
 

 

 University of Groningen

Trade-offs predicted by metabolic network structure give rise to evolutionary specialization
and phenotypic diversification
Ekkers, David M; Tusso, Sergio; Moreno-Gamez, Stefany; Rillo, Marina C; Kuipers, Oscar P;
van Doorn, G Sander
Published in:
Molecular Biology and Evolution

DOI:
10.1093/molbev/msac124

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Ekkers, D. M., Tusso, S., Moreno-Gamez, S., Rillo, M. C., Kuipers, O. P., & van Doorn, G. S. (2022).
Trade-offs predicted by metabolic network structure give rise to evolutionary specialization and phenotypic
diversification. Molecular Biology and Evolution, 39(6), [msac124]. https://doi.org/10.1093/molbev/msac124

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://doi.org/10.1093/molbev/msac124
https://research.rug.nl/en/publications/c1959ad0-0d95-4dee-aba0-2e70b3aeec19
https://doi.org/10.1093/molbev/msac124


Trade-Offs Predicted by Metabolic Network Structure Give
Rise to Evolutionary Specialization and Phenotypic
Diversification
David M. Ekkers,1,2 Sergio Tusso,3,4 Stefany Moreno-Gamez,1 Marina C. Rillo,5 Oscar P. Kuipers ,2

and G. Sander van Doorn *,1

1Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The
Netherlands
2Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen,
Nijenborgh 7, 9747 AG Groningen, The Netherlands
3Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany
4Science for Life Laboratories and Department of Evolutionary Biology, Norbyvägen 18D, Uppsala University, 75236 Uppsala,
Sweden
5Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Schleusenstr. 1,
26382 Wilhelmshaven, Germany

*Corresponding author: Email: g.s.van.doorn@rug.nl.

Associate editor: Miriam Barlow

Abstract
Mitigating trade-offs between different resource-utilization functions is key to an organism’s ecological and evolu-
tionary success. These trade-offs often reflect metabolic constraints with a complex molecular underpinning; there-
fore, their consequences for evolutionary processes have remained elusive. Here, we investigate how metabolic
architecture induces resource-utilization constraints and how these constraints, in turn, elicit evolutionary special-
ization and diversification. Guided by the metabolic network structure of the bacterium Lactococcus cremoris, we
selected two carbon sources (fructose and galactose) with predicted coutilization constraints. By evolving L. cremoris
on either fructose, galactose, or a mix of both sugars, we imposed selection favoring divergent metabolic specializa-
tions or coutilization of both resources, respectively. Phenotypic characterization revealed the evolution of either
fructose or galactose specialists in the single-sugar treatments. In the mixed-sugar regime, we observed adaptive di-
versification: both specialists coexisted, and no generalist evolved. Divergence from the ancestral phenotype oc-
curred at key pathway junctions in the central carbon metabolism. Fructose specialists evolved mutations in the
fbp and pfk genes that appear to balance anabolic and catabolic carbon fluxes. Galactose specialists evolved increased
expression of pgmA (the primary metabolic bottleneck of galactose metabolism) and silencing of ptnABCD (the main
glucose transporter) and ldh (regulator/enzyme of downstream carbon metabolism). Overall, our study shows how
metabolic network architecture and historical contingency serve to predict targets of selection and inform the func-
tional interpretation of evolved mutations. The elucidation of the relationship between molecular constraints and
phenotypic trade-offs contributes to an integrative understanding of evolutionary specialization and diversification.

Key words: experimental evolution, adaptive diversification, metabolic trade-offs, metabolic network analysis,
central carbon metabolism, Lactococcus cremoris.

Introduction
Diversity in metabolic strategy is a principal factor underlying
variation within and between major groups of organisms
(Brown et al. 2004; Schramski et al. 2015 ). Resource-utilization
strategies are intimately linked to metabolic constraints.
The transport and processing of resources to release en-
ergy (catabolism) and the construction of cellular building
blocks (anabolism) are subject to physical, biochemical,
or thermodynamical laws that constrain both the rate of
conversions and the range of feasible resource-utilization

strategies. Moreover, many of the feasible metabolic strat-
egies may never evolve in practice, because they require
substantial evolutionary innovation (Jaeger et al. 2012).
In other words, metabolism is also constrained by historic-
al contingency, reflected by the preexisting pathway archi-
tecture and regulatory machinery (Meijer et al. 2020).

A functional consequence of metabolic constraints is that
they can give rise to trade-offs between resource-utilization
strategies (Pfeiffer et al. 2001; Novak et al. 2006; Bennett
and Lenski 2007; MacLean 2008; Cooper and Lenski 2010;
Jasmin et al. 2012). By preventing the efficient coutilization
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of multiple resources, such constraints may force the organ-
ism to compromise on its maximum growth rate when it
maintains a generalist resource-utilization strategy. Strong
trade-offs may even induce specialization on one alternative
resource or another, providing an opportunity for the evolu-
tion of a population-level polymorphism of metabolic specia-
lists (fig. 1). The conditions for such diversification have been
carefully analyzed in the theoretical literature (summarized in
the Appendix, see also supplementary fig. S1, Supplementary
Material online). In a nutshell, the theory indicates that diver-
sification relies on resource competition or other ecological
mechanisms (Dieckmann and Doebeli 1999; Doebeli and
Dieckmann 2000) to create a dynamic (frequency-
dependent) regime of selection, which is necessary to main-
tain the coexistence of multiple specialists (Geritz et al. 1998).
Second, it depends on the presence of a sufficiently strong
trade-off between alternative resource-utilization strategies,
to prevent the evolution of a generalist.

Microbial laboratory evolution experiments, followed by
genomic analyses (‘evolve and resequence’), have beenwidely
used to evaluate this theory, and study the evolution of re-
source specialization and metabolic diversification
(Beaumont et al. 2009; Burke et al. 2010; Meyer et al. 2012;
Good et al. 2017; Lenski 2017). A remaining challenge in mi-
crobial evolution experiments is to explain or predict how
metabolic adaptations are constrained, and under what con-
ditions such constraints give rise to evolutionary trade-offs.
Although themetabolism of manymicroorganisms is well re-
solved in terms of its constituent parts (genes, proteins, and
regulatory mechanisms) and their interaction, the functions
generally selected for in microbial experimental evolution
are growth rate and/or yield (Bachmann et al. 2017), which
rely on high-level metabolic functions (e.g., homeostasis, en-
ergy allocation, replication, and the synthesis of building
blocks) (Pfeiffer et al. 2001; Molenaar et al. 2009; Schuetz
et al. 2012). All of these are governed by complex develop-
mental and regulatory networks (Buescher et al. 2012;
Bassalo et al. 2018), and constrained on multiple levels by
trade-offs (e.g., between rate and yield, anabolism and catab-
olism, or respiration and fermentation) (Molenaar et al. 2009;
Bono et al. 2017; Cheng et al. 2019). Although this intricate
network of metabolic and regulatory interactions obviously
complicates the relationship between genetic and phenotyp-
ic variation, it provides, at the same time, a framework for de-
veloping hypotheses on the phenotypic effects of mutations
and the molecular basis of adaptation. In particular, com-
bined with knowledge on prevailing environmental condi-
tions in the past, it can serve to predict targets of selection
against a background of preexisting biases in resource use,
the tuning of the regulatory network owing to prior adapta-
tion and other forms of historical contingency.

Predicting Resource Coutilization Constraints
in the Metabolism of Lactococcus cremoris
To explore the potential of this functional network per-
spective, we evaluate whether knowledge of the metabolic
architecture, that is, the way in which metabolic processes

are connected through a series of biochemical reactions,
can successfully predict how multiple interdependent
functions interact agonistically or antagonistically to facili-
tate or constrain targeted metabolic adaptations. In par-
ticular, we investigate the potential to predict target loci
for adaptation in an evolutionary diversification experi-
ment, where we selected alternative carbon-utilization
strategies in the lactic acid bacterium L. cremoris.

Carbon metabolism has a large impact on the rate and
yield of microbial growth, because of its central role in en-
ergy production and the assimilation of cell material from
resources. The central carbonmetabolism of the model or-
ganism used in our experiment, L. cremoris MG1363 (for-
merly called Lactococcus lactis ssp cremoris), has been
resolved in detail, owing to its importance in milk product
fermentation (Neves et al. 2005; Teusink and Molenaar
2017). Over the course of its domestication to the dairy
habitat, L. cremoris has been adapted for fast ‘batch
mode’ growth on the glucose moiety of lactose (milk su-
gar) (Bachmann et al. 2012; Kok et al. 2017; Kleerebezem
et al. 2020). Dairy strains of L. cremoris achieve maximal
growth rate on glucose and, when excess glucose is avail-
able, catabolite repression downregulates other metabolic
pathways in order to maximize growth rate (Zomer et al.
2007). Lactococcus cremoris is also able to grow on fructose
and galactose as sole carbon source, though the pathways
for processing these sugars are subject to catabolite repres-
sion if glucose is available (Grossiord et al. 2003; Barrière
et al. 2005).

The fructose and galactose pathways feed into the cen-
tral carbon metabolism at different entry points, which are
located, respectively, downstream and upstream of where
anabolic pathways (involved in the synthesis of cell wall
components and nucleic acids) branch off from the core
glycolytic pathway (fig. 2A). Growth on fructose and
galactose, therefore, requires a different organization of
catabolic versus anabolic fluxes than in the
glucose-adapted ancestor, so that the metabolic flux pat-
tern expressed by the ancestral strain is likely suboptimal
for growth on both fructose and galactose (fig. 2A;
supplementary fig. S5, Supplementary Material online).

Previous analyses of glucose-adapted dairy strains sup-
port these hypotheses. First, metabolic flux optimization
is known to prioritize high catabolic fluxes at the branch
points with anabolic pathways, because only a limited car-
bon flux suffices to supply the anabolic pathways.
Catabolic fluxes outweigh anabolic fluxes by a factor of
10–20 in the carbon metabolism of L. cremoris (Novák
and Loubiere 2000), and this ratio is optimized to maxi-
mize the yield and rate of metabolism depending on the
concentration of available nutrients (Molenaar et al.
2009). Second, dairy strains of L. cremoris exhibit a relative-
ly high growth rate (0.82 h−1; supplementary fig. S3,
Supplementary Material online) but low growth yield
(two ATP per sugar molecule) when growing on fructose.
Consistent with the fact that fructose enters in the upper
glycolytic pathway at the level of FBP (fructose-1,6-
bisphosphate; downstream of the entry-point for glucose),
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fructose metabolism is constrained by insufficient anabolic
flux between FBP and fructose-6-phosphate (F6P)
(Looijesteijn et al. 1999); in the reverse direction, the con-
version from F6P to FBP is part of the catabolic pathway
during growth on glucose. Third, L. cremoris growing on
galactose as the sole carbon source exhibit high growth
yield (three ATP per sugar molecule) but a low growth
rate (0.43 h−1; supplementary fig. S3, Supplementary
Material online). Expression experiments indicated that
this slow growth is attributable to a low expression of
pgmA (Neves et al. 2006, 2010), the enzyme that catalyzes
the reversible conversion between glucose-1-phosphate
(G1P) and glucose-6-phosphate (G6P). Low pgmA expres-
sion is sufficient to support the anabolic flux (G6P to G1P)
when cells are growing on glucose, but generates a major
metabolic bottleneck during growth on galactose (when
the G1P to G6P reaction functions as part of the catabolic
pathway).

Collectively, these differences suggest that galactose
metabolism is a relatively more difficult metabolic special-
ization to evolve for the glucose-adapted ancestral L. cre-
moris. Moreover, given that the required modifications
of the anabolic versus catabolic flux relationships are op-
posite between fructose and galactose metabolism, we
also expect that the growth rates on these sugars are sub-
ject to a strong trade-off relative to each other.

Experimental Design
To test our hypothesis of the metabolic architecture of
L. cremoris—specifically, the prediction that resource
adaptation will target pathway branch points and reac-
tions in glycolysis where the distribution or net direction
of metabolic fluxes needs to be adjusted relative to the
ancestral (glucose preadapted) state—we imposed selec-
tion on carbon utilization in L. cremoris in an evolution

FIG. 1. Eco-evolutionary theory of adaptive diversification. Snapshots of the evolutionary trajectories of (sub)populations (represented by filled
circles) exposed to strong (A–C ) or weak trade-offs (D–F ) between the utilization of a preferred (1) versus unpreferred (2) resource. Trade-off
curves, indicated by solid gray lines, mark the boundary between evolutionarily feasible (shaded area below the curve) and unfeasible (area above
the curve) phenotype combinations. Dashed lines represent contours of equal fitness (fitness increases toward the upper right corner of each
diagram); note that the shape of the fitness landscape is dependent on the relative proportions between the available resources (as indicated by
bar charts above each column). Arrows indicate the direction of adaptation, proceeding in the direction of higher fitness, whereas following the
trade-off curve. Bar plots on top show resource distribution (relative availability). (A) Strong trade-offs initially lead to specialization on a pre-
ferred resource to achieve highest fitness. (B) However, the ensuing drop in the concentration of the preferred resource creates conditions fa-
vorable for the evolution of a second type specializing on the consumption of the alternative resource 2. (C ) In the end, the two specialists can
attain stable coexistence, maintained by frequency-dependent competition for resources. (D) Weak trade-offs allow the evolution of a generalist
phenotype, that may subsequently (E) respond to consumption-induced resource change, eventually leading to (F ) a coutilization profile that
matches the availability of resources. See Appendix and supplementary fig. S1, Supplementary Material online for further details.
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experiment (fig. 2B). To apply a controlled selective pres-
sure and, at the same time, allow frequency-dependent
ecological feedback mechanisms to operate, we evolved
strains in a customizable chemostat system (Ekkers et al.
2020), rather than in serial dilution cultures, which inher-
ently exhibit strong temporal fluctuations in growth con-
ditions (Gresham and Dunham 2014; Ekkers et al. 2020).
The experiment included three treatments, corresponding
to alternative selective regimes: two single-sugar treat-
ments with either fructose or galactose supplemented
growth media and a third treatment where populations
were supplied with an equal mix of fructose and galactose
(mix treatment). The single-sugar treatments are expected
to elicit divergent adaptations to, respectively, fructose
and galactose utilization (fig. 2B). The mix treatment is
predicted to yield either a polymorphism of metabolic spe-
cialists (or a single-strain specialized on one of the two re-
sources), if the trade-off between fructose and galactose
metabolism is strong (figs. 1A–C and 2B; Appendix;
Rueffler et al. 2006; Herron and Doebeli 2013) or, if the
trade-off is weak, the evolution of a generalist that can
coutilize both resources and optimally tune the

consumption of both sugars to their relative availability
in the growth medium (fig. 1D–F; Appendix). We then
characterize the adaptive mutations that evolved in diver-
gently selected lines and interpret their function in the
context of the metabolic network (see supplementary
fig. S2, Supplementary Material online for an overview of
the Methods).

Results
Phenotypic Adaptation Leads to Divergence of Two
Specialist Phenotypes
Phenotypic analysis of the evolved strains showed that the
growth-rate improvements in the fructose and galactose
treatments were associated with specialization on the avail-
able sugar (fig. 3). The evolutionary trajectories reconstructed
from the phenotypic data revealed that the two specialist
phenotypes, the fructose specialist (FS) and the galactose spe-
cialist (GS), continued to diverge as the evolution experiment
progressed, indicating that the evolved strains were continu-
ously selected for improved performance on the selected

FIG. 2. Schematic representation of the metabolic architecture of the central carbon metabolism of Lactococcus cremoris MG1363 and experi-
mental setup. (A) Metabolites are shown as squares. Metabolic fluxes are visualized by color-coded arrows indicating the net direction of ana-
bolic and catabolic fluxes during growth on glucose (gray), fructose (red), and galactose (blue). Arrow widths are indicative of relative flux rates.
Exclamation marks indicate reversals in the direction of net fluxes relative to the ancestral glucose-adapted metabolism. Reversed reactions
(from left to right) are coded by pgmA, pgiA, pfk (catabolic direction), and fbp (anabolic direction). Perm., permease; PTS, phosphotransferase
system; Gal.6P, galactose-6-phosphate; Gal., galactose; α-Gal., alpha-galactose; Gal.1P, galactose-1-phosphate; G1P, glucose-1-phosphate; G6P,
glucose-6-phosphate; F6P, fructose-6-phosphate; F1P, fructose-1-phosphate; FBP, fructose-1-6-biphosphate; Pyruv., pyruvate; A.CoA,
acetyl-CoA; HAc, acetaldehyde; AcP, acetyl phosphate. For a more detailed and complete visualization of the glycolytic fluxes see
supplementary fig. S5, Supplementary Material online. (B) Continuous culture based experimental evolution with fructose and galactose as
sole carbon sources. Predicted endpoints of evolution (gray dots) in the three experimental treatments, based on the assumption that fructose
and galactose metabolism are subject to a strong trade-off. Dotted lines indicate fitness isoclines and arrows indicate the direction of selection in
each treatment. Solid lines indicate the trade-off curve between galactose and fructose growth performance, demarcating the evolutionary feas-
ible phenotype combinations (shaded area).
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sugar, although the rate of improvement leveled off halfway
through the experiment (fig. 3). Unless stated otherwise, FS
and GS from the different treatments refer to phenotypic
clusters of strains from four independent replicates that
evolved in parallel (supplementary fig. S9, Supplementary
Material online).

In the mix treatment, we observed the evolution of a
phenotypic polymorphism, consisting of a FSmix coexisting
with a GSmix (fig. 3; throughout, superscripts refer to the
experimental treatment—fructose, galactose or mix—
from which the strains were sampled). These coexisting
phenotypes diverged through time, following similar tra-
jectories as the FSfru and GSgal from the single-sugar treat-
ments. Each of the replicate populations from the mix
treatment contained strains occurring in both galactose
and FS clusters (supplementary fig. S10, Supplementary
Material online), indicating that the divergence of the an-
cestor into two specialists occurred in parallel across all
four replicates of this treatment.

With regard to the phenotypic growth-rate characteriza-
tions, the FS remained closer to the ancestral phenotype
than the GS (fig. 3). This observation is consistent with the
asymmetry in the relative growth improvement observed
during the running of the experiment (supplementary fig.
S6, Supplementary Material online), which was lower in the
fructose treatment than in the galactose treatment. In fact,
when the ancestral phenotypewas included in the phenotyp-
ic analysis it always clustered with the FS (data not shown).

Specialist Phenotypes Display Consistent Trade-Off
Patterns
The growth improvement of the GS (GSgal and GSmix) was
generally associated with decreased performance on fruc-
tose compared with the ancestor (i.e., in phenotypic assays
performed on strains sampled from the evolution
experiment, fig. 3; supplementary fig. S8, Supplementary
Material online). In the galactose treatment, the presence
of two clusters at T1 indicates that initial improvement of
galactose metabolism can occur either with or without
trading off on fructose performance; however, additional
improvement in growth on galactose only evolved in con-
cert with a trade-off on fructose performance (single clus-
ters at T2 and T3). FSfru and FSmix, however, showed no
trade-off when they were cultured on galactose (fig. 3;
supplementary fig. S8, Supplementary Material online),
whichmay reflect the initial poor performance of the ances-
tral strain on galactose relative to its growth rate on fruc-
tose. Nevertheless, a clear trade-off pattern (negative
relation) between the evolved FS and GS emerged both in
the mix treatment as well as between the independently
evolved populations observed in the isolated fructose
and galactose treatments (supplementary fig. S9,
Supplementary Material online). Importantly, the failure
to observe the evolution of a generalist in the mix-
treatment supports the notion that there is a strong per-
formance trade-off between fructose and galactose meta-
bolic adaptation (Appendix). Instead of a generalist, we

found a polymorphism of FS and GS in all replicates of
the mix treatment (fig. 3; supplementary fig. S10,
Supplementary Material online), even though the evolving
populations had access to both sugars and selection pro-
motes the evolution of a generalist by favoring a simultan-
eous performance increase on fructose and galactose.

Toward the end of the experiment (T3), we observed the
emergence of a phenotype that exhibited high growth rate
on both galactose and fructose in one replicate of the gal-
actose treatment (supplementary fig. S7, Supplementary
Material online). Although this rare phenotype (hereafter
denoted as GS*gal) appears to be a generalist, it evolved
only once (in one replicate) and in a treatment where im-
provement on fructose was not selected for (i.e., the
galactose-only treatment). Moreover, GS*gal did not evolve
directly from the ancestral strain, it only evolved secondarily
from amonomorphic GS population (T2). Surprisingly, such
a generalist strategy did not evolve in the mix treatment
where high performance on galactose and fructose was fa-
vored by natural selection.

We interpreted the evolution of GS*gal as an indication
that trade-offs can change as phenotypes continue to
evolve in response to selection for alternative resource util-
ization. To test this hypothesis, we selected a subset of rep-
resentative specialist strains from each treatment and
evaluated their growth rate and yield on three additional
carbon sources (glucose, mannose, or trehalose). Glucose
was the preferred sugar for the ancestral strain, which
was preadapted for efficient glucose utilization; the other
two sugars were selected because of the large metabolic
overlap between the galactose and trehalose pathways,
and between the glucose and mannose pathways, respect-
ively. Fructose does not share overlap in peripheral meta-
bolic pathways with other monosaccharides.

This experiment revealed that the growth-rate trade-offs
detected between fructose and galactose utilization in spe-
cialist phenotypes also extended to other carbon sources
(fig. 4A; supplementary figs. S3 and S4, Supplementary
Material online). When compared with the ancestor, strains
with GSgal and GSmix phenotypes display a lower growth rate
on glucose, mannose and, to a lesser extent, fructose.
Conversely, the FSfru and FSmix strains showed similar, or
slightly reduced, growth rates on glucose and mannose
when compared with the ancestor. An opposite, but overall
less consistent pattern was observed for growth on trehalose:
relative to the ancestor, GS strains exhibited an increased
growth rate on this sugar, whereas FS strains maintained a
similar growth rate as the ancestral strain. For growth yield,
no consistent pattern was found for GS strains, and FS strains
consistently exhibited a high yield for mannose (fig. 4B;
supplementary figs. S3 and S4, Supplementary Material on-
line). The strain from the rare GS*gal phenotype showed simi-
lar trade-off patterns as the other GS strains, except for its
improved growth on fructose and overall higher yield on
all sugars except for mannose. Overall, the GS strains de-
viated considerably in their performance on a variety of
carbon sources, whereas the FS strains retained a
resource-utilization pattern similar to the ancestor.
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Genetic Analysis Identifies Targets of Selection
To identify the molecular changes underlying the observed
phenotypic changes in resource utilization, we performed
whole-genome sequencing on 48 single strains and 36
population metagenomic samples (supplementary figs.
S2, S12, and S13, Supplementary Material online). Based
on the single-strain analysis, we identified a total of five an-
notated loci that most strongly correlated with resource
specialization (see Materials and Methods for the criteria
used to identify these mutations and supplementary fig.
S12A–D, Supplementary Material online), namely pgmA,
ptnABCD, and ldh for GS and fbp and pfk for FS. The popu-
lation analysis, combined with the single-strain analysis, re-
vealed that mutations in the selected genes evolved
independently in multiple replicate populations and treat-
ments (supplementary fig. S12E and F, Supplementary
Material online). Frequencies and total occurrence of se-
lected genes were generally lower in poorly performing re-
plicates. For a functional analysis of the evolved mutations,
we selected five strains (one strain from each characteristic
phenotype of each treatment at T3) and performed ex-
pression and enzymatic analyses; the combinations of
mutations present in the selected strains, as well as the
strains names, are listed in supplementary fig. S12G,
Supplementary Material online.

FS Evolve to Rebalance Anabolic and Catabolic Flux
The combined population and single-strain genetic ana-
lyses showed that FSfru evolved mutations in fbp and pfk.
These genes code for the enzymes that catalyze the

reaction FBP→ F6P and its reverse reaction F6P→ FBP, re-
spectively (fig. 5A and B).

Fbp—In our experiment, mutations in fbp spread in the
fructose control treatment at timepoint T1, T2, and T3.
Fbp codes for FBPase (fructose bisphosphatase), which cat-
alyzes the conversion of FBP to F6P. Fbp expression was sig-
nificantly increased 3.62-fold in the fbp intergenic FSfru

mutant and 2.35-fold in the FSmix strain without a mutation
compared with the ancestral expression levels (fig. 5D). The
expression data suggest that the FSfru and FSmix evolved an
increased anabolic flux from FBP to F6P. This result aligns
with earlier work where fbp expression was shown to limit
both growth rate and yield when L. cremoris is exclusively
grown on fructose (Looijesteijn et al. 1999).

Pfk—Eight different variants of pfk evolved independently
in FSfru at timepoints T2 and T3, and all mutations occurred
in the structural part of the pfk gene (fig. 5A and B). Pfk codes
for PFK (phosphofructokinase) and is regulated by allosteric
inhibition and activation by ATP and ADP, respectively
(Papagianni et al. 2007). This regulation allows PFK to medi-
ate the rate of glycolysis in response to the energetic state of
the cell through ADP and ATP levels. 3D modeling of the pfk
protein revealed that structural mutations reside close to the
ADP and ATP binding sites; one mutation occurred in the
ADP allosteric activation site (fig. 5C). Based on these results,
we compared the pfk expression of evolved FSs growing on
fructose. We found that expression of the pfk mutant with
a mutation in proximity of ATP allosteric site was equal to
that of the ancestral strain (fig. 5E). However, the pfkmutant
showed a decrease in enzymatic activity of 25% compared
with the ancestor (fig. 5F).

FIG. 3. Evolutionary trajectories. Evolutionary phenotypic trajectories of fructose (left), galactose (middle), and mix (right) treatments, quantified
by the max growth rates on fructose and galactose supplemented CDMPC medium. Data points are calculated based on growth rate measure-
ments of single strains/genotypes sampled from the different populations across three timepoints (T1, T2, and T3; point T0 represents the an-
cestral strain). Because of growth rate differences between treatments the length of the experiment in number of generations was unequal
between treatments, with the total duration of the fructose, galactose, and mix-treatment amounting to, respectively, 1111, 565, and 575 gen-
erations. Therefore, timepoints T1, T2, and T3 were selected per treatment, such that they were equally spread over the growth rate performance
increase achieved throughout the experiment (supplementary fig. S6, Supplementary Material online). Growth rate data were clustered to dis-
tinguish phenotypic groups across replicates. The sizes of the colored circles are indicative of the frequency of each group of phenotypes, and
error bars indicate SD within each cluster. Colored short-dashed lines and arrows give an indication of the contours of the fitness landscape and
the direction of selection in each treatment, as in figure 2; long-dashed lines cross through the midpoint of the interval of group-average growth-
rate values that we observed in our dataset (F= 0.703; G= 0.545) and roughly demarcate regions of phenotype space corresponding to different
strategies: left upper corner (FS, right bottom corner GS, right top corner, and left bottom corner [generalists]).
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We found that both fbp and pfkmutations occur in the
same strain, but we also found strains with a mutation in
only one of these genes, indicating that these two muta-
tions can be beneficial independently but also in combin-
ation. We speculate that the mutations in pfk and fbp in
the FSs decrease catabolic and increase anabolic activity,
respectively, both resulting in an increased net carbon
flux in the anabolic direction.

GS Evolve to Resolve a Metabolic Bottleneck, Tune
Sugar Transport, and Modulate Downstream
Metabolism
The combined population and single-strain genetic ana-
lyses showed that GS feature mutations in the genes
pgmA, ptnABCD, and ldh(x) (fig. 6A). Most of the variants
resided in intergenic regions of the genes or were copy-
number variants (CNVs) (fig. 6B). Four structural variants
were detected in ldh (fig. 6C) and one in ptnABCD (fig. 6D).

PgmA—The gene pgmA codes for α-PGM
(α-phosphoglucomutase), which catalyzes the reversible
conversion of G1P to G6P. Its activity in L. cremoris is essen-
tial for the catabolism of galactose using the Leloir pathway
in the G1P to G6P direction (fig. 2A; Grossiord et al. 1998). It
has been experimentally shown that α-PGM is the rate-
limiting step of galactose metabolism in L. cremoris

(Neves et al. 2006, 2010). All the sampled GSgal in timepoint
T2 (two strains) and T3 (three strains, including GS*gal) fea-
tured a mutation in the intergenic region upstream of the
pgmA gene (fig. 6B). The mutation was not found in
GSmix, which instead evolved a 6-fold duplication of the
chromosome region containing the pgmA gene (fig. 6B).
RT-qPCR expression experiments of pgmA revealed that ex-
pression increased 2-fold in both strains (GSgal and GS*gal,
fig. 6E). The mutation of pgmA in GSmix resulted in a
3-fold expression increase (fig. 6E). Previous experiments
have shown that a plasmid-based 3.8-fold overexpression
of pgmA in aΔpgmA strain boosted α-PGMactivity, increas-
ing galactose consumption by 19% (Neves et al. 2006).
Similarly, a 6-fold activity increase in another experiment
yielded 25% consumption increase on galactose CDM
(Neves et al. 2010). We therefore speculate that the ob-
served increase in pgmA expression evolved to resolve the
metabolic bottleneck located between G1P and G6P.

PtnABCD—The PTSman (mannose phosphotransferase)
is coded by ptnABCD and was mutated in GSgal and
GSmix. PTSman is the primary transporter of glucose
and mannose metabolism in L. cremoris (Castro et al.
2009). Mutations occurred in the intergenic region up-
stream of the ptnAB intracellular components and in the
membrane-embedded permease component (ptnC) as a
structural mutation in the transmembrane section of the

FIG. 4. Metabolic performance
profile of selected FS and GS
strains. The evolved strains
show different abilities to utilize
metabolic resources. The strains
were grown in triplicates in
batch on fructose, glucose,
mannose, galactose, or trehal-
ose (1% wt/v) supplemented
CDMPC. Circle size is propor-
tional to the magnitude of the
relative increase (blue) or de-
crease (red) in (A) maximum
growth rate or (B) biomass yield
compared with the ancestral
strain. See supplementary fig.
S3, Supplementary Material on-
line for absolute values. The * on
the GSgal strain number 4 refers
to the GS*gal strain. The names
of the selected strains in the
supplementary table S1,
Supplementary Material online
are: for the GS, mix-treatment:
strain 1 (M4_t3_fg), strain 2
(M4_t3_eg), strain 3 (M2_t3_ef).
GS Galactose treatment: strain 1
(G1_t3_ag), strain 2 (G2_t3_eg),
strain 3 (G2_t3_fg), strain 4*
(G2_t3_cg). FS, mix-treatment:
strain 1 (M4_t3_ef), strain 2
(M2_t3_bf), strain 3 (M4_t3_ff).
FS fructose treatment: strain 1
(F4_t3_df), strain 2 (F3_t3_ff),
strain 3 (F3_t3_af).
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protein (fig. 6D). Expression analysis of the ptnABCD mu-
tant strains from GSgal (including strain GS*gal) showed a
full inhibition (≤99%) of the expression of ptnABCD, indi-
cating that the mutation suppresses the activity of
ptnABCD (fig. 6F). GSmix without a mutation in ptnABCD
(derived from a population that did contain ptnABCDmu-
tants) also displayed full inhibition of ptnABCD (fig. 6F).

This indicates that galactose transport in the GS does
not occur via the PTSman. The complete silencing of
PTSman in both strains suggests that its expression inhibits
fast growth on galactose. This result is consistent with a
study where mutants of L. cremoris that evolved a reduced
expression of PTSman display decreased growth on glucose,
but enhanced growth on galactose (Kjos et al. 2011).

FIG. 5. Analysis of loci associated
with fructose specialization.
(A) Mutated genes (red) in the
FS mapped to the metabolic
architecture of upper glycolysis.
Arrows indicate increase (up-
ward pointing) or decrease
(downward pointing) in activity.
Metabolites are shown as
squares. The metabolic fluxes
are visualized by big arrows indi-
cating the net direction of meta-
bolic flux when metabolizing
fructose. Big red arrows indicate
mutated metabolic steps.
(B) Variants of FS associated an-
notated loci. (C) 3D structure
of PFK with mutations (in red)
and functional sites (in black) an-
notated. Mutated regions (red),
allosteric activation sites (pur-
ple), substrate binding sites
(blue), magnesium catalytic site
and proton acceptor (orange),
nucleotide and ATP binding
site (green). (D) Expression of
fbpwhengrownonF-CDMPC, er-
ror bars indicate standard devia-
tions (SD). (E) Expression of pfk
when grown on F-CDMPC, error
bars indicate SD. (F) Enzymatic
activity of PFK protein extracts
by measuring phosphorylation
of fructose-6-phosphate to fruc-
tose 1,6-bisphosphate, error bars
indicate SD. The names of the se-
lected strains in panelsD, E, F cor-
respond to the strain names in
the supplementary table S1,
Supplementary Material online:
ANC, FSfru (F3_t3_ff), FSmix

(M4_t3_ff).
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Ldh—The gene ldh was mutated in two replicates of
GSgal, but not in GSmix (fig. 6B). Single-strain genetic ana-
lysis found ldh mutation only in one strain, the GS*gal.
LDH catalyzes the reversible reduction of pyruvate to lac-
tate with concomitant conversion of NADH to NAD+ (fig.
6A). This reaction serves to balance redox potential via oxi-
dation (Neves et al. 2005). Four structural ldh variants were
observed in all GSgal (fig. 6B and C). All four were frame-
shift mutations; one resulted in the gain of a stop codon
which occurred in the GS*gal strain, the other three muta-
tions occurred in the proximity of the LDH protein

domains that are associated with substrate binding, allo-
steric activation and NAD+ binding (fig. 6C). Besides these
structural mutations, we also found a large 2- and 3-fold
duplicated section that contained ldhX (a lactate dehydro-
genase homolog). Metabolic analysis of a ldh mutant
showed a strongly reduced production of lactic acid
when grown on a variety of carbon sources (fig. 6G) com-
bined with a high growth yield (fig. 4B). We conclude that
ldh mutations have a deleterious effect on lactic acid fer-
mentation and appear to shift the phenotype toward in-
creased mixed-acid fermentation.

FIG. 6. Analysis of loci asso-
ciated with galactose special-
ization. (A) Mutated genes
(red) in the GS mapped to
the metabolic architecture of
upper glycolysis. Small red ar-
rows indicate increase (upward
pointing) or decrease (down-
ward pointing) in activity of
mutated genes as compared
with the ancestral strain.
Metabolites are shown as
squares. The metabolic fluxes
are visualized by big arrows in-
dicating the net direction of
metabolic flux when metabol-
izing galactose. Big red arrows
indicate mutated metabolic
steps. (B) Variants of
GS-associated annotated loci.
(C ) 3D structure of LDH with
mutations and functional sites
annotated. Mutated regions
(red), allosteric activation sites
(purple), substrate binding
sites (blue), proton acceptor
(orange), NAD binding site
(green). (D) Location of struc-
tural mutations mapped to
protein structure of mannose
PTS. (E) Expression of pgmA
when grown on G-CDMPC, er-
ror bars represent SD.
(F ) Expression of ptnABCD
when grown on G-CDMPC, er-
ror bars represent SD.
(G) Lactic acid production per
unit of biomass on sugar sup-
plemented CDMPC. Optical
densities are normalized so
that the ancestor (ANC) has
OD600 equal one. The names
of the selected strains in panels
E, F, G correspond to the strain
names in the supplementary
table S1, Supplementary
Material online: ANC, GS*gal

(G2_t3_cg), GSgal (G2_t3_fg),
GSmix (M4_t3_eg).
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Discussion
Metabolic Architecture Predicts Trade-Offs that Elicit
Specialization and Diversification
Our experimental results provide a striking example of
how evolutionary adaptation and divergence are shaped
by constraints connected to the architecture of a metabol-
ic network. By considering the requirement of maintaining
adequate balance between anabolic and catabolic fluxes,
we were able to predict the evolvability of alternative
resource-utilization strategies (fructose and galactose spe-
cialization) for an ancestral strain preadapted for growth
on glucose. Here, we treated network topology (i.e., the
way in which metabolic pathways are connected) as a
‘hard’ constraint that imposed restrictions on the range
of feasible phenotypes that could potentially evolve over
the course of the experiment. Additionally, we considered
the control of metabolic fluxes (i.e., set-points and regula-
tory feedbacks determining pathway activities) as evolv-
able ‘soft’ constraints that reflected the result of past
selection for optimized glucose metabolism and that
biased the rate at which alternative specializations could
evolve.

Data from our experiment indicate that both types of
constraints shape the outcome of evolution. First, L. cre-
moris appears to be able to resolve the soft constraints re-
lated to the unique bottlenecks of fructose and galactose
metabolism, but at markedly different rates, consistent
with the expectation that fructose utilization requires a
smaller adjustment of the glucose preadapted ancestral
state than galactose utilization. Second, we hypothesize
that metabolic network topology acted as a hard con-
straint preventing efficient simultaneous utilization of
fructose and galactose, and the resulting trade-off induced
the evolution of a population-level polymorphism in re-
source specialization in an environment where both sugars
were available simultaneously. Taken together, our data
exemplify that careful consideration of the constraints
and trade-offs that are exposed under a specific
environmental-selection regime provides a useful frame-
work to predict, interpret and link phenotypic and genetic
evolutionary change. Further validation of the proposed
mechanisms can be obtained from in-depth metabolomics
measurements to verify that the observed mutations in-
deed resolve rate-limiting steps in fructose and galactose
metabolism.

Future work will also benefit from a better understand-
ing of which metabolic network properties most generical-
ly predict constraints. To address this question, similar
analyses need to be done for other systems. Opposite
net flux directions between alternative specializations
have been associated with phenotypic divergence in other
experimental evolution studies as well. For instance, diver-
gence between fast and slow switchers in sequential batch
culture of Escherichia coli growing on a mixture of glucose
and acetate, has been explained based on the fact that the
ability to switch rapidly from glucose to acetate consump-
tion requires an upstream flux from acetate toward central

glycolysis, whereas efficient growth on glucose favors a
maximum downstream flux capacity to enable rapid ex-
cretion of acetate as a metabolic waste product (Le Gac
et al. 2008). Trade-offs have also been associated with
the presence of energy-consuming metabolic cycles (van
Heerden et al. 2014), or the build-up of toxic metabolic in-
termediates (Pfeiffer and Bonhoeffer, 2004). The integra-
tion of metabolic modeling with experimental data on
mutant strains provides a promising approach to identify
further structural network properties associated with evo-
lutionary constraints, yet this approach is currently re-
stricted to model species for which kinetic models and
metabolomic data for a broad set of mutants are available.

Specialist Phenotypes Appear to Resolve Metabolic
Bottlenecks Related to Preadaptation to Glucose
Divergent evolutionary specializations on fructose and gal-
actose were associated with mutations in key metabolic
junctions and transporters (e.g., fbp, pfk, ptnABCD, pgmA,
and ldh). These mutations were located at positions in the
metabolic map that were expected to undergo directional
( fbp, pfk, and pgmA) or quantitative (ptnABCD and ldh)
changes in metabolic fluxes during the adaptation from
glucose to fructose or galactose utilization (fig. 2A). The
transcriptional and enzymatic changes induced by these
key mutations were consistent with the predicted direc-
tionality of selection (figs. 5 and 6) inferred from our ana-
lysis of anabolic versus catabolic flux bottlenecks in the
metabolic network. Galactose specialization was also asso-
ciated with mutations in ptnABCD and ldh that we did not
predict by our analysis of metabolic bottlenecks. In the an-
cestor, both ptnABCD and ldh display a quantitative shift
in their expression and activity between glucose and gal-
actose metabolism (Neves et al. 2010; Solopova et al.
2018). A previous study indicated that galactose metabol-
ism was enhanced by inhibitory mutations in the main glu-
cose transporter PTSman (Kjos et al. 2011). Consistent with
these findings, PTSman and LDH were found to be inhibited
in the galactose adapted strains from our experiment.

Phenotypic Convergence of FSmix Despite Lack of
Genetic Convergence
Notwithstanding the overall pattern of mutations asso-
ciated with fructose specialization, it is interesting that
mutations at the predicted key metabolic junctions were
not present in FSmix. Still, when the expression of fbp
was measured in FSmix, we find similar expression patterns
as in FSfru (fig. 5C) indicating that other currently uniden-
tified variants likely converge to similar transcriptomic
adaptations. This assumption is supported by the absence
of mutations in the identified target genes in a subset of
FSfru strains, despite parallel phenotypic evolution across
replicates with and without mutations in these target
genes. A follow-up in-depth transcriptomic analysis of
the unannotated phenotype-specific loci could potentially
reveal which other variants cause these phenotypic and
transcriptomic characteristics. Additionally, our analysis
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may have missed adaptive variants that occur only once or
twice in single loci, which were filtered out as a conse-
quence of the application of strict criteria for identifying
candidate loci (see Materials and Methods). Finally, it is
possible that selection on fructose utilization has been
weaker in the mix treatment, especially if the constraints
originating at pfk-fbp are exposed only during selection
at higher metabolic rates. Such conditions have potentially
occurred less frequently in the mix treatment, which had
generally lower fructose availability (50% less) and lower
dilution rates (supplementary fig. S6, Supplementary
Material online).

An alternative explanation for the apparent lack of mu-
tations in the mix treatment relates to the ecological con-
ditions induced in the mix treatment, and the fact that
they allow for cometabolization of fructose with galactose,
which would potentially be an alternative way to resolve
the anabolic bottleneck. Phenotypic analysis of FSmix

strains showed that they improved their growth rate on
galactose toward the end of the experiment, whereas
this was not observed for the FSs from the fructose treat-
ment (fig. 3). The FSs isolated from the mix treatment also
did not decline in metabolic performance on other sugars,
as was the case for the FSs from the fructose treatment
(fig. 4A). Taken together, this pattern could indicate that
the FSs from the mix treatment adapted to cometabolize
galactose to supply anabolic fluxes. This principle was de-
monstrated earlier for the cometabolization of glucose,
where fbp limitation of fructose-grown L. lactis cells could
be resolved by the addition of a small amount of glucose to
the medium (Looijesteijn et al. 1999). Because the im-
provement on galactose was relatively small, FSs from
the mix treatment were still far from classifying as a gener-
alist phenotype. In fact, GSs coevolved in all replicates of
the mix treatment where FSs appeared to evolve cometa-
bolization of galactose.

Rate of Molecular Evolution
In our sequence analysis, we considered not only single nu-
cleotide polymorphisms (SNPs) and insertions and dele-
tions (indels) but also performed CNV analysis (see
Materials and Methods). CNVs comprised most of the
observed mutations (89%; supplementary fig. S13,
SupplementaryMaterial online), which were either large de-
letions (19%) or duplications (70%); SNPs and indels only
made up 11% of total mutations. The consideration of
CNVs in our study resulted in an average amount of muta-
tions considerably higher than the amount found recently
in a similar evolution experiment performed with L. lactis
where CNVs were not analyzed (Price et al., 2019). An add-
itional potential explanation for the observed higher
amount of mutations is that we evolved L. lactis MG1363
on sugars that it was not preadapted to (galactose and/or
fructose), whereas in Price et al. (2019) glucose was the pri-
mary carbon source. Thus, our experiment likely provided a
larger scope for growth-rate optimization and/or a larger
target for adaptive mutations, whereas less mutations

were required to evolve toward the local fitness optimum
in the experiment of Price et al. (2019). Lastly, unlike Price
et al. (2019), we dynamically increased the dilution of the
bioreactors in order to maintain constant population dens-
ity and continually select for higher growth rate (keeping se-
lection force constant throughout the evolution
experiment). Such unidirectional selection regime could
substantially speed up adaptive evolution bymore effective-
ly selecting for newly emerging adaptive variants (faster
growers) within the population and, thus, fixating beneficial
mutations at a higher rate, resulting in faster evolutionary
change and more genetic variants (Ekkers et al. 2020;
Gresham and Dunham 2014).

The Evolved GS*gal Strain Exhibits Unexpected
Growth Characteristics with Potential Relevance for
Industry
Generally, L. lactis only approaches high growth rates under
homolactic fermentation, which is crucially dependent on
LDH activity. The GS*gal strain had a loss-of-function ldhmu-
tation (fig. 6G), but showed the highest growth rate on gal-
actose and, surprisingly, a high increase in growth on
fructose together with low growth on glucose and mannose
(fig. 4A). During our experiments, we noticed that overnight
cultures of the evolved GS*gal strain produce a strong diace-
tyl aroma; yet, we did not follow-up on this observation with
quantitative analysis to confirm the increased activity of the
acetoin branch of the downstream metabolism. Performing
such an experiment would be worthwhile to explore poten-
tial applications in the dairy industry, where a strain with the
unusual combination of a high growth rate on galactose, low
growth rate on glucose, and mixed-acid mode of growth
could find potential use as a galactose-scavenger (Neves
et al. 2010).

Specialization has Pleiotropic Effects on Growth on
other Carbon Sources, Correlated to Metabolic
Pathway Overlap
By quantifying the growth rate and yield of evolved FS and
GS on a range of other sugars (namely, glucose, mannose,
and trehalose), we observed that evolutionary specialization
generalizes to a broader pattern of resource-utilization
trade-offs. In order to explore whether the observed pleio-
tropic effects are predictable from the metabolic network
architecture, we mapped the observed metabolic adapta-
tions of FS and GS onto the hardwired glycolytic backbone
(supplementary fig. S14, Supplementary Material online),
and attempted to infer their consequences for the growth
on a broader range of carbon sources, considering flux dir-
ectionality constraints and the basic requirement of main-
taining appropriate relationships between catabolic and
anabolic fluxes based on information from metabolic data-
bases and literature. FSfru that exhibit mutations in fbp and
pfk display a pattern of negative growth effects on all other
resources (glucose, mannose, galactose, and trehalose)
(fig. 4A). This pattern is consistent with the unique low
entry-point of fructose in glycolysis compared with the
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other sugars (supplementary fig. S14, Supplementary
Material online). Based on previous research, it is expected
that reduced PFK activity will negatively impact growth on
other sugars that enter further upstream. Indeed, a 2-fold
decrease in PFK activity in L. lactis can lead to 57–70% de-
crease in growth rate on glucose (Andersen et al. 2020).
Themetabolic profile of GS shows a pattern of both positive
(trehalose) and negative (fructose, glucose, and mannose)
growth effects (fig. 4A). The observed pattern of pleiotropy
is consistent with the predicted flux constraints based
on their pathway topology (supplementary fig. S14,
Supplementary Material online). The disaccharide trehalose
connects to glycolysis at the G1P and G6P junctions with an
equal moiety (Andersson et al. 2001), so the net flux direc-
tion leads downstream from G1P to G6P, as is the case for
galactose metabolism. The increased flux between G1P and
G6P resulting from pgmA overexpression could therefore
also benefit trehalose metabolism (supplementary fig. S14,
Supplementary Material online). Moreover, trehalose and
galactose metabolism exhibits similar regulatory and meta-
bolic responses (Qian et al. 1997). The observed decreased
growth on fructose, glucose, and mannose in GS is not sur-
prising because of inhibition of the PTSman and LDH. PTSman

is the primary sugar import system for both glucose and
mannose and L. cremoris achieves its highest growth rate
by adopting a homolactic growth mode on both sugars,
which is dependent on high LDH activity. The fact that fruc-
tose is also partially transported through PTSman (Benthin
et al. 1993) leads to the expectation that these mutations
also negatively impact its growth.

Taken together, the observed pleiotropic growth pat-
terns suggest that the signatures of architectural trade-offs
can be detected in other resources, warranting further
investigation. This would allow us to answer how such
constraints manifest themselves dependent on the prea-
dapted initial state of the population and how predictably
wemay observe evolutionary diversification in populations
subject to resource-utilization trade-offs.

The metabolic adaptations observed in our evolution ex-
periment manifested themselves at multiple levels of organ-
ization: as molecular changes in the organization and
regulation of metabolic pathways (figs. 5 and 6), as differences
in resource-utilization profile at the organismal level (fig. 4),
and in the form of variation in ecological function (fig. 3).
Linking these patterns enabled us to unravel how constraints
interact with selection over the course of adaptive evolution
and to develop an integrated understanding of the evolution
of diversity in resource specialization. From our experiment,
we see that historical contingency (e.g., preadaptation to glu-
cose) was a crucial determinant to interpret the evolved adap-
tivemutations. It seems that within experimental evolution in
general, there is bias toward focusing more on how selective
pressure direct adaption rather than on how constraints ob-
struct it. Our study emphasizes that in order to understand
evolutionary dynamics it is just as important to understand
where you evolved from as where you evolve toward.

Interesting future work may include reevolving our gal-
actose and fructose optimized specialists on glucose,

mannose, and trehalose, and/or evolving the strains on dif-
ferent pairs of sugar combinations. Such experiments will
provide additional insight into the generality and nature
of the metabolic architectural constraints identified by
our study. This would allow us to answer how such con-
straints manifest themselves dependent on the prea-
dapted initial state of the population and how
predictably we may observe evolutionary diversification
in populations subject to resource-utilization trade-offs.

Materials and Methods
Experimental Procedures
Biofilm formation undermines the effectiveness of selection
for increased growth rate in prolonged continuous cultures.
Therefore, we used L. cremoris with its low biofilm forming
properties instead ofmore commonly usedmodel organisms.
Lactococcus cremoris MG1363 (formerly called Lactococcus
lactis subsp. cremorisMG1663) was grown in 60 ml of chem-
ically defined medium for prolonged cultivation (CDMPC)
(Price et al. 2019). Cultures were grown anaerobically
(25 ml/min N2 headspace flow) under continuous dilution
and stirring (330 rpm) at 30 °C and maintained at constant
pH 6.5. Three treatments were run in parallel, using media
supplemented with either 1% wt/v galactose, 0.5% wt/v fruc-
tose, or amix of 0.5%wt/v galactose+ 0.25%wt/v fructose as
sole carbon source(s). For each of the three treatments, we
ran four replicates in parallel (supplementary fig. S2,
Supplementary Material online). The unequal amounts of
fructose and galactose (1:2 wt/v ratio) that were provided
in the culture media, compensated partially for the observed
high asymmetry in growth rate of the ancestral L. cremoris on
fructose versus galactose. In order to further balance the
population sizes across treatments at the start of the evolu-
tion experiment, the initial dilution rate was set at 0.2 for the
galactose control treatment, and at 0.3 for the fructose and
mix treatments. Throughout the experiment, samples of
1.5 ml were drawn daily from each bioreactor to measure
OD600 and preserve glycerol stocks. Whenever population
densities increased beyond OD600= 1.0 or decreased below
OD600= 0.5, the dilution rate of the bioreactors was adjusted
daily to restore 0.5,OD600, 1.0. Given that the dilution
rate corresponds to the growth rate of the culture (popula-
tion) in steady state, we monitored its change throughout
the experiment for signs of evolutionary adaptation, and se-
lected three timepoints for subsequent phenotypic analysis
accordingly (supplementary fig. S6, Supplementary Material
online). Weekly samples were taken to check for infections
on glucose-supplemented M17 agar plates. The experiment
was run for 38–58 days depending on the treatment, corre-
sponding to 549–1111 generations of evolution.

Mutant Library Construction and Phenotypic
Analysis Through Agar-Plate Analysis
After the evolution experiment was completed, a library of
evolved strains was created to phenotypically characterize
the evolved mutants in each treatment (supplementary
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fig. S2, Supplementary Material online). We focused on
three timepoints strategically positioned along the evolu-
tionary trajectory, which were chosen based on the ob-
served growth-rate increase of each culture (see above).
To analyze the phenotypes of the evolved strains, –80 °C
glycerol population samples from the bioreactors were
plated both on F-CDMPC (fructose) and G-CDMPC (gal-
actose) agar plates. A sample from the glycerol stock was
taken with a sterile toothpick and put into 1.5 ml PBS
and subsequently diluted 500 times; 50 µl of the diluted
cell suspension was then plated. Population samples
from the fructose treatment were plated on F-CDMPC
plates, those from the galactose treatment on G-CMDPC
plates, and those from the mix treatment on both types
of plate. After 48 h of incubation at 30 °C, the plates
were photographed for further analysis. We picked six col-
onies per plate to construct a library of single genotypes
from the population samples (i.e., 12 genotypes were
sampled from each replicate population from the mix
treatment, 6 genotypes from the fructose treatment, and
6 from the galactose treatment per timepoint). To sample
the population-sample plates as broadly as possible for all
occurring phenotypes, we chose to pick colonies of con-
trasting sizes from each plate: two large, two average-sized,
and two small colonies (six in total). Each colony was then
grown separately overnight at 30 °C without shaking in
2 ml F-CDMPS or G-CDMPC (depending on the treatment
it derived from), and glycerol stocks were prepared from
these cultures, yielding a library of 288 single genotype
strains. These single-genotype glycerol stocks were then
used to inoculate G-CDMPC and F-CDMPC plates, follow-
ing the same plating procedure as for the population sam-
ples and also photographed. This replating step was
important to characterize the performance of each
evolved single-genotype in each sugar. The photographs
from both the population-level plates (bioreactor sam-
ples) and single genotype plates (the picked colonies)
were analyzed with the OpenCFU software to measure to-
tal colony count and area (pixel count) for each individual
colony. In order to quantify the relative performance of the
evolved single-genotypes on fructose versus galactose, we
calculated the ratio between the total colony count on the
F-CDMPC plate and on both plates combined (F-CDMPC
+G-CDMPC); this (F/[F+G]) ratio was also computed for
the median colony size.

Growth Curves for Single Genotypes and Phenotypic
Clustering Analysis
Growth rates on fructose and galactose were measured for
all genotypes from the library (see above) after precultur-
ing them overnight in F-CDMPC and G-CDMPC. The –80 °C
stocks were diluted 100 times in PBS, 1 µl of this cell sus-
pension was used to inoculate 100 µl of fresh fructose,
galactose, and mixed sugar CDMCP (pH= 6.5). Each
strain was grown in triplo in 384-well plates (Greiner
Bio-one 781906) under semianaerobic conditions
(VIEWseal Greiner Bio-one) at 30 °C, whereas keeping

track of the OD600 in a plate reader (Tecan F200).
After background correction, estimates of the instant-
aneous growth rate were obtained by performing local
linear regression analyses on the ln-transformed growth
curve data, using a sliding window of five data points
(measurements were taken every 10 min) and OD600

. 0.16. We then determined the maximum growth
rate from these regression curves and averaged the
three-replicate maximum growth-rate values for each
genotype on each sugar (see supplementary fig. S11,
Supplementary Material online for example growth
curves).

We used a model-based clustering method to identify
and classify the different phenotypic groups that evolved
during the evolution experiment (supplementary fig. S2,
Supplementary Material online). The clustering was per-
formed on the maximum growth rates of the single geno-
types on fructose and galactose. The performance of each
single genotype was plotted as a two-dimensional coordin-
ate: Fmax (maximum growth rate on fructose) on the y-axis
and Gmax (maximum growth rate on galactose) on the
x-axis. The growth rate coordinates in the Fmax–Gmax space
were clustered per timepoint per treatment. To estimate
the number of clusters (phenotypic groups), we applied
normal (Gaussian) mixture models and a maximum likeli-
hood approach using the R package mclust (version 5.4,
Fraley et al. 2016). To consistently apply the same cluster-
ing model to all the treatments and timepoints we se-
lected the EVV model, which allows clusters of ellipsoidal
shape (i.e., bivariate Gaussian distributions) with different
covariance structures (i.e., different orientations)
(supplementary fig. S7, Supplementary Material online).
This model was either the best model selected by the
Bayesian Information Criterion (BIC, maximum likelihood
corrected for model complexity) or yielded the same num-
ber of clusters as the best model selected by BIC independ-
ently for each timepoint and treatment. We limited the
maximum number of clusters to three because we were
only interested in the main phenotypic groups in the
Fmax–Gmax space (i.e., FS, GS, and generalist).

DNA Sequencing and Analysis
We sequenced 48 strains by sampling three strains from
two out of four replicates for each timepoint for each
treatment. We set a threshold of only considering mutated
loci that exclusively occurred in one phenotype (FS or GS)
and which entailed five or more strains or variants. The iso-
lation of chromosomal DNA of the population and single-
genotype cultures was performed as described in Johansen
and Kibenich (1992). Full-genome resequencing was per-
formed using IlluminaHiSeq (GATC) with a mean coverage
of 300, read length, and insert size of 150 bases. To charac-
terize genetic variation across all strains, adaptors were re-
moved with cutadapt 1.18 (Martin 2011), and pair reads
were filtered and trimmed based on quality scores using
trimmomatic 0.36 (Bolger et al. 2014) and FastQC 0.11.5.
Filtered reads were then mapped to the reference genome
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(Lactococcus lactis subsp cremoris v. MG1363) using BWA
0.7.13 (Li and Durbin 2009). Duplicated reads were re-
moved, and local realignment was performed using picard
2.18.5, increasing the maximum number of reads to
100,000 per base. Coverage values per base were calculated
using SAMtools 1.9 (Li et al. 2009). Genotype calling was
done with FreeBayes 0.9.10 (Garrison andMarth 2012), set-
ting a minimum mapping quality of 20 and ploidy level of
1. This procedure results in a list of genetic variants that
includes SNPs and indels. In order to consider only the gen-
etic variants that resulted from the experiment, the genet-
ic variants of each sample were contrasted with the
variants observed in the ancestral strain (timepoint T0).
Only the genetic variants that were observed in the
evolved strains but not present in the ancestral strain
were analyzed. In order to come up with a short list of
loci that were specifically associated with either GS or FS
adaptation, we identified a subselection of loci that most
strongly correlated with fructose or galactose specializa-
tion. The criteria for identifying these loci were that they
(1) occur exclusively in the fructose or galactose treat-
ments, (2) have full annotation, and (3) feature SNP/indels
in at least five strains or feature at least five variants (SNP/
indel and CNV) (supplementary fig. S12, Supplementary
Material online).

CNV along the genome was identified by measuring
changes in local coverage relative to the flanking genomic
regions and/or genome-wide coverage. CNV was inferred
using CNVnator 0.3.3 (Abyzov et al. 2011), with a value
of 100 for the parameter bin size and the option ‘unique’
in order to have the correct output of the quality field.
With this method, no variants were detected in the ances-
tral strain. In general, for repetitive elements, the expect-
ation is that a particular sample has the same number of
copy fragments as in the reference genome. Thus, reads
are expected to randomly map among reference copies
in a uniform way, leading to a relative copy ratio between
the sample and the reference of 1. CNV of a repeat will
then lead to a variation in ratio around a value different
from unity. As this variation will increase with the number
of copies, the estimation of CNV between sample and ref-
erence becomes less accurate as the number of copies in-
creases. However, since no CNVs were detected for the
ancestral strain, CNVs found for repetitive sequences
were considered to be biologically relevant (instead of a
methodological artifact). With this method, we expect to
accurately detect large changes in CNV, and likely miss
events of small CNV change in particular for repetitive
sequences.

To identify the potential phenotypic effect of the result-
ing list of genetic variants (SNPs, indels, and CNV) genetic
variants were annotated relative to the reference genome
using SnpEff 4.3 (Cingolani et al. 2012). Annotations for
downstream, upstream, and interacting genes were not in-
cluded. The 3D protein structure prediction from the pfk
and ldh proteins was performed using Phyre2 (Kelley
et al. 2015). EzMol was used to visualize the proteins, color
functional domains, and mutated regions (Reynolds et al.

2018). Protter was used to visualize the intermembranal
mutations in the mannose PTS (Omasits et al. 2014).

Expression Experiments
Strains were grown in 60 ml batch in the bioreactor system
at pH 6.5, 30 °C in F-CDMPC or G-CDMPC. Culture sam-
ples were harvested midexponentially (OD600≈ 0.45) and
the cell pellet was immediately frozen in liquid nitrogen.
RNA extraction and cDNA preparation were performed
in duplo. cDNA samples were used to run a qRT-pcr
with custom primers for the selected genes
(supplementary table S2, Supplementary Material online).
The expression of housekeeping gene glyA was measured
in parallel for all samples as a control to normalize back-
ground expression levels between samples.

PFK Assays
Protein extracts were prepared from midexponentially
harvested cells grown on F-CDMPC. Essays were per-
formed with a MyBioSource Phosphofructokinase micro-
plate Assay kit (catalog#MBS8243182) and executed as
stated by the manufacturer’s protocol.

Lactic Acid Assays
Cultures were grown on CDMPC supplemented by 0.5%
sugar (glucose fructose, mannose, or galactose) and har-
vested midexponentially. Essays were performed on super-
natant with a Megazyme L-lactic acid assay kit and
performed as stated by the manufacturer’s protocol.

Supplementary Material
Supplementary data are available atMolecular Biology and
Evolution online.
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Appendix: Constraints, trade-offs, and the
eco-evolutionary theory of adaptive
diversification
Constraints Shape the Distribution of Phenotypes
that can be Realized by Selection
Unconstrained adaptive evolution is expected to induce
phenotypic change in the direction of the selection gradi-
ent, eventually leading to a maximization of fitness. This
process can be visualized by a population evolving along a
trajectory on a metaphorical phenotypic adaptive land-
scape that follows the direction of steepest ascent before
converging eventually on a fitness peak (supplementary
fig. S1A, Supplementary Material online). In reality,
however, evolution is hardly ever unconstrained, preventing
populations from following the steepest path to a fitness
peak, limiting the rate of phenotypic evolution, or redirect-
ing adaptive evolution toward suboptimal fitness peaks.

In the context of the fitness landscape metaphor, con-
straints manifest themselves as regions of phenotype
space that are difficult to reach or altogether inaccess-
ible. An important reason that such inaccessible regions
exist is that organisms are subject to physical, biochem-
ical, or thermodynamical laws and conservation
principles that restrict the topology of the feasible
phenotype space. The degree to which organisms are
constrained by these fundamental principles is clearly il-
lustrated by the success of flux-balance analysis and re-
lated constraint-based modeling approaches (Price
et al. 2004), which have been shown capable of producing
detailed and accurate predictions of cellular metabolic
fluxes based on minimal information on input fluxes
and the metabolic network in combination with a con-
sistent treatment of basic conservation principles such
as mass-, energy-, and redox-balance.

An equally important class of constraints is probabilistic
ones, which exist when a particular adaptive phenotype is feas-
ible but highly unlikely to evolve, given the current state of the
population. One example of a probabilistic constraint occurs
when a population is separated from a fitness peak by a valley.

Since there is no accessible path of beneficial mutations with
small effect sizes, evolution could only reach such a peak by a
mutational leap to the other side of the valley. Because such a
macro-mutation is statistically highly unlikely, access to the
peak is constrained. A similar problem can occur on rug-
ged fitness landscapes with a high degree of reciprocal
sign epistasis. Here, certain adaptive phenotypes may rely
on a beneficial combination of multiple mutations that
are each deleterious in isolation, so that there is no gradual
adaptive path toward the fitness peak (Dawid et al. 2010).
Probabilistic constraints may also derive from the stochas-
tic nature of mutation, demography, and gene fixation,
which limit the rate of adaptive evolution in a finite popu-
lation. Finally, it is common that certain (combinations) of
phenotypes are more prone to mutate than others, or
more variable due to a larger reservoir of standing genetic
variation. These asymmetries are related to differences in
the genetic or developmental architecture of traits, which
may itself have been shaped by selection or reflect a long
history of past adaptation. The short-term effect of archi-
tectural biases, however, is that evolution is accelerated in
some directions in phenotype space, whereas it is inhibited
in others, making it much harder for populations to reach
certain adaptive peaks.

Trade-offs and the Evolution of Specialist Strategies
By restricting access to a particular region of phenotype
space, constraints can qualitatively alter the topology of
the adaptive landscape. This effect is apparent in particular
when organisms are prevented from optimizingmultiple fit-
ness components simultaneously (e.g., reproduction and
survival), forcing them to find a balance between maximiz-
ing one fitness component at the cost of compromising the
other. When such trade-offs between fitness components
are strong (i.e., when fully maximizing one fitness compo-
nent at the cost of the other yields a higher overall fitness
than an intermediate compromise strategy), multiple alter-
native adaptive solutions tend to exist, reflected by the
emergence of distinct peaks in the adaptive landscape
(supplementary fig. S1B, Supplementary Material online).

Trade-offs readily emerge in two common situations.
First, when a phenotypic character is important for two
or more biological functions (i.e., when the trait is pleio-
tropic), it is unlikely that the optima for each individual
function are located at the same position in the adaptive
landscape. Optimizing the character for a given biological
function then automatically leads to a suboptimal trait va-
lue for other functions. Second, trade-offs arise naturally in
the context of allocation decisions. For example, the basic
principle of energy conservation dictates that energy in-
vested in a given biological function cannot be spent on
another function, so that energetic investments necessarily
trade-off against each other when the total budget is lim-
ited. Similarly, the allocation of metabolic fluxes to differ-
ent metabolic pathways underlies a commonly observed
trade-off between the rate and yield of microbial growth,
given that alternative ATP producing pathways are all
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faced with a fundamental thermodynamic constraint, that
is, a negative relationship between the yield and the rate of
energy production.

Adaptive Diversification and Frequency Dependance
Trade-offs figure prominently in the literature on adaptive
diversification, because they are capable of generating
multiple fitness peaks, corresponding to a disruptive selec-
tion regime. However, when acting on its own, disruptive
selection tends to push populations toward one of the al-
ternative fitness peaks, eventually depleting the available
genetic variation (supplementary fig. S1B, Supplementary
Material online). In order to prevent the rapid loss of poly-
morphism, adaptive diversification relies on one additional
necessary condition (Metz et al. 1996; Geritz et al. 1998): in
addition to being disruptive, it is critical that selection also
be negatively frequency-dependent, that is, the success of
each strategy must decline as it becomes more common.

When selection is frequency-dependent, thinking about
the adaptive landscape as a static surface is misleading, be-
cause frequency dependance will cause the shape of the fit-
ness landscape to change dynamically in response to any
movement of the population in phenotype space (note
that this is different from externally imposed fluctuating se-
lection). Such dynamic feedback actually arises naturally in
many ecological systems. Consider, for example, two geno-
types that have evolved different resource-utilization strat-
egies. When one of the two specialists becomes dominant in
frequency, this will generally lead to a decrease in the con-
centration of the resources that it consumes, making its
growth conditions less favorable. The other specialist might
be affected by the decreased resource availability as well, but
to a lesser extent, because it has at least partially specialized
on a different set of resources, which are not consumed as
much by the dominant type. As a result, the rare specialist
enjoys a relative fitness advantage that will allow it to in-
crease in frequency relative to the dominant type. If the
resource-utilization profiles are sufficiently different, the fre-
quency effect can be so strong that the two specialists are
driven toward an ecological coexistence equilibrium, where
their fitness values are dynamically maintained to be equal
(supplementary fig. S1C, Supplementary Material online).
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