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Towards Immunotherapy-Induced
Normalization of the Tumor
Microenvironment
Vinicio Melo1, Edwin Bremer1 and John D. Martin2*

1Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands, 2Materia
Therapeutics, Las Vegas, NV, United States

Immunotherapies modulate the function of immune cells to eradicate cancer cells through
various mechanisms. These therapies are successful across a spectrum of cancers, but
they are curative only in a subset of patients. Indeed, a major obstacle to the success of
immunotherapies is the immunosuppressive nature of the tumor microenvironment (TME),
comprising the stromal component and immune infiltrate of tumors. Importantly, the TME
in most solid cancers is characterized by sparsely perfused blood vessels resulting from
so-called pathological angiogenesis. In brief, dysregulated development of new vessels
results in leaky tumor blood vessels that inefficiently deliver oxygen and other nutrients.
Moreover, the occurrence of dysregulated fibrosis around the lesion, known as
pathological desmoplasia, further compresses tumor blood vessels and impairs blood
flow. TME normalization is a clinically tested treatment strategy to reverse these tumor
blood vessel abnormalities resulting in stimulated antitumor immunity and enhanced
immunotherapy efficacy. TME normalization includes vascular normalization to reduce
vessel leakiness and reprogramming of cancer-associated fibroblast to decompress
vessels. How immunotherapies themselves normalize the TME is poorly understood. In
this review, we summarize current concepts and progress in TME normalization. Then, we
review observations of immunotherapy-induced TME normalization and discuss the
considerations for combining vascular normalizing and immunotherapies. If TME could
be more completely normalized, immunotherapies could be more effective in more
patients.

Keywords: tumor microenvironment, vascular normalization, immune checkpoints, hypoxia, immunotherapy,
angiogenesis, immune cell infiltrate

INTRODUCTION

Cancer cells coopt the surrounding tissue resulting in an organ-like structure with abnormal
physiology. Specifically, they can promote unrestrained angiogenesis (i.e., the formation of new
vessels) and desmoplasia (i.e., the formation of new and excessive connective tissue). The extent of
each process depends on the type of tumor. For example, hepatocellular carcinoma (HCC) is highly
angiogenic, whereas pancreatic ductal adenocarcinoma is highly desmoplastic. Dysregulated
angiogenesis produces leaky blood vessels while desmoplasia compresses them (Jain, 2014).
Thus, both processes reduce the capacity of blood vessels to deliver oxygen to tumors through
independent mechanisms (Stylianopoulos and Jain, 2013; Jain, 2014; Martin et al., 2016). Sub-
physiological oxygen tension is referred to as hypoxia (Semenza, 2014; Vaupel and Mayer, 2014).
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Besides promoting disease progression (Bhandari et al., 2019) and
resistance to radiation (Martin and Jain, 2020) and some
chemotherapies (Teicher et al., 1981), hypoxia causes
immunosuppression in the tumor microenvironment (TME)
by altering immune cell phenotype, infiltration, migration, and
function (Noman et al., 2015). Simultaneously, newly formed
immature blood vessels cannot traffic and distribute infiltrating
immune cells efficiently (Slaney et al., 2014), whereas excessive
fibrosis poses a physical barrier to immune cell migration into the
tumor (Salmon et al., 2012). Accordingly, hypoxia is associated
with poor survival across tumor types (Martin et al., 2019b) and
alleviating hypoxia through ‘normalization’ of the TME increases
the efficacy of immunotherapies in preclinical cancer models
(Huang et al., 2012; Chauhan et al., 2019; Chen et al., 2019;
Shigeta et al., 2019; Panagi et al., 2020; Shigeta et al., 2020;
Mpekris et al., 2021; Voutouri et al., 2021; Mpekris et al.,
2022). Circulating, tissue and imaging biomarker studies in
patients with glioblastoma (Sorensen et al., 2009) and breast
cancer (Tolaney et al., 2015; Boucher et al., 2021) support the
notion that normalizing blood vessels with antiangiogenic
therapies (AATs) correlates with increased antitumor immune
cell infiltration and better treatment outcomes. Similarly, imaging
studies in patients with lung cancer and glioblastoma indicate
that increased blood flow (Sorensen et al., 2012; Heist et al., 2015)
and reduced hypoxia (Batchelor et al., 2013) during AAT
treatment correlated with response rates and overall survival.
Furthermore, regimens of AATs combined with immune
checkpoint inhibitors (ICIs) are approved by the United States
Food and Drug Administration in patients with HCC, renal cell
carcinoma, and non-small-cell lung cancer (Pinter et al., 2021).
Whereas no benefit has been demonstrated in clinical trials
directly comparing AAT and ICI versus ICI alone, the
combination of bevacizumab with atezolizumab increased
overall survival in patients with unresectable HCC compared
to first-line treatment, sorafenib, which is a multikinase inhibitor
with antiangiogenic properties (Finn et al., 2020). In contrast, ICI
monotherapy did not increase overall survival compared to
sorafenib (Finn et al., 2019; Yau et al., 2019). Thus, there is
preclinical and clinical evidence supporting the notion that
alleviating hypoxia through TME normalization increases
immunotherapy efficacy. If we could understand how to better
increase oxygen delivery when normalizing the TME for
immunotherapy, then we might be able to improve outcomes
for patients.

The Impact of the Abnormal Tumor
Microenvironment on Vessel Function
Cancer cells induce nearby non-malignant cells to produce a
microenvironment that promotes disease progression (Quail and
Joyce, 2013; Bhandari et al., 2019; Thienpont et al., 2016) and
immunosuppression (Chen and Mellman, 2017; Tauriello et al.,
2018). As described above, the TME affects blood vessel
formation through either disturbed angiogenesis or excessive
fibrosis. The former process results from cancer cells sending
signals to vascular, mesenchymal, and immune cells that impair
physiological processes and blood vessel formation (De Palma

et al., 2017; Fukumura et al., 1997). In brief, pathological
angiogenesis is characterized by cancer cells stimulating
endothelial and perivascular cells through angiogenesis and
hypoxia signaling to produce new blood vessels through
various mechanisms (Carmeliet and Jain, 2011a; Carmeliet
et al., 1998; Fukumura et al., 1998). The main angiogenic
signaling player in this context is vascular endothelial growth
factor (VEGF), as it is released in response to hypoxia and triggers
vascular cells to dissociate, migrate and remodel the surrounding
tissue. These newly-forming tumor blood vessels do not mature
because of constant pro-angiogenic VEGF signaling (Jain, 2003;
Goel et al., 2011), which limits expression of integrins and cell
adhesion molecules (Piali et al., 1995). The latter two are required
for fortification of the mural cell (i.e., pericytes and vascular
smooth muscle cells) of tumor blood vessels (Garmy-Susini et al.,
2005) (Figure 1A). Consequently, in the tumor the blood vessels
are abnormal in shape and spatial distribution (Goel et al., 2011).
Endothelial and mural cells become migratory, lose their
interactions with each other (Hashizume et al., 2000;
Morikawa et al., 2002; Baluk et al., 2003; Carmeliet and Jain,
2011b; Seano et al., 2014), and cannot adhere infiltrating immune
cells (Slaney et al., 2014). As a result, blood vessels become leaky
and are ineffective in maintaining blood flow, resulting in plasma
(Boucher et al., 1990) and protein (Gerlowski and Jain, 1986;
Stohrer et al., 2000) accumulation in the interstitial (i.e.
extravascular) space (Figure 1A).

The second process of excessive fibrotic tissue formation is
triggered by cancer cell-mediated activation of fibroblasts,
which increases fibroblast contractility and production of
fibrosis (Figure 1B). These cancer-associated fibroblasts
(CAFs) have numerous phenotypes and also play a key role
in immunosuppression (Sahai et al., 2020). Cancer cells and
CAFs generate physical forces that compress tumor vessels
(Stylianopoulos et al., 2012). Also, CAFs produce and
maintain elevated levels of extracellular matrix (ECM)
components (i.e., structural components of the tissue
including collagen I and hyaluronan) that transmit forces
towards compressing blood vessels (Stylianopoulos et al.,
2012; Chauhan et al., 2013; Chauhan et al., 2014)
(Figure 1B). The expansion of a growing tumor is resisted
by the surrounding host tissue thereby increasing the magnitude
of compression exerted on tumor tissue (Stylianopoulos et al.,
2013; Nia et al., 2016). Thus, leaky and compressed tumor blood
vessels induce hypoxia.

Besides promoting hypoxia leading to immunosuppression,
cancer cells suppress the activation, priming, trafficking,
infiltration, migration, and function of antitumor immune
cells to reduce antitumor immunity. In fact, all steps of the
cancer-immunity cycle, which describes the processes that must
be perpetuated for antitumor immunity, are subjected to
negative regulation in the TME including through hypoxia
signaling (Chen and Mellman, 2013; Martin et al., 2020). For
instance, activated CD8+ T cells primed against cancer antigens
must traffic to and infiltrate into tumors (Chen and Mellman,
2013). However, this process is inhibited by solid tumors
(Slaney et al., 2014), with aberrant VEGF signaling
downregulating cell adhesion molecules, such as intercellular
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adhesion molecule 1 (ICAM-1) and vascular cell adhesion
molecule 1 (VCAM-1), thereby preventing activated CD8+

T cells to bind and cross the vessel wall (Piali et al., 1995;
Griffioen et al., 1996) (Figure 1C). Additionally, a majority of
immune cells in the TME are shifted to an immunosuppressive
phenotype, such as M2-like rather than M1-like tumor-
associated macrophages (TAMs) and regulatory rather than
CD8+ T cells (De Palma et al., 2017) (Figure 1C). TAMs are
shifted to M2-like phenotypes (Maenhout et al., 2014; Noman
et al., 2015) and regulatory T cells are recruited through
angiogenic and hypoxia-induced signaling (Facciabene et al.,
2011; Voron et al., 2015; Wallin et al., 2016; Palazon et al., 2017).
The TME can exist in different immune phenotypes that reflect
various states of immunosuppression (Chen and Mellman,
2017). Angiogenesis, desmoplasia and immunosuppression
are dysregulated in tumors, and hypoxia is a central

downstream effect that leads to disease progression through
various mechanisms (Jain, 2014; Noman et al., 2015).

Normalization of the Tumor
Microenvironment
Given the central role of hypoxia in poor outcome in patients
with cancer and the dependence of oxygen delivery on blood
vessels, the normalization hypothesis calls for increasing the
function of vessels by modulating stromal cells towards a
normal phenotype to enhance the efficacy of chemo-, radio-,
and immunotherapies (Jain, 2001; Jain, 2014; Martin et al.,
2019b). Though there are numerous physiological
mechanisms that can be altered, the two critical
abnormalities to be reversed to normalize blood vessels are
leakiness and compression (Jain, 2014; Martin et al., 2019b).

FIGURE 1 | Cancer cells contribute to angiogenesis, desmoplasia, and immunosuppression thereby reducing blood flow and immune cell infiltration. (A) A
simplified schematic of leaky tumor blood vessels and relevant cells. Cancer cells secrete angiogenic factors, including vascular endothelial growth factor (VEGF), that
reduce the expression of molecules, such as intercellular adhesion molecule 1 (ICAM-1), which facilitate the interaction of endothelial cells with themselves and
perivascular cells in normally functioning vessels. Plasma and blood-borne molecules (arrows) flow out of pores in the vessel wall thereby reducing flow. (B) A
simplified schematic of compressed tumor blood vessels and relevant cells. Cancer cells activate cancer-associated fibroblasts through various signals including
transforming growth factor (TGF) β. As a result, more fibrosis is produced andmaintained thereby transferring compressive physical force onto blood vessels. Blood flow
is reduced. (C) A simplified schematic of immunosuppression and relevant cells. As in (A) and (B), cancer cells secrete VEGF and TGFβ among other factors that affect
angiogenesis and fibrosis. VEGF recruits regulatory T cells and shifts tumor-associated macrophages (TAMs) towards M2-like immunosuppressive phenotypes. VEGF
also blocks the recruitment and transmigration of CD8+ T cells. TGFβ signaling leads to increased fibrosis that physically impedes the migration of CD8+ T cells to cancer
cells and blocks the vascular transmigration of these cells through endothelin one signaling through the endothelin receptor type (B)
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There are two types of TME normalization strategies. One
alleviates blood vessel leakiness (vascular normalization, Figures
2A, B) and the other reverses compression (CAF reprogramming,
Figures 2A, C). TME normalization usually refers to a
therapeutic strategy to ‘normalize’ the balance of pro- and
anti-factors of angiogenesis and/or desmoplasia signaling (Jain,
2014). In regards to angiogenesis, Jain introduced the hypothesis
of vascular normalization to explain the paradox that, despite the
requirement of angiogenesis for tumor growth, starving tumors of
their blood supply by therapeutically inducing vascular regression
did not improve patient outcome (Jain, 2001). Instead, preclinical
studies demonstrated that balancing elevated pro-angiogenic
signaling levels found in tumors with AATs will make the

blood vessels phenotypically normal with increased
fortification by perivascular cells and ECM (Figures 2A, B)
(Tong et al., 2004; Winkler et al., 2004). As a result, the blood
vessels function normally with decreased vessel leakiness, hypoxia
and treatment resistance (Jain, 2014; Martin et al., 2019b). Blood
vessel normalization has been extensively evaluated preclinically
and in patients with cancer for combination with chemo-, radio-,
and immunotherapies (Jain, 2014; Vasudev and Reynolds, 2014;
Viallard and Larrivée, 2017; Martin et al., 2019b; Pinter et al.,
2021), and vascular normalization could improve responses to
ICIs through various mechanisms (Figures 2A, B) (Fukumura
et al., 2018; Huang et al., 2018; Khan and Kerbel, 2018; Lee et al.,
2020). Indeed, in patients with HCC, the combination of AAT

FIGURE 2 | Vascular normalization and reprogramming of cancer-associated fibroblasts shift the microenvironment towards antitumor immunity. (A) A schematic
of a magnified, cross-sectional view of a single blood vessel in an untreated tumor. A pinch point in the blood vessel (red tube) and the lack of a consistent endothelial cell
layer fortifiedwith pericytes restricts blood flow (gray arrows). The tumor is replete with immunosuppressive cancer-associated fibroblasts (CAFs), fibrosis, and regulatory
T cells (CD4+CD25+FOXP3+) while lacking CD8+ and other subsets of CD4+ T cells. (B) A schematic of a magnified, cross-sectional view of a single blood vessel in a
tumor treated with vascular normalizing therapy. As the balance of pro- and anti-angiogenic factors shifts towards the latter, endothelial cells are aligned, and blood
vessels are fortified with pericytes yet remain compressed by mechanical stress. Perfusion increases especially in tumors with low levels of mechanical stress. Immune
cells such as CD8+ T cells more efficiently traffic to tumors and transmigrate across the vessel wall. There are fewer immunosuppressive cells because of reduced
angiogenic and hypoxia signaling. Vascular normalization by immune checkpoint inhibitors could rely on the accumulation of activated eosinophils. (C) A schematic of a
magnified, cross-sectional view of a single blood vessel in tumor treated with CAF reprogramming therapy. As CAFs shift to quiescent fibroblasts, they produce and
maintain lower levels of fibrosis. Mechanical stress is alleviated and vessels are decompressed. Perfusion increases. Immune cells such as CD8+ T cells flow through
tumors and migrate the interstitial space because of less immunosuppressive CAF and hypoxia signaling. Also, there is less physical restriction of migration by
components of fibrosis, such as collagen. (D) A schematic of a magnified, cross-sectional view of a single blood vessel in tumor treated with both vascular normalizing
and CAF reprogramming therapy. Given the reduced signaling and physical barriers, immune cells such as CD8+ T cells efficiently traffic to tumors, negotiate transport
through the vessel wall, and penetrate to clusters of cancer cells.
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and ICI, but not ICI monotherapy (Finn et al., 2019; Yau et al.,
2019), outperforms AAT monotherapy (Finn et al., 2020).

The second type of normalization involves reversing vessel
compression with CAF reprogramming therapies. Hereby, CAFs
are turned quiescent such that they produce a smaller magnitude
of forces and less amount of ECM such that there is a lesser
magnitude of force generated and transmitted within tumors
(Figures 2A, C) (Chauhan et al., 2013; Sherman et al., 2014; Incio
et al., 2015; Whatcott et al., 2015; Papageorgis et al., 2017;
Polydorou et al., 2017). Some CAF reprogramming therapies
have been studied in preclinical, retrospective clinical, and
prospective clinical studies. One such drug is losartan, which
is an anti-hypertensive drug with decades of use in patients with
high blood pressure. Losartan and other angiotensin system
inhibitors reprogram CAFs to a quiescent phenotype through
antagonism of the angiotensin II type I receptor (Chauhan et al.,
2013). Dozens of retrospective studies indicated that patients with
certain cancer types receiving angiotensin system inhibitors lived
longer (Liu et al., 2017; Pinter and Jain, 2017; Zhao et al., 2019;
Martin et al., 2020). Moreover, losartan improved the outcome of
patients with pancreatic ductal adenocarcinoma undergoing
chemoradiation in a prospective clinical trial (Murphy et al.,
2019).

CAF reprogramming also appears to be combinable with ICI
(Chauhan et al., 2019; Elahi-Gedwillo et al., 2019; Chen et al.,
2019; Panagi et al., 2020; Mpekris et al., 2021; Voutouri et al.,
2021). For instance, angiotensin system inhibitors prolonged
survival of patients with certain tumor types undergoing ICI
in a retrospective analysis (Drobni et al., 2022). Moreover,
losartan had direct immunomodulatory effects on immune
cells in vitro (Regan et al., 2019) and in clinical studies
induced antitumor immunity (Liu et al., 2017) (Figures 2A,
C). Additionally, losartan and other angiotensin signaling
inhibiting drugs may ameliorate side effects of immunotherapy
by enabling ICI dose reduction and inhibiting cytokine storm
(Pinter et al., 2018). With this rationale, ICIs are now being tested
prospectively with this combination of losartan and
chemoradiation (NCT03563248). Like losartan, metformin is
another drug with many effects in cancer and other diseases
that has been repurposed to reprogram CAFs (Incio et al., 2015).
There is evidence from the clinic that it modulates the TME
towards antitumor immunity (Wang et al., 2020). Additionally,
some drugs induce both vascular normalization and CAF
reprogramming (Figure 2), such as the glucocorticoid steroid
dexamethasone (Martin et al., 2019a), but the
immunosuppressive properties of this drug are detrimental in
many patients taking ICIs (Arbour et al., 2018). While vascular
normalization and CAF reprogramming therapies have advanced
to the clinic (Supplementary Tables 1, 2), they have yet to be
tested in combination. Nonetheless, mathematical models and
preclinical studies demonstrate the value of combining the
normalization strategies for ICI (Figure 2D) (Mpekris et al.,
2020; Panagi et al., 2020; Mpekris et al., 2021).

There are three important aspects to TME normalization.
First, stromal cells in the tumor should be reprogrammed
towards a non-diseased phenotype. Second, hypoxia should be
alleviated, because TME normalization therapies can exacerbate

hypoxia at high doses. Specifically, AAT administered at higher
doses and for longer times prunes an excessive amount of blood
vessels thereby reducing blood flow to the tumor (Martin et al.,
2022). Besides inducing hypoxia, rapid depletion of stromal
components including blood vessels (De Bock et al., 2011),
pericytes (Cooke et al., 2012), CAFs (Rhim et al., 2014),
hyaluronan (Wang-Gillam, 2019), collagen (Chen et al., 2021),
and regulatory T cells (Zhang et al., 2020) through either genetic
or pharmacological methods results in disease progression. Thus,
the third aspect is that stromal components should
reprogrammed rather than destroyed (Whatcott et al., 2015).

Normalization by Immunotherapies
ICIs are approved for dozens of cancer types, but they only benefit
a fraction of patients with cancer (Haslam and Prasad, 2019). To
overcome primary resistance mediated by immunosuppressive
hypoxia, angiogenesis and fibrosis signaling, researchers and
oncologists are developing ICI combination therapy strategies
including with vascular normalizing therapies (Fukumura et al.,
2018), CAF reprogramming and nanomedicine (Martin et al.,
2020; Martin and Jain, 2020). In addition to AAT and CAF
reprogramming therapies, the contribution of ICI to TME
normalization is under investigation currently (Mpekris et al.,
2020). Thus, understanding the mechanisms through which
immunotherapies normalize the TME could lead to more
effective TME normalization and immunotherapy regimens.

There is both preclinical and clinical evidence that ICI
monotherapy normalizes blood vessels in tumors that respond
to ICI (Zheng et al., 2018). In murine breast tumors that respond
to ICI with slowed tumor growth, ICI efficiently prunes vessels
resulting in enhanced perfusion (Zheng et al., 2018). However,
depletion of CD8+ T cells or inhibition of IFNγ production
reversed the enhanced perfusion that ICI induced (Zheng
et al., 2018). These results demonstrate that effective ICI
therapy, which necessarily promotes CD8+ T cell accumulation
and IFNγ production, also increases perfusion. Furthermore,
these results generate the hypothesis that enhanced perfusion
is a biomarker of response to ICI treatment (Zheng et al., 2018).

Both IFNγ and CD8+ T cells are necessary for antitumor
immunity (Patel et al., 2017). At high levels, IFNγ induces
apoptosis of cancer cells (Song et al., 2019). At low levels,
IFNγ induces cancer cell stemness resulting in increased
metastasis (Song et al., 2019). Also, IFNγ has non-immune-
mediated antiangiogenic properties (Fathallah-Shaykh et al.,
2000), and the extent of these effects could depend on the
levels of IFNγ (Huang et al., 2018). AAT at high doses induce
vascular regression while low doses induce vascular
normalization (Jain, 2014; Martin et al., 2016). Similarly, at
high levels of IFNγ in inducible models producing ~10 ng per
ml (Huang et al., 2018), IFNγ acts on stromal cells independently
of cancer cells to induce vascular regression and eliminate blood
flow to tumors (Kammertoens et al., 2017). At lower levels
generated by adoptive cell transfer or ICI, IFNγ might induce
vascular normalization, as it induces upregulation of ICAM-1
(Rothlein et al., 1988), which promotes adhesion between
endothelial cells and leukocytes, and VCAM-1 (Wang et al.,
2007), which promotes adhesion between pairs of endothelial

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 9083895

Melo et al. Immunotherapy-Induced Tumor Microenvironment Normalization

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


cells and endothelial cells and leukocytes or mural cells.
Separately, through IFNγ, CD8+ T cells can polarize TAMs to
an M1-like phenotype, which is antiangiogenic (De Palma et al.,
2017). ICI also depends on IFNγ to induce antitumor immune
responses (Patel et al., 2017). ICI, TAM polarization, adoptive cell
transfer and experimental models of inducible IFNγ all introduce
different concentrations of IFNγ in the TME, thereby, inducing
different magnitudes of antiangiogenic effects (Huang et al.,
2018). Thus, vascular normalization resulting from
immunotherapies depends on the context and requires
further study.

In patients with glioblastoma, tumors responding to ICI had
reduced vascular permeability indicative of vascular normalization
(Qin et al., 2017). However, this reduction occurred 6 months after
ICI treatment initiation and after a brief period of increased
vascular permeability. Therefore, the conflicting kinetics of these
processes between murine breast tumors and glioblastoma tumors
in patients must be resolved by observing vascular permeability in
tumors from patients and related murine models at times before
and shortly after ICI treatment initiation (De Palma and Jain,
2017). Additionally, vascular regression associated with ischemic
tumor necrosis after vaccination and/or ICI was observed in
responding melanoma and ovarian tumors from patients
(Schoenfeld et al., 2010). Thus, the kinetics and tumor type
dependence of the antiangiogenic effects of immunotherapies in
tumors in patients must be clarified.

The cells responsible for producing the IFNγ that modulates
the vasculature differ between studies. In experiments resembling
the clinical ‘preventative setting’ in which interventions occur
before tumors could be diagnosed, knockout models revealed that
CD8+ T cells and CD4+ T cells had opposite angiogenic effects.
CD8+ T cells induced endothelial cell proliferation, yielding a
pro-angiogenic effect. In contrast, the CD4+ T cells induced
pericyte recruitment, a critical process for vascular
normalization and alleviation of hypoxia (Tian et al., 2017).
Thus, in the ‘preventative setting’, CD4+ T cells through IFNγ
seem to be responsible for vessel fortification through pericyte
recruitment (De Palma and Jain, 2017; Tian et al., 2017)
consistent with previous studies of angiogenesis in early tumor
development (Beatty and Paterson, 2001).

Interventions with ICI in the time window when treatment
would typically occur in patients normalized the tumor vasculature
in an IFNγ-dependent manner, with lack of effect using IFNγ
receptor knock out mice and upon IFNγ-neutralization studies
(Zheng et al., 2018). In T cell depletion studies in wild type mice,
ICI-induced normalization and enhanced perfusion proved to be
dependent on CD8+ but not CD4+ T cells in murine breast tumors
(Zheng et al., 2018). Taken together with the results from the
preventative setting, these studies collectively indicate that CD4+

T cells play a role in vessel maturation early in tumor development
while ICIs act through CD8+ T cells to normalize blood vessels in
the treatment setting. The notion that immunotherapy-induced
vascular normalization is mediated by CD8+ T cells in tumors in
the treatment setting is supported by observations that adoptive
transfer therapy of T cells contributes to normalized vascular
morphology (Ganss et al., 2002). Interestingly, such ICI-induced
normalization also depended on eosinophil accumulation in

murine breast tumors in addition to CD8+ T cell accumulation
and IFNγ (Zheng et al., 2020). These findings are consistent with
previous studies describing crosstalk between eosinophils and
CD8+ T cells that leads to a positive feedback loop of vascular
normalization and antitumor immunity (Carretero et al., 2015).
Furthermore, activated eosinophils in the TME, through IFNγ,
skew TAMs to an antiangiogenic M1-like phenotype. As a result,
there is some vascular normalization with elevated expression of
VCAM-1, which induces adhesion of eosinophils and T
lymphocytes (among other cells) to the endothelium thereby
promoting transmigration and infiltration. In turn, these T cells
can promote more vascular normalization and skewing of TAMs.
Additional tumor-specific effector T cells continue to be trafficked
to the tumor by interferon-induced chemoattractants produced by
activated eosinophils (Carretero et al., 2015). In patients, increases
in eosinophil and lymphocyte counts after ICI correlated with
increased survival (Delyon et al., 2013). Thus, during ICI treatment
there is a positive feedback loop of CD8+ T cells and activated
eosinophils stimulating antiangiogenic effects directly through
IFNγ production and indirectly through TAM polarization,
which in turn increases eosinophil and lymphocyte adhesion to
the endothelium and tumor accumulation (Figure 3A).

Another observation of long-term vascular normalization and
antitumor immunity by activated CD8+ T cells, though not an
example of immunotherapy causing vascular normalization, adds
further support to this positive feedback cycle hypothesis (Zhang
et al., 2021). Specifically, researchers studied the ligand Delta-like
canonical Notch ligand 1 (DLL1) (Huang et al., 2011). The levels of
this ligand are reduced with increased circulating VEGF, which is
characteristic of tumors with high levels of angiogenesis (Huang
et al., 2011). When DLL1-Notch signaling is reduced in bone
marrow precursors by circulating VEGF, T cell activation and
antitumor immunity is reduced (Huang et al., 2011). However,
interfering with circulating VEGF-induced DLL1-Notch signaling
inhibition by overexpressing DLL1 in cancer cells induced long-term
vascular normalization (Zhang et al., 2021). This normalization was
dependent on IFNγ production and CD8+ T cell accumulation
(Zhang et al., 2021). In turn, this long-term vascular normalization
was necessary for ICI efficacy in the resistant tumor model assayed
(Zhang et al., 2021). Thus, long-term vascular normalization can be
induced by immune cells through interference of angiogenic and
immunosuppressive signaling, and this normalization can increase
the antitumor effect of ICI (Figure 3A).

Besides ICI, other immunotherapies have normalizing effects.
In melanoma, low-dose local administration of a STING agonist
increased expression of antiangiogenic factors resulting in
increased endothelial cell pericyte coverage and expression of
VCAM-1 (Chelvanambi et al., 2021). In this case, vascular
normalization depended on STING activation of dendritic cells
rather than effects on cancer cells, which also express STING
receptor (Chelvanambi et al., 2021). These normalized vessels,
along with newly formed tertiary lymphoid structures, increased
T cell infiltration (Chelvanambi et al., 2021). These processes
were studied in more detail in breast, lung, and colorectal cancer
models (Yang et al., 2019). As in the study in melanoma, STING
agonism induced expression of vascular stabilization genes, but
there were several additional findings important to
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understanding STING agonist-induced vascular normalization.
First, while STING agonism of hematopoietic stromal cells like
dendritic cells were necessary for immune response, agonism of
nonhematopoietic stromal cells, particularly endothelial cells,
mediated the normalization process (Yang et al., 2019).
Second, STING agonist-induced vascular normalization
depended on CD8+ T cells and IFNγ but not TAMs (Yang
et al., 2019). Taken together, these results demonstrate that
STING agonists, like ICI, can induce vascular normalization
through CD8+ T cells and IFNγ leading to enhanced T cell
vascular adhesion, infiltration, and therapeutic effects
(Figure 3B).

Other immunostimulatory agents, such as
oligodeoxynucleotides (ODN) with cytosine-guanine-rich
(CpG) motifs (CpG-ODN) normalize vessels as evidenced by
the upregulation of ICAM-1 and VCAM-1 in endothelial cells by
TAMs directly stimulated by CpG-ODN (Garbi et al., 2004).
With such normalized vessels, adoptively transferred immune
cells could better extravasate and infiltrate tumors (Figure 3C).
Despite clinical testing, CpG-ODN has not succeeded, perhaps in
part of the necessity of local administration. Even if CpG-ODN is
effective in the tumor in which it is administered and the patient

develops systemic antitumor immunity through an abscopal
effect, the TME of metastatic lesions could still impair
infiltration (Martin et al., 2020). Similarly to the effects of
CpG-ODN, in some contexts depletion of regulatory T cells
also increases the upregulation of ICAM-1 and VCAM-1
adhesion molecules (Li et al., 2010). Depletion of regulatory
T cells also lead to other indicators of vascular normalization
including reduced vessel diameter and increased perfusion (Li
et al., 2010). Combinations of antiangiogenic therapy and ICI
could promote infiltration and activation, respectively, of
regulatory T cells, so depletion of regulatory T cells through
anti-TAM therapy and chemotherapy can be beneficial
(Martinez-Usatorre et al., 2021). While depletion of regulatory
T cells generates antitumor immunity in most contexts,
researchers reported that depletion of regulatory T cells
depletes pancreatic ductal adenocarcinoma tumors of
fibroblasts, which paradoxically unleashes tumor growth and
immunosuppression (Zhang et al., 2020). Thus, the effect of
regulatory T cell depletion could depend on the tumor type.
Finally, oncolytic viruses can also reduce vascular density
transiently while increasing VCAM-1 gene expression (Chon
et al., 2019), but through what mechanisms and whether

FIGURE 3 | Vascular normalization through immunotherapies. Immunotherapies stimulate various immune cells to act on endothelial and mural cells resulting in
vascular normalization. Several immunotherapies normalize vessels through distinct mechanisms. (A) The effects of immune checkpoint inhibitors (ICIs) are the most
well-studied. ICIs activate CD8+ T cells, which secrete IFNγ. These cells can interact with activated eosinophils through IFNγ to induce M1-like TAM phenotypes, which
reduces VEGF signaling and induces VCAM-1 expression. As a result, more CD8+ T cells and activated eosinophils adhere to and transmigrate across the
endothelium. The later secretes chemokines (i.e., CCL5, CXCL9 and CXCL10), which increase trafficking of CD8+ T cells and eosinophils to tumors. For this reason,
activated eosinophil accumulation precedes and is required for increased CD8+ T cell homing to tumors. This process is a potential feedback loop of vascular
normalization and antitumor immunity. DLL1-Notch signaling promotes CD8+ T cell activation and IFNγ production thereby reinforcing this positive feedback loop for
long-term vascular normalization. (B) STING agonists cause an increase in antiangiogenic factors, which results in increased pericyte coverage through VCAM-1
expression, which also facilitates the infiltration of T cells. (C)CpG-ODN directly act on TAMs promoting anM1-like phenotype, which induces the upregulation of ICAM-1
and VCAM-1 expression. In some contexts, depletion of regulatory T cells has similar effects on ICAM-1 and VCAM-1 expression. (D)Oncolytic vaccines reduce vascular
density and increase VCAM-1 expression through unelucidated mechanisms.
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vessels are normalized versus regressed is unclear, as is whether
hypoxia is alleviated (Figure 3D). Thus, whereas STING agonists
seem to act through T cells and IFNγ as with ICI treatment,
oligonucleotide therapies might act through TAMs to increase
expression of adhesionmolecules. Further research is necessary to
determine whether and how these immunotherapies are
combinable for enhanced vascular normalization

Combination Therapies for Tumor
Microenvironment Normalization
Several rationales have been developed for combining AATs and
ICI with disparate effects on vascular regression and
normalization. One mechanism of synergy involves AATs
inducing vascular changes resulting in more recruitment of
CD8+ T cells. Although this mechanism is resisted by IFNγ
acting on endothelial cells to upregulate immune checkpoint
expression, this resistance can be neutralized through ICI
(Schmittnaegel et al., 2017). This mechanism was investigated
in the context of combined VEGF and angiopoietin 2 inhibition,
which induced vascular regression leading to tumor necrosis
(Schmittnaegel et al., 2017). The remaining vessels were
normalized as evidenced by increased pericyte coverage, but
the density of vessels was low. This ‘passive vessel
normalization’, in which immature blood vessels are destroyed
while the mature vessels remained, was sufficient to facilitate
recruitment of CD8+ T cells. Thus, there are mechanisms of
synergy between AATs and ICI that are effective when active
vascular normalization through pericyte recruitment to
immature vessels does not occur while vascular regression
does occur. A separate study demonstrated that VEGF
inhibition and ICI were complimentary through formation of
high endothelial venules, which are blood vessels critical for the
recruitment of T cells to antigen-presenting cells within tertiary
lymphoid structures or lymph nodes, leading to increased
lymphocyte infiltration (Allen et al., 2017). As in the other
study, researchers observed regression of half of the tumor
vasculature (Allen et al., 2017). A unique aspect was the
investigation of the independent contributions of AAT and
ICI to vessel pruning and fortification. While anti-VEGF
therapy induced vascular regression and fortification, the
addition of ICI did not contribute to vascular regression yet
further increased pericyte coverage (Allen et al., 2017). Thus, ICI
induced active pericyte recruitment, which occurred through an
increase in the angiostatic properties of myeloid cells in the TME
(Allen et al., 2017). After tumor relapse from AAT monotherapy,
only the combination of AAT and ICI could reduce vessel density,
suggesting the antiangiogenic properties of ICI were non-
redundant with VEGF inhibition (Allen et al., 2017). Thus,
there are mechanisms of synergy between AAT and ICI that
induce vascular regression and are independent of vessel
normalization, but ICI seems to have stronger effects on vessel
fortification rather than regression.

A series of reports in HCC provided an illustrative case of
combined AAT and ICI vascular normalization. Sorafenib, which
was the only approved AAT for HCC at the time, excessively
pruned vessels, thereby, causing hypoxia and stimulating the

SDF1α/CXCR4 pathway (Chen et al., 2015). Although
blocking CXCR4 reduces fibrosis and increases T cell
infiltration in some desmoplastic tumor types (Chen et al.,
2019), in highly vascular HCC after relapse from AAT,
blocking CXCR4 alleviated immunosuppressive cell
recruitment and angiogenesis resistance mechanisms to some
extent (Chen et al., 2015). However, adding ICI to AAT and
CXCR4 inhibition alleviated these resistance mechanisms further
by increasing the amount of IFNγ and CD8+ T cells in the tumor
center, indicating that vessels could be further normalized (Chen
et al., 2015). Indeed, a follow-up study demonstrated that ICI
induced vessel normalization to a larger extent through CD4+

T cells when combined with an anti-VEGFR2 antibody compared
to the AAT antibody alone (Shigeta et al., 2019). Anti-VEGFR2
antibody increased the endothelial cell expression of PD-L1 in an
IFNγ-dependent manner and PD-1 expression in CD4+ T cells
providing further rationale for combination therapy with ICI
(Shigeta et al., 2019). Importantly, ICI-induced fortification of
vessels (Figure 4A) prevented vascular regression caused by
higher doses of anti-VEGFR2 antibody thereby increasing the
therapeutic index of this AAT (Shigeta et al., 2019). This finding is
important given the sensitivity of vascular normalization to anti-
VEGF therapy dose (Jain, 2014). Interestingly, when the AAT
sorafenib follows ICI in HCC, the density of blood vessels
associated with pericytes increases in a CD8+ T cell dependent
manner (Figure 4B), while sorafenib not preceded by ICI causes
vascular regression (Kikuchi et al., 2022). Thus, ICI fortifies
vessels thereby preventing vascular regression induced by
subsequent AAT. Along these lines, administering AAT to
normalize vessels avoided oncolytic vaccine therapy-induced
vascular regression and improved therapeutic efficacy
(Matuszewska et al., 2019). Thus, combinations of AAT and
ICI can be administered in various schedules to induce a greater
extent of vascular normalization while avoiding regression.

While in certain contexts the combination of ICI and AAT
prevents vascular regression caused by high levels of IFNγ or high
doses of AAT, respectively, in other contexts vascular regression
is dependent on the dose of AAT. Specifically, high doses of the
small-molecule tyrosine kinase VEGF inhibitor regorafenib
combined with ICI in HCC induced vascular regression
(Shigeta et al., 2020). Besides dose-dependent normalization,
the authors demonstrated that regorafenib induced CXCL10
expression in HCC cells. This chemokine binds to its receptor
CXCR3 expressed on circulating lymphocytes to increase their
trafficking to tumors (Shigeta et al., 2020). This study provides an
additional hypothesis for a feedback loop between T cells and
vascular normalization. Specifically, regorafenib and ICI
normalize the vasculature and increase CXCL10 expression
resulting in increased infiltration of T cells, which induce
additional vascular normalization. One AAT resistance
mechanism associated with gene expression changes, albeit in
stromal cells in this case, involves upregulation of the EGFR
pathway in endothelial and perivascular cells of lung
adenocarcinoma (Cascone et al., 2011). Accordingly, blocking
EGFR is effective for treating VEGF-resistant tumors and
combining EGFR inhibition with immunotherapies might
result in TME normalization. EGFR inhibition using fusion
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proteins or bispecific antibodies also targeting death receptors
(Bremer et al., 2005), immune checkpoints (Koopmans et al.,
2018), or CD47 (Hendriks et al., 2020) signaling have also been
developed and their vascular normalization properties should be
evaluated.

There is also preclinical evidence that other immunotherapies
besides ICI, when combined with AATs, reinforce vascular
normalization and induce CAF reprogramming. Specifically,
an anti-CD40 antibody, which promotes dendritic cell
maturation, antigen presentation and priming of T cells,
demonstrated normalization properties. In genetically
engineered colorectal cancer models, researchers demonstrated
that adding anti-CD40 antibody to combined anti-VEGF and
anti-angiopoietin two therapy fortified blood vessels even in non-
angiogenic tumors (Ragusa et al., 2020). Interestingly, in this
study AAT alone induced CAF reprogramming effects, and this
effect was increased with anti-CD40 antibody (Ragusa et al.,
2020). Of note, TME normalization was T cell independent, even
though the antitumor efficacy depended on T cells (Ragusa et al.,
2020). Nonetheless, the antitumor activity was also dependent on
angiogenic (i.e., angiopoietin 2) signaling (Ragusa et al., 2020). An
interesting aspect of this study is that the tumors were well-
perfused at baseline, so the increases observed in antitumor
activity appear to be from increased trafficking and infiltration
of T cells to tumors resulting from increased vessel maturity and
increased T cell migration resulting from reduced fibrosis
(Ragusa et al., 2020). Unlike in other studies, this study was
performed in well-perfused tumors and normalization did not
depend on T cells, so combination of anti-CD40 and ICI
therapies, such as through fusion proteins (Medler et al., 2022)
and bispecific antibodies (Salomon et al., 2022), might normalize
vessels through non-redundant mechanisms. Overall, these
studies demonstrate that immunotherapies enhance vascular

normalization and CAF reprogramming when combined with
AAT, and the resulting increase in antitumor efficacy can occur
through various mechanisms that can be independent of
increased perfusion and alleviated hypoxia.

DISCUSSION

TME normalization, which reduces hypoxia, is a potentially
promising approach to enhance responses to immunotherapy
based on the preclinical body of evidence, but clinical data
remains to be generated. Immune cells modulate tumor
vasculature. Accordingly, various immunotherapies including
ICIs, oncolytic viral vaccines, and immunostimulatory therapies
such as STING agonists induce antiangiogenesis, often through
IFNγ and CD8+ T cells, but also through promoting angiostatic
properties in TAMs. The tumor type and amount of IFNγ produced
seem to determine the extent of antiangiogenic effect, with large
amounts of IFNγ leading to vascular regression and hypoxia rather
than normalization and normoxia. In preclinical cancer models,
efficacious ICI stimulates CD8+ T cells and IFNγ production thereby
fortifying vessels with pericytes leading to increased perfusion. This
process could stimulate a positive feedback loop of increased T cell
recruitment and normalization. Further work could clarify how
different immune cells differentially regulate aspects of vascular
normalization, including vessel pruning and pericyte recruitment.
Additionally, the tumor type dependence and kinetics of vascular
normalization in patients must be studied further.

AAT and ICI combinations are efficacious through various
mechanisms and can induce vascular regression or normalization
(Supplementary Table S3). In either case, ICI contributes to the
fortification of blood vessels with pericytes and combination with
AAT increases immune cell recruitment. Fortifying vessels with

FIGURE 4 | Vascular fortification by immune checkpoint inhibition promotes vascular normalization by subsequent antiangiogenic therapy in hepatocellular
carcinoma. (A) Immune checkpoint inhibition monotherapy normalizes tumor blood vessels in various murine models of cancer by increasing the interaction between
endothelial cells and with perivascular cells in a CD8+ T cell dependent manner. (B) Following immune checkpoint inhibition with antiangiogenic therapy, such as the
small-molecule tyrosine kinase inhibitor sorafenib, increases the density of tumor blood vessels fortified by pericytes and antitumor efficacy in a CD8+ T cell
dependent manner. In contrast, sorafenib monotherapy induces vascular regression and does not induce an antitumor effect. Thus, vascular-fortifying ICI can shift the
effect of subsequent antiangiogenic therapy from vessel destruction to normalization.
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immunotherapies can help avoid excessive vessel pruning by high
doses of AAT. Alternatively, normalizing vessels with AAT can
inhibit vascular regression caused by subsequent
immunotherapy. These effects seem to depend on the tumor
type, treatment type, and kinetics of response. By understanding
these interactions, long-lasting normalization might be more
effectively achieved by combination immunotherapies with
AATs. To what extent CAF reprogramming therapy through
alleviation of hypoxia and immunosuppressive signaling can
increase the efficacy of combined AAT and ICI remains
unclear. Relatedly, further research should test whether
immunotherapies reprogram CAFs. The more effectively the
positive feedback loop of activated immune cells inducing
vascular normalization can be harnessed, the more effectively
immunotherapies can induce antitumor immunity.
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