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A B S T R A C T

Magnons are the elementary excitations of the magnetic order that carry spin, momentum, and energy. Here we
compare the magnon with the ferron, i.e. the elementary excitation of the electric dipolar order, that transports
polarization, momentum, and energy in ferroelectrics.
1. Introduction

Much of condensed matter physics addresses weak excitations of
materials and devices from their ground states. More often than not
the complications caused by electron correlations can be captured by
the concept of approximately non-interacting quasi-particles with well-
defined dispersion relations. Quasi-particles are not eigenstates and
eventually decay on characteristic time scales that depend on material
and environment. In conventional electric insulators, the lowest energy
excitations are lattice waves with associated bosonic quasi-particles
called phonons. The elementary excitations of the magnetic order are
spin waves and their bosonic quasi-particles are the “magnons” [1].
In magnetic insulators, magnons and phonons coexist in the same
phase space and can form hybrid quasi-particles that may be called
“magnon polarons”. Yttrium iron garnet (YIG) is the material of choice
to study magnons, phonons, and magnon polarons because of their
longevity in YIG bulk and thin-film single crystals. For more than half a
century, Professor Sergio Rezende and his team seminally contributed
to our understanding of magnons, phonons, and their hybrids by exper-
imental and theoretical research, see e.g. [2,3]. Recently we extended
Prof. Rezende’s Boltzmann theory of the spin Seebeck effect in magnetic
insulators [4] to ferroelectric (FE) insulators by introducing “ferrons”,
i.e. the excitations of the electric dipolar order and explored their abil-
ity to transport heat and polarization, including the associated Seebeck
and Peltier effects [5,6]. Here we expound the analogies and differences
between magnets and FEs in their ground states [7] as well as in their
dynamic and transport properties, thereby comparing the magnonics of
ferromagnetic insulators with the “ferronics” of ferroelectric insulators.

∗ Corresponding author at: Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Sendai, 980-8577 Japan.
E-mail address: bauer.gerrit.ernst.wilhelm.d8@tohoku.ac.jp (G.E.W. Bauer).

2. Magnetism vs. ferroelectricity

2.1. Dipoles

A magnetic dipole  is called “Ampèrian” [8] because the intrinsic
or orbital angular momentum of the electron generates a dipolar mag-
netic field, implying broken time reversal symmetry. The interference
with a homogeneous and constant external magnetic field 𝐇 causes the
Zeeman interaction

𝐸𝑀 = − ⋅ 𝜇0𝐇 (1)

which leads to the Landau–Lifshitz equation of motion.

̇ = −𝛾 × 𝜇0𝐇, (2)

where 𝜇0 is the vacuum permeability, 𝛾 = 𝑔𝑒𝜇𝐵∕ℏ is the modulus of the
gyromagnetic ratio, 𝜇𝐵 is the Bohr magneton, 𝑔𝑒 is the electron g-factor
and ℏ = ℎ∕ (2𝜋) is Planck’s reduced constant.

Two local spins 𝐒1 and 𝐒2 with magnetic moments 𝑖 = −𝛾𝐒𝑖 may
couple by the exchange interaction

𝐸𝑥 = −𝐽𝐒1 ⋅ 𝐒2, (3)

where the exchange integral 𝐽 vanishes exponentially as a function
of distance between the moments on an interatomic length scale. The
magneto- and electro-dipolar interactions have the same angle and dis-
tance dependence, but different prefactors [9]. The interaction energy
of two parallel magnetic moments with 𝑖 = 𝜇𝐵 at a distance 𝑟 reads

𝐹𝑀 =
𝜇0𝜇2

𝐵
4𝜋

1
𝑟3

∼ 𝛼2

4𝜋

(𝑎𝐵
𝑟

)3
, (4)
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where 𝛼 = 1∕137 is the fine structure constant and 𝑎𝐵 the Bohr radius.
An electric dipole  is called “Gilbertian” [10], i.e. a directional

difference of positive and negative charges.  breaks inversion symme-
try, but does not change under time-reversal. A dipole interacts with a
homogeneous and constant electric field 𝐄 as

𝐸𝑃 = − ⋅ 𝐄. (5)

A homogeneous field does not exert a torque on a point electric dipole
with constant modulus, hence ̇ = 𝟎.

There is no such thing as an exchange interaction between electric
dipoles, so they interact according to electrostatics. The coupling of two
parallel electric dipoles with  ∼ 𝑒𝑎𝐵 ∼ 10−29 Cm scales like

𝐹𝑃 = 2

4𝜋𝜖𝑟𝜖0
1
𝑟3

∼ 1
4𝜋𝜖𝑟

(𝑎𝐵
𝑟

)3
, (6)

here 𝜖𝑟 is the relative dielectric constant of the medium that embeds
he dipoles. The electrical dipolar interaction is significantly larger than
he magnetic one
𝐹𝑃
𝐹𝑀

= 1
𝛼2𝜖𝑟

≫ 1. (7)

2.2. Ground states in the solid state

Magnets - The magnetic order in electric insulators can be de-
scribed by the Heisenberg model of local spins coupled by the exchange
interaction 𝐽 between nearest neighbors (n.n.)

𝐻 = −𝐽
2

𝑛.𝑛.
∑

𝑖𝑗
𝐒𝑖 ⋅ 𝐒𝑗 . (8)

For a positive 𝐽 the ground state is ferromagnetic with a coarse-grained
continuous field 𝑀0𝐦, where 𝑀0 = |𝛾𝐒∕𝛺| is the magnetization and
𝛺 is the volume occupied by a single spin. The direction and position
dependence of the unit vector 𝐦 minimizes the magnetic energy that
includes the exchange energy and the Zeeman interaction with applied
and effective magnetic fields.

FEs - Ferroelectricity is the ordered state of a large number of
microscopic electric dipoles with an associated permanent electric po-
larization, which appears below phase transition temperatures that can
be much higher than room temperature. Roughly two types of FEs can
be distinguished, viz. “displacive” and “order–disorder”. In the former,
the order emerges during a soft-phonon structural phase transition that
breaks inversion symmetry of the unit cell, while in the latter stable
molecular dipoles order during the phase transition. We can write the
unit cell dipole as 𝐏0 = 𝑄𝜹, where 𝑄 is the ionic charge and 𝜹 a
displacement vector. The polarization density 𝑝0 = 𝑃0∕𝛺, where 𝛺 is
the unit cell volume.

Since FEs have a large dielectric constant 𝜖𝑟 ∼ 103, Eq. (7) leads
to 𝐹𝑃 ∕𝐹𝑀 ∼ 20. The magnetostatic interactions are typically in the
GHz regime. While larger than that, the electric dipolar interactions
are still much smaller than ambient thermal energies. Since there is
no exchange interaction that orders the dipoles, room-temperature
ferroelectricity appears to be a consequence, but not the origin of the
phase transition to the symmetry-broken ground state. However, the
dipolar interactions are more important in governing the textures of
the order parameter in FE than in magnetic structures.

2.3. Excitations

Magnonics and ferronics address the small-amplitude dynamics of
the ordered states at temperatures below the phase transition.

Magnets - In magnets, the low energy excitations are spin waves,
i.e. plane-wave-like modulated precessions around the equilibrium
magnetization with a time- and position-dependent phase. The ex-
change energy contribution 𝜔(x)

𝑘 ∼ 𝐽𝑘2 vanishes at small wave numbers
𝑘. In this limit the magnetodipolar interaction with 𝜔(dip)

𝑘 − 𝜔(dip)
0 ∼

𝑘 dominates. Spin and lattice waves coexist in the same regions of
2

reciprocal space. When their coupling by the magnetic anisotropy and
magnetoelasticity is larger than the level splitting and broadening, they
form hybrid states or magnon polarons that transport magnetization
with the sound velocity [11]. The interaction between spins and lattice
is relativistic and in general weak, so in most magnets magnon polarons
form, if at all, only in relatively small volumes of phase space.

FEs - The electric dipoles in FEs are defined by the coordinates of the
charged ions that have mass and are subject to electrostatic and elastic
forces. In contrast to magnets, the polarization dynamics for 𝑘 → 0 is
governed by transverse optical phonons in the THz regime. The dipolar
contribution to the restoring elastic force constant can be estimated for
a film geometry as

𝐶𝑃 = 𝑄2

𝜖𝑟𝜖0𝛺
= 

(

102 J∕m2) , (9)

which is much smaller than typical mechanical ones. To a good approx-
imation the elementary excitations of the FE order therefore appear
to be mechanical, i.e. electrically polarized phonons rather than os-
cillating massless dipoles that solve a lattice dynamics equation of
motion.

3. Transport

Transport of magnetic order in the form of spin currents is crucial
in spintronics and spin caloritronics [12]. Surprisingly, the transport
of the FE order has attracted little attention, see bibliography in [5].
Here we review our formulation of polarization transport in FEs that
is inspired by the models for spin transport in magnetic insulators
[4,11,13,14].

3.1. Linear response

Magnets - Magnons in magnetic insulators carry energy and spin
currents when subject to unidirectional temperature and magnetic field
gradients 𝜕𝑇 and 𝜕𝐻 . In the linear response regime of a homogeneous
and isotropic magnet, the extended “Ohm’s Law” reads
(

−𝑗𝑚
𝑗𝑞

)

= 𝜎𝑚

(

1 𝑆𝑚
𝛱𝑚 𝜅∕𝜎𝑚

)(

𝜕𝐻
−𝜕𝑇

)

, (10)

where (−𝑗𝑚) is the magnon number current density defined by the
conservation law 𝜕𝑗𝑚 = −𝑀̇ , where 𝑀 is now the magnetization
density. 𝑗𝑞 is the heat current density, 𝜎𝑚 is a magnetization or magnon
conductivity, 𝜅 the thermal conductivity, while 𝛱𝑚 and 𝑆𝑚 = 𝛱𝑚𝑇 are
the spin (magnon) Peltier and Seebeck coefficients, respectively. The
signs are chosen such that the transport parameters are positive for
simple ferromagnets.

FEs - Similar equations govern electric polarization transport, but 𝐻
is replaced by an electric field 𝐸:
(

−𝑗𝑝
𝑗𝑞

)

= 𝜎𝑝

(

1 𝑆𝑝
𝛱𝑝 𝜅∕𝜎𝑝

)(

𝜕𝐸
−𝜕𝑇

)

, (11)

and −𝑗𝑝 is the polarization (ferron) current density defined by the
conservation law 𝜕𝑗𝑝 = −𝑃̇ , where 𝑃 is now the polarization density.
𝜎𝑝 is a polarization or ferron conductivity, 𝛱𝑝 and 𝑆𝑝 = 𝛱𝑝𝑇 are the
polarization Peltier and Seebeck coefficients, respectively. The signs are
chosen such that the transport parameters are positive for simple FEs.
The polarization current should be distinguished from the displacement
current 𝑃̇ , which is not a transport property.

3.2. Diffusion theory

Magnets - In magnetic insulators, the diffusion picture of transport
has successfully made contact with experiments with a small number

of adjustable parameters. At equilibrium with field 𝐻0 and temperature
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𝑇0 the magnons are distributed according to the Bose–Einstein function
with zero chemical potential (or Planck’s function)

𝑓 (0)
𝐵𝐸 (𝜀) =

[

exp
(

𝜀 + ℏ𝜔0
𝑘𝐵𝑇0

)

− 1
]−1

. (12)

where 𝜔0 = 𝛾𝜇0𝐻0 is the Larmor frequency. A crucial assumption in the
derivation of a diffusion theory is the local equilibration of the magnon
spectral distribution to the form [15]

𝑓𝐵𝐸 (𝑥, 𝜀) =
[

exp
(

𝜀 + ℏ𝜔(𝑥) − 𝜇𝑚(𝑥)
𝑘𝐵𝑇𝑚 (𝑥)

)

− 1
]−1

(13)

in terms of a slowly varying magnetic field 𝐻(𝑥) = 𝐻0 + ▵𝐻(𝑥) =
(𝑥)∕(𝛾𝜇0) and temperature 𝑇𝑚 (𝑥) = 𝑇0 + ▵𝑇𝑚 (𝑥). In magnetic insu-

lators, this assumption can be justified by efficient magnon-conserving
magnon–phonon and magnon–magnon scattering, while magnon-non-
conserving damping processes are weak [13]. The magnon number
density then reads

−𝑚 (𝑥) = −
𝑀(𝑥)
ℏ𝛾

= ∫ 𝑓𝐵𝐸 (𝑥, 𝜀) 𝜌𝑚 (𝜀) 𝑑𝜀
2𝜋

, (14)

where 𝜌𝑚 (𝜀) is the magnon energy density of states. In linear response
and otherwise homogeneous systems

𝑓𝐵𝐸 (𝑥, 𝜀) = 𝑓 (0)
𝐵𝐸

[

1 − 𝑓 (0)
𝐵𝐸 exp

(

𝜀 + ℏ𝜔0
𝑘𝐵𝑇0

)

(

ℏ▵𝜔 − 𝜇𝑚
𝑘𝐵𝑇0

−

(

𝜀 + ℏ𝜔0
)

▵𝑇

𝑘𝐵𝑇 2
0

)]

(15)

and

−𝑚 (𝑥) + 𝑚0 = 𝜒𝑚

(

▵𝐻 −
𝜇𝑚
ℏ𝛾

)

+ 𝜒𝑇▵𝑇𝑚, (16)

here 𝑚0 is the magnon density at thermal equilibrium. The suscepti-
ilities

𝑘𝐵𝑇0𝜒𝑚 = −ℏ𝛾𝜇0 ∫

(

𝑓 (0)
𝐵𝐸

)2
exp

(

𝜀 + ℏ𝜔0
𝑘𝐵𝑇0

)

𝜌𝑚
𝑑𝜀
2𝜋

(17)

𝐵𝑇
2
0 𝜒𝑇 = ∫

(

𝑓 (0)
𝐵𝐸

)2
exp

(

𝜀 + ℏ𝜔0
𝑘𝐵𝑇0

)

(

𝜀 + ℏ𝜔0
)

𝜌𝑚
𝑑𝜀
2𝜋

(18)

parameterize the response to constant field and temperature changes
and govern magnetocaloric effects. The finite lifetime 𝜏𝑚

(

𝜏𝑞
)

of the
magnon (energy) density modifies the conservation relations

−
𝜕𝑗𝑚
ℏ𝛾

= 𝑚̇ +
𝑚 − 𝑚0
𝜏𝑚

(19)

−𝜕𝑗𝑞 = 𝑞̇ +
𝑞 − 𝑞0
𝜏𝑞

, (20)

here the subscript 0 indicates the equilibrated values. Efficient
agnon-conserving magnon–phonon interactions render a short 𝜏𝑞 and

he lattice has a large heat capacity. Then 𝑇 = 𝑇0, i.e. the magnon
emperature, equals the lattice temperature everywhere. This approx-
mation should be reconsidered in the low temperature regime [16].
ombining Eqs. (10), (14)–(19) and assuming 𝜕2𝐻 = 0 we find for the
teady state

2𝜇𝑚 =
𝜇𝑚
𝓁2
𝑚
. (21)

with magnon diffusion length 𝓁𝑚 =
√

𝜎𝑚𝜏𝑚∕𝜒𝑚. The transport parame-
ter 𝜎𝑚 indicates the realm of spin caloritronics [12]. We note that the
divergence of a spin accumulation is equivalent to magnetic charges
and stray magnetic fields that most studies neglect.

FEs - By the same arguments, we arrive at the polarization diffusion
equation for the chemical potential or polarization accumulation 𝜇𝑝

𝜕2𝜇𝑝 =
𝜇𝑝
𝓁2
𝑝
. (22)

with 𝓁𝑝 =
√

𝜎𝑝𝜏𝑝∕𝜒𝑝. Eq. (22) relies on assumptions that are well-tested
or magnetic insulators at room temperature, but not for ferroelectrics.
3

The existence of a polarization accumulation 𝜇𝑝 as a driving force for
ransport requires a relaxation time 𝜏𝑝 that is much larger than the

scattering life time 𝜏𝑟 in the conductivity 𝜎𝑝. In contrast to a magnon
accumulation, a polarization accumulation is not protected in the non-
relativistic limit, however, so the assumption 𝜏𝑟 ≫ 𝜏𝑝 should be better
justified. An example of a scattering process that limits transport but
conserves polarization is intermode phonon back scattering by defects.
𝜏𝑝 should be measurable by the electrocaloric response to small am-
plitude pulsed or AC electric fields along the equilibrium polarization.
Polarization accumulations would betray their presence by gradients
that generate space electric charges and observable electric fields.

4. Microscopic theory

Next, we discuss theories that address the material and device-
dependent parameters discussed above. In magnonics, the results com-
pare well with the parameters fitted to experiments. No experiments
are available for ferroelectrics, however.

4.1. Excitations

Magnets - The Heisenberg model is the starting point of most calcula-
tions. For large spins such as 𝑆 = 5∕2 for half-filled 3d-shells, atomistic
simulations give an appropriate picture for the spatiotemporal magne-
tization dynamics at finite temperatures [17]. In the long wave-length
limit, the Landau–Lifshitz–Gilbert (LLG) equation for the magnetization
density 𝐌 (𝐫, 𝑡) = 𝑀0𝐦 (𝐫, 𝑡) and |𝐦|

2 = 1

̇ = −𝛾𝐦 × 𝜇0𝐇eff + 𝛼𝐺𝐦 × 𝐦̇ (23)

is well established, where 𝑀0 is the ground state magnetization density,
𝐇eff is an effective magnetic field and 𝛼𝐺 the Gilbert damping constant.
𝐇eff contains a stochastic term with a correlation function that in
equilibrium obeys the fluctuation–dissipation theorem in terms of the
Gilbert damping and temperature, and can be used to compute the
spin–spin correlation and response functions [17]. The linearized LLG
equation, equivalent to the Heisenberg equation to lowest order in
the Holstein–Primakoff expansion [1], is appropriate for low-density
magnon gases, i.e. for weakly excited magnets sufficiently below the
Curie temperature. Its solutions are the magnon dispersion relations,
amplitudes, and group velocities, which are the starting point for
transport theories such as the Boltzmann formalism. The magnetiza-
tion dynamics then consists of small transverse fluctuations 𝐦⊥ that
reduce the net magnetization relative to the ground state. When the
equilibrium magnetization is along 𝑧,

−𝑚𝑧 =
𝐦2

⊥
2

. (24)

The (quantum) thermal average −𝑚𝑧 may be interpreted as the local
umber of magnons with density −𝑚 = 𝐦2

⊥𝑀0 ∕
(

2𝑔𝜇𝐵
)

in Eq. (14).
Magnetoelastic interactions mix the magnons with phonons to cre-

ate hybrid magnon polarons in reciprocal space that are beyond the
scope of micromagnetics. An appropriate model for small wave num-
bers is an ensemble of coupled harmonic oscillators with weak level
repulsions at the crossing points of the magnon and phonon disper-
sions [11].

FEs - We focus on the symmetry-broken phase at temperatures well
below the phase transition with a finite macroscopic polarization per
unit cell

𝐏0 =
unit cell
∑

𝑠
𝑄𝑠𝐫(0)𝑠 . (25)

𝐫(0)𝑠 is the location of the 𝑠th ion in a unit cell with net charge 𝑄𝑠 and
∑

𝑠 𝑄𝑠 = 0. We do not address here the complications caused by surface
charges [18]. Finite temperatures or external excitations induce lattice
vibrations that affect the polarization. An elementary excitation of the

crystal is a phonon with wave vector 𝐤 in a band 𝜎, polarization unit
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vector 𝐞𝐤𝜎 and frequency 𝜔𝐤𝜎 . It modulates the position 𝐫𝑙𝑠 of an ion 𝑠
with mass M𝑠 in the 3𝑁 unit cells with index 𝑙 = {1,… , 3𝑁} as:

𝐤𝜎 (𝑙, 𝑠) =
1

√

𝑁M𝑠
𝐞𝐤𝜎 (𝑠)𝑒𝑖𝐤⋅𝐫𝑙−𝑖𝜔𝐤𝜎 𝑡. (26)

A local dipole then fluctuates according to

▵𝐏𝑙 =
∑

𝐤𝜎𝑠
𝑎𝐤𝜎𝑄𝑠𝒖𝐤𝜎 (𝑙, 𝑠), (27)

where 𝑎𝐤𝜎 is the phonon amplitude. The polarization 𝐞 has components
long and normal to the equilibrium polarization. The dipolar dynamics
onsists of a rotation by an angle 𝜃 normal to and a deformation in the

direction 𝑧 of the dipolar order, which modifies the projection
(

▵𝑃𝑙
)

𝑧 =
(

𝑃0 + ▵𝑃 ∥
𝑙

)

cos 𝜃. (28)

Since harmonic oscillators do not change the average position of the
ions and therefore the polarization, we have to take into account non-
linearities. In magnets, the high energy cost of changing the modulus
of the magnetization leads to the transverse dynamics described by the
LLG Eq. (23). In “order–disorder” FEs such as KNO3 or NaNO2 we have
a similar situation, because the nitrate and nitrite molecular units are
characterized by stable permanent dipoles. The low-frequency phonons
are then polarized along the minimum energy path that switches the
polarization without deforming the strongly bound molecular units.
Small transverse fluctuations ▵𝐏⟂

𝑙 reduce the polarization projection
and thereby the macroscopic polarization by

(

▵𝑃𝑙
)

𝑧 = −
|

|

|

▵𝐏⟂
𝑙
|

|

|

2

2𝑃0
+ ▵𝑃 ∥

𝑙 + [(▵𝐏⟂
𝑙 )

2,▵𝑃 ∥
𝑙 ]. (29)

ere the longitudinal fluctuations ▵𝑃 ∥
𝑙 are corrections that are disre-

arded in the Landau–Lifshitz–Gilbert dynamics of the magnetization
24). The transverse fluctuations or ferrons reduce the polarization, just
s the magnons reduce the magnetization. This “ferron” approximation
hould be accurate for the order–disorder type as argued above, but it
s as yet untested for displacive FE’s.

The averaged polarization is reduced by

▵𝑝 = 1
𝑉

∑

𝐤𝜎
▵𝑝𝐤𝜎 = − 1

2𝑃0𝑉
∑

𝐤𝜎

|

|

𝑎𝐤𝜎 ||
2
|

|

𝐅𝐤𝜎 ||
2 (30)

where

𝐅𝐤𝜎 =
∑

𝑠

𝑄𝑠
√

𝑀𝑠
𝐞⟂𝐤𝜎 (𝑠). (31)

After quantizing the oscillators, we arrive at the thermally averaged
polarization per unit cell

▵𝑝 = − ℏ2

4𝑃0𝑉
∑

𝐤𝜎

|

|

𝐅𝐤𝜎 ||
2

𝜀𝐤𝜎
𝑓 (0)
𝐵𝐸

(

𝜀𝐤𝜎
)

(32)

nd the susceptibilities that govern the electrocaloric and pyroelectric
usceptibilities 𝜒𝑝 = 𝜕▵𝑝/𝜕𝐸 and 𝜒𝑇 = 𝜕▵𝑝/𝜕𝑇 . −▵𝑝∕𝑝0 may be

interpreted as an effective number of ferron excitations. In contrast to
the pure magnon case, but similar to that for the magnon polaron, each
quasiparticle excitation contributes with a state-dependent weight to
the reduction of the polarization.

These properties can be computed by conventional lattice dynamics
codes for realistic models. We may capture the essential physics by
a one-dimensional harmonic oscillator model of a diatomic chain of
atoms with equal masses M, opposite charges ±𝑄, and force constants
for longitudinal

(

𝐶𝐿
)

and transverse
(

𝐶𝑇
)

motions. The FE phase
transition shifts the ions in each unit cell to generate a permanent
electric dipole 𝐏0 = 𝑄𝜹 with shift vector 𝜹. The polarization 𝐩0 = 𝐏0∕𝑎3

can point in any direction, but we focus here on a dipolar order along
or normal to the chain. We have to consider one longitudinal and
two transverse phonon branches in the Brillouin zone with boundaries
|𝑘| ≤ 𝜋∕𝑎. When the polarization is along the chain, the FE transition
4

doubles the size of the unit cell, folding the bands at |𝑘| ≤ 𝜋∕ (2𝑎) into i
acoustic and optical ones. We simplify this already primitive model
even further by assuming that all transverse force constants are the
same. The longitudinal phonons are not ferroelectrically active but
contribute to the heat conductance. We may entirely disregard the
high-frequency longitudinal optical phonon mode. In [6] we plot the
phonon bands for the two main polarization directions. Remarkably,
the polarization of the acoustic mode can be switched off completely
by rotating the direction of the FE order from in-chain to perpendicular
to the chain. This should affect the electrocaloric, pyroelectric, and
transport ‘‘caloritronic’’ properties discussed in the following.

4.2. Transport

The transport coefficients can be computed straightforwardly with
the above models for diffuse and ballistic transport. Rezende et al. [4]
and Cornelissen et al. [13] formulated a Boltzmann equation in the
relaxation time approximation, where the latter focuses on the role of
the magnon chemical potential. Flebus et al.’s [11] spin Seebeck effect
theory for magnon polarons can be easily adapted to handle ferrons.
Meier and Loss’ [14] scattering theory for magnon transport in ballistic
spin chains inspired our ferron transport formulation [6].

4.2.1. Boltzmann Equation
Magnets - The starting point of the Boltzmann formalism is the non-

equilibrium distribution function in real and reciprocal space 𝑓𝜎 (𝐤, 𝐫)
that in equilibrium reduces to 𝑓 (0)

𝐵𝐸
(

𝜀𝐤𝜎 + ℏ𝛾𝐻0
)

. In the steady state,
constant relaxation time 𝜏𝑟, and one spatial dimension 𝑥, the distribu-
tion is modified by a field or temperature gradient as

▵𝑓𝜎 (𝐤, 𝑥) = 𝜏𝑟𝑣𝑥(𝐤𝜎)
𝜕𝑓𝜎 (𝑘, 𝑥)

𝜕𝑥

= −𝜏𝑟𝑣𝑥

(

ℏ𝜕𝜔(𝑥) − 𝜕𝜇(𝑥)
𝑘𝐵𝑇

−
𝜀𝑘𝜎 + ℏ𝜔0

𝑘𝐵𝑇 2
𝜕𝑇

)

×
(

𝑓 (0)
𝐵𝐸

)2
exp

(

𝜀𝑘𝜎 + ℏ𝜔0
𝑘𝐵𝑇

)

, (33)

where 𝑣𝑥(𝐤𝜎) = 𝜕𝜀𝐤𝜎∕(ℏ𝜕𝑘𝑥) is the magnon group velocity and we
used the expansion Eq. (15). Here the relaxation time 𝜏𝑟 that includes
all scattering processes is shorter than 𝜏𝑚 in the magnon diffusion
equation (21).

The magnon spin current in the magnon–polaron system for con-
stant gradients then, for example, reads

−
𝑗𝑚
ℏ𝛾

= 1
𝑉

∑

𝐤𝜎
▵𝑚𝐤𝜎𝑣𝑥▵𝑓𝜎 (𝐤) = 𝜎𝑚

(

𝜕𝐻 −
𝜕𝜇
ℏ𝛾

)

− 𝜎𝑚𝑆𝑚𝜕𝑇 , (34)

which leads to the conductivity

𝜎𝑚 =
𝜏𝑟ℏ2𝛾2𝜇0
𝑘𝐵𝑇𝑉

∑

𝐤𝜎
▵𝑚𝐤𝜎

(

𝑣𝑥𝑓
(0)
𝐵𝐸

)2
exp

(

𝜀𝐤𝜎 + ℏ𝛾𝐻0
𝑘𝐵𝑇

)

, (35)

where ▵𝑚𝐤𝜎 is the magnetic component in the magnon–polaron wave
with index 𝐤𝜎, which follows from diagonalizing the magnetoelastic
Hamiltonian [11].

FEs - The transport coefficients for FEs can be computed under the
ferron approximation analogously (𝐸0 = 0)

𝜎𝑝 =
𝜏𝑟𝑃0
𝑘𝐵𝑇

∑

𝐤𝜎
▵𝑝𝐤𝜎

(

𝑣𝑥(𝐤𝜎)𝑓
(0)
𝐵𝐸

)2
𝑒

𝜀𝑘𝜎
𝑘𝐵𝑇 . (36)

where ▵𝑝𝑘𝜎 is the polarization (change) of a phonon in state 𝑘𝜎 intro-
uced in Eqs. (30), (31). The transport coefficients in the 1D model
ith polarization parallel to the gradients can be obtained analytically

n the high and low temperature limits [5].



Journal of Magnetism and Magnetic Materials 541 (2022) 168468G.E.W. Bauer et al.

w

𝜉

W
m
d
b
F
c

5

r
h
i
f
a
N
t
c

5

T
t
c

P
c
t
c
a
m
w
t

p
v
i
o
p
c
v

▵

4.2.2. Ballistic transport
Magnets - The Landauer–Büttiker scattering theory of transport is

designed to treat transport that is limited by geometry, for example,
point contacts that are connected adiabatically to large thermodynamic
reservoirs. Eq. (11) then becomes
(

−𝐽𝑚
𝐽𝑞

)

= 𝐺𝑚

(

1 𝑆𝑚
𝛱𝑚 𝐾∕𝐺𝑚

)(

▵𝐻
−▵𝑇

)

, (37)

where the driving forces are now the field and temperature differences,
𝐾 and 𝐺𝑚 are heat and spin (magnon) conductances, respectively,
and on the l.h.s. we have currents rather than current densities. The
transport coefficients are governed by the matrix of transmission prob-
abilities 𝐓 of magnons that propagate from the left to the right, which
in the absence of scattering becomes a unit matrix in the space of
propagating states. The magnon conductance of the spin chain in the
low temperature limit [14]

𝐺𝑚 = ℏ𝛾2𝑓 (0)
𝐵𝐸

(

𝜀𝑚
)

. (38)

𝐻eff in 𝜀𝑚 = ℏ𝛾𝐻eff represents applied or magnetic anisotropy fields
that fix the direction of the magnetic order. 𝐺𝑚 ∼ 𝑒−𝜀𝑚∕(𝑘𝐵𝑇 ) vanishes
exponentially when the temperature falls below the magnon gap.

FEs - In ferroelectrics
(

−𝐽𝑝
𝐽𝑞

)

= 𝐺𝑝

(

1 𝑆𝑝
𝛱𝑝 𝐾∕𝐺𝑝

)(

▵𝐸
−▵𝑇

)

, (39)

where, e.g., the polarization (ferron) conductance for the dipolar chain
[6]

𝐺𝑝 =
1

𝑘𝐵𝑇
∑

𝜎 ∫

(

𝜉𝐩𝑓
(0)
𝐵𝐸

)2
𝑒𝜀∕(𝑘𝐵𝑇 ) 𝑑𝜀

ℎ
. (40)

𝐺𝑝 may be compared with the conductivity 𝜎𝑝 of a diffuse wire (36).
The latter differs by being proportional to the relaxation time and the
increased importance of the group velocities in the integral.

For perpendicular FE order only the high-frequency optical branch
contributes with

𝜉𝐩 = −
(ℏ𝑄)2

𝑀𝑃0𝜀
for 𝐩 ⟂ 𝐱, (41)

hile for parallel polarization with 𝜀 ≥ 0

𝐩 = −
𝜀𝑃0

4𝐶𝛿2
for 𝐩 ∥ 𝐱. (42)

e see that the ferron conductance dramatically differs from the
agnon conductance by its strong dependence on the direction of the
ipolar order. When 𝐩 ⟂ 𝐱̂, 𝐺𝑝 vanishes exponentially with temperature
ecause only the high-frequency optical phonon branch contributes.
or 𝐩 ∥ 𝐱, however, polarization transport is gapless and the ferron
onductance scales linearly with low temperatures 𝐺𝑝 ∼ 𝑇 [6].

. Devices

The theory can be tested by experiments with concrete devices fab-
icated from different materials and flexible configurations. Magnonics
as a great advantage: magnon currents can be measured when injected
nto heavy metal contacts by means of a transverse electromotive
orce induced by the inverse spin Hall effect [19–21]. We are not
ware of a “polarization Hall effect” that could detect a ferron current.
evertheless, ferrons do cause observable effects. Here we introduce

wo simple devices that are tailored to find evidence for a polarization
urrent in the diffuse and ballistic regimes.

.1. Planar capacitors

A capacitor is a slab of a dielectric insulator between metal contacts.
aking advantage of the spin Hall effects, films with one or two Pt con-
acts on YIG have been investigated extensively. Electric charges and
apacitances appear to play only a minor role in magnonics, however.
5

lanar FE capacitors are common devices because the high dielectric
onstant of FE’s ensures high capacitances and the switchability of
he FE order allows their use in FE random access memory (FeRAM)
ells. Metallic contacts screen the FE surface charges in equilibrium
nd residual electric fields are small [22]. A global temperature change
odulates the equilibrium polarization and generates thermovoltages,
hile applied voltage steps heat or cool the FE spacer depending on

he susceptibilities 𝜒𝑝 and 𝜒𝑇 .
A temperature gradient generates a directional heat and associated

olarization current, but because 𝜕𝐸 = 0 in these devices, an applied
oltage difference does not. We expect that a polarization current
njected into a metal contact decays on a very short length scale without
bvious observable signatures. However, opaque contacts accumulate a
olarization on the length scale of the diffusion length 𝓁𝑝. In an open-
ircuit configuration, a thermally excited polarization 𝑝 (𝑥) generates a
oltage over the contacts

𝑉 = −∫

𝐿

0

▵𝑝 (𝑥)
𝜖

𝑑𝑥 = −
𝜒𝐸
𝜖𝑃 ∫

𝐿

0
𝜇 (𝑥) 𝑑𝑥, (43)

where 𝐿 is the thickness of the FE barrier. In a capacitor with one
contact interface opaque and another one transparent and in the limit
𝓁𝑝 ≫ 𝐿 becomes ▵𝑉max = −𝜒𝐸𝐿𝑆▵𝑇ext∕

(

2𝜖0𝜖𝑟
)

. ▵𝑉 can be used by
inserting the capacitor into an electric circuit, analogous to pyroelectric
devices, but operating on temperature differences rather than global
temperature changes. The effects can be switched off at tempera-
tures below the optical phonon band by rotating the polarization, as
discussed above.

Returning to magnonics: a temperature gradient over a capacitor
with a electrically insulating magnetic spacer generates a magnon accu-
mulation and stray magnetic fields, which to the best of our knowledge
have not yet been reported, however.

5.2. Lateral structures

More flexible than the planar capacitors are lateral structures on
and of thin films. Propagating magnons can be injected and detected
by narrow microwave striplines [23], while Pt contacts on YIG films
allow the study of diffuse magnon transport by injecting them by the
spin Hall effect or Ohmic heating and detection in another contact by
the electromotive force generated by the inverse spin Hall effect from
spin pumping [24].

We envisage analogous experiments in gated thin FE films. Their
polarization can be perpendicular to the plane, either spontaneously or
induced by gates. The ferroelectricity in van der Waals materials such as
monolayer FeTe [25] and bilayer WTe2 [26] or BN [27] is an especially
interesting phenomenon [27]. In contrast to the planar capacitor, it
should be easy to generate electric field gradients and electrically
controlled polarization currents. Thin films may be nanostructured such
that large islands are connected by point contacts or strips over which
the electric field and temperature drop selectively, see Fig. 1. The
scattering theory of transport is applicable and may be approximated by
the single wire model introduced above. Additional local electrostatic
gates should allow rotation of the FE order in the constriction. These
structures are open to local probes that can measure, for instance,
the significant magnetic stray fields predicted for the electric dipolar
current through the constriction [6].

6. Summary and outlook

Magnonics has developed into one of the most active fields in
magnetism and spintronics, while the field of “ferronics” does not yet
exist. Our models are primitive, some approximations are untested, and
essential parameters are not known. Experimental results are necessary
to guide better theoretical models and understanding. We hope that
our initial theoretical steps will motivate experimentalists with frontier
spirit to test our predictions and on the way discover completely new
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Fig. 1. Lateral polarization valve on a thin film FE. The two large FE pads are
thermodynamic reservoirs assumed to be at local thermal equilibrium, but at variable
electric fields and temperatures, controlled by metallic gates with voltages 𝛥𝑉1 and 𝛥𝑉2
as well as temperatures (indicated by the color). Here a voltage 𝛥𝑉𝐺 over side gates
controls the FE polarization direction angle with the sample plane.

physics and applicable new functionalities. Realistic lattice dynamic
calculations of the polarization amplitudes in ferroelectric materials
can assess the accuracy of the ferron approximation. The polarization
relaxation time and diffusion lengths are key parameters that have to be
established with better accuracy. We have only scratched the surface of
the field, not addressing fascinating extensions of ferronics that include
antiferroelectrics, ferroelectric textures, polar metals, and multiferroics.
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