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a b s t r a c t

Empirical results in software engineering have long started to show that findings are unlikely to be
applicable to all software systems, or any domain: results need to be evaluated in specified contexts,
and limited to the type of systems that they were extracted from. This is a known issue, and requires
the establishment of a classification of software types.

This paper makes two contributions: the first is to evaluate the quality of the current software
classifications landscape. The second is to perform a case study showing how to create a classification
of software types using a curated set of software systems.

Our contributions show that existing, and very likely even new, classification attempts are deemed
to fail for one or more issues, that we named as the ‘antipatterns’ of software classification tasks. We
collected 7 of these antipatterns that emerge from both our case study, and the existing classifications.

These antipatterns represent recurring issues in a classification, so we discuss practical ways to
help researchers avoid these pitfalls. It becomes clear that classification attempts must also face
the daunting task of formulating a taxonomy of software types, with the objective of establishing
a hierarchy of categories in a classification.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In the context of empirical software engineering research,
he main goal of empirical papers is to achieve the generality
f the results. The most common approach in doing so is to
nalyze projects having different application domains to decrease
hreats due to the generalizability of the results: as only a few
xamples, the work in Mojica et al. (2013) analyzes a collection
f 200,000 mobile systems, (Wen et al., 2019) examples 1500
itHub systems based on their popularity, while (Zhao et al.,
017) is based on 165,000 GitHub projects based on the Travis CI.
s a side effect, the domain, context and uniqueness of a software
ystem have not been considered very often by researchers as
riving factors for detecting similarities or differences between
oftware systems.
In parallel, there has been a call for ‘context-driven software

ngineering research’ (Briand, 2012; Briand et al., 2017): in the
esting and verification fields, for example, the set of assump-
ions is obviously specific to the systems under test, and those
ssumptions are based on the type of system, the development
rocess, and other factors. Although the diversity and context of
oftware systems have received some attention in the past (Vas-
allo et al., 2018; Easterbrook et al., 2008), contemporary research
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in the computing field is almost entirely application-independent.
This has not always been the case — early in the computing
era, ‘there were totally separate application domains (for example,
scientific and data processing) and the research focus was often
application-specific ’ (Glass and Vessey, 1995).

From the practitioners’ point of view, categories and types
of software systems are an important aspect to consider. Well
known collaborative platforms like GitHub, that contain very
large amounts of software repositories, show an increasing need
to search and retrieve repositories based on their semantics.
As a solution, GitHub has started to propose a service called
Topics,1 that allows developers to annotate their projects man-
ually, and other users to search software via these topics. GitHub
also provides the means to create Collections2 (previously named
Showcases), that is a curated list of topics where good quality
repositories are grouped and showcased under the same um-
brella. However, both these solutions have various issues: for
example, Topics are only optional features to a hosted software
project, while GitHub does not suggest or restrict its usage in
any way. As a result, there are plenty of similar (or identical,
with a different morphological form) topics, making the search
less effective. On the other hand, the Collections list is manually
curated; therefore, it is not scalable to all topics, reducing the
effectiveness of finding repositories, especially those annotated

1 https://github.com/topics
2 https://github.com/collections
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Pipeline used to identify the antipatterns in software application domain classification datasets.
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with non-popular topics. Furthermore, developers tend to not use
these tools, or using topics that are not helpful to retrieve their code
(e.g., using programming languages).

The call for context-driven software engineering research, easier
retrieval of relevant projects using semantics, and the extra burden
put on the developers to label their project with all the correct labels
requires a more automated way to label software projects.

From past research and efforts, there have been several ap-
proaches to perform software classification, and depending on
what seed classification has been used as a stepping stone. In
some cases, the seed was initiated with a top-down approach,
i.e., using an external classification (Linares-Vásquez et al., 2014;
Soll and Vosgerau, 2017): researchers would then use the cat-
egories (or labels) of the given classification to fit a sample of
software projects. In other cases, categories were generated by
the researchers (Borges et al., 2016), and the software projects
assigned to the categories using again a top-down approach.
Finally, a bottom-up approach was used when researchers used,
as categories, the labels assigned by developers to their own
software (Capiluppi and Ajienka, 2020).

Moreover, there are various artifacts that can be used to perform
the classification, from README files, to the source code. These two
approaches are very different in terms of difficulty, for example the
README might be lacking or containing irrelevant information about
the repository content like information regarding the building of the
code. Whereas the source code, there are hundreds or thousands of
files, each containing some relevant semantic information that needs
to be aggregated keeping track not only about the frequency but also
about the interactions of the files.

The misclassification, or lack of it, has various implications both
on the repository, and also on the research that makes use of the
labels. The developer might struggle to find contributors for their new
and less popular repositories, as these are unable to discover and
use the code. Furthermore, research that uses poorly labeled projects
might infer wrong patterns and give bad advice to practitioners.

In this work, we evaluate several existing software classifica-
tions proposed in the literature. The selection criteria of these
works comprise (i) research papers that attempt a classification of
application domains, and (ii) research works that made their data
available. While analyzing the resulting body of research works,
we came across a number of recurring issues that researchers
struggled with. These represent the most common antipatterns in
classifying software systems.

Similarly to the work in Kalliamvakou et al. (2016) that high-
lighted the pitfalls of mining software repositories, the goal of
our work is to analyze existing classifications from past datasets,
and to present a list of common antipatterns that researchers
encountered when creating them.

In this work we focus on the following research questions:

RQ1 — How is the quality of existing software classification
datasets?
 c

2

RQ2 — What are the antipatterns of creating a software classi-
fication dataset or a taxonomy of software application
domains?

RQ3 — How can we improve software classifications and move
towards a universal taxonomy that can be actively shared
and used?

This paper presents two main contributions: first, we per-
form a case study attempting to create a classification for soft-
ware systems that minimizes common issues present in current
datasets’ classification. Second, using the acquired experience
and inductive analysis, we distil a set of 7 common antipat-
terns that researchers have encountered while attempting to clas-
sify software systems. These antipatterns might have happened
(and are likely to happen again) when the researchers (i) create
their own labels, (ii) use a pre-defined classification of labels, or
(iii) use the labels manually entered by software developers. A
visual representation of our pipeline is presented in Fig. 1. For the
sake of replication, we have made all our data3 and code4 publicly
available.

The rest of this work is structured as follows: in Section 2 we
will give an overview of previous work with a focus on the used
classifications. Using the evidence obtained from the analysis of
the datasets, in Section 3 we summarize the antipatterns when
creating a software classification. In Section 4 we present a case
study on creating a software classification and resolving some
issues. In Section 5 we discuss the threats to validity to our
work. Finally, we present our conclusions and discuss future
developments for our work in Section 6.

2. Related work and existing taxonomies

There have been several attempts in the literature focusing
on software classification: in our paper we choose to only focus
on those performing a classification of application domains. In
general, all those previous works use their own datasets and
different classifications. This generates an even more broad issue:
it becomes hard to have a real applicability of these approaches,
or an agreement on a shared benchmark.

While this paper is not a systematic literature review, the
analyzed works have been selected using a similar approach to
a systematic literature review. We retrieved the past works that
(1) focused on the classification of software into application do-
mains, and that (2) are proposing a new dataset. In order to
erform this query, we performed an initial search on computer

science bibliography services like dblp, Google Scholar, and Arxiv. We
used the following terms: ‘software categorization’, ‘software clas-
ification’, ‘github repository classification’, and ‘software similarity’.
e perform a first stage to validate the relevance of each work,

3 http://doi.org/10.5281/zenodo.5018234
4 https://github.com/SasCezar/ComponentSemantics/blob/dev-semantic/

omponentSemantics/class_term_based_classification.ipynb

http://dx.doi.org/10.5281/zenodo.5018234
https://github.com/SasCezar/ComponentSemantics/blob/dev-semantic/componentSemantics/class_term_based_classification.ipynb
https://github.com/SasCezar/ComponentSemantics/blob/dev-semantic/componentSemantics/class_term_based_classification.ipynb


C. Sas and A. Capiluppi The Journal of Systems & Software 190 (2022) 111343

d
e

i
T
p
e
b
o

a
i
T

s
d
l

2

A
t
g
(

2
g
d
a
a
o
p

(
n
U
f
e
J
a

a
c
m
d
f

Table 1
List of works divided by the different data source used.
Data source Works

Source code Kawaguchi et al. (2004), Tian et al. (2009),
Linares-Vásquez et al. (2014), LeClair et al. (2018),
McMillan et al. (2012), Vásquez et al. (2016), Altarawy
et al. (2018), Theeten et al. (2019) and Ohashi and
Watanobe (2019)

Other project data Vargas-Baldrich et al. (2015), Sharma et al. (2017), Soll
and Vosgerau (2017), Nguyen et al. (2018), Zhang et al.
(2019), Di Sipio et al. (2020), Izadi et al. (2020) and
Borges et al. (2016)

we filter on the results using the title and abstracts. The works
that passed the first filtering were subsequently used to perform
a manual forward and backward snowballing for further relevant
papers. Works that are case limits, were kept if their method or
ataset can be used to perform software classification (e.g., Theeten
t al., 2019; Borges et al., 2016).
The list of papers that form the result of our search are listed

n Table 2, and it spans a window of 15 years (2006 to 2020).
he approaches used to perform the classification task of software
rojects in the retrieved works varies: from project metrics (Liu
t al., 2018), to source code (Linares-Vásquez et al., 2014), and
inary data (Escobar-Avila et al., 2015). In this paper, we focus
n the approaches based on:

(A) source code; and
(B) other project data (e.g., README files),

s we are interested in the classification task using semantic
nformation, and structural (can be extracted from source code).
able 1 contains a list of the works divided by their approach.
Below we provide, for each of the used information source a

ummary of the representative works with a focus on the work’s
ataset. A more in detail review of the software classification task
andscape is presented in Auch et al. (2020).

.1. Source code approaches

One of the initial works on software classification is MUD-
Blue (Kawaguchi et al., 2004), which applied information re-
rieval techniques to classify software into 6 SourceForge cate-
ories. In particular, the authors used Latent Semantic Analysis
LSA), on the source code identifiers of 41 projects written in C.

Following MUDABlue, Tian et al. proposed LACT (Tian et al.,
009), an approach based on Latent Dirichlet Allocation (LDA), a
enerative probabilistic model that retrieves topics from textual
atasets, to perform the classification task from the identifiers
nd comments in the source code. In addition, the authors use
heuristic to cluster similar software. The authors use a dataset
f 43 examples divided in 6 SourceForge categories. The list of
rojects is available in their paper.
A different approach was adopted in Linares-Vásquez et al.

2014), the authors used API packages, classes, and methods
ames and extracted the words using the naming conventions.
sing the example in Ugurel et al. (2002), the authors use in-
ormation gain to select the best attributes as input to differ-
nt machine learning methods for the task of classifying 3286
ava projects into 22 SourceForge categories. Their dataset is not
vailable anymore.
LeClair et al. (2018) used a neural network approach. The

uthors use the project name, function name, and the function
ontent as input to a C-LSTM (Zhou et al., 2015), a combined
odel of convolutional and recurrent neural networks. Their
ataset is made of 9804 software projects, with the annotations
rom the Debian packages repository. The authors only analyzed
3

programs containing C/C++ source code, divided into 75 cate-
gories: many of these categories have only a few examples, and
19 are duplicate categories with different surface form, more
specifically ‘contrib/X’, where X is a category present in the list.

CLAN (McMillan et al., 2012) provides a way to detect similar
apps based on the idea that similar apps share some semantic
anchors. Given a set of applications, the authors create two terms-
document matrices, one for the structural information using the
package and API calls, the other for textual information using
the class and API calls. Both matrices are reduced using LSA,
then, the similarity across all applications is computed. Lastly, the
authors combine the similarities from the packages and classes
by summing the entries. The data is not available. In Vásquez
et al. (2016), the authors propose CLANdroid, a CLAN adaptation
to the Android apps domain, and evaluate the solution on 14,450
Android apps. Their dataset is not available.

Another unsupervised approach was adopted by LASCAD (Al-
tarawy et al., 2018), a language agnostic classification and simi-
larity tool. As in LACT, the authors used LDA over the source code,
and further applied hierarchical clustering with cosine similarity
on the output topic terms matrix of LDA to merge similar top-
ics. The authors also proposed two datasets: an annotated one
consisting of 103 projects divided in 6 categories (from GitHub
Collections) with 16 programming languages (although many
languages have only 1 example), and an unlabeled one which is
not available.

Taking a more Natural Language Processing (NLP) inspired
approach, based on the distributional hypothesis: ‘A word is char-
acterized by the company it keeps’ Firth (1957), Theeten et al.
(2019) proposed a neural network solution to create dense rep-
resentation (i.e., embeddings) of libraries. The authors used the
co-occurrences of import statements of libraries to learn a seman-
tic space where libraries that appear in the same context are close
(similar) in the space. The authors do not perform classification,
therefore, their dataset is not annotated, however, the learned
representation can be used to compute similarity and also train
a classification model.

Differently from the previous works, Ohashi and Watanobe
(2019) used the C++ keywords and operators, represented as
a binary matrix, as input to a convolutional neural network to
assign the correct category out of 6 in the computer science and
engineering field. The dataset is made of 40,023 students written
source code for assignment/exams (short, single file, programs).
Their dataset is not publicly available.

2.2. Other approaches

The following is a review of the works that have been based
on software artifacts other than source code. Following MUD-
ABlue, Vargas-Baldrich et al. (2015) used an approach based on
bytecode, the external dependencies of the project and informa-
tion from Stack Overflow to generate a tag cloud. Their dataset is
no longer available.

Sharma et al. (2017) used a combined solution of topic model-
ing and genetic algorithms called LDA-GA (Panichella et al., 2013).
The authors apply LDA topic modeling on the README files, and
optimize the hyper-parameters using genetic algorithms. While
LDA is an unsupervised solution, humans are needed to annotate
the topics from the identified keywords. The authors release a list
of 10,000 examples annotated by their model into 22 categories,
which was evaluated using 400 manually annotated projects. It is
interesting to notice that half of the projects eventually end up in
the ‘Other’ category, which means that they are not helpful when
training a new model.

ClassifyHub (Soll and Vosgerau, 2017) used an ensemble of 8
Naïve classifiers, each using different features (e.g. file extensions,
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Table 2
Summary of the different datasets used in literature.

Work Year Data source Available Task Dataset stats

Examples Categories Balance Min Max

MUDABlue (Kawaguchi et al., 2004) 2006 Source code List onlya Classification 41 6 0.91 2 13
LACT (Tian et al., 2009) 2009 Source code Yes Classification 43 6 0.97 4 9
CLAN (McMillan et al., 2012) 2012 Source code No Similarity 8310 – – – –
Linares-Vásquez et al. (2014) 2014 Source code No Multi-label class. 3286 22 0.96b 303 1115
Borges et al. (2016) 2016 – List only Classification 2500 6 0.88 103 837
CLANdroid (Vásquez et al., 2016) 2016 Multimodal No Similarity 14,450 – – – –
Sharma et al. (2017) 2017 README List only Classification 10,000 (5360)c 22 0.60 (0.91)c 85 670c

ClassifyHub (Soll and Vosgerau, 2017)d 2017 README List only Classification 208 5 0.88 95 19
LeClair et al. (2018) 2018 Source code Yes Classification 9804 75 0.73 1 3534
LASCAD (Altarawy et al., 2018) 2018 Source code Yes Classification 103 6 0.95 7 26
CrossSim (Nguyen et al., 2018) 2018 Multimodal Yes Similarity 582 – – – –
Import2Vec (Theeten et al., 2019) 2019 Imports Embedding Repr. Learning – – – – –
Ohashi and Watanobe (2019) 2019 Key and Op No Classification 40,023 23 0.93 4713 10769
HiGitClass (Zhang et al., 2019) — AI 2019 Multimodal Yes Hierarchical class. 1596 3–13e 0.58–0.87e 48–1213e 21–361e

HiGitClass (Zhang et al., 2019) — Bio 2019 Multimodal Yes Hierarchical class. 876 2–10e 0.87–0.91e 261–27e 615–210e

Di Sipio et al. (2020) 2020 README Yes Multi-label class. 12,060 134 1 100 100
Repologue (Izadi et al., 2020) 2020 Multimodal No Multi-label class. 152,000 228 – – –
Awesome-Java 2021 – Yes Classification 495 69 0.93 1 39
Reduced AJ 2021 Source code Yes Classification 495 13 0.93 8 100

aA reproduced dataset is available in LACT (Tian et al., 2009)
bMulti-labels, and also numbers in the paper table do not sum to the number of examples used for the measure
cAfter removing the ‘Others’ class that contains almost half of the examples in the dataset
dInformatiCup 2017 Dataset
eTwo level hierarchy. First value is for the first level, the other for the second level of the taxonomy.
EADME, GitHub metadata and more) to perform the classifica-
ion task. The authors use the InformatiCup 20175 dataset, which
ontains 221 projects unevenly divided into 7 categories.
Nguyen et al. (2018) proposed CrossSim, an approach that

ses the manifest file and the list of contributors of GitHub Java
rojects: this data is used to create a RDF graph where projects
nd developers are nodes, and edges represent the use of a project
y another or that a developers is contributing to that project.
he authors used SimRank (Jeh and Widom, 2002) to identify
imilar nodes in the graph. According to SimRank, two objects are
onsidered to be similar if they are referenced by similar objects.
HiGitClass (Zhang et al., 2019) used an approach for modeling

he co-occurrence of multimodal signals in a repository (e.g. user,
ame of repository, tags, README and more). The authors per-
ormed the annotation according to a taxonomy (hierarchical
lassification) that is given as an input with keyword for each
eaf node. The authors released a dataset with taxonomies for
wo domains: an artificial intelligence (AI) taxonomy with 1600
xamples, and a bioinformatics (Bio) one with 876 projects.
Di Sipio et al. (2020) used the content of the README files and

ource code, represented using TFIDF, as input to a probabilistic
odel called Multinomial Naïve Bayesian Network to recommend
ossible topics. Given its premises, the work is defined as a
ulti-label classification. The authors used 120 popular topics

rom GitHub, and released a dataset of around 10,000 annotated
rojects in different programming languages.
Repologue (Izadi et al., 2020) also adopted a multimodal ap-

roach. The authors used project names, descriptions, READMEs,
iki pages, and file names concatenated together as input to
ERT (Devlin et al., 2019), a neural language model, that creates
dense vector representation (i.e., embeddings) of the input

ext. Then, a fully connected neural network was applied to
hese embeddings to predict multiple categories. Their dataset
currently unavailable) contains 152K repositories in various lan-
uages classified using 228 categories from GitHub’s Collections,
hich should be similar as the ones from Di Sipio et al. (2020).
Finally, Borges et al. (2016), albeit not performing a classifica-

ion of software repositories, made a list of 2500 projects (anno-
ated in 6 domains/categories) available for other researchers.

5 https://github.com/informatiCup/informatiCup2017
4

2.3. Summary of related work

Table 4 presents a summary of the datasets used in the lit-
erature. A single file with all the categories and the number
of examples for each of the analyzed works is available in the
replication package for inspection or further analysis. We use the
following attributes to describe and analyze each dataset:

• Work: the publication details where the dataset is proposed
or used for the first time;

• Year: the publication year;
• Data Source: the type of information used to perform the

classification task from the software systems. This was fur-
ther coded into the following:

– Source Code: when the authors of the research directly
used the source code of a system to infer (i.e., bottom
up) or assign (i.e., top down) the software categories;

– README: when the authors used the textual descrip-
tion of a software project of the README file to infer
or assign one or more categories;

– Imports: when the authors focused on what external
libraries have been imported into a software project to
infer or assign a category;

– Key and Op, when the authors used the predefined or
reserved words of a specific programming language
(e.g., C++ ), along with the operators used in the
source code;

– Multimodal (Baltrusaitis et al., 2019): when the authors
used a combination of several sources (e.g., Source Code
and Wiki pages).

• Available: whether the dataset is available or not. We dis-
tinguish whether the available part is the list of annotated
projects, or the list and the used files are;

• Task: the type of task that can be performed using the
dataset. This attribute has the following possibilities:

– Classification: assign one of n mutually exclusive cate-
gories to the input project;

– Multi-Label Classification (Tsoumakas and Katakis, 2007):
assign to a project one or more categories from set of n;

https://github.com/informatiCup/informatiCup2017
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– Hierarchical Classification (Gordon, 1987): assign m of
n categories as for the Multi-Label problem, however
there is a hierarchy among the categories;

– Similarity: the task is to retrieve software that are simi-
lar to one given as input;

– Representation Learning (Bengio et al., 2013): a more
general case of the Similarity, in this case the goal is
to create a dense representation (embedding) that pre-
serves the similarities among projects, and it can also be
used for downstream tasks.

• Examples: the total amount of examples in the dataset;
• Categories: the number of different categories used to clas-

sify the software into, higher scores are not always better as
we will see later on;

• Balance: the level of class balance in terms of examples. It is
computed using the Shannon Diversity Index (or Normalized
Class Entropy Kalousis et al., 2004 in Machine Learning), a
normalized entropy (Shannon, 1948) value:

Balance =
−

∑k
i=1

ci
n log ci

n

log k
where the numerator is the entropy for a dataset of size n
with k categories each of size ci, and the denominator is the
perfect case of a dataset with balanced categories, used to
normalizes the values. The results range between 0 (e.g., a
completely unbalanced dataset with only one category con-
taining all the examples) and 1 (e.g., a perfectly balanced
dataset containing categories with the same amount of ex-
amples). A low score means that the dataset contains a
large number of categories that are not well represented
in examples, and therefore more difficult to perform the
classification task when encountered. This measure is not
suitable for cases where there is a large amount of classes with
many examples, and only a few classes with a small number of
examples;

• Min: the number of examples for the class with the least
amount of representation;

• Max: the number of examples for the largest class in the
dataset.

.4. Related work content analysis

The quantitative summarization of the previous section is not
ufficient to give us a complete idea of the datasets. In this section
e present the content of the categorizations in the selected
atasets. We will give an overview of their intended application,
nferred from the labels, and discuss in more detail the semantics
f the labels using word embeddings.
We use fastText (Bojanowski et al., 2017), a neural language

odel, as the method for extracting the vector representation
f the category: this is because it can handle out-of-vocabulary
ords, however, we obtained similar results also with BERT (De-
lin et al., 2019) and Stack Overflow (Efstathiou et al., 2018)
mbeddings. In Fig. 2, we can see the distribution of similari-
ies among categories, for each dataset. On the one hand, it is
ifficult to say anything definitive of the low similarity outliers,
s terms from different domains might have low similarity; on
he other hand, for the high similarity ones, these mostly result
n categories that are in a hierarchical relationship or are highly
elated.

• MUDABlue: it has a very small categorization, with a fo-
cus on developers containing categories like ‘Compilers’,
‘Editor’, and a very specific one ‘xterm’. However, it also con-

tains labels that are not relevant to the others, in particular

5

Fig. 2. Cosine similarity between labels using fastText embeddings.

‘Boardgame’. Overall the terms are not too similar between
themselves, with the only outlier being the pair ‘xterm’ and
‘Compilers’ of 0.46. And the lowest similarity being among
the ‘Boardgame’ label, and ‘Editor’. Given its small size, we
can see the high spread as a lack of specificity.

• LACT: it has a similar domain as MUDABlue, but with more
terms. It is also more general, as it contains several terms
that are broader and less specific. We can find: ‘Database’
and ‘Editor’, as in MUDABlue, ‘Terminal’, which can be con-
sidered a more general version of ‘xterm’. The other terms
are more cohesive compared to MUDABlue, for example ‘E-
Mail’ and ‘Chat’. In this case, we do not find any outlier
classes with a high similarity, and the distribution is quite
narrow.

• Vasquez: it proposes a much more general taxonomy, as
is a subset of SourceForge. Its labels span multiple fields
in the Computer Science domain, some more general: ‘Sci-
entific’, ‘Networking’, and ‘Security’: others more specific:
‘Indexing’, and ‘Compilers’. Given its well defined focus, and
a higher number of topics compared to previous dataset,
we find some labels that have a high similarity: ‘Compilers’
and ‘Interpreters’ result in a similarity of 0.52 while ‘Net-
working’ and ‘Communication’ are at 0.48. The latter are
co-hyponyms, so hyponyms that share the same hypernym,
while the former are related, as communication software
use networking technologies.

• LASCAD: smaller compared to Vasquez et al. while still using
Computer Science labels, they are not as complete and their
labels are more sparse and less related to each other. The
labels are: ‘Machine Learning’, ‘Data Visualization’, ‘Game
Engine’, ‘Web Framework’, ‘Text Editor’, and ‘Web Game’. As
expected from their surface form, the high similarity outliers
pairs are: ‘Web Game’ and ‘Game Engine’, with a similarity
of 0.60, and ‘Web Game’ and ‘Web Framework’ with 0.59.
These pairs, beside being related by sharing a term, are also
related in terms of usage.

• Ohashi: this is a very specific categorization, based on the
domain of science courses. The label set includes: ‘Combi-
natorial Optimization Problems’, ‘Number Theory Problems’,
‘Shortest Path Problems’. The overall high similarity be-
tween labels is due to the fact that all the labels contain the
‘Problems’ term.

• Sharma: it is a developers oriented classification. The terms
cover various areas, labels include: ‘Security’, ‘Music’, ‘Gam-
ing and Chat Engines’, and ‘Blogging’. Furthermore, there
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also some programming languages like ‘Lua’ and ‘Ruby re-
lated’.

• ClassifyHub: as a more educational oriented dataset, its
focus is not well defined, and it has high level labels in very
loosely related domains: ‘Homework’, ‘Documents’, ‘Devel-
opment’, ‘Education’, and ‘Website’.

• HiGitClass: their two datasets are very specific, one focusing
on AI subfields, while the other is focused on Bioinformatics.
Labels in the AI dataset include: ‘Computer Vision’, ‘NLP’,
and ‘Speech’ at level zero and ‘Image Generation’, ‘Super
Resolution’, ‘Language Modeling’ at the first level. In Fig. 2,
we can see the similarity among the labels at all levels.
The outliers are due to surface similarity among the la-
bels (e.g., ‘Text Classification’ and ‘Image Classification’). As
expected, the average similarity is higher, given the very
specific domain which as mentioned, also means that some
words are present in multiple labels, increasing this score.
In the Bioinformatics dataset, labels include: ‘Computational
Biology’ and ‘Data-Analytics’ at level zero, and ‘Sequence
Analysis’, ‘Database and Ontology’, and ‘System Biology’ at
level one. This dataset contains some labels that are repre-
senting two distinct concepts (e.g., ‘Database and Ontology’),
these labels are less informative when used as we are unsure
of which of the two concepts the annotated project belongs
to. The outliers show similar characteristics as for the AI
dataset.

• Di Sipio: their categorization is the most general as it is
a subset of the most common GitHub Topics. The top-
ics include application domains like ‘Machine Learning’,
‘Database’, and ‘Operating System’. Moreover, we find pro-
gramming languages like ‘Python’ and ‘Java’, and also com-
panies and services like ‘Google’ and ‘AWS’. Given the large
variety in labels, we also have many that are highly related
to others. We start with ‘Cryptocurrency’ and ‘Bitcoin’ with
similarity 0.84; followed by a list of database-related labels
with similarity in the range 0.75 − 0.80, these are ‘Post-
greSQL’, ‘SQL’, and ‘MySQL’, ‘NoSQL’, ‘MongoDB’. And also
‘Machine Learning’ with ‘Deep Learning’ having a similarity
of 0.77.

A complete list of the statistics and labels for each dataset is
vailable in our data replication package.6

.5. Discussion

We gathered several insights analyzing the results collected in
able 4: first, approximately one in three of the datasets are not
ublicly available; similarly, the authors have only released the
ist of categories in one in three of the datasets, which in most
ases is a sub-sample of a larger classification. In both those cases,
t is hard (if not impossible) to reproduce the steps that lead to
he classification: the unclear pre-processing has in fact a direct
ffect on the performance of the empirical approach (Uysal and
unal, 2014).
Second, we noticed the variance of the amount of examples

nd the resulting classifications: from 41 examples to 12K or
50K categories (although the latter are not publicly available),
nd from 6 to 134 or 228 (again, the latter are unavailable). The
igher bound of these stats shows acceptable numbers for both
he number of example and the number of different categories.

Furthermore, from the inspection of the categories shows some
ssues: in particular, they contain some categories that are not
elevant to the intended use of the dataset: software application
omain classification.

6 https://zenodo.org/record/5018234
6

From the observations above, it becomes clear that most ex-
isting classifications have fundamental issues that prevent them
from being further adopted by other researchers. While creating
a new classification, one should not only be able to reproduce
the steps performed by other researchers, but also annotate the
aspects that might represent common antipatterns for others
pursuing a similar goal.

Next, in Section 3, we collect all the practical insights gained
from analyzing the datasets and systematically present issues that
we found in other classifications.

3. Antipatterns

Using the evidence observed during our case study, and an
inductive analysis of the state of the art classification and tax-
onomies that comprises the information summarized in Table 2,
we highlight 7 antipatterns that researchers have faced so far
while creating a taxonomy or a classification of software. We also
add a discussion to each, and a suggested solutions to reduce the
effect of each of these antipatterns.

The analysis was performed with a particular focus on the
following characteristics:

• Coverage: each classification has its own domain, that can
be more specific or general. With this requirement, we can
evaluate if there are missing categories given the domain
of the classification, and therefore evaluate its completeness
and usability in its domain;

• Cohesion: this also relates to the domain of the classifica-
tion, however, with this requirement, we try to assess if
there are categories that do not belong to the domain;

• Consistency: lastly, we check if the classification has any
other issue that affect its consistency like duplicate or
overlapping categories, categories with a bad surface form
(e.g. in LeClair et al., 2018 there is ‘contrib/math’ and ‘math’),
or any other abnormality.

The results of the analysis is a list of 7 common antipatterns.
elow, we present a definition of each, and we will discuss them
ith instances of how each was observed in past literature and
ive some suggestions on how they can be fixed from a practical
oint of view.

T – Mixed Taxonomies: this issue happens when a label set
contains various categories from different taxonomies (e.g.,
Programming Languages and Application Domains).

G – Mixed Granularity: this issue emerges when categories
are found (or imposed) by researchers to a dataset, al-
though those categories belong to different levels (e.g.,
family, species, etc.) of a taxonomy.

C – Single Category: this is a very common issue in software
classifications, and it is based on simplifying a complex
artifact like a software system, and describing it with only
one category.

E – Non Exhaustive Categories: this issue is visible when the
categories chosen (i.e., top-down) or extracted (i.e., bot-
tom-up) by the researchers do not cover the entire spec-
trum of software categories.

RC – Non Relevant Categories: this issue is visible when re-
searchers choose or extract a subset of categories that is
not representative of the domain of the classification.

JC – Unnecessarily Joined Categories: this issue occurs when
researchers arbitrarily join or use several categories as one,
although those are a compound of two or more different
domains.

https://zenodo.org/record/5018234
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KC – Sink Category: this is another very common issue in soft-
ware classification, and it manifests itself when researchers
use a generic category for all the software systems that do
not fit any of the available categories.

.1. Mixed taxonomies — MT

Definition: The MT antipattern is defined as a label set consisting
f a mixture of two or more different taxonomies, each covering
different domain.
Possible Root Cause: We hypnotize, that one of the causes of this,
s the fear of the creators of the dataset to exclude labels, which
ight make it less appealing to the final users.
Potential Side Effects: This is problematic as the model has to per-
orm two or more tasks at the same time with only a single label
er project. Having multiple annotations for the same project is
ot a problem itself, the issue is having them mutually exclusive
s there might be labels diverging from each other.
Concrete Examples: One very common additional part of the
lassification is based on having programming languages in the
abels set. This is common to Sharma et al. (2017), LeClair et al.
2018) and Di Sipio et al. (2020), where, on average, 10% of the
xamples belong to programming language categories. It is also
ommon to have language specific frameworks or technologies
s part of the label set, as for example found in Di Sipio et al.
2020). In some cases, we might find a domain category like
Deep-Learning’, and specific framework or technology labels like
Django’ or ‘AWS’ that are part of the same classifications.
Potential Solution: A solution to this issue is to define the dif-
erent classifications independently, and use them as separate
asks when training models. Having projects annotated with dif-
erent classifications is useful as they can be used as auxiliary
asks to a multi-task learning (Caruana, 1997) model to improve
eneralizations (Ruder, 2017), and boost performance for all the
asks.

.2. Mixed granularity — MG

Definition: Having a dataset where some labels are very specific
or a field and others are more general, or worse, when labels are
n an ‘IS-A’ relationship, without these relations being explicitly
represented.
Possible Root Cause: This issue is caused by the difficulty in
creating such relations among all the labels in the categorization.
Potential Side Effects: The former can make the model catch
very specific terms, that are dependant on the sample in the
dataset, to distinguish between categories. The latter causes over-
lap between classes, making the classification harder or even
impossible when having a single annotation for the projects.
Concrete Examples: As examples of this antipattern in action,
we observed that Di Sipio et al. (2020) contains the ‘Cryptocur-
rency’ and ‘Bitcoin’ categories, that have a similarity of 0.84.
Similarly, Linares-Vásquez et al. (2014) contains the ‘Compilers’
and ‘Interpreters’ categories with a similarity of 0.52. Even in the
label sets where we could not detect hierarchical relations among
categories (for example in Linares-Vásquez et al., 2014), we also
observed more general categories like ‘Networking’ and ‘Web’
along with very specific ones like ‘Interpreters’ and ‘Indexing’.
Potential Solution: A solution to this antipattern is to perform
a refinement of the categories, and try to aggregate them, in
a hierarchical fashion, as we attempted in our case study. The
benefits are visible in Fig. 2, we have a lower number of outliers
with high similarity. Moreover, a more qualitative analysis to
evaluate the extent of the issue, is to assign a position in a
taxonomic ranking scale, like the ones used in biology, for each
7

category and evaluate the number of different ranks covered by
the used taxonomy.

3.3. Single category — SC

Software systems do not contain only one large feature or
functionality, but they are rather composed of many other smaller
parts, each with its own specific task. Most of the times software
systems are labeled with only one category, that limits the extent
to which researchers can learn from it.

Definition: We define the Single Category antipattern as the an-
notation of software with only one category, despite it being a
mix of different ones.
Possible Root Cause: This is caused by the annotation process
being time consuming and also by not being made by the devel-
opers, who will only need to annotate their own project.
Potential Side Effects: Different components of a project, each
with its own domain, influence what a model learns, making
it harder for it to assign a single category to all components,
especially when their semantic contribution to the model is dif-
ferent. This antipattern gets more evident when having a Mixed
Granularity (and also a Mixed Taxonomy) classification, where
one category is contained in another, however the system is
penalized by suggesting the other category.
Concrete Examples: This antipattern was detected in all datasets
except for the one of Linares-Vásquez et al. (2014) that performs
multi-label classification, and Di Sipio et al. (2020) and Izadi et al.
(2020) that performs recommendation of GitHub Topics.
Potential Solution: While the solution for this is obvious (e.g., ‘an-
notate each sample with multiple categories’), this is not that easy
to achieve as it requires extra effort from researchers and devel-
opers during the annotation phase. A less demanding approach
to achieve the goal would be to adopt the annotation approach
as in the GitHub Topics, however those topics are highly noisy as
mentioned previously. Therefore, this antipattern requires more
attention in future works.

3.4. Non exhaustive categories — NE

Definition: A taxonomy where there are terms that have a com-
mon parent, but one of them is lacking, is considered to be
suffering of this anti-pattern. For a classification to be usable, it
needs to cover the entire range in the domain. This is dependant
on the actual domain, and also changes over time, and therefore
has to be considered in the domain behind the classification.
Possible Root Cause: There are various possible causes, one is
that the missing term was not existent, or very uncommon, at
the time that the taxonomy was created (e.g., the Deep Learning
was not very common 20 years ago). Another cause is the how
the taxonomy was created, if a subsampling of another one,
then some terms might have been excluded by the process, if
the taxonomy is defined top-down, then the knowledge of the
domain by the authors has a big impact on the presence or not
of this antipattern.
Potential Side Effects: Having a classification that is too small or
with missing relevant categories is an issue as the classification
model performance can be affected based on what category is
missing, as the category can be easily differentiated if no similar
ones are present. Moreover, will make the approach less useful
for general uses.
Concrete Examples: Some example from the previous work are
the classifications of Kawaguchi et al. (2004), Tian et al. (2009)
and Altarawy et al. (2018) that are too small and lack many
categories, and in LeClair et al. (2018), where they have ‘In-
terpreters’ but not ‘Compilers’, they are also missing a ‘Secu-
rity’/‘Cryptography’ related categories. In Di Sipio et al. (2020), a
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itHub Topics based classification, we have ‘NLP’ but not ‘Com-
uter Vision’ in spite of it having 134 categories.
Potential Solution: Solutions to this are limited, as mentioned
reviously, application domains change over time with new cat-
gories appearing. A possible solution is to have a coarser granu-
arity, however, this might not be a possibility in some cases, and
ill also reduce the utility of the classification.

.5. Non relevant categories — NRC

Definition: This antipattern is based on assigning very fine-
grained categories to a project. This means that researchers have
in the past added categories to their taxonomies that are too
specific and non relevant.
Possible Root Cause: The presence of these categories can be
caused by a lack of a specific usage for the taxonomy; or a lack of
refinement of categories, when subsampling them from a larger
pool.
Potential Side Effects: This antipattern has the effect of making
the classification task too simple, since the categories have very
few shared terms (or even none) with the others. This can be
viewed as a special case of Mixed Taxonomies: however, the
categories that would be more relevant to those are usually one or
two, and, differently fromMixed Taxonomies, they are not related
to specific technologies or programming languages.
Concrete Examples: Examples of non relevant categories were
found for instance in Kawaguchi et al. (2004), where categories
are very different between each other (e.g., ‘Boardgame’ and
‘Editor‘); and in Soll and Vosgerau (2017), where there are a
‘Development’ category and a ‘Homework’ one. Another example
is from Di Sipio et al. (2020), where we find ‘Minecraft’ (i.e., a
popular videogame) as a category.
Potential Solution: A possible workout for this antipattern would
be to just remove these categories and either discard the exam-
ples along with it, or try to reassign them to a relevant one that
belongs to the domain that is being modeled.

3.6. Unnecessarily joined categories — UJC

Definition: This antipattern manifests itself in categories that join
several categories using the ‘‘and’’ conjunction (e.g., ‘Gaming and
Chat Engines‘). While this is a less common antipattern, having
a category that is a conjunction of two unrelated categories is
something to pay attention to.
Possible Root Cause: One cause for this is the high similarity
between the terms, and the low number of examples each of
them have, therefore joining them will make the number of
examples higher.
Potential Side Effects: The joint categories do not provide as much
of an information to the final user as having a single term: which
category of the two in the conjunction does the project belong
to?.
Concrete Examples: In Sharma et al. (2017) there are many exam-
ples of these joined categories: while some might be considered
acceptable (for example, ‘Data Management and Analysis’) others
form a weak combination (for example, ‘Gaming and Chat En-
gines‘ or ‘Build and Productivity tools’), since they join labels that
belong to very different categories.
Potential Solution: An easy solution for this antipattern would be
for researchers to avoid using conjunctions, or to use them only
when the categories are related. However, if the categories are
indeed related, there should be a more general (single) label to

group them under, which is a more appropriate solution.

8

Table 3
Summary of the antipatterns in previous works.

MT MG SC NE NRC UJC SKC

MUDABlue (Kawaguchi et al., 2004) ✓ ✓ ✓ ✓ ✓

LACT (Tian et al., 2009) ✓ ✓ ✓

Linares-Vásquez et al. (2014) ✓ ✓

Borges et al. (2016) ✓ ✓ ✓ ✓

LeClair et al. (2018) ✓ ✓ ✓ ✓

LASCAD (Altarawy et al., 2018) ✓ ✓ ✓

Ohashi and Watanobe (2019) ✓ ✓

Sharma et al. (2017) ✓ ✓ ✓ ✓ ✓

ClassifyHub (Soll and Vosgerau, 2017) ✓ ✓ ✓ ✓

HiGitClass (Zhang et al., 2019) ✓ ✓ ✓

Di Sipio et al. (2020) ✓ ✓ ✓

3.7. Sink category — SKC

Definition:. This is a very common antipattern to fall in, when
dealing with large classifications. This antipattern manifests itself
with a category, used as a super-label, that is applied to any soft-
ware that does not fit any another category in the classification,
but that still needs an annotation. The most common one is to
have a category named ‘Others’, or other synonyms. However,
there are other categories that might not be that obvious, like
‘Frameworks’, ‘Libs’ and so on.

Possible root cause:. While the ‘Other’ category is needed for the
classification, its abuse and presence of the other Sink Categories is
ased by the difficulty of annotating some projects, hence labeling
hem with a Sink Category makes it easier.

otential side effects:. This sink category adds extra noise, as it
ight get applied to the majority of projects contained in the
re-existing classification. This category might be also applied to
rojects that actually belong to other categories, but that were
ot originally contained in the classification; and also can be used
s a backup for harder to classify projects.

oncrete examples:. Examples from previous work include:
n LeClair et al. (2018) has three of these which are ‘Libs’, ‘Utils’,
nd ‘Misc’ which total to 30% of the dataset size; in Borges et al.
2016) they have a category called ‘Non-web libraries and Frame-
orks’ containing 25% of their dataset’s examples. Lastly, Sharma
t al. (2017) has a category ‘Others’ containing 50% of the dataset
xamples.

otential solution:. This antipattern is a harder to avoid, and it
as commonly found in our survey: the works that do not suffer

rom this were usually dealing with small classifications, or very
omain-specific ones.

.8. Summary

In Table 3 we summarize, for each work, the antipatterns they
ave in their classification. We can notice the least easy to fall in
ntipatterns are the NRC and UJC, and the most common are NE
nd SC which are also the hardest to avoid as they require extra
ork in the annotation phase. The most problematic issues, MT
nd MG are also quite common, with the former being present in
ost of the larger and more general taxonomies.
We can also see that there is no perfect taxonomy: if one only

onsidered the amount of antipatterns contained in a dataset,
hey would select the works of Di Sipio et al. (2020), Zhang
t al. (HiGitClass) (Zhang et al., 2019), and Ohashi and Watanobe
2019). However, the latter two have very specific and closed
omains, that are more straightforward to create, but less useful
o other researchers.

In Section 4, we present an attempt at creating a classifica-
ion using a new, bottom up taxonomy: we will annotate all the
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teps in doing so, and try and address the limitations of existing
lassifications presented above.

. Case study

In this section we describe our attempt at creating an example
lassification, with real world usages, that minimizes the general
issues noted above. This section describes the original source of
the classification 4.1, the manual process that was used to reduce
the categories in order to balance the number of examples in
each 4.2. Finally, in order to evaluate how distinct the categories
are from each other, we evaluated the lexical similarity between
categories, described by their projects content 4.3.2.

4.1. Classification source

As a starting point (e.g., the ‘seed’) for the creation of our
case study dataset, we picked a pre-existing classification, from a
Java Awesome List hosted on GitHub. Awesome Lists are curated
repositories containing resources that are useful for a particular
domain: in our case we use Awesome-Java,7 a GitHub project
that aggregates overall 700 curated Java frameworks, libraries
and software organized in 69 categories. In an initial phase of
cleaning, we removed tutorials and URLs to websites, obtaining
530 examples; we also removed the projects that could not be
analyzed (e.g., gives errors in the pipeline, including: encoding, no
keywords left to create an encoding, etc.). The total of projects
finally considered for our task was 495.

Using GitHub Topics8 could be an alternative to the selected
Java Awesome List: however, the categories for the same list
of projects is larger in the former (around 1000 labels) than
in the latter (69 labels). Also, the decision of using the Awe-
some Java list was to avoid using pre-existing classifications or
taxonomies. Beside the previously mentioned issues, other have
sporadically emerged in the past (e.g., in LeClair et al., 2018,
where many examples of that dataset come from secondary code
that is not relevant to the main projects. Moreover, Awesome-
Java is an annotation of a closed ecosystem (Java development),
making it the seed of a small, but realistic, classification. In fact
this process, when improved and automated, could be applied
to GitHub’s Topics annotations to obtain an unlimited source of
distantly annotated examples. Lastly, the Awesome-Java repository
is a collective effort of more than 300 contributors and continuous
updates to the list, making it the go-to source for more than 31K (as
stars) developers when looking for a library.

However, the GitHub Topics, would be a better source for a more
general list of categories and a larger scale source of projects. How-
ever, there are larger challenges as there are more than 100K GitHub
Topics, hence, this will move the focus of our study to unrelated
issues.

4.2. Label mapping

The Awesome-Java classification contains 69 categories: on
average, each category contains 8 projects. Also, some of the cat-
egories represent either general concepts (‘Science’) or detailed
keywords (e.g., ‘Bean Mapping’).

As a result, the Awesome-Java categories make classification
tasks quite challenging: therefore we decided to manually reduce
the original categories, in order to reduce the complexity, and
avoid duplicates or synonyms. This mapping was performed man-
ually, in a hierarchical fashion, by one of the authors, and resulted
in a smaller set of 13 categories (Reduced AJ): the Label column of
Table 4 lists the reduced categories that were obtained from the
9

Table 4
Distribution of the number of examples
for each category in the Reduced AJ.
Label Projects

Introspection 32
CLI 8
Data 49
Development 100
Graphical 11
Miscellaneous 59
Networking 25
Parser 41
STEM 39
Security 14
Server 37
Testing 42
Web 38

Total 495

Fig. 3. Example of the reduction process. The blue rectangles are actual classes
in the initial or final dataset, the gray one are intermediate logical classes used
to aggregate labels. The dots represent not well defined intermediate classes.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

original 69. The reductions were evaluated by the second author, and
disagreements on terms were resolved by discussion.

This reduction, in addition to increasing the amount of exam-
ples per class, also helps with one of the issues that the original
Awesome-Java presented, that is the lack of a hierarchical relation
between categories. Fig. 3 shows a visual representation of the
reduction, and how this helps the establishment of hierarchical
links. Given three labels in the Awesome-Java taxonomy: Natural
Language Processing (‘NLP’), Computer Vision (‘CV’), and Machine
Learning (‘ML’); we reduce those three to an intermediate con-
ceptual label ‘AI’. Together with two other categories, ‘Date/Time’
and ‘Geospatial’, we assign all these to the ‘STEM’ category.

The initial and final annotated labels are stored as a CSV
file, and is available in our replication package. The file has the
following schema:

• project.name: name of the project;
• project.desc: short description of the project from

Awesome-Java;
• project.link: URL to the GitHub repository;
• category: Awesome-Java annotation;
• category.desc: short description of the category from

Awesome-Java;
• label: mapping of the original category into one of the

reduced set.

7 https://github.com/akullpp/awesome-java
8 https://github.com/topics

https://github.com/akullpp/awesome-java
https://github.com/topics
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Fig. 4. Cosine similarity between labels using fastText embeddings.
.3. Evaluation

We evaluate the quality of our approach of reduction on the
wesome-Java taxonomy using both qualitatively and quantitative
easure. We first compare the original and the reduced tax-
nomies using the introduced perils and pitfalls. Furthermore, we
easure the lexical similarity of classes.

.3.1. Antipatterns
A summary of the antipatterns found in the original Awesome-

ava and the Reduced AJ is present in Table 5. The original
wesome-Java presents several of the antipatterns identified in

the taxonomies in previous works, from non exhaustive label
set (NE), to mixed granularity (MG) and mixed taxonomies (MT).
Therefore, we can be more confident that the processes we used
to reduce these issues can be deployed to different taxonomies
as well. Examples of the antipatterns found in Awesome-Java
nclude:

• Mixed Taxonomy: examples of this antipatterns are the
presence of technologies like ‘Apache Commons’ in the list;

• Mixed Granularity: for examples we find the label ‘Science’
with the label ‘Configuration’, or ‘Development’ and ‘Com-
piler Compiler’. Moreover, there are labels that are in a
‘IS-A’ relationship, like ‘Mobile development’ and ‘Develop-
ment’.

• Non Exhaustive Categories: one examples is the lack of a
‘Audio Processing’ category, while there are for ‘Computer
Vision’ and ‘Natural Language Processing’.

• Sink category: the ‘Apache Commons’ label contains many
projects that can be annotated with another label in the
set, for example ‘Commons CLI9’ can be annotated with the
‘Command Line Interface’ label.

The two main benefits of the reduction process are the re-
oval of the Non Exhaustive (NE) label set issue and the removal
f the Mixed Taxonomy (MT). Another benefit, although not com-
letely removed as seen in Table 5, is a marked decrease in the
everity of the Mixed Granularity (MG) issue.
In our case study, most of these antipatterns have been re-

olved using the label reduction process. However better re-
ults require tackling Mixed Taxonomy (MT) issue: its resolu-
ion required manual annotations of the examples belonging to
he problematic category (e.g., ‘Apache Commons’) as the mere
eduction would just map everything to Sink Category.

Similarly for the other datasets, we also computed the simi-
arity of the labels using fastText, in 4 we can see the similarity
efore and after the reduction. The lower average similarity is
aused by a reduction in the terms in a hierarchical relationship,
nd also by a lower number of terms sharing a common subword.

9 https://commons.apache.org/proper/commons-cli/
10
Table 5
Summary of the antipatterns in the original Awesome-Java and our Reduced AJ.

MT MG SC NE NRC UJC SKC

Awesome-Java ✓ ✓ ✓ ✓ ✓

Reduced AJ ✓ ✓ ✓

4.3.2. Lexical similarity between categories
To evaluate the quality of our process, we evaluated the lex-

ical similarity between each category using the content of all
projects belonging to that category. This step is of fundamental
importance, since it helps to evaluate the quality of the mapping
process into categories, and to give an empirical evaluation of
how similar categories are, before and after reduction. In order
to lexically represent the categories we used the TFIDF approach;
in order to measure the similarity of two categories, we used the
cosine similarity. We did not opted for embedding solutions like
fastText or BERT as they are not suited for our task. For example
fastText is not designed for long document embeddings, as it per-
forms a mean operation over the embeddings to create the final
representation, meaning that all the documents will converge to a
very similar embedding, resulting in very high similarities between
all documents. With BERT, given the small amount of token it accepts
as input (512) we will have a similar issue, as we will need to com-
bine the embeddings of subset. Other, more code oriented solutions,
like code2vec or CodeBERT have issue as well. Code2vec is trained
with the objective of encoding structure and semantic of the code,
and not semantic of the word. CodeBERT suffers of the issues of BERT.

Extraction of the category documents. For each project belonging
to a category, we created the category document using all the
identifiers contained in the source code files of the project belong-
ing to that category. For the extraction of the identifiers, we used
the tree-sitter10 parser generator tool. The identifiers, without
keywords, are extracted from the annotated concrete syntax tree
created using a grammar for Java code.

The identifiers were further processed by (1) separating the
camel case strings into words, (2) lower casing every word, and
(3) removing common Java terms that do not add much seman-
tically (e.g., ‘main’, ‘println’, etc.). Lastly, we perform (4) lemming,
which is a way to reduce amount of different terms in the vocab-
ulary by removing the morphological differences in words with
the same root (e.g., ‘networking ’ becomes ‘network’).

Evaluation of the similarity between categories. These category
documents were used as an input to TFIDF, a statistical vec-
torization of words based on the Bag of Words (BoW) model.
Documents are considered as a collection of words/terms, and
converted to a vector by counting the occurrences of every term.
Differently from BoW, in TFIDF the words are weighted by their

10 https://github.com/tree-sitter/tree-sitter

https://commons.apache.org/proper/commons-cli/
https://github.com/tree-sitter/tree-sitter
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Fig. 5. Cosine similarities between categories in the Reduced AJ. The last two rows are the mean and max similarity per category.
total frequency in the collection of documents. This will result in
a list of vectors representing the lexical content of that category.
We limit the amount to the top 1000 terms that have a max doc-
ument frequency lower than 0.8, hereby words that are present
in less than 80% of the labels, therefore ignoring common words.

We adopted the cosine similarity, a measure of similarity be-
tween two vectors, in order to measure the similarity between all
categories, and to evaluate possible overlaps or large differences
between them. The cosine similarity, when using TFIDF, ranges
from 0, different content, to 1 identical content. We compute the
similarities between the categories of the original finer grained
Awesome-Java classification, and the Reduced AJ as well.

Results. The results in Fig. 5 show the final similarities for the
reduced classification, while Fig. 6 shows the similarities between
the categories of the original Awesome-Java. The initial impression
is that the overall similarity between categories is very low for
both classifications: this is a clear effect of the pre-filtering of
the terms that are very frequent in all documents. The second
observation is that the mean similarity of the classification with
69 labels is higher and has more variance: in particular there is
an average similarity of 0.0520 ± 0.0677, as compared to the
educed one of 0.0210 ± 0.0290. This is also visible graphically
n the heat map of Fig. 6: the brighter spots, therefore higher
imilarity are much more frequent there than in the reduced
lassification in Fig. 5.

iscussion. The higher similarities of Fig. 6 are caused by a com-
ination of different factors:

1. the first cause is the presence of the Mixed Granularity
antipattern t. For example, the similarity between the cate-
gories ‘Development’ and ‘Code Analysis’ is 0.45. These two
were mapped into the ‘Development’ combined category of
the reduced classification.

2. the second cause of high similarity is the Single-Label an-
tipattern. As a result, some projects are labeled with one
category, but their features would require multiple labels.
An example of this would be the high similarity (0.68) be-
tween ‘Database’ and ‘Messaging’ which in Awesome-Java is
described as ‘‘Tools that help send messages between clients

to ensure protocol independency’’. An example explaining

11
this high similarity is by considering ‘Apache Kafka’, a dis-
tributed event streaming framework used for various tasks
including data integration, being categorized as ‘Messaging’
while still containing a high amount of data management
terms like ‘query’. This also remains in the reduced classifi-
cation (Fig. 6) for the ‘Database’ and ‘Networking’, in which
‘Messaging’ is mapped.

3. Lastly, we also have to consider noise, given the smaller
number of examples per category in the original classifica-
tion, the documents used might not be very representative
of the category.

4.4. Discussion: moving towards a complete taxonomy

The purpose of a classification, like the ones that we have
summarized in Table 2 is to organize similar items (in this case,
software systems) into categories for future reference. This could
be for proactively recommending systems (Nguyen et al., 2018),
in order to generate a list of alternatives from the same cate-
gory; or for identification of common patterns into the found
categories (Capiluppi and Ajienka, 2019).

On the other hand, the purpose of a taxonomy is to organize
categories into levels: for instance, in a taxonomy for biology,
‘class’ (say, ‘‘mammals’’) is placed on a different level than ‘order’
(say, ‘‘carnivorous’’). In the classification works that we analyzed,
we never observed an attempt to define at which level the cate-
gories are (except in Zhang et al., 2019), or whether those should
be considered more or less generic or specific in the more general
terms of a taxonomy.

As a further analysis, and in order to evaluate how specific,
general, or mixed level the taxonomy is, we asked a group of
10 people belonging to our research group. The pool of annotators
is composed of PhDs, Post Docs, and Professors in the Software
Engineering field to indicate whether the categories illustrated in
Table 4 should be placed in a higher or lower level of a taxonomy.
The questionnaire included 13 questions, one for each topic in the
Reduced AJ, where the annotators were asked to perform a rating by
assigning the topic into one of 5 levels, from 1 (very generic) to 5
(very specific). We collected their responses and analyzed them
to determine if any of the categories that were reduced from the
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Fig. 6. Cosine similarities between categories in the original Awesome-Java. The last two rows are the mean and max similarity per category.
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wesome-Java sample should be considered a ‘family’, or ‘group’
r even a ‘species’ within a software taxonomy.
The results of this preliminary qualitative analysis showed that

pecific categories were placed fairly consistently among either
he very general (e.g., the ‘STEM’ category), or the very specific
evel (‘Introspection’, ‘CLI’). On the other hand, several other
ategories were assigned uniformly to levels 2, 3 and 4, therefore
eing placed to middle-ground levels of the taxonomy, depending
n the assessor’s point of view. Fig. 7 shows the visualization of
hat has initially emerged from the answers of our questionnaire.
he assignment of a topic to a level was performed using the majority
oting, those without majority are not presented.
This is further evidence that defining categories for software

ystems faces the challenging task of placing them in an over-
rching map: the ‘mixed levels’ antipattern will always affect a
lassification effort, unless a more concerted research effort is
onducted and shared, in order to build a taxonomy and to place
he categories in its levels. A magnifier of the uniform distribution
f some topics can be imputed to our methodology, the rating task
s more complex compared to a ranking to asses subjective charac-
eristics (Ye and Doermann, 2014). Hence, the future work will focus
n using better methods to rank topics.

. Threats to validity

We use the classification of Runeson et al. (2012) for analyzing
he threats to validity in our work. We will present the construct
alidity, external validity, and reliability. Internal validity was not
onsidered as we did not examine causal relations (Runeson et al.,
012).

.1. Construct validity

A construct threat in our work is the choice of the classification

or the case study. However, given the wide variety of datasets, h

12
Fig. 7. Assignment of the categories to levels of a taxonomy.

nd the similarity Awesome Java has regarding the issues with
he state of the art classifications, this threat is mitigated.

Another threat regards the way the reduction was performed.
aving a single annotator performing the reduction can increase
he bias in the selection of the resulting categories. We mitigated
his threat by having another author evaluate the resulting cate-
ories; furthermore, we collected feedback from other colleagues
egarding the same resulting categories.

.2. External validity

We reduce the external validity to a minimum by analyzing
large variety of datasets. We analyzed 12 datasets, with a

ifferent origin of the base classification: both bottom up, and top
own classifications have been considered for study. Moreover,
hese classifications are based on different domains, some more
pecific (e.g., bio-engineering) other more generic: this should
elp alleviate this threat to validity.
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.3. Reliability

The analysis of the classifications and taxonomies is inherently
ubjective, as it involves natural language, and prior knowledge
bout the different application domains. We adopted objective
ools, like semantic analysis, to aid with the subjective analysis.

. Conclusions and future work

In this work we evaluated the different classifications used for
he software classification task. The current classifications have
ssues that might compromise generalizability of classification
odels, moreover, there is no general classification that can be
ctively used (RQ1). We identified a list of 7 common antipatterns
hat researchers encounter when creating a software classifi-
ations for classifying systems into application domains (RQ2).
hile the ideal case would be to avoid those antipatterns when

reating a classification, this is quite difficult, and a refinement
tage helps with the reduction (but not the complete removal)
f some of these issues. We presented a case study, using a real
lassification, in which we mitigated some of the antipatterns
sing a reduction of the categories (RQ3). The reduction was
erformed manually in a hierarchical fashion.
As future works we plan to perform the similarity between

he categories content also for the other works in the literature.
urthermore, we plan to perform analysis similar to the work
f Sen and Saffari (2020) for the Question Answering (QA) task
n the Natural Language Processing field, where they look at
hat clues QA models actually use to answer questions. We are

nterested in checking if the models learn general terms of a
pecific domains, or they pick up dataset specific clues that are
ot transferable to others.
We are also planning to create a taxonomy induced from

ll the GitHub Topics given the variety of projects, and there-
ore application domains, that are hosted on the platform. Given
he large amount of terms, the hierarchical aggregation process
eeds to be automated. First, we plan to create a ranking with a
arger pool of annotators, and given the high disagreement in our
anking case study, use a different methodology: ranking from
airwise comparisons, as is less complex for annotators (Shah
t al., 2016). Lastly, use the ranking to create links between levels,
o group terms from different levels in the same domain.
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