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We consider the axial-vector form factors of the baryon octet in flavor-SU(3) chiral perturbation theory.
The baryon octet and decuplet and the pseudoscalar-meson octet are included as explicit degrees of
freedom. We explore the use of on-shell meson and baryon masses in the one-loop contributions to the
axial-vector form factors and focus on a consistent treatment in terms of chiral power counting. The
convergence properties of such an approach are scrutinized. We discuss the potential for comparison to

upcoming QCD lattice data.

DOI: 10.1103/PhysRevD.105.054005

I. INTRODUCTION

The axial-vector form factors of the octet baryons are,
next to the baryon masses, important testing grounds for
our understanding of the flavor and chiral structure of low-
energy, nonperturbative QCD. Cabibbo’s flavor-SU(3)
symmetric model [1,2] for neutron f decay and the semi-
leptonic hyperon decays was remarkably successful, but
nowadays one requires a more fundamental effective field
theory description of these processes in the framework of
chiral perturbation theory (yPT). Unfortunately, previous
work within flavor-SU(3) heavy-baryon yPT has shown
serious convergence problems of the chiral expansion [3,4].
The expected progress in flavor-SU(3) lattice studies
motivates us to revisit the axial-vector form factors of
the nucleon and hyperons in yPT.

In Ref. [5] we investigated the axial-vector form
factor of the nucleon in flavor-SU(2) yPT with nucleons
and isobars. Calculations of masses and form factors in yPT
face the problem that in the chiral expansion terms occur
that violate standard power-counting rules that assume
m, ~ A ~ small momenta, where A is the isobar-nucleon
mass difference. We explored the use of on-shell hadron
masses in the loop diagrams to improve the convergence of
the chiral expansion when the isobars are included. We
showed that it was possible in our scheme to renormalize
the one-loop amplitudes in terms of subtracted Passarino-
Veltman integrals. We performed a successful global fit of
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the LECs (low-energy constants) to the available flavor-SU
(2) QCD lattice data for the nucleon and isobar masses and
the nucleon axial-vector form factor [6-9]. An interesting
prediction of our approach that results from the use of on-
shell masses in the loops is a nonanalytic behavior [10,11]
of the masses and the form factor as a function of the pion
mass, which should become prominent for larger lattice
volumes than were used so far.

In this work we extend this approach to calculate the
axial-vector form factors of the baryon octet in flavor-
SU(3) yPT. The baryon decuplet is included as an explicit
degree of freedom and consistently incorporated via a
suitable subtraction and renormalization scheme similar to
Ref. [5]. We investigate whether the use of on-shell masses
in loop contributions leads to better convergence properties
of the flavor-SU(3) chiral expansion. Unfortunately, a full
lattice description of all axial-vector form factors in flavor-
SU(3) is not available yet. References [12—14] are restricted
to the axial-vector form factor of the nucleon. In Ref. [15]
first results for axial-vector form factors of the X and =
hyperons are presented and more results, also for strange-
ness-changing axial-vector currents, are announced.

We have organized our work as follows. In Sec. II we
discuss the flavor-SU(3) chiral Lagrangian with the pseu-
doscalar-meson Goldstone-boson octet, the baryon octet,
and the baryon decuplet as degrees of freedom. Section III
discusses the axial-vector currents and form factors in
QCD, the prime observables covered in our approach. In
Sec. IV we calculate the axial-vector form factors at the
one-loop level from the chiral Lagrangian. Next, in Sec. V
we discuss our power-counting scheme and the implication
for renormalization of the one-loop diagrams. In Sec. VI we
investigate the convergence properties of our scheme at the
physical point of the form factors and in the flavor-SU(3)

Published by the American Physical Society
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limit. Finally, Sec. VII contains our summary and an
outlook for further work. Several appendixes are devoted
to definitions of amplitudes, Clebsch-Gordan coefficients
and recoupling constants, and kinematical constants.

II. THE CHIRAL LAGRANGIAN

The starting point of all calculations in yPT is the
effective chiral Lagrangian, which contains fields of all
considered particles: the Goldstone-boson octet @, the
baryon octet B, and the baryon decuplet A, [16]. The
fields are given, respectively, by

%_’_no ﬁ,ﬁ \/ZK*

o=| V2rr E-2" V2K |, (1)
V2K- V2K -2

B=| ¥ %Hon | @
-B- B —3A

Ly = —f2u[U, U] + t[B(ip — M)B]

and

A},“:A;*, A}JBZZ,T/\@, A;1433::2/\/§’ Af,33:Q;,
AR=AF/VE, AP =30/V6, AP =E;/V3,
AR=AYVE. A =5V

A2 A (3)

We list the chiral flavor-SU(3) Lagrangian [16—18], but
we neglect the terms without explicit impact on the axial-
vector form factors. The terms that are relevant for this
work are divided into chiral orders,

L= Ly, + LY+ L2+ £B)] (4)

where i denotes the chiral order of £() and Ly, contains
the kinetic part of Goldstone bosons ®, spin-1/2 baryons
B, and spin-3/2 baryons A,

—t[A, - (i = (M + A))g™ = i(y*D* + y*DH) + /*(iP + (M + A))r*)A,]. (5)

We introduced the covariant derivative D,, which is constructed such that it transforms in the same way as the
corresponding field by incorporating the chiral connection I'. The mass of the baryon octet in the chiral limit is given by M
and the mass of the baryon decuplet in the chiral limit by M + A. The Goldstone bosons are massless in the chiral limit. The
covariant derivative D, and the chiral connection I', are given by

D,B =0,B+T,B - BT,

(DA, = 8,AL" + T},

1, 1
Ly =5u"0, —i(v, + a,)]u + Eu[aﬂ —i(v, — aﬂ)]l’ﬁ’

2

Aﬁbc 4 r/lj,nAZnC 4 Fft,nAza/bn’

u=ev,

1 [ i i
U/,—Eu'((“)ﬂe f>uT—EuT(vﬂ—l—aM)u—l—Eu(vﬂ—aﬂ)uT, (6)

and U, contains the Goldstone-boson field ® and possible external currents with vector v, or axial-vector structure a,,. The
pion-decay constant in the chiral limit is denoted by f ~ 87 MeV [19]. Furthermore, we specify

LY = Fu[By'ys[iU,. B]] + D u[By*ys{iU,. B}] + Ct[(A, - iU*)B + H.c.] + Hu[(A" - ysy,A,)iU"). (7)

In the lowest-order Lagrangian £(!) we introduced for the decuplet fields the shorthand notation [16]

(@-A,)5 = eup®h AL,
(8- 8,05 = B

(B - @)y = iR, .

and the dimensionless LECs F, D, C, and H. For convenience the Lagrangians £ and £®) are split as
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L2 =68 4 V) 4 £0) 4 plda) 4 pAD) 4 p(F)
LO) =) 4 LB (10)
with

1 - 1 - 1 _ 1 _
£ = —2 g twe[BB(U, U] = 5 9" wBUM)te{U, B) = 3 g w[BI{U*. U,}. Bl = 2 g w[B{{U".U,}. BY]. (1)

L ), (5iprw
£ =2 w[Biy*D*Blu[U, U,
1 ] _
-3 ¢\ («[BU,)iy*«|U,D*B] + «[BU,)iy*«[U,D"B))

L) ,
~59¢ wlBiy'[{U,. U,}. D*B]]

~ gy u[Biy{{U,.U,}.D'B}] + H.c., (12)
1 - 1 - 1 -

£ = 2 g, ulBU,Jio" u[U,B] - 1 g w[Bic*[[U,. U,}. B = 1 g, u(Bio"{[U,.U,]. B}, (13)
1), s 1 a _

L0 = = V(A 7sB){U,. U] = 3 £ (B Uy ysU,B + (B U, )pvsU,B] + Hee.. (14)

1 - 1 _ _
LO0) =~ (A pysB) (U, U] = 3 (B - U,)prsU,B — (A% U, )p*ysU, B + He.

L) = g\ w[BIFS,, 0™ Bl + gy 'w[B{F;,, 0" B + £\ t[Bytys (iF - AV) + Hoe] - £ u[By(iF, - A) + Hel.

A

Furthermore we specify

(15)

1 - , 1 - ,
£ = — g ulBrsr*{iU,. {ro. BY} + He] =5 03'u(Brsp iU, [ro. B} + He]

1 - : 1 7 .
~ 598 ulBysp"iU, (0. BY] + He] =5 o uBysy* (iU, [ro. B]) + He]

1 _ . 1 o —
-3 g9 w[Bysy"BrlyoiU,] + H.e.] - 3 9@ w[Bysy*iU, trlyoB] + H.e] — g% w[Bysy*[iU,, Blltrlyol,

and

£(R) = gs,R)tr[B}/”%HDy’ F;U]’BH

R = _
+ g ulByys (DY, F.BY.  (17)
Here two new operators appear, y, and Fﬂi,/, where
m 0 O
0 0 my

In order to implement explicit chiral symmetry breaking, y,,
introduces the finite quark masses m and m,, where
we assume the strict isospin limit m, = m,; = m. Further-

(16)

more, a derivative acting on the external axial-vector
current a, is needed,

Fffy = uTFffyu + uFﬁDuT, (19)

with
FR, = 0,a, —0,a, —ila, a,], (20)
FL, =—(0,a,—8,a,) —ila,,a,]. (21)

All coefficients ¢\ and f() are a priori unknown LECs.
Three LECs in Ref. [16], corresponding to E(X), are
redundant. In Table I we link our Lagrangian £ to other
conventions found in the literature. Terms including
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TABLE I. Link of the LECs, used in this work, to previous

publications [18,21,22].

This work [18,21,22] This work [18,21,22]

D D g(()S) 8(=by + by + by)

F F g§5) 16(=b, + by)

C \/%h n gEVS) 8b;

H H, gE)S) 8(3b; — bs)

gé‘/) 16(=bs + by + byg) g§T> 8d;

glV> 32(=bs + by) g(FT> 16d,

gFV> 16b¢ gg) 16d,

gg)) 16(3b5 — by)

g by r £ fcn —4ep

gg) by.p (zA) —Sci0) —4er
](; ) Cy ng) dcy

fi & £ ~8cqo)

g des g® des

o 2(4dyy + 3dyg) e 4(—dye + dy7)

g(z;r) 8dy gg() —8dyg

ggl ) 8dy g§’f ) 4dys

gf{) 2(4dyy + dyg)

exclusively the baryon octet have been derived in
Refs. [18,20,21], whereas the terms also including the
decuplet are compared to Ref. [22]. Our LECs ¢! and £
are normalized in such a way that we expect their values to
be in the range ~[—10, 10]. References [18,21,22] use in
parta different normalization. The comparison between our
LECs f1 234 and the LECs cpp (10).(27)» performed in
Ref. [22], agrees with our translation in Table I.

III. AXTAL-VECTOR CURRENTS
A. Motivation

The matrix element M of the semileptonic decay
process of a nucleon or hyperon (b — b+ e~ + ) can
be parametrized [2] as

GFVle/S_
M=—F"10 *0V+0Auue 14ys5)v,,
7 ( Jupitey*(1+7s)v
_ s
bb q bb 9o
0= 1" a3 137 @howy 3 f3 (),
_ Y -
_ (bb) q (bb) 9a (bb)
04=a91 (*)1ars +M—B (40475 +MB (a*)7s-
(22)

with the Fermi constant Gy and the Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements V,;~0.97 for

TABLEIL. Cabibbo theory for the form factor ¢\ (0) [2]. We

use FF = 0.45 and D = 0.80 [23] for the numerical estimate.

Process . Experiment

b—b CKM g(lbb> (0) Estimate [24]

n— pe b Va D+F 1.25  1.2724 £0.0023

BB Vy D-F 0.35

X o Ae v Vi 2p 0.65 0.601£0.015 [16]
3

T Xem Vi V2F 0.64

=50 5 Ytemp Vi D+ F 1.25 1.22 £0.05

X - ne v Vi D-F 0.35 0.340 £ 0.017

AN->pe vV, —ﬁ (D+3F) —0.88 —0.879£0.018

E- > Ae v Vy —ﬁ (D-3F) 022 0.31 £0.06

n—n —%(D—SF) 0.22

P e %D 0.65

A=A _ %D —0.65

E- - &2 —ﬁ(D +3F) -0.88

strangeness-conserving and V,, ~0.22 for strangeness-

changing decays [19]. The form factors gﬁ?ﬁé(gz) and
bb

f i,2,>3(612 1

on the axial-vector form factor gll’b(qZ). Based on group-

theoretical considerations and assuming exact flavor-SU(3)

) depend on the momentum transfer g>. We focus

symmetry, the Cabibbo model is able to describe gﬁbb) (q%) of
12 processes with only two reduced matrix elements. These
refer, translated to our framework, to the LECs D and F from
the chiral Lagrangian £(!) from Eq. (7). We show Cabibbo’s
results for g”(g?) in terms of D and F in Table II.

Roughly ten years ago first results from nonperturbative
calculations of axial-vector form factors on the lattice
became available (e.g. Refs. [25,26]). The quark mass is
an input parameter in these kinds of calculations. Therefore
additional data points can be produced, also in unphysical
regions [12-15]. Since for larger quark masses flavor-
SU(3)-breaking effects play an important role, the Cabibbo
model is not suitable for more detailed investigations. yPT
offers the opportunity to consistently add higher-order
contributions, such as finite quark masses. Therefore we
scrutinize axial-vector form factors in yPT to one-loop
order and derive their dependence on the LECs of the chiral
Lagrangian of Eq. (4).

B. Definition of axial-vector form factors
In QCD the axial-vector currents take the form [27]

Al (x) = g(x)r'rs %q(x), (23)

with the three-component quark field ¢(x) and the Gell-
Mann matrices A; for flavor-SU(3). The axial-vector
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TABLE III. Baryon-octet multiplets B.
Singlet Doublets Triplet
DD
0 =0 Z*ﬁi’
A= (A7) N:(Z) 5:<;_) I=| A

couplings can be incorporated as external fields a, (x) =
> al, (x)% in the QCD Lagrangian. They enter the chiral
Lagrangian as a part of U, in Eq. (6).

We consider an axial-vector current A¥(x = 0) coupling
to an incoming baryon B (with mass M, and momentum p)
and an outgoing baryon B (with mass M » and momentum
p). In contrast to the baryons b and b in the previous
section, we present the baryons here in isospin multiplets B
and B, shown in Table III. Isospin-breaking effects are
neglected. We restrict the external baryon fields to the octet.
The matrix element for the axial-vector current can be
decomposed into three parts as

(B(P)|A} (0)|B(p))

— 3(p) (wcﬁff)

(#+P)(P" + p")
(Mﬁ +Mp)2

q" (BB)
— L __GY!
Myz+M, ™'

G <q2>)y5

(¢%)

(¢%) +

0
T1®)18)

+ ug(p),

(24)
with ¢* = (p — p)* and the index i = 1, ..., 8 running over

the different types of strangeness-conserving (AS = 0) and
|

strangeness-changing (AS = £1) axial-vector currents.
The coefficients G;li.B)(qz) and Ggff>(q2) are known as

the axial-vector and pseudoscalar form factors. The third

form factor GgﬁB) (g?) is, by construction, only nonzero for

processes with B # B for some specific Feynman diagrams.

Strict isospin symmetry forces the axial-vector form
factor fo)(qz) to be equal within isospin multiplets.
We express the form factor in the isospin basis and
use the isospin equivalent axial-vector current aff with
X e {n K ,K,n}, ie.

BB BB BB BB BB BB
GI(A,I = Gﬁx,z = Gﬁm '= Gz(4.a17>’ Gz(x,s ) Gﬁmf,
BB BB BB BB BB BB
GE&A )= Gﬁx,s '> Gix,af)’ Gﬁm /= GEH - Gﬁ,,ag- (25)

The isospin transition matrices T&?B)I(B)

isospin of the outgoing/incoming baryon I(B)/I(B) and
the isospin of the axial-vector current (i),

depend on the

(1) e

T ifi=1.2.3,
(1/2) —

) Ty i T i=45,
iz =4 707 e (26)

1B)1(B)i-s T 1=0 7
(0) e

TI(B)I(B),:—7 if i =8.

gg)l@j has 27(i) 4+ 1 com-
ponents, each of them being a (2I(B) + 1) x (2I(B) + 1)

matrix. Specifically,

. . o . 1
An isospin transition matrix T,

0 1 0 1 0 1
(T(()o),1) = 751 (T£_1’>1)jk = ﬁ(é)ﬂw (Tgl),l)jk = 5(5)/'1{1
my _ 1 Wy _ oy L Dy pymp L
(T = —ﬁﬂ;b (Tors); = (Tig,); = 75(5 )i (T%’i)jk =(-1) /25(7 )ik
(1/2) L (1/2) [ (/2 _ 1 ; (1/2) i
(T%L,» ) jk E(T )jis (T%OJ- ) 7(5 )js (Tl%,,» )ik = E(TZ)il(Tj)lkv ( oL ) —ﬁ(fz)i,”
=172y _ 1, ; #(1/2) [ =172y Loy #(1/2)y _ L
(Tl%,i )]k - E (T])kz’ (T()%’i )] 72 (5 )]7 ( i )]k - _5 (T )jl(T2)li’ (T%()’i )J - ﬁ (TZ)ij’ (27)

with ny /2= 1
B=B=N.
The transition matrices are normalized in such a way that

we recover the results of the Cabibbo model at tree level,

for B=B=E and m,=0 for

(bb)

G = ¢ (). (28)

We work in the isospin basis with the external baryons B
and B, whereas the form factors in Cabibbo’s model are

given in particle basis with 5 and b. The singlet form factors

G/(fgg(qz) are not related to physical decays.

We will determine the form factors fof )(qz) to one-
loop level. Divergent loop integrals need to be treated
carefully. The technique of dimensional regularization
[28,29] introduces the renormalization scale u, which
allows us to determine the integrals in d spacetime
dimensions. Subtracting poles of the form 1/(d — 4) leads

to a finite result, which only depends logarithmically on .

054005-5



SAUERWEIN, LUTZ, and TIMMERMANS

PHYS. REV. D 105, 054005 (2022)

The dimensionful renormalization scale x does not interfere
with the chiral power counting. Nevertheless, the existence
of four different scales, namely the Goldstone-boson mass
mgg, the baryon octet(decuplet) mass in the chiral limit
M(M + A), and the breakdown scale A, pr, requires con-
sistent power counting. There are different ways to achieve
this. Jenkins and Manohar [3] introduced a scheme which
uses an expansion in inverse baryon masses (heavy-baryon
formalism). The method of infrared regularization was
applied by Becher and Leutwyler [30]. The so-called small-
scale expansion [31] uses A, the decuplet-octet mass
difference in the chiral limit, as an expansion parameter.
In this work we will follow the strategy of Refs. [5,32],
where suitable subtractions assure a consistent power
counting, but no expansion in A is performed. The details
of our power-counting scheme are given in Chap. V.

IV. DETERMINATION OF AXIAL-VECTOR
FORM FACTORS
A. Analytical results
In this section we investigate all axial-vector form factors
GEE(1), with t = g%, to N’LO. We use the baryon multiplets
(see Table III) and the axial-vector currents i = {aﬁ, aff

af ,a;} in the isospin basis. A typical one-loop diagram is
|

Q(mg;1)

/ _
,L(ML;/F—Z) R(Mrip - 0! -

B(My; p) - B(M,;p)

Ai(a)

FIG. 1. Example of a one-loop diagram contributing to G55 (z).
The Goldstone boson Q is represented by a dashed line, whereas
the wiggly line is associated with the axial-vector current A%.
Baryons (B, L, R, B) are shown with straight lines, a single line is
connected to a octet particle and a double line represents a
decuplet particle. We use the notation “label (mass, momentum)”.

shown in Fig. 1. In addition to the tree-level diagram, there
are three different types of one-loop diagrams contributing
to Gfiff (1): tadpole (Table IV), bubble (Table V), and triangle
diagrams (Table VI). All these contributions can be sum-
marized in one condensed formula:

] . ) (BB) G(B) CiEB
GEB(1) = \/Z5ZgIACP®) + tJATID) 2B jAX! +ZJQ(f2+ZZ S > 2th
n=1 Qe[8] Le[8],[10]
5 C(BB)',n G(B) 2 G<B) G(B)
An ~OR,i OR ( B),n Y OR
+> > D Jok 2 2f Y. itk 2 LQRL'?’ (29)

n=1 Qe[| RET10)

n=1 Qe[8] L,Re[8],[10]

where we separate the flavor-independent part J4. from the Clebsch-Gordan coefficients (CGCs) C, T, X, and G, which carry
the full flavor information. Sums over the multiplets [8] and [10] of the internal particles L, R, and Q (see Fig. 1) indicate loop
contributions. The parameter n distinguishes bubble diagrams with contributions from different vertices (see Table V). We
also introduced the wave-function renormalization \/Z3Zp [3,33] modifying the contribution of the tree-level diagram.

The expressions J% in Eq. (29) represent the axial-vector component of the amplitudes J*. of all considered Feynman
diagrams. They are given by

TABLE IV. Contribution of all tree-level and tadpole diagrams entering Eq. (29). The meaning of different lines is explained in Fig. 1.

Type Feynman diagram Projection Amplitude J*. CGCs Lagrangian £
Tree g JA (A6) CSBB) £
Counterterms JA (A6), Xl(EiB) . L,
(A7) T(BB) L®)
o
\
Tadpole

4_5_4* J/é (A8) Cg.f) £

054005-6




AXIAL-VECTOR FORM FACTORS OF THE BARYON OCTET AND ... PHYS. REV. D 105, 054005 (2022)

TABLE V. Contribution of all bubble diagrams entering Eq. (29). The meaning of different lines is explained in Fig. 1. The parameter
n specifies the origin of the 4-point vertices in bubble diagrams.

Type Feynman Diagram Projection Amplitude J*. Lagrangian £
(Ag), n=1<« ‘Ckim

> (A10), n=2<« LY

Bubble L € [8] JfL‘g (A11), n=3< L),
(A12), n—4 o L0,

(A13) n=>5<« LF)

(A14), n = 1 <> [’kin’

> (A15), n=2< L),

Bubble R € [§] T5n (Al6), n=3« LV,
(A17), n=4< L),

(A18) n=5<« LF

(
(
(
-~ (Alg), n=1< E(A,a ,
Bubble L € [10] 1/25 (A20), n=2<« LAb),
(A21) n=3<« L£F
—= (A23), n=1<« £Aa,
Bubble R € [10] jg; (A24), n=2< LAb),
(A25) n=3<« LF)

JA = - VMM, tr {7 75]} My ¥ +M"]
(d=2) (MM, +p-p) """ 2M, oM,
) MM, (M, + M,)> r[ Pu=Pu P+ My, ﬂ+Mp]
\/z(d—2)(M1—,Mp—I_J'p)(MpMp—FP'P) My +M, 5 o, T om,
) MM, (M, + M,,)? r[(ﬁ+p>(p,,+p,,> M, Jﬂﬂ+Mp] (30)
\/E(d—z)(MpMp—p~p)(M,—,Mp+P'p) (MF+MP)2 75 o, T, |

TABLE VI. Contribution of all nonvanishing triangle diagrams entering Eq. (29). The meaning of different lines is explained in Fig. 1.

Amplitude
Type Diagram Projection JE.
Triangle e N j/2~Q'R (A27)
L €8]
R € [§]
Triangle 7 N J?éﬁ (A28), (A31)
L € [10]
R € [8]
Triangle N J’Zéﬁ (A29), (A32)
Le[8 !
R € [10]
Triangle R4 N ]?,QIR (A30)

L € [10]
R € [10] g
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M (/+Mp

oM, \2M,
ing) baryon B(B) on shell. The trace is taken in Dirac space.
For completeness we also give the expressions J and J' ,
which project onto the form factors Gp and G; in Egs. (A1)
and (A2) in Appendix A. Using the method of dimensional
regularization [29], we work in d spacetime dimensions.

In Tables IV-VI we show all considered Feynman
diagrams with the link to the amplitude J*, defined in
Appendix A. The resulting projection J*. enters the formula
for the axial-vector form factor (29).

We now turn to the flavor structure and take a closer look
atthe CGCs C, T, X, and G. The 3-point CGCs G(QB,% enter the
calculation of the baryon masses and are given in Ref. [23],
but for completeness we give them in Tables XII-XV.
The counterterm CGCs, which originate from the

Lagrangian £5 (17), TEBB) and XEBB), are used to absorb
the divergences of the one-loop contributions. Explicit
symmetry breaking gives rise to the coefficients XEBB>,
which are proportional to the quark masses m and m;. They

) sets the outgoing (incom-

are shown in Table XVI. The coefficients T,(-BB) ot = g*are
important to describe the momentum transfer dependence of
the axial-vector current. Their explicit contributions are
shown in Table X VIIL.

The CGCs CF?B) can further be decomposed:

ol

(BB),n __ 4(iB).;n BB
c =A R.(B C;BB

ClBB).1

LOR.i — A%C’LQ (31)

BB,LR’

where we defined the 3-, 4-, and 5-point CGCs AC) and the
recoupling constants C:.. The 3-point coefficients A differ
from the G coefficients, because they couple an
axial-vector current instead of a Goldstone boson to
the two baryons. Nevertheless, they only differ in
their particle-specific normalization. All needed coeffi-

cients A;L are given in Tables XVIII-XXI. We note that

there are some correlations among such coefficients. For
instance, we find

U =l s g 1T L E 8],
C(QBIQ’S = C(QR,B' , ) 83" and g7 -0 for R € [§],
C(LBQBS CLQz |fA>ﬁo but f9 16/ for L € [10],
C(QBlf,g3 CQRl |f<A>ﬁ0 but /& 1675 for R € [10],
C(LBégzgi? = C(LQR, leoe 24 and F,D,H — 0. (32)

The 5-point CGCs AQ l) can directly be linked to the

3-point coefficients A » (see Table XXII). The 4-point
vertices contributing to the bubble diagrams require some
more attention. First of all, several parts of the Lagrangians
Lyin (5) and £®) (9) contribute. This is labeled by the
parameter n, and the exact mapping can be found in
Table V. The 4-point CGCs Ay} depend, in addition

to the connected particles L, Q, B, and the current i, on the

isospin of the outgoing baryon B. All CGCs A( ) (B) €an be

found in the Appendix in Tables XXIII- XXVII and

Egs. (D1) and (D2). The CGCs AgB).n

R,(B)
A(QIIZ?E"E via the relations given in Eq. (D3).

It turns out that the CGCs G and A are not
enough to describe the full flavor structure of all bubble
and triangle diagrams. We need additional “recoupling
constants” C, which compensate for the use of isospin
multiplets in the strict isospin limit. Of course, the goal is
to be consistent with results in particle basis. We
have explicitly checked that this is achieved by the
inclusion of the recoupling constants C. The recoupling
constants of the bubble diagrams C‘?B depend on external
particles only and are given in Table XXVIII. The
situation turns slightly more sophisticated for triangle
diagrams. The recoupling constants c2 depend on all

are linked to

BB.LR
involved particles and are shown in Eqgs. (El), (E2) and
Tables XXIX and XXX.

B. Unrenormalized results

We reduce the expressions for the amplitudes J4 from
Eq. (29) by using a Passarino-Veltman reduction scheme
[5]. Rewriting our amplitudes in terms of Passarino-
Veltman basis integrals and reduced integrals (34) after
canceling the occurring kinematic singularities [5], we
arrive at the intermediate result in Eq. (33) for amplitudes
JA. We apply the notation of Ref. [5] and find
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JA=1,

_ 0
Jh =Ky 1,
I = K" o+ K"+ KO0 (M),

Ton = Kgi"lo + Kog"In + Kgg " Ior(M,,),

LR), LRy AL (1)
J?QR = K(LQ)R Iy + K(LQ)RIL + K<LQ)R1R + K(LQR) Io(Mp) + K(LQR) Lor(M),) + K(LQIg "IR(1) + K/L(QR) ! P

m(LR)n AAIR(1) (LOR) (Lor)n  Alpor(t)

+Kior " —5 T Kigr "1or(1) + Kior (M, — M) (33)
P P

where the amplitude J4, , which originates from a diagram with internal particles a, b, c, is expressed by a combination of

BC)

prefactor and integral K, (ABO) y apc- Note that the Passarino-Veltman reduction scheme leads to the appearance of integrals

with internal particles ABC which differ from the internal particles of the original diagram abc. The prefactors K (ABC) are

too long to be shown here in full detail. The prefactors K’ and K" are linked to the reduced integrals A[... and AAI s
ail ipt

I = ap 2

(27)* 1> — My
ail it

lo = 274 2 20

4l //t4 d
I 9
L / Q2n)! 12— M?

i a1 —iptd
1) = | G-y
[ dd iyt
)= [ TG
o 4l '”4—11
) = [ e (= p) = M)’

5 5 B dl i,u‘“d
Tior(P™.p ”)‘/ Q2a) (1= p)2 = M2) (P = m3)((I— p)* — M)
Al g(t) =T (1) = ILg(t =0),

0
AAILR(t) = 11x(1) = I (1 =0) - falue(fﬂr:o’

Al or(t) = Ipor(t) = Ipor(t = (M5 — M ,)?), (34)
with
Ig—1;
I p(t=0) = —F—=,
LR( ) M% _Mize
0, . (=M (@ = =)
or MR T MR — M) dM: — M3} F

Ior(t= (M —M,)*) =

)
My (1uo(My) ~1ua(My = M,)P)) = My(UoulMy) = LMy =M, ) o
( |

M,(M3 +my —M7)—M
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V. RENORMALIZATION AND POWER
COUNTING

Applying the general strategy of Refs. [5,32] we will use
the following basic guidelines for renormalization and
power counting:
(i) the use of on-shell masses in the loop contributions,
(ii) introduction of a consistent power-counting scheme
with special attention to the decuplet-octet mass
difference,

(iii) no expansion of the integrals /, but the use of appro-
priate subtractions in order to preserve power counting,

(iv) a consistent expansion of the prefactors K in

appropriate variables.

In Eq. (33) the integrals /.. and their prefactors K
depend on both external masses, M » and M s and internal
ones M;, Mg, and m. There are different approaches on
how to treat these internal masses. Ledwig et al. [33] use
physical meson masses and present two options for the
baryon masses. First, the octet and decuplet masses are set to
their values in the chiral limit (M and M + A), whereas their
second option is the average over the physical octet and the
decuplet masses. Whether any of these simplifications is
appropriate to describe QCD lattice data at unphysically
large meson masses to high precision appears questionable.

Here we will use on-shell masses in the loop contribu-
tions, following the path demonstrated for baryon masses
[32]. Tt is a self-consistent approach, which is based on the
eight coupled equations for the baryon octet and decuplet
masses:

My =M +Zy(My, My, My, Mz, My , My, Mz ,
MQ”’mﬂ’mK7mI_(’mr])ﬁ

My =M +Z5(My, My, My, M=, My, M5, M=,
MQ”’mnvava?’mq),

My=---

MQ’4 =M+A +igﬂ(MN,M/\,MZ,ME’MA)“MZ}N
ME”,MQ#,m”,mK,m]_{amr,)’ (36)

where £, is the self-energy to the mass of an octet or
decuplet particle A, which depends on internal loop masses.
In conventional yPT, e.g. Refs. [34,35], the masses on the
right-hand side of Eq. (36) are expanded in order to
decouple the equations. In contrast to this, Lutz et al
[32] keep the full structure on the right-hand side of
Eq. (36) and solve the set of coupled equations. This
self-consistent approach leads to a very good description of
octet and decuplet masses up to large meson masses of
600 MeV [11]. We expect that the use of these accurate on-
shell masses allows an improved description of the loop
contributions to the axial-vector form factors as well.

The use of on-shell masses requires a clear strategy
regarding power counting. In principle, the triangle integral
I or(Mz,M,) can involve four different baryon masses,
My, M,, M, and M. Although M and M , are restricted
to octet masses, the fact that M; and My can be octet and
decuplet masses complicates the question how to deal with
baryon mass differences in our framework. In contrast,
previous works expanded the masses in the loop contri-
butions and were therefore mainly confronted with the
treatment of the nonzero mass difference between the
decuplet and the octet baryons in the chiral limit A.
The small-scale expansion [31] uses an expansion in A.
Using the explicit example of the bubble integral 7yz(M ),
the poor convergence of this expansion has been demon-
strated in Ref. [32]. Therefore, we do not expand in A. Our
main strategy is to subtract the terms that violate power
counting in any of the two regions my < A and my ~ A.
To cope with the four different baryon masses, we rewrite
them in terms of mass differences 6z, d;, Og:

op=Mp—-M,, 5L:ML—Mp(1+7L)v
M, +M
MB:%v S = Mg —M,(1 +7rg),
- {0 if M; €8],
L=\ a/M it My e [10],
0 if My € [8],
YR:{ (37)
A/M if Mg € [10].

The subtractions y; and yy are chosen in such a way that §;,
and O vanish in the chiral limit for all cases
L/R € {[8],[10]}. As we restrict external particles to the
baryon octet, o vanishes in the chiral limit without any
subtractions needed.

In the following we turn to the explicit renormalization
rules for the amplitudes in Eq. (33):
with 7. —>1. and K.

JA = JA - K. (38)

Equation (33) can be rewritten in terms of renormalized

integrals 7. and prefactors K():
JA=1,
A _ Q)7
Jo=Ky 1y,
_glQmn (LQ)m7
Tio=Kio"To+ Ko "TLo(Mp),

(M;)

JA” R To+ K& Tor(M,)
QR 0 OR Pl

(M;)

OR —
It =K T+ Ry L0 +RCR T or(M,,)
AILQR([)

(39)

LOR),n 7/(LOR),
+K(LQR) I or(t )+KL<QR b
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Note that the integrals I}, I, I} g, Al; g, and AAI; ; do not
appear in Eq. (39) anymore [see Eq. (42) and the dis-
cussion above].

We apply as power-counting rules

mZQNst tNsz MBNQos
g~ 07, 5.~ 07, g~ Q0. (40)

The prefactors K) are obtained from K(") by subtracting
power-counting violating terms §K():

k() =KD - 6K0), (41)

All factors K(), K(), and 6K() are rewritten in terms of
the new Vanables, deﬁned in Eq. (37). The unrenormalized,
full factors K" are expanded following the power-counting
rules in Eq. (40). The renormalized coefficients K () are
explicitly given in Appendix (F1)-(F4) and involve con-
tributions proportional to factors «;;, which are functions of
the ratio A/M only and normalized to a;; — 1 for A — 0.
An expansion in A/M, such as performed in Ref. [31],
would lead to a;; — 1 at leading order. We insist on keeping
the full factors a and demonstrate in Ref. [5] that a;; = 1 is
a very poor approx1mat10n for some ij. Equatlon (FS) in
Appendix F lists all @;;. Power-counting violating terms

5K are subtracted and denoted by an index 0: ap; — 0
and ajy — 0. All power-counting violating, and therefore
subtracted terms, 8K are given in Egs. (44), (45),
and (49).

The renormalized integrals I..., which we want to keep
unchanged, if power counting allows, are not expressed in
the new variables. We will develop their explicit structure in
the following.

Integrals that do not involve any meson mass consist of
large scales only, because we do not consider A as a small
scale. Therefore, it was argued in Ref. [23] that these
contributions should be fully subtracted, so they do not
appear in Eq. (39) anymore:

7L:7R:jLR:A7LR:AAILR:0‘ (42)

The reduced integrals Al;p and AAI;r were defined
in Egs. (34). )
The renormalized meson tadpole I is of order 02,

_ m2 mz
Io =—%1log|—2|. 43
AT Og[,uz] (43)

It is the only remaining source of the renormalization scale
4. We expand its prefactor K(9), but consider only order-Q°
terms, since higher-order terms are expected to be renor-
malized by counterterms of order Q* and higher. As
diagrams with an internal decuplet are not expected to

contribute to this order, their contributions §K(2), propor-
tional to a; with j € {1,2,3,4}, are subtracted via

(Q).n (0).n=1 1
5KLe[10]QRe[8] = 0K Z5jorerio] = 3 %o
(Q).n
5KLe[1o]QRe[10] g %02
(©@n=1 _ spl0)n=1 _ 104
0K eiiojo = 9K grefio) = 9 Ma03MB’
(Q)n=2 o (0)n=2 2A
5KLe[10]Q 5KQRG[10] 9M“04MB (44)

The discussion becomes more complex for the bubble
integrals evaluated at external baryon masses /; (M) and
Ior(M,). If L, R € [8], no subtractions are necessary, but
in case L, R € [10] power-counting violating terms arise.
Therefore we subtract all Q°-contributions SKt9) and
SK'9® in Eq. (45) by the rule a;y — 0 for j = 1-5. For
instance,

R),n=1 5A

(SK(LLGQ[S)]ZRIG[IO] 5K( Le[10]0Re[8] — 12M0‘10MB»

‘SK(LLGQ[BOYQflee[ 8 — oK (QIF)]ZQRIE[IO] 152]?/10‘201‘4 B

K arenn = K okt = g 37 oM.
KSie! = I = = et
SO = ok G A8 . as)

These subtractions are not enough to eliminate all
power-counting violating contributions. Additional sub-
tractions are needed for the integrals I;, and Iz. We
therefore introduce the subtractions y% and y§, which
assure the correct power counting I;¢50/Iores) ~ Q'

and I;¢(1010/1grepio) ~ @ in the chiral domain [32]:

TLo(My) = Lo (My) 1 - L275
LQ p) — 1LO P M% 1671’2 ’
7 Iy 1—7’§
Tor(M,) = Iop(M,) + -8 — , 46
QR( p) QR( p) +M% 1671'2 ( )

where yg and y% depend on baryon masses in the chiral
limit only:

0 if R €8],

— WALA Jog [%ﬁ;@z] if R € [10].

(47)

The explicit form of /g (p* = M?) has been determined in
Ref. [32]:
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M2 +2porM

_10g[1_ 172 pQR2 p})}’
mQ+MR

, M M%+m2Q

(M% —m?)?
Por =74~ 2

2
4M:,

(48)

It is left to discuss the contributions of the triangle
integrals I, op(t) and Al og(f). Analogous to the
bubbles, power-counting violating terms only appear in
the presence of internal decuplet particles. This is true for
the cases L € [10], R € [8] as well as for L € [8], R € [10],
and L,R € [10]. Therefore, the order-Q° contributions
|

I1or(1) = I gr(1)

YLe[10]0Re[8] = YV Le[8]QRe]10]

—YLOR»

SK9® in Eq. (49), associated with aj — 0 with
Jj € {6,7,8}, are subtracted. For instance,

2
(LOR),1 (LOR).1 5A
0K criojores) = 9K Lesioreno) = =6 ag M,
/(LOR).1 /LOR).1 2 A
0K cliojorers) = K Lejgjorelio) = 3 az,M§,
(LOR).1 4 A?
K, eli0jorefio) = 3372 ago M. (49)

As the triangle integrals I, or(f) and Al pg(t), defined in
Eq. (34), are finite for d = 4, renormalization is not needed.
Only power-counting violating contributions of the inte-
grals need to be eliminated by introducing the subtractions
Yror and v op [S]:

1 2MA + A? 1 (M + A)?
= T len? Og{ M+ A)J e (2Ma 1 AZ)IOg{ M2 ]
Vielorels) = 0. Yrefojorelio] = ~7 6::12 2108 {2(AA{IA+Z)A22} (50)
Al or(1) = T1or(1) =T or((Mp — M ,)?) = (t = (M5, — Mp)z)ylLQR’
V/Le[lo]QRe[s] = ylLe[S]QRe[IO] = _967z2M4A3(2M FYNE <A3(2M + A)3log [1?/[]
—2(M + A)?log {M] (4M* = 2M3A + 3M? A2 + 4M A3 + A%)

A(2M + A) (M2(4M2 +2MA + A2) + A2(2M + A) log [ZMJ A} ))

V/Le[s]QRe[s] = V/Le[lo]QRe[lo] =0. (51)

The subtractions y;or and y’LQR are analogous to the subtraction term y2 introduced in the bubble function.

With Egs. (50) and (51) we obtain I ¢gores)() ~
and AILe[s]QRe[s](t)/(f - (M; - Mp)z) ~0°, AILe[s]QRe[lo](t)/(f
(M5 —M,)?) ~

— 2
parametrization

ILQR

I-u
/ / d’l}dl/l 2Q2 ]/LQR,

with Q% = —m + o((1 - v)Mp — Mg+ mg) + u((1 — u)M3

Q°, Iresjoreno) (1) ~Q', and i_Le[lO]QRe[lO](t) ~ Q?
- (M - Mp)z) ~Q', and Al enojoreo)(t)/(t =

Q? in the chiral domain. The subtractions are crucial, since otherwise the explicit evaluation
of a class of two-loop diagrams would be needed [5,36].

An explicit expression for the triangle integral

was given in Eq. (35). For general values of the momentum transfer + we use the Feynman

-M? —|—m2Q) +uv(t—M%, - M3), (52)

from which also the reduced triangle integral Al Lor () follows with Eq. (51).
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Our renormalized and power-counting respecting

amplitudes from Eq. (39) plugged into Eq. (29) and

result for the axial-vector form factors G55(¢) is  rearranged by renormalized integrals instead of
summarized in Eq. (53). It uses the renormalized  diagrams:
|
(2f PGEB(1) = (2f P(V/Z5ZsC" +1T ") 428X ")) + ZIQ( P> GolCror Kiy"
Q€l8] Le[8],[10]
Z C ( n+ Z G G(B)I'((Q)ﬂ)
QRz QR Kor QL LQRI orB Lor
81,[10] L.Re[8],[10]
LQ).n
+Z > T ( ol Clol KIS + > Gl Clon i GorR LS
[8] Le[8],[10] Re[8],[10]
OR).n
#30 3 Tast) (CBRIGGRE "+ 3 clleliioKigy”
(8] Re[8],[10] Le[8],[10]
B LOR).n
+Z Z ILQR(I)<G(QL>C(LQRZGQ1% (LQR))
Q€(8] L.R[8].[10]
AT or( B) ~(BB LOR
+Z z M—A/I)(G(QL)C(LQIng(QIgKL( b "), (53)
8] L.Re([8],[10]
I
where a summation of repeated indices n is understood. not take into account the LECs from £® and £3) in

VI. NUMERICAL ANALYSIS OF CONVERGENCE
PROPERTIES

A. Convergence properties at the physical point

The 12 independent axial-vector form factors of the
baryon octet in Eq. (53) are ready to be compared to
experimental and QCD lattice data. In Table II we have
shown the six existing experimental data points.
Unfortunately, the available QCD lattice data for the
hyperons Z, and A are very limited. In
Refs. [15,25,26], results for the form factors Gﬁiz(t =0)

and Gfiﬁ (t = 0) have been presented. However, these data

—
—
—

points are not enough to determine all LECs of our chiral
Lagrangian. On the other hand, further investigations of
axial-vector form factors were announced in Ref. [15].
Until these data become available, we use the LECs
determined from fits of the baryon octet and decuplet
masses [11] and test some properties of our results for the
axial-vector form factors from Eq. (53) at a more elemen-
tary level.

First we scrutinize the convergence properties of the
kinematic factors K of the one-loop contributions
in Eq. (53), which are expanded according to the power-
counting scheme presented in Eq. (40). We use isospin-
averaged physical on-shell masses in the loop contributions,
as listed in the left column in Table VII.

In Fig. 2 we show the one-loop contributions to the axial-
vector form factors G58(r = (M; — M ,)?), but restrict the

used LECs to the lowest order from £ in Eq. (7). We do

Egs. (9) and (10), because not all of them are known.
Furthermore, we add the order-Q® impact of the wave-
function renormalization to the tree-level contributions

(VZpZs - 1)C,(»BB>. The used parameters are shown in
the right column of Table VII.

We divide the 12 independent processes (B < B) in
Fig. 2 with respect to their axial-vector current. In the two
top panels the strangeness-conserving axial-vector currents
ay and a;; are shown and the strangeness-changing current

K is presented in the bottom of Fig. 2. Dashed lines

a,

TABLE VII. Physical masses [24] and input parameters for the
numerical estimates in flavor-SU(3). The LECs refer to “set 17 of
Ref. [11], whereas the factors Zp, with B € [8], are taken from
Ref. [32].

Masses (Mev) PDG [24] Parameters from [11,32]
m, 137 F 0.48
my 494 D 0.75
m, 548 C 1.50

H 2.06
My 939 f MeV) 92.4
M, 1116 M (MeV) 866.2
My 1193 A (MeV) 382.7
Mz 1318 u (MeV) 770
My 1232 Zy 1.118
My, 1385 Za 2.064
Mg 1533 Zs 2.507
Mg 1672 Z= 3.423

054005-13



SAUERWEIN, LUTZ, and TIMMERMANS

PHYS. REV. D 105, 054005 (2022)

Ne<N

3.50

boao

loop corrections to Ga s

2.00 -
- _7’4: - O . —

? L L

Q? Q* Q¢ Q8

order K-factors

<.
K
<o <o
=% 8.00[ i b
<
©) -0~ N3
8 == Ne<A
® O~ IeE
g A~ AE
B 400 .
(D]
-
= A
S Fememem—= Ao A A
& o 0 o o -
2 o0.00f .
-—.:;-——. m] o —
| | | |
Q? Q* Qb Q8

order K-factors

loop corrections to Gi'y

T T
——.——\ﬂl I 0 —
1.60 —
- -O (o] (o] o —
-1.80 B
_____ y, — A A
‘/—f
=Q= N&N
-5201 & e |
O~ EE
= A=A
<o
-8.60 2 N
<&
| | | |
QZ 4 6 QB

FIG.2. Convergence properties of the kinematic factors K. We show their contributions to fof (t = (M5 — M,)?) for the chiral orders
02, 0% Q° and Q3 as points and their unexpanded value as a dashed line.

represent the full, nonexpanded expression for the kin-
ematic factors K, whereas the points give the values for the
expanded factors up to chiral order Q%, Q*, Q°, and Q3.
These orders refer to the kinematic factors K only, the order
of the referring integrals I is not taken into account here.
This restricts the discussion to the convergence properties
of the kinematic factors K. A discussion of the convergence
properties of the loop contributions in general is performed
below. The higher-order terms Q° and Q® reproduce the full
contributions K for all processes to high accuracy, and the
order-Q* terms show reasonable results. However, only
taking into account the order-Q? terms does not appear
desirable, except for the processes with at least one external

nucleon. In general, we find large loop contributions
compared to the tree-level values of Table II.

In order to scrutinize the full convergence properties of
our chiral expansion, we also take into account
the chiral power of the integrals I ~ Q2, I;/Iog ~ O,
and I pr ~Q". We use the momentum transfer 7=
(M, —M,)?, implying that Al or((M,—M,)?*)=0.
The tadpole integral I, still involves the renormalization
scale y (43). Therefore all contributions K@, ~ Q% or
higher are neglected, since they renormalize higher-order
counterterms. The combined effect of K and I on the loop
contributions to the axial-vector form factors is shown
in Fig. 3.
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FIG. 3. Loop corrections to GE%(1 = (M, — M ,)?) for different axial-vector currents i. The LECs g%, g"), g7, g("), f() and f()
are not included. The points refer to the expansion to the corresponding chiral order, whereas the dashed lines show the full

contributions.

The convergence properties in Fig. 3 are worse than the
ones in Fig. 2. Nevertheless, our power-counting scheme is
well converging. The chiral order Q° describes the full
contributions to acceptable accuracy, whereas for some
processes even lower orders are sufficient. We continue the
discussion for the orders Q>—~Q° and include additional
terms from the Lagrangian £ in Eq. (9).

In the following we also consider the LECs of the higher
order Lagrangians from Egs. (15) and (17). Note that the
LECs from the Lagrangian £(> directly contribute to the
loop contributions, whereas the LECs from £3) do not
interfere with the loops. At first we include the LECs ¢'*),

d"v), g7, and £ from the Lagrangian £, which directly
contribute to the loop contributions of the order Q3. The
LECs ¢g*) and f*) from Eq. (15) are not considered in this
work, whereas the LECs g% and ¢'® from £©®) will be

added later.
The constants with scalar and vector structure ¢'*) and

g(V) have been determined in Ref. [11], whereas the LECs
g™ and ) are unknown. Since the success of Cabibbo’s
model [2] is compatible with small loop contributions, we
determine the LECs ¢(") and f@ using a fit, which
minimizes the loop contributions of all processes. This is
performed for all orders Q3, Q% and Q3 separately,
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TABLE VIII. Left column: input LECs for the numerical
estimates in flavor-SU(3) from Ref. [11]. Right column: LECs
as determined by our fit from the minimization of the loop
contributions of order Q3, Q% and Q°. The magnitude of the
remaining one-loop contributions is described by the chi-square
per number of processes y>/N » and the maximal value max.

LEC (GeV~!) From [11]  LEC 0 0t 0
e ~8.8678 (1) (Gev-1) 087 167 432

e 0.8058 (1) (Gev-1) —6.35 —4.13 —6.10

o —1.4485 1) (Gey-1) —8.22 -9.47 —7.76
o —S.1101 40 (Gey-1) 182 167 635
o —0.3710  fM (Gey-1) 071 053 039
o =72709  f) (Gey-1) —9-88 —4.65 —8.92
o) 10002 W) (Gey-1y 114 036 —0.34
o) -2.8688  4*/N, 078 024 030

max 1.94 1.05 1.20

resulting in three sets of determined LECs, which are
shown in Table VIII. The size of the minimized one-loop
contributions is characterized by the chi-square per number
of processes y>/N p» With N\, = 12, and the largest remain-
ing one-loop contribution (“max”). The LECs ¢\") and f4),
determined by our fit, are reasonably small. We do not give
errors, but expect some range of £3 for the LECs and
observe quite large deviations of the LECs for different
orders. This is not surprising, since our estimate is not
intended to be seen as a rigorous fit, for which, apart from
accurate QCD lattice data, also the LECs g{f), f(F), ¢(®),
and g% need to be taken into account.

In Fig. 4 we reproduce the loop contributions of orders
Q2-Q° of Fig. 3, but this time with the contributions of ¢(*),
g™, ¢ and f@ from Table VIIL Since these LECs
become relevant only at order Q3, the order-Q? contribu-
tions remain unchanged compared to Fig. 3. For the
contributions of order @3, Q% and Q° we find that the
loop contributions are drastically reduced in all processes.
We observe that contributions are most efficiently mini-
mized at order Q*, but also the contributions at order Q°
and, with a few exceptions, at order Q3 are small.
Therefore, we conclude that it is possible to reduce the
loop contributions to the axial-vector form factors for all
processes by appropriate choices for the LECs ¢g!”) and f(*)
at all orders.

As a last step, we turn on the LECs of the counterterms
of the Lagrangian £&) in Eq. (10). Unlike the LECs ¢'%,
gV, gD, and f@, the LECs g¥) and ¢'® do not enter as
loop contributions but as counterterms. We find that it is

possible to further reduce the one-loop contributions with

these counterterms and show the resulting LECs g(f(_)7 and

gg?F in Table IX. The LECs are reasonably small, fulfilling

| g?‘_)7| <3 and | gge/)F| < 7. The parameters y>/N, and the

maximal remaining contribution max are significantly
smaller than the corresponding ones without the LECs

gy and gl in Table VIIL

B. Convergence properties in the flavor-SU(3) limit

In the previous section, we showed that the inclusion of
the LECs ¢, ¢V, ¢), and @), and additionally the
LECs ¢® and g%, leads to strong cancellations among
the various loop contributions, when the physical
masses of Table VII are used. Here we want to scrutinize
whether similar effects can be observed for other
on-shell baryon masses. We choose a lattice QCD
ensemble in the unphysical flavor-SU(3) limit, which
is characterized by m, = m; = m, [37]. This leads to
equal masses of the Goldstone bosons, within the baryon
octet and within the baryon decuplet. The exact masses
and the wave-function renormalization factor Z are given
in Table X.

At first, we neglect the effect of the LECs ¢'®) and gt). In
Fig. 5 the one-loop contributions are shown. At order Q?,
the LECs ¢, g"), ¢(T), and f4) are not effective, so the
loop contributions are rather large. For the higher-order
terms Q3, 0%, and Q° the, to the relevant order correspond-
ing, LECs ¢\”) and f*) from Table VIII are included. This
procedure evidently reduces the loop contributions for all
processes. The resulting terms of order Q3 and Q° are very
small, the order-Q* contributions only slightly larger. We
want to stress here that these contributions were not directly
minimized by a fit, but only by the use of the LECs of
Table VIII.

In the next step, we also include the LECs ¢g%) and ¢(®)
from the Lagrangian £O®). We use their values from
Table IX and perform a comparison of important param-
eters of the one-loop contributions between the cases with
and without the counterterms g(®) and g¥). We give the
chi-square per number of processes y*/N » and the largest
remaining one-loop contribution in Table XI. For the
orders Q3 and Q° the inclusion of g% and ¢'®) further
reduces the one-loop contribution, whereas this is not the
case for the order Q* A reason for that could be the
appearance of additional counterterms turning relevant at
order O*.

The numerical estimates, given in this section, show
good convergence effects, for both the kinematic factors K
and the one-loop contributions to the axial-vector form
factors in general. With estimates for the LECs ¢(7), f(4),
g%, and ¢g!® we find large cancellations of the loop effects
for the chiral order Q° and higher. We conclude that the
comparison with QCD lattice data should be performed at
the order-Q> level.
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FIG. 4. Loop corrections to GE(r = (M, — M,,)*) up to order Q° as in Fig. 3, but with the effect of the LECs g%, ¢"), ¢(7), and f)

from Table VIII, which contribute to order Q3 and higher.

TABLE IX. LECs as determined by our fit. We also give the
chi-square per number of processes y?/N , and the largest
remaining one-loop contribution max.

Order  Q? ot @ Order Q3 o* o’

g9 —046 —0.18 -058 0 244 —114 -0.25
G —187 076 -088 g 243 -013 -0.29
g 264 —127 201 o 227 LI 186
g0 043 -047 -069 B 671 438 675
2/N, 006 002 00l R 684 383 494
max 061 035 028

VII. SUMMARY AND OUTLOOK

In this paper, we investigated the axial-vector currents of
the baryon octet in flavor-SU(3) chiral perturbation theory.
We established analytical results for the axial-vector form
factors at N’LO that include one-loop contributions. The

TABLE X. QCD lattice masses in the flavor-SU(3) limit [37].

Mass Lattice ensemble [37]
My, Mg, My (MeV) 391
MN, M/\s MX’ ME (MCV) 1124
MA”, MZ”, MEﬂ, MQ“ MeV) 1438
Zn, Za, Zs, Zx 2.28
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FIG.5. Loop corrections to Gi’ﬁ (t = (Mj — M,)?) in the flavor-SU(3) limit, with the masses from Table X. The LECs g%, gV, ¢,

and f4) are taken from Table VIII. They are not contributing to

decuplet baryons were considered as an explicit degree of
freedom. Since we explored the use of on-shell masses in the
one-loop contributions, particular attention was paid to a
power-counting scheme that leads to good convergence

TABLE XI. Parameters which quantify the success of the
reduction of one-loop contributions in the flavor-SU(3) limit,
x*/N,, and the maximal remaining contribution max.

0} o* 0’

2
W R Z/N, 004 026 008
With g{= = gp)r =0 max 035 085 044
With ¢, and g{F), 2/N, 002 031 004
from Table IX max 0.23 0.92 0.31

the order Q2. The LECs g and ¢(®) are not included here.

properties. It was demonstrated that the use of on-shell
masses fulfills this condition. Furthermore, the use of on-
shell masses with their finite-volume dependence implies an
implicit finite-volume effect of the axial-vector form factors.
While our analytical results are prepared to be confronted
with QCD lattice data, a rich basis of QCD lattice data is so
far only available in flavor-SU(2). However, we expect that
additional flavor-SU(3) QCD lattice data will be published
within the next few years.

Unfortunately, for most of the flavor-SU(3) QCD lattice
ensembles, which were used to fit the baryon octet and
decuplet masses to high accuracy [11], axial-vector form
factors are not available yet. Once the data basis is
significantly enlarged further investigations are planned.
Our goal is a global fit of octet and decuplet masses and the
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axial-vector form factors, as presented in Ref. [5] in flavor-
SU(2). The large amount of low-energy constants can be
reduced by appropriate large-N . relations, to be established
in future work.
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P MM, (M + M,)?

V2(d=2)(MzM, = p - p)(MzM, +p - p)

APPENDIX A: AMPLITUDES

The following formulas for J%. and J.. project onto the
form factors GEE(r) and GPE(r) just as J4 does onto
GEE(r) (30). The form factors GZE(t) and GEE(r) are
defined in Eq. (24):

[/—i—MI—,JKp/—i—Mp

oM, oM,

tr |:y[l 75

MM, (M5 + M ,)*((d—1)(M3 +M3) +2M;M, +2(d—2)p - p)

2V2(d=2) (MM, — p - p)* (MM, + p - p)

Xtr{ Pu— Py 7/5,}<+M,-,Jﬂ ﬂ+Mp} (d=1)M;M,(M, + M,)*
M,+M,” 2M, ~ 2M, 2V2(d-2) (MM, — p-p)* (MM, + p - p)
7 g+ M. M
(M, +M,) 2M, 2M,

MM ,(M; + M ,)?

S T R )M, —pp) MM, + B D)

(d—1)MM,(Mj; + M,)*

X tr VM [H_Mp]—

)4
Yu¥s JE.
1 2M;, M,

_py_pu %—'_M’

2v/2(d —2)(MM, — p- p)(MM, + - p)

P
JH
35
M, +M," 2M,

(2 +7)(Pu+ Py)
(Mﬁ + Mp)2

oM,
P+My Pt M,,]‘

M, M,

75

In the following, we give the amplitudes of all Feynman
diagrams J# , which enter Eq. (29) in the form of J4 after
the projection with formula (30). We use the following
propagators in d dimensions [16,23], which are derived
from Ly, (5) [38]:

(i) Spin-0 Goldstone boson:

Dy(k) = 1/(k* - sz + ie), (A3)
(ii) Spin-1/2 (octet) baryon:
Sr(k) = 1/(K — Mg + ie), (A4)
(iii) Spin-3/2 (decuplet) baryon:
Ty o -1 v yyyy
SR(k)_k—MR+ie< d-1
(KFy? —ky?)  (d—2)k"k¥
A, o) O

p+ Mp] MM, (M + M) ((d = 1)(M3 + M}) = 2MpM,, = 2(d = 2)p - p)
2V2(d = 2)(Mp = M,)(MpM, — p- p)*(MM, +p - p)

(A2)

The Feynman diagrams associated with the following
amplitudes are given in Tables [V-VI:

1
S = \ﬁr"ys, (A6)
1 = = = —
M= rs (PP + Pt PP = up") + 1Y),
(A7)
i [ dil
T¢ ——/— #ysDo(l), A8
°= 5 (27:)“’7 rsDo(1) (A8)
gl i di] IrsSu(p = DDo(y" (A9)
LQ — /2 (27[)[175LP o\)r™,
i [ dl )
Jip = ——JysS.(p—1)Dp(DI*,  (A10)

V2 (@a)
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d
LQ \/—/ d ldh’s S.(p—1)D (1)

x((r'p-1+Jp*)+ (" (p—1)-1+](p—1)")). (All)
ro == | é;@/ys&(p —)Do(Dic™,,  (A12)
5= [ sl (p=DDo(lic*(p=p).. (ALY
g =5 [ Dol = Dlrs. (A14)
V=== | (;’Z;I”DQU)SR@ “Dlrs. (AI5)
== [ G- o=+ 1o = 19)
+ P l+ l’p”))DQ( )Sk(p = Drs, (Al6)
gh == [ o io 1, o)Selp = Dlrs. (A1

Q(l)SR(P = Dys.

(A18)

4l
T = / ~io™(p— p),D
OR — \/— v

o U
Q—f/ S (p - 1)

+ 7P — l)lay")ysDQ(l% (A19)

d
LQ \/_/ dl Dﬂ(p l)l_SZa(ﬁ—l)l(lyﬂ)ySDQ(l)’

(A20)
j dil
Ti = \%/Wlu(sia(i? - Dy
= SE(P=Dr* )P = plarsDo(l),  (A21)
Ty =Ty =0, (A22)
d
ok =75 [ G rsSk (p =
+ 7ﬂ}’SZaS7€D(p - l))ZDDQ(l)’ (A23)
d
QR f/ a1 l}’s W( )
—y yslaS%”(p = 1))1,Dy(1), (A24)

j a‘l
JM.3 _ l/ = a GHv —1
o8 = 75 | (2a)? rs(D = P)o(r*Sk (p = 1)

= 7"SE (P = D)LDo(1), (A25)
Joe = Tin =0, (A26)
d’l
Tior = f/ alrsSup = Dr'rsDo()Sw(p = Dirs.
(A27)

d?l ou
Tion =25 / 1LSP(p — DDo(DSe(p  Drs.

(A28)

i d
Fion =5 [ GalrsSulp = Do (b = DL
(A29)

. ai_
Ttw =5 / S7(p = Do (D)rysSE,(p — P,

(A30)

dl
LQR \/—/ d L,( (P—l)i’”

_SL( l) )(P—P)aDQ(l)SR(P—l)h’s’ (A31)

d
Hen =5 / d’dlyssL< DDo(1) (7S (p — 1)

—7"Sg (P = D)(P = p)al-- (A32)

APPENDIX B: CGCs WITHOUT AXIAL-VECTOR
CURRENT

In this part we give the 3-point Clebsch-Gordan coef-
ficients G(QB; with the Goldstone boson Q and the bary-

ons B,R € [8],[10].

APPENDIX C: CGCs OF COUNTERTERMS

Here we give the CGCs of the counterterms X,(.BB)

and TSBB).

APPENDIX D: CGCs WITH AXIAL-VECTOR
CURRENT

In this section we show all CGCs A with axial-vector
current, the 3-point coefficients in Tables XVIII-XXI,
the 4-point coefficients in Tables XXIII-XXVII, and the
5-point CGCs in Table XXII.
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TABLE XII. CGCs Gy with B.R € [8].

GIN =V3(D+F) G =20 Gex = 55D
G == 5(D =3F) Gy ==\ 4D +3F) Gy = —2V2F
Gy = == (D +3F) Gy = —5D Gy = V2(D = F)
G\ = 3(D-F) G% = \/g(D -3F) Gy = %D

G = V(D) G == k(D =30) Gz = VA + 1)
GE) = —V3(D +F) Gz = —J(D+3F)

B

TABLE XIIL. CGCs Gog with B € [10], denoted by , and R € [8].

G =vac

Gt =—C Gz =-c G = —ac

Gy = —VaC Gl =-\fic S —c

(Z) (Ex)
Gy = \/%C Gy =C
(=) _ (E)
Gy =c G =-c
Gy = —\/3C
TABLE XIV. CGCs Gy with B € [8] and R € [10], denoted by .
N A =)

) —2c 63 = -vic o - ic o3 -
N A =

ol =-vac 6E -

=) _ ® _
Gy =c G =C
GE = —\@c Gya, = —V2C

TABLE XV. CGCs Goy with B, R € [10], denoted by .

Gy =\ /i G =22H Gz =-LH Gy = - %H
(A) _ _ 1 &) _ 22 (&) 2 (@) _ 2
L Gra =—22H Gra = —5H G =%H

Gt =~/ Gy =0 G, = =\/3#

&) _ 22 E) _ 1
GKE,, =5°H Gnaﬂ = ﬁH
e : (iB).3 : (iB),1 (B (iB).2 (B2
The 4-point vector couplings AQL‘(B) are given by AQRE[8],(B) = _AQLG[S].(B)’ AQRG[8],(B) = AQLe[s],(B)’
(iB)3 L (iB)1 . (s) v) (iB)3 _ A3 (B4  _ _4(B)4
Agrew ) = 7Aoremp Wit ox = gx - (D) Aorewm) = Aoremzr  Aoresm) = ~Aores by
] A(iB),l . A(?B),l ) A(iB).Z o A(?B).z )

Furthermore, the parameter n of the sum in Eq. (29) for ORe[10].(B) — “"QLe[10],(B)’ ORe(10].(B) — “"QL€[10],(B)’

L € [10] only leads to nonvanishing contributions up to AB)3 _ pB)4 —0 (D3)

n=2.s0 ORe[10].(B) — “orel10].(B) = V-

AiB)3

B4
oLe0.3) =4

oLeno.3) = -

(D2)

For the bubble diagram with internal baryon R in Eq. (29)

(iB). (B by

OR. (’;) can be extracted from A e

the 4-point vertices A

Note that the axial-vector current has to be turned around; in

K

. » but the con-

other words, we have to replace a{f “~a
tributions of a7, and aj; remain unchanged:
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TABLE XVI. CGCs XEBB) with the axial-vector current i and the baryons B, B € [8].

(NN) _

Xy =Jel= —g = g% + 399 + 34 + 299 + 64 )m +&g(—g(f” + ) +3gY) =3¢ — 299 + 3¢9 )m,

P

XE‘Z = \@(291 +95 \ﬁ

X5 == (ot - g +3g3°” —393” 295" + 697" )m —d= (o + g + 398" + 3 + 298 + 397 )m,
AA

X(,, ) = %( —&-39(){) +3gg)) \/\}(Sgw +3g(’() +3gg>)ms

X0V = (g + g+ g+ 9P 4290 ym+ (g — g + 9¥) — ) + ¢F)m

X =2v2(g + o ym + V2] m,

o
=X

I

XG5 = (o) = =g + 9 - 207 m(g + 6 = g% = g — g )m,

X%M = XE{:Z) = %(49(11) +g&)m —%gé}()ms

Xy = X5 =109 + 98" =3¢ — ) =49 ym + 3 (97" =6 — o8 + o 297 ym,

XE?MZXE%N) — 5 (oot + 08+ 50 + 300 =200 + 1297 ym =57 (50 = o8 + 798 =307 + 20 + 697,
X(E):X(?):%Bg] — 5 +3¢ = g + 4¢P m + 1 (g7 + ¢ + g¥ + g + 209 m,

~ a

K
5
e X(“A) (o7 + g 4590 =390 1298 + 1267 )m + Sz (=591 = 6 + 798+ 367 — 298 + 697 )m,

e

8
==

TABLE XVII. CGCs TEBB) with the axial-vector current i and the baryons B, B € [8].

0 i -2

Tﬁi) = \/ (g% + 36 Ti;AfM =-2,/%3

™ =2(g + i) T =220

Tga) — 2R _ gt T( _ T(AZ) —9 \/ 2(F

R P =1 -l + )

65 =169 =2(g) + g T4 = 1Y = = o) - 30)
u " “u

TABLE XVIII. CGCs Agg with axial-vector current i and B, B € [8].

a (af;) /’4(
A;lN):—\/Lg(D—’jF) ANN:D+F Aﬁi’)—Ag'N)fD F
A(zazz) = \/%D 22 =V2F AI(\?? :AE(I}’:‘,() = _\TG(D + 3F)
AL = — (D +3F) A =D-F AD A —piF
A =i AR = i AP = 4 — - (b -3F)

Ay = \/%D
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TABLE XIX. CGCs A} with axial-vector current i, B € [10], denoted by 4, and B € [8].

(ay) (az) (af) ak
A =Lc A =c Ag =-Lc A =Lc
(@) _ _ 1 (ap) _ 1 (a) _ _ 1 (af)
Azz = ~5C Ary = 5C Arz =-5C Agly =-5C
@) _ 1 (af)
AE”E_7§C AE“A:\/LQC
A(E‘j’}z =-5C Agfg - —C
TABLE XX. CGCs Agz)a with axial-vector current i, B € [8] and B € [10], denoted by u.
(a}) (ap) _ (a5 &
AZE“ = \/LEC ANA“ =C Al\;l)é“ = \L@C A(zaA: _ —%C
@) _ _ 1 (@) _ 1 (@) _ _ 1 (af)
AEEui_ﬁC AEE/A 7\/5C AZé;A __7§C AE#}A :_%C
(@) _ 1 (@) _ 1
Azz = 5C Axg, = 5C
AP =-Lc AL =—c
TABLE XXI. CGCs Agg with axial-vector current i and B, B € [10], denoted by .
(@) _ _ 1 (@) _ _ 1 (@) _ 1 (af)
AA“A,, - _75H AA,‘A,, - _ﬁH AA,,):“ =—3H Az,,A,, =—3H
4 ar K K
(@) _ 1 (i) _ 1 (af) _ 1 (af)
A=z, = %H Azg, =3H Azjo, =5 H Agsz, ==y H
.90, ~ \/3
1 fori=1,
- 6 fori=4,
i = ' (D4)
4 fori=06, (3) 1
8 fori—S8. TABLE XXIII. CGCs AQL.(B) with the axial-vector-current

APPENDIX E: RECOUPLING CONSTANTS

index i, meson Q, and the baryons B,L,B € [8]. All CGCs
satisfy AUBIL— AOL)11 Not all contributions are shown here.

oL.(B) — “iB.(B)

The recoupling constants of the bubble diagrams C‘?B are

shown in Table XXVIIL. A%[&'; =-2V2 Af[az‘”‘i)\'; =-
The coefficients C?# in Eq. (31), connected to the bubble A
diagram with internal baryon R, are derived from C5% by @A) ?5'9(%)1
u )b 3 =)L
- Aer.(N) 2 AHZM.(A) -
TABLE XXII. The 5-point vertex CGCs Az’i) with the axial- A(ﬂ,’fi)l __ L A(afN),l _
vector current i, the Goldstone boson Q, and the baryons Z”‘f(ﬁ\’\)’)l V2 f];’/\()/\f a
- a A3 ayi),
B,B € [8],[10]. AN =75 ARN.(A)
(BB) _ (BB) _ _ 4 4laD) (BB) _ _ 3 4laf) (@@=l _ 3 (@51 _
An,az =0 Aﬂ,d,’f - _4ABB Alt.ul’f - _%ABB AWI\;((N> V2 A;]AK,(A)
BB) (ah) (BB) _ _ 4(an) (BB) _ 2(BB) _ (@)1 _ _ (@21 _
AP~ 3l ALY = Al At =Agat =0 Az =-2V2 Ay
(BB) _ (dj) (BB) _ _ ,(ai) (BB) (a¥)
Agal = ~3Agp Aka = ~Aps Agar = ~3Agp
(BB) _ (BB) _ (BB) _ _ 3 4(ai) 2),1
Aag =0 A =0 A=A AT =-2v2 AR =
(BB) _ 3 4(af) (BB) _ 5 4la) (BB) _ 3 4(a)) KA1 (d)E),1
An,af - ZABl; AK,af - 3AE§ Ana,’f - ZABl; Ai‘g(a)) = _% A1_<A (B)

(qu).l _
Ai(fAK,(Z)) =-V3
aME 1 o
tim =
arz),l
AL = 203
(qu).l _
A;rz,(z) - _\/5
A(“;IfE)’l _ 2
=z
(a’;(N),l o
Ai(;v.(x) =-v2
(afz).,1
A{GZ.(;-) =-V3
a, B),1
A)]Z.(Z) = _\/§
(af=).1
Agzm = V2
gy =22
a)g).1 _ 3
ke =~
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TABLE XXIV. CGCs Agi)é) with the axial-vector-current index i, meson Q, and the baryons B,L,B € [8]. All CGCs

satisfy Agﬁ?é) = Al(gz)g)z . Not all contributions are shown here.

Al = Lf(zg0 +gD ) AERS = Vg + 20 + 0
Adki = =005+ 9r) A =5 (2~ +6)
Ai‘;&fz&f = (g8 (5) 4 34()) Ai‘;Z(AA)‘)Z = —ﬁ(391 +29(S>)

Aff}:f,)vf = \[(ng g5+ ) A/iaZK—A) = 23 24" + gy +g¢)
Al = 5695 + 505 =395 A;AK,M T =506 +261% +365 + 6
Al = =L (69 + gy + 3417 AGNE = L6 + gy + 39)
vy = 55098 = o) Agyn =59

Aikiy) = =Val =S A ==V 4o+ 5
Aﬁmi)vf =-Lgp AlBEE =169 + g —30)

AUR? — L (29 1 g — 24 AL = 24" +20 + 3¢5 - o)
Af,aA“?z)f = =20 + )

T

A N - =)
A =R —30) ALE’ = s (dy +347)

AT = 00 -4+ 24 I Y L
Aul V) ALL = 56 - )

(a‘ ))2 } \/?( )) (S) AZZ\E()E; : \/ng () _ ) (8)
Agnis =32 go +gD -9r) AfrE) =53 (091 —gp +395)
A‘”ﬂ’”i (68 - g AT = -0 +g§9 +24)

e TR -l 4 )
A == 20" + b)) Mg == +3d + )
AL = 5565 + o)
AGR =250 + g5 + o)
switching the incoming and outgoing external baryon. Note The isospin structure of all other axial-vector currents

that the axial-vector current also needs to be turned around  complicates the treatment. We give all recoupling constants
[i < i; see Eq. (D4)]. In the isospin basis this only affects explicitly in Tables XXIX and XXX. )
the strangeness-changing current, implying af < af. The recoupling constants with axial- Vector current aff

For the recoupling constants of the triangle diagrams we  are derived from the recoupling constant CBB L bY
introduce a new notation for internal particles with the same
isospin and strangeness: =, includes the octet = and the k0 a0
decuplet E#, and X, includes the octet £ and the decuplet CBB LR CBB,RL' (EZ)

%,,. We find a simple structure for the recoupling constants

with axial-vector current aj):
APPENDIX F: KINEMATIC FACTORS

~
C%%?LR =1, (E1) Prefactors Kébc ) in Eq. (33) are connected to the
. integral involving the internal particles A, B, C and
for all O, B, B, L, and R. originating from a diagram with internal particles a, b, c.
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TABLE XXV. CGCs Ay with Le[8]. All CGCs satisfy

shown here.

OL.(B)

_ 4lor)4
- AiB.(B) :

Not all contributions are

(azN).4 T
A,;N( Ny = \/E(Q( )+95F))
(@;N).4

(a;x).4 T T
A,;ziy(/\) = \/§(g§ '+ 29; ))

Ak =0 A =207 a5+
Ay = #( 5 =34") Ag ="

AGRS =5k (=20" = o) + o) Ai’?ﬁ‘df = %(29 + 4 + i)
Aty = A§<N = %f( +9D) +3g¢)
o = =515 20" + g+ 3¢ X A) 4 =129 + 5’ +395)

AR =550 - dl) AE(N_(E\; = - 54"

Ak =59 Ay =0

Ao == Al =1 (=29 + g ~34)

AR = 5 (=) +267) AT = L5207 - o) +3¢)

Afm@f =-Zgp

A~ D ) AT = o+ o)

iﬁ}f =-Lq" Afg(A;)A = b (gD + 37

A = =5k (05 = 367 AL = =gl - ) - )

Ad = 350" +247) ALL =0

AR = L(=05 + ) Agn) = =5

Adm == + o AT = — g

A =50+ A =520 =g +3017)

A =B (=g + gf7 AT = 1 (o) + 247

AGI = — gl A = 2 + o)

Age =2 +o) A =0

BT _ (D) | )
TABLE XXVI. CGCs Ay} with L € [10]. TABLE XXVL. (Continued)
R AT og e Aot ) AT -
Aty = 5 (2 1) AEN = A -3y Al —2) AT = (Y 6
Ao = =355 A =aE A ARy = (f(A ) AT = SR+ )
A = AV + 1) AT =+ ) A;:gﬁg A = _7 (7 +37)
A = a0t 51 AZT =t ) AR = ) AGNS = B (g
AL =am A AL =AY s =~ Aiz“ﬁ”z?!) == U+ 3Y)
A =AY =3 AL = gm0 -2 A <f“‘ +fz ) AR #(f ~57)
AT =R B + ) AR = a2+ ) AR =- Ag%()él) == (1Y + 1Y)

=AY 2 AZ =g AN *%(f W4 1) AENT 1 (0 i)

(Table continued)

054005-25

(Table continued)



SAUERWEIN, LUTZ, and TIMMERMANS

PHYS. REV. D 105, 054005 (2022)

TABLE XXVI. (Continued)

A =Y =2 A = () 1+ 4gY)
At AT -2
Ay = # A A =S

A =Y s AR =

Agls = -1 A s = =77 (1 = 21)
A = s A T2 A = - B + 4
A == a5 A =3 /s

TABLE XXVIL.  CGCs AJY2 with L € [10].

L.(B)
M =g (24 Yy AR =g
Ai"ﬁfz’vz):ﬁ & AN = (70— p )
A== Ay =0
AL = (2 - 1Y) A(‘;“ii LA+ )
Aﬁé’%jv,iifﬁg(—fé%fi’”) A( 4f2
KZ“,(N):R(:SJCZ —fi) Az (A)_ fz
A = (=Y Y A(“““Ef) s
AN =G =) Ao =y
=y AR = ar -2)
A =gl A AL =g
A= AL =5l

(a5)2 (A) | £(4) (@E)2 _ (A) (4)
A =3z ) A s = el 30

AE’(A“,)(’;) %§A> AESQAS; —%/5(—310 ;A)-FfiA))
A(_aﬁE)(-é):_#(f(A)_zfiA)) A;—:g‘z_();:—L(—SféA)-l-ﬂ(A))
A = p A = (30 1Y)
A ==4(- 3f2 +11) AL‘;TE):—ﬁg &

A;(;)l: zz 6f4 A,(g;[z)g)z :_f\%ng)
R R Ny e Y V)
A;(yz“( =5 (-3£4" +f4 ) Af,‘fféz):o

AﬁfiAE): — (=375 421 A%?(é):‘gf(z&

i TR

AE?Q(E :Ff Ao 2y =0

A == —2r) A =R -2

TABLE XXVIII. Recoupling constants C‘?B of the bubble
diagram with internal baryon L.

- - NN _
NN _ _ /2 ~ ES 2 C -1

Caﬁ - 3 Cfl% =1 Caf = 3 a)

I 1 o N _ _ PO

Ci =% aF=-yi CG="t  CGa=-l

"

FEE _ CNA = —1 CAY L C5F = -1
ap — \/; “z’t( ay, V2 a,

FAS 1 FAE 1 FEN _ _ FAN _

Co=-5 C&=u a =1 Cap =1

CEN = —1

Power-counting violating terms are subtracted: K (ABC)

Kgbc ) We expand K ( ) in terms of the parameters sz,
t, 01, Og, and dp (40) in thls appendix:
~(0)
KQ =1,
= (0).ne{12345} )ne{1234.5) _ 2
Kiepo = Kgucls 0(0%),
7 (0).n=1 _ 2
KLe[8]QRe[8] =-1+ O(Q )
=(0)ne{12} _ $(0)ne{l2} 2
Ky efiojorets) = Kieforeio = 0127
(0).1
KLe[lO]QRe [10] — =0(0%),
(0).ne{123} _ #(0).ne{123} >
Kichoo " = Korepo) = 0(Q%). (F1)
TABLE XXIX. Recoupling constants with axial-vector current
ar: Cau
us Cpp g
~anm ~ar K ~a'K
Ciyys =3 Cynsz.s. _23ﬁ City s —Tﬁ
K f A
C%): NN — ﬁ C;]\;N NN — % aEgE,E, _%
C K _ 1 C”ﬂ” =1 il =1
IINA T TR NN.NN — EEE.E,
~a;,’K ay, 4 ~aij
CZZ,AN = _ﬁ Cl\fN NA T 33 CEE,Z*A = _%
~a K 1 A _ 4 ark
Cixz= =~ CNNA =3 Cazax, = —Lg
~a’K LT _ 5
Cz’;: AA = ﬁ CNN,AA ~ 33
>agn >a K
sz.z s =1 CNN,Z*A = %
> >a K
Ciyas, = % Chnas, = %
anm
Csszn = %
~anm ~anm
Cirzs, = % Crzzs, = \/%
~a’K ~a’K
Ciann = % Cazny = %
~arK ~arK
CZ,;\.E*E = _\/Lf CAFZA,E,E{ = _%
~ ﬂi( ~ /rk
Cxa;”/\ AN — \/% Cf\”ZA,NA = \/%
>apm >anm
CZA.AZ* = % CAZ,Z*A = \/Lg
a1 agi
CZA,Z*A =1 CAE.AZ =1
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TABLE XXX. Recoupling constants with axial-vector current aK C E‘BQL R
"'a}l‘(” __ﬁ ~aﬂK ~a[fK ~a,’,(7t
CZE*Z*E* V3 Cnzsz = _\/Lg Chrzs =% Crzsz = _\/Lg
~a)411 o aﬂ ~aff7t ~a,’fl_( o
Crz =1 CN):,NZ = _% Chans, = % Crzns, = _73
(':‘“)41( — L C“u’? =1 Ca‘fﬂ =1 Cal’fk =1
ZENE. T V6 NZ.NZ, NANA AENA = /3
Caiin =1 chr =2 o Cea=2%
o NEINA T \/3 “NAAZ NG =20 =3
Crzzo=1 C;lvﬂzKA:* =1 C;l\;‘/([,Az =V2 Chps, =1
~afn )
CEE-_ s \ﬂ C]\;E.AZ* =3
~akKK
Cszas, = _2\/%
LQ),n=1
K(LEQ[S)] _mQ +0(0%),
| puon=2 _2 4
M—KLG[S] =3 mg + 0(Q%),
(LQ). n=35 _ 4
Kicso = 0(0%),
1 Z(Lo)n=4 4
M_B Le[8]Q § 0(0%),
co 1
K cijorels = 5 (6 + )M — m3) + 0(Q%),
o 5A 5 5 5
K(LGQ[S)]QRG[IO] BTy Vil %alzng - §a145LMB 12a135RMB + 0ay565M 5 + O(Q%),
1 (102 1A 2 34
M, KLe[g]QRe[lo] e T3 ~agpmp + §a945LMB - §a935RMB - ZM“‘)SéBMB +0(0%),
- (LQ),] 5 A 19 5 5 5 A
K| criojoreps) = 48Ma21t +5z 36 aymy — Ea235LMB - Ea245RMB - EM()QS&BMB +0(0Y),
1 o 1A 2 2 3A
M—BK(LEQ[BO]QREB] 6Mal()1l+ 3 a102mQ +3 3 a1036.Mp — §a1045RMB + 4M0!1055BMB +0(0%),
o 1A 1 1 5 1A
KLe[lO]QRe[lO] 36Ma3lt 54 aaszQ - Ea%éLMB + 8a345RMB 18M0!%553MB +0(0%),
1 (Loynet 20 40 A 10 A2
M_KLE[IO]I = 0ay 1 + g My~ Ma435LMB 32 ay565Mp + O(Q%),
1 LO).n=2 8 A 2 A?
M—K(LEQ[I)OT = 0(151[ 9a52mQ + 9Ma535LMB += 3M2 0555BMB + 0(Q4)
| Loy 8A? 8 A2 \
m, Kieloe = Tgyp S L ryys) ay1505M g + O(Q%), (F2)
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=(OR).n=1 _ 1 (QR).n=2 2
Koreiy = mo +0(2%), M_KQRG[S] § (2%,

I'{(QR)s n=3,5 — 0(Q4)7

ORe[8]
MLK(Q%’Q['E = —%mz +0(0%),
K(L%I[QS)].QRG[S] = %((5L +8g)Mp — mp) + 0(Q%),
KEJQEI[{I)O}QRG[S] 458AA/[ ant— 356 ajpmy — 15_2a135LMB - 15—20’145RMB + 0a;565M 5 + O(Q%),
AL;I_{(LQGIFB(}?QRGB] éﬁl%lf §a92mQ - %a%(SLMB + §a945RMB + %%G%(SBMB +0(0%),
(0R).1 5A 19

A
—ays65Mp + O(0%),

> oM > orM +75
—a -—a
240 Mp 230rRMB T 150,

12 12

1 _(or2 1A 2 2 2 3A
M_BK(LQe[g)]QRe[m] e Mo t3 Qoo — 5(11045LMB 3 a1036rRMp — ZM“1055BMB +0(0%),

Le[8|ORe[10] — 48Ma2]t +3z 36 azszQ -

I_(EQGI[QI)(}%QRE[IO] S a3t = ] =7 Gmg + é0‘345#‘4’3 - L0‘335RMB + LA%S%MB +0(0Y),
T 36M 54 6 18 18M
A/}Bk(QQRRe)[Hl = Oay 1 + 29£a4zmé - ?%(1435RMB +13?1§2a4553MB +0(0Y),
MLBI_((QQRIZ)[’YOZ]Z = Oast — gaszmQ SAA/Ia535RMB - %AA,[_ZO‘SS‘SBMB +0(0%),
MLB _(QQIQIQETJ3 = gAA/; apt = SAA/IQZ ay1565Mp + 0(Q%),
K1 &ones = Kichionen = 0(2")
ML%[_{(LLEQ[Q’QIREB] 254 ;22 a1 — 2a6mp + gza(ﬁéLMB + ;161056451?1‘43 + EAA/IZ ass6pMp + O(0%),

I —(or2 1 A2 4 A 8 A 8 A 1 A2 4
M_%KLe[lo]QRe[g] = 302 apt+ 3Ma122mg 3Ma1235LMB 3M0!1245RM3 6 M2 aps6pMp + O(Q%),
1 _yror).1 2 A? , 4A 4 A 2 A? .
M—4BKL€[10]QRE[8] = Oanl 3M2 a72mQ 3Ma735LMB 3Ma745RMB += 3M2 a7553MB + O(Q )
I _(Lor)1 5 A? , LA SA 5 A2 4
M2 KLe[S]QRe[]()] YNYE agt — 2agmy + 3Ma645LMB + 3M%35RMB 62 — ss0pMp + O(Q%),
1 - 2 1 A2 4 A 8 A 8 A 1 A2
WK(LLG%&E“O] =730 apt+ 3Ma122mQ 3M0!1245LMB + 3M0!1235RMB + = oM —5apsdgMp + 0(Q%),
B

I porn 2 A 4N o AA DN
M_% Le[8]QRe[10] gt — 32 0572’"Q 37 2140 Mp +3Ma73 kM p =372 %1508 s+ 0(Q%),
I —ior)2 2 A? 4
— K ' = — 5 a3505Mp + 0(0%),
M% Le[10]QRe(8] 3 M2
1 —iLoRr)2 2 A 4
-5 " ap3s6sMp + O(Q%),
M, Le[IOReN0] — 372
1 7 A2 4 4A 4 A
WKizQ[ﬁ)%éRe[IO] = ot T 3“82’"Q 377 %830 M — 35 asa0p Mg + OagsopMp + 0(0%),
B
/(LOR).1
KLe[lO]QRe 10] =0(0%).
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The coefficients a;;, all functions of A/M only, are given ~ denoted by ap; — 0 and a;o — 0. All other factors a;
in Eq. (F5). They are normalized to 1 in the limit A — 0. with i, j # 0O fully enter our calculations, no expansion in
Power-counting violating contributions are subtracted, =~ A/M is applied:

|

r=A/M,
agr = (124 26r +18r2 + 6r° + r*)/(12(1 + r)?),
= (24 7)2(6 + 13r + 1872 + 1217 +2r%)/(24(1 + 1r)%),
a3 = (24 r)*(5 +r)/(40(1 + r)?),
o = ~(=1+ )2+ PP /(81 + ),
ag = (24 7r)%(5+5r+1r%)/(20(1 + r)?),
an = (2+ (5 +5r+r%)/(20(1 + r)?),
apy = —(—20 + 667 + 661> +9r°)/(20(1 + r)?),
a3 = (20 + 60r + 87r% + 65r° + 23r* + 3r°)/(20(1 + r)?),
i = (24 )3 (5 + 57+ 12)/(40(1 + r)?),
0,

a5
= (24 7r)2(15431r + 1972 +4r%)/(60(1 + r)?),

= (2+r)?(5+5r+17)/(20(1 +1r)?),

= (76 + 170r + 1707% + 7373 + 12r*) /(76(1 + r)?),

a3 = (60 + 3087 + 645r% + 7071 + 4217r* + 1297 + 167%)/(60(1 + r)?),

= 2+ r)(5+5r+17)/(40(1 +1r)?),

s = (2+7r)2(15+31r+ 1972+ 4r%) /(60(1 + r)?),

= (24 r)>(42 4 106r 4+ 12912 + 7217 + 11r%)/(336(1 + r)*),

a3 _(2+r)3(6+114r+163r + 487 +5r%)/(48(1 + r)Y),

@z = (24 r)(4 +268r + 5387 + 44917 + 188r* +29,°) /(8(1 + r)*),

azz = —(2+ )3 (=6 + 1067 + 5741 4+ 949r° + T44r* +291r° 4 42r°)/(24(1 + r)?),
asg = (24 r)2(90 + 2347 + 30672 + 24973 + 1287* + 35r° + 2r°) /(360(1 + r)?),
ays = —(2+71)3(=6 = 2r + 372 + 727 + 1974) /(48(1 + r)*),

ax = (2+r)*(5 +r)/(80(1 + 1)),

ay =0,

ap = (2+ )220 + 24r + 197 + 373)/(80(1 + r)?),

ag = (24 r)*(20 + 36r +29r* 4+ 5r%) /(160(1 + r)?),

ay =0,

ass = (2+r)*(5+r)/(80(1 + r)?).

aso = —(=1+7r)2+r)*/(16(1 + r)?),

as; =0,

asy = —(2+r)2 (=4 + r* +3r)/(16(1 + r)?),
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a5y = —(2 + (=4 -+ 572 + 57)/(32(1 + 1)),
asy =0,

ass = —(=1+7r)2+r)*/(16(1 + r)?),

agy = (2+7r)*(5+5r+r?)/(40(1 + r)?),

agr = (2+7r)*(5+5r+1r?)/(40(1 + r)?),

gy = (2+ r)(48 + 88r + 761> + 283 + 5r4)/(96(1 + r)?),
= (24 1r)%(20 4 55r 4+ 63r2 + 31r° + 5r*)/(80(1 + r)3),

agy = (24 r)*(8 4+ 28r +33r2 + 9 + r*)/(32(1 + r)?),

ags = (24 1)>(5+5r+ 1)/ (40(1 + r)?),

ar = (24 ) (1+r+72)/(8(1+ 7)),

az; =0,

an = 2+r)/8(1+7)),

an = (24?4 +11r+ 1972 + 157 + 5/)/(16(1 + r)?),

(
ary =—(2+7r)2(=8=4r=3r* + 5 + ") /(32(1 + r)?),
31 +r+r)/8(1+71)?),
6+ 6r+r*)/(96(1 +r)?),
14 4+ 10r + 717 + 87° + 1) /(224(1 + r)*),

KR K

[o B ]

- o
W

N /N /N /N
[NS 2N (ST \S T (O T ]
+ + + + +
R T T U |
W W S

ag = (2+1)*/(4(1 +r)?),
= 2+ A0+ )
agp = (443r+1r7)/(4(1 +r)?).
g3 = (4+4r+3r2 + )/ (4(1 +r)3),
gy = (8 + 10r + 1177 + 63 + r*)/(8(1 + r)?),
ags = (24 r)*(9+2r)/(36(1 + r)?),
ar0 = (2+71)?/(4(1 + 1)),
ar = (24 r)*(3 4+ 16r + 162 +4r°)/(12(1 + r)?),
ayy = (4+3r+r)/(4(1+r)?),
a3 = (4+4r+3r7 +r7)/(4(1 +r)),
ayoy = (84 10r + 1172 + 61 +r*)/(8(1 + r)?),
aos = (2 + r)2(27 + 38r + 3212 + 8r%)/(108(1 + r)?),

ajo =0,
air = (24 r)*/(16(1 4 1)),
ajn =0,
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aps =0,

aj =0,

aps = (2+7r)*/(16(1 + )2)’

aio = (2+71)°/(8(1 +

ap = (2+7r)°/(8(1 +

Ao (2+r)(4+3r+r )/(8(1+r)2),

a3 = (2+7)2(4+5r+3r2)/(16(1 + r)?),
oy = 2+ 7)2(8+3r+4r2 + 1)/ (32(1 +1)?),
aps = (24 1) (1+2r)/(8(1 + 1)),

azp =0,

31 =Y,

aip =0,

az =0,

ag =0,

apzs = 2+ 7)1 +2r)/(8(1 + r)?). (F5)

Note that all a;; are the same as in Ref. [S]. The only exception is as3 of Ref. [5], which is given by

1

—ap+—a

14

15
S a (Fo)
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