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Introduction

1.1 Motivation

Artificial intelligence is becoming an inseparable part of doing science in many fields
of research, and astrophysics is no exception as it requires the incorporation of smart
automated approaches to deal with ever increasing amounts of data. Numerous current
and future ground- and space-based instruments make astrophysics a data-rich field,
which continually asks new science questions, while presenting progressively more
complex data challenges. This thesis is focused on developing solutions to some of
the challenges in the area of high angular-resolution radio astronomy with the help of
novel intelligent approaches from computing science. It establishes a collaboration
between the machines and human experts to deal with these new emerging issues.
Here, intelligence can be defined as the ability to process raw data to inform future
decisions. In the world of computer science, artificial intelligence can be achieved
by building algorithms that mimic certain functions of the human brain, such as
image recognition and characterisation. Among the many different types of artificial
intelligence that can be applied to real world problems, this thesis is focused on
applying data science techniques, such as machine learning (ML) and, in particular,
deep learning (DL) algorithms.

ML algorithms are designed to teach a machine how to perform a specific task without
being explicitly programmed to do said task. By developing computer programs based
on ML algorithms, data is collected, aggregated and learned from by automatically
identifying patterns without human assistance. ML algorithms can be used in the
context of classification, regression or similar tasks based on the information that can
be extracted from the data. Moreover, they allow for obtaining insight to the data and
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the problem at hand. The capability of ML to make fast and reliable decisions or
predictions in many applications is an interesting aspect of its use. However, this is
only possible when human experts help formulate the problem, acquire and organize
data, and design a space for solution possibilities. It is also crucial to select the right
learning algorithm and its parameters, apply the algorithm to the data, and validate
the resulting solution to determine whether it is useful or not. DL is a subset of ML
algorithms that takes the idea of learning from the data a step further by forming
a higher level of abstractions. DL algorithms can perform an automatic feature
extraction from the raw data, which is how they differ from other ML algorithms.
This quality can get us closer to working with larger and more complex datasets.

This thesis is focused on interdisciplinary research that implements a set of ML
and DL algorithms to address some of the astrophysical challenges related to complex
astronomical observations of the radio sky. Here, radio sources are defined as celestial
objects that emit their radiation (photons) at wavelengths of a few centimetres (cm)
to metres (m). The primary motivation in linking computing science and radio
astronomy is the many millions of celestial objects that are being observed in current
wide-field radio surveys, for example, as part of the LOFAR Two Metre Sky Survey
(LoTSS; Shimwell et al. 2019). Moreover, upcoming massive astronomical facilities,
such as the Square Kilometre Array (SKA), will require reliable and fast solutions
to leverage the full potential of the large catalogues and images that are expected to
be generated within the next decade. The aim of this thesis is to provide solutions
to the rising challenges and opportunities from the exponential growth of data in
radio astronomy. In particular, we deal with the complex datasets that come from
combining radio telescopes to form an interferometer, with a focus on those that
provide the highest possible angular resolution imaging of radio sources. Here, ML
and DL algorithms are used to provide a simpler representation of interferometric
data that is easier to work with. In other words, by using ML algorithms we aim to
provide a simple representation of a complex problem.

Fig. 1.1 shows how the different aspects of astrophysics and computer science are
linked together in this thesis. Interferometric data, which is subject to thermal noise
fluctuations and the measurement of partial information, require the use of efficient
computer science techniques. Simulations are another source of information, which
is also generated by using computational tools. Preparing realistic data with existing
simulation tools is one of the important aspects of this thesis. Furthermore, image
processing, statistics, learning algorithms and data visualization methods are also
used to provide novel solutions to various astrophysical questions within the field of
high angular-resolution radio astronomy.
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Motivation

1.1:
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The three main science objectives that are addressed in this thesis are listed below.
However, at the end of this introductory chapter, a more descriptive explanation is
provided.

e The source counts of compact radio sources observed with Very Long
Baseline Interferometry (VLBI): In the second chapter of this thesis, real
imaging data is analyzed to determine the number of radio sources that exist in
the Universe with an extremely high surface brightness at cm-wavelengths. This
involves dealing with large catalogues of information and simulating realistic
imaging data to understand systematic effects associated with the observing
system. The aim of this part of the thesis is to robustly predict the number of
radio sources that could potentially be detected from surveys of the entire radio
sky with interferometric arrays, like the SKA-VLBI system. These calculations
provide an insight to the optimal survey strategies based on the density of such
radio sources.

e Source detection and characterization in imaging data from sparse inter-
ferometric arrays: The third chapter of this thesis investigates the performance
of DL algorithms for identifying radio sources in noisy imaging data. This
is done to determine whether such algorithms can deliver improvements over
traditional image detection techniques. This includes testing methods for de-
convolution, noise removal and object detection. In addition, DL algorthims
are used to characterize the shape and brightness of the detected radio sources.
The aim of this part of the thesis is to determine whether DL algorithms can
make wide-field surveys with VLBI instruments more efficient, by improving on
the detectability of radio sources, which would result in reducing the required
integration time for such surveys.

o Fast and reliable detection of strong gravitational lens systems: The fourth
chapter of this thesis investigates whether pattern recognition with DL algo-
rithms can be applied to efficiently find radio sources with peculiar shapes, that
is, outliers from large samples of objects. In particular, DL algorithms are
optimised to find so called gravitational lenses, which are caused by an astro-
physical phenomena associated with Einstein’s General Theory of Relativity.
Unlike traditional gravitational lens search techniques, which require laborious
visual inspection by human experts, the approach used in this thesis is designed
to select genuine gravitational lens candidates from wide-field imaging data
taken using the International LOFAR Telescope (ILT), with little or no human
interaction. The main aim of this part of the thesis is to develop and test new
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methods that can be applied to the millions of radio sources to be observed with
the ILT over the next 5 years.

e Deep learning in high angular-resolution radio interferometry: The final
chapter of this thesis presents a summary of the main results and discusses
whether DL algorthims can provide novel solutions to the many challenges
within high angular-resolution radio astronomy.

As this thesis brings together a number of concepts within astrophysics and computing
science, the next sections of this introductory chapter provide a brief overview of radio
interferometry, gravitational lensing, supervised learning, deep learning techniques
and visualization techniques. The final section of this chapter gives an outline of the
thesis and presents the scientific questions that are to be addressed.

1.2 Radio Interferometry

In this section, a brief introduction to radio astronomy, interferometry, and the arrays
used in this thesis is given. We refer readers to, for example, Rohlfs & Wilson (2013)
for an in-depth discussion of radio astronomy and interferometry.

1.2.1 Basic principles of radio astronomy

Radio astronomy focuses on the emission from celestial objects at long wavelengths
(typically 4 > 6 mm), hereafter referred to as radio sources, to investigate and
understand their properties. Some of these radio sources emit only in the radio bands,
which makes them completely invisible at other wavelengths, such as in the optical
bands that we observe with our own eyes. Given the long wavelengths of the radio
waves that are emitted, the design and usage of telescopes in this field are different from
what is traditionally seen at optical observatories. In fact, radio telescopes are almost
identical to the satellite dishes used for television reception and telecommunication
around the world. Radio telescopes capture the radio waves and convert them into
electrical signals. Then, the signals are amplified, processed and digitised to form the
output data. Studying radio waves can provide details about some of the mysteries
of the Universe, such as supermassive black holes or the fading jets of plasma that
they emitted. Diffuse matter in the large scale structure of the Universe, and the way
galaxies interact are further phenomena that can be investigated with radio astronomy
(de Gasperin et al. 2021).

The reflection of electro-magnetic waves with frequencies below 10 MHz (4 > 30 m)
by the Earth’s ionosphere is a limiting factor that determines whether radio emission
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can be observed from the ground. Those frequencies between 30 MHz and 50 GHz can
easily penetrate the Earth’s atmosphere (including its troposphere and ionosphere),
making it possible to observe the sky at these frequencies from almost any location
on Earth. Above these frequencies, sites at higher altitude are needed to avoid the
absorption and emission of water in our atmosphere.

The large wavelength corresponds to a low energy of the emitted radio signals. This
can affect the efficiency of observations as the faint sources do not produce enough
energy to be detected. One solution to overcome this problem is to build larger dishes
to collect more signal. On the other hand, larger dishes result in a larger resolving
power 6 for the telescope. The Rayleigh criterion provides 6 (in radians) as

0=122x21/D (1.1)

in which D is the diameter of the telescope and A is the wavelength of the observed
radiation. This equation shows that at a wavelength of 1 m (300 MHz in frequency), we
would need a single dish telescope with a diameter of 200 kilometres (km) to resolve
objects that are separated by 1 arcsec, which would be competitive with the resolution
of optical telescopes. If it not technologically impossible, this would be very expensive
and difficult to achieve. Currently, the largest single dish radio telescope in the world
is the Five hundred metre Aperture Spherical Telescope (FAST) in China. However,
the solution to this angular resolution problem in radio astronomy is a process called
interferometry, where multiple radio telescopes (receivers) are connected to work
together. With Very Long Baseline Interferometry (VLBI; Broten et al. 1967), we are
able to place antennas over large areas such as continents in order to obtain milliarcsec
(mas) and sub-mas angular resolution imaging at cm-wavelengths.

In radio interferometry, two or more radio receivers observe the same astronomical
object simultaneously at the same frequency. To maximise the signal, the incoming
waves are combined in-phase as constructive interference, whilst out-of-phase waves
are subjected to destructive interfering measures. Waves that are not entirely in or
out of phase exhibit a pattern of intermediate intensity that may be used to detect the
relative phase difference. As each wave takes a different route or path to the receiver,
the difference in the distance traveled creates a phase difference between them, or in
other words, some geometric delay in the arrival time of the waves at the two receivers.
The distance between each of the receivers is referred to as the baseline length B.
The angular resolution 6 for an interferometer is similar to equation 1.1, but now D
is replaced by B. Larger baselines provide the possibility of observing more compact
structures, while the detection of larger structures depends on the shortest baselines.
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There are N(N — 1)/2 number of baselines for a system of N connected antennas.

Radio interferometers do not produce an image of the sky-plane, denoted by co-
ordinates (/,m). Instead, the sky brightness distribution, /,, at some frequency v, is
measured in the Fourier-plane, denoted by coordinates (i, v). The interference pattern
of each baseline creates the visibility data, which is a measure of the sky brightness
distribution on some angular-scale. The visibility produced by two antennas i and j
(called a baseline) is given by (for w = 0),

V(u,v) = J J M expl—i2n(ul + vm)] dldm. (1.2)
The image of the radio source is then obtained by performing a Fourier transform
on the sampled visibility data. It is produced through a sparse sampling of the uv-
plane, based on the antenna locations, the frequency of the observations, and the total
integration time used. As the Fourier-plane is only sparsely sampled by the limited
number of baselines in the array, there are large gaps in the sampled uv-plane. This
results in a lack of information on certain angular scales for sparse interferometric
arrays, which are the focus of this thesis. By using more baselines, aperture synthesis
from the Earth’s rotation, or a wide frequency bandwidth, the sampling of the uv-plane
can be improved. However, as there will always be gaps in the uv-plane, the resulting
images in the sky-plane will have artifacts. These are typically removed using image
deconvolution techniques.

Several interferometers have been built, which can observe the radio sky and provide
data to study the Universe. This thesis is based on data collected from two instruments
in particular: the Very Long Baseline Array (VLBA) and the Low-Frequency ARray
(LOFAR). In the following, these two interferometric arrays are presented.

1.2.2 Very Long Baseline Array

The VLBA is a collection of ten identical radio telescopes that are located throughout
the continental United States, and in the Virgin Islands and Hawaii (see Figure 1.2 for
their locations). The VLBA can observe the radio sky in the frequency range of 0.3 to
83 GHz. Each VLBA telescope has a diameter of 25 m, and the longest baseline is 8600
km, which provides mas angular resolution. The wide range of observing frequencies
and the very high angular resolution allows the imaging of very fine structures in radio
sources. This includes studies of optically thin relativistic jets from quasars, galactic
nuclei, and radio stars. On the other hand, the sparsity of the radio telescopes (45
measurements per time and frequency interval) makes the background noise highly
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Figure 1.2 — VLBA map with marked antenna locations and abbreviated names
(credits: NRAO). ML: Mauna Kea — Hawaii, BR: Brewster — Washington, OV: Owens
Valley — California, KP: Kitt Peak — Arizona, PT: Pie Town — New Mexico, LA: Los
Alamos — New Mexico, FD: Fort Davis — Texas, NL: North Liberty — lowa, HN:
Hancock — New Hampshire, SC: St. Croix — U.S. Virgin Islands.

correlated in the imaging data, and limits the largest recoverable angular-scale to
100-200 mas. This provides a number of imaging challenges that are investigated in
this thesis.

VLBA observations at 1.4 GHz are used for the second and third chapters of this
thesis. The data come from the mJy Imaging VLBA Exploration at 20 cm (mJIVE-
20) survey, which used 408 hours of VLBA filler time (Deller & Middelberg 2014).
These data are used to characterize the compact radio source population in Chapter 2,
and then to make realistic simulations of VLBI data to test DL algorithms for object
detection and characterization in Chap%er 3. Further details about the mJIVE-20
survey dataset are given in those two chapters.
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1.2.3 LOw Frequency ARray (LOFAR)

LOFAR is an interferometer that is made up of many simple dipole antennas, as
opposed to conventional filled aperture dish telescopes. The simple design of the
antennas in LOFAR allows astronomers to observe a very wide area of sky at once. It
has no moving parts. However, it is still possible to digitally steer the antennas to point
at a specific direction using software. This process is referred to as beam forming,
where the signals from one particular direction are combined in phase, maximising
the response of the array in that direction, whereas the response to signals in other
directions is suppressed. LOFAR has also made it possible to observe different parts
of the sky at the same time (van Haarlem et al. 2013).

LOFAR is currently the largest radio telescope in the world, and operates at the lowest
frequencies observable from the ground. Unlike single-dish telescopes, LOFAR can
be considered as a multi-purpose sensor network, with an innovative computer and
network infrastructure that can handle extremely large data volumes. Although the
core of the array is located in Exloo, with remote stations throughout the Netherlands,
currently eight other countries have LOFAR stations. With distinct High Band Anten-
nas (HBA) and Low Band Antennas (LBA), LOFAR can operate almost continuously
in the frequency range of 10 to 240 MHz, which corresponds to wavelengths of 30 to
1.2 m. There are 96 LBAs and 48 HBAs in each core and remote station, an example
of a core station is presented in Fig. 1.3. The international stations have 96 LBA and
HBA antennas (see Fig. 1.4), which when added to LOFAR, form the International
LOFAR Telescope (ILT). This expanded array is going through the commissioning
phase (Morabito et al. 2021; Jackson et al. 2021; Bonnassieux et al. 2021; Harwood
et al. 2021; Sweijen et al. 2021; Timmerman et al. 2021). The ILT currently includes
14 international stations, six in Germany, three in Poland, one in the UK, France,
Sweden, Ireland and Latvia. As a result of the distant geographical locations, the ILT
can resolve low frequency radio sources that are typically 300 to 500 mas in size.
However, an angular resolution of 0.27 arcsec is achievable at 150 MHz, thanks to
the longest baseline (1989 km) between Ireland and Poland. Further expansion of the
ILT is planned, with the addition of a station in Italy.

The unique angular resolution and wide field-of-view of the ILT should in principle
make the array a fantastic instrument for finding gravitationally lensed radio sources.
This goal is the focus of Chapter 4 of this thesis, where novel DL algorithms are
developed and tested to identify rare lensed events in ILT survey data.
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Figure 1.3 — The geometric distribution of the LBA and HBA antennas of LOFAR
in a core station, reproduced from van Haarlem et al. (2013). The large circles
correspond to the LBA antennas, while the small squares are the HBA tiles.
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Figure 1.4 — The geometric distribution of LOFAR international station antennas,
reproduced from van Haarlem et al. (2013).

1.3 Gravitational Lensing

The purpose of this section is to introduce the fundamental concepts and formalism
of gravitational lensing. It explains the applications of gravitational lensing and how
it provides a magnified view of distant galaxies. The interested reader is referred to a
more detailed description of the phenomenon given by Schneider (1992), Blandford &
Narayan (1992), Meylan et al. (2006) and Congdon & Keeton (2018). The following
material is relevant to Chapter 4 of this thesis, which is focused on the detection of
strong gravitational lens systems and categorizing them.
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1.3.1 Basic formalism of gravitational lensing

Strong gravitational lensing describes an astrophysical phenomenon in which two
galaxies are along the same line-of-sight from the observer. In this thesis, we refer to
the most distant galaxy as the "background source", while the closer galaxy is referred
to as the "lensing galaxy". The gravitational field of the lensing galaxy bends the
light from the background source by an angle @. As a result, the radiation from the
background source becomes distorted, and extended arcs and multiple images can be
created. The deflection angle is defined as

4GM
b’

a= (1.3)
which is dependent on the enclosed mass of the lensing galaxy (M) and the impact
parameter (closest approach) to the lensing galaxy (b), where G is the gravitational
constant and c is the velocity of light.

Fig. 1.5 shows the geometry of gravitational lensing in which Dy, D; and D are the
angular diameter distances from observer to source, observer to lens and from lens to
source, respectively. From this, the reduced deflection angle, @, can be shown as

a(8) = 1; s 4(D,;9) (1.4)

s

and the final lens equation to be
B=0-af). (1.5)

In the lens equation, 8 and 8 are the true and apparent angular position of the source,
respectively, as seen by the observer. There are multiple solutions to the lens equation
leading to the generation of multiple images at position . For circularly symmetric
lens systems, and when the background source is perfectly aligned with the lensing
galaxy, the result is an Einstein ring. The radius of the ring is known as the Einstein

A4GM Dy
O = x| ——. 1.6
E \/ 2 DD (1.6)

The radius of an Einstein ring is therefore larger for more massive galaxies. It is also

radius, 6, and is given by

dependent on the relative angular diameter distances between the background source
and the lensing galaxy.
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Figure 1.5 — The geometry of gravitational lensing.
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1.3.2 Strong lensing applications

Astronomers are interested in gravitational lenses because they are a major source of
information regarding the structure of the Universe. Moreover, gravitational lensing
provides the opportunity to study high-redshift galaxies that would be otherwise
unobservable (Impellizzeri et al. 2008; Riechers et al. 2011). This phenomenon can
be used to determine the expansion history of the Universe, as well as trace galaxy
formation and evolution. This can help us to test our current understanding of how
the Universe formed over cosmic time (e.g. Stacey et al. 2018). The details of some
of these applications are describe below.

Due to the magnification of the background source, the lensing galaxy works in
the same way as a telescope. The measured flux of the lensed object is increased
with respect to the unlensed background source, as its angular size is increased by
lensing. This increased angular size is similar to providing a higher angular resolution
image for resolved background galaxies, which results in an opportunity to unveil the
structure and dynamic properties of high-redshift sources (Chirivi et al. 2020; Faure
et al. 2021; Swinbank et al. 2009).

In gravitational lensing, each individual lensed image of the background galaxy is
generated by a different geometric light path. The different gravitational potential
depths that the light passes through results in a time-delay between different lensed
images (Suyu et al. 2010). Also, the angular diameter distance to the lensed object
affects the time delay for each of the lensed images of the background galaxy. There-
fore, the observed time delay for each lensed image is inversely proportional to the
Hubble constant (Hyp), which is used to characterize the expansion of the Universe,
providing some knowledge of the mass distribution is known (Suyu et al. 2013). In
fact, the determination of Hy is one of the main applications of gravitational lens
systems.

Gravitational lensing is a purely geometrical effect that only involves gravity. There-
fore, it is independent of the nature of the matter within the lens, that is, whether it is
luminous or dark, and also its dynamical state. This means that gravitational lensing
provides a promising source of information to study the amount and distribution of
mass within the lensing galaxies. This is done through predicting the observed param-
eters, such as the flux-ratios and/or the relative positions of the lensed images, which
allows the astronomer to obtain information on the mass distribution of the lens, such
as its position and shape (McKean et al. 2007; Vegetti et al. 2012; Hsueh et al. 2020).
Also, how the density of the mass changes as a function of radius within the lens can
be determined with gravitational lensing, which can be used to test models for the
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formation and evolution of massive galaxies and clusters of galaxies (Koopmans et al.
2006; Nieuwenhuizen, Limousin & Morandi 2021; Bahé 2021).

1.3.3 Strong lens modelling

Modelling of gravitational lensing systems is a process that involves reproducing the
observed features in the data, namely, the surface brightness distribution of the lensed
images using a theoretically motivated model for the lens mass. This process can
offer an in-depth description of the mass distribution of the lens, and is required for
almost all of the applications of gravitational lensing described above. Modelling is
also needed to calculate the lensing magnification, which provides information on the
intrinsic physical properties of the background galaxy, such as the size, brightness
and luminosity. Lens models are thus required to comprehend the characteristics of
the background source.

There are several lens-modeling approaches, which can be roughly classified as para-
metric and non-parametric. Non-parametric modelling directly retrieves the underly-
ing mass distribution from the generated lensed images (and possibly the background
source), while parametric modelling uses assumptions to model both the background
and lensing galaxies. It is shown by Meneghetti et al. (2017) that both non-parametric
and parametric modelling techniques are good at recovering the averaged mass and
density profiles of the lens.

There are around 40 gravitationally lensed radio sources currently known, and it is
predicted that with the SKA, this number could grow to as large as 10° (McKean et al.
2015). This means that fast, efficient and automatic lens modelling techniques are
required to study the details of each individual system, or identify classes of lenses
to follow-up. Traditionally, a maximum likelihood method has been used for lens
modelling (Suyu et al. 2010; Vegetti et al. 2010). However, ML, and in particular DL
techniques have become a promising approach that has been widely used in recent
years to study a variety of strong lensing applications (Lin et al. 2020; Kim et al.
2020; Marianer, Poznanski & Prochaska 2020).

1.4 Supervised Learning

ML algorithms can be divided, in general, into supervised and unsupervised learning.
Other learning scenarios, such as reinforcement learning or semi-supervised learning
exist, but will not be considered in this thesis. In a supervised learning algorithm, the
data acts as an instructor, assisting the model in discovering a relationship between a
collection of features and user specified labels. This model is trained to predict the
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properties of the unseen data (e.g., Goodfellow, Bengio & Courville 2016). Super-
vised learning has been used to address various problems in astronomy, for example,
the classification of galaxy morphologies in imaging data (Pearson et al. 2019; Nolte
etal. 2019), variable star classification using light-curve representations (Becker et al.
2020), and the classification of blazar candidates (Kovacevi¢ et al. 2020). This section

describes some of the relevant supervised learning algorithms used in this thesis.

1.4.1 K Nearest Neighbours (KNN)

K Nearest Neighbours (KNN) is considered as one of the simplest learning techniques
(Cover & Hart 1967) that needs no explicit training steps. It is used for classification
and regression tasks. To execute the algorithm, the user is asked to specify K as
the number of nearest neighbours. The choice of K can significantly affect the
performance of the algorithm on unseen test data. Although K is typically defined
as the square root of the number of samples (Hassanat et al. 2014), it is necessary
to explore over different values of K and determine which one is the best. For the
classification purposes, a voting scheme is applied on K closest neighbours to specify
the membership of the test data. The same methodology can be applied on regression
problems, but instead of membership, the output will be the average or the weighted
average of the values of K nearest neighbours. Although KNN is simple and easy to
implement, it has a major drawback on the sensitivity of the value of K. Moreover,
the value of K is considered as a constant for all the test samples, which might cause
inaccurate results for some of the test data (Cheng et al. 2014).

1.4.2 Random forest

Random forest is an ensemble learning method that works by building a large number
of decision trees during training. Similar to KNN, it can be used for both classifi-
cation and regression tasks with a voting mechanism (Liaw & Wiener 2002). For a
classification problem, the most frequently chosen class is selected while the average
predicted value of all the individual trees is returned for regression tasks. Although
decision trees are easy to use and interpret, they are not accurate enough in classify-
ing unseen data in complex problems. Random forest provides flexibility by creating
multiple decision trees using a bootstrap technique. Bootstrap is a sampling technique
that allows data points in the original dataset to be selected more than once. It makes
the generation of multitude trees in random forest possible by bringing diversity and
flexibility to the final model. The following steps explains how random forest is built
and how it can generate more generalized results compared to simple decision trees:
step 1: creating a bootstrap dataset with the same size as the original dataset;
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step 2: creating a decision tree for each bootstrap dataset using a subset of features at
each step;

step 3: iteratively executing step 1 and step 2 to generate a number N decision trees;
and

step 4: finally, after generating N decision trees, a majority voting mechanism is used
to classify unseen (test) data.

1.4.3 Artificial Neural Network (ANN)

Artificial Neural Network (ANN) is a learning technique that is vaguely inspired
from the structure of biological brains (McCulloch & Pitts 1943). In general, it
consists of three main types of layers: input, hidden and output layers. Hidden layers
are responsible for representing inputs in such a way that the desired output can be
achieved. There is usually an activation function following the hidden layers, which
introduces nonlinearity to neural networks. Nonlinear activation functions play an
import role in the efficiency of neural networks since linear functions are not usually
good enough to model complex problems. Moreover, without the use of nonlinear
activation functions, several layers of neural networks would still function in the same
way as only one layer. In the following, different types of activation functions are
reviewed.

Activation Functions

Choosing suitable activation functions is one of the main steps in designing neural
networks. Usually, activation functions are applied on the weighted sum of all
connected neurons along with an optional bias parameter. The activation function
determines the level of excitement for each neuron. Three popular activation functions
in neural networks are Sigmoid, Tanh and ReLU. Table 1.1 provides the detailed
information about several activation functions; (see Apicella et al. 2020; Hayou,
Doucet & Rousseau 2019 for an overview of activation functions).

The Sigmoid activation function compresses the input in the range of 0 and 1. Its
output can be interpreted as the firing level of a particular neuron: a Sigmoid activation
of 0 represents a quiescent neuron (not being active), while the Sigmoid output of 1
represents a fully saturated neuron at maximum activity. The output range between 0
and 1 makes Sigmoid suitable for tasks in which the network predicts the probability
of belonging to a particular class of data. The Tanh activation function instead
compresses the input to the range of —1 and +1. ReLU on the other hand simply
calculates the max(0, x). This means that the output of this activation function is
zero for negative inputs and linear with a slope of 1 for positive inputs. Krizhevsky,
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Sutskever & Hinton (2017) have found that ReLLU converges 6 times faster compared to
Tanh in the image processing tasks that they considered. It is also perceived as being
computationally less expensive, and appears to learn faster compared to networks
of Sigmoid or Tanh units. Therefore, ReLU has become a very popular activation
function for hidden layers; see Oostwal, Straat & Biehl (2019) for a comparison on
the training behavior of ReLU and Sigmoid. Despite all the advantages of RelLU,
the constant output of zero for negative inputs might cause some neurons to be
permanently inactive during training and never contribute to the learning process.
This problem is known as the dying ReLU (Lu 2020). The solution to this problem
is in using a slightly different activation function, which instead of giving zero for
negative values, is linear with a small negative slope. This activation function is
known as Leaky ReL.U.

1.5 Deep Learning Techniques

The term "Deep Neural Network" or "Deep Learning" refers to multi-layered ANN
(Goodfellow, Bengio & Courville 2016). It is considered to be one of the most
important methods to emerge in the last few decades, and has become extremely
common when massive amounts of data need to be handled.

1.5.1 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) have become very popular in astronomical
studies. CNNs are one of the most prominent approaches based on ANNs that
deal with input data of a topological structure, for example, an astronomical image.
Similar to a general ANN, a CNN consists of several layers. Each layer has a unique
functionality, which is partly pre-defined. In the following, the most commonly used
and basic layers of a convolutional network are described.

Convolution Layer

Convolution layers compute the scalar product between a set of weights and the
corresponding regions or patches in the input. Kernels, parameterised by the adaptive
weights, are typically small, but repeated over the entire input image. Such a layer
is trained to activate specific kernels when a certain spatial input pattern occurs in
the input (O’Shea & Nash 2015). To demonstrate the functionality of a convolutional
layer, an example from the MNIST dataset (LeCun & Cortes 2010) is provided.
MNIST is a popular database in the field of image processing and ML. It contains
grey-scale images of 28 X 28 pixels, representing handwritten digits. For each image,
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Figure 1.6 — MNIST dataset of handwritten digits.

there is a target label as the standard benchmark on the digit in the image. An overview
of the MNIST dataset is shown in Fig. 1.6.

The learnt features by the convolution layers are used by densely-connected layers
for classification purposes. The convolution layers are responsible for learning a
hierarchy of features, those that are highly abstract, as well as those more detailed.
Visualizing the trained features can provide valuable information to understand and
interpret the performance of a convolutional neural network. Fig. 1.7 shows the output
of the convolutional layer; the given input image is shown on the top row, and contains
a sample of MNIST dataset associated to label the number ‘2’. Fig. 1.7 shows the
lighted up pixels in the (output) feature map, in good agreement with the input image..

Max Pooling Layer

The purpose of a pooling layer is to combine units (e.g., representing pixels) of a
previous layer and generate a version at lower resolution. Considering the ultimate
goal of the network is to extract particular features, edges, curves etc., a so-called max
pooling layer retains only the most activated unit of a given region, while all lower
values are disregarded in the following layers of the network. Other types of pooling
have been suggested, such as average pooling, which takes the average value of all the
pixels within a given block. Max pooling has been observed to outperform average
pooling (e.g., Boureau et al. 2010).

Although several arrangements for placing a max pooling layer are possible, it is
usually added after a convolutional layer. By grabbing the maximum values of each
block, max pooling down-samples the input image. Down-sampling enables the
network to look at a larger area of the image, but at a decreased resolution. This
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Figure 1.7 — A representation of the output from a convolutional layer on the MNIST
dataset. The input image to the convolution layer is associated with the number 2’
(shown on the top row).
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reduces the number of adaptive parameters in the network, which results in a lower
computational load. The experiments of Scherer, Miiller & Behnke (2010) show
the significant superiority of CNNs that use max pooling when compared to regular
sub-sampling, in which the average over all input values is propagated to the next
layer.

Dropout Layer

This layer can work as a regularizer. It is used to overcome overfitting by randomly
interrupting data flow through the network. Using dropout, a large model (that can
easily be overfited) will be repeatedly sampled to create smaller sub-models from
it. This is done by randomly removing a selection of activation units (and their
associated weights). By using dropout, the network cannot be certain on the presence
of a particular hidden unit in an individual update. Impaired performance, as a result
of using a dropout layer, might be fixed by adding additional layers to the network
and making it deeper (Srivastava et al. 2014).

Fully connected layers

Fully connected layers are usually positioned at the end of a typical CNN. These
layers are designed in a way that neurons have full connections to all activations in
the previous layer. They have the classic structure of ANNS, as explained in Section
1.4.3.

1.5.2 Convolutional autoencoders

A convolutional autoencoder is a specific type of CNN in which the network learns by
encoding the input in an unsupervised approach. It consists of two main components:
an encoder and a decoder, which are connected by the bottleneck or the latent vari-
ables. The encoder is responsible for compressing the input into a low-dimensional
representation (latent variables) that contains the essential features required to re-
construct the output by the decoder. In order to do that, a number of sequentially
connected layers, including convolution, max pooling, activation and fully connected
layers in both the encoder and decoder are used. Fig. 1.8 shows a symbolic schema
of the encoder and decoder sections in autoencoders.

1.6 Visualization techniques

Data visualization is a crucial technique that is used to take data driven decisions
when analyzing massive amounts of data. They offer a graphical representation of
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the data in the form of a map or a graph, to understand data trends, outliers, and
patterns. It is one of the key steps in the data science process, which states that
data must be visualized after it has been collected, processed, and modelled, before
drawing any form of conclusions. In the world of big data, and particularly when using
predictive, analytic machine learning algorithms, it is essential to monitor the results
in order to make certain models perform as expected. This is because visualizing
complex algorithms is usually much easier to understand than numerical outputs. The
following visualization technique is used in Chapter 3 when predicting the properties
of radio sources.

1.6.1 t-Distributed stochastic neighbour embedding

t-Distributed Stochastic Neighbour Embedding (t-SNE) was first presented in 2008
by Van der Maaten & Hinton (2008). It aims to provide a 2-dimensional (2D) repre-
sentation of data points from a higher-dimensional space. The pairwise similarities
of data points in the higher dimensional space are preserved by the generated 2D
representation. In other words, similar data points in the original higher dimensional
space would also be positioned closely in the lower dimensional space. It is designed
to minimize the divergence between the distribution of pairwise similarities in the
original space and a distribution of similarities between the corresponding lower-
dimensional points. The result of applying t-SNE (with default parameter settings) on
5000 training samples in a MNIST dataset is presented in Fig. 1.9; colours are used to
separate different classes of data in the MNIST dataset. Considering the image size
of 28 x 28 = 784 pixels in the MNIST dataset, each point in Fig. 1.9 represents an
array of size 784. By analyzing the result of applying t-SNE, it is shown that different
classes of data are well separated.

1.7 Scope and aim of this thesis

This thesis explores several big data challenges in high angular-resolution radio as-
tronomy. The aim is to address several radio astronomical questions (presented in the
following) using data science, statistics and machine learning techniques. In particu-
lar, there is a focus on novel solutions for object detection and characterization with
VLBI observations at cm- and m-wavelengths.

1. What is the number of VLBI-detected radio sources as a function of flux density?
What is the expected number of radio sources with flux densities >1 mJy that can be
targeted with SKA-VLBI?

In recent years, there have been several computational developments that allow objects
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Figure 1.9 —-2-Dvisualization on a part of MNIST dataset using t-SNE. Each datapoint
represents an image in the dataset with a size of 28 X 28 = 784 pixels. There are ten
class labels in the MNIST dataset corresponding to images of hand written digits.
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within the full field-of-view of VLBI arrays to be imaged. This can lead to a large
number of interesting science use cases that would motivate all-sky surveys with
instruments like the VLBA (in the short term) and the SKA-VLBI facility (in the
longer term). However, our knowledge of the number of sources that would be found
from such surveys, and what makes a source detectable with VLBI is extremely
limited. The main aim of Chapter 2 is to measure the number of VLBI-detected radio
sources from a 240 deg? pilot survey with the VLBA, and use this measurement to
calculate the number of sources that would be detected with SKA-VLBI.

2. Can data science techniques reliably detect and characterize radio sources from
sparse interferometric arrays? Can the efficiency of all-sky VLBI surveys be improved
with deep learning?

Source detection and characterization will always play an important role in making
new scientific discoveries, particularly for the all-sky VLBI surveys that are inves-
tigated as part of Chapter 2. Reliability, completeness and purity are all important
attributes of any survey catalogue. In Chapter 3, a DL algorithm is developed and
tested for use during a possible wide-field VLBI survey with the VLBA (or any sparse
interferometric array operating at high angular resolution). The main aim of this part
of the thesis is to see whether such algorithms offer any improvement over traditional
object detection algorithms, and whether they can make all-sky VLBI surveys more
efficient by lowering the threshold for detection.

3. Candeep learning algorithms reliably detect gravitational lenses in interferometric
imaging data? What parameter space (in terms of the lens and source properties)
is the ILT sensitive to when carrying out a survey for gravitationally lensed radio
sources?

In principle, the ILT should image millions of radio sources at around 0.3 arcsec angu-
lar resolution, which seems well matched to searching for gravitational lens systems.
However, identifying rare lensing events in the imaging data will be challenging.
Also, in recent years, a number of DL techniques have been introduced for finding
lens systems in optical data. In Chapter 4, such methods are tested for interferometric
data, and a new lens detection algorithm for LOFAR is developed. The main aim of
this chapter is to provide a novel approach to finding gravitational lenses with the ILT,
and to determine what type of lenses the ILT can potentially find, given the sensitivity
and angular resolution of the data.



Source counts of VLBI-detected radio sources

Based on "The source counts of VLBI-detected radio sources and the prospects of
all-sky surveys with current and next generation instruments"
S. Rezaei, J. P. McKean, A. Deller and J. F. Radcliffe
To be submitted for publication in MNRAS

Abstract

We present an analysis of the detection fraction and the number counts of radio sources
imaged with Very Long Baseline Interferometry (VLBI) at 1.4 GHz as part of the
mJIVE-20 survey. From a sample of 24 903 radio sources identified by FIRST, 4 965
are detected on VLBI-scales, giving an overall detection fraction of 19.9 + 2.9 per
cent. However, we find that the detection fraction falls from around 50 per cent at
a peak surface brightness of 80 mJy beam~! in FIRST to around 8 per cent at the
detection limit, which is likely dominated by the surface brightness sensitivity of
the VLBI observations, with some contribution from a change in the radio source
population. We also find that compactness at arcsec-scales is the dominant factor
in determining whether a radio source is detected with VLBI, and that the median
size of the VLBI-detected radio sources is 7.7 mas. After correcting for the survey
completeness and effective sky area, we determine the slope of the differential number
counts of VLBI-detected radio sources with flux densities S; 4 gu; > 1 mly to be
nvier = —1.74 £ 0.02, which is shallower than in the cases of the FIRST parent
population (prsT = —1.77 £ 0.02) and for compact radio sources selected at higher
frequencies (r7;7gr = —2.06 £0.02). From this, we find that all-sky (37 sr) surveys with
the EVN and the VLBA have the potential to detect (7.2 +0.9) X 10° radio sources at
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mas-resolution, and that the density of compact radio sources is sufficient (5.3 deg™?)
for in-beam phase referencing with multiple sources (3.9 per primary beam) in the
case of a hypothetical SKA-VLBI array.

2.1 Introduction

Very Long Baseline Interferometry (VLBI; Broten et al. 1967) is an observational
technique where the signals from individual radio telescopes are combined coherently
to produce a synthesised unfilled aperture. As the radio telescopes can be widely sep-
arated across the Earth (and even located in space), this technique currently provides
the highest angular resolution imaging in astronomy (with a synthesized beam size of
typically 1 to 10 mas at cm-wavelengths, and reaching 0.025 mas at sub-mm wave-
lengths; Event Horizon Telescope Collaboration et al. 2019a). VLBI allows a wide
range of science goals to be realised, for example, detecting super-luminal motion
in radio jets (Cohen et al. 1977), imaging gravitational lenses (Porcas et al. 1979),
mapping the accretion disks of supermassive black holes (Miyoshi et al. 1995), tracing
the expansion of stellar explosions (O’Brien et al. 2006), imaging outflows of atomic
hydrogen from supermassive black holes (Morganti et al. 2013), localising Fast Radio
Bursts (Marcote et al. 2020), and making the first images of the shadow of a black
hole (Event Horizon Telescope Collaboration et al. 2019b).

It is over 50 years since the first fringes were produced between two unconnected
antennas separated by over 3000 km (Broten et al. 1967), yet the unique applications
of VLBI at cm-wavelengths have been restricted to studying only ~ 25000 radio
sources with very high brightness temperatures (> 10° K) and over a very small
fraction of the observable sky (~ 230 deg?; e.g. Deller & Middelberg 2014; Herrera
Ruiz et al. 2017; Petrov 2021). This is significantly lower than the up to 5 million radio
sources that have been catalogued from recent all-sky surveys at arcsec-resolution (e.g.
Becker, White & Helfand 1995; Condon et al. 1998; Intema et al. 2017; Shimwell
et al. 2019; Lacy et al. 2020). This is because the effective field-of-view of a VLBI
experiment is typically only a few tens of arcsec in diameter, which is due to historical
computational limitations and data-rates that required significant averaging of the
visibility data. This means that large numbers of sources can only be observed
through many short observations. Coupled with the sparseness of the telescopes
forming the synthesised unfilled aperture, this results in only the brightest sources
being detectable, that is, those that are sufficiently compact to have a measurable
correlated flux on the available baselines of the array.

This limitation of VLBI means that radio sources at relatively high flux densities
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(> 1 mly) tend to make up the target population at cm-wavelengths, which is mainly
dominated by radio-loud Active Galactic Nuclei (AGN), or so-called jetted AGN
(Padovani 2017). At lower flux densities (< 1 mJy) a higher proportion of radio
sources have emission associated with star-formation processes or weak jets (e.g.
Condon et al. 2012; Prandoni et al. 2018). Studying such objects at high angular
resolution requires much deeper observations, which further limits the number of
objects that can be studied (Garrett et al. 2001).

However, due to advances in computing and the development of new techniques for
correlating the signals from the different radio telescopes, it is now possible to form
multiple phase centres for a given observation (Deller et al. 2011). Using multiple
phase centres allows the observer to image small areas around known sources within
the same observation. It works by shifting the phase centre to the location of known
sources and averaging the obtained visibilities to obtain manageable-sized data sets.
For example, the GOODS-N (Radcliffe et al. 2018) and COSMOS fields had 600
and 750 phase centres per observation. However, these are somewhat special cases
and routine wide-field VLBI experiments are currently limited to around 100 phase
centres from a typical observation. Nevertheless, this technique has revolutionised
our view of the mas-scale radio Universe, both through shallow wide-field surveys,
like the mJy Imaging VLBI Exploration at 20 cm (mJIVE-20; Deller & Middelberg
2014) survey and through deep narrow-field observations of well-studied deep fields
(Middelberg et al. 2013; Herrera Ruiz et al. 2017; Radcliffe et al. 2018).

The results from these studies have demonstrated a proof-of-concept for all-sky VLBI
surveys with current instruments, like the European VLBI Network (EVN) or the Very
Long Baseline Array (VLBA). Also, in the future, the sensitivity of VLBI arrays are
expected to improve dramatically with the construction of the Square Kilometre Array
(SKA-VLBI) and the next generation Very Large Array (ngVLA). These instruments
will lower the current sensitivity limits, and given their wide fields-of-view and wide
frequency bandwidths, they can provide a significant increase in the numbers of
sources detected on arcsec- to mas-scales. However, this will require determining the
number of detectable sources on VLBI-scales as a function of flux density, so that
survey strategies can be properly developed.

In this chapter, we determine the source counts of VLBI-detected radio sources
from the wide-area mJIVE-20 survey (Deller & Middelberg 2014). With these
data, we estimate the number of radio sources that can be detected by the next
generation of wide-field VLBI surveys with the VLBA and the EVN in the short
term (< 10 yr) and with a hypothetical SKA-VLBI array in the longer term. This
chapter is arranged as follows. In Section 2.2, we present an overview of the final
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mJIVE-20 survey catalogue that we use for our study. We determine the source
counts of VLBI-detected radio sources in Section 2.3, which includes calculating the
mJIVE-20 survey completeness from simulations and determining the effective area
of the survey. Using these data and the (expected) capabilities of current and next
generation radio interferometers, we also calculate the number of likely detectable
radio sources on VLBI-scales for given survey strategies in Section 2.4. Finally, in
Section 2.5, we present our conclusions.

2.2 The mJIVE-20 survey final catalogue

In this section, we provide an overview of the mJIVE-20 survey, and discuss the
properties and detection rate of the final catalogue that we use to determine the source
counts of VLBI-detected radio sources.

2.2.1 Overview of the mJIVE-20 survey

The mJIVE-20 survey was carried out with the VLBA at 1.4 GHz with dual polar-
ization and a bandwidth of 64 MHz (recording rate of 512 Mbits™!). The main aim
of the project was to better understand the radio source population at mas resolution
by exploiting recent developments in wide-field multi-phase centre correlation tech-
niques (Deller et al. 2011). The survey strategy and initial results were reported by
Deller & Middelberg (2014); here we summarise the main properties of the survey
and discuss the final catalogue.

Each mJIVE-20 survey observation consisted of four individual pointings of 2 mins
duration around a known VLBA calibrator (so that in-beam calibration could be used;
see Fig. 2.1) at 7 different hour angles to improve the uv-coverage. This resulted
in a typical synthesised beam-size of 16 X 6 mas for target fields at Declinations
between —7 and 60 deg. The average rms noise is around 150 uJy beam™' at each
pointing centre. In total, there were 410 separate observations that targeted 24 903
radio sources from the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey
(Becker, White & Helfand 1995), making the mJIVE-20 survey the largest targeted
sample of radio sources with VLBI to date. From these observations, 4 965 sources
were detected above a threshold of 6.750°, where o is the local rms noise of the
imaging data. For our analysis, we use the final source catalogue from 2014 March
31, which was obtained using the BLOBCAT source detection software (Hales et al.
2012).



2.2: The mJIVE-20 survey final catalogue

offset in arcmin
(weaq/Afr) swu punoubsdeq

20 10 0 -10 -20

offset in arcmin

Figure 2.1 — An example rms map from combining four separate pointings of the
VLBA 25-m antennas at 1.4 GHz. The VLBA calibrator source is denoted by the (red)
star in the centre of the image, such that it is always in the primary beam of each
antenna for each pointing position. A sky area of about 1 x 1 deg? is surveyed with
this pointing strategy, for each observation of a VLBA calibrator.

2.2.2 Detection rate as a function of radio source surface brightness, compact-
ness and size

We now investigate the detectability of radio sources on VLBI-scales, based on their
observed properties at lower angular resolution. Note that this comparison is not
intended to be a thorough study of the astrophysical characteristics of the radio source
population, but instead aims to compare the properties between the parent sample
catalogue obtained with the VLA and whether a detection is made with a snapshot
observation with the VLBA.

From a straight comparison of the number of sources observed and detected, we
see that the mJIVE-20 survey has an overall detection rate of 19.9 + 2.9 per cent,
where the uncertainty is calculated from Poisson statistics. However, to investigate
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the detection rate of radio sources on VLBI-scales further, we show in Fig. 2.2 the
number of radio sources detected and not detected, and the detection fraction for the
mJIVE-20 survey, as a function of the FIRST peak surface brightness. We see that
above a peak surface brightness of 80 mJy beam™! (for a 5.5 arcsec beam size), the
majority of radio sources detected in FIRST also have a VLBI counterpart in the
mJIVE-20 survey. Below this surface brightness limit, the detection fraction steadily
drops from 50 to around 31 per cent at 5 mJy beam™!, before steeply falling to 8 per
cent at the FIRST detection limit (507) of 0.8 mJy beam™!.

This change in the detection fraction as a function of peak surface brightness in the
parent sample could result from a number of factors. First, it could be due to a
change in the intrinsic compactness of radio sources, where the brightest objects are
relativistically beamed towards the observer, that is, a selection effect. This would
explain why the majority of radio sources at the highest surface brightness are also
detected on VLBI-scales. Also, even for those cases that are not strongly beamed,
the depth of the mJIVE-20 survey data is sufficient to detect a weak radio core in
the brightest radio sources in FIRST. This is consistent with the results of Herrera
Ruiz et al. (2017), who detected with the VLBA a large number of low flux density
radio sources (<1 mly) that were previously identified using the VLA. Moreover, for
those observations the VLBA recovered between 60 and 80 per cent of the VLA flux
density. This suggests that a large portion of sources at and below the mJIVE-20
survey detection limit may still be dominated by AGN activity.

Second, it could be that those sources with a lower surface brightness do have radio
emission on VLBI-scales, but the mJIVE-20 survey observations were not deep
enough or the uv-coverage was not sufficient to image them. This would explain
the sharp drop in the detection rate towards a lower surface brightness, that is, this
is an observational effect. This conclusion is also consistent with extremely deep
EVN observations of the GOODS-N field (rms 9 uJy beam™!; Radcliffe et al. 2018)
when an e-MERLIN/VLA parent sample is used (Muxlow et al. 2020), which finds a
similar detection rate of 25 + 6 per cent (24 out of 94 objects) to the mJIVE-20 survey.
Even though the radio source population at this depth is expected to be dominated
by star-forming galaxies, as opposed to those harbouring an AGN, it is interesting
that providing deep enough observations are carried out, a high fraction of VLBI
detections is still found. Therefore, the steep change in the detection fraction towards
lower surface brightness for the mJIVE-20 sample is likely a combination of the
observing depth and a change in the properties of the underlying source population.

To further investigate the latter, we have looked at several properties of the source
population to determine their effect on the mJIVE-20 survey detection fraction. In
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Figure 2.2 — Upper panel: The number of objects detected (purple) and not-detected
(blue) at VLBI-scales during the mJIVE-20 survey, as a function of peak surface
brightness measured from FIRST (5.5 arcsec beam size). Above a peak brightness of
around 90 mJy beam™', the number of detections is greater than the number of non-
detections. Lower panel: The detection fraction at VLBI-scales during the mJIVE-20
survey, as a function of peak surface brightness measured from FIRST. The detection
rate changes from around 50 per cent for the highest surface brightness sources within
FIRST, to below 10 per cent at the detection threshold. This is due to the compactness
of the radio sources changing as a function of flux density.
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particular, we have analysed the ratio of VLBI peak surface brightness to VLBI inte-
grated flux density (VLBA compactness), the ratio of FIRST peak surface brightness
to FIRST integrated flux density (VLA compactness), and the VLBI and FIRST decon-
volved major axis (taken from the mJIVE-20 survey catalog obtained using BLOBCAT),
which are defined as Veomp, Feomp, Vsize and Fyjze, respectively. Distributions for the
VLA compactness and size are presented in Fig. 2.3. The same distributions for the
VLBA properties, and also the ratio of peak VLBI surface brightness to the peak
FIRST surface brightness, which we refer to as Pr,y (radio source compactness), are
presented in Fig. 2.4.

As expected, those objects with a higher compactness and a smaller size on VLA-
scales are more likely to also have a detection on VLBI-scales. For the VLA com-
pactness, the mean (with standard deviation) and median of the distributions for the
VLBI detections and non-detections are 1.05 (o~ = 0.24) and 1.00 beam™', and 0.92
(o0 = 0.38) and 0.92 beam™!, respectively. In the case of the size, the mean (with
standard deviation) and median of the distributions for the VLBI detections and non-
detections are 1.60 (o = 2.01) and 1.24 arcsec, and 4.10 (o = 4.10) and 3.27 arcsec,
respectively. Also, we find that those objects detected on VLBI-scales by the mJIVE—
20 survey tend to have a higher compactness and smaller intrinsic size; the mean (with
standard deviation) and median for the compactness and size on VLBI-scales is 0.85
(o0 = 0.27) and 0.9 beam™', and 11.5 (o = 13.0) and 7.7 mas. Finally, we find that
Prv has a mean of 3.7, with a standard deviation of 13.4, and a median of 1.4.

Although the mean values of the above parameters tend to be consistent for the
samples of detections and non-detections on VLBI-scales, given the large scatter for
each parameter, the median values point toward compact sources being more likely
to be detected. Therefore, we now investigate the distribution of sources detected,
as a function of their VLBI size, V;iz.. In Fig. 2.5, we show the mJIVE-20 survey
detection fraction as a function of FIRST peak surface brightness, where each bin is
also divided into bins of V;j,.. We consider all objects with a major axis larger than
16 mas as extended on VLBI-scales, since this is equivalent to the average beam size
of the mJIVE-20 survey. It is interesting that in the low surface brightness regime
(< 2mly beam™' in FIRST), only objects with a V. of < 8 mas have been detected.
Overall, extremely compact objects (Ve < 1 mas) have the least contribution to
the detection fraction compared to the more extended objects, implying that almost
all radio sources are partially-resolved with the VLBA, that is, they have some level
of VLBI structure. Another point from Fig. 2.5 is that for a surface brightness
> 8 mly beam™!, the contribution of objects with 1 < Ve < 16 mas is almost
constant. However, the contribution of those objects with V. > 16 mas increases.
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Figure 2.3 — The compactness (Fcomp; upper panel) and major-axis size (Fize;
lower panel) in the FIRST survey for the detection (purple) and non-detection (blue)
samples in the mJIVE-20 survey.
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FIRST and mJIVE-20 survey peak surface brightness (PFr v ; lower panel).
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Figure 2.5 — The detection fraction for the mJIVE-20 survey, binned by peak surface
brightness in FIRST. The different colours show the detection fraction in bins of
Vsize (deconvolved major axis of a single 2-dimensional elliptical Gaussian fit to the
imaging data).

This is likely due to the signal-to-noise ratio of the brightest radio sources also

being high, and therefore, we are more sensitive to any possible extended emission.

Similarly, extended objects make up a smaller fraction of the lowest surface brightness
part of the distribution because here we are mainly sensitive to the most compact
emission from an object.

Overall, we find that VLBI detections are more likely from the most compact radio
sources observed at arcsec-scales, and that the emission observed on VLBI-scales for
around 65 to 80 per cent of the objects has a size in the range of 1 to 16 mas.
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2.3 VLBI-detected radio source counts

In this section, we determine the source counts of radio sources detected during the
wide-field mJIVE-20 survey. Our aim is to estimate the number of VLBI-detected
radio sources as a function of integrated flux density, so that we can make robust
estimates for the likely source counts from future surveys with current (EVN and
VLBA) and next generation (SKA-VLBI and ngVLA) VLBI arrays.

We first calculate the sky-area observed during the mJIVE-20 survey, which due to
the primary beam attenuation of the VLBA antennas is also a function of source
surface brightness. Next we determine the completeness of the catalogue by making
simulations of mock mJIVE-20 survey data and running the source detection pro-
cedure. With the sky area and an estimate of the completeness in hand, we then
determine the normalized Euclidean and differential source counts for VLBI-detected
radio sources. Here, we refer to the entire sample of 24 903 radio sources observed
during the mJIVE-20 survey as the (FIRST) parent population, and the 4 965 radio
sources detected with the VLBA as the mJIVE-20 population.

2.3.1 The mJIVE-20 survey sky area

Calculating the radio source density on the sky requires some knowledge of the sky
area being investigated. As canbe seen in Fig. 2.1, each mJIVE-20 survey observation
consisted of four different pointing positions around a central calibrator source (Deller
& Middelberg 2014). This resulted in the effective rms noise across the field being
non-uniform, due to the primary beam attenuation of the individual antennas and the
combination of data from different individual pointings and repeated observations.
Also, two different pointing configurations were employed during the mJIVE-20
survey. The first used an offset from the central calibrator of +12 arcmin in RA and
Dec, to include all parent population radio sources within 20 arcmin of each pointing
centre, and the second used offsets of £9.6 arcmin in RA and Dec, and included all
parent population radio sources within 17 arcmin of each pointing centre. A total of
306 unique calibrators were observed, with 252 observations using the set-up with
+12 arcmin offsets, and 54 observations using the set-up with +9.6 arcmin offsets
from the calibrator.

To measure the sky area, we use a Monte Carlo integration by stone throwing tech-
nique, which is based on the mean value theorem designed for numerical integration
using random numbers. In this method, the sky area is calculated by the average
number of hits in different iterations. The error in measuring the sky area with this
approach goes as 1/ VN, where N is the number of thrown stones. We first define a
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box around the intersected primary beam footprints (circles), shown for example in
Fig. 2.1, and measure the area of that box. Then, we throw 1 million points into the
box to estimate the size. The ratio of the number of points that are inside any of the
circles to the total number of points in the box gives an estimation of the area inside
the circles. Considering the area within the individual observation footprints, and the
different pointing configurations, the total sky area of the mJIVE-20 survey is found
to be 237.95 deg?.

In Fig. 2.6, we show how the effective area changes as a function of the minimum peak
surface brightness of an mJIVE-20 population radio source (assuming a local signal-
to-noise ratio of 6.75). We see that at a surface brightness of around 4 mJy beam™",
there is a knee in the effective sky area (corresponding to 227 deg?; 95 per cent of
the total sky observed), which is roughly equivalent to 25 times the typical rms map

noise of 150 uJy beam™! at each pointing centre.

2.3.2 The mJIVE-20 survey completeness

In order to calculate the source counts of the mJIVE-20 population to the lowest flux
densities, we also have to consider the completeness of the catalogue, that is, estimate
how many sources may have been missed due to observational effects. To do this,
we have made mock visibility data sets, which then go through the same imaging and
source detection process as the mJIVE-20 survey data. By comparing the input and
output mock catalogues, we determine the completeness as a function of flux density.

The simulated data set needed to have similar properties to the radio sources in
the mJIVE-20 population catalogue. Therefore, we implemented a Monte Carlo
approach to define the simulated radio source size (either delta or 2-dimensional
elliptical Gaussian function), peak surface brightness, position angle, and a random
X,y position with respect to the phase centre, given the actual distribution of these
parameters in the mJIVE-20 catalogue (see Chapter 3). The generated sources
were then converted to mock visibilities using the Common Astronomy Software
Applications (casa; McMullin et al. 2007) package. The simulation tool in CASA
allows as an input an existing interferometric visibility data set that can be used to
obtain the position of the antennas and other observational settings (such as frequency
and time sampling, total integration time). Therefore, we used the actual mJIVE-20
survey interferometric visibility data sets when converting the simulated model radio
sources into mock visibility data. The final step in the process used the tclean task
within cAsA to produce de-convolved clean images. As with the mJIVE-20 survey
data, the images were centred on the position of the surface brightness peak, had a
size of 1024 x 1024 pixels and a pixel-scale of 0.75 mas pixel~!. The dirty images
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Figure 2.6 — The effective area of the mJIVE-20 survey, as a function of minimum
detectable radio source surface brightness (for a detection threshold of 6.750°). The
total observed area in the mJIVE-20 survey is 237.95 deg?, but changes as a function
of source brightness due to the primary beam attenuation and the combination of the
visibility data from different pointings and repeated observations.

were cleaned for a maximum of 1000 iterations or until a threshold of 0.2 mJy beam™!

was reached, while masking was applied to the centre of the image, with a radius of
25 pixels.

To identify and measure the flux density of the sources in our mock imaging data,
we have used BLOBCAT (Hales et al. 2012), the same post-processing object detection
package used as part of the mJIVE-20 survey. BLOBCAT searches for islands of
pixels that could represent a possible object considering the signal-to-noise ratio of
a given pixel. This is accomplished using the surface brightness distribution of the
2-dimensional imaging data and the background rms noise as the input parameters.
It requires the user to set a threshold for the minimum detection signal-to-noise ratio
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Figure 2.7 — The cumulative completeness for a set of simulated mock VLBA ob-
servations that have the same characteristics as the mJIVE-20 survey data. These
have been analyzed using the BLOBCAT object detection algorithm, with the same

parameters for the detection thresholds (T4 and Ty ; see text for details) used for the
mJIVE=-20 survey.

(known as T) as well as a cutoff ratio (known as Ty ) for flooding the islands. Based
on simulations carried out by Deller & Middelberg (2014), Ty and Ty were set to
6.50 and 50, respectively, during the mJIVE-20 survey. However, only those sources
with a peak surface brightness above 6.750 were added to the final mJIVE-20 survey
catalogue, so we adopt that value for 7; in our simulations. In Fig. 2.7, we show
the cumulative completeness of the mJIVE-20 survey as a function of signal-to-noise
ratio from 13 500 simulated radio sources that have a signal-to-noise ratio between 3
and 15. The magenta dashed line shows the 6.750 detection threshold of the mJIVE-
20 survey. We find from our simulations that BLOBCAT is 97 per cent complete at a
threshold of 6.750 and reaches full completeness at a threshold of 7.8¢ for this data
set.
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From Fig. 2.7 we are able to calculate the completeness of the mJIVE-20 survey, given
the observational set-up (signal-to-noise ratio, uv-coverage, image de-convolution)
and the ability of the object detection algorithm to identify a representative sample of
realistic radio sources. This allows us to define a completeness correction factor for
each flux density bin, where those bins below 100 per cent completeness are divided
by the completeness given in Fig. 2.7; for this, we assume that the radio sources
are mostly unresolved, which is consistent with the results presented in the previous
section.

2.3.3 A note on the resolution bias of the parent and mJIVE-20 population
samples

As the mJIVE-20 survey is not a blind search on VLBI-scales, but is instead a targeted
search of known FIRST radio sources, the completeness of that parent population can
also affect the final source counts of VLBI-detected radio sources. In fact, it is known
that below a flux density of around 2 mly, the completeness of the FIRST survey
becomes progressively worse (White et al. 1997), and the observed source counts
dramatically drop-off from what is predicted from models of radio source evolution
and observations of deep fields at the same frequency (e.g., Prandoni et al. 2018).
This results in the source counts of FIRST being lower by a factor of between 0.9
and 0.4 towards the faint end of the flux density distribution. However, as this effect
is thought to be due to faint and extended radio sources being resolved out by the
5.5 arcsec synthesised beam of the VLA (B-configuration; see White et al. 1997 for
further discussion), it is almost certainly the case that such objects would also be
resolved out at VLBI-scales (in the absence of significant variability). Therefore, we
do not correct for the resolution bias of the FIRST survey.

However, there will be a resolution bias associated with the mJIVE-20 survey data,
as the detectability and measured flux density of a given object will be dependent on
the structure (compactness) and also the uv-coverage of the observations. For this
reason, the source counts from deep VLBI observations have tended to use the total
flux density from lower resolution imaging (e.g. the VLA; Middelberg et al. 2013;
Herrera Ruiz et al. 2018) when discussing VLBI-detected radio sources with respect
to the radio source population in general. Here, we do use the flux density recovered
on VLBI-scales, as we are not primarily interested in testing galaxy formation models
or to separate AGN and star-forming galaxies, but instead, our goal is to understand
the number of radio sources that could be detected with wide-field VLBI surveys. In
Section 2.4, we will discuss the effect of VLBI resolution bias further and present
ways to mitigate it in the future.
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2.3.4 Euclidean-normalized and differential source counts

We now calculate the source counts of the radio sources detected during the mJIVE-
20 survey. We also compare these with the source counts obtained from studies of
compact radio sources selected at higher frequencies. In Table 2.1, we present the
number of sources per flux-density bin, and the correction factor that is determined by
taking the effective sky area and completeness of the survey into account. Here, we
also present the (corrected) Euclidean-normalized source counts for the mJIVE-20
survey.

In Fig. 2.8, we present these source counts as a function of flux density, which we
see are well approximated by a power-law down to flux densities of around 2 mlJy,
below which there is evidence of a knee in the distribution. This downturn is likely
associated with the change in the parent population of FIRST radio sources described
in the previous section. Below 1 mly, the Euclidean-normalized source counts become
flatter, but are also quite noisy. At this stage, it is not clear if this is a systematic or a
real effect, similar to the flattening of the radio source counts seen in lower angular
resolution observations at this frequency; this is attributed to a change in the radio
source population from AGN to star-forming dominated systems (Condon et al. 2012;
Prandoni et al. 2018). From a power-law fit to the data presented in Fig. 2.8, we find
that the Euclidean-normalized source counts can be described by,

Si.4

Iy ot 2.1
1 mly yosts 21

(0.695£0.013)
n(S)=2.4+0.1) ( )
where n(S) is the differential number of sources (Euclidean-normalized) and S| 4 is
the flux density at 1.4 GHz.

In Fig. 2.9, we present the differential source counts as a function of flux density for

the FIRST parent population and the mJIVE-20 population. From a fit to the data

between 1 and 100 mlJy, we find that the FIRST parent population can be described

by the power-law,

S )(1.77¢o.02) L
mlJy " sr, 2.2)

and that the mJIVE-20 parent population can be described by the power-law,

Sl 4 —(1.74+0.02)
' ) mly sl (2.3)

As in the previous case, n(S) is the differential number of sources and S 4 is the
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Figure 2.8 — The Euclidean-normalized source counts for VLBI-detected radio sources
Jrom the mJIVE-20 survey.

flux density at 1.4 GHz. From these fits, and by inspecting Fig. 2.9, we see that the
power-laws for the parent and mJIVE-20 populations are diverging toward lower flux
densities, which would be consistent with the change in the detection fraction seen in
Fig. 2.2.

Taking the result for the mJIVE-20 survey, we compare these source counts with
those for a complete sample of 117 flat-spectrum radio sources selected and observed
at 4.85 GHz with the VLA (McKean et al. 2007). Such sources are assumed to be
compact (size < 170 mas; Myers et al. 2003), given their flat-radio spectra (due to
the super-position of synchrotron self-absorption from many homogeneous emitting
regions) and the higher selection frequency tending to favour core-dominated radio
sources. Therefore, flat-spectrum radio sources are prime targets for VLBI observing
programmes as they are expected to dominate the compact radio source population.
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We find that the slope of the source counts is steeper [ = —2.06 = 0.01; where
n(s) = k8], and the normalization is smaller (k = 6.91 + 0.42) for flat-spectrum
radio sources selected at 4.85 GHz (Jodrell Bank Flat-spectrum radio source sample;
JBF; McKean et al. 2007), when compared to the results for the VLBI-detected radio
sources at 1.4 GHz. However, by assuming a mean spectral index of a/‘l‘:iS = -0.09
(where S, o« v?%, and v is the observing frequency; McKean et al. 2007) for the
JBF sample, we have calculated the expected number of compact radio sources at
1.4 GHz down to a flux density of 1 mJy. Interestingly, we find that the sky-density
of flat-spectrum radio sources selected at 4.85 GHz is very similar to that of the
VLBI-detected radio sources from the mJIVE-20 survey, but is a factor 1.22 + 0.12
higher. Such similar source counts suggests that both samples are drawn from a similar
population, even though one is selected based on the radio spectra, and the other on
compactness at VLBI-scales. This has implications when choosing an appropriate
observing frequency for an all-sky VLBI survey, which we discuss in the next section.

S Su S | Number Corr. Counts
(mly) | (mly) | (mly) (sr™! Iy!)
0.51 0.56 0.534 11 | 11.858 1.107+0.334
0.57 0.62 0.595 19 | 11.858 1.787+0.410
0.63 0.68 0.657 20 | 7.836 1.140+0.255
0.69 0.75 0.725 40 | 5.553 1.007+0.159
0.76 0.83 0.799 54 | 4.416 1.082+0.147
0.84 0.92 0.884 86 | 3.853 1.700+0.183
0.93 1.02 0.976 102 | 3.138 1.741+0.172
1.03 1.13 1.080 106 | 2.460 1.373+£0.133
1.14 1.24 1.190 131 | 2.178 1.715+0.150
1.25 1.38 1.313 163 1.966 2.244+0.176
1.39 1.52 1.454 185 1.798 2.603+0.191
1.53 1.68 1.603 224 | 1.616 3.198+0.214
1.69 1.86 1.774 194 | 1.541 3.087+0.222
1.87 2.06 1.961 230 | 1.427 3.927+0.259
2.07 2.27 2.164 203 1.342 3.785+0.266
2.28 2.51 2.394 213 1.283 4.420+0.303
2.52 2.78 2.652 207 1.231 4.875+0.339
2.79 3.07 2.930 190 | 1.168 4.852+0.352
3.08 3.40 3.227 188 1.140 5.394+0.393
341 3.75 3.582 153 1.118 5.083+0.411
3.76 4.15 3.959 186 | 1.086 6.940+0.509
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1.070
1.057
1.045
1.036
1.033
1.031
1.032
1.030
1.029
1.028
1.028
1.026
1.026
1.026
1.026
1.022
1.023
1.022
1.020
1.020
1.018
1.017
1.016
1.015
1.015
1.012
1.013
1.011
1.008
1.006
1.005
1.007
1.005
1.003
1.003
1.003
1.003
1.004

7.578+0.566
6.632+0.573
8.073+0.675
9.964+0.803
8.633+0.805
10.441+0.957
8.939+0.953
9.920+1.076
13.135+1.355
12.787+1.421
14.038+1.610
13.986+1.722
16.320+2.040
17.161£2.215
18.571+£2.504
19.879+2.784
22.077+3.154
19.873+3.224
27.246+4.108
22.553+3.987
24.583+4.488
34.863+5.811
32.614+6.056
30.452+6.216
31.741+£6.926
35.774+7.999
38.466+9.066
50.615+11.045
36.042+9.996
60.303+13.834
34.991+11.664
39.090+13.030
32.393+13.224
63.024+21.008
75.359+25.120
74.221+26.241
79.416+30.017
87.566+35.749
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310.54 | 339.24 | 321.093 | 6| 1.001 | 149.152:60.891
Table 2.1 — The Euclidean normalized source counts for the mJIVE-20 survey. The
columns from left to right are, the lower (S;) and upper (S,,) bounds of a flux density
bin, the mean flux density of a bin (S), the number of sources in each bin (N), the
correction factor (taking into account the sky area and the completeness; Corr.) and
the resulting Euclidean normalized source counts (Counts). Note that 33 sources
with flux densities > 340 mJy are not included here.

2.4 Prospects for all-sky VLBI surveys

In this section, we use the differential source counts determined above to estimate the
number of radio sources that could be detected from an all-sky survey at mas-scale
resolution with VLBI. We focus primarily on what would be achievable with the
current VLBA and EVN (using only the smaller dish radio telescopes of the array in a
hypothetical survey mode), and briefly discuss the expectations from next generation
instruments, like SKA-VLBI. For our calculations, we adopt a survey strategy that
maximizes the number of radio sources detected on VLBI-scales.

2.4.1 Characteristics of the arrays

Our ability to survey the sky is dependent on the effective field-of-view of the in-
dividual dishes and their sensitivity. This requires some knowledge of the primary
beam models, which we assume are consistent with a circular aperture that has a
Gaussian illumination pattern, such that the primary beam diameter at the 50 per cent
attenuation point is given by

Orwim = 1.224/D, 2.4)

where D is the physical diameter of the telescope and A is the observing wavelength.

The sensitivity of an interferometic array is defined from the rms thermal noise
fluctuations, given by

g 2Ty,
TNcor Aeff\/Np NaA(Na—-1)Av Atint‘,

(2.5)

Orms

where Ty is the system temperature (assuming identical antenna systems), k is the
Boltzmann constant, .o is the correlator efficiency (assumed to be 0.89 for 2-bit
sampling), Acq is the effective collecting area of the filled aperture, N, is the number
of polarisations (assumed to be 2), N4 is the number of antennas in the array, Av is
the bandwidth in frequency and Aty is the integration time. Typically, the antenna
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Figure 2.9 — The differential source counts for VLBI-detected radio sources using the
mJIVE=20 survey (red), with the FIRST parent population (blue) for comparison.
The dashed lines are the best-fit power-law models to the mJIVE=20 survey and FIRST
data.

forward gain is defined by the System Equivalent Flux Density (SEFD), which is

given by
2kTsys

eff

SEFD = (2.6)

In the cases where the antenna systems are not identical, the SEFD on a given baseline
between antennas 1 and 2 is expressed as VSEFD; x SEFD, . Note that the VLBA
and EVN are assumed to operate at central observing frequencies of 1.4 and 1.7
GHz, respectively, given the available frequency coverage of the individual receiver

systems.

We see from equation 2.4 that the observable solid angle is proportional to A%, and
therefore, surveys of radio sources at longer wavelengths are typically more efficient.
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This is also because radio sources tend to have a higher flux density toward lower
frequencies. However, we see from our comparison of the source counts for the
mJIVE-20 and JBF surveys above that the expected number of detectable radio
sources on VLBI-scales is likely quite similar at 1.4/1.7 and 5 GHz. Therefore, either
frequency is likely viable. However, the level of radio frequency interference at 5
GHz is currently much less than at 1.4/1.7 GHz, and the usable bandwidth is currently
a factor of two to four times better. This, coupled with a slightly better receiver
response at 5 GHz, results in around a factor of between 1.5 and 2 improvement in
overall sensitivity at 5 GHz. Unfortunately, as this comes at the expense of having to
carryout a factor of around 9 to 13 more observations to cover the same area of sky,
we focus on 1.4/1.7 GHz as our preferred observing frequency for a potential all-sky
survey with VLBI. We note that this choice is based on maximising the number of
radio sources detected on VLBI-scales, but other science goals may be better served
with the improved angular resolution and frequency coverage afforded at 5 GHz.

In addition, we also consider a hypothetical VLBI array that includes 20 antennas
with the same characteristics as the SKA-MID (located in the Karoo desert of South
Africa). We do not discuss the locations of these antennas, but we assume that they
are positioned in 20 different locations in Botswana, Ghana, Kenya, Madagascar,
Mauritius, Mozambique, Namibia, South Africa and Zambia (the partner African
VLBI Network countries), to provide mas-scale angular resolution, with one dish
per location. Also, we assume that 512 MHz of frequency bandwidth will be usable
within the SKA Band 2, operating between 0.95 and 1.76 GHz, due to radio frequency
interference.

In Table 2.2, we summarise the properties of the three arrays that we consider here.

2.4.2 Prospects for in-beam calibration

Our ability to calibrate VLBI observations is currently limited by the density of
objects that are suitable for correcting the complex antenna gains as a function of
time. Also, given the large changes in phase, due to the long baselines involved with
VLBI observations, calibrators are often required to be very close to the target field
(< 2 deg separation). There are currently 17 432 compact radio sources that have been
identified as calibrators for VLBI experiments (1 in 2.37 deg® over the whole sky;
Radio Fundamental Catalog; Petrov 2021). However, astrometric accuracy scales with
the calibrator distance (Pradel, Charlot & Lestrade 2006), so additional calibrators
will improve the overall astrometric and imaging quality. It is this rationale that made
in-beam calibration (< 0.4 deg calibrator-to-target separation) a key component of
the mJIVE-20 survey.
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Array Antennas Diameter Freq. Av FoV SEFD
(m) (GHz) (MHz) (deg®) (Jy)
VLBA Sc, Hn, N1, Fd, La, Kp, Pt, Ov, Br, Mk 25 1.4 256 0.262 365
EVN/e-MERLIN Mc, On, Tr, W1, Nt, Sh, Ur, Hh, Sv, Zc,
Bd, Ir, JB2, Cm, Da, De, Kn, Pi 25,32 1.7 128 0.117 485
SKA-VLBI 20 15 1.4 512 0.728 235
Table 2.2 — The properties of the two arrays considered here for an all-sky survey with VLBI. The antenna names are given using
their standard abbreviation. The portion of EVN/e-MERLIN listed here has a combination of 10 X 25- and 8 X 32-m telescopes,
but for our field-of-view (FoV) calculations, we use a diameter of 32 m. The SEFD is the average for the given array. We also
include a hypothetical VLBI array that includes 20 antennas with the characteristics of the SKA-MID dish design, which provides
mas-scale angular resolution (excluding the SKA-MID core).
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With the development of wide-bandwidth observations, radio sources at lower flux
densities can now be used as calibrators, when the amplitude and phase of the visibil-
ities are well calibrated as a function of frequency. For example, the recommended
phase referencing time at 1 to 8 GHz in good weather is 300 s. For the VLBA and EVN
arrays presented in Table 2.2, this is equivalent to a baseline sensitivity of oy = 0.74
and 0.98 mJy beam™! at 1.4 and 1.7 GHz, respectively. Therefore, compact radio
sources with flux-densities > 7.4 and > 9.8 mJy (for 100pygeline) can be regarded as
good phase reference sources for the VLBA and EVN, respectively. For our hypo-
thetical SKA-VLBI array, the baseline sensitivity is oy = 0.39 mJy beam™', which
corresponds to a minimum calibrator flux density of > 3.9 mJy (for 100paseline)-

Using the differential source counts of VLBI-detected radio sources given by equa-
tion 2.3, we calculate the expected sky density of radio sources needed for phase
referencing from pointed observations, and determine the fraction that can be used
for in-beam calibration. Note that the latter requires increasing the lower limit on
the flux density by a factor of 2, due to the attenuation of the primary beam of the
antennas. For the VLBA, we find that the sky density of radio sources with flux
densities > 7.4 (pointed) and > 14.8 mJy (in beam) is 5.5 and 3.3 deg‘z, respectively.
This corresponds to an in-beam calibrator density of 0.87 sources beam™". In the case
of the EVN, we expect that the sky density of radio sources with flux densities > 9.8
(pointed) and > 19.6 mJy (in beam) is 4.5 and 2.6 deg ™2, respectively, with an in-beam
density of 0.30 sources beam™! (for the 32-m antennas). Finally, for our hypothetical
SKA-VLBI array, the sky density of radio sources with flux densities > 3.9 (pointed)
and > 7.8 mJy (in beam) is 8.8 and 5.3 deg~2, respectively. Therefore, the number
of radio sources that can be used for in-beam calibration with the SKA-VLBI array

would be 3.9 sources beam ™.

Overall, we find that 1 in 3 pointings with the EVN will likely have an in-beam
calibrator, whereas this is likely the case for almost all pointings with the VLBA. In the
case of the SKA-VLBI array, we predict that there will be multiple in-beam calibrators
available, which can be important for extremely precise astrometric applications of
VLBI (e.g., Dodson & Rioja 2018).

2.4.3 Expected number of detected sources

We now calculate the number of radio sources that can be found from an all-sky
survey with VLBI. For this, we integrate equation 2.3 to an appropriate flux-density
limit. We see from Fig. 2.8 that our differential source counts of VLBI-detected radio
sources is robust to around 1 mJy, below which the source counts become much more
noisy. In principle, we could extrapolate our calculations below 1 mJy, but given the
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expected change in the radio source population at these flux densities, this would likely
result in an over-estimate of the total number of radio sources that we would detect.
Therefore, we use a 1.4/1.7 GHz flux-density limit of 1 mJy for our calculations.

We also assume that, given the short amount of time used per observation, any
survey would have similar noise properties to the mJIVE-20 survey, and that the
same detection threshold would likely be needed (6.750°); this would result in a
similar completeness of 97 per cent, as we determined from Fig. 2.7, which we fold
into our calculations. We also assume that the individual pointings are separated
by a beam width, in a similar configuration to what was presented in Fig. 2.1. In
a future work, we will simulate the effect of different pointing strategies and noise
realizations. However, for our current pointing strategy, we see that the absolute
value of the noise changes across the field. Therefore, to make a 6.750 detection at a
flux density (point-source) limit of 1 mJy, means having an average thermal noise of
150 uJy beam™!. This corresponds to a thermal noise at the pointing centre (where the
primary beam response is maximum) of 130 pJy beam™' (107s). From the properties
of the three arrays given in Table 2.2, and using equations 2.5 and 2.6, we find that
the on-source integration time needed to reach this sensitivity would be 215, 225
and 15 s for the VLBA, EVN and a hypothetical SKA-VLBI array, respectively. This
highlights the improvement in sensitivity that is potentially available with SKA-VLBI,
given the advances in antenna and receiver design for this next generation instrument.
We note that the short integration times needed to reach the required noise levels
would allow for flexible scheduling of such observations. Therefore, it would also be
straightforward to define optimum scheduling blocks when the target fields are visible
to all of the available telescopes. This is more challenging to achieve for long-track
observations that are typically used for deep-field science cases.

We also see from equation 2.3 that the slope of the differential number counts of VLBI-
detected radio sources is quite shallow (n = —1.74 £ 0.02). Therefore, maximizing
the number of detected radio sources is best achieved through observing the largest
possible sky area, which for our calculations we assume is 37 sr (equivalent to about
31000 deg?). Given a flux-limited survey to 1 mJy, and a completeness of 97 per cent
at this limit, such a survey could potentially detect (7.2 + 0.9) x 10° radio sources on
VLBI-scales, a factor of about 30 times more than is currently known.

Finally, we estimate the total time such a survey would take with the current VLBA
and EVN (using only the 32-m antennas), and a next generation instrument, like
SKA-VLBI. From Table 2.2, we see the effective field-of-view of each array. From
this we estimate that to survey 37 sr would take 1.18 x 10°,2.64 x 10° and 1.18 x 10*
pointings for the VLBA, EVN and a hypothetical SKA-VLBI array, respectively.
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Given the integration time to reach the required noise level, this equates to about
7000, 16500 and 180 h of on-source observing time for the VLBA, EVN and SKA-
VLBI, respectively. Note that about 2 in 3 of the EVN pointings will also require
additional phase referencing calibration (see above), which will add up to around
another 30 per cent to the total time needed to complete such a survey with that array.
For this reason, such surveys with the EVN are likely prohibitive, whereas with the
VLBA and SKA-VLBI they would be very much feasible.

2.5 Conclusions

We have analyzed the final catalogue of the mJIVE-20 survey, which observed 24 903
radio sources in the FIRST survey using the VLBA at 1.4 GHz to an rms noise level
of about 150 uJy beam™!, detecting 4 965 radio sources on VLBI-scales. Through
comparing the number of detections and non-detections in the mJIVE-20 catalogue,
we found that the detection fraction is a strong function of the peak surface brightness
(compactness and radio source size) of the objects in the FIRST survey; the detection
fraction is over 50 per cent at a peak surface brightness at 80 mJy beam™! and falls
steadily to about 31 per cent at 5 mJy beam™'. Below this, the detection fraction falls
sharply to 8 per cent at the detection threshold of both surveys. This is likely due
in part to a change in the composition of the radio source population, from AGN to
star-formation dominated objects, but is also due to the VLBI observations not being
sensitive enough to detect low-level compact emission toward lower flux densities.
We found an overall detection fraction of 19.9 + 2.9 per cent. Given the limited
uv-coverage of the mJIVE-20 survey observations, we found that those radio sources
that are detected tend to be unresolved (median VLBI compactness 0.9 beam™!), with
a median size of 7.7 mas (about half a beam-size). Finally, we found that 20 to 35 per
cent of the radio sources detected were resolved, with sizes > 16 mas.

From an analysis of the VLBI-detected source counts, we see hints of a similar
behaviour in the Euclidean-normalized distribution that has been reported on arcsec-
scales, thatis, a downturn around a flux density of 2 mJy and then a potential flattening
below 1 mJy. Again, this could be due to the expected change in the radio source
population at these flux-densities; to confirm this will require a similar number of
radio sources to be observed with VLBI to a depth that is about ten times deeper
than the mJIVE-20 survey. We also determine the differential number counts for
VLBI-detected radio sources, finding that the total number of objects is similar to
those of flat-spectrum radio sources selected at higher frequencies, suggesting that
they come from a similar population.
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From our analysis of the differential source counts, we found that the sky density
of suitable phase reference sources is of order 2.6 to 3.3 deg™. This should be
sufficient for in-beam phase referencing in the case of around 30 and 90 per cent of
the observations carried out with the EVN and VLBA, respectively. However, we
found that for a VLBI facility that includes antennas with a similar specification to
the SKA-MID design, the expected sky density of phase reference sources is about
5.3 deg~2, which equates to multiple in-beam calibration sources for each observation.

Finally, we investigated the number of sources that could be found from all-sky
surveys carried out with the VLBA and EVN. From this analysis, we found that a
factor 30 more VLBI-detected radio sources could be identified with around 7000 h
of observations with the VLBA. However, in the case of the EVN, such surveys would
be rather expensive, given the smaller field of view of the antennas in that array. For
a hypothetical SKA-VLBI array, such a survey would take a fraction of the time, and
could be completed with just 180 h of observations. Our analysis is currently limited
by our knowledge of the radio source counts below 1 mJy. More focused surveys of
the radio sky with VLBI, down to a limiting sensitivity of around 100 uJy beam™! (60
detection threshold) would be extremely informative in testing models for radio source
populations and making robust predictions for the expectations with SKA-VLBI.

Acknowledgements

This chapter is based on research developed in the DSSC Doctoral Training Pro-
gramme, co-funded through a Marie Sktodowska-Curie COFUND (DSSC 754315).
JPM acknowledges support from the Netherlands Organization for Scientific Research
(NWO) (Project No. 629.001.023) and the Chinese Academy of Sciences (CAS)
(Project No. 114A11KYSB20170054). The National Radio Astronomy Observatory
is a facility of the National Science Foundation operated under cooperative agreement
by Associated Universities, Inc.

Data Availability

The data used in this research is publicly available in the mJIVE-20 survey and FIRST
databases.



DECORAS: detection and characterization of
radio-astronomical sources using deep learning

Based on "DECORAS: detection and characterization of radio-astronomical sources
using deep learning"
S. Rezaei, J. P. McKean, M. Biehl and A. Javadpour
Published in MNRAS, 2022, 510, 5891

Abstract

We present DECORAS, a deep learning based approach to detect both point and
extended sources from Very Long Baseline Interferometry (VLBI) observations. Our
approach is based on an encoder-decoder neural network architecture that uses a low
number of convolutional layers to provide a scalable solution for source detection.
In addition, DECORAS performs source characterization in terms of the position,
effective radius and peak brightness of the detected sources. We have trained and
tested the network with images that are based on realistic Very Long Baseline Array
(VLBA) observations at 20 cm. Also, these images have not gone through any
prior de-convolution step and are directly related to the visibility data via a Fourier
transform. We find that the source catalog generated by DECORAS has a better
overall completeness and purity, when compared to a traditional source detection
algorithm. DECORAS is complete at the 7.50 level, and has an almost factor of two
improvement in purity at 5.50. We find that DECORAS can recover the position
of the detected sources to within 0.61 + 0.69 mas, and the effective radius and peak
surface brightness are recovered to within 20 per cent for 98 and 94 per cent of the
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sources, respectively. Overall, we find that DECORAS provides a reliable source
detection and characterization solution for future wide-field VLBI surveys.

3.1 Introduction

Machine learning, and in particular deep learning, has been widely used for solving
a number of astronomical problems (see Baron 2019 for a recent review). This is
because traditional approaches, such as visual inspection or model fitting, can be less
effective when characterizing datasets that are growing in both size and complexity.
Several machine learning frameworks can be applied in this context, but two have
gained the most attention in recent years: supervised and unsupervised learning.

In a supervised learning algorithm, the data acts as an instructor, assisting the model
in discovering a relationship between a collection of features and user specified labels.
Models are trained to predict the properties of unseen data (Goodfellow, Bengio &
Courville 2016). Supervised learning has been used to address various problems
in astronomy, for example, the classification of galaxy morphologies in imaging
data (Pearson et al. 2019; Nolte et al. 2019), variable star classification using light-
curve representation (Becker et al. 2020), and the classification of blazar candidates
(Kovacevié et al. 2020).

In the case of unsupervised learning, the algorithm simply receives data without target
labels or any feedback from the environment. The goal of the analysis is to identify
patterns and structures within the data that are then used to make decisions, predict
future inputs, or communicate inputs efficiently to another machine (Ghahramani
2004). An example of such an algorithm is an autoencoder, which is a form of
unsupervised convolutional neural network (CNN). Autoencoders have been used for a
variety of astronomy applications, including real-time transient detection (Sedaghat &
Mahabal 2018) and the analysis of gravitationally lensed objects (Hezaveh, Perreault
Levasseur & Marshall 2017). They have also been used for outlier detection; see
for example Margalef-Bentabol et al. (2020), in which a network is trained with
normal data before computing an anomaly score for test query samples. As another
example, Pruzhinskaya et al. (2019) presented a method for detecting rare transients
or completely new flaring events of unknown physical nature. These are just a few of
the many applications of supervised and unsupervised learning in astronomy. For a
very brief review and further references, see for example, Biehl et al. (2018).

Here, we focus on a deep learning based approach to study astronomical images
that have been made using radio interferometric techniques. In contrast to optical
instruments, which capture images of the sky brightness distribution directly, radio
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telescopes employ interferometry to calculate the two-dimensional discrete intensity
distribution of the sky, known as visibility data. A Fourier transform of the visibility
data is then performed to produce an image of the sky. The result of this process is
the convolution of the true sky brightness with the point spread function (PSF) of the
interferometric array, which is commonly referred to as the dirty image. Due to the
incomplete sampling of the interferometric visibility data, the PSF (also referred to
as the dirty beam) has strong sidelobes that affect the entire image. This can make it
difficult to recover the true sky brightness distribution from interferometric data. A
common solution to this problem was presented by Hogbom (1974), who developed
the CLEAN algorithm, which iteratively performs a deconvolution of the image by
representing the underlying source brightness using simple parametric models, such
as delta- or truncated Gaussian functions. The final step convolves the model of the
source with the clean beam (a Gaussian function), which is then added to the Fourier
transform of the residual visibilities.

To characterize the object properties from interferometric images, several commonly
used object detection algorithms have been developed (note that these are applied to
images that have gone through a prior deconvolution process). PYBDSF (Mohan &
Rafferty 2015), BLOBCAT (Hales et al. 2012) and AEGEAN (Hancock, Trott & Hurley-
Walker 2018), are all examples of Gaussian fitting source detectors. PROFOUND (Hale
et al. 2019) on the other hand does not force any predefined parametric model to the
detected sources, but is based on the segmentation of pixels in the neighborhood of
the brightest pixel. The benefit of PROFOUND over other source detection algorithms
is the more accurate flux recovery for extended sources, as the detection is not based
on a specific morphology. From an analysis of simulated observations that match
the instrument properties of the Very Large Array (VLA), the completeness and
reliability of PYBDSF, AEGEAN and PROFOUND for compact objects detected with a
signal-to-noise ratio > 4.3 was found to be less than 85 per cent (Hale et al. 2019).

Machine learning, and in particular, CNNs have already been widely used in the
analysis of radio interferometric data. For example, they have been used to classify
radio galaxies (Bowles et al. 2021), to determine galaxy morphologies (Cheng et al.
2020a), and to select pulsar candidates (Zeng, Li & Lin 2020). More specifically,
CNNs have been employed to detect astronomical sources within the CONVOSOURCE
(Lukic, de Gasperin & Briiggen 2019), DEEPSOURCE (Vafaei Sadr et al. 2019) and
Point Proposal Network (PPN; Tilley et al. 2020). Compared to traditional source
detection algorithms, which can fail to detect sources when the signal-to-noise ratio
is low, or can make false detections in regions of the images where the noise is highly
correlated, the learning process in CNN-based source detectors has been shown to
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generate more accurate results. Vafaei Sadr et al. (2019) and Lukic, de Gasperin &
Briiggen (2019) have shown that CNN based source detection algorithms are more
complete down to a signal-to-noise ratio of 4 in detecting compact sources when
compared to PYBDSF. However, these CNN based algorithms are all optimised for
the analysis of images that have been deconvolved.

In this chapter, we investigate a deep learning based object detection algorithm that
characterizes the source properties from images that have not undergone any prior
deconvolution. This is partly due to the complexity of applying deconvolution meth-
ods, like CLEAN, to large datasets. Furthermore, such an algorithm could in principle
also be applied directly to the visibility data via a Fourier transform, which would
remove the need for any imaging step. We focus our analysis on dirty images that are
produced from a sparse radio interferometric array, namely the Very Long Baseline
Array (VLBA). This is because we are interested in developing a new object detec-
tion algorithm that can be applied to wide-field Very Long Baseline Interferometric
(VLBI) observations with instruments like the VLBA in the future, such as those
discussed in Chapter 2..

The presented approach for DEtection and Characterization Of Radio-Astronomical
Sources (DECORAS) using deep learning consists of four main steps. The first step
uses encoder-decoder networks to remove the noise and dirty beam from the given
dirty images (the Fourier transform of the observed interferometric visibility data).
The predicted model images at the output of the encoder-decoder are used in the
post processing step to find the position of the source. In the third step, another
encoder-decoder is used to characterize the source structure. Finally, the extracted
latent variables of the trained encoder-decoder network are used to recover the source
surface brightness distribution. Unlike DEEPSOURCE and PPN, which have thus far
only addressed the detection of unresolved objects, DECORAS is trained on both
point and extended source detection and characterization.

This chapter is arranged as follows. In Section 3.2, the training/verification data
and the detailed methodology of the source detection and characterization algorithm
is presented. In Section 3.3, we evaluate our results by applying the algorithm
to test data and compare with the results from using a traditional source detection
code (BLOBCAT). In Section 3.4, we investigate how well our algorithm can recover
the source properties, such as source position, major axis and the true source surface
brightness distribution. Finally, the results from this work are discussed and we present
our concluding remarks on the methodology and future prospects in Section 3.5.
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3.2 Method

This section presents our source detection and characterization methodology. First,
the process of generating realistic simulated images is explained. This simulated
dataset is used as the training and test samples for our network. Next, an overview
of our approach is provided, with an explanation of the choice of loss function and
specific network architecture that we have used. Then, we present our post processing
object detection step, which determines the position of the source. Finally, our source
characterization methodology is presented, which provides the structure and surface
brightness distribution of the detected objects.

3.2.1 Simulating a representative training and testing dataset

Generating realistic images to train the network is one of the main steps for developing
a source detection and characterization platform. This is because the network must
learn the key properties and features of the data. Also, a simulated dataset can be used
to test the robustness and completeness of the methodology, providing these data are
unseen by the network during the training stage. Our goal is to develop a network that
is applicable to data from sparse interferometric arrays, which are typical of VLBI
observations. For our simulations, we have chosen to use the VLBA at an observing
wavelength of 20 cm as our training and test dataset, the reasons for which we describe
below. However, we see no obvious reason why our methodology cannot be used with
other VLBI arrays that observe at other wavelengths, for example, the International
LOFAR Telescope (ILT), the European VLBI Network (EVN), the Atacama Large
Millimetre Array (ALMA), or the Square Kilometre Array (SKA-VLBI), which (will)
operate from m to sub-mm wavelengths.

We have chosen the VLBA as our test interferometer as it is a homogeneous array of
ten 25-m radio telescopes, with separations between 236 and 8611 km. This means
the generated datasets will sparsely sample the visibility plane (45 measurements per
time and frequency interval), will have uniform and predictable noise properties, and
will be ~ 2 MB in size per simulated observation. By using the VLBA at 20 cm, we
can also utilize actual observations from a large statistical sample of radio sources
to provide realistic observational conditions and representative source models for our
simulations. For this, we have used data from the mJy Imaging VLBA Exploration
(mJIVE-20) survey (Deller & Middelberg 2014), which targeted 24 903 radio sources
in an area of 238 square degrees from 306 unique observations. The total observing
time was 1 h for each observation, which was further divided into a set of four
sub-pointings around a bright calibrator source. Within ~ 20 arcmin of the central
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Figure 3.1 — Cumulative distribution of peak surface brightness divided by the inte-
grated flux density (in units of beam™") for detected objects in the mJIVE-20 survey
(Deller & Middelberg 2014). Around 20 per cent of the detected sources in the
mJIVE=20 survey have an equivalent peak surface brightness and flux density (unre-
solved sources). In more than 65 per cent of all detected sources in the mJIVE-20
survey, the peak surface brightness is about 80 per cent of the total flux density of the
source, meaning that the majority of the sources detected in the mJIVE-20 survey are
compact.

calibrator, the rms noise in the deconvolved images is about 150 uJy beam~!. The
detection threshold for the mJIVE-20 survey was set to 6.750 (based on simulations
to determine the completeness), where o is the rms map noise of a given observation.
This led to 4965 radio sources being detected in the deconvolved images using
BLOBCAT.

We have developed a framework with three steps to create mock training and test
data with similar properties to those obtained by the mJIVE-20 survey. The first step
defines the images in terms of angular size and number of pixels. The size of the
individual pixels is set such that the visibility data are at least Nyquist sampled in the
image plane, which for VLBA observations at 20 cm with a PSF sampling of four
gives a pixel size of 1.25 mas. The majority of the detected sources in the mJIVE—
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Figure 3.2 — A comparison of the measured size and peak surface brightness of the
injected mock and the real sources detected as part of the mJIVE-20 survey. The upper
plot compares the distribution of fitted Gaussian major axis. The lower plot shows
the distribution of peak surface brightness for the two populations. The implemented
Monte Carlo approach based on the mJIVE=-20 survey catalog, has made it possible
to create a training dataset that follows the physical characteristics of real sources.
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Figure 3.3 — Flowchart of the mock data simulator, built within CASA. First, mock sources are generated using a Monte Carlo
simulation to mimic the physical characteristics of the real sources in the mJIVE-20 survey. The generated sky model images are
imported to CASA, using the simulator tool to generate the corresponding uv-datasets and dirty images.
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20 survey are compact (Deller & Middelberg 2014); here we define compactness
(C) as the ratio of the integrated flux density (S;) and peak surface brightness (/,,),
where those objects with C < 1.25 beams are classified as being compact. Fig. 3.1
shows the cumulative distribution of the peak surface brightness to integrated flux
density ratio of detected sources in the mJIVE-20 survey, which demonstrates that
the majority of the sources are unresolved. Considering the characteristics of the
detected sources in the mJIVE-20 survey, we have chosen the size of the input image
to be 256 x 256 pixels, which is equivalent to an angular size of 320 x 320 mas on
the sky. Larger images would increase the number of learning parameters in our
encoder-decoder model. This means that the learning procedure would require more
time and memory.

Our simulated datasets are made using the Common Astronomy Software Applications
(casA; McMullin et al. 2007) package and custom-written Python scripts. The mock
sources were generated using either delta or Gaussian functions, with a defined peak
surface brightness, size, ellipticity and position angle, and a random position within
each image. The defined source properties were determined from a Monte Carlo
simulation of all of the sources observed as part of the mJIVE-20 survey. Fig. 3.2
shows a comparison of the injected mock sources and the actual mJIVE-20 survey
sources in terms of their size (major axis) and peak surface brightness. Note that the
number of injected mock sources is greater than the actual number of detected sources
in the mJIVE-20 survey, as we have injected mock sources to all of the 24 903 phase-
centres, while the catalog only contains information for 4 965 sources. We have also
included fainter sources in the generated mock data to test our detection algorithm
for sources with a low signal-to-noise ratio. The output of this step is the sky model
interferometric datasets that will be used to generate dirty images.

CASA stores interferometric visibility data in a format called MeasurementSet. While it
is possible to create a simulated MeasurementSet from scratch, the cAsa simulator tool
can use an existing MeasurementSet to obtain the position of the antennas and other
observational settings (frequency and time sampling). Using actual MeasurementSets
is a good choice for this work as we aim to train our network with mock data that is
representative of real data. In this way, the simulator samples data with the correct
(u, v) coordinates, considering the current model image with the mock source in it. We
have used the existing MeasurementSets of the actual mJIVE-20 survey observations
to generate simulated visibility datasets. To take the thermal noise into consideration,
we have added Gaussian noise to the visibility data that is representative of the noise
properties of the mJIVE-20 survey. We have not included any systematic errors to the
real or imaginary component of the visibilities. Finally, the dirty image is generated
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as the result of taking the Fourier transform of the visibility data, and gridding using
the pixel size and number of pixels described above. Fig. 3.3 presents a flowchart that
summarizes how the simulated dataset of model and dirty images is generated using
CASA.

In total 50000 simulated images, from 306 observations were made for training the
network. In Fig. 3.4, we provide a few examples of the model sources, the PSF of
the individual observations, and the final dirty images used to build the training and
validation dataset. The dirty images are the input to the network, while the model
images are the output of our encoder-decoder network.

3.2.2 Overview of DECORAS

Given any input dirty image, DECORAS is trained to deconvolve the PSF, remove
thermal noise, locate the possible source in the image and characterize the source
structure and surface brightness distribution. This process is summarised in the
flowchart presented in Fig. 3.5.

The first step of DECORAS consists of encoder and decoder parts. It is trained
to recognize beam effects, correlated noise, or other sources of contamination in
the dirty image, and to remove them from the predicted output. The first step of
DECORAS is hereafter referred to as Autoencoderl. The output of Autoencoderl
is then passed to the Post Processing Blob Detection function to find the position of
the source in the predicted model image. At the end of this step, the existence of
the source and its position are known to the algorithm. To investigate the physical
characteristics of the source, we crop around the region of interest in the field to form
a smaller model and dirty image, with the source at the centre. The cropped images
are fed to Autoencoder? to investigate the physical characteristics of the detected
source. Our experiments show that using Autoencoder2 yields a higher accuracy
than with Autoencoder1 when extracting physical properties of the underlying source.
Autoencoder2 has the same basic structure as Autoencoderl. However, due to the
smaller image size, Autoencoder? requires fewer convolutional layers in the encoder
and decoder parts.

The right panel of Fig. 3.5 provides more information on the grey boxes shown in the
left panel. For example, Autoencoder]l and Autoencoder2 are shown with four and
three symbolic convolutional layers for the encoder and decoder, respectively. For the
post processing step, the detection strategy is provided. More information about the
Post Processing Blob Detection is presented in Section 3.2.6.
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3.2.3 Preprocessing

It is important to keep the pixel values of all the images in the same range of (0, 1)
in order to optimize the learning process while minimizing the achieved loss in the
network. The process of normalization used here linearly transforms the pixel values
on all the images to a common range of between (0, 1). We have used a MinMax
normalization according to,

x —min(xy)

3.1

X lized = : s
normalized max (xd) — min (xd)

where x is the value of a given pixel and x4 represents all the pixels in the image.

As we will show below, DECORAS performs very well when the pixel values in
each image are normalized in this way. However, the normalized predicted model
image is not useful for recovering the absolute surface brightness of the detected
sources. We have addressed this problem by analysing the latent variables generated
by Autoencoder2 in the training process. This method is based on the information
that the network has captured through the learning by removing the thermal noise and
deconvolving the dirty images to obtain the expected model images. We discuss the
details of estimating the surface brightness of the detected sources in Section 3.2.7.

3.2.4 Network structure

Fig. 3.6 presents the architecture of the network, which consists of two main compo-
nents: an encoder and decoder in which convolution, leaky ReLU (Rectified Linear
Unit) activation and batch normalization are used sequentially. We use convolution
with a stride of (2, 2), which down samples the input image by a factor of 2 in each
axis. A fully connected neural network is placed at the final step of our encoder. It
learns the weights of the neurons for producing 256 values of latent variables. The
latent variables that are generated by the encoder are the only piece of information
our decoder uses to determine the output model image. This means that the com-
pression rate of the encoder that imports the dirty images and generates the latent
variables is 256. This is because the network only takes the structure and position
of the source into account. All of the other information about the correlated noise,
PSF and beam effects are learnt to be ignored by the network. In forthcoming work
we will implement networks that can also solve for the PSF, and hence determine if
there are residual calibration errors in the data. The same process, using the same
parameter variables, is applied to the decoder part, but in a reverse order. Instead of
using a convolution, the decoder uses the transpose convolution with a stride of (2, 2)
to up-sample the input image by a factor of 2. Leaky ReLLU and batch normalization
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are also included, as shown by the grey arrows in Fig. 3.6. After obtaining the desired
image size by up-sampling, an extra layer of convolution and Sigmoid activation is
used to force the final generated pixel values to be between 0 and 1.

Our choice of network structure and the given input/output images can be considered
as some sort of image segmentation. In such algorithms, the input image goes through
different layers of convolution, and the generated latent variables are used to remap
to a full output image. Instead of reconstructing the input image (the typical use of
autoencoder structure), it only targets a specific segment of the image and, specifically
for our case, where the source is located. Beside the location of the source, our network
is sensitive to the size and structure of the source. On the other hand, as our network
uses dirty images as the input and generates model images at the output, neurons on
the encoder are forced to remove the effect of the PSF and correlated noise in the dirty
images.

As described above, using a convolution layer with a stride of (2, 2) down samples
the input image by a factor of 2. An alternative is to do so using a max pooling
layer. Studies of several image-recognition benchmarks show that a convolutional
layer with an increased stride can be easily substituted for a max-pooling scheme
(e.g. Springenberg et al. 2014). Moreover, Ayachi et al. (2020) refers to the learnable
nature of convolutional layers whereas the max pooling is a fixed function that takes
the maximum value of each defined filter. The same study has also analyzed the
memory efficiency of using strided convolution layers over max pooling. A batch
normalization is added at the end of each convolution layer to stabilize the distribution
of inputs (over a minibatch). This is achieved by keeping the mean (1, ) and standard
deviation (o) of the output close to 0 and 1, respectively. It also helps to decrease
the importance of the weight initialization and regularizes the model (Santurkar et al.
2018). In the Keras implementation, the output of a batch normalization layer is
applied to each feature xx, such that,

o Xk — Mx
R =y ———+B, (3.2)
o(xr)+€
where € is a constant that is being added to make sure the denominator is nonzero, y
(initialized as 1) and 8 (initialized as 0) are learnable parameters used for scaling and

shifting purposes.

We note that based on our experiments, increasing the number of layers will increase
the training time without significantly improving the TP and TN rates. Also, as
part of this project, we have implemented other network structures, such as U-Nets
(Ronneberger, Fischer & Brox 2015) and variational autoencoders (Kingma & Welling
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2013), to test their performance against the presented method. We found that both
U-Net and variational autoencoders were less accurate compared to the presented
method; the predicted model images of a trained U-Net model were not completely
noise free and had a less accurate estimation of the source structure, while the latent
variables for the trained variational autoencoder did not provide enough information
to estimate the source surface brightness.

3.2.5 Loss function

In order to complete the learning process, it is necessary to define a loss function.
The network uses the loss function to calculate the error between the estimated and
expected model images at the end of each iteration. This error is used to update
the weights and minimize the final error using optimizing strategies such as gradient
decent. We have compared the performance of four different loss functions: Mean
Squared Error (MSE), Mean Absolute Error (MAE), Binary Cross Entropy (BCE)
and Mean Squared Logarithmic Error (MSLE).

Our tests found that the MSE and MAE loss functions are not a proper choice for our
specific problem since they have difficulties in detecting the source when the demand
image is a point source (characterized by a single non-zero pixel while the rest of the
image is zero). In order to force the network to take into account the information
provided by a single pixel, Vafaei Sadr et al. (2019) suggest to smooth the adjacent
pixels around the point source to provide more non-zero pixels. On the other hand,
Sedaghat & Mahabal (2018) have provided a solution that conditionally boosts the
error on the non-zero pixels in the image. With this technique, the learning rate
is virtually increased for only the non-zero pixels. Note that increasing the general
learning rate is not a solution to the problem here as the learning procedure would
generate a sub-optimal set of weights or an unstable training process. Based on the
preliminary results of using the three defined loss functions with our network structure
(see Fig. 3.6), and the issues that MSE and MAE have when the source structure is
very small compared to the size of the image, we have decided to only consider the
MSLE and BCE further.

Our encoder-decoder network is designed to solve a denoising problem. This can
be interpreted as a pixel-wise classification in which each pixel (in the normalized
images) is assigned a range between (0, 1). We consider a given model image M and
a predicted model image M’ with size of n x n X 1. Considering x; ; as the pixel
value on the 7, j position of the model image and x; ;as the predicted pixel value at
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the same location, the BCE and MSLE are calculated according to

n

’ 1 ¢ ’ ’
BCE(M ,M) =-— Xi,j Ingl-,j +(1 —xi,j)log(l _xi,j)’ (33)
i=1 j=1

and

n n

’ 1 ’ 2
MSLE (M'. M) = — [1og(x,-,_,~) ~log(x, )| . (3.4)

i=1 j=1

respectively. Note that the MSLE loss is similar to the MSE, but instead of calculating
the loss of M and M’ by computing the average, it calculates the squared error between
the logarithm of the true and predicted values. Compared to MSE, MSLE penalizes
underestimation more than overestimation.

3.2.6 Post processing blob detection

The network is designed to generate predicted model images with zero background,
that is, the only non-zero pixel values in the predicted model images should be related
to a detected source. In some cases, and particularly in the low signal-to-noise ratio
regime, the network can get confused on where the input source is located and instead
generates images with multiple components with non-zero pixel values (hereafter
referred to as blobs). To identify such blobs in the images, we have used the ScikiT
Image library (van der Walt et al. 2014) in Python, which contains several blob
detection solutions. We have used the blob_dog function to find blobs in the given
predicted model images. The output of this algorithm is the x and y co-ordinates of
any detected blobs, with an estimate of the uncertainty from the standard deviation of
a fitted Gaussian function to the blobs. Through this process, we are able to catalog
the candidate sources that have been identified by the network.

3.2.7 Surface brightness estimator

Losing the exact pixel values in the predicted model images due to the normalization
process discussed above requires an alternative solution to estimate the absolute
source surface brightness. To characterize the detected sources, DECORAS relies
on two sources of information. The first is the compressed set of features that are
represented by the latent variables of our encoder-decoder structure. The latent
variables are the only information that the decoder uses to construct the model images
with all the embedded details, like source position and the physical characteristics.
Fig. 3.6 shows the position of the latent variables in our encoder-decoder structure.
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Figure 3.7 — The maxratio distribution for point and extended sources. The maxratio
is defined as the ratio between the peak surface brightness in any dirty image to its

corresponding model image. It is used to estimate the absolute surface brightness of
the detected sources.

In general, a greater number of latent variable units will result in a more clear and
sharper reconstruction of the output image.

The second source of information is based on the fact that the source peak surface
brightness in the dirty image is not equal to the peak in the model image. This
happens due to the process of converting the visibility data of the true sky model
to the dirty images (by adding Gaussian noise and convolving with the dirty beam).
Convolving the visibility data of extended sources with the PSF increases the peak
surface brightness in the predicted model image. The level of increase is dependent
on the source size, PSF structure and the noise of the visibilities. We have measured
this increase by calculating the ratio between the source peak surface brightness in
the dirty image to the peak surface brightness of the corresponding injected source in
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the model image. This parameter, which we call the maxratio, is defined as
maxratio = I;/1,, 3.5

where [, is the peak surface brightness of the source in the model image (in units
of Jy pixel™) and I, is the peak surface brightness in the dirty image (in units of
Jy beam™!). The maxratio is a measure of how much the peak surface brightness of
a source has changed as it is convolved with the dirty beam to form the dirty image.
Fig. 3.7 shows the distribution of maxratio for the entire simulated dataset. For point
sources, the maxratio is mostly close to unity, as expected, and for extended sources
the maxratio is typically larger, up to a factor of 90.

A 2D visualization of the latent variables is a powerful tool to gain insight to the
structure of data. One way to visualize high-dimensional latent variables is the
t-Distributed Stochastic Neighbour Embedding (t-SNE; Van der Maaten & Hinton
2008) method. Fig. 3.8 presents the t-SNE visualization of our simulated data with
two different colouring schemes. TSNE is implemented using the scikiT Python
package with a perplexity of 20 and the maximum number of iterations set to 400.
Each data point in Fig. 3.8 represents an array of 256 values, which are the extracted
latent variables of Autoencoderl. The left plot of Fig. 3.8 is coloured according to
the classes of data: point and extended source samples, and noise realization samples
with no injected source. In the right plot of Fig. 3.8, we have coloured the data points
according to their corresponding maxratio. It is clear that the different source classes
and their corresponding maxratios are separable using the latent variable information.
Also, by determining the maxratio in this way, the absolute peak surface brightness
of a given source can be recovered using equation 3.5.

Although Fig. 3.8 provides some insight to the maxratio distribution and the types of
sources that are detected, there is clearly some overlap between the three classes of
data. Using several regression estimator techniques, such as the k-Nearest Neighbour
(KNN), XGBoost and RandomForest, we find that this overlap affects the accuracy
of the source brightness estimation. Therefore, we apply a specific approach for this
task; once a source is detected and located by the network, its structure is inferred
more accurately when the source is positioned in the centre of a cropped image. As
the structure of the source is correlated with the maxratio (see Fig. 3.7), this results
in a more accurate prediction of the maxratio.

In our implementation, a square image with 128 x 128 pixels is cropped around the
position of the detected source in both the dirty and model images. These images
are then used to train a new network (Autoencoder2), the latent variables of which
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Figure 3.8 — A -SNE visualization of the 256 latent variables extracted from the encoder section of Autoencoderl. The encoder
provides the compressed representation of any corresponding model image to the corresponding input dirty image. Latent variables
carry the information of the source structure and accordingly the maxratio. The left panel is colour-coded by the class of data
(point source, extended source, and noise realization). The right panel shows the same 2D representation of the latent variables
coloured according to the corresponding maxratio. For the noise realization samples, with no injected source, the value of the
maxratio has been assigned to —10 for visualization purposes.
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provide a more accurate representation of the source structure. Fig. 3.9 shows the
two-dimensional t-SNE visualization of the latent variables obtained from the training
data where the source is centred and the image is cropped. A comparison of Figs. 3.8
and 3.9 shows that the latent variables with the new setting yields a more distinct
representation of the different classes and the maxratio.

The network architecture used for the structure estimator is similar to the encoder-
decoder shown in Fig. 3.6. However, due to the smaller input image size, one
convolutional layer from both the encoder and decoder sections is removed. In this
reduced architecture, a layer of 64 units represents the latent variables.

3.3 Source detection

In this section, we present our results on training the network using the BCE and MSLE
loss functions, before providing an overview of our DECORAS source detection
strategy. The results from using DECORAS are compared to BLOBCAT, a traditional
source detection algorithm, which was also used by the mJIVE-20 survey.

3.3.1 Defining the true positive and true negative rates

In order to evaluate our results, we consider the confusion matrix presented in Ta-
ble 3.1. The true positives (TP) are defined as the number of fields with an injected
source that the algorithm has successfully detected, while the true negatives (TN) are
the number of fields with no injected source where the algorithm correctly returns a
non-detection. Conversely, the false positives (FP) are defined as the number of fields
with no injected source, but the algorithm detects a source, and the false negatives
(FN) correspond to the number of fields with an injected source that the algorithm
fails to detect.

We quantify the performance of DECORAS and BLOBCAT when applied to simulated
data by calculating the TP and TN rates,

TP
TP rate = ———, (3.6)
TP + FN
and
TN
TNrate = ———, 3.7
rale = N+ P -7)

respectively. Given that we aim to limit the number of FP and FN events, an ideal
system would achieve a TP rate (sample completeness) and TN rate (sample purity)
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Figure 3.9 — A +-SNE visualization of the latent variables extracted from Autoencoder2, which converts dirty images of 128 X 128
pixels into model images of the same size. The position of the injected source is the centre of the image. In the left panel, the
colour illustrates the class of data (point source, extended source, and noise realization). The right panel shows the same 2D
visualization of the latent variables coloured according to the corresponding maxratio. For the noise realization samples, with no
injected source, the value of the maxratio has been assigned to —10 for visualization purposes.



3.3: Source detection 77

True Data
Source No Source
Test Results | Detection TP FP
No Detection FN TN
Total Point Sources Noise Realizations

Table 3.1 — The sample confusion matrix, showing how the TP, FP, FN and TN are
defined.

of 1.0.

The simulated test dataset consists of two components. First, we generate 8000
images in which 3000 samples correspond to point sources and 5000 samples contain
(extended) elliptical Gaussian sources. To define a signal-to-noise ratio for each
source, we divide the peak surface brightness of the injected source in the model
image by the rms of a noise realization of the same simulated observation without any
injected source. For our simulations, we use a signal-to-noise ratio of the injected
sources between 1 to 16. This simulated dataset is used to determine the TP rate.

Second, we generate a dataset of 7800 noise realizations that do not contain any
injected source. This dataset is used to evaluate the TN rate. To determine an
apparent signal-to-noise ratio, we divide the peak surface brightness by the rms noise
in each realization. The total number of noise realizations has been chosen so that
we have a sufficient number of samples to test the TN rate for noise peaks at > 4.
To ensure this, we decided to make images that are 1024 x 1024 pixels in size, from
which we cropped sub-images of 256 x 256 pixels with the surface brightness peak
in the centre. This results in each image having 65 653 pixels, which for a Gaussian
noise distribution should, on average, have a peak surface brightness at a significance
of 430, and at least one pixel detected at the 60 level when all 7800 images are
considered. In Fig. 3.10, we show the distribution of apparent signal-to-noise ratio
of the peak surface brightness in the noise realizations. This peaks at an apparent
signal-to-noise ratio of 4.4 and has at least one 60" noise peak. Overall, the range of
signal-to-noise ratios in our noise realizations is between 3.4 to 6.1. We note that the
distribution is not Gaussian, with a skew towards higher signal-to-noise ratios. This is
not unexpected given that the noise is correlated in the image plane for interferometric
data.

3.3.2 The performance of BLOBCAT

BLOBCAT is a source extraction algorithm that is designed to detect and catalog sources
from pre-processed radio images (Hales et al. 2012). In order to apply BLOBCAT on
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Figure 3.10 — The distribution of peak surface brightness-to-noise ratio for 7800
noise realizations. The distribution is consistent with the expectations, given the total
number of pixels used per image, and in total for the entire test dataset.

our test data, we first had to deconvolve the simulated visibility datasets using the
TCLEAN task within casa (down to a threshold of 30-). We note that this necessary step
will change the simulated images being used for our comparison (dirty versus clean
images), but as the underlying input model is the same for both cases, this will still
allow for a proper comparison between DECORAS and a standard source detection
algorithm.

BLOBCAT works by looking for islands of pixels that might represent a source. The
signal-to-noise ratio of a given pixel is the key parameter used to detect potential
sources. For this, the algorithm determines the field surface brightness and the back-
ground rms noise as the input parameters. It also requires the user to set a detection
signal-to-noise ratio threshold (7;) and a cut-off signal-to-noise ratio threshold (7 )
for flooding the islands. The detection process starts with locating all pixels that have
a higher signal-to-noise ratio than 7;. To each pixel above this limit, an island of
adjacent pixels are added that are above Tr. For our simulations, we consider the
pair values of (5o, 407), (5o, 30), (4.507, 3.50) and (40, 30) for (Ty, Tr). Any
detected source is then parameterized by fitting a 2-dimensional elliptical Gaussian
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and compared with the input model.

In Fig. 3.11, we present the cumulative TP and TN rates for BLOBCAT as a function of
(apparent) signal-to-noise ratio. As expected, the performance of BLOBCAT depends
on the choice of (T, Tr). We find that values of (50, 407) have the highest TN rate
(0.98), whereas using (40, 307) returns the lowest TN rate (0.05), when the full sample
of noise realizations are considered. When (T, Ty ) are set to (4.507,3.507), we find
that there is a transition at a signal-to-noise ratio of 4.5, due to the fraction of FP
detections decreasing and the fraction of TN detections increasing, as expected. Note
that the TN rate for sources with an apparent signal-to-noise ratio below T} is high as
the algorithm does not consider any blob below this significance as a potential source.
We also see that the TN rate of BLOBCAT drops drastically for fields that have a higher
apparent signal-to-noise ratio, due to the choice of thresholds that have been used.

We find that for a VLBI-like array, such as the VLBA, the point source catalogue
has a TP rate of 0.91 at the 4.20°-level using a setting of (40, 30) for (Ty, Ty ). This
increases to 0.95 at the 5.20-level and is complete at signal-to-noise ratios > 6.2 (we
define the 100 per cent completeness as the signal-to-noise ratio where the first false
negative is returned). However, below this, the fraction of FN detections increases,
and the overall TP rate decreases. Also, as expected, the TP rate decreases faster
when a combination of higher thresholds are used. For example, the (507, 407) setting
for (Ty, Tyr) is complete at signal-to-noise ratios > 8.4. Finally, we note that the
performance of BLOBCAT is slightly better than the other source detection algorithms
described above, with a completeness that is higher than 80 per cent at the 40 level.

As already discussed, the settings for both 7;; and 7 will affect the TP and TN rates
determined by BLOBCAT. For example, using pair values of (50, 40°) generates a TN
rate of 0.52 at the 5.50 level, while the (50, 30) setting has a TN rate of only 0.09
at the same apparent signal-to-noise ratio. Ultimately, the user’s choice of T, and T
will depend on the scientific goal of the observation. For example, one might need
to reach 100 per cent completeness at a specific signal-to-noise ratio, while for some
other science cases a higher purity is important. In this regard, it is the combination
of TP and TN rates that matters when evaluating the general robustness of a source
detection algorithm. Therefore, we have calculated the combined TP x TN rate,
which is also shown in Fig. 3.11. We find that the TN rate is the dominant factor
when comparing the performance of BLOBCAT with different (7,7, T ) values. Also,
from Fig. 3.11, we see that the highest catalog completeness and purity is obtained
for the (50, 407) setting of (T, Ty ). Therefore, we will use this setting for comparing
our results with DECORAS.
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True Data
Source | No Source
Test Results | Detection 84.2% 81.2%
No Detection | 15.8% 18.8%
Total 8000 7800

Table 3.2 — The confusion matrix when only using the BCE as the loss function.

True Data
Source | No Source
Test Results | Detection 78.3% 73.3%
No Detection | 21.7% 26.7%

Total 8000 7800
Table 3.3 — The confusion matrix when only using the MSLE as the loss function.

3.3.3 Comparing the performance of BCE and MSLE

Fig. 3.12 presents the TP, TN and TP x TN rates as a function of (apparent) signal-
to-noise ratio when either the BCE or MSLE are used as the loss function in our
encoder-decoder network. Each model is trained over 800 iterations with the Adam
optimizer in KERAS. The learning rate is set to 1073 as it provides lower loss values
compared to when learning rates of 1072 and 10™* are used. The initial weights
were set randomly from a uniform distribution. Although a different initiation of
the weights can affect the training process at early epochs, our experiments find that
the network converges shortly after the early epochs. In other words, the observed
performance does not vary significantly with the initialization.

For the TP rate, we find that the BCE detects more genuine sources when compared
to the MSLE for all signal-to-noise ratios. We find that the MSLE has a higher TN
rate when compared to the BCE, which has a higher fraction of FP detections at all
signal-to-noise ratios tested here. Similar to above, the TP X TN rate is dominated
by the TN rate. The confusion matrices from applying the trained model using the
BCE and MSLE loss functions to the test dataset are shown in Tables 3.2 and 3.3,
respectively. Based on this comparison of the BCE and MSLE loss functions, we can
conclude that neither provide a satisfactory performance individually.

3.3.4 DECORAS source detection strategy

Motivated by the results from using the BCE and MSLE loss functions individually,
we now present a new strategy that is based on using both loss functions together. As
described above, when the algorithm is not confident on where the source is located,
more than one blob emerges in the predicted model image. In the previous section,
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we have considered all such low-confidence samples as non-detections when using
the BCE or MSLE loss functions individually. However, using the BCE and MSLE
together provides the possibility of finding the correct source, even for those fields
with low signal-to-noise ratio detections. We consider a blob in a low confidence
image as a detected source if both trained models, using the BCE and MSLE loss
functions, agree on the existence and position of the source. A distance-threshold
criteria is applied to the positions of the two detected blobs from using the BCE and
MSLE individually. This threshold is defined as the maximum acceptable distance
between the detected positions obtained with both loss functions, where the distance
R is calculated using,

R = \/ (*MSLE — XBCE)? + (YMSLE — YBCE)? - (3.8)

Here, x and y are the co-ordinate positions obtained with the BCE and MSLE loss
functions.

An alternative solution is to train the network with a combination of the BCE and
MSLE loss functions, that is, BCE+MSLE. Considering the results of applying the
BCE and MSLE loss functions on test data, we expect that simply adding up the loss
values would not provide reliable results. As is shown in Fig. 3.12, the BCE performs
better over the MSLE for the TP rates, while the MSLE provides more reliable results
when it comes to the TN rates. Therefore, if we train the network with a BCE+MSLE
loss function, it would not result in either complete and reliable detections. A more
sophisticated approach is to define a linear combination of the BCE and MSLE
loss functions (e.g. @BCE + BMSLE) in which @ and § are the hyper-parameters
that need to be defined and optimized for given our specific problem. The simple
network structure and the short training time could justify the use of two separated
loss functions. Finding optimal values for @ and 8 can be addressed in future work.

In Fig. 3.13, we show the TP and TN rates as a function of the distance-threshold
R when the BCE and MSLE loss functions are used together. For this, we have
determined the rates for detections at a signal-to-noise ratio > 2 and > 4 separately.
In both cases, we find that the TP rate is rather flat and only marginally changes as
the distance-threshold is increased (up to 10 pixels, or 2.5 beam sizes). However, the
TN rate changes drastically from 0.96 at a distance-threshold of 1 pixel to around 0.5
at 10 pixels, with the largest change occurring between 1 and 3 pixels.

In Fig. 3.14, we again show the TP, TN and TP x TN rates as a function of (apparent)
signal-to-noise ratio, but for the case when both loss functions are used together.
We also restrict our results to distance-thresholds of 1, 2 and 3 pixels, as for larger
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values of R the TP and TN rates are essentially constant. Here, when multiple blobs
have been detected by the loss functions, that is, the low confidence cases, we use
a distance-threshold to 1, 2 and 3, and for those cases with a single detected blob,
we keep the distance threshold fixed to 3. From comparing with Fig. 3.12, we see
that using the two loss functions together significantly improves the performance,
particularly for the TN rate. We find that the TP rate has a similar behaviour for each
threshold used, with slightly higher rates obtained for higher values of the distance-
threshold. DECORAS is complete at signal-to-noise ratios of > 7.5, > 6.9 and > 6.0
for distance thresholds of 1, 2 and 3 pixels, respectively. For the TN rates, the values
are significantly higher when a distance-threshold of 1 is used, ranging from 0.97 to
0.93 between apparent signal-to-noise ratios of 3.5 and 5.5. Finally, we also see from
Fig. 3.14 that the TP x TN rates are highest when the threshold is conservatively
set to 1 for the less confidence cases. Therefore, for our comparison with BLOBCAT,
we will consider only the results from setting the distance-threshold to 1 pixel for
those samples with multiple detected blobs, and 3 for those samples with a single
blob detected by both loss functions.

3.3.5 Comparing DECORAS with a traditional source detection algorithm

We present the comparison between DECORAS and BLOBCAT in Fig. 3.15. Overall,
the TP rate (or completeness) of DECORAS is either equal to or marginally better
than that of BLOBCAT at all signal-to-noise ratios. As described above, DECORAS
is complete at the > 7.50-level, whereas BLOBCAT is complete at > 8.40". For the
TN rates, BLOBCAT performs better at apparent signal-to-noise ratios < 5, owing to
the cut-off detection threshold, but above this, DECORAS is better, with an almost
constant TN rate as there are less FP detections returned at higher signal-to-noise
ratio. Therefore, we conclude that both methods have a similar completeness level,
but DECORAS is expected to have a better catalog purity. This is further demonstrated
in the TP x TN rate, where DECORAS out-performs BLOBCAT by an almost factor
of two at signal-to-noise ratios > 5.5.

3.4 Source characterization

In this section, we present an analysis of how well DECORAS can recover the input
source surface brightness distribution, which we parameterize as the position, size
and peak surface brightness. We compare these properties with those of the input
source models used to generate the test dataset discussed in Section 3.3. This is done
by fitting two-dimensional elliptical Gaussian components to the predicted and input
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(true) model images of the sources.

3.4.1 Recovering the source position

Determining a reliable source position, for example, to compare the detected emission
with other multi-wavelength datasets, is clearly an important aspect of any source
characterization platform. In Fig. 3.16, we show the difference in the measured and
expected position of the detected sources by DECORAS in both Right Ascension
(RA) and Declination (Dec), such that,

ARA = RApgcoras — RAge, (3.9

and
ADec = DecDECORAS - Dectrue. (310)

We find that the mean offset and standard deviation is —0.19 and 0.80 mas in RA,
and —0.16 and 0.68 mas in Dec, respectively. The mean absolute offset is 0.61 mas,
with a standard deviation of 0.69 mas. These results demonstrate that, the recovered
source positions are consistent with the input (true) model position.

3.4.2 Recovering the source structure

We now analyze the performance of DECORAS with respect to recovering the true
underlying structure of the source, which we parameterize as the source size. We
have applied two different measures for this evaluation.

First, we calculate the MSLE between the predicted and input (true) model image.
Fig. 3.17 presents the results of measuring the MSLE for the test dataset as a function
of signal-to-noise ratio, for all sources detected with DECORAS. We find that the
MSLE is of order 107> in the majority of cases, for both point and extended sources,
which translates to an acceptable source structure recovery. For example, in Fig. 3.18
we show four of the worst-case sources, where the MSLE is highest (> 3 X 107%. A
simple visual comparison demonstrates that the model and predicted source structures
are in good agreement, even for these outliers.

Second, to quantify the performance of DECORAS in recovering the source structure,
we compare the major and minor axis of the 2-dimensional elliptical Gaussian fitted
to the surface brightness distribution of each predicted and input (true) model image.
Fig. 3.19 presents a comparison of the predicted and the ground truth major axis for
each source, where we again see that there is good agreement. We have also calculated
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Figure 3.16 — Histograms of the relative offset, in Right Ascension (ARA) and Decli-
nation (ADec), between the predicted and input (true) position of the sources detected
by DECORAS. In both directions, the mean source position is consistent with being
coincident with the input model position. Note that, among all the detected sources,
0.44 and 0.40 per cent of the sources have a ARA and ADec that is higher than 5
milliarcsec, respectively.




90 chapter 3: Point and extended source detection and characterization

the relative error between the true and predicted major axis, such that,

Truey,j — Predicted py;

Relative Error = , 3.11)

Truem,

which is also shown in Fig. 3.19. Again, we see that there is good agreement between
the model and predicted source sizes, with the majority of the sources having almost
no fractional difference. However, we see that there is still a scatter that extends up
to 40 per cent in fractional error. We find that 88 (98) per cent of the sources have a
fractional error of 10 (20) per cent in major-axis size. Only 2 per cent of the sources
have fractional errors in the recovered major axis of between 20 to 40 per cent. Finally,
we note that there is an excess of sources towards a positive relative error, that is, the
predicted major axis is smaller than the input (true) model major axis. The reason for
this is not clear, but may be related to the range of beam sizes that were used during
the training.

3.4.3 Recovering the source peak surface brightness

Determining the absolute surface brightness is needed to measure the flux density
and luminosity of the radio sources detected with DECORAS. This is important for
understanding the various emission mechanisms that are at play, and for comparing
the emission with other multi-wavelength datasets. Here, we use the peak surface
brightness as a proxy for measuring the amplitude of the emission from the recovered
sources. As discussed in Section 3.2.7, the image normalization process results in
losing the absolute surface brightness information. Howeyver, this is recovered using
the source brightness estimator via the maxratio (see equation 3.5) and the latent
variables of Autoencoder2 (see Fig. 3.9). To do this, we must first measure the
accuracy of the source brightness estimator for the test dataset. We considered the
KNN, XGboost, BaggingRegressor, and the RandomForest Regressor, which all are
implemented using the sCIKIT package in Python (Pedregosa et al. 2012). Table 3.4
compares the performance of these different regressors in terms of the Root Mean
Squared Error (RMSE) and the R? statistic. We also give the standard deviation
of the relative maxratio error distribution. We find that the XGboost has the best
performance when compared to the other regressors, which we adopt for the rest of
our analysis. It has been implemented using the methodology outlined by Friedman,
Hastie & Tibshirani (2000); the number of gradient boosted trees is defined as 200,
using a maximum depth of 7 for each of the base learners.

Fig. 3.20 compares the predicted and input (true) maxratio that is recovered for the
test dataset. The result shows that using the latent variables and the maxatio can
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Figure 3.17 — The MSLE between the predicted and input model images, as a function
of signal-to-noise ratio for point (red) and extended (blue) sources. Overall, the
MSLE values are extremely small and support our view that DECORAS reliably
recovers the source structure.

recover the model parameters. However, there is clearly a larger intrinsic scatter than
in the case of the recovered major axis (see Fig. 3.19). To quantify how well the peak
surface brightness is recovered, we again consider the relative error between the true
and predicted parameters,

Tr UCmaxratio — PrediCtedmaxratio

Relative Error = , 3.12)

Truemaxratio
the results of which are also shown in Fig. 3.20. We find that the predicted peak
brightness is almost exactly recovered in the majority of cases, but there is also
a scatter that extends to a fractional error of 60 per cent, and is independent of
signal-to-noise ratio. We find that 69 (94) per cent of the sources have a fractional
error on their peak surface brightness of 10 (20) per cent. Given that the absolute
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Dirty Image Model Image Predicted Image
SNR= 12.266 Error= 0.354 MSLE= 0.0003

SNR= 7.907 Error= 0.101 MSLE= 0.0004

SNR= 15.12 Error=-0.03 MSLE= 0.0008

SNR= 15.89 Error=-0.2 MSLE= 0.0011

.

Figure 3.18 — Examples of four sources with a high MSLE between the input (middle)
and predicted (right) model image, with the associated dirty image (left) for reference.
Such highvalues of the MSLE could be interpreted as a possible error in recovering the
source structure. However, we see that the predicted and input images are comparable
for these extreme cases. Each image contains 256 X 256 pixels and is equivalent to a
sky-area of 320 x 320 mas>.
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Figure 3.20 — In the left panel, a comparison of the predicted and true maxratio of each source for the entire test dataset (blue
points), is presented. The red dashed line shows when they exactly agree. In the right panel, the fractional error of the predicted
maxratio, with respect to the input (true) model maxratio, is presented. The magenta and green dashed lines show the percentage
of sources within the 10 and 20 per cent fractional error bounds.
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KNN XGBoost Bagging RandomForest

RMSE 2.19 2.16 2.44 2.23
R? 94.3%  94.5% 92.6% 93.7%
ORel.Error ~ 0.15 0.13 0.16 0.15

Table 3.4 — Evaluation of the results of applying various regressors to the source
surface brightness estimator. Ideally, the RMSE and owRel. grror Should be as small as
possible and the R? statistic should be 100 per cent. The ORel. Error IS calculated by
fitting a Gaussian function to the relative error distribution obtained for each method.

amplitude calibration of interferometric datasets is around 10 per cent, we conclude
that our measurement errors with DECORAS will not dominate the uncertainties for
the majority of the sources detected.

3.5 Discussion and Conclusions

Source detection and characterization will always play an important role in making
new scientific discoveries, particularly in the age of large synoptic survey telescopes
and interferometric arrays that will operate across all observable wavelengths. The
shift to larger and more complex datasets requires robust and efficient automated
approaches to be developed, many of which will employ deep learning techniques.
Here, we have investigated the source detection and characterization of unresolved
and extended sources in a single pipeline using machine learning techniques. Our
method is designed to detect sources reliably from sparse interferometric arrays, like
the VLBA, which can have highly correlated noise properties for images produced in
the sky-plane domain. However, the pipeline presented here could also be used for
other interferometric arrays, provided a suitable training dataset can be made. We
have focused our attention on images that have not gone through a prior deconvolution
process, but are instead produced from a Fourier transform of the visibility data. This
was done to test how reliable such a methodology would be, as it can be extended to
source detection in the visibility plane or be used to determine residual calibration
errors in the visibility data (see below).

By applying our methodology to a test dataset, which is representative of observations
with the VLBA at a wavelength of 20 cm, we find that the derived catalog is 100 per
cent complete down to a signal-to-noise ratio of 7.5. When we used a traditional
source detection algorithm, which is applied to the same dataset, but also having
gone through a de-convolution process, the completeness drops from 100 per cent at
a higher signal-to-noise ratio of 8.4. This improvement in detectability provided by
DECORAS is equivalent to a 25 per cent decrease in the integration time needed when
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compared to a traditional source detection algorithm that matches the completeness
for a flux-limited sample. For example, an all-sky survey with the VLBA that reaches
a similar depth to the mJIVE-20 survey would take about 7000 h to complete (see
Chapter 2); applying DECORAS to such a survey could potentially save 1750 h in
observing time, which is significant. Moreover, we find that DECORAS has a higher
catalog purity, by almost a factor of two, when compared to a traditional source
detection algorithm.

We also investigated the robustness of the source characterization using the test dataset.
We found that the position of the detected sources were recovered to within 0.61 mas
(0.49 pixels), with a standard deviation of 0.69 mas (0.55 pixels), from the input point
source position. We also found that the peak surface brightness and size of the input
sources were recovered to within 20 per cent for 94 and 98 per cent of the sources,
respectively. Therefore, we conclude that the model images produced by DECORAS
well represent the underlying source structure of the objects that are detected.

For recovering the source structure and source surface brightness, we had to develop a
second encoder-decoder network due to the inefficiency of Autoencoderl in recovering
the source properties accurately. This is because Autoencoderl and its latent variables
were optimized to recovering the source position rather than recovering the source
properties. Our experiments show that the accuracy of recovering the source surface
brightness is highly dependent on the latent variables; the better the network is trained
using Autoencoder2, the lower the error will be generated on the maxratio estimation.
The quality of the generated latent variables also depends on the efficiency of the
network structure. Looking at the maxratio distribution, we found that there was
a wide range of maxratios for extended sources. However, the number of samples
with a higher maxratio was significantly lower. This will need to be considered in
any future learning regression model so that enough data is provided on all maxratio
bins. We noted that although the source structure is correlated with the maxratio, it is
not the only parameter that affects it. The other influential parameters are unknown
to us at this moment, but we expect that the PSF sidelobe structure to have a lateral
effect. Also, we expect that an additional framework that separates point and extended
sources using the latent variables, and trains the regressors using either the point or
extended source samples will help in lowering the error on maxratio estimation.

Our deep learning architecture is rather simple with only nine convolutional layers.
It was designed in this way so that there was a very short training and testing time.
The entire training phase of DECORAS on 50000 samples on a GPU node takes
less than 2 h (equivalent to 7 samples per second). We note that the training time
does not include the time needed to produce the training dataset. However, as part
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of this project, we have developed a pipeline to efficiently produce visibility datasets
of realistic observations. This has formed the basis of an improved mock visbility
dataset pipeline that generates training samples with more realistic source models, as
opposed to the simple point and Gaussian source models tested here (de Roo et al., in
prep.). Testing and refining DECORAS on this even more realistic dataset is our next
goal before applying the algorithm to real observational data, for example, from the
mJIVE-20 survey.

Also, through using more complicated source structures, the network can also be
trained to identify the patterns associated with amplitude and phase errors within the
visibility dataset. Currently, such errors would be absorbed in the derived source
structure, which we plan to account for in a future implementation of DECORAS.
This could be done by correcting the observed visibility’s, or by simply accounting
for the mis-match in the actual PSF from the expected PSF given the visibility
sampling function; as our current implementation of DECORAS does not use the
PSF or visibility sampling function for the analysis, testing (training) on a dataset
with calibration errors should be a straightforward and potentially interesting next
step.

Ultimately, we aim to expand this research by applying DECORAS to real observa-
tional data, such as from the mJIVE-20 survey. Due to the improved completeness
and purity provided by DECORAS when compared to BLOBCAT, we expect to detect
and better characterize more sources, and to generate a more reliable catalog for the
mJIVE-20 survey. This would provide a real-world test for using machine learning
techniques to detect and characterize the millions of sources to be found from the next
generation wide-field surveys with SKA-VLBI.
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Abstract

We present a novel machine learning based approach for detecting galaxy-scale gravi-
tational lenses from interferometric data, specifically those taken with the International
LOFAR Telescope (ILT), which is observing the northern radio sky at a frequency of
150 MHz, an angular resolution of 350 mas and a sensitivity of 90 pJy beam~! (10).
We develop and test several Convolutional Neural Networks to determine the prob-
ability and uncertainty of a given sample being classified as a lensed or non-lensed
event. By training and testing on a simulated interferometric imaging data set that
includes realistic lensed and non-lensed radio sources, we find that it is possible to
recover 95.3 per cent of the lensed samples (true positive rate), with a contamination
of just 0.008 per cent from non-lensed samples (false positive rate). Taking the ex-
pected lensing probability into account results in a predicted sample purity for lensed
events of 92.2 per cent. We find that the network structure is most robust when the
maximum image separation between the lensed images is > 3 times the synthesized
beam size, and the lensed images have a total flux density that is equivalent to at least
a 200 (point-source) detection. For the ILT, this corresponds to a lens sample with
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Einstein radii > 0.5 arcsec and a radio source population with 150 MHz flux densities
> 2 mlJy. By applying these criteria and our lens detection algorithm we expect to
discover the vast majority of galaxy-scale gravitational lens systems contained within
the LOFAR Two Metre Sky Survey.

4.1 Introduction

Strong gravitational lensing occurs when the light from a distant galaxy is deflected
due to the space-time curvature that is caused by another galaxy along the line of
sight. As a result of this phenomenon, the foreground galaxy acts like a lens, and can
produce multiple magnified images of the background galaxy (see Treu 2010 for a
review).

Ever since the first gravitational lens was discovered by Walsh, Carswell, & Weymann
(1979), gravitational lensing has become a powerful tool to test models for galaxy
formation and cosmology. For example, over the last four decades, gravitational
lensing has been used to measure the mass components of massive early-type galaxies
(Treu et al. 2006; Bolton et al. 2008; Auger et al. 2009, 2010), constrain their stellar
initial mass function (Spiniello et al. 2012, 2014), and determine their inner mass
density profiles (Wucknitz, Biggs & Browne 2004; Koopmans et al. 2006; Spingola
et al. 2018). Also, through detailed modelling of the surface brightness distribution
of the lensed images, it has been possible to place constraints on the nature of dark
matter (Vegetti et al. 2012, 2014; Ritondale et al. 2019; Hsueh et al. 2020; Gilman et al.
2020). When such modelling is combined with a time-delay observed between the
different lensed images of a flux-variable background object, models for the expansion
of the Universe and dark energy have also been tested (Suyu et al. 2010, 2013; Bonvin
et al. 2017; Wong et al. 2020).

There have been several dedicated surveys to find gravitational lenses across the entire
electromagnetic spectrum with both imaging and spectroscopic data (e.g. Patnaik et al.
1992; Myers et al. 2003; Bolton et al. 2006; Negrello et al. 2010; More et al. 2012;
Treu et al. 2018; Spiniello et al. 2018). These surveys have discovered hundreds
of examples of strong gravitational lensing, where the background galaxy is either
a compact source associated with an Active Galactic Nucleus (AGN; quasar) or an
extended source, primarily associated with the emission from stars in a galaxy (e.g.
King et al. 1999; Browne et al. 2003; Bolton et al. 2008; Faure et al. 2008; Wardlow
et al. 2013; Negrello et al. 2017; Lemon et al. 2018; Lemon, Auger & McMahon
2019; Lemon et al. 2020; Li et al. 2021).

Unfortunately, gravitational lensing by massive galaxies is quite a rare event, with



4.1: Introduction 101

one gravitational lens found in about a thousand galaxies observed (Chae et al. 2002;
Wardlow et al. 2013; Amante et al. 2020). This makes their identification from visual
inspection both time consuming and prone to incompleteness (e.g. Jackson 2008;
Marshall et al. 2016; More et al. 2016), as the parent population that needs inspecting
tends to be of order 10* galaxies. Therefore, the vast majority of the gravitational
lenses discovered thus far have been found through applying a set of selection criteria
in catalogue space, based on the optical colour or radio spectral index, the total flux
density and the morphology of the candidate lensed images. However, some level of
visual inspection is still needed to verify potential lens candidates.

In the near future, the ever-increasing size of datasets from existing and proposed
wide-field surveys necessitates sophisticated automated search techniques to identify
new lens candidates. This is because with parent samples of order > 107 galaxies,
even applying various selection criteria will still result in a prohibitively large number
of candidates requiring visual inspection. For example, it is expected from the large-
scale imaging surveys to be carried out with the Vera C. Rubin Observatory, the
Nancy Grace Roman Space Telescope and Euclid at optical/infrared wavelengths, and
with the next generation Very Large Array (ngVLA) and the Square Kilometre Array
(SKA) at radio wavelengths, that more than 10° gravitationally lensed galaxies will
be discovered (Oguri & Marshall 2010; Collett 2015; McKean et al. 2015).

To test various identification techniques, Metcalf et al. (2019) recently carried out a
lens finding challenge that focused on optical/infrared datasets. They tested a wide
variety of automated techniques developed by the community, such as gravitational
arc and ring finders (Cabanac et al. 2007; Sonnenfeld et al. 2018), machine learning
and deep learning algorithms (Hartley et al. 2017; Petrillo et al. 2017; Schaefer et al.
2018; Lanusse et al. 2018; Avestruz et al. 2019), and also brute force visual inspection
methods (Jackson 2008). They found that more than 50 per cent of lens systems could
be identified, without any false positive events, using the automated approaches when
certain thresholds on the lensed image brightness or size were applied. Significantly,
the automated methods outperformed the brute-force visual inspection by experts in
the field.

Arc and ring finder algorithms do not use any learning techniques (Cabanac et al.
2007; Sonnenfeld et al. 2018), but instead fit parametric lens models to any detected
arc-like surface brightness distribution to determine the likelihood of it being lensed.
The need to fit a model to each detected arc or ring can become computationally
expensive, and the performance of such algorithms is limited to what we expect a lens
system to look like. Moreover, the risk of a false positive detection for cases where
spiral arms or tangentially elongated star forming regions appear as arc-like features
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can be a problem for these types of algorithms. On the other hand, learning based
techniques, in particular Convolutional Neural Networks (CNNs; Hezaveh, Perreault
Levasseur & Marshall 2017; Petrillo et al. 2017, 2019; Jacobs et al. 2017, 2019a,b;
Cheng et al. 2020b; Akhazhanov et al. 2021; Gentile et al. 2022) and Support Vector
Machines (SVMs; Hartley et al. 2017), have been recently developed for detecting
and modelling strong gravitational lens systems.

The advantage of using deep learning algorithms over traditional lens finding algo-
rithms are multifold. They are less computationally expensive and can reduce the need
for user involvement. The model-agnostic nature of learning algorithms is free to cap-
ture underlying structure that model-dependent methods may miss. However, it is still
needed for users to provide the training data and label them into classes of lensed and
non-lensed, leaving the machine to learn by itself the important features that describe
a gravitational lens system. In this regard, deep learning is well-suited to identifying
lensed features, as their surface brightness distribution is highly correlated via the
lens equation. Indeed, recent applications of deep learning to lens identification in
wide-field ground-based optical/infrared surveys have found hundreds to thousands
of gravitational lens candidates (Li et al. 2021; Rojas et al. 2021). Although the vast
majority of these candidates have still to be confirmed as genuine gravitational lenses,
this highlights how powerful such techniques can be.

To date, there has been almost no research done in applying machine learning tech-
niques for detecting gravitational lenses with radio interferometers; although, see
Morningstar et al. (2018, 2019) for a discussion on using deep learning for image
deconvolution and lens modelling. This is in part due to the availability of large
amounts of wide-field multi-band optical imaging data from the Kilo Degree Survey
(KiDS) and the Dark Energy Survey (DES), and the impending launch of Euclid
(currently planned for early 2023). Also, as the data from interferometers is in the
native visibility plane, this apparent complexity has made such studies seem addition-
ally challenging. However, the next generation of radio interferometers will have the
sensitivity and angular resolution to be excellent gravitational lens finding machines,
with several unique science applications (e.g. McKean et al. 2015).

Here, we focus on developing a lens detection algorithm that can be applied to large-
area surveys (15000 deg?) at high angular resolution (5 to 500 mas synthesized beam
size) with next generation radio interferometers. In particular, we concentrate on lens
surveys with the Low Frequency Array (LOFAR; van Haarlem et al. 2013), which
mainly operates between 120 and 170 MHz, and has the sensitivity to detect the
non-thermal emission from lensed radio sources (Stacey et al. 2019) and the long
baselines needed to resolve their structure (Badole et al. 2022). Also, given that
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the International LOFAR Telescope (ILT) has now gone through the commissioning
phase (Morabito et al. 2021; Jackson et al. 2021; Bonnassieux et al. 2021; Harwood
et al. 2021; Sweijen et al. 2021; Timmerman et al. 2021), the routine imaging of the
survey data with the international stations of LOFAR will soon start (Sweijen et al.
2022). Therefore, developing methods for identifying lensed radio galaxies amongst
the expected 15 million objects to be imaged with LOFAR is also timely.

This chapter is arranged as follows. In Section 4.2, the procedure for producing the
training and verification data of simulated observations with the ILT is presented.
Also, we present the detailed methodology of the lens detection algorithm. In Sec-
tion 4.3, we evaluate the results of the lens detection algorithm, and the lens-parameter
space that the ILT is sensitive to is determined in Section 4.4. Finally, in Section 4.5,
the results from this work are discussed, and concluding remarks on the methodology
and future prospects are presented.

4.2 Method

In this section, we first summarise our pipeline for simulating realistic gravitational
lensing data from the ILT (for training and testing purposes). Then, we outline the
architecture of the deep learning algorithm we use to detect and rank gravitational
lensing candidates.

4.2.1 Simulating a training dataset for the ILT

The process of simulating realistic observations of gravitational lenses with the ILT
will be presented in detail by de Roo et al. (in prep.). In summary, the lensing data are
created using PYAuToLENs (Nightingale et al. 2021), an open source code that gen-
erates simulated images through the process of ray-tracing. Although PYAUTOLENS
also has the functionality to produce interferometric datasets, here we have only incor-
porated the ray-tracing component in our pipeline to create a mock lens-plane model
from a parametric source-plane model. We then make our own visibility datasets and
produce deconvolved images using the Common Astronomy Software Applications
(CASA; McMullin et al. 2007) package.

The lens simulation platform generates mock analytic sources and places them ran-
domly on a grid. For simplicity, we have chosen to represent the background source
surface brightness distribution with multiple elliptical Gaussian components. Fig.
4.1 shows the distribution of full width at half maxima (FWHM) for the simulated
background source components in our training dataset. This distribution of source
sizes is based in part on the typical sizes of radio emitting star-forming galaxies at
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Figure 4.1 — The left panel shows the distribution of full width at half maximum (FWHM) of the Gaussian background sources
used for the training dataset. The right panel shows the integrated flux density of the background source population (green) in
comparison to the integrated flux density of the lensed source population (blue). The effect of the magnification provided by the
gravitational lensing is clearly seen in the source number counts as a function of flux density.
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1.5 GHz (Muxlow et al. 2020), but as most of our sources will likely be associated with
AGN activity, which can have a variety of sizes, we have also added a distribution of
sources with sizes < 0.5 arcsec. This upper-limit on the AGN source size was chosen
to be consistent with recent ILT observations of the Lockman Hole region, where
88 per cent of the detected sources were found to be compact at 144 MHz (beam
size 0.4 arcsec; rms 25 uJy beam™'; Sweijen et al. 2022). Note that sources much
larger than 2 arcsec in size, that is, large-scale radio lobes, are rarely gravitationally
lensed (Haarsma et al. 2005). Therefore, we initially chose not to densely sample
source sizes larger than 2.5 arcsec (see Section 4.3.4, where we sample unlensed
sources that are extended between 0.5 and 6 arcsec). As can be seen from Fig. 4.1,
the majority of the simulated source components in our training dataset are < 0.5
arcsec in size. The simulated background sources could have up to three Gaussian
components, drawn from the distrbutions given in Fig. 4.1, in order to replicate a
typical core and double-lobe structure, or a one-sided core-jet structure. In each case,
the first component is compact and is injected at a random position from a uniform
circular distribution around the lens centre; the additional components are then added
co-linearly to simulate jetted radio sources. Also shown in Fig. 4.1 is the integrated
flux density distributions of the background source and lensed source populations.
Here, the magnification effect of gravitational lensing can be clearly seen.

The resulting mock lensed images of the simulated sources were then generated using
a singular isothermal ellipsoid (SIE) mass model, with an external shear contribution.
Such a model has been shown to be a good approximation for the mass distributions
of massive elliptical galaxies (e.g. Koopmans et al. 2006). The parameters used
to describe this mass model are the lens position (always at the centre of the grid),
the axis ratio (b/a) and position angle of the ellipsoid, the shear strength (yex) and
position angle, and the Einstein radius (6g), which is used as a proxy for the lensing
mass. For our initial tests (see Section 4.3), the mass models were generated using
a combination of these parameters drawn from the distributions of real gravitational
lens mass models (Bolton et al. 2008), except for the Einstein radius where the image-
separation distribution for all known lensed quasars was used (the Einstein radius is
approximately half of the maximum image separation). The resulting distributions for
these lens model parameters are shown in Fig. 4.2. However, for our final tests (see
Section 4.4), we use a uniform distribution for the Einstein radius and the axis-ratio to
obtain an unbiased assessment of the network’s ability to identify gravitational lenses.
Throughout, we only search for lens systems with Einstein radii > 0.15 arcsec, to
exclude part of the model space that the ILT is likely not sensitive to, given the
resolution of the data. For simplicity, we fixed the lens redshift to be z; = 0.5 and
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the source redshift to be z; = 1.0. This choice will have no impact in our simulations
since it is the angular-scale, as set by the varying Einstein radius that matters.

In the next step, we generated realistic interferometric visibility datasets, which was
done by using casA. First, we used an actual observation with the ILT of the bright
radio galaxy 3C 330 (Lafontaine et al. in prep.), to provide a skeleton MeasurementSet
with the correct number of stations, uv-coverage and visibility averaging time and
bandwidth. This simulation consisted of the phased-core station, fourteen remote
stations, and thirteen international stations of LOFAR. The total time on-source was
set to 8 h, which is typical for an observation that is taken as part of the LOFAR
Two Metre Sky Survey (LoTSS; Shimwell et al. 2019). Each lensed and non-lensed
model surface brightness distribution was sampled in the visibility plane via a Fourier
transform, and the resulting visibilities were then corrupted by adding Gaussian noise
such that the final images had an rms noise of 90 uJy beam™' (Briggs weighting;
Robust = 0.5; uv-range > 80kA); this is the typical rms noise for an ILT observation
(Morabito et al. 2021). The resulting beam size was 379 X293 mas at a position angle
of —16.9 deg East of North. The simulated visibility datasets were then imaged and
deconvolved using the TCLEAN task within CASA. The final images have 64 x 64 pixels,
where each pixel is 0.12 arcsec in size.

Fig. 4.3 shows a subset of the simulated gravitational lens systems and non-lensed
radio sources as if they were observed with the ILT as part of LoI'SS. We note
that although all of the presented samples have arcs or rings, our training dataset also
includes other types of gravitational lens systems, such as those producing two images
with compact lensed emission. We have also included a wide range of signal-to-noise
ratios to evaluate the performance of our lens detection algorithm when the source
surface brightness is close to the rms noise level of the data.

4.2.2 Network structure

In this section, we present our CNN based approach to detect and rank strong gravi-
tational lens systems from ILT-quality imaging data at 144 MHz. CNNs use several
layers to process the input imaging data of a topological structure, and they have
become the prominent approach for object detection and classification with machine
learning. Each layer has a unique functionality, and different arrangements of the
layers can make a variety of convolutional components. Therefore, the performance
of a CNN is dependent on the implemented components, and each component may
perform differently for a specific application. We have implemented four main com-
ponents that are being employed in three separate network structures, which we call
structure 1, 2 and 3. The three structures are then trained with the same training
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Figure 4.3 — A selection of strong gravitational lens systems (upper row) and non-lensed radio sources (lower panel), as if observed
with the ILT as part of LoTSS. Each image contains 64 X 64 pixels and is equivalent to a sky-area of 7.68 X 7.68 arcsec®. The

synthesized beam size is 379 x 293 mas at a position angle of —16.9 deg. east of north, and the rms noise is 90 uJy beam™" (robust
weighting ).
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Figure 4.4 — A block diagram showing the main components that have been used to

construct the three CNNs tested here to detect and rank gravitational lens candidates
in ILT imaging data.
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dataset and their performance is evaluated using the same test and validation datasets.
In the following, we first provide our motivation for using each of the four main
components, before outlining the arrangement of these components to build the three
network structures.

The training of the networks is guided by the gradient based optimization of a suitable
loss function. Here, the gradient refers to the change of the loss function with respect
to the weights in the network. For networks with many convolutional layers, the
magnitude of the gradient in earlier layers can become small due to the multiplications
imposed by the chain rule. As a result, updates are diminutive and the progress of
the training can be slow. This "vanishing gradient problem" can occur faster when
the number of layers in the network is increased, and it motivated the idea of using
"residual blocks" to limit its effect (He et al. 2015). Part A of Fig. 4.4 shows the
concept of residual blocks.

A convolutional block is presented in part B of Fig. 4.4. It has f convolutional filters,
each with a filter size of (1 X 1 X d), where d is the depth of the input image. As
we currently use only single images produced from interferometric datasets, there
is only one dimension containing information on the source surface brightness, and
therefore, d is equal to 1. In the future, multiple images that take into account the
source surface brightness distribution as a function of frequency will be implemented;
in this case d > 1. A convolutional block with f filters is considered to be equivalent
to fully connecting the input object of 1 X 1 X d to f output nodes (Lee & Kwon
2017). Residual learning is implemented in the convolutional blocks to improve the
training efficiency when extracting source components in feature space. Besides the
convolutional block, we have also adapted the concept of a multi-scale convolutional
filter bank (part C in Fig. 4.4) from the same study (Lee & Kwon 2017). It is used to
simultaneously scan through local regions of the input image and then exploit various
local spatial structures. It then concatenates the extracted feature maps to be used
together. A similar concept is employed in an inception-based block, which was first
introduced in GoogleNet by Szegedy et al. (2016), and provides a deep, but also a
wide structure that allows several independent paths in the model to be optimized.
The block in part D of Fig. 4.4 is inspired from the inception block and provides three
paths from the input. The first path starts with a filter of size (1 x 1), while the second
path applies another convolution with a filter of size (3 X 3), after convolving with the
filter of size (1 x 1). The last path contains both (1 x 1) and (3 x 3) sized filters that are
followed by a (5 x 5) sized filter bank. This technique has been implemented due to
the varying size and structure of the gravitational lens systems that we are interested
in detecting. Due to the dependence of the morphology of the lensed images to the
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different input lens and source parameters, it is important to build a flexible model
that can handle different configurations of the lensed images.

Considering the main components shown in Fig. 4.4 as the building blocks, we now
present the three different network structures that are trained to separate and rank
images of gravitational lenses from those of non-lensed samples. Fig. 4.5 shows the
first network, structure 1, which contains a multi-scale filter block followed by an
inception block. A dropout layer (Gal & Ghahramani 2015) followed by two fully
connected layers is placed at the end. The dropout layer randomly removes units with
a probability of p4 at each step during training, without updating the weights of those
units. This helps to prevent overfitting by reducing the effective network complexity.
The second network, structure 2, is displayed in Fig. 4.6. It contains a convolutional
layer with a filter size of (5 X 5), followed by a multi-scale filter bank and a set of
three convolutionalized blocks. At the end, there are two fully connected layers with
a dropout function. Finally, in Fig. 4.7 we present the third implemented network,
structure 3, which uses two sets of four convolutional layers, each with a filter size
of (3 X 3). The two sets of convolutional layers are connected via a multi-scale filter
bank. Similar to structure 2, this network contains three convolutionalized blocks,
followed by two fully dense layers and a dropout layer.

4.2.3 Preprocessing

Preprocessing of the imaging data is important for optimizing the performance of the
learning algorithms. Here, we keep the range of pixel values for both the lensed and
non-lensed samples in the same range using a MinMax normalization, such that

X —min(xy)

(4.1)

Xnormalized = max(xz) — min(xy) >
and where all pixel values in a given image are mapped to the range (0, 1). Here, x is
the value of a given pixel and x4 represents all the pixels in the image. Note that, due
to surface brightness correlations introduced by the lens equation, it is the relative
surface brightness of the lensed images (and non-lensed source emission) within each
simulated sample that matters. Therefore, losing the absolute amplitude scaling of
the data with this form of normalization will have no affect on our ability to identify
lens candidates.

4.2.4 Loss function

Loss functions are designed to measure the performance of a network in terms of
the dissimilarity between the estimated and true class labels. This difference is
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Inception block

Drop out
Figure 4.5 — Structure 1: This network structure consists of a multi-scale filter bank and inception blocks that are placed next
to each other. The output of the inception block is then sent to the dropout layer, which is connected to two dense layers of fully
connected networks. There are in total 6 480753 trainable parameters in this architecture.
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convolutionalized blocks
multi-scale filter bank

Flatten
Drop out

Figure 4.7 — Structure 3: In addition to the convolutionalized blocks and multi-scale filter bank used for structures 1 and 2, this
structure also consists of two sets of 4 sequential convolutional layers, each with a filter size of (3 X 3). With 7273 813 trainable
parameters, this structure has the largest number of parameters.
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then optimized using the gradient based Adam optimization algorithm (Kingma &
Ba 2014). Since we perform a binary classification between lensed and non-lensed
objects, we have chosen the Binary Cross Entropy (BCE) form of loss function for
our tests. It is given as,

1 N

BCE = - > yilog pi + (1 - y)log(l = py). 4.2)
i=1

For the BCE loss function, we consider a given class label y; in a dataset of N training

samples in each batch i, where p; is the estimated probability of the input image being

alens and 1 — p; is the probability of it not being a lens.

4.2.5 Detection probability uncertainty

A key goal of our lens identification algorithm is to also give some confidence on
the level of detection. This is important because even though we may expect to
identify many candidates with the ILT (and the ngVLA and SKA in the future),
confirming the gravitational lensing hypothesis will also require additional telescope
time. Therefore, it is important to have a ranked list of candidates for prioritising
any follow-up observations, with some estimate of the uncertainty on the lensing
probability. This is why we have also implemented a dropout component (Gal &
Ghahramani 2015) in our three network structures (see Figs. 4.5 to 4.7). This method
imitates Bayesian models within the deep learning algorithm without changing the
network structure and the basic method of optimization.

Traditionally, dropout has been applied in deep learning algorithms to prevent over-
fitting and to regularize the model (e.g. Srivastava et al. 2014). During the training
phase, dropout is used by randomly removing units and their corresponding connec-
tions from the network with some probability p,. By applying dropout, a new set of
neurons is eliminated at each iteration, resulting in a virtual change to the network’s
structure. This provides a way of approximately combining many different neural
networks together with shared weights. The ratio of eliminated units at each iteration
is defined by p,4. For a wide range of networks and applications, pg = 0.5 tends to
generate close to optimal results (Srivastava et al. 2014).

We have also implemented a Monte Carlo dropout approach, which can be described
as the approximate integration of dropout over the weights of the models. It is based
on running the network for some number of iterations on a test dataset and building
a distribution of the predicted probabilities. The mean and standard deviation of
this distribution contain information about the most reliable prediction, as well as
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the model uncertainty. Dropout has become a popular method to measure model
uncertainties in gravitational lensing applications of deep learning (Hezaveh, Perreault
Levasseur & Marshall 2017; Perreault Levasseur, Hezaveh & Wechsler 2017; Bom
et al. 2019; Maresca, Dye & Li 2021).

4.2.6 Evaluation criteria

Defining proper classification criteria is needed to interpret and compare the results of
the three different network structures tested here. Since the lens detection problem can
be defined as a binary classification (i.e. lensed or non-lensed), we use the reference
confusion matrix presented in Table 3.1 to evaluate our results. Here, a true positive
(TP) is defined as a genuine gravitational lens system that has been successfully
classified as such, while a true negative (TN) is defined as when a non-lensed source
has been correctly identified as not being a gravitational lens. Conversely, a false
positive (FP) occurs when a non-lensed source is categorised as a gravitational lens,
and a false negative (FN) corresponds to those gravitational lensing events that are
missed by the algorithm, and are classified as non-lensed sources. An ideal network
would detect all gravitational lens systems and reject all non-lensed samples. However,
this can hardly ever be achieved in a practical real world problem due to noise in the
data.

We evaluate the performance of the three network structures by using the following
criteria: accuracy, precision, recall and fall out. Accuracy is the most trivial metric
to determine as it is the total number of correct predictions for both the lensed and
non-lensed classes divided by the size of the test dataset. Precision measures the
ratio between the correctly identified gravitational lenses and all samples identified
as gravitational lenses. Recall on the other hand measures the ratio of the detected
gravitational lenses to the number of lensing events in the test dataset. This is also
known as the completeness or TP rate. Fall-out, or the FP rate, measures the ratio of
misidentified gravitational lenses to the total number of non-lensed events in the test
dataset. They are each calculated using,

TP + TN

Accuracy = , (4.3)
TP + FN + TN + FP
TP
Precision = ———, 4.4)
TP + FP
TP
Recall = 4.5)

TP + FN’
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True Data
Lens Not Lens
Test Results | Lens TP FP
Not Lens FN TN
Total Lens Sources Normal Sources

Table 4.1 — The sample confusion matrix, showing how the TP, FP, FN and TN are
defined.

FP
FP+ TN’
Typically, the success of a gravitational lens search algorithm is not judged purely on

Fall out = (4.6)

recall, as given the large number of gravitational lenses that are expected to be found,
completeness is not important for most science goals. Instead, the quality tends to
be judged on a low fall-out, as we ideally want to have a high level of genuine lens
candidates in our ranked list.

Another evaluation metric is the Receiver Operating Characteristic (ROC) curve. It
is used when the performance of a binary classifier can be measured as a function
of some cut-off threshold. A ROC curve shows the TP rate (recall) as a function of
the FP rate (fall out). In our lens detection algorithm, we have defined a threshold
based on the output of the network, which is used to separate lensed and non-lensed
samples. The choice of this threshold has a significant impact on all the evaluation
metrics listed above, which we discuss in the next section. The ROC curve provides a
qualitative measure that is independent of a specific threshold, and is therefore, also
a useful metric to consider.

4.3 Network tests

In this section, we present the results of applying the three network structures to a set
of test data, which were created in a similar way to the training dataset described in
Section 4.2.1. First, we present the criteria used to determine whether a sample has
been identified as a lensed or non-lensed event. Next, we investigate three scenarios
that have been designed to evaluate the performance of each network structure. The
first scenario uses a test dataset with a realistic distribution of lens model parameters,
which allows us to test the network performance with a dataset that is similar to the
training dataset. The second scenario contains test samples generated with a uniform
population of lens model parameters. This allows us to test the performance of each
structure to exotic lens configurations that were not necessarily well-represented in
the training data. For these two tests, we trained the networks using 3000 model
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lensed images, to represent the class of lensed objects, and 3000 corresponding
source models to represent the class of non-lensed objects (generated as described in
Section 4.2.1). In total, a maximum of 450 training epochs were used. Our third test is
designed to investigate the ability of the three networks to correctly label non-lensed
double-lobed radio sources. For this test, we augmented the training data set with
2000 simulated double-lobed radio sources. The test datasets for each experiment are
described below.

4.3.1 Determining the lens probability

A lensing probability in the range (0, 1) is predicted by the output of the three network
structures, where the closer the output is to 1, the higher the probability of the given
sample being a gravitational lens. Since we have used dropout in the training, we
are able to calculate the model confidence for a specific prediction. When dropout
is also active during the testing mode, the network randomly eliminates some of the
connections and makes the best predictions based on the available data. Not having
access to the entire trained set of weights and neurons leads to varying outputs for a
given sample during testing. To calculate the most reliable output, we averaged the
network prediction over 250 realizations for each single test sample to calculate the
final probability. This approach also provides additional information by calculating
the standard deviation of the probability.

Considering the output of the network as a continuous number between 0 and 1, we
need to define a threshold according to which test results are classified into lensed
and non-lensed samples. The value of the threshold affects all evaluation criteria such
as completeness and number of false detections. In general, higher threshold values
yield a lower detection of true lens samples, as the criteria are stricter, but this can also
lower the number of false detections. We determine this threshold from inspecting
the ROC plot for each network structure.

4.3.2 Test on a realistic lensing population

In the first testing mode, we have generated a realistic dataset with the same lens model
parameters as our training data, shown in Fig. 4.2. Here, we test a dataset containing
5000 samples, where 2500 samples are non-lensed events and 2500 samples are lensed
events that are created from a realistic distribution of lens models. The results for this
test are shown in the ROC plots presented in Fig. 4.8. Overall, network structure 1
outperforms the two other structures in both the TP- and FP-rates at all probability
thresholds. It has a TP rate of 95.3 per cent for a threshold of 0.5, while the FP rate
(0.8 per cent) is significantly lower compared to structures 2 and 3. Although the TP
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Figure 4.8 — The TP rate as a function of FP rate for the three network structures,
when applied to a test dataset created using a realistic distribution of lens model
parameters. The stars correspond to thresholds of 0.1, 0.5, 0.75, 0.9 and 0.99, from
right to left.

rates of structures 2 and 3 are high (> 90 per cent) for a threshold of 0.5, they also
have a higher FP rate (1.8 and 2.8 per cent, respectively).

Table 4.2 contains quantitative information on the defined evaluation metrics. These
metrics are calculated by considering a threshold value of 0.99, which results in
lowering the TP rates by between 6.8 and 9.4 per cent, while lowering the FP rates by
around an order of magnitude, when compared to the results for a threshold of 0.5.
We find that network structure 1 has the best performance, with TP and FP rates of 87
and 0.04 per cent, respectively, when a realistic distribution is used for the lens model
parameters and a threshold of 0.99 is applied.

4.3.3 Test on a lens population of uniformly selected model parameters

We now provide the test results when the trained models are applied to a test dataset
using a uniform distribution of lens model parameters. Similar to the previous case,
the test dataset contains 5000 samples, of which 2500 samples are lensed events and
2500 are non-lensed events. Note that the set of non-lensed radio sources is the same
as used above, therefore, the FP rates are unchanged. The generated test dataset has a
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Structure 1~ Structure 2  Structure 3

Accuracy 0.957 0.934 0.943
Precision  0.9995 0.9971 0.9943
Recall 0.870 0.842 0.845

Fall out  0.0004 0.0024 0.0048
Table 4.2 — The evaluation criteria of the three network structures when a threshold
0of 0.99 is used, and a test dataset created using a realistic distribution of lens model
parameters is used.
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Figure 4.9 — The TP rate as a function of FP rate for the three network structures,
when applied to a test dataset created using a uniform distribution of lens model
parameters. The stars correspond to thresholds of 0.1, 0.5, 0.75, 0.9 and 0.99, from
right to left.

Structure 1 ~ Structure 2 Structure 3

Accuracy 0.785 0.975 0.856
Precision  0.9990 0.9974 0.9933
Recall 0.571 0.952 0.718

Fall out 0.0004 0.0024 0.0048
Table 4.3 — The evaluation criteria of the three network structures when a threshold
0f 0.99 is used, and a test dataset created using a uniform distribution of lens model
parameters is used.
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uniform distribution for the Einstein radius (between 0.15 and 2.8 arcsec) and the axis
ratio (between 0.05 and 1). This was done to ensure that each bin in the parameter
space was equally sampled, which makes the sensitivity of the three networks, as a
function of the lens model used, clearer to judge. Note that we draw the shear strength
from the realistic distribution, as extremely high values of the shear lead to unusual
and highly exotic lensed image configurations (particularly when the axis ratio of the
lens is low). As with the training dataset, we also set the position angle of the ellipsoid
mass distribution and the shear to be uniformly sampled between +90 deg.

The ROC plots of the three network structures, with the probability thresholds labelled,
are shown in Fig. 4.9. Comparing the results with those shown in Fig. 4.8, we find a
significant drop in the TP rate at all thresholds for network structures 1 and 3, while
network structure 2 performs better. The reason for this is likely due in part to each
network being able to label lensed features in a different way. For example, structure
2 is better at identifying the type of lens systems generated by a uniform distribution,
that is, those with smaller Einstein radii or axis ratios (see below).

In Table 4.3 we present the evaluation criteria when the trained models are tested on a
dataset with a uniform distribution for the lens model parameters, and a threshold of
0.99 is applied. Compared to the previous results, we see that the TP rate of network
structure 1 has decreased by 29.9 per cent, and for network structure 2 has decreased
by 12.7 per cent. These results highlight that network structures 1 and 3 require the
training data set to be representative of the analysis data. For network structure 2, the
TP rate has increased by 12 per cent, when compared to the previous case, and now
has a value of 95.2 per cent.

4.3.4 Non-lensed double-lobed radio sources

As discussed above, one of the main goals of a lens detection algorithm is to limit the
number of FP events. The results for when both a uniform and a realistic distribution
for the lens model parameters (Einstein radius and axis ratio) is used yields a low
FP rate of 0.04 per cent for network structure 1 (equivalent to 1 FP event in our test
dataset of 2500 non-lensed sources). This is due to the lensed emission having a very
distinctive arc-like surface brightness distribution or there being four compact lensed
images detected with the expected relative positions and peak surface brightness. The
lensing nature of such events tends to be rather unambiguous.

However, those cases that produce only two lensed images have less information for
the networks to label them correctly as lensed events. Also, two distinct components
within a few arcsec is a common morphology for double-lobed radio sources, which,



4.3: Network tests 123

1.0 —— Structure 1
0.8 —— Structure 2
—— Structure 3
% 0.6 §
i 0.4 - N
0.2 -

00 02 04 06 08 1.0

threshold
Figure 4.11 — The FP rate as a function of threshold for a test dataset that only
includes non-lensed double-lobed radio sources.

depending on the jet-axis with respect to the observer, can have a relative peak
brightness that could mimic a lensing event. In fact, during the training of the
networks, the maximum separation between the multiple components in the source-
plane was just 0.2 arcsec so that the background sources always had an extent that was
less than the Einstein radius of the lens (we also used the simulated radio sources for
generating the non-lensed visibility datasets). Therefore, double-lobed radio sources
with larger separations were not presented to the networks during training. This may
result in a bias towards higher FP rates for this class of radio source when the networks
are applied to real ILT imaging data.

To test this, we have generated a dataset of double-lobed radio sources in which there
are two co-linear components separated within a radius of 3 arcsec from the image
centre. While in the original training and testing data, the first component was always
compact (to represent the radio core), here, we have randomized the separation, size
and ellipticity of each of the two components in this dataset. In total, we generated
2000 non-lensed events; a representative sample of these is shown in Fig. 4.10. We
then apply the three network structures to determine whether these double-lobed radio
sources are labelled as lensed or non-lensed events.

In Fig. 4.11, we show the FP rate of the three network structures, as a function of
probability threshold. As expected, the performance of the networks to double-lobed
radio sources is poor. We find that structures 1 and 3 both have a FP rate of 39.5
per cent, when the threshold is 0.99, while structure 2 has a FP rate of 6.5 per cent
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at the same threshold. This demonstrates that structure 2 identifies less double-lobed
radio sources as lensing events, even when it is not specifically trained to recognise
such samples. Also given in Fig. 4.10 is the predicted lensing probability and 20
confidence interval when structure 2 is used. We see that for this representative sample,
the probability is either 0, or consistent with O at the 20--level for 87.5 per cent of the
sample (14/16 objects). For the remaining two objects (g, j), the probability is 1.0.
However, for these two cases, it is clear that the surface brightness of the double-lobed
radio sources is consistent with gravitational lensing; the component with the highest
flux density also has the largest angular size. Therefore, it is not surprising that the
network mis-labels these two objects as likely lensed events.

In order to measure the performance of the three network structures when only lensed
events with two images are included in the test dataset, we have generated a sample of
2000 gravitational lens systems (with realistic lens parameters) producing two distinct
components that are separated by > 0.3 arcsec. We find that all three structures have
a slightly poorer TP rate than before, with values of 83, 80 and 79 per cent for
structures 1, 2 and 3, respectively. In Fig. 4.12, we present a representative sample of
lensed events that produce two images, with the predicted lensing probability and 20
confidence interval, when structure 2 is used. We see that 75 per cent of the objects
have a lensing probability of 1 (12/16 objects); these are all characterised with a clear
surface brightness that is consistent with gravitational lensing. For 19 per cent of the
objects, the probability is consistent with > 0.99 at the 20--level (3/16 objects), but the
uncertainties are quite large, with o between 0.06 and 0.40. Only one object (o) has a
detection probability < 0.99 at the 20--level. For those cases with large uncertainties
or low probabilities, the lensed images tend to have a very similar flux density or the
counter-image is compact; this suggests that for these systems, the surface brightness
information is insufficient to precisely label these samples as lensed events.

Our tests, using a dataset comprising double-lobed radio sources and gravitational
lens systems producing two lensed images, demonstrate that structure 2 has the lowest
FP rate (6.5 per cent for a threshold of 0.99) whilst having a competitive TP rate (80
per cent) to the other network structures. However, structure 2 still rates a significant
number of the double-lobed radio sources as lensed events. Therefore, we re-ran
our training including 2000 double-lobed radio sources, before re-testing the three
networks on a dataset of 2000 previously un-seen double-lobed radio sources. We
find that structures 1 and 2 returned O and 1 FP events (a FP rate of < 0.05 and
0.05 per cent, respectively) and that structure 3 identified 2 FP events (a FP rate of
0.1 per cent). This highlights the importance of a comprehensive training sample in
order to generate a reliable lens detection algorithm.
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Figure 4.13 — The standard deviation of the lensing probability for each test sample
in the realistic dataset. Each sample in the test dataset has been evaluated 250 times
using the dropout method.

4.3.5 Prediction uncertainties

As discussed in Section 4.2.5, we have used a Monte Carlo dropout technique to
measure the model confidence and determine if the predicted probability of lensing is
reliable or not. Human experts can then visually inspect those low reliability samples
and decide if they warrant further analysis or follow-up observations. In Fig. 4.13, we
show the standard deviation of the predicted probability for each sample in the test
dataset made using realistic lens model parameters, as a function of network structure.
Note that the test dataset for a uniform set of lens model parameters has a similar
distribution, but there are more samples with a higher standard deviation due to the
poorer performance of structures 1 and 3 (see Fig. 4.9).

Overall, we see that for the vast majority of cases (> 84 per cent), the standard
deviation in the probability is 0. This means that the same probability is returned for
each iteration during the dropout process, and therefore, the network has a confident
estimate of the predicted probability. We have considered a standard deviation > 0.3
as non-confident cases, and have taken a closer look at those samples to understand
why the network is uncertain.

Among all the lensed samples in the test data set for a realistic lens population, there
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are 44 samples with a high uncertainty in which 41 cases are lenses that produce two
images (see upper row in Fig. 4.14 for a representative sample). The reason for these
samples having such a high uncertainty is likely due to the network being confused be-
tween genuine two image systems and (non-lensed) double-lobed radio sources where
there is not enough information available for the network to confidently determine
the predicted probability. Therefore, excluding samples with a high uncertainty will
lower the TP rate, but this will also lower the FP rate for those cases of double-lobe
radio sources were the network is uncertain.

In the case of the test dataset that is drawn from a population of lenses with a uniform
set of mass model parameters (see lower row in Fig. 4.14 for a representative sample),
the uncertainties are at a slightly higher level. However, we also see sets of samples
with large uncertainties (I, n, o) that have rather exotic lensing configurations, where
an extended source is partially quadruply imaged, or the lens ellipticity is extremely
high, resulting in an unusual image configuration. This is likely due to the limited
size of the training dataset (see below for discussion). For all of the cases shown in
Fig. 4.14, the predicted probability of lensing is less than 0.99, and so these samples
would strictly not have been selected as lens candidates even though their uncertainties
are high enough for the probability to be > 0.99 (at the 20 level).

4.4 Lens detection with the ILT

In this section, we use the results obtained above to design and carry out a final exper-
iment that quantifies the reliability of our network structure for finding gravitational
lenses with the ILT. We then determine the parameter space that a gravitational lens
survey with the ILT would be sensitive to, in terms of the depth and angular resolution
of the expected imaging data.

4.4.1 Results for the final network test

We found from our network tests that the training and test datasets should be drawn
from the same underlying lensing population, and that we must have a representative
sample of non-lensed events, including both compact and double-lobed radio sources.
Therefore, for our final test, we use a training dataset that has a total of 30000 samples,
where 15000 are lensed events, created using a uniform distribution for the lens model
parameters, and 15000 are non-lensed events, which are further divided into 11000
compact radio sources and 4000 double-lobed radio sources. This training model is
then made in the same way as described in Section 4.2. Again, a maximum of 450
training iterations were used.
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For testing, we have used a sample comprising 17385 lensed events that were created
using a uniform distribution of lens model parameters; this was done so that we can test
our trained model against a wide variety of lensing configurations, including those
not necessarily seen by the network. This will likely produce more conservative,
but less biased results. The sample of non-lensed events includes 15385 compact
radio sources and 2000 double-lobed radio sources, which ensures that the ratio of
compact-to-extended radio sources is similar to that observed with the ILT (Sweijen
et al. 2022). The total number of test samples was chosen so that around 15 to 25 FP
events would be returned by each of the three network structures.

The results from this final test are shown in the ROC plots presented in Fig. 4.15, with
the quantifiable information for a probability threshold of > 0.99 given in Table 4.4. We
see from Fig. 4.15 that the performance of the three network structures in identifying
lens systems is still very good, even when the network training includes double-lobed
radio sources, which can introduce an additional level of confusion between lensed
and non-lensed events. We see that network structures 1, 2 and 3 have TP rates of
89.3,90.3 and 87.1 per cent, respectively. This essentially means that one in ten lenses
would be missed if the network was used for lens detection as part of an ILT survey
(see below for a discussion of the completeness, given the resolution and sensitivity of
the ILT with respect to the flux density and angular-separation of the lensed images).
Also, we see that the FP rates are 0.14, 0.09 and 1.8 per cent for structures 1, 2 and
3, respectively, which are relatively low. However, the typical probability of galaxy-
scale gravitational lensing is of order 1073, that is, one lensing event in about one
thousand objects observed, which is almost identical to the FP rates of structures 1
and 2. This means that there would be between a 47 and 58 per cent chance that any
lens identified by the network would be a FP event when applied to real data.

To overcome this potential issue, we have combined the results of network structures
1 and 2, which is also shown in Fig. 4.15 and reported in Table 4.4. We find that
this combined network structure lowers the FP rate to 0.006 per cent (note that this is
equivalent to 1 FP event in our test sample), which changes the probability to 5.7 per
cent that a lens identified by the network is a FP event. This improvement in the FP
rate by around an order of magnitude comes at the minimal cost of lowering the TP
rate by between 1.2 to 2.2 per cent.

4.4.2 Parameter-space of a lens survey with the ILT

We now use the results from our final experiment to investigate the parameter-space,
in terms of types of lenses and the brightness of the lensed images, that the network is
sensitive to, given an input dataset from the ILT. For example, we expect the signal-
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Figure 4.15 — The TP rate as a function of FP rate for the three network structures,
when applied to the final dataset created using a uniform distribution of lens model
parameters. Also shown are the results when network structures 1 and 2 are combined.
The stars correspond to thresholds of 0.1, 0.5, 0.75, 0.9 and 0.99, from right to left.

Structure 1~ Structure 2 Structure 3 Avg. Str. 142

Accuracy 0.946 0.951 0.926 0.940
Precision  0.9985 0.9990 0.9792 0.9999
Recall 0.893 0.903 0.871 0.880

Fall out 0.00138 0.00092 0.01846 0.00006
Table 4.4 — The evaluation criteria of the three network structures when a threshold
of 0.99 is used, for the final dataset created using a uniform distribution of lens
model parameters. We also include the results when network structures 1 and 2 are
combined.
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to-noise ratio of the images to affect the reliability, as the network needs to detect
multiple images to confidently predict that the object is indeed gravitationally lensed.
Also, the angular resolution of the data will be an important parameter, as the lensed
images need to be separable in the imaging data; not resolving all of the multiple
lensed images can also lead to an inaccurate prediction of the lensing probability,
particularly for exotic or high-magnification lensing events.

Understanding the detection rate as a function of signal-to-noise ratio is challenging to
quantify, as the resulting lensed images from the same background source model can
have a large variation in surface brightness distributions, depending on the lens model.
For simplicity, we have analysed the detectability of a lensed event by considering the
TP rate as a function of the total flux density in the model lensed images, which we
show in Fig. 4.16 (note that to separate the effect of the angular resolution, we only
include the data for those systems with an Einstein radius > 0.5 arcsec; see below).
This is a reasonable assumption, as the source counts of radio sources are always
given as a function of flux density, as opposed to surface brightness.

We see that for a typical ILT observation, the TP rate is of order 90 per cent for an
integrated flux density of > 2 mJy, below which, the detectability of the lensed events
steadily drops to just below 50 per cent at an integrated flux density of 1 mJy. We
find that those lensed events with the lowest detectable surface brightness are usually
in the form of a doubly- or a quadruply-imaged system with compact lensed images,
which provide the least amount of information for the network to use. When the
lensed events form Einstein rings and/or gravitational arcs, the integrated flux density
needs to be higher for a detection to be made, and so, it is easier for the network to
identify these cases at high integrated flux densities. Combined, these two effects
result in the detectability of the lensed events being lower toward lower flux densities,
but stops there being a very sharp cut-off. Also, we find that the cut-off is remarkably
close to systems that are detected at the 15 to 200 -level (point-source sensitivity),
which in the case of doubly-imaged systems is equivalent to a flux-ratio of between
2:1 and 3:1 for the two detected lensed images (assuming detectability of emission at
the S5o-level), which is fairly typical for this image configuration.

The TP rate as a function of the Einstein radius is shown in Fig. 4.17 (note that to
separate the effect of the sensitivity, we only include the data for those systems with an
integrated flux density > 2 mJy; see above). We see that the overall TP rate is rather
flat at around 95 per cent, down to an Einstein radius of about 0.5 arcsec, after which
there is a sudden drop in the TP rate to about 20 per cent at Einstein radii between
0.3 and 0.5 arcsec. To some extent, this result makes sense, as an Einstein radius of
0.5 arcsec corresponds to an image separation of around 1 arcsec, which would be
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Figure 4.16 — The TP rate as a function of the integrated flux density of the lensed
radio sources from the combined results from applying network structures 1 and 2, for
an ILT-like observation (rms noise 90 pJy beam™"). Also shown is the point source
signal-to-noise ratio for reference. Note that this is for objects with an Einstein radius
> 0.5 arcsec.

well resolved with the ILT (about 3 beam widths). Overall, this is an encouraging
result, as it demonstrates that ILT-like imaging data is extremely sensitive to detecting
gravitational lenses with Einstein radii > 0.5 arcsec, which would be sufficient to
detect the majority of the gravitational lenses that are currently known (see Fig. 4.2).

In summary, from our simulations we find that the ILT, when included as part of
LoTSS, would be most sensitive to lensed events where the integrated flux density of
the lensed images is > 2 mJy and the Einstein radius of the lens is > 0.5 arcsec. If
we restrict our testing dataset to include only those lensed and non-lensed samples
with these properties, we find that the overall TP rate is 95.3 per cent and the FP rate
is 0.008 per cent, when network structures 1 and 2 are combined (the individual FP
rates of structures 1 and 2 are also about an order of magnitude lower than reported
in Table 4.4). Therefore, a gravitational lens survey with the ILT, which applies these
criteria and uses our algorithm for lens detection, is expected to have a completeness
of 95.3 per cent and a purity of 92.2 per cent. These predictions are dependent on the
lensing probability of the LoTSS source population (currently assumed to be 1073),
which we will discuss in a future paper.
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Figure 4.17 — The TP rate as a function of Einstein radius from the combined results
Jfrom applying network structures 1 and 2, for an ILT-like observation (average beam
size of 336 mas). Also shown is the ratio between the image separation and the
average beam size for reference. Note that this is for objects with an integrated flux
density > 2 mJy.

4.5 Conclusions

In this chapter, we have presented a machine learning based approach that is designed
to identify galaxy-scale gravitational lenses from imaging data obtained with the
ILT, taken as part of the ongoing LoI'SS survey. To do this, we first simulated
realistic gravitational lensing data, based on our best understanding of the radio source
population at 150 MHz and the properties of galaxy-scale gravitational lenses. With
these data, we have tested multiple network structures to determine whether a single
or combined network produces the best results. We find that our ability to correctly
identify lensed features is highly dependent on the training dataset used, which given
the large parameter-space available for both the lens and source models (and their
combination), represents the most challenging aspect of our method. However, by
using a combined network strategy and limiting the parameter-space of the models to
include only those gravitational lenses with an Einstein radius > 0.5 arcsec and a total
flux density of > 2 mJy for the lensed images, we find that our lens detection strategy
can recover 95.3 per cent of the simulated lens systems, with a FP rate of just 0.008
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per cent (equivalent to a sample purity of 92.2 per cent for a lensing optical depth of
107%).

Given the angular resolution and sensitivity of the imaging data to be taken during
LoTSS, we conclude that the ILT has the requirements to be a gravitational lens
finding machine, and that deep learning techniques provide an efficient route to
discovering new gravitational lenses with interferometric imaging data. We find that
data, with a similar resolution and noise properties to the ILT, can be used to find
gravitational lenses with lensed image separations that are > 3 times the synthesized
beam width, when the lensed images are detected at the > 200 -level (point-source
sensitivity). This suggests that the SKA-MID, with baselines of up to 150 km and an
angular resolution of 0.3 arcsec should also be excellent at finding new gravitational
lens systems in the future. As a next step, we will carry out a similar analysis with
dedicated SKA-MID gravitational lensing simulations to confirm this, and to optimise
lens searches with this next generation instrument.

Our current set of simulations, although realistic, is likely the limiting factor in our
analysis, and will be further improved in the future. First, we will increase the range
of lens models probed to include elliptical power-law mass distributions, as opposed
to focusing on only isothermal cases. We have also included a somewhat simple
parameterisation of the background radio source structure, which was computationally
easy to implement, but was also driven by our lack of knowledge of the low frequency
radio source population. As LoI'SS progresses, and the level of information about
the structure of radio sources on 0.3 arcsec-scales improves, we will revisit our
simulations to refine our network structure with a better model for the radio source
population. This will also involve training on a larger number of lens and source model
combinations to better sample the available parameter-space. Our simulations have
also assumed perfectly calibrated data, and although small-scale calibration errors
will exist in the real imaging data, their impact on our ability to find gravitational
lenses is not clear, and will be addressed in a follow-up paper. Finally, we intend to
include the frequency information (radio spectral index), given the wide bandwidth
of the ILT data, to further separate lensed and non-lensed events.

Overall, our results are encouraging for finding new galaxy-scale gravitational lenses
with the ILT, and in the short term we will apply our best trained model to the first
tranche of data from LoT'SS that includes the ILT baselines (e.g. Morabito et al. 2021;
Sweijen et al. 2022) and has detected over 2500 radio sources at an angular resolution
of around 350 mas. Given the expected probability for galaxy-scale gravitational
lensing, there should be between 2 and 4 systems within such a dataset, which we
are now focusing on finding. As more LoT'SS observing fields are processed with the
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ILT data included, we expect the first new discoveries of gravitational lensing with
LOFAR to be made. These new systems will be used to test and further refine our
network structure so that we are in the best possible position to analyse the data for
the up to 15 million radio sources that will be observed during LoTSS.
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Conclusions and future prospects

In this thesis, a set of deep learning solutions to address several outstanding questions
in the field of high angular-resolution radio astronomy have been developed. The
purpose of this chapter is to provide an overview of the main scientific conclusions,
with a discussion of the future prospects and directions. In each section, a short
summary of the results from each chapter is given, before the general conclusions and
future work is discussed.

5.1 Source counts of VLBI-detected radio sources

The sensitivity of VLBI arrays are expected to improve dramatically with the con-
struction of the Square Kilometre Array (SKA-VLBI) and the next generation Very
Large Array (ngVLA). These instruments will lower the current sensitivity limits, and
given their wide fields-of-view, will provide a significant increase in the numbers of
radio sources detected on arcsec- to mas-scales. However, understanding their poten-
tial and planning for the opportunities that they bring requires some knowledge of the
number of detectable radio sources on VLBI-scales as a function of flux density. This
goal was the focus of Chapter 2, which aimed to provide an insight to the optimum
strategies for all-sky VLBI surveys, based on the density of radio sources in the sky
and their detectability with VLBI.

5.1.1 Chapter summary

Despite the wide range of science opportunities provided by high angular-resolution
imaging with VLBI, its application at cm-wavelengths is restricted to studying only
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~ 25000 radio sources with very high brightness temperatures (> 10° K) and over
a very small fraction of the observable sky. This is relatively small compared to the
5 million radio sources recently catalogued from all-sky surveys at arcsec-resolution.
The small effective field-of-view of a VLBI dataset is one of the parameters that
limits the detection of many radio sources per observation. Moreover, telescopes are
scattered over a wide area, forming a synthesised unfilled aperture with a lack of
information on various angular scales. With such configurations of antennas, only
sufficiently compact and bright radio sources with measurable correlated flux on the
available baselines of the array are detected.

We analysed the detection fraction and the number counts of radio sources on VLBI-
scales using the publicly available catalogue from the mJIVE-20 survey. This survey
was conducted with the VLBA at a frequency of 1.4 GHz, targeting 24 903 pre-
identified radio sources in FIRST. A total of 4 965 radio sources were detected by the
mJIVE-20 survey, resulting in an overall detection fraction of 19.9 + 2.9 per cent.
Our analysis showed that the FIRST peak surface brightness is correlated with the
VLBI detection fraction. Fifty per cent of the sources are detected with the VLBA,
when they have a peak surface brightness of at least 80 mJy beam™~! in FIRST. At the
detection threshold, this fraction drops to around 8 per cent. We deduced that this
significant drop in the number of detected radio sources was likely due to a change in
the radio source population, with an additional contribution from the limited surface
brightness sensitivity of the VLBA observations. We also considered the effect of
compactness at arcsec-scales on the VLBI detection fraction. Our results showed that
sources with a higher compactness in FIRST were more likely to have a detection
with VLBI.

Using the VLBI-detected radio sources found by the mJIVE-20 survey, we provided
an estimate for the number of expected radio sources that will be detected by the next
generation of wide-field VLBI surveys. Future surveys with the VLBA and the EVN
in the short term (< 10 yr) and with the SKA-VLBI and ngVLA in the longer term can
benefit from these calculations. A measurement of the mJIVE-20 survey sky area
was required to calculate the source counts. This was done by designing a Monte
Carlo integration stone throwing technique, which took into account the sensitivity and
pointing configuration used during the mJIVE-20 survey observations. We calculated
the total sky area of the mJIVE-20 survey to be 237.95 deg®. This calculation allowed
us to measure the effective area as a function of the target minimum peak surface
brightness. We also determined the completeness of the catalogue by simulating
13 500 realistic VLBI visibility data sets that were then passed through the mJIVE-20
imaging pipeline. Our analysis found that the mJIVE-20 catalogue is complete at the
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97 per cent level at the detection threshold (6.750°) and reaches full completeness at
a signal-to-noise ratio of 7.8.

Having determined the effective sky area and the completeness, we then calculated
the normalized Euclidean and differential source counts for VLBI-detected radio
sources. We found the slope of the differential number counts of VLBI-detected
radio sources with flux densities S14gg; > 1 mJy to be pyrgr = —1.74 £ 0.02,
which is shallower than in the case of its parent population observed by FIRST
(mrrsT = —1.77 £ 0.02). The calculated differential source counts slope is also
shallower when compared to a population of compact radio sources selected at higher
frequencies (nyr = —2.06 £ 0.02).

From our analysis, we found that all-sky (37 sr) surveys with the EVN and the VLBA
have the potential to detect (7.2 + 0.9) x 10° radio sources at mas-resolution, and
that the density of compact radio sources is sufficient (5.3 deg=?) for in-beam phase
referencing with multiple sources (3.9 per primary beam) in the case of a hypothetical
SKA-VLBI array. For the VLBA, such a survey is expected to require about 7000
h of observations to complete. However, given the sensitivity and field-of-view of a
hypothetical SKA-VLBI array, the same survey would be carried out in about 180 h.

5.1.2 General conclusions

The main goal of this chapter was to calculate the number of detectable radio sources
with VLBI, and this was achieved through determining the source counts in a reliable
way. From this analysis, it is clear that, for a flux-density limit of 1 mly, there are a
large number of radio sources that could be found, given the sensitivity of the VLBA.
To some extent, such a survey could also be carried out with the EVN. Howeyver,
given the slightly higher observing frequency (1.7 GHz) and larger telescopes (32 m),
the EVN is not as an effective instrument for an all-sky survey. We also defined a
simple model for an SKA-VLBI facility that has 20 stations located in Africa. Even
a simple arrangement that includes only one SKA-MID dish at each location would
revolutionize surveys with VLBI, giving both the sensitivity and field-of-view needed
to effectively survey the sky. The latter point is also important since the wide field-of-
view also makes in-beam calibration possible, which increases the efficiency of such
surveys with this design of telescope. Therefore, as a general conclusion, it can be
stated that SKA-VLBI has the potential to detect around 7.2 x 10’ radio sources, and
the sky density of the compact radio source population is sufficient for calibrating the
system.
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5.1.3 Future prospects

Our ability to survey the sky is dependent on the effective field-of-view of the indi-
vidual telescopes and the overall sensitivity of the interferometric array. Given the
sensitivity of the VLBA and the short integration times used during the mJIVE-20
survey, very few faint radio sources were detected. This made the source counts below
a flux density of about 1 mJy uncertain. However, this is an important part of the
parameter space, as it is where we expect a change in the radio source population from
AGN to star-forming galaxies to occur. This is also expected to produce a change
in the brightness of the radio emission from such sources, and so the number of
detectable radio sources on VLBI-scales would also likely drop. However, we found
that the normalized Euclidean source counts flattened below 1 mly, in a similar way to
those determined at a lower angular resolution. Also, for the sensitivity calculations
that were made for the SKA-VLBI, it was clear that investigating the radio source
population below 1 mJy should be possible. The number of radio sources that can
be found determines how sensitive the SKA-VLBI should be. Therefore, it would be
useful to extend the source counts derived in this thesis to at least 100 pJy. Unlike
above, an EVN that includes the large 70 to 100-m dishes in the array will have the
sensitivity to carryout such a survey over a smaller part of the sky. From this, it will
be possible to characterize the compact radio source population and better inform the
design and specifications of an SKA-VLBI facility.

5.2 Source detection and characterization

Making new scientific discoveries will always depend on the completeness and ro-
bustness of source detection and characterization algorithms. In the age of large
synoptic survey telescopes and interferometric arrays, which will operate across all
observable wavelengths and generate larger and more complex datasets, efficient and
automated source detection algorithms need to be developed. The research presented
in Chapter 3 provides a robust solution to point and extended source detection and
characterization for sparse interferometric arrays, which is named DECORAS.

5.2.1 Chapter summary

DECORAS was designed to provide a unified pipeline for source detection and
characterization for both unresolved and extended sources using machine learning
techniques. The pipeline has an autoencoder structure with only nine convolutional
layers. The autoencoder was trained to remove the effect of the Point Spread Function
(PSF), noise structures and other sources of contamination from the given dirty
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image. The focus of DECORAS is on images that are produced from a Fourier
transform of the visibility data and have not gone through a prior deconvolution
process (commonly known as dirty images). The purpose of this experiment was to
determine the reliability of deep learning approaches on the deconvolution process.

Considering the goal of a source detection algorithm is to detect as many real sources
as possible, while limiting the number of fake detections, we incorporated two au-
toencoder networks within DECORAS. One was trained using Binary Cross Entropy
(BCE) and the other using Mean Squared Logarithmic Error (MSLE). We used the
predicted output of both networks to ensure the existence of a source in a given field,
and restrict the number of false detections. The generated output model images were
then passed through a post processing source detection function that localized the
position of the source. It also made the decision on whether there was a source in the
input image. Our results showed that the position of the detected sources could be
recovered to within 0.61 £ 0.69 mas of the actual position, for a VLBI data set with a
beam size of around 17 mas.

The pipeline characterized the detected source by passing it to another autoenceoder
network. This second autoencoder was designed to recover the properties of the
injected source, like the effective radius and peak surface brightness. The peak
surface brightness of the source was measured using the extracted latent variables
from the encoder part of the autoencoder. The latent variables are the compressed set
of features that the encoder extracted and passed to the decoder part of the network to
generate the corresponding model image. Considering the training objective, the latent
variables contained the most essential features of the given input image. DECORAS
performed source characterization in terms of the position, effective radius and peak
brightness of the detected sources. We found that the effective radius and peak surface
brightness were recovered to within 20 per cent for 98 and 94 per cent of the sources,
respectively.

In total, DECORAS was validated on 15800 test images in which 8 000 included
an injected source over a wide range of signal-to-noise ratios, and 7 800 were noise
realizations. The test data were designed in a representative way to mimic VLBA
observations at a wavelength of 20 cm. Moreover, the results from DECORAS were
compared with a traditional source detection algorithm. However, a de-convolution
process had to be applied to that test data set before the performance of the traditional
source detector could be determined. The source catalogue that was generated by
DECORAS was found to be fully complete at a signal-to-noise ratio of 7.5, whereas
the traditional source detection algorithm reached full completeness at a higher signal-
to-noise ratio of 8.4. The improvement in the detectability provided by DECORAS
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was found to reduce the needed integration time by about 25 per cent, when compared
to a traditional source detection algorithm. For example, an all-sky survey with the
VLBA requires around 7000 h to reach a similar depth to the mJIVE-20 survey.
Applying DECORAS to such a survey would save 1750 h in observing time, while
detecting the same number of sources.

Also, we found that the performance of DECORAS on the noise realization samples,
where no source was injected, showed significant improvement on the catalogue purity,
when compared to a traditional source detector. When combining the performance of
DECORAS on both catalogue completeness and purity, we found an almost factor of
two improvement for sources with a signal-to-noise ratio above 5.

5.2.2 General conclusions

The goal of Chapter 3 was to determine whether deep learning techniques can be
used to detect and characterize radio sources from sparse interferometric arrays,
using the specific example of the VLBA. Overall, given the improvements in the
catalogue completeness and purity obtained with DECORAS, we can conclude that
deep learning techniques provide a robust alternative to traditional source detection
algorithms. In particular, through being able to lower the detection threshold, in terms
of more real sources being detected without the expense of a large number of fake
detections, deep learning techniques can make wide-field surveys for VLBI-detected
radio sources more efficient.

5.2.3 Future prospects

In Chapter 3, we only applied DECORAS to simulated data and only considered the
ideal case with no systematic calibration errors. In the following, some potential
future directions and applications are considered.

o Given the simplicity of DECORAS, it can be easily tested on representative
data from other interferometric arrays, like the ILT. However, the training model
for the pipeline will likely need some tuning based on the differing resolution,
noise correlations and density of radio sources at the different frequencies. For
example, the ILT observes a larger area of the sky and the density of faint and
bright radio sources is different from that of the VLBA. These effects need to
be considered when developing a smart and fast radio source extractor for the
ILT. Moreover, working with the dirty images (or partially cleaned images) from
the ILT could eliminate/limit the need for a deconvolution task. For example,
DECORAS performs very well at the detection threshold of traditional source
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detection algorithms. Therefore, it could be used to search this parameter
space on partially cleaned images, where the side-lobes from the brightest
radio sources have been removed. This is particularly interesting, as recovering
the true sky brightness distribution from interferometric data using traditional
approaches is challenging and time consuming. However, given the large fields-
of-view of the ILT, the sky density of radio sources may be too high for this to
work efficiently. Further tests, on complex fields with many sources must first
be done to see if DECORAS can provide a novel route to image detection and
characterization for the ILT.

e Using machine learning techniques, it should also be possible to provide an
estimation of any interferometric calibration errors and determine their effect
on the imaging quality. Also, these techniques could be used to recognize
calibration errors and reconstruct the visibilities with an estimation of what the
correct calibration would look like. Currently, there are a limited number of
studies in the literature that examine the use of deep learning for the calibration
of radio telescopes. Considering the thousands of observations, each with their
own unique settings, the fine tuning of imaging pipelines could be a tedious
task. Therefore, a potential use of machine learning algorithms would be to
automatize the tuning of the many hyper-parameters in traditional imaging
pipelines. In principle, this could be done with DECORAS if some knowledge
of the PSF is given to the network, as currently, this is learned by the network
to perform de-convolution. Given that calibration errors introduce an apparent
change in the PSF, the network could identify these changes, and interpret them
in terms of simple antenna-based amplitude and phase corrections. These can
then be used to refine the calibration or provide a more robust model for the
underlying source surface brightness distribution.

5.3 Lens detection with the ILT

Strong gravitational lensing describes an astrophysical phenomenon in which two
galaxies are along the same line-of-sight to the observer; this results in the gravitational
field of the closer galaxy acting like a natural telescope by magnifying the radiation
from the more distant galaxy. There are many applications of gravitational lensing,
including understanding the nature of dark matter and studying the high-redshift
Universe. However, there are only about 40 cases of gravitational lensing found at
radio wavelengths. Typically, these have been found through visual inspection, and by
applying a set of selection criteria. With an ever-increasing number of radio sources
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being observed, sophisticated search techniques can potentially be used to identify
many thousands of new gravitational lens candidates. Even with several selection
criteria, there will still be a very large number of candidates that would need to
be visually inspected. Therefore, in Chapter 4, we have developed a deep-learning
approach to identify gravitationally lensed radio sources in high angular-resolution
imaging data, specifically for those taken with the ILT.

5.3.1 Chapter summary

We incorporated four main deep learning components into three network structures
to search for gravitational lenses in simulated data from the ILT. The various network
components were included so that features describing lensed and non-lensed events
(i.e., the surface brightness distribution) could be learned and differentiated between.
All three structures were trained with the same training and validation data set for each
experiment. Also, the same testing data set was used to provide a fair comparison
between the performance of all three structures. The output of each network structure
was defined by a lensing probability of between 0 and 1 for each test sample. Events
with an output closer to 1 were classified as having a higher probability of being a
genuine gravitational lens.

An ideal lens finding algorithm would identify all of the lensed events, while not
selecting any of the non-lensed events. However, this rarely happens in real-world
applications due to the limitations of noise and the angular resolution of the data.
Given the large number of gravitational lenses that are expected to be found with the
ILT, completeness will likely not be important for most science cases. Instead, it will
be more important to select genuine lens candidates, by having a larger true positive
(TP) rate, while returning a lower false positive (FP) rate. Our analysis demonstrated
that by selecting a probability threshold of 0.99 to classify each sample into lensed and
non-lensed events, we could achieve a very low number of FP detections. Although
this reduced the number of TP events, our results showed that it had a greater impact
on the number of FP events.

We developed different testing strategies to evaluate the performance of the three
network structures. The experiments were designed to cover a wide range of scenarios
that might occur during a gravitational lens search using real data from the ILT. Each
experiment used a separate test dataset to validate the performance of the proposed
models. However, despite using the same training and test datasets when evaluating the
results, the structures were found to behave differently, meaning that they extracted
a different set of features in the data. Our results showed that when training with
a realistic lens population, two of the network structures failed to detect a large
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portion of the lensed events that were generated by a uniform distribution for the lens
parameters, which produced more exotic lens configurations that the networks had not
seen. However, one of the structures was found to be less dependent on the diversity
of gravitational lens systems used in the training data.

Our results for a test dataset containing non-lensed double-lobed radio sources showed
a very high FP rate of around 39.5 per cent for two of the tested network structures,
while one of the network structures had a FP rate of only 6.5 per cent (for a threshold
of 0.99). These results were achieved when the networks were not specifically trained
on non-lensed examples that included double-lobed radio sources. This motivated us
to include such non-lensed radio sources in the training data. The final result, when
the trained model had previously seen both non-lensed double-lobed radio sources
and two-imaged gravitational lens systems, had an FP rate of < 0.1 per cent for all
three network structures.

The results from these experiments demonstrated the importance of a comprehensive
training sample that covers a wide range of lensed and non-lensed events, which
given the large variation in lens models and un-lensed source surface brightness
distributions, may be a limiting factor. Therefore, we designed a final experiment,
which included 30000 training samples that were equally distributed between the
lensed and non-lensed events. Among the non-lensed samples, 4 000 double-lobed
radio sources were randomly injected to broaden the variety of this class. The test
dataset contained 34 770 samples, in which 17385 were lensed and 17385 were
non-lensed events. Here, 2000 double-lobed radio sources were included in the
test dataset of non-lensed samples. We found TP rates of > 87.1 per cent for all
three network structures. In spite of a similar performance for detecting geniune
gravitational lenses, two of the structures performed significantly better at separating
lensed and non-lensed events. The FP rates were 0.14 and 0.09 per cent for the more
reliable structures, and 1.85 per cent for the least reliable one.

Moreover, we found that the two structures with the best performance did not agree
on the specific FP events. This motivated us to consider the output of those structures
simultaneously, by considering the average of the predicted lensing probability. This
limited the number of FP events to only a single double-lobed radio source (1 in
17 385 samples; equivalent to a FP rate of 0.006 per cent) in the test data set. This had
the minimum cost of lowering the TP rate by between 1.2 and 2.2 per cent, compared
to when the two structures were considered independently.

We then analyzed what effect the sensitivity and resolution of a typical ILT observation
would have on the TP rate. For this, we measured the TP rate as a function of the
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integrated flux density of the lensed images, and as a function of the Einstein radius of
the lensed event. We found that the TP rate reached around 90 per cent when the lensed
events were restricted to those with an integrated flux density of > 2 mJy. For lensed
events with a minimum Einstein radius of 0.5 arcsec, our approach was found to have
a TP rate of 95.3 per cent. Comparing these with the sensitivity (~ 90 uJy beam™!)
and the angular resolution (~ 330 mas) of real imaging data taken with the ILT, we
determined that this newly commissioned interferometer has the potential to be a
gravitational lens finding machine.

5.3.2 General conclusions

The main goal of Chapter 4 was to test whether deep learning algorithms could be
extended to interferometric imaging data for finding gravitational lenses. One of the
main advantages of the interferometric arrays used in this thesis, namely the VLBA
and the ILT, is their extremely high angular resolution. This means that they should
in principle be very good for identifying gravitational lenses. However, as the noise is
highly correlated in such data, it wasn’t clear whether the deep learning techniques that
have been successfully applied to optical data could also be used at radio wavelengths.
From the simulations carried out here for the ILT, we found that it was possible to
identify gravitationally lensed radio sources in such data, with a TP rate of 95.3 per
cent, but more importantly, the number of FP events could be limited to just 0.006 per
cent of the samples. Therefore, we conclude that deep learning algorithms do provide
a novel route to lens detection with interferometric arrays. In addition, we conclude
that lensed events with image separations > 3.2 times the synthesized beam width,
and with an equivalent point-source signal-to-noise ratio of > 20, can be identified
with our lens detection algorithm. Therefore, we can state that the ILT and the SKA-
MID will be extremely useful in finding gravitationally lensed radio sources, given
their current specifications, when combined with deep learning techniques.

5.3.3 Future prospects

There are a number of steps that can be taken to improve on the lens detection
algorithm presented in Chapter 4. Below is a list of ideas to be implemented in the
future.

e The way that the lens detection network has been designed will allow data from
multiple input images to be analyzed in the future. One way of using this feature
would be to include the information from the wide bandwidth in frequency
that the ILT provides (around 120 to 170 MHz). As gravitational lensing
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should, in principle, not change the intrinsic spectrum of the background object,
the spectral information can also be used as a constraint when discriminating
between lensed and non-lensed events. For instance, a spectral index map can
be extracted from an ILT image to identify if the candidate lensed images have
the same spectral properties. Also, we have not considered another available
channel, that is, data taken at optical/infrared wavelengths where the light from
the lensing galaxy would likely be detected, but possibly not from the lensed
images. This would be a further interesting test to carry out, given the similar
angular-scales that are probed by the ILT and SKA-MID at radio wavelengths
and, for example, Euclid at optical wavelengths.

Estimating the properties of gravitational lens systems, with tens of thousands
expected to be discovered with the SKA-MID in the future, will need fast
and reliable solutions to be developed that automate the modelling process.
Traditional approaches, such as maximum likelihood modelling, have several
data preparation steps and require the user to provide additional information,
such as the relative positions, fluxes and time-delays of the lensed images,
and any observed properties of the lens. As of now, this effort was feasible
considering the few tens of known gravitational lens samples thus far found at
radio wavelengths. Therefore, including a deep learning approach within our
lens detection algorithm that also models the gravitational lensing data would
be extremely useful, and is an area of ongoing research that we summarize in
the final section of this conclusions chapter.

Reconstructing the un-distorted surface brightness distribution of the back-
ground radio source is another potential application of deep learning algorithms,
when applied to gravitational lensing data from interferometric arrays. This
could be useful for understanding the properties of a large sample of objects in
the high redshift Universe that are gravitationally lensed. However, reconstruct-
ing the background source will need sophisticated techniques that combines the
information from the lens model, via the lens equation, and learns the proper-
ties of the background source population. It is particularly challenging as any
small error in the lens model can affect the accuracy of the background source
reconstruction. The expected parameters that we would aim to recover are the
intrinsic size, surface brightness and the broad band spectral energy distribution
of the unlensed source.
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Figure 5.1 — Representative examples of the performance of de-convolution using
DECORAS to recover the expected model image from any given cleaned image,
generated from simulated ILT-like imaging data. The left panel shows the input
cleaned image, the middle and right panels show the expected and the predicted

model images, respectively. The signal-to-noise ratio and the MSLE are provided for
each sample.
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5.4 Preliminary results on lens modelling with deep learning

In this section, we present preliminary results from applying a deep learning technique
to simulated gravitational lensing data from the ILT, with the goal of testing methods
for lens modelling. This work is a synthesis of the methods obtained in Chapters 3
and 4 of this thesis, where the source characterization algorithm, DECORAS, and a
lens detection algorithm where developed, respectively.

First, we have carried out a test to determine the performance of DECORAS on an
ILT-like dataset. Our results are based on training the first autoencoder in DECORAS
with 10000 simulated images, which were also pre-processed (cleaned). We have
used 600 training iterations. Although there are small changes to the structure of the
autoencoder, it has the same core as in DECORAS. The changes are made considering
the size of the input images, which instead of being 256 X 256 pixels are now 64 X
64 pixels, given the larger beam size and smaller field-of-view (in pixels) needed
to image ILT data. This has changed the number of convolutional layers in the
autoencoder to meet the specific requirements of the simulated training data set used
for lens identification and modelling. The input images used to provide the following
preliminary results are simulated in a similar way to the data presented in Chapter
4. However, only lensed samples are considered here, as we assume that the input
data have been pre-selected as gravitational lens candidates (either using our own or
another lens detection algorithm).

Fig. 5.1 shows a few representative examples of the performance of DECORAS in
recovering the underlying model surface brightness distribution. Overall, this first
test on cleaned images from an ILT-like data set is very encouraging, as we see a good
agreement between the input and recovered model images. The apparent signal-to-
noise ratio given for each sample is calculated by dividing the model peak surface
brightness by the rms in the cleaned image (o = 90 uJy beam™!; similar to the
process used in Chapter 3). We have also measured the Mean Squared Logarithmic
Error (MSLE) for each of the predicted models to measure their performance (more
information about the MSLE is given in Chapter 3). The distribution<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>