 𝜅2}, and it follows from

theorem 4.19 in Reference 41 that the inequality (14) is satisfied with

𝛽0 =
√
𝛼2

𝛼1
, 𝜆 = 𝛼3

2𝛼2
, 𝛽1 = 𝛼4

√
𝛼2

𝛼1
. (21)

▪

Remark 4. §In the disturbance-free case, that is, 𝜈(⋅) = 0, the treatment in Theorem 2 proves exponential convergence
of the proposed algorithm with the rate of convergence given by (21). Similarly, in the case of general games and by
considering suitable assumptions on the pesudo-gradient mapping, the presented NE seeking algorithm in Reference 10
is exponentially stable (see theorems 1 and 2 in Reference 10). Therefore, it is also ISS with respect to additive time-varying
disturbances as a result of lemma 4.6 in Reference 41. However, that algorithm is fundamentally different than ours,
which makes the analysis dissimilar. Specifically, the consensus term in Reference 10 appears as damping on the relative
state variables, which contributes to the exponential convergence property. For our presented algorithm, the consensus
action appears as cross terms, resulting in the presence of undamped communicating variables 𝝍 in (13). To overcome
this technical difficulty, we included a sufficiently small cross-term in the ISS Lyapunov function. •

Remark 5. The assumption of the boundedness of ||∇fi(xi, 𝜎i)|| can be relaxed at the expense of establishing ISS in a local
sense. In particular, let ||∇fi(xi, 𝜎i)|| < 𝛾i for all (xi, 𝜎i) that belong to a compact set ||col(xi − x∗i , 𝜎i − s(x∗))|| < ri with some
ri > 0. Then, analogous to the proof of Theorem 2, the matrix P in (20) is positive definite for any 𝜅 ∈ (0, 𝜅2) and ||𝝃̃|| < r
with r ∶= mini∈ ri. Therefore, (17) and (18) are satisfied for any 0 < 𝜅 < min{𝜅1, 𝜅2} and for all ||col(𝝃̃, 𝝓̃)|| < r. By using
theorem 4.18 and exercise 4.60 in Reference 41, we conclude that (14) is satisfied for ||col(𝝃̃(0), 𝝍̃(0))|| < r

√
𝛼1∕𝛼2 and

supt≥0 ||𝝂(t)|| < (r∕𝛼4)
√
𝛼1∕𝛼2. •

The established ISS property provides stability guarantees for all state variables in the presence of disturbance. As the
objective of considering algorithm (13) is NE computation, it is advantageous to explicitly analyze the effect of disturbance
on 𝝃 = col(x,𝝈). We pursue this by using the notion of 2-stability (definition 5.1 in Reference 41). Let the performance
output y be defined as

y ∶= 𝝃 − 𝝃∗, (22)

where 𝝃∗ ∶= col(x∗,1N ⊗ s(x∗)). Then, the dynamics (13) is 2-stable from input 𝝂 to output y with the 2-gain less than
or equal to 𝛿 ∈ R>0 if for any (𝝃(0),𝝍(0)) ∈ R2nN × RnN , there exists some constant 𝛽 ≥ 0 such that

||y𝜏 ||2 ≤ 𝛿||𝝂𝜏 ||2 + 𝛽,

for all 𝝂 ∈ 2nN
2e and 𝜏 ∈ R≥0 (see Section 2.1 for related definitions).
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Theorem 3. Let the disturbance signal t → 𝝂(t) belong to the extended space 2nN
2e . Then, the dynamics (13) with the

performance output y given by (22) is 2-stable from input 𝝂 to output y with its 2-gain satisfying

2-gain ≤
1

min
i∈

𝜖i
, (23)

where 𝜖i = 1
2

(
ki𝜇i + 1 −

√
(ki𝜇i − 1)2 + (ki𝓁i + 1)2

)
.

Proof. Consider the error dynamics (16), and let V(𝝃̃, 𝝍̃) ∶= 1
2
||col(𝝃̃, 𝝍̃)||2. Then, we obtain

V̇ = −𝝃̃⊤(F(𝝃) − F(𝝃∗)) + 𝝃̃⊤𝝂 ≤ −𝜖||𝝃̃||2 + 𝝃̃⊤𝝂 ,
where the inequality follows from the 𝜖-strong monotonicity of F(𝝃). Noting y = 𝝃̃, the above inequality yields

V̇ ≤ y⊤𝝂 − 𝜖y⊤y .

By adding and subtracting 1
2𝜖
𝝂⊤𝝂 + 𝜖

2
y⊤y from the right hand side, we obtain

V̇ ≤ − 1
2𝜖

(𝝂 − 𝜖y)⊤(𝝂 − 𝜖y) + 1
2𝜖
𝝂⊤𝝂 − 𝜖

2
y⊤y

≤
1
2𝜖
𝝂⊤𝝂 − 𝜖

2
y⊤y = 𝜖

2

( 1
𝜖2 𝝂

⊤𝝂 − y⊤y
)
.

Hence, the storage function 1
𝜖

V certifies 2-stability of the system with 2-gain ≤ 1
𝜖

(see chapter 8 of Reference 42). Bear-
ing in mind (A2) in the proof of Lemma 1, the parameter 𝜖 can be explicitly chosen as 𝜖 = mini∈ 𝜖i where 𝜖i is the smallest
eigenvalue of the matrix [

ki𝜇i −(ki𝓁i+1)
2

−(ki𝓁i+1)
2

1

]
.

The proof concludes by computing this minimum eigenvalue. ▪

Theorem 3 characterizes the 2-stability of the algorithm in terms of the design parameters ki’s and the parameters of
the individual cost functions. Aiming at minimizing the effect of noise on the performance output y = 𝝃, one can view the
right hand side of (23) as a function of ki’s satisfying (4), and seek for its minimizer. By direct computation, this minimizer
is obtained as

k∗
i ∶=

𝜇2
i − 𝓁2

i + 2𝜇i𝓁i

𝓁i(𝜇2
i + 𝓁2

i )
.

4.2 Privacy analysis

Here, we turn our attention to privacy properties of the presented NE seeking algorithm. The general idea is that privacy
is preserved if a curious party cannot uniquely reconstruct the actual private variables/quantities of a player. A curious
party can be one of the players or an external adversary. The adversary model is honest-but-curious meaning that it does
not interfere with the implementation of the algorithm but rather tries to infer the private quantities of interest based on
available information and/or eavesdropping.

In order to estimate the privacy-sensitive quantities of the players, a curious adversary generally needs to employ the
accessible information and implement a reverse engineering or an identification mechanism. The adversary is consequently
more likely to succeed when the cost functions of the players and the game dynamics are less complex. Motivated by this
fact and to provide more explicit results, we perform a “worst-case” privacy analysis by considering cost functions that
result in linear NE seeking dynamics. Note that parameter identification is much more probable for the adversary when
the dynamics are linear. As such, we restrict our attention to cost functions given by

Ji(xi, s(x)) ∶= x⊤i Qixi + (Di s(x) + di)⊤xi,



SHAKARAMI et al. 5059

where Qi = Q⊤
i ∈ Rn×n, Qi ≻ 𝟘, Di ∈ Rn×n, and di ∈ Rn. Note that in this case, Assumption 2 reduces to

𝜆min

(
2Qi +

1
2N

(Di + D⊤
i )
)
> ||Di||. (24)

Let

A ∶= blockdiag
(

2Qi +
1
N

D⊤
i

)
, D ∶= blockdiag(Di),

d ∶= col(di), ∀i ∈ . (25)

Then, (12) reduces to

ż(t) = Aqz(t) + Dq, (26)

where

Aq ∶ =
⎡⎢⎢⎢⎣
− KA −KD 𝟘

I −I −(L ⊗ In)
𝟘 (L ⊗ In) 𝟘

⎤⎥⎥⎥⎦ ,
z ∶ = col(x,𝝈,𝝍), Dq ∶= col(−Kd, 𝟘, 𝟘). (27)

The cost parameters Qi, Di, and di associated to each player i will be treated as private information. Note that the design
parameter ki and the action of each player xi(t) are not readily accessible to the other players. On the contrary, both 𝜎i(t)
and 𝜓i(t) are communicated to other agents. Therefore, the latter information is accessible to other players due to direct
communication, or to an adversary as a result of eavesdropping. To pursue a worst-case privacy analysis, we consider
the scenario where all communicated variables (𝝈(t),𝝍(t)) are subject to eavesdropping and the Laplacian matrix L is
completely known to the adversary as side knowledge. Moreover, the goal and structure of the algorithm are considered
public, that is, accessible to any curious party. Now, we consider the following definition:

Definition 1. Privacy of a player i ∈  is preserved if its private information, namely the triple (Qi,Di, di), is not uniquely
identifiable from the available information to the adversary. In addition, we say that an algorithm preserves privacy if
privacy is preserved for all players. •

Note that the privacy property in Definition 1 is valid even if N − 1 players collude to obtain private infor-
mation of one specific player. The following result establishes the privacy preservation property of the presented
algorithm.

Theorem 4. The NE seeking algorithm (26) preserves privacy in the sense of Definition 1.¶

Proof. Recall that the structure of the algorithm and the Laplacian matrix L is known to the adversary. Such knowledge
can be embedded in the following replica of (26):

ż′(t) = A′
qz′(t) + D′

q,

A′
q ∶=

⎡⎢⎢⎢⎣
−K′A′ −K′D′ 𝟘

I −I −(L ⊗ In)
𝟘 (L ⊗ In) 𝟘

⎤⎥⎥⎥⎦ ,
z′ ∶= col(x′,𝝈′,𝝍 ′),D′

q ∶= col(−K′d′
, 𝟘, 𝟘),

(28)

where the vectors and matrices with “prime” are defined analogously to the ones without in (27). On top of that
the adversary has access to (𝝈(t),𝝍(t)) via eavesdropping. To establish the proof, we need to show that there exists a
triple (Q′

i ,D
′
i , d

′
i) ≠ (Qi,Di, di) which is consistent with the replica dynamics (28) as well as the eavesdropped informa-

tion (𝝈(t),𝝍(t)) = (𝝈′(t),𝝍 ′(t)). This would show that (Qi,Di, di) is not uniquely identifiable from the knowledge of the
adversary.
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We proceed with the proof by defining y ∶= col(𝝈,𝝍), thus we have

y(t) = Cqz(t), Cq ∶=

[
𝟘 I 𝟘
𝟘 𝟘 I

]
.

It also follows that the condition (𝝈′(t),𝝍 ′(t)) = (𝝈(t),𝝍(t)) becomes

y(t) = Cqz(t) = Cqz′(t), ∀t ≥ 0. (29)

Since (26) and (28) are linear dynamics under constant inputs, it follows from analogous arguments to proposition 1 in
Reference 43 that the condition (29) is satisfied if and only if there exists z′(0) such that

CqAk
qz(0) = CqA′k

q z′(0),
CqAk

qDq = CqA′k
q D′

q,
∀k ∈ N ∪ {0}. (30)

Verifying (30) for k = 0 results in

𝝈(0) = 𝝈′(0), 𝝍(0) = 𝝍 ′(0),

as expected. For k = 1, we use the above equations and obtain

x(0) = x′(0), Kd = K′d′
.

By continuing this process, we see that the condition (30) becomes

(𝝈(0),𝝍(0)) = (𝝈′(0),𝝍 ′(0)),
(KA)kx(0) = (K′A′)kx′(0),

(KA)kKD = (K′A′)kK′D′,

(KA)kKd = (K′A′)kK′d′
,

for all k ∈ N ∪ {0}. This implies that

z(0) = z′(0),
KA = K′A′,

KD= K′D′,

Kd = K′d′
.

We further deduce from the definitions given by (25) that

kiQi = k′
i Q

′
i , kiDi = k′

i D
′
i , kidi = k′

i d
′
i , ∀i ∈ . (31)

Consequently, since ki is unknown to an adversary, it cannot uniquely reconstruct the privacy-sensitive triple (Qi,Di, di)
of player i. Namely, there exists (Q′

i ,D
′
i , d

′
i) ≠ (Qi,Di, di) that is indistinguishable from (Qi,Di, di) based on the knowledge

accessible to the adversary. This completes the proof. ▪

Remark 6. The proof above highlights the fact that the design parameter ki plays the role of a “secret”, and privacy of player
i is preserved against strong adversaries with access to the algorithm structure, network topology (Laplacian matrix), as
well as all communicated variables. However, we see from (31) that the ratios between the cost parameters Qi, Di, and di,
that is, Q−1

i Di and Q−1
i di, can be reconstructed by such a strong adversary. To avoid reconstruction of such ratios, we can

leverage the ISS property of the algorithm, established in Theorem 2, and modify (26) as follows:

ż(t) = Aqz(t) + Dq + u(t), (32)

where u(t) = col(𝝂(t), 𝟘) with t → 𝝂(t) being piecewise continuous and bounded for all t ∈ [0,∞). Thanks to the estab-
lished ISS property, the NE of the game can be exactly computed as long as limt→∞ 𝝂(t) = 𝟘. The added value in terms
of privacy is that parameter identification cannot be pursued in transient time by the adversary due to the presence of
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𝝂(t) which acts as a deterministic noise. We note, however, that addition of 𝝂(t) degrades the transient performance and
convergence rate of the algorithm. We also remark that the following relation among the privacy sensitive parameters
(Qi,Di, di) would still be revealed at steady-state as 𝝂(t) vanishes#:

𝟘 =
(

2Qi +
1
N

D⊤
i

)
x∗i + Dis(x∗) + di. (33)

For similar ideas in the context of preserving privacy in average consensus see References 44 and 45. •

5 CASE STUDIES

In this section, we consider two illustrative case studies that are formulated as aggregative games.

5.1 Energy consumption game

This case study considers the energy consumption problem of consumers equipped with heating ventilation air con-
ditioning (HVAC) systems in smart grids. As proposed in Reference 46, this problem can be formulated into a non-
cooperative game where each consumer i chooses its energy consumption such that the following cost function is
minimized

Ji(xi, s(x)) = 𝜃𝛾2(xi − x̂i)2 + (aNs(x) + b)xi,

where 𝜃, 𝛾, a ∈ R>0 are respectively the cost, thermal, and price-elasticity coefficients, xi ∈ i is the energy con-
sumption and b ∈ R>0 is its corresponding basic price, x̂i ∈ i is the required energy consumption for maintain-
ing the target indoor temperature, and Ns(x) =

∑
j∈ xj is the total energy consumption. The action set i ⊂ R is

defined as

i ∶=
{

xi ∈ R |xi ∈ [xi, xi]
}
,

where xi, xi ∈ R>0 are the minimum and maximum acceptable energy consumption, respectively, with xi < xi. In this
game, Assumption 2 is satisfied if a < 2𝜃𝛾2∕(N − 1) for N > 1. Using Remark 2, this condition can be further relaxed
by finding some ki > 0 such that the mapping col(kifi(xi, 𝜎i), 𝜎i − xi) with fi(xi, 𝜎i) = (2𝜃𝛾2 + a)xi + aN𝜎i − 2𝜃𝛾2x̂i + b is
strongly monotone. By performing the calculations, we obtain that for all a > 0 and N ≥ 1, the mapping is strongly
monotone if

ki ∈
(

1
(aN)2

(√
𝜇i −

√
𝜇i + aN

)2
,

1
(aN)2

(√
𝜇i +

√
𝜇i + aN

)2
)
, (34)

where 𝜇 = 2𝜃𝛾2 + a. Therefore, we guarantee convergence to the NE without any restrictions on the cost parameters.
We consider N = 5 players in this game, that is,  = {1, … , 5}, with 𝜃𝛾2 normalized to one, a = 0.04,

b = 5($∕(kWh)), col((x̂i)i∈) = col(50, 55, 60, 65, 70)(kWh), col((xi)i∈) = col(60, 66, 72, 78, 84)(kWh), and col((xi)i∈) =
col(40, 44, 46, 52, 56)(kWh).22 For this set of values, the unique NE of the game is computed as x∗ = col
(41.5, 46.4, 51.3, 56.2, 61.1)(kWh) (see section VI-C in Reference 22).

To implement the NE seeking algorithm, the players are assumed to communicate through the connected undirected
graph depicted in Figure 1. Each player i arbitrarily chooses the design parameter ki in the interval (34) as col((ki)i∈) =
col(6.2, 0.8, 7.2, 3.5, 0.7). The initial conditions 𝜎i(0) and 𝜓i(0) are chosen randomly, and xi(0) ∈ i is selected as xi(0) =
0.5(xi + xi). Figure 2 depicts the resulting action variables of the players and demonstrates their convergence to the NE of
the game.

Next, we consider the case where the action set is i = R and illustrate privacy and robustness properties of the
dynamics.

Privacy: Here, we demonstrate that an external adversary cannot uniquely reconstruct the private information of the
players. Analogous to (28), we consider a replica of the NE seeking algorithm with the parameters 𝜃′𝛾 ′2 = 0.25, a′ = 0.01,
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F I G U R E 2 Action variables of consumers equipped with HVAC systems

b′ = 7($∕(kWh)), col((x̂′i)i∈) = col(61.5, 66.5, 71.5, 76.5, 81.5)(kWh), and col((k′
i )i∈) = col(25.1, 3.1, 28.9, 14.2, 2.8).|| Note

that these parameters are different from the true cost parameters of the players. We can see from Figure 3 that the eaves-
dropped information by the adversary (𝝈(t),𝝍(t)) is consistent with (𝝈′(t),𝝍 ′(t)) for all times. This means that the private
information of the players is not identifiable and the NE seeking algorithm preserves privacy.

Robustness: We illustrate robustness of the algorithm by adding bounded disturbances to the dynamics. The distur-
bance vector 𝝂 ∶ R≥0 → R10 is added according to (13), and it prevents an adversary from using parameter identification
techniques during transient time. We consider limt→∞ 𝝂(t) = 𝟘 to maintain the NE of the game in the steady state (see
Remark 6). Specifically, five elements of 𝝂(t) are considered as vanishing uniformly distributed random numbers in the
interval [−20, 20] with sampling time 0.1(s). The other five elements are sinusoidal signals with frequencies between 5 to
25(rad/s), and their time-varying amplitudes start from 10 and 20 and converge to zero. As can be seen from Figure 4, the
action variables remain bounded and converge to the NE of the game, which is consistent with our analysis. Note that
the presence of disturbances decreases the convergence rate and degrades the transient performance of the algorithm.

5.2 Coordinated charging of electric vehicles

Here, we consider the problem of coordinated charging for a population  = {1, … ,N} of plug-in electric vehicles (PEVs)
over a charging horizon  = {1, … ,n}.4,47 Let xi = col

(
(xk

i )k∈
)

where xk
i ∈ R is the charging control of player i ∈  at

time k ∈  . Then, each player i is aimed at choosing xi ∈ i and minimizing its cost function

Ji(xi, s(x)) =
∑
k∈

(
a(dk + Ns(xk)) + b

)
xk

i +
∑
k∈

(
qi(xk

i )
2 + cixk

i
)
,

where a, b ∈ R>0 respectively are the price-elasticity coefficient and the basic price, dk and Ns(xk) =
∑

j∈ xk
j respectively

are the total non-PEV demand and the total PEV demand at time k, and qi, ci ∈ R>0. In the cost function, the first term is
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F I G U R E 3 Eavesdropped information (𝝈,𝝍) and its corresponding replica (𝝈′,𝝍 ′)
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F I G U R E 4 Action variables of consumers equipped with HVAC systems in the presence of disturbances

the electricity bill of player i, and the quadratic term models its battery degradation cost.47 For each vehicle, the charging
rate xd

i is bounded as 0 ≤ xd
i ≤ xi and its summation for all k ∈  should be equal to the required energy of the agent

defined as 𝛾i. Therefore, the constraint set of xi is i = 1
i ∩ 2

i where**

1
i ∶ =

{
xi ∈ R

n|xk
i ∈ [0, xi],∀k ∈ 

}
,

2
i ∶ =

{
xi ∈ R

n |∑
k∈

xk
i = 𝛾i

}
. (35)

In practice, it is assumed that nxi ≥ 𝛾i to grantee that i is nonempty. The goal is compute the NE and schedule charging
strategies for the entire horizon, and in this regard, a gather and broadcast algorithm is presented in Reference 47 which
guarantees convergence when qi > aN (see theorem 3.1 in Reference 47).



5064 SHAKARAMI et al.

Note that fi(xi, 𝜎i) = (2qi + a)xi + aN𝜎i + ad + (b + ci)1n with d = col
(
(dk)k∈

)
; therefore, the mapping col

(kifi(xi, 𝜎i), 𝜎i − xi) is strongly monotone when ki satisfies

ki ∈
(

1
(aN)2

(√
𝜇i −

√
𝜇i + aN

)2
,

1
(aN)2

(√
𝜇i +

√
𝜇i + aN

)2
)
,

where 𝜇i = 2qi + a. Thus convergence to the NE is guaranteed without requiring qi > aN.
To compute the NE, each player i can implement (5); however, since i is the intersection of two sets, namely, 1

i and
2

i , it is not easy to find a closed-form expression for the projection operator Πi (xi, ⋅). To overcome this challenge, we
use the fact that the solution xi(t) of the NE dynamics does not need to belong to i for all t ≥ 0, yet it should converge to
the NE inside this set. This allows us to treat xi ∈ 2

i as a “soft constraint” and modify (6) as follows:

ẋi = Π1
i
(xi,−kifi (xi, 𝜎i) − 1n𝜆i),

𝜎̇i = −𝜎i + xi −
∑
j∈i

(
𝜓i − 𝜓j

)
,

𝜓̇ i =
∑
j∈i

(
𝜎i − 𝜎j

)
,

𝜆̇i = 1⊤n xi − 𝛾i, (36)

where 𝜆i ∈ R is the Lagrangian multiplier. Note that the projection in the xi-component is solely based on 1
i , thus its

closed-form expression can be obtained from lemma 2.1 in Reference 37. The variable 𝜆i is included for convergence to
the set 2

i . A supplementary discussion on the convergence of the above algorithm to the NE is provided in Appendix B.
A population of N = 100 players, that can communicate by a connected undirected graph, are considered in this

game. The charging horizon is from 12:00 am on one day to 12:00 am on the next day. In order to generate the numerical
parameters, we consider some nominal values and randomize them similar to Reference 13. In the price function, a =
3.8 × 10−3 and b = 0.06($∕(kWh)) are considered. The parameters of the quadratic functions are uniformly distributed
random numbers as qi ∼ {0.004} + [−0.001, 0.001] and ci ∼ {0.075} + [−0.01, 0.01]. In order to generate 𝛾i’s, inspired by
Reference,47 we assume that the battery capacity sizes of the PEVs are Φi ∼ {30} + [−5, 5](kWh), also their initial states
of charge (SOCi0 ) satisfy a Gaussian distribution with the mean 0.5 and the variance 0.1, and the final states of charge
(SOCif ) are equal to 0.95; thus, 𝛾i = Φi(SOCif − SOCi0). In addition, the maximum admissible charging controls are set to
xi ∼ {10} + [−2, 2](kWh).

For each player i ∈ , the design parameter of the algorithm is ki = (2(2qi + a) + aN)∕(aN)2, the initial condition of
the action variable is chosen as xi(0) = (𝛾i∕n)1n ∈ i, and 𝜎i(0), 𝜓i(0), and 𝜆i(0) are selected randomly. Figure 5 illustrates
the total non-PEV demand d over the charging horizon as well as the total demand at the equilibrium d +

∑
i∈ x∗i . As

can be seen, the PEVs shifted their charging intervals to the nighttime, which minimizes their effects on the grid, and as
explained in Reference 4, the NE has the desired “valley filling” property.
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F I G U R E 5 Total non-PEV demand d and its summation with total-PEV demand at the equilibrium d +
∑

i∈ x∗i
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6 CONCLUSIONS

By employing the structure of aggregative games, we presented a distributed NE seeking algorithm and provided sufficient
conditions for convergence to the NE. Raised by practical concerns about deviation from the NE seeking dynamics due
to irrationality of the players, we proved robustness of the proposed algorithm against disturbances in the sense of ISS
and 2-stability. Moreover, we have studied privacy guarantees of the algorithm by showing that private information of
the players cannot be uniquely reconstructed even if all communicated variables are accessed by an adversary. Extension
of the results to games with coupling constraints as well as time-varying communication graphs is left for future work.
Another research question is using aggregative game dynamics as controllers to steer a physical system. Examples of the
latter in Cournot and Bertrand competitions can be found in References 2 and 48, respectively.
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ENDNOTES
∗Finding a closed-form expression of Πi

(xi, ⋅) can be challenging in certain cases depending on the structure of the set i. In Section 5.2, we
present a reformulation of (5) that circumvents this challenge in the context of coordinated charging of electric vehicles.

†Note that the system (6) has no isolated equilibrium (see Equation (7)); nevertheless, convergence to a point within the set of equilibria can
be guaranteed as stated in the theorem.

‡A directed graph is strongly connected if there is a path between every pair of nodes.
§The authors thank Sergio Grammatico for pointing out this connection.
¶The information available to the adversary is provided in the paragraph preceding Definition 1.
#This coincides with the fact that the NE satisfies the relation 𝜕

𝜕xi
Ji(x∗i , s(x

∗)) = 𝟘, which in the case of unconstrained linear-quadratic games
takes the form in (33).||There exist infinite number of parameters satisfying (31) and these values are chosen solely for the sake of presentation.

∗∗The constraint set 1
i in (35) implies that the PEVs charge their batteries over the entire horizon  . In case a PEV, say i, would like to charge

during a shorter horizon i ⊆  , the set 1
i modifies to 

1
i ∶=

{
xi ∈ Rn|xk

i ∈ [0, xi],∀k ∈ i and xk
i = 0,∀k ∈  ⧵ i

}
.

††In fact 𝜖i can be taken as the smallest eigenvalue of (A2).
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APPENDIX A. PROOFS OF THE LEMMAS

Proof of Lemma 1. (i) The mapping F is 𝜖-strongly monotone if

col
(

x − x′,𝝈 − 𝝈′)⊤ (F(x,𝝈) − F(x′,𝝈′)
)
≥ 𝜖||x − x′||2 + 𝜖||𝝈 − 𝝈′||2, (A1)

for all x, x′,𝝈,𝝈′ ∈ RnN . By adding and subtracting (x − x′)⊤Kcol
(
(fi(x′i , 𝜎i))i∈

)
from the left hand side and using (3) and

Assumption 2, we have

col
(

x − x′,𝝈 − 𝝈′)⊤ (F(x,𝝈) − F(x′,𝝈′)
)
≥
∑
i∈

ki𝜇i||xi − x′i ||2 −∑
i∈

(ki𝓁i + 1)||xi − x′i ||||𝜎i − 𝜎′i || +∑
i∈

||𝜎i − 𝜎′i ||2.
As a result, to establish the inequality in (A1), it is sufficient to define 𝜖 ∶= mini∈ 𝜖i where 𝜖i > 0 satisfies

ki𝜇i||xi − x′i ||2 − (ki𝓁i + 1)||xi − x′i ||||𝜎i − 𝜎′i || + ||𝜎i − 𝜎′i ||2 ≥ 𝜖i||xi − x′i ||2 + 𝜖i||𝜎i − 𝜎′i ||2.
Clearly, such 𝜖i exists providing that†† [

ki𝜇i −(ki𝓁i+1)
2

−(ki𝓁i+1)
2

1

]
≻ 𝟘. (A2)

This conditions holds if and only if ki > 0 satisfies 4ki𝜇i − (ki𝓁i + 1)2 > 0, which is equivalent to (4).
(ii) Let 𝝈 = 1N ⊗ s(x) and 𝝈′ = 1N ⊗ s(x′). By using the definition of s(x) we get 𝝈 − 𝝈′ = 1N ⊗ s(x − x′). Hence,

inequality (A1), proven in part (i), becomes

(x − x′)⊤K col
(
(fi(xi, s(x)) − fi(x′i , s(x

′)))i∈
)
+ (1N ⊗ s(x − x′))⊤

(
(1N ⊗ s(x − x′)) − (x − x′)

)
≥ 𝜖||x − x′||2 + 𝜖||1N ⊗ s(x − x′)||2, (A3)

where we used the definition of F given by (3). Let

Π ∶= I − 1
N
1N1

⊤
N . (A4)

Then, we employ 1N ⊗ s(x − x′) = 1
N

(
1N1

⊤
N ⊗ In

)
(x − x′) to obtain

(1N ⊗ s(x − x′)) − (x − x′) = −(Π⊗ In)(x − x′),

Therefore, the second term on the left hand side of (A3) is zero as 1⊤NΠ = 0, and the proof is complete. ▪

Proof of Lemma 2. Under Assumption 1, it follows from theorem 4.3 in Reference 6 that the game admits an NE if
Ji(xi, s(x)) is strictly convex in xi for all x−i ∈ −i =

∏
j≠i j. For this, it suffices fi(xi, s(x)) to be 𝜂i-strongly monotone in xi,

that is,

(xi − x′i )
⊤

(
fi

(
xi,

1
N

xi +
1
N
∑
j≠i

xj

)
− fi

(
x′i ,

1
N

x′i +
1
N
∑
j≠i

xj

))
≥ 𝜂i||xi − x′i ||2,
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for all xi, x′i ∈ i, x−i ∈ −i, and some 𝜂i > 0. By adding and subtracting (xi − x′i )
⊤fi(x′i , s(x)) from the left hand side and

using Assumption 2, it is straightforward to show that the above inequity is satisfied with 𝜂i ∶= 𝜇i −
𝓁i
N

. Hence, the game
has an NE, namely x ∈  , that is a solution of the variational inequality VI( , col ((fi(xi, s(x)))i∈)) (proposition 1.4.2 in
Reference 7). Moreover, since K col ((fi(xi, s(x)))i∈) is strongly monotone (Lemma 1(ii)) and  is closed and convex, the
variational inequality VI( ,K col ((fi(xi, s(x)))i∈)) has a unique solution x′ ∈  (theorem 2.3.3 in Reference 7). Lastly, we
need to show that x is unique and equal to x′.

Clearly, we have

(x − x)⊤col
(
(fi(xi, s(x)))i∈

)
≥ 0, x ∈  ,

which can be rewritten as ∑
i∈

(xi − xi)⊤fi(xi, s(x)) ≥ 0, x ∈  .

For a given j ∈ , set xi = xi for all i ∈  ⧵ {j}. Then, by using kj > 0, the above inequality yields

kj(xj − xj)⊤fj(xj, s(x)) ≥ 0, ∀xj ∈ j.

By performing the same procedure for the other components of x and rewriting all obtained inequalities into the vector
form, we can see that x is the solution of VI( ,K col ((fi(xi, s(x)))i∈)), that is, x = x′. Consequently, since x is an arbitrary
solution and x′ is unique, both variational inequality problems have an identical solution, which concludes the proof. ▪

APPENDIX B. ON CONVERGENCE OF THE MODIFIED NE SEEKING ALGORITHM (36)

Consider the algorithm (36) in vector form as follows:

ẋ = Π1 (x,−K col ((fi(xi, 𝜎i))i∈) − (IN ⊗ 1n)𝝀) ,
𝝈̇ = −𝝈 + x − (L ⊗ In)𝝍 ,
𝝍̇ = (L ⊗ In)𝝈,
𝝀̇ = (IN ⊗ 1⊤n )x − 𝜸,

(B1)

where 𝝀 = col((𝜆i)i∈), 𝜸 = col((𝛾i)i∈), and 1 =
∏

i∈ 
1
i with 1

i defined in (35). Similar to (6), we can guarantee that
for any initial condition (x(0),𝝈(0),𝝍(0),𝝀(0)) ∈ 1 × RnN × RnN × RN , the solution of (B1) is unique and belongs to
1 × RnN × RnN × RN for all t ≥ 0. We claim that such a solution converges to an equilibrium corresponding to the NE of
the game. To prove this, consider an equilibrium point (x,𝝈,𝝍 ,𝝀), then we have 𝝈 = 1N ⊗ s(x), (L ⊗ In)𝝍 = (Π⊗ In)x,
and

𝟘 = Π1

(
x,−Kcol

(
(fi(xi, s(x)))i∈

)
− (IN ⊗ 1n)𝝀

)
, (B2)

𝟘 = (IN ⊗ 1⊤n )x − 𝜸. (B3)

The second equality implies that x ∈ 2 =
∏

i∈ 
2
i . Employing Moreau’s decomposition theorem and (B2),

we can perform an analogous analysis to the proof of Proposition 1 and conclude that x is the solution of
VI(1,K col ((fi(xi, s(x)))i∈) + (IN ⊗ 1n)𝝀). This means that x is also the solution of the following optimization problem
(see equation 1.2.1 in Reference 7):

min
y∈1

y⊤(Kcol
(
(fi(xi, s(x)))i∈

)
+ (IN ⊗ 1n)𝝀).

Next we use the definition of 1 and write the KKT conditions corresponding to this optimization problem. Let gk
i (x) ∶=

col(xk
i − xi,−xk

i ), gi(x) ∶= col
(
(gk

i (x))k∈
)
, and g(x) ∶= col ((gi(x))i∈); then we see that g(x) ≤ 0 represents the set 1.
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Therefore, there exists 𝝁 ∈ R2nN such that the following KKT conditions hold

𝟘 = Kcol
(
(fi(xi, s(x)))i∈

)
+ (IN ⊗ 1n)𝝀 +

𝜕g
𝜕x

(x)⊤𝝁,

0 ≤ 𝝁⊥g(x) ≤ 0.

Considering the above equations together with (B3), we conclude from proposition 1.3.4(b) in Reference 7 that x is the
solution of VI( ,K col ((fi(xi, s(x)))i∈)), and in turn, it is the NE of the game (Lemma 2). Convergence analysis of the
algorithm is similar to Theorem 1.
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