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ORIGINAL RESEARCH

Alzheimer’s disease pattern derived 
from relative cerebral flow as an alternative 
for the metabolic pattern using SSM/PCA
Débora E. Peretti1, David Vállez García1, Remco J. Renken2, Fransje E. Reesink3, Janine Doorduin1, 
Bauke M. de Jong3, Peter P. De Deyn3,4, Rudi A. J. O. Dierckx1 and Ronald Boellaard1,5*    

Abstract 

Background:  2-Deoxy-2-[18F]fluoroglucose (FDG) PET is an important tool for the identification of Alzheimer’s 
disease (AD) patients through the characteristic neurodegeneration pattern that these patients present. Regional 
cerebral blood flow (rCBF) images derived from dynamic 11C-labelled Pittsburgh Compound B (PIB) have been shown 
to present a similar pattern as FDG. Moreover, multivariate analysis techniques, such as scaled subprofile modelling 
using principal component analysis (SSM/PCA), can be used to generate disease-specific patterns (DP) that may aid in 
the classification of subjects. Therefore, the aim of this study was to compare rCBF AD-DPs with FDG AD-DP and their 
respective performances. Therefore, 52 subjects were included in this study. Fifteen AD and 16 healthy control sub-
jects were used to generate four AD-DP: one based on relative cerebral trace blood (R1), two based on time-weighted 
average of initial frame intervals (ePIB), and one based on FDG images. Furthermore, 21 subjects diagnosed with mild 
cognitive impairment were tested against these AD-DPs.

Results:  In general, the rCBF and FDG AD-DPs were characterized by a reduction in cortical frontal, temporal, and 
parietal lobes. FDG and rCBF methods presented similar score distribution.

Conclusion:  rCBF images may provide an alternative for FDG PET scans for the identification of AD patients through 
SSM/PCA.
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Background
Alzheimer’s disease (AD) is the most common cause of 
dementia in the elderly population, and it is character-
ized by a reduction of metabolism in the parietal and 
temporal lobes, and, in later stages, the frontal lobe [1]. 
These changes can be assessed in  vivo in patients with 
the use of 2-Deoxy-2-[18F]fluoroglucose (FDG) posi-
tron emission tomography (PET) imaging, a radioactive 

glucose analogue widely used in neuroimaging studies. 
Since AD affects the brain in such a particular manner, 
FDG PET images may help with the identification of this 
disease [2].

However, the most specific marker of AD is the depo-
sition of amyloid-β (Aβ) plaques in the brain of patients 
[3]. These deposits can be visualized in  vivo through 
PET radiotracers designed to bind to Aβ, such as 
[11C]-labelled Pittsburgh Compound B (PIB) [4]. Combi-
nation of FDG and PIB offers unique information for the 
correct classification of AD patients from other neurode-
generative diseases. Nevertheless, dual-tracer studies are 
more expensive, increase patient discomfort and expo-
sure to radiation. Therefore, the use of a single-tracer 

Open Access

*Correspondence:  r.boellaard@amsterdamumc.nl

5 Department of Radiology and Nuclear Medicine, Location VU Medical 
Center, Amsterdam University Medical Center, De Boelelaan 1117, 1081 
HV Amsterdam, The Netherlands
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-0313-5686
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13550-022-00909-8&domain=pdf


Page 2 of 10Peretti et al. EJNMMI Research           (2022) 12:37 

PET image that could characterize more than one aspect 
of a disease is of practical interest.

Earlier studies have already shown that brain metabo-
lism and regional cerebral blood flow (rCBF) are asso-
ciated [5]. Since then, several studies have explored to 
what extent this association runs, both in general and 
specifically in AD [6–8]. Moreover, rCBF values derived 
from dynamic PIB PET scans have already been shown 
to be well correlated with FDG, both through parametric 
images of relative cerebral tracer flow (R1) and weighted 
average of the initial frames of the PIB scan (ePIB) [9–16]. 
Previous studies have shown that, despite R1 and ePIB 
not being the same as rCBF, they provide rCBF surrogate 
images that are well correlated with the gold standard 
measure of rCBF [10].

While most of the previous studies comparing metab-
olism and rCBF measures were performed based on 
regional uptake values [9, 17–19], not many investiga-
tions have been performed in AD population on a voxel 
level using rCBF images derived from dynamic PET 
scans [20, 21]. Scale Subprofile Modelling using Princi-
pal Component Analysis (SSM/PCA) is a network anal-
ysis technique that combines information from a group 
of patients and healthy volunteers to generate an image 
that characterizes the tracer or biomarker specific disease 
pattern [22, 23]. This generated pattern can then be used 
to test new subjects and give them a score that represents 
how much they express this characteristic pattern in their 
images. Moreover, one of the advantages of this tech-
nique is that it is independent of the user’s assessment of 
subject classification, which relies on the reader’s experi-
ence and can introduce variability in classification [1, 24, 
25].

The aim of this study was to generate rCBF disease-
related AD pattern (AD-DP) from dynamic PIB PET 
studies using SSM/PCA, extending a previous work using 
an FDG template only [10], and then compare the results 
with the ones obtained from FDG PET scans. To this end, 
R1 and ePIB images of two different (early) time intervals 
were generated and analysed. Then, correlations between 
characteristic disease patterns and subject’s scores 
obtained by the rCBF images were compared to those 
from FDG images.

Material and methods
Subjects, PET acquisition, and image processing
A cohort of fifty-two subjects was drawn from a large 
on-going study at the memory clinic of the University 
Medical Center Groningen (UMCG), Groningen, The 
Netherlands. All subjects gave their written informed 
consent to participate in the study. This study was 
approved by the Medical Ethical Committee of the 

UMCG (2014/320) and was conducted in agreement 
with the Declaration of Helsinki and subsequent revi-
sions. Of all subjects, 15 were diagnosed as AD, 11 as 
Mild Cognitive Impairment due to AD (MCI+), 10 as 
MCI not due to AD (MCI−), and 16 healthy controls 
(HC) based on the National Institute on Aging and 
the Alzheimer’s Association Research Framework [3], 
and the Petersen criteria [26]. Healthy controls were 
recruited via advertisement, and subjects were included 
if they had no cognitive complaints and a mini-mental 
state examination (MMSE) score of 28 or above. Each 
subject underwent two PET scans: a static FDG and 
a dynamic PIB. From the FDG PET scan, a standard-
ized uptake value normalized by cerebellar grey mat-
ter uptake (SUVR) image was generated. From the 
dynamic PIB PET scan, three rCBF images were gen-
erated, namely R1 by pharmacokinetic modelling of the 
dynamic scan (using Simplified Reference Tissue Model 
2 (SRTM2) [27] and the grey matter of the cerebellum 
as the reference tissue), and 2 SUVR images by taking 
the time-weighted average of the initial frame intervals, 
i.e. ePIB(20–120 s) and ePIB(1–8 min). Therefore, each 
subject had a set of four images. A complete descrip-
tion of patient inclusion methods is described else-
where [10].
R1 images were generated by applying pharmacoki-

netic modelling in a voxel-based level using the grey 
matter of the cerebellum as a reference region. The sim-
plified reference tissue model was first applied to make 
an estimation of binding potential. Then, voxels with a 
binding potential value above 0.05 were selected and 
the median value of the estimated efflux parameter of 
the reference region was fixed. Finally, the SRTM2 was 
applied with a restriction on the range of the apparent 
efflux rate constant values, with a minimum of 0.01 and 
a maximum of 0.3 and 80 basis functions to generate 
the final R1 parametric maps. For a thorough compar-
ison of the dynamics of R1 and different frame inter-
vals of early phase PIB scans across AD, MCI, and HC 
groups, the authors refer the reader to a previous publi-
cation by Rodriguez-Vieitez and colleagues [15].

All images were normalized to the Montreal Neuro-
logical Institute space using tissue probability maps. 
Anatomical regions were defined from the Hammers 
atlas [28]. Regions were combined accordingly to the 
lobe to which they belong to. Additional File 1: Table S1 
shows a complete list of regions that were combined 
to generate lobe volumes of interest. Table  1 presents 
a summary of the demographic characteristics of the 
included subjects in this study. Further details on tracer 
synthesis, PET experimental design, and image pro-
cessing are described elsewhere [10, 29].
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Scale subprofile modelling using principal component 
analysis
SSM/PCA was applied using an in-house software based 
on the work of Spetsieris and colleagues [22] adapted 
for the use of quantitative images derived from phar-
macokinetic modelling and intensity normalized images 
(SUVR) [20]. In summary, spatially normalized images 
of 15 AD patients and 16 HC subjects were masked so 
that only brain data were further used in the analysis. 
Images were converted into a matrix where each subject 
corresponds to a column and each row is a voxel in the 
image. Data were centred per subject and then an aver-
age HC image was generated. This image was subtracted 
from all subject’s images. PCA was applied to the data, 
and components were ordered by explained variance. The 
first components that, when combined, explained at least 
50% of data variance were selected. Lastly, a stepwise 
forward logistic regression was performed to generate 
a pattern. The Akaike information criterion was used to 
define the best image that represents the AD-DP. A leave-
one-out cross-validation (LOOCV) approach was used 
to verify the stability of the AD-DP scores. For each sub-
ject that was left out, a new AD-DP was generated using 
the remaining subjects and the left-out subject received 
a new score based on this AD-DP. All subject’s image 
received a score by the inner product of the image against 
the AD-DP. For the subjects that were used to generate 
the AD-DP, the LOOCV score was taken to reduce bias. 
Finally, the scores were standardized to a Z-score using 
the mean standard deviation of the LOOCV HC group. 
Average and standard deviation values for all regions 
included in the Hammers atlas and the larger lobe vol-
umes of interest were extracted from each AD-DP.

Comparison between disease patterns
Pearson’s correlation coefficients were calculated com-
paring all AD-DPs. To further explore the differences 
and similarities between the rCBF AD-DPs and the FDG 
AD-DP, joint histograms were plotted. A joint histogram 
is a multidimensional histogram created from a set of 
voxel values with the same location in the brain. The x- 
and y-axes represent voxel values in the AD-DPs gener-
ated from different images (i.e. FDG and rCBF). A voxel 

in the FDG AD-DP (x-axis) with a specific value might 
have a different value in the rCBF-generated DP (y-axis). 
The joint histogram contains the counts of how many 
voxels have the same combination of values, which were 
plotted in a base 10 logarithmic amplitude scale. To bet-
ter quantify these relationships, a linear regression was 
used to explore the correlations. In these comparisons, 
the FDG AD-DP was considered the independent vari-
able, while the rCBF patterns the dependent, as it was 
done before for the scores. This configuration allows for 
an investigation of how the regional cerebral blood flow 
is explained by the metabolism. A p value of 0.05 was 
used as a significance threshold for all evaluations.

Statistical analysis of scores
Receiver operating characteristic (ROC) curves were 
generated using the scores from AD and HC groups to 
find the optimal threshold for classifying subjects based 
on Youden’s method [30]. Confidence intervals (CI) for 
the area under the curve were calculated using a 95% 
interval. To avoid a possible bias of using the same 
scores from the subjects that were used to generate the 
disease pattern, this analysis was performed using only 
the LOOCV scores.

An ANOVA per image type was performed to test if 
scores from different groups of subjects were significantly 
different from each other. The p values were then cor-
rected for multiple comparisons using Tukey’s approach.

A general linear model was used to explore the 
relationship between the scores from the rCBF AD-
DPs (dependent variable) and the ones from the FDG 
AD-DP (independent variable) for all subjects. Pearson 
correlation coefficients were also computed to explore 
the interrelationship between metabolic and rCBF 
scores. Furthermore, a Bland–Altman plot was used to 
evaluate the agreement between metabolic and rCBF 
scores [31, 32]. The agreement interval was calculated 
as 1.96 × standard deviation. Moreover, linear regres-
sions were made to assess the bias of each rCBF score 
compared to the FDG scores. All results were analysed 
using RStudio (version 1.2.5033, R version 3.6.3).

Table 1  Demographic characteristics of the subjects

AD (n = 15) MCI+ (n = 11) MCI− (n = 10) HC (n = 16)

Sex

Male 9 7 8 11

Female 6 4 2 5

Age (years) 65 ± 8 65 ± 5 67 ± 9 69 ± 5

MMSE score 25 ± 3 27 ± 2 24 ± 6 30 ± 1
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Results
Description of disease patterns
Overall, the FDG, R1, and ePIB(20–130  s) AD-DP 
(Fig.  1) agreed with the expected AD patterns of pre-
vious studies, presenting a general cortical decreased 

metabolism in patients when compared to HC sub-
jects, with the parietal lobe showing the largest relative 
reduction in metabolism and rCBF. This can be seen 
by the negative voxels depicted in blue in Fig. 1. How-
ever, the ePIB(1–8  min) images resulted in an AD-DP 
that resembles more a pattern of amyloid deposition 
[20] than the one expected for metabolism or rCBF. 
This pattern was characterized by a generalized rela-
tive increase in signal (positive voxels depicted in red 
in Fig. 1) in grey matter of AD patients when compared 
to HC subjects. Table 2 contains the details of the prin-
cipal components used to generate the final disease 
patterns, and Table  3 shows the average and standard 
deviation values of larger brain lobes for each AD-DP. 
Additional file 1: Table S1 contains average and stand-
ard deviation values for all regions included in the 
Hammers atlas.

Correlations and joint histograms
When compared to the FDG AD-DP, rCBF pat-
terns resulted in the following correlations: R1 0.79, 
ePIB(20–130  s) 0.59, and ePIB(1–8  min) 0.35. When 
compared between each other, rCBF AD-DPs presented 
lower correlation values: R1 and ePIB(20–130  s) 0.62, 
R1 and ePIB(1–8  min) 0.30, and ePIB(20–130  s) and 
ePIB(1–8 min) 0.02.

Figure  2 shows the joint histograms comparing the 
FDG AD-DP with either the R1 (Fig. 2, top), the ePIB(20–
130  s) (Fig.  2, middle), or the ePIB(1–8  min) (Fig.  2, 
bottom) DPs. These results suggest a high correlation 
between R1 and FDG AD-DPs, with FDG metabolism 
accounting for 69% of variability (R2 = 0.69, p < 0.01, 
slope = 0.81, intercept = −  0.03). Meanwhile, the FDG 
metabolic pattern accounted for only 35% of the vari-
ability of the ePIB(20–130 s) AD-DP (R2 = 0.35, p < 0.01, 
slope = 0.59, intercept = 0) and 12% of the variance of the 
ePIB(1–8  min) AD-DP (R2 = 0.12, p < 0.01, slope = 0.35, 
intercept = 0).

2.0

-2.0

0.0

L  R

L  R

L  R

L  R

FDG

ePIB
(20-130s)

ePIB
(1-8min)

R1

Fig. 1  Disease Patterns. AD-DPs results from the comparison 
between HC and AD patients for FDG (first row), R1 (second row), 
ePIB(20–130 s) (third row), and ePIB(1–8 min) (fourth row). Blue and 
red colours indicate negative and positive voxel values, respectively. 
The closer to white, the closer the voxel value is to zero. All colour 
scales were adjusted to the same range

Table 2  Composition of principal components (PC) in the 
disease pattern (DP) of each imaging method

Included PCs PCs in DP Variance 
explained by 
DP (%)

FDG 5 1 24.2

R1 6 1, 2 30.5

ePIB(20–130 s) 7 1, 2, 3 33.8

ePIB(1–8 min) 4 1 29.1

Table 3  Volume, average, and standard deviation values of the AD-DPs for larger brain regions

Region Volume (cm3) FDG R1 ePIB(20–130 s) ePIB(1–8 min)

Brainstem 29.29 0.66 ± 0.33 0.41 ± 0.94 0.39 ± 0.63 0.19 ± 0.92

Frontal lobe 501.06 0.07 ± 1.05 0.05 ± 1.02 0.23 ± 0.77 0.26 ± 0.89

Occipital lobe 172.99 − 0.25 ± 0.76 − 0.11 ± 0.65 0.50 ± 0.79 0.36 ± 0.71

Parietal lobe 307.86 − 0.58 ± 1.23 − 0.41 ± 0.95 − 0.68 ± 1.01 0.00 ± 0.82

Temporal lobe 285.69 − 0.11 ± 0.81 − 0.23 ± 0.82 − 0.45 ± 0.84 0.03 ± 0.68

Cerebellum 180.89 0.73 ± 0.65 0.58 ± 0.89 0.77 ± 1.00 0.44 ± 0.83

Posterior cingulate cortex 6.38 − 1.30 ± 1.17 − 0.76 ± 0.91 − 1.16 ± 0.91 0.33 ± 0.82



Page 5 of 10Peretti et al. EJNMMI Research           (2022) 12:37 	

ROC curves
Figure  3 shows the ROC curves used to define the 
threshold that classifies subjects as AD patients or HC. 
For the FDG images, the optimal threshold found was 
1.1 with an area under the curve (AUC) of 0.93 (CI 
0.82–1.0). Meanwhile, all rCBF methods resulted in a 
similar AUC. R1 presented an AUC, of 0.86 (CI 0.7–
1.0), with a threshold for classification of 0.35. Then, 
ePIB(20–130 s) had a threshold of 0.69 and an AUC of 
0.85 (CI 0.68–1.0). Finally, ePIB(1–8 min) resulted in a 
threshold of 0.58 and an AUC of 0.85 (CI 0.69–0.99).

Distribution of scores
Figure 4 depicts the distribution of scores for each sub-
ject for all methods used in this analysis. In general, the 
AD group of patients showed a higher score than the 
other groups, followed by the MCI+ subjects. The resem-
blance between group scores distributions of rCBF and 
FDG methods was also notable.

In general, all image methods presented a statisti-
cally significant different distribution of scores between 
groups (ANOVA, p < 0.05). After correction for mul-
tiple comparisons, FDG scores (Fig.  4, top left) were 
significantly different between AD and MCI+ (differ-
ence between groups: 1.48 ± 0.47, p = 0.02), MCI− 
(1.53 ± 0.50, p = 0.02), and HC (2.31 ± 0.43, p < 0.01) 
groups. Meanwhile, the rCBF methods only presented 
statistically significant differences between the AD and 
HC groups. R1 (Fig. 4, top right) showed a difference of 
means of 1.16 ± 0.34 (p < 0.01); ePIB(20–13  s) (Fig.  4, 
bottom left) of 1.11 ± 0.33 (p < 0.01); and ePIB(1–8 min) 
(Fig.  4, bottom right), 0.77 ± 0.28 (p = 0.04). However, a 
trend was found in R1 (0.94 ± 0.39, p < 0.1) and ePIB(20–
130  s) (0.92 ± 0.39, p < 0.1) scores for the differentiation 
between AD and MCI− subjects. Mean, standard devia-
tion, standard error of the mean, and range of scores for 
all groups of subjects for each method can be seen in 
Additional file 2: Table S2.

Correlation between rCBF and metabolism scores
The scatter plots presented in the left column of Fig.  5 
suggest a moderate correlation between the FDG and R1 
scores, and a low correlation between FDG and the other 
rCBF methods. FDG scores were moderately predictive 
of the R1 scores (R2 = 0.58, p < 0.01, slope = 0.53, inter-
cept = −  0.05), while ePIB(20–130  s) scores presented 
a weak correlation (R2 = 0.34, p < 0.01, slope = 0.41, 
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intercept = 0.07), and ePIB(1–8  min) showed the 
smallest correlation (R2 = 0.24, p < 0.01, slope = 0.28, 
intercept = 0.13).

Bias assessment
The bias found between the FDG and rCBF scores pre-
sented a linear relationship (Fig. 5, right column): while 
the lower scores were overestimated, the higher rCBF 
scores were underestimated when compared to FDG. 
Linear regressions of Bland–Altman plots resulted in a 
slope of − 0.47 and an intercept of − 0.05 for R1; − 0.59 
and 0.07 for ePIB(20–130  s); and −  0.72 and 0.13 for 
ePIB(1–8 min) [31, 32].

Discussion
This study aimed to investigate the use of rCBF images 
derived from dynamic PIB PET scans as an alternative to 
FDG through an SSM/PCA analysis for classifying AD 
patients versus HC subjects. The metabolic pattern gen-
erated by FDG images has been identified as an appro-
priate tool to identify AD patients [2, 20, 23]. Due to the 
correlation between metabolism and blood flow [33], 
a similar characteristic AD pattern was expected from 
rCBF images [20]. Furthermore, rCBF measures have 

been shown to correlate, at least partially, with cognitive 
impairment in AD patients [34], increasing the impor-
tance of these images in AD classification. Therefore, 
the use of amyloid-derived rCBF images as a proxy for 
an FDG scan is an attractive alternative that may reduce 
study costs, decrease patient discomfort, and minimize 
radiation exposure because both rCBF and specific bind-
ing information can be driven from a single dynamic PET 
scan.

The generated DPs presented a cortical decrease in flow 
[R1 and ePIB(20–130  s)] and metabolism (FDG) in AD 
patients when compared to HC subjects. As previously 
mentioned, this similarity between patterns was expected 
due to the existent relationship between metabolism and 
blood flow [5, 9] and due to previous studies using voxel-
based univariate analysis of the images [9]. Still, some dif-
ferences between the patterns were found in regions that 
are already known to be hyperperfused, which is consist-
ent with previously published results [9, 20, 35]. However, 
the most interesting point to observe from this analysis is 
the difference in pattern from the ePIB(1–8 min) as com-
pared to the other methods (Fig.  1). This time interval 
between 1 and 8 min has been recommended as the time 
interval with the best visual correlation with FDG, based 
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on the correlation of its regional values and those of FDG 
images [16]. However, the generated AD-DP in this study 
shows a pattern more closely related to the amyloid dep-
osition pattern of AD patients, which showed increased 
signal in grey matter cortical regions in scans acquired 
later during the scan [20]. Furthermore, a previously 
published SPM voxel-based analysis of the same images 
showed that this time interval was also not able to dif-
ferentiate between patients and controls [9]. This result 
is consistent with the hypothesis that this time interval 
is too long, and the signal is already affected by Aβ bind-
ing, resulting in an image that does not reflect purely 
rCBF [9], Therefore, for the remaining of this discussion, 
ePIB(1–8 min) data will no longer be addressed.

The distribution presented in Fig.  4 showed that all 
methods presented significantly different scores between 
the AD and HC groups. However, only FDG was capa-
ble of distinguishing the group of AD patients from 
MCI+ and MCI− subjects. Even though MCI + is also 
known as ‘MCI due to Alzheimer’, no method was able 
to generate subject scores that were statistically differ-
ent between MCI+ and MCI− or HC groups. This could 

be due to the fact that rCBF images are less sensitive 
to subtle changes than metabolic scans [9] and, there-
fore, metabolism images might be able to capture subtle 
changes that are not reflected by rCBF. However, a larger 
dataset of patients might increase the stability of the DP, 
which may allow for these subtler changes to be cap-
tured. Furthermore, an independent testing group of AD 
and HC subjects could better assess the accuracy of the 
generated AD-DP. Other automated methods for image 
assessment for AD classification have shown to be more 
sensitive to assess disease progression of MCI patients 
[1, 36]. Moreover, the same set of subjects used in this 
study were previously analysed using an automated tool 
for assessment of AD, which resulted in a good contrast 
between AD patients and HC subjects but could not dis-
tinguish between MCI subjects as well [10]. Therefore, 
these patients were added to this analysis to evaluate the 
use of the SSM/PCA technique to evaluate their AD-DP 
expression.

Moreover, Fig. 4, in combination with Fig. 5, shows a 
smaller range of rCBF scores when compared to metab-
olism. This suggests that the reduction in FDG uptake 
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in AD patients is greater than the reduction in R1 and 
ePIB(20–130 s) when compared to HC subjects. There-
fore, the AD-DP expression through the subject scores 
results in smaller values for rCBF methods and ensues a 
greater bias for larger scores when compared with FDG. 
Moreover, the more extensive range of scores shown in 
Fig.  4, the higher AUC, and the largest correlation to 
metabolism scores indicate that R1 might be the most 
suited rCBF method for generating an AD-DP through 
SSM/PCA as a proxy for FDG scans. In addition, R1 
images provide a pure measure of relative radiotracer 
flow due to the inherent quantitative aspect of para-
metric images, while SUVR shows a mixture of spe-
cific and non-specific binding, free tracer in tissue, and 
blood signal, which might have affected the ePIB(20–
130  s) performance for subject identification [37]. 
Finally, Fig. 5 shows that the bias on rCBF scores when 
compared to FDG is negative for higher scores and 
positive for lower scores, which further indicates that 
rCBF scores are not as robust as the FDG scores when 
differentiating between AD and HC. Further studies 
using other techniques for estimating rCBF images are 
worthy of exploration, as some of them might improve 
results even for MCI subjects. However, as SUVR is the 
most frequently used approach in clinical research due 
to its simplicity, it was the one chosen for this study.

Although the results presented in the previous sec-
tion suggest a good correlation of AD-DPs and subject 
scores between rCBF and FDG, it is important to men-
tion that, from a physiological point of view, there is 
no perfect equivalence between them. However, these 
results sustain the use of SSM/PCA as a classification 
technique to be used not only with FDG PET scans and 
AD, but also for other types of images and diseases. 
Furthermore, this analysis was performed using PIB 
as a radiotracer, but similar results can be expected for 
other 18F-labelled amyloid radiotracers such as [18F]
Florbetapir, [18F]Florbetaben, and [18F]Flutemetamol 
[38]. Yet, further research is necessary to confirm this. 
Moreover, this study was performed on a relatively 
small sample of subjects. Larger cohorts might yield 
more accurate results by providing a more stable pat-
tern, which might find statistically significant differ-
ences where this study found only a trend, such as a 
significant difference between AD and MCI+ patients. 
In addition, longitudinal datasets might be useful for 
analysing the efficiency of SSM/PCA in predicting 
the conversion of MCI subjects to AD. Finally, SSM/
PCA might be an interesting technique to be further 
explored for the identification of patients both in the 
clinic and in research settings, since it allows for testing 
of new subjects that are not related to the ones used to 
generate the DP.

Amyloid PET imaging is already used in clinical set-
tings for the assessment of deposits to identify AD 
patients. A dynamic scan may provide rCBF images 
that, in some cases, might be enough for an assessment 
on neurodegeneration, dismissing the need of a second 
FDG PET scan for this analysis. Performing a single scan 
reduces patient burden and exposure to radiation, and 
costs in terms of FDG production and scanner time. 
Furthermore, in a clinical setting, the assessment of PET 
images is mostly performed visually by an expert neuro-
radiologist or neurologist. Previous studies have found 
that visual assessment relies on the reader’s experience 
and even then, the agreement between the readers is 
not always optimal [39]. An automated technique such 
as the SSM/PCA has the potential of resulting in more 
consistent and accurate subject assessment. Moreover, by 
providing scores that quantify the expression of the DP 
in a subject, this technique may be used for classifying 
subjects in stages. Finally, SSM/PCA allows for the gen-
eration of a centre-specific DP that can be generated with 
both FDG and rCBF images. This enables the comparison 
of rCBF images with more than just an FDG pre-set data-
base that is available in software packages available for 
the clinic. However, the technique proposed in this study 
requires a local dataset of patients and controls for the 
generation of the disease characteristic patterns, as this 
technique has been shown to be sensitive to scanner and 
reconstruction effects [40], which may not be available in 
all imaging centres.

While rCBF images might be used as a surrogate for 
FDG PET in more extreme cases, it has been shown not 
to fully capture the smaller changes in patients when 
compared to controls. This is a key point when identify-
ing patients in a preclinical phase, for example. Amyloid 
imaging is the first recommended imaging modality (after 
structural imaging) in cases of suspected AD diagnosis 
[41]. However, in cases where amyloid imaging is incon-
clusive, to exclude possible amyloid positive co-patholo-
gies, to make a short-term prognosis, or to make a better 
assessment of the stage of the disease, FDG PET is still 
recommended. By performing a dynamic scan instead of 
a static one, it is possible to generate rCBF from the same 
scan, avoiding putting the subject through the burden of 
a second PET scan.

Conclusion
The aim of this study was to explore whether rCBF images 
derived from dynamic PIB PET scans can be used as an 
alternative for an FDG PET scan for the identification of 
AD patients using SSM/PCA as the image analysis tech-
nique. From the different approaches to generate the rCBF 
images, R1 parametric maps have shown the best correla-
tion with FDG and the best classification ability between 
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groups. However, the sensitivity of R1 AD-DP scores is not 
as great as FDG scores. This suggests that R1 parametric 
maps can be an alternative for an FDG PET scan for diag-
nostic purposes when using SSM/PCA as an initial assess-
ment of AD patients. A second FDG PET scan might be 
necessary in more initial stages of neurodegeneration or to 
differentiate between other disorders.
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