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Stabilization of Underactuated Systems of Degree One via Neural
Interconnection and Damping Assignment – Passivity Based Control

Santiago Sánchez-Escalonilla, Rodolfo Reyes-Báez and Bayu Jayawardhana

Abstract— In this work, we show the potential of the universal
approximation property of neural networks in the design
of interconnection and damping assignment passivity-based
controllers (IDA-PBC) for stabilizing nonlinear underactuated
mechanical systems of degree one. Towards this end, we refor-
mulate the IDA-PBC design methodology as a neural supervised
learning problem that approximates the solution of the partial
differential matching equations, which fulfills the equilibrium
assignment and stability conditions. The output of the neural
learning process has clear physical and control-theoretic inter-
pretations in terms of energy, passivity and Lyapunov stability.
The proposed approach is numerically evaluated in two well-
known underactuated systems: the inverted pendulum on a cart
and inertial wheel pendulum, whose analytic IDA-PBC solutions
are non-trivial to obtain.

I. INTRODUCTION

The IDA-PBC technique [1] is a popular nonlinear control
design methodology for set-point regulation. It has been suc-
cessfully applied to a variety of electromechanical systems,
for which the target closed-loop dynamics takes the form of
a port-Hamiltonian (pH) system with desired passivity and
interconnection properties.

The technique comprises of two standard steps of
passivity-based control (PBC) method, namely: (i) energy-
shaping step that assigns the desired equilibrium x∗ as the
minimum of the shaped energy function; and (ii) damping
injection step that ensures the dissipation of shaped energy
function to achieve asymptotic stability. For the first step, one
needs to solve a set of partial differential equations (PDEs),
the so-called matching equations (ME), which is not trivial,
in general. For mechanical systems, the aforementioned ME
can be split into kinetic energy shaping ME and potential
energy shaping ME [1]. The former one results in a nonlinear
PDE whose solution is the target closed-loop inertia matrix;
whereas the latter one corresponds to a linear PDE that
defines the assignable potential energy functions. In the
case of fully-actuated mechanical systems, these ME can
trivially be solved, and typically only1 the potential energy-
shaping is involved. However, for underactuated systems, it
is necessary to perform total energy-shaping [1] because the
potential energy-shaping part can only be performed in the
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1Even in the fully-actuated case, total energy-shaping can be beneficial
to meet some closed-loop performance metrics.

actuated degree-of-freedom. For the past decade, there are
many works that investigate methods to construct explicit
solutions of the ME for various classes of underactuated
systems, such as, the works in [2], [3], [4], [5], [6], [7] among
others. The construction of ME solutions in these papers
typically relies on mathematical assumptions that are often
very restrictive or lack of a clear physical interpretation.

In addition to the IDA-PBC approach, finding closed-form
solutions to some PDEs has also been a central problem in
many other control design methods, such as, the nonlinear
output regulation problem [8] or the immersion & invariance
method [9], which are non-trivial. In this context, recent
advances in machine learning [10] are enabling the possibil-
ity of constructing parametric models that are interpretable
from a first-principle point of view and therefore can be
used as surrogates in model-based control design approaches.
The benefit of using these parametric models is that it
allows control designers to use existing model-based control
methods without losing insights and properties of the closed-
loop systems. In recent years, their applicability in analysis
and design of control systems has been studied in [11], [12],
[13], [14], [15], [16].

In our previous work [17], we presented a method to
solve the aforementioned ME of IDA-PBC in fully actuated
systems by transforming it into a neural supervised learning
problem, which is motivated by the universal approximation
property of neural networks (NNs) [18]. On one hand, as
briefly mentioned before, solving such ME problem for fully
actuated systems can be achieved simply by potential energy
shaping that leads to simple (constant) forms of the assigned
interconnection and damping matrices [17, Section 4]. On the
other hand, solving ME problem for underactuated systems
also requires the kinetic energy shaping part [1], which
generates an extra set of ME that introduce complication in
finding the right ansatz solutions. Correspondingly, in this
paper, we present an extension of our previous work that
can freely explore these non-trivial assigned interconnection
and damping matrices. This approach results in a control-
informed NN design method for IDA-PBC, and is referred
to as Neural IDA-PBC.

The rest of this paper is structured as follows. Section
II provides the preliminaries necessary for the context of
this paper. In Section III we systematically construct a cost
function to embed the IDA-PBC design methodology and
pH systems’ first principles. In Section IV the proposed
methodology is validated with the simulation of two underac-
tuated systems. Finally, Section V contains some concluding
remarks.



II. PRELIMINARIES

A. Underactuated mechanical port-Hamiltonian systems
Using the port-Hamiltonian framework (see, for example,

[19]), the dynamics of standard mechanical systems with
generalized coordinates q on the configuration space Q ⊂Rn

and velocity q̇ ∈ TqQ can be given by

ẋ = [J(x)−R(x)]
∂H
∂x

(x)+g(x)u, y = g⊤(x)
∂H
∂x

(x), (1)

with the Hamiltonian given by the total energy of the system

H(x) =
1
2

p⊤M−1(q)p+U(q), (2)

where x = (q, p) ∈ X is the state and p := M(q)q̇ is
the generalized momentum. The scalar function U(q) is
the potential energy, and M(q) = M⊤(q) > 0 is the inertia
matrix. The interconnection, dissipation and input matrices
are, respectively, given by J =

[
0n In
−In 0n

]
, R =

[
0n 0n
0n D(x)

]
, g =[

0n
B(q)

]
, where the n × n matrix D(x) = D⊤(x) ≥ 0n is a

dissipation term, and In and 0n are the n×n identity and zero
matrices, respectively. The input u represents generalized
forces while the output y gives the generalized velocity so
that their inner-product describes power. As we are interested
in underactuated systems, the input force matrix B(q) is
assumed to have the rank m < n. The rate of change of H(x)
provides a power balance relation between the internal power
of system (1) and the external supplied power:

Ḣ(x) =−∂H⊤

∂ p
(x)D(x)

∂H
∂ p

(x)+ y⊤u ≤ y⊤u, (3)

where the inner-product y⊤u is the external supplied power.
In the context of dissipativity theory, the inequality (3) shows
that the map u 7→ y is passive with respect to the storage
function H(x) in (2) and the supply rate y⊤u. We refer
interested reader to [20, Section 6.2].

B. IDA-PBC design methodology
The IDA-PBC technique, as proposed in [1], is a control

design method whose main control objective is to design a
static state feedback control law of the form u(x) = β (x)+v
for the pH system in (1), such that the closed-loop dynamics
are given by

ẋ = [Jd(x)−Rd(x)]
∂Hd

∂x
(x)+g(x)v, y′ = g(x)⊤

∂Hd

∂x
(x),

(4)
where Hd(x), Jd(x) =−J⊤d (x) and Rd(x) = R⊤

d (x)≥ 0 are the
desired Hamiltonian, interconnection and damping matrices,
respectively. The desired Hamiltonian Hd(x) has a strict local
minimum at the desired equilibrium point x⋆ = (q⋆,0) and
the pair (v,y′) is the new power conjugate pair that defines
the desired passivity relation with storage function Hd(x).

Theorem 2.1 (IDA-PBC [1]): Consider J(x), R(x), H(x),
g(x) of the pH system in (1) and a desired equilibrium point
x∗ ∈ X . Assume that there exist functions Jd(x), Rd(x) and
Hd(x) satisfying the matching equation

g⊥(x)[Jd(x)−Rd(x)]
∂Hd

∂x
= g⊥(x)[J(x)−R(x)]

∂H
∂x

, (5)

where g⊥(x) is the full rank left annihilator of g(x). Then
system (1) in closed-loop with the control law

u = [g⊤g]−1g⊤
(
(Jd −Rd)

∂Hd

∂x
− (J−R)

∂H
∂x

)
, (6)

takes the form (4) with v = 0, and x∗ is locally stable. More-
over, x∗ is asymptotically2 stable if it is locally detectable
from the output y′ =B⊤(x) ∂Hd

∂ p (x). The results holds globally
if x∗ is a global minimum of Hd(x) and Hd(x) radially
unbounded.

After some straightforward algebraic manipulations, the
desired functions can be rewritten as the sum of the functions
J(x),R(x),H(x) of the pH system in (1) and some auxiliary
functions Ja(x),Ra(x),Ha(x) such that

Jd := J(x)+ Ja(x), Rd := R(x)+Ra(x) Hd := H(x)+Ha(x).
(7)

These auxiliary terms are used to assign the desired functions
in the IDA-PBC methodology in Theorem 2.1. Some implicit
design properties on these auxiliary functions are mentioned
below as these are key for the constructive design procedure
to be presented in Section III.

(P1) Structure preservation: the matrices Ja(x) and Ra(x)≥ 0
are skew-symmetric and symmetric, respectively.

(P2) Integrability: K(x) = ∂Ha
∂x (x) is the gradient of a scalar

function, i.e. ∂K
∂x (x) =

∂⊤K
∂x (x).

(P3) Equilibrium assignment: Ha(x) satisfies ∂Hd
∂x (x⋆) =

∂H
∂x (x

⋆)+ ∂Ha
∂x (x⋆) = 0, where x⋆ = argminx∈ΩHd(x).

(P4) Lyapunov stability Hd(x) is a positive definite function
at x⋆, i.e. ∂ 2Hd

∂x2 (x⋆) = ∂ 2H
∂x2 (x⋆)+

∂ 2Ha
∂x2 (x⋆)> 0.

III. NEURAL IDA-PBC
A. NN approximated solutions of the matching equations

The main contribution of this work is based on the well-
known universal approximation property of NN [18], [21].
In the following lemma, we propose an adaptation of the
approximation theorem for the solution to the nonlinear
output regulation control problem [11, Section 3] to the case
of IDA-PBC technique (see Section II-B).

Lemma 1: Let {Hd(x),Jd(x),Rd(x)} be a triplet satisfying
the matching equations (5) and the conditions (P1)-(P4),
and let V be a compact subset of X . Then the triplet
can be approximated by a sufficiently large (wide and
deep) neural network to any prescribed precision on V .
That is, for any given ε > 0, there exist the triplet NN
{Ĥd(θ ;x), Ĵd(θ ;x), R̂d(θ ;x)} of the form (7), satisfying∥∥∥∥∂ Ĥd

∂x
(θ ;x)− ∂Hd

∂x
(x)

∥∥∥∥< ε, (8)∥∥Ĵd(θ ;x)− Jd(x)
∥∥< ε, (9)∥∥R̂d(θ ;x)−Rd(x)
∥∥< ε, (10)

with θ be the vector of NN weights.

Due to space limitations, the proof of this lemma is
omitted and it follows similar arguments as [11, Lemma 1].

2Equivalent conditions can be given in term of the LaSalle principle.



B. IDA-PBC-informed NNs

Based on Lemma 1, we present in this subsection the
construction of NN that can approximate the design func-
tions of the IDA-PBC design method. To that end, one
can systematically construct a cost function that encodes
the matching equations (5) and conditions (P1)-(P4). Once
this cost function is minimized, the actual IDA-PBC de-
sign functions (Hd(x),Jd(x),Rd(x)) can be approximated by
their corresponding NNs surrogates, respectively, as follows:
Ĥd(θ ;x) := H(x)+ Ĥa(θ ;x), Ĵd(θ ;x) := J(x)+ Ĵa(θ ;x) and
R̂d(θ ;x) := R(x)+ R̂a(θ ;x).

The aforementioned cost function is constructed as the
sum of the following residuals defined on V :

a) Equilibrium assignment: The approximated closed-
loop energy function Ĥd(θ ;x) := H(x)+ Ĥa(θ ;x) has a local
minimum at the desired equilibrium point x⋆ = (q⋆,0):

feq(θ ;x⋆) := ∥Hd(θ ;x⋆)∥2 +

∥∥∥∥∂Hd

∂x
(θ ;x⋆)

∥∥∥∥2

. (11)

b) Lyapunov stability: The approximated closed-loop
energy function must be convex. This is equivalent to having
strictly positive elements in spectrum of ∂ 2Ĥd

∂x2 (θ ;x). Addi-
tionally, Hd(θ ;x)> 0 for all x in the neighborhood of x⋆:

flyap(θ ;x) := max
{

0,a−σ

(
∂ 2Hd

∂x2 (θ ;x)
)}

+

+max{0,b−Hd(θ ;x)}.
(12)

where σ denotes the spectrum of a matrix and a,b > 0 are
constant values that can be added to make this condition
stricter.

c) Matching equations: The approximated functions
(Ĥa(θ ;x), Ĵa(θ ;x), R̂a(θ ;x)) must satisfy the ME in (5):

fmatch(θ ;x) :=
∥∥∥∥g⊥(x)[Ĵd(θ ;x)− R̂d(θ ;x)]

∂ Ĥd

∂x
(θ ;x)

−g⊥(x)[J(x)−R(x)]
∂H
∂x

(x)
∥∥∥∥2

.

(13)

d) Structure preservation: The approximated assigned
damping matrix must be a symmetric and positive definite
matrix R̂a(θ ;q) of the form

R̂a(θ ;q) =
[

0n 0n
0n R̂a(2)(θ ;q)

]
, (14)

where R̂a(2)(θ ;q) := diag{R̂a(2,1)(θ ;q), . . . , R̂a(2,n)(q)} > 0, In
addition, the approximated of the assigned skew-symmetric
interconnection matrix is defined as

Ĵa(θ ;q) =

[
0n Ĵa(1)(θ ;q)

−Ĵ⊤
a(1)

(θ ;q) Ĵa(2)(θ ;q)

]
. (15)

and the sub-block matrix Ĵa(2)(θ ;q) is skew-symmetric.
As a consequence of the structural assumptions on

R̂a(θ ;q) and Ĵa(θ ;q), the last residual function is given by

fstruct(θ ;x) := max{0,cIn − R̂a(θ ;q)}+

+

∥∥∥∥∂ R̂a

∂ p
(θ ;x)

∥∥∥∥2

+

∥∥∥∥∂ Ĵa

∂ p
(θ ;x)

∥∥∥∥2

,
(16)

where c > 0 is a constant value that is added to impose the
positive definiteness of R̂a(θ ;q).

Combining all these residual functions together, the final
cost function to be minimized by the neural network is

L (θ ;x,x⋆) = feq(θ ;x⋆)+ flyap(θ ;x)+

+ fmatch(θ ;x)+ fstruct(θ ;x).
(17)

This cost function encodes the family of all admissible
solutions of the IDA-PBC control design methodology. A
neural IDA-PBC surrogate control input û associated to the
actual u in (6) is given in the following proposition.

Proposition 1: Suppose that the hypotheses in Theorem
2.1 and Lemma 1 hold for the underactuated pH system
(1) with desired equilibrium point x⋆ and with NN triplets
{Ĥd(θ ;x), Ĵd(θ ;x), R̂d(θ ;x)}. Let θ ∗ be the minimizer of the
cost function L (θ ;x,x⋆) in (17). Consider the pH system
(1)-(2) in closed-loop with the neural IDA-PBC controller

û = (g⊤g)−1g
(
[Ĵd(θ

⋆;x)− R̂d(θ
⋆;x)]

∂ Ĥd

∂x
(θ ⋆;x)

− [J(x)−R(x)]
∂H
∂x

(x)
)
.

(18)

Then the desired equilibrium x∗ can be made locally practi-
cally exponentially stable for a sufficiently large (wide and
deep) NN {Ĥd(θ ;x), Ĵd(θ ;x), R̂d(θ ;x)}.

Proof: By Lemma 1, the closed-loop system will take
the form of (4) perturbed additively by a nonlinear function
of the approximation error ε > 0 and the state x. Since the
desired Hamiltonian Hd(x) is required to be strictly convex
around x⋆ as formulated in flyap(θ

∗;x), the function Hd(x) is
locally quadratic at x⋆. Correspondingly, the linearization of
(4) around x⋆ becomes a linear autonomous system, which
is stable by Theorem 2.1. In other words, the non-perturbed
system (4) is locally exponentially stable and consequently
admits a quadratic Lyapunov function. By the boundedness
of g(x) in the neighborhood of x⋆, this implies that the
perturbed system is locally input-to-state stable [22] around
x⋆ with respect to the ε as the perturbation input. Following
Lemma 1, this perturbation can be made arbitrary small for
sufficiently large NN so that an arbitrary small ball around
x⋆ can be made attractive.



We remark that the IDA-PBC formulation above does not
impose any condition on the desired damping in the actuated
coordinates. Thus, it is a free positive definite parameter that
can be freely assigned to modify the closed-loop performance
of the system.

IV. SIMULATION RESULTS

In this section we apply the preceding approach to design
controller based on the IDA-PBC methodology in two dif-
ferent seminal underactuated mechanical systems: the inertia
wheel pendulum and the pendulum on a cart.

A. Neural network architecture

The neural network chosen for either of the systems
comprises of 5 layers (the input layer, 3 hidden layers
and the output layer) as shown in Figure 1. Each hidden
layer consists of 20 neurons with the activation function be
given by hyperbolic tangent. For each system in the next
two subsections, the parameters of the NN were initialized
using the Glorot Normal distribution [23]. Additionally, the
cost function was minimized using ∼ 1000 points randomly
sampled from a uniform distribution around the desired
equilibrium. The optimization routine used consists of a
combination of the ADAM [24] optimizer followed by one
pass of LBFGS [25] until a predetermined convergence
tolerance is achieved.

Fig. 1: Neural IDA-PBC representation. This diagram illustrates
the inputs and outputs of the neural network used for solving
IDA-PBC in two different underactuated systems. The generalized
coordinates and momenta of the system are passed as inputs and
the approximated storage, interconnection and damping functions
(satisfying (5)) are obtained as outputs.

B. Inertia wheel pendulum

This mechanical system, as presented in [1, Section 5],
consists of a physical pendulum with a balanced rotor at the
end that produces an angular acceleration on the rotating
mass which in turn generates a coupling torque at the
pendulum axis (Fig. 2a).

The model that represents this system follows the de-
scription in (1) with the inertia matrix, potential function
and input matrix given by M =

[
(ml2+I) I

I I

]
, U(q) = mgl(1+

cos(q1)), B =
[
0 1

]⊤, respectively, where m and l are the
mass and length of the pendulum respectively, I is the inertia
of the balanced rotor and g is the gravity constant.

1) Controller design: The target equilibrium corresponds
to the upward position (inverted pendulum) with the inertia
disk aligned x⋆ = (0,0,0,0)⊤. The optimization method as
described in Subsection IV-A explores the family of solutions
in order to minimize (17). As a reminder, the only free
parameter left open in the methodology presented in Section
III corresponds to the desired closed-loop damping in the
actuated direction. The points used during the training of
the neural network were randomly sampled from a uniform
distribution defined as X ∼ (x⋆−π/10,x⋆+π/10). The final
control law is (18).

2) Numerical results: The presented results are obtained
with m = 1, I = 10, l = 1, g = 9.81 and Ra(2) = 1.1. Fig. 3
shows the time response of the generalized coordinates for
different initial conditions and their corresponding (modu-
lated) assigned interconnection matrix, (modulated) assigned
damping matrix and control law over time. From these
figures, we have the practical stabilization of x⋆ as expected
from Proposition 1. Due to the approximation error, we can
observe two undesirable effects. The first one is related to the
non-vanishing small constant control signal after reaching
the desired equilibrium (which is an unstable equilibrium
of the open-loop system). The second one is related to the
fact that the obtained R̂a(q) has an infinitesimally negative
value which violates (16). We attribute these imperfections
to numerical errors in the approximation of ∂Hd

∂x (θ ;x) that is
expected by Lemma 1.

C. Pendulum on a cart

In this mechanical system, a pendulum is attached to
a movable cart, whose motion is constrained to the x-
direction. A linear actuator is placed on the cart that applies
a linear acceleration on the horizontal axis, which generates
a coupling torque at the pendulum joint (see Fig. 2b).

The model that represents this system follows the descrip-
tion in (1) with the inertia matrix, potential function and input
matrix be given by M(q) =

[
m1+m2 m2l cos(q2)

m2l cos(q2) m2l2

]
, U(q) =

m2gl(1+cos(q2)), B =
[
1 0

]⊤, respectively, where m1 and
m2 are the mass of the cart and the mass of the pendulum
respectively, l is the length of the pendulum and g is the
gravity constant.

1) Controller design: In this case the target equilibrium
also corresponds to the upward position (for the pendulum)
and the origin for the cart, i.e. x⋆ = (0,0,0,0)⊤. The control
law is obtained in a similar way as in the inertia wheel
pendulum case. The points used during the training of the



neural network were also randomly sampled from a uniform
distribution defined as X ∼ (x⋆−π/10,x⋆+π/10).

2) Numerical results: The presented results are obtained
with m1 = 1, m2 = 1, l = 1, g = 9.81 and Ra(1) = 50.1.
Fig. 4 shows the time response of the generalized coordi-
nates for different initial conditions and their corresponding
(modulated) assigned interconnection matrix, (modulated)
assigned damping matrix and control law over time. From
these figures, the upright position can be stabilized as desired.

(a) Inertia wheel pendulum. (b) Pendulum on a cart.

Fig. 2: Illustrations of two underactuated mechanical systems that
are used to numerically validate the Neural IDA-PBC methodology
in Section IV.

V. CONCLUSIONS

In this work, we have presented a systematic approach to
approximate solutions to the IDA-PBC matching equations.
This methodology allows the exploration of solutions that
otherwise would be too hard or even impossible to obtain
analytically. It is numerically validated in two fundamental
underactuated systems that have previously proven to be hard
to deal with analytically [1], [3], which require intermediate
steps to ease the calculations. In contrast, our technique is
straightforward and enables the construction of a numerical
IDA-PBC controller without requiring ansatz solutions nor
apriori knowledge of the solutions.
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