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1 Introduction

1.1 Background

Hybrid systems constitute a particular class of systems, whose behavior is modeled
considering both discrete and continuous dynamics. In particular, such systems
involve a class of linear/nonlinear systems and result from the interaction of
continuous time subsystems with discrete events. More precisely, the internal
variable of each system is regulated by a set of differential equations. Each of the
separate systems are labeled as a discrete mode and the transitions between the
discrete states may result in a jump in the continuous variable.

Switched systems are considered as a subclass of hybrid systems; a switched
system is a dynamical system that consists of a finite number of subsystems or
modes and a logical rule that orchestrates switching between these subsystems.
The main property of switched systems is that these systems switch among a finite
number of subsystems and the discrete events interacting with the subsystems are
governed by a piecewise continuous function called the switching signal. However,
one can classify switched systems based on the dynamics of their subsystems, for
example continuous-time or discrete-time, linear or nonlinear and so on. Switched
linear systems (SLSs) are dynamical systems formed by a collection of linear
continuous state models which are switching among them according to a discrete
signal.

During the last decades and because of the great number of applications,
switched systems have been widely studied. In particular, switched systems have
applications in control of aeronautical and mechanical systems, automotive indus-
try, modelling of electronic switching systems and power converters. Considering
time-dependent switching signals lead to time-varying systems, but linearity is
not lost. Only when considering state dependent switching signals or when con-
sidering the switching signal as an input, one can arrive at a nonlinear system. In
this thesis, switched linear systems are considered whose switching is depending
on time. Therefore, the standard qualitative properties for standard systems can
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not be applied, but it is necessary to find specific tools for them. For a detailed
characterization of switched systems, cf. [46, 76, 127].

With the ever-developing technologies in various engineering applications
(microelectronics, micro-electro-mechanical systems, electromagnetism, fluid dy-
namics, control design, etc.), more and more mathematical systems with very
large dimensions have to be simulated and solved. In some cases, these systems
lead to analyzing large-scale and complex dynamical systems. Although, the
computational speed and performance of the modern computers are increasing;
simulation, optimization or real time controller design for such large-scale systems
are still difficult due to extra memory requirements and additional computational
complexity. Model order reduction (MOR) is a useful tool for dealing with such
complexity, wherein one seeks a simpler model that can then be used as an effi-
cient surrogate model to the original model, cf. [2, 3, 14, 107, 116] for motivations,
applications, restrictions and techniques of MOR.

Differential-algebraic equations (DAEs) have become an important tool for
modelling and simulation of constrained dynamical systems, such systems be-
long to a class of dynamical systems that are characterized by both algebraic and
differential constraints; DAEs are also known as descriptor systems or singular
systems. DAEs naturally occur when modelling linear electrical circuits, simple
mechanical systems or, in general, linear systems with additional linear algebraic
constraints. DAEs have been studied widely in both the engineering community,
and in the numerical linear algebra community. DAEs have then been discovered
to be suitable for modelling a vast variety of problem in economics [80, 81], demog-
raphy [24], mechanical systems [23, 39], multibody dynamics [35, 115], electrical
networks [5, 29, 34, 89], fluid mechanics [52, 79], chemical engineering [32, 91]
and they are also particularly important in the simulation and design of very
large-scale integrated circuits. The theory of DAEs is well developed and mature
cf. [23, 24, 25, 29, 41, 68, 108, 110] and the references therein.

Switched DAEs arise when the system changes suddenly and the switch-
ing between the systems is induced by faults or an external switching rule, cf.
[27, 28, 66, 75, 110, 141] for details. Switches or component faults induce jumps in
certain state variables, and it is common to define additional jump maps based
on physical arguments. In order to allow for jumps in the solution, the problem
is embedded into a distributional solution framework. It turns out that general
switched DAEs can have not only jumps in the solutions but also Dirac impulses
and/or their derivatives. In particular, the dynamics of switched descriptor sys-
tems are determined by the switching among different modes, where each mode
is characterized by a set of linear differential equations and algebraic constraints.
A mathematical representation of this class of systems can be obtained in terms of
switched linear differential-algebraic equations, cf. [22, 43, 86]. It can be shown
that the classical distribution space discussed in [118] is not sufficient as a solution
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space for switched DAEs (the reason is that this space is too large). Further-
more, the problem is solved in [135] where the author proposes the space of
piecewise-smooth distributions as an underlying solution space. Several modeling
and control aspects related to switched DAE have been considered in the literature,
e.g., [16, 19, 53, 77, 85, 132, 137, 138, 139, 149] and the references therein.

1.2 Realization theory

Realization theory is one of the main topics in control theory analysis, it involves
finding (necessary and sufficient) conditions to construct a (preferably) unique
minimal system which generates the specified input-output behavior of a certain
class cf. [66, 143]. Moreover, realization theory provides a theoretical analysis
for model reduction, system identification and filtering-observer design. In fact,
realization theory and model reduction are closely related to each other with
respect to the input–output behavior. Kalman, founder of modern control theory,
originally championed the realization theory. In [44], the minimal state-space
realization problem for (continuous) linear time invariant (LTI) systems was first
stated by hidden pole-zero cancellation techniques and in [66], the input-output
description reveals only the reachable and observable part of a dynamical system.
Recently, many approaches have been discussed for the realization theory of
hybrid/switched systems, e.g. in [10, 95, 96, 97, 98, 99, 100, 102, 146] and the
references therein.

The realization problem for hybrid systems was first formulated in [54] without
solution and the problem has evolved in many directions. Recently, in [95] the
author combines the theory of rational formal power series with the classical
automata theory to discuss the realization theory of hybrid systems. Unlike in the
classical case, the author studies realizability of a family of input-output maps
instead of a single input-output map. In particular, for most of the proposed
methods, the switching signals are viewed as “input”. Moreover, the authors in
[140] have discussed the detection of temporal properties for piecewise-constant
rank systems (PCR), indeed a PCR system differs from the switched linear system
because the time-instants are a priori fixed and the linear system over each time
interval is time-varying.

In contrast to the existing literature, this thesis is devoted to the cases where the
switched system is considered as a piecewise-constant time-varying linear system,
in particular, a minimal realization in general depends on the given switching
signal. Several minimal realization approaches have been developed in the context
of time-varying systems, and they are classified by constant rank systems, piece-
wise constant rank systems, global and intervalwise Kalman decomposition, cf.
[31, 64, 66, 67, 140]. Most available methods have considered differential Kalman
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decomposition and some drawbacks are summarized in [64]. It is well known that
realization theory of a system class relies on the reachability and observability of
that system class. However, some unified approaches towards reachability and
observability have been studied actively during the past couple of decades for
switched systems as well as switched DAEs, cf. [17, 19, 70, 71, 72, 73, 130, 133].

To the authors’ knowledge, there are few results available for realization theory
of the system class considered in this thesis. Hence, it is essential to focus more on
such classes of switched systems.

1.3 Model reduction

Model reduction has been studied for decades by researchers from multidisci-
plinary fields which include mathematicians, scientists and engineers from widely
different communities. System-theoretic MOR approaches usually deal with a
system under investigation described as a large-scale set of ordinary differen-
tial/difference equations (ODEs) or differential/difference-algebraic equations,
whose dynamics are expressed in terms of a set of state variables.

The main objective for MOR is to derive some reduced order model (ROM)
characterized by a significantly smaller number of states, and whose response
approximates the original system response according to well defined criteria. In
this setting, a reduction is required in order to replace the original large-scale
description of individual components with an accurate and robust reduced model,
so that a global system-level numerical simulation becomes feasible. That is, given
a full order model, the objective of model reduction is to find a ROM such that the
input-output behavior of these two models are close in some appropriate sense.
Model reduction methods are quite well developed for linear systems as well as
time-varying systems. Some well known methods are reviewed in the following
which will be recalled later in this thesis.

Time-invariant systems

There are two well known model reduction methods for linear systems which are
currently in use: singular value decomposition (SVD) based and Krylov subspace
based methods, for an overview cf. [2, 15, 55, 145].

One of the most common approach of the SVD-based methods is the so-called
balanced truncation (BT), which was first introduced by Mullis and Robert in [87,
88], and later in the systems and control literature by Moore in [84]. The key
steps in this technique are the computation of the so-called Hankel singular values
(HSVs) which are the eigenvalues of the balanced reachability and observability
Gramians. Then, one can identify which states are difficult to control and difficult
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to observe (and vice versa). In particular, the states are ordered on the basis of
their influence on the input-output behavior according to the singular values of
the Hankel operator, which is the operator that maps past inputs energy to future
outputs energy. These energy functions are quadratic functions characterized by
the so-called reachability and observability Gramians. Then, by truncating the
states corresponding to the smallest Hankel singular values, a reduced model is
obtained which then approximates the given original system. Nowadays, balanced
truncation is considered as a popular projection-based method for its simplicity;
the construction is based on simple linear algebra decomposition’s and there is
no need to first choose a set of essential parameters. Furthermore, it has several
desirable theoretical properties such as preservation of stability and availability of
an error bound, cf. [14, 36, 45, 94]. The Gramian-based methods include optimal
Hankel norm approximation [45], frequency weighted balanced truncation [36],
singular perturbation approximation [78], dominant subspaces projection [93],
dominant pole algorithm [111], positive real [55], bounded real [90].

Another important category for model reduction is the Krylov subspace based
model reduction. Nowadays, moment matching using Krylov subspaces is one
of the best choices for reduced order of large-scale systems, cf. [30, 37, 40, 105].
This approach consists in projecting the dynamical system onto Krylov subspaces,
computed by an Arnoldi [38] or Lanczos process [7]. Then, the reduced system is
obtained by matching the moments (and/or Markov parameters) of the original
and reduced systems where the moments are the coefficients of the Taylor series
expansion of the transfer function around a suitable expansion point. One very
clear disadvantage of Krylov subspace methods is that the dimension of Krylov
subspaces quickly becomes large, in many cases even prohibitively large. Unlike
the SVD-based methods, stability of the reduced model constructed by Krylov
methods is not guaranteed and no a prior error bound exists, cf. [4, 6, 63, 123].

Time-varying systems

Balanced truncation for linear time-varying systems has been developed in e.g., [61,
94, 121, 122, 142]. In [121] and [142], input-output balancing was discussed for
various Gramians, and some necessary and sufficient conditions are given for
input-output balancing. In particular, model reduction is considered there for
exponentially stable and uniformly completely reachable and observable systems.
In [142], three different types of time-varying balancing are proposed, so-called
fixed-interval, infinite-interval and sliding-interval balancing, based on three different
approaches for computing the time-varying Gramians. Furthermore, in [121]
uniform and infinite-interval balanced realizations are investigated, and stability
of the reduced system is studied in [122]. In this thesis, a switched system is
considered as a special class of a time-varying system.
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Differential-algebraic equations

Balanced truncation based model reduction technique for DAEs was first intro-
duced in [82, 125] and then, it is studied extensively in [13, 82, 126]. In the context
of DAEs, balanced truncation can be applied by decoupling the DAEs into the
slow and fast subsystems, and then reduce them separately. In practice, it is not
necessary to compute these subsystems explicitly since it is an expensive task and
numerically ill-conditioned for large-scale systems. Instead, one can define two
pairs of reachability/observability Gramians, and then by truncating the states of
the balanced system corresponding to the small Hankel singular values, one can
then approximate a reduced system for the given DAEs.

Switched linear systems

During the last few years, considerable attention has been dedicated to the prob-
lem of model reduction for switched linear systems and some techniques have
been proposed. In the context of switched linear systems, almost, all model re-
duction techniques are made for an input-output approach. One idea of them is
to reduce independently each subsystem alone, and construct desired reduced
system by collecting all reduced subsystems. In that case, the switching signal
is just reproduced into the reduced model, and then for the same input, both
subsystems and corresponding reduced subsystems will have outputs which are
very close with respect to a certain norm. Then, one can use the available best
model reduction approach; balanced truncation or Hankel norm approximation.
Another approach is to consider the whole system at once, in that case, the original
switched system is equivalent to the special class of time-varying system. In
particular, for each switching time interval the systems are given by the linear
time-invariant system.

Recently, much work has been done in the area of model reduction for switched
linear systems, the related work can be categorized as follows. In [92], a model
reduction approach has been proposed for switched systems with autonomous
switching which depends on continuous outputs. In [83], a simultaneous balancing
transformation is proposed which is based on reachability/observability Gramians
for each mode (in same dimension) and the assumption that all Gramians can
simultaneously be transformed into a diagonal form. In [106], new reachability
and observability Gramians in a bilinear framework have been introduced for
linear switched systems and the reduced model is constructed by computing
global projection matrices from the Gramians which satisfies generalized Lya-
punov equations. An interesting model reduction method utilizing a so-called
envelope system for switched linear systems is proposed in [117], which is based
on the idea of embedding the solution behavior of the switched system into the so-
lution behavior of a certain non-switched system; then standard model reduction
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techniques can be applied to the envelope system.
Generalized Gramians-based approaches are proposed in e.g., [11, 47, 51, 101,

103, 119, 120], those approaches are considered only for quadratically stable sys-
tems, and the Gramians are then the solutions of certain linear matrix inequalities
(LMIs). Furthermore, an improvement of the underlying approaches are reviewed
in e.g., [48, 49, 50, 114] by introducing new Gramians and its system-theoretical
properties; again, certain stability assumptions are made.

None of above model reduction approaches consider the switched system as
a piecewise-constant linear time-varying system, i.e. the question how to reduce
a switched system for a given (and known) switching signal. Later, it will be
seen that the specific mode sequences as well as the mode durations influence the
size of the minimal realization, hence it is reasonable to conclude that in case of
a known switching signal, the size of a reduced system which approximates the
original input-output behavior sufficiently well, will also depend on the particular
switching signals. Consequently, it can be shown that all of the above approaches
will usually not result in the “best” reduced model for a specific switching signal.
This motivates to study the minimal realization and model reduction for a class of
switched systems with jumps.

Overall the motivation of this thesis is: Starting from non-minimal switched
linear systems, new algorithms are developed to find a minimal realization which
has the same response characteristics and capture some features of the original
system. Later, balanced truncation is utilized to reduce the minimal system into a
lower dimensional system that preserves the main characteristics of the original
system.

1.4 Contribution of the thesis

So far, from the overview of the previous section, it can be concluded that real-
ization theory and model reduction method for switched systems with known
switching signal are not available in the existing literature. In particular, the
time-varying nature of switched systems is not investigated.

The main objective of this thesis is thus to develop methods of realization theory
as well as model reduction procedure of switched systems. In particular, this thesis
is concerned about switched systems, given by ordinary differential equations with
jumps, or differential-algebraic equations. Herein, two distinct parts are pursued.
First, reduced realization of switched linear systems with known switching signal
are developed by defining suitable reachable/unobservable subspaces. Secondly,
model reduction techniques are discussed for both switched linear systems and
switched DAEs as well. These contributions are discussed in Sections 1.4.1 and
1.4.2, respectively.
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1.4.1 Reduced realization for switched linear systems

In the first part of the thesis (Chapters 3 and 4), realization theory is developed for
switched linear systems with jumps where the switching signal is assumed to be
fixed with known mode sequence. As mentioned above, switched linear systems
are considered in this thesis as a piecewise-constant time-varying linear system.
It is well known that a minimal realization for linear systems is just given by its
reachable and observable parts. However, in the context of switched systems,
this property is not true, even if each of the modes are reachable and observable
independently.

In Chapter 3, switched linear systems with a single switch are considered.
The problem of minimal realization is discussed and some results are presented.
The key idea is to extend the reachable subspace of the second mode to include
nonzero initial values (resulting from the first mode) and also extend the observ-
able subspace of the first mode by taking information from the second mode
into account. Moreover, the process of going from a non-minimal representation
(with initial value zero) to a minimal one can be seen as removing “unreachable”
and “unobservable” states. A minimal realization is obtained by first reducing
the input-extended second mode, then reducing the output-extended of the first
mode and finally, reduce the jump map between the modes. Furthermore, the
method can be applied in arbitrary switching time duration wherein the overall
time duration for the switched linear system is finite and given.

In Chapter 4, switched linear systems with mode-dependent state dimensions
and/or state jumps are considered and a method is proposed to obtain a switched
system of reduced size with identical input-output behavior. In particular, the
method of Chapter 4 is very different and not directly comparable with the method
used in Chapter 3. The time-varying reachable and unobservable subspaces for
switched systems are reviewed and suitable extended reachable and restricted
unobservable subspaces are defined. Then, a weak Kalman decomposition is in-
troduced based on the extended reachable and restricted unobservable subspaces,
and a reduced realization is obtained which has same input-output behavior as
original systems. A key feature of the approach is that only the mode sequence of
the switching signal needs to be known, not the exact switching times. However,
the size of a minimal realization will in general depend on the mode durations,
hence, it cannot be expected that the method always leads to minimal realization.
Nevertheless, it is shown that the method is optimal in the sense that a repeated ap-
plication does not lead to a further reduction. Furthermore, a practically relevant
special case is highlighted, where minimality is achieved. Finally, motivated by an
example it is conjectured that the reduced switched system has a minimal order
for almost all switching time duration.
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1.4.2 Model reduction for switched systems

Contrary to the previous section, the second part of the thesis deals with the devel-
opment of model reduction techniques for switched systems where a coordinate
transformation is investigated to find an approximation for the given switched
system. As mentioned earlier, in this thesis switched systems are considered
as a special class of time-varying systems, so it is expected that the coordinate
transformation is also time-varying.

In Chapter 5, a time-varying approach is proposed to find a reduced model
for switched linear systems. The key idea is first to approximate the piecewise-
constant coefficient matrices of the switched linear system by continuously time-
varying coefficient matrices and then apply available balanced truncation for
(continuously) time-varying linear systems. The method provides a good reduced
system which approximates the original switched system. It is shown that the
original system and its approximation preserve some error bounds. However,
the reduced system is not a simple switched system anymore, therefore, another
method is investigated in Chapter 6.

In Chapter 6, a novel model reduction approach is investigated for switched
linear systems with known mode duration. The propose method is based on a
suitable definition of (time-varying) reachability and observability Gramians and
it is shown that these Gramians satisfy precise interpretations in terms of input
and output energy. Based on balancing the midpoint Gramians, a mode-wise
model reduction is proposed to obtain a switched linear system of smaller size
which then approximates the original system.

In Chapter 7, switched DAEs in continuous time are considered and the aim is
to find a reduced realization as well as a lower dimensional model for switched
DAEs. First, it is shown that the given switched DAE is input-output equivalent
to a switched ODE with jumps and impulses which has input dependent jumps
and Dirac impulses in the output. Under some conditions, these additional terms
can be avoided to obtain a switched ODE with jumps and impulses. Secondly, a
model reduction method via the techniques given in Chapter 6 is applied to obtain
a good approximation and thereto, unreachable inconsistent states are removed
first via the method discussed in Chapter 4.

In Chapter 8, a model reduction approach for singular linear switched systems
(SLSSs) in discrete time is proposed. The result relies on the assumption that the
given SLSS is jointly index-1. The key idea of the proposed method is to use first
the one-step-map from [1] and find a time-varying system which has identical
input-output behavior as the given SLSS. Then, available balanced truncation for
time-varying systems in discrete time is adapted; moreover, the initial/final values
given in Chapter 5 are also considered for the computation of forward reachability
and backward observability Gramians.
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1.5 Origins of the chapters

The following parts of this thesis are already published or submitted for publi-
cation. Chapter 3 has been presented at the European Control Conference (ECC
2021) and published in [59]. A brief version of Chapter 4 will be presented at the
10th International Conference on Mathematical Modelling (MATHMOD 2022) in
Vienna, Austria, and this chapter has also been submitted for journal publication.
A brief version of Chapter 5 has been presented at IFAC World Congress 2020 and
published as [58]. Chapter 6 has been submitted for journal publication. Chap-
ter 7 is currently under preparation for journal publication. Chapter 8 has been
accepted to 25th International Symposium on Mathematical Theory of Networks
and Systems (MTNS 2022), Bayreuth, Germany. All publications are joint work
with Stephan Trenn and Chapter 8 is also joint work with S. Sutrisno.



2 Preliminaries

2.1 Introduction

This chapter discusses the preliminaries required for the development of realiza-
tion theory in Chapters 3, 4, and model reduction procedures in Chapters 5, 6, 7
and 8. The notation as used throughout this thesis is introduced in Section 2.2.
Section 2.3 contains the system classes which are considered in this thesis. In
Section 2.4, some important notions for reachability, observability and minimality
are given.

2.2 General notation

In this section, some notation is given which will be used throughout the thesis.
More specific notation that is used in one or only a few chapters will be defined
within the chapters themselves.

The sets of natural, real, and complex numbers are defined by N, R, and C,
respectively. Let Rn (Cn) denote the linear space of vectors with n real (complex)
components. Moreover, the set of real (complex) m × n matrices is denoted
by Rm×n (Cm×n). Let S be a subspace of Rn, then S⊥ denotes the orthogonal
complement of S in Rn with respect to the usual scalar inner product ⟨x, y⟩ = x⊤y.

For a matrix A, A⊤ denotes the transpose of A. The image of a matrix A ∈ Rm×n

is denoted by imA and defined as

imA =
{
Av ∈ Rm

∣∣ v ∈ Rn
}
⊆ Rm.

The kernel of A is denoted by kerA and defined as

kerA =
{
v ∈ Rn

∣∣ Av = 0
}
⊆ Rn.
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For some matrix M ∈ Rm×n and set M ⊆ Rn, the image of M under M

is MM := { Mx | x ∈ M } and for M ⊆ Rm the preimage of M under M is
M−1M := { x ∈ Rn |Mx ∈ M }.

Let M,N be two subspaces of a vector space V , then the sum of the subspaces
M and N is defined by

M +N =
{
m+ n

∣∣ m ∈ M,n ∈ N
}
.

Furthermore, if M ∩ N = {0}, then the sum is called direct and is denoted as
M ⊕N .

The class Lm
2 (I) represents the class of functions x : I → Rm for some I ⊆ R

which are bounded in the L2 norm, denoted by ∥x∥2 and defined as ∥x(t)∥22 :=∫
I
|x(t)|2 dt; |x| is used for absolute value. The notations x(t−) and x(t+) denote,

respectively, the left- and right-sided limit of x at t, where it is implicitly assumed
that they exist when used.

2.3 System classes

In this thesis, different system classes are considered in the scope of realization
theory and model reduction. The system classes considered in this thesis are
presented briefly in this section.

Linear time-invariant systems In continuous time, a linear time-invariant (LTI)
system is a set of differential equations of the form

ẋ(t) = Ax(t) +Bu(t), t ∈ R,
y(t) = Cx(t) +Du(t),

(2.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m. Here, A is the system
(state) matrix, B the input (control) matrix, C the output matrix, and D the feed-
forward matrix. The state x(t) is in the n-dimensional state-space represented by
a vector whose evolution in time follows a state vector trajectory. A time-invariant
system is asymptotically stable if all the eigenvalues of the system matrix A have
negative real parts. All solutions of the system are continuous and differentiable
almost everywhere. Solutions depend on x(0) = x0 and on u(·). Such systems are
often denoted by (A,B,C,D).

Linear time-varying systems For a time-varying system the matrices A, B, C
and D are varying over time, in contrast to a time-invariant system (where the
matrices have constant entries). Such systems are the subject of Chapter 5 and
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have the state-space model

ẋ(t) = A(t)x(t) +B(t)u(t), t ∈ R,
y(t) = C(t)x(t) +D(t)u(t),

(2.2)

where A(t) ∈ Rn×n, B(t) ∈ Rn×m, C(t) ∈ Rp×n, D(t) ∈ Rp×m, in particular, the
state dimension is constant over time.

Generalized state-space system Generalized state-space systems (or descriptor
systems, or differential-algebraic equations) are characterized by the equation

Eẋ(t) = Ax(t) +Bu(t), t ∈ R,
y(t) = Cx(t) +Du(t),

(2.3)

where E and A not necessarily have to be square. However, only square systems
are considered in this thesis.

If E is nonsingular, the generalized state-space system can be transformed into
the state-space form (2.1). By convention, the system is in this case said to be of
index zero.

If E is not invertible, the system containes some algebraic equations in addition
to the differential equations. Such systems are the subject of Chapter 7, and the
discrete time case is considered in Chapter 8.

Switched linear systems

Before introducing ”general” switched linear systems, first the so-called switching
signal needs to be introduced.

Assumption 2.1 (Switching signal). The switching signal σ : R → N is right-
continuous and in each compact interval there are only finitely many discontinu-
ities.

If σ is constant on (−∞, s0) for some s0 ∈ R, then the above standard as-
sumptions guarantee that the set of all switching times of σ can be written as{
sk ∈ R

∣∣ k ∈ N
}

with sk < sk+1 for all k ∈ N. Let τk := sk+1 − sk denotes the
mode duration of mode k. A switching signal σ : [t0, tf ) → {0, 1, · · · ,m} is said to
be in standard form if

σ(t) = k for t ∈ [sk, sk+1),

where s0 := t0 and sm+1 := tf .
For example, a switching signal σ : R → {0, 1, 2} is illustrated in Figure 2.1

with switching time intervals τi, i = 0, 1, 2.
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t

σ(t)

t0 s1 s2 tf

τ0

τ1

τ2

0

1

2

Figure 2.1: Switching signal σ : R → {0, 1, 2} with intervals τ0, τ1, τ2 between
switches.

Definition 2.2 (Switched linear systems). A switched linear system is a dynamical
system given by

Σσ :

{ ẋk(t) = Aσ(t)xk(t) +Bσ(t)u(t), t ∈ (sk, sk+1),

xk(s
+
k ) = Jσ(s+k ),σ(s−k )xk−1(s

−
k ), k ∈ N,

y(t) = Cσ(t)xk(t) +Dσ(t)u(t), t ∈ R,

(2.4)

where σ : R → M = {0, 1, 2, . . . ,m} ⊆ N is the given switching signal with finitely
many switching times s1 < s2 < · · · < sm in the bounded interval [t0, tf ) of interest
and xk : (sk, sk+1) → Rnk is the k-th piece of the state (whose dimension nk may
depend on the mode k).

For notational convenience, let s0 := t0, sm+1 := tf and let the duration of mode
k be denoted by τk := sk+1 − sk, k ∈ {0, 1, . . . ,m}. In the context of realization
theory and model reduction, it is common to assume that the system starts with a
zero initial condition, i.e. set x−1(t

−
0 ) := 0. The input and output are given by u

and y, respectively.
For each mode p ∈ {0, 1, 2, . . . ,m}, the system matrices Ap, Bp, Cp, Dp of appro-

priate size describe the (continuous) dynamics corresponding to the linear system
active on the interval (sk, sk+1) where σ(t) = p. Furthermore, Jp,q : Rnq → Rnp

is the jump map from mode q to mode p. Note that due to the different space
dimensions the introduction of a jump map is necessary; on the other hand, in
case all state dimensions are equal, the consideration of a jump map is “optional”
and leads to so called impulsive systems.

It will be assumed in the thesis that the switching signal is fixed, hence by
suitable relabeling of the matrices, it is assumed that σ(t) = k on (sk, sk+1). Conse-
quently, one can simply write Jk := Jσ(s+k ),σ(s−k ) = Jk,k−1 and Ĵk := Ĵσ(s+k ),σ(s−k ) =

Ĵk,k−1 in the following.
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Furthermore, in some slight abuse of notation, one can speak in the following
of the solution x(·) instead of the different solution pieces xk(·). The solution
of switched linear system (2.4) is given recursively by, for t ∈ [sk, sk+1) and
k = 1, . . . ,m,

x(t) = eAk(t−sk)Jkx(s
−
k ) +

∫ t

sk

eAk(t−s)Bku(s) ds, (2.5)

and the output equation is given by

y(t) = Ckx(t) +Dku(t), t ∈ [sk, sk+1), k = 0, 1, . . . ,m. (2.6)

2.4 Reachability, observability and minimality

The notions of reachability and observability of state-space system are central
topics in standard realization theory. Furthermore, reachability and observability
as well as minimality of systems are considered in the scope of model reduction.
It is well known in system theory for continuous time systems that the concepts
of controllability/ reachability are dual to determinability / observability, but for
switched systems this is not the case, c.f. [70].

2.4.1 Reachable and unobservable subspaces

Before introducing the reachable and unobservable subspaces, the following nota-
tion concerning A-invariant subspaces is introduced.

Definition 2.3. For A ∈ Rn×n and a subspace L ⊆ Rn, let

⟨A | L⟩ := L+AL+ · · ·+An−1L

be the smallest A-invariant subspace containing L. Furthermore, let (here A−1

stands for the preimage, it is not assumed that A is invertible)

⟨L | A⟩ := L ∩A−1L ∩ · · · ∩A−(n−1)L

be the largest A-invariant subspace contained in L.

Reachability investigates to what extent one can influence the state by a suitable
choice of the control.

Definition 2.4. An LTI system (2.1) is said to be reachable in [t0, tf ], if for all
xt ∈ Rn, there exists an input u : [t0, tf ] → Rm such that the system is driven from
initial state x(t0) = 0 to the final state x(tf ) = xf .
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Theorem 2.5 ([124]). The system (2.1) is reachable if and only if

⟨A | imB⟩ = imB +A(imB) + · · ·+An−1(imB) = Rn.

In particular, the reachability matrix

C(A,B) :=
[
B AB · · · An−1B

]
is of full rank, i.e., rank C(A,B) = n and so im C(A,B) = ⟨A | imB⟩ = Rn.

Observability is the dual concept of reachability in the system-theoretic sense.
Observability investigates to what extent it is possible to reconstruct the state x

when the input u and the output y are known. One often can measure the output
and prescribe the input, whereas the state variable is hidden.

Definition 2.6. An LTI system (2.1) is said to be observable in [t0, tf ], if for any
given input u the initial state x(t0) can be uniquely determined from the observed
output y on [t0, tf ].

Theorem 2.7 ([124]). The system (2.1) is observable if and only if

⟨kerC | A⟩ = {0}.

Actually, the largest A-invariant subspace contained in kerC can also be written
as

⟨kerC | A⟩ = kerO(C,A),

where O(C,A) =


C

CA
...

CAn−1

 is the observability matrix.

Note that similarity transformations do not affect reachability and observabil-
ity.

2.4.2 Minimality

The notion of minimal realization is motivated by finding a system of smallest
state-space dimension which has the same input-output map as a given system.
For a given input-output map, minimality is characterized as follows.

Theorem 2.8 ([2]). A state-space realization is minimal if and only if it is reachable and
observable.

Consider the linear system (2.1) with system matrices A,B,C,D. The well
known Kalman decomposition (KD), first established by Kalman [66], gives a
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coordinate transformation

T =
[
V1 V2 V3 V4

]
,

where im V2 is the intersection of the reachable and unobservable subspace,
im[V1 V2] is the reachable subspace and im[V1 V3] is the unobservable sub-
space. Then, the system matrices A,B,C,D can be transformed to the following
block triangular form

(T−1AT, T−1B,CT,D)=



A11 A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A44

,

B1

B2

0

0

, [0 C2 0 C4
]
, D

,

where
([

A11 A12

0 A22

]
,

[
B1

B2

])
is reachable and

([
A22 A24

0 A44

]
,
[
C2 C4

])
is observ-

able. In fact, a minimal realization is now given by (A22, B2, C2, D).

2.4.3 Reachability and observability Gramians

Definition 2.9. Consider the system (2.1) with zero initial value on the interval
[t0, tf ]. Then, the reachability function F t

r : Rn → R is defined by, for some
t ∈ [t0, tf ]

F t
r (xt) = inf

u

∫ t

t0

u(τ)⊤u(τ) dτ,

where u : [t0, t) → Rm is an input signal that steers the system from x(t0) = 0 to
x(t) = xt.

Theorem 2.10 ([2, 84]). Assume that the system (2.1) is reachable then

P (t) :=

∫ t

t0

eA(τ−t0)BB⊤eA
⊤(τ−t0) dτ

is positive definite, and the reachability function satisfies

F t
r (xt) = xT

t P (t)−1xt.

Here, P (t) is called the reachability Gramian.

This relation states that any state xt that lies in an eigenspace of P (t)−1 corre-
sponding to large eigenvalues (which are equal to the eigenvectors of P (t) with
small eigenvalues) requires more input energy to control. The reachability function
thus gives the least amount of energy needed to reach a certain state xt.
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Lemma 2.11 ([2]). Consider the system (2.1) with the reachability Gramian P (t) for
some t ∈ [t0, tf ], the input

u(t) := B⊤eA
⊤(tf−t)P (tf )

−1(xf − eA(tf−t0)x0)

steer the system from x(t0) = x0 to x(tf ) = xf on the interval [t0, tf ] and that this is
the input with minimal energy

∫ tf
t0

u(τ)⊤u(τ)dτ = (xf − eA(tf−t0)x0)
⊤P (tf )

−1(xf −
eA(tf−t0)x0) achieving this.

The observability function gives the output energy associated to some state xt.

Definition 2.12. Consider a solution of the system (2.1) with zero input on the
interval [t, tf ], then the observability function F t

o : Rn → R is defined as, for
t ∈ [t0, tf )

F t
o(xt) =

∫ tf

t

y(τ)⊤y(τ) dτ,

where y(t) is the output of (2.1) for x(t) = xt.

Theorem 2.13 ([2, 84]). Consider a system (2.1) and let

Q(t) :=

∫ tf

t

eA
⊤(tf−τ)C⊤CeA(tf−τ) dτ

which is positive semidefinite. Then, the observability function is given by

F t
o(xt) = x⊤

t Q(t)xt.

Here, Q(t) is called the observability Gramian and the system is observable if Q(t) is
positive definite.

Similar to reachability, the state that lies along one of the eigenvectors of Q(t)

with small eigenvalues is difficult to observe. Therefore, the states that are difficult
to control and observe are less important. In particular, the balancing-based MOR
methods are based on identifying and truncating the less important states from the
systems. This observation suggests that reduced order models may be obtained by
eliminating those states that are difficult to reach or difficult to observe, for details
c.f. [36, 45, 84, 148].

If all the eigenvalues of A in (2.1) have negative real part, it can be shown that
for t → ∞, the matrix P (t) converges to a constant matrix P and, for t → −∞,
the matrix Q(t) converges to a constant matrix Q, and they satisfy the following
algebraic Lyapunov equations

AP + PAT +BBT = 0, (2.7)

ATQ+QA+ CTC = 0. (2.8)
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Moreover, the Lyapunov equations can be solved by direct solvers cf. [8, 56] as
well as iterative solvers cf. [14, 62].

Remark 2.14. In case of infinite time interval, asymptotic stability guarantees the
existence (i.e., boundedness) of the Gramians whereas the property positive definite
ensures reachability/observability of systems.

Clearly, the combination of the reachability and observability functions pro-
vides a characterization of the importance of the state components with respect
to the input-output behavior. In general, it is not easy to identify importance of a
state in arbitrary coordinates from an input-output perspective.
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3 Reduced realization for switched linear
systems with a single switch

3.1 Introduction

As discussed in Chapter 1, realization theory is a classical topic in the area of
systems and control. In general, the aim of realization theory is to construct a
state-space model from a given input-output behavior of a system.

Realization theory of switched systems has already been discussed in e.g.,
[10, 95, 97, 98, 99, 102] and the references therein. In particular, the cases of
arbitrary and constrained switching are discussed where the switching signal is
considered as an input. This consideration of the switching signal as an “input”
is a common viewpoint in most of the existing works, i.e. it is not possible to use
these results when trying to find a (minimal) realization for a given switching
signal (or given mode sequence).

In contrast to much of the existing literature on switched systems, in this thesis,
a switched linear system is viewed as a piecewise-constant time-varying linear
system, in particular, a (minimal) realization in general depends on the specifically
given switching signal. It is well known that finding a minimal realization (which
can be interpreted as removing unobservable and unreachable states) is a first
step towards model reduction (which furthermore reduces difficult to observe and
difficult to reach states).

To be more specific, the switched linear system (2.4) (from Chapter 2) is con-
sidered with a single switch and the main goal is to find a reduced size switched
system (for the same switching signal) of the form

Σ̂σ :

{ ˙̂xk(t) = Âσ(t)x̂k(t) + B̂σ(t)u(t), t ∈ (sk, sk+1),

x̂k(s
+
k ) = Ĵσ(s+k ),σ(s−k )x̂k−1(s

−
k ),

y(t) = Ĉσ(t)x̂k(t
+) +Dσ(t)u(t), t ∈ [sk, sk+1),

(3.1)

which has the same input-output behavior as the original system (2.4).
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It is well known that the feedthrough term Dku does not play any role in the
analysis of realization theory as well as model reduction, hence in the following,
this term is avoided.

This chapter is organized as follows. In Section 3.2, the problem formulation
and preliminaries are given with the characterization of reachability and observ-
ability of SLSs. Section 3.3 discusses the main results with the proposed algorithm
and some simulation results.

3.2 Problem setting

In this section, some notions and challenges related to reduced realization of
switched linear systems of the form (2.4) are introduced. The formal definition of
reduced realization is given at first.

Definition 3.1 (cf. [95]). Given the switched linear system (2.4), the total dimension
is defined as

dimΣσ :=
∑
k∈M

nk.

Furthermore, its input-output behavior is given by

Bio
σ :=

{
(u, y)

∣∣∣∣ ∃ xk : (sk, sk+1) → Rnk satisfying (2.4)
and x(t−0 ) = 0

}
.

A switched linear system Σ̂σ with corresponding input-output behavior B̂io
σ is

said to be a reduced realization of switched system Σσ if
1) Bio

σ = B̂io
σ and

2) dim Σ̂σ ⩽ dimΣσ .

In the following, minimal realizations for the single switch case will also be
discussed, which are reduced realization of smallest total dimension under all
reduced realizations. It should be noted that, at this point it is not clear that the
sequence of reduced state dimensions is unique for a minimal realization.

For non-switched linear systems, it is well known that a realization is minimal
if, and only if it is reachable and observable. However, for switched linear systems
with single switch case, this is not the case in general as the following example
shows.



3.2. Problem setting 25

Example 3.1. Consider a switched linear system with two modes

(A0, B0, C0) =

0.1 0 0

0 0.2 0

0 0 0.3

 ,

10
1

 ,
[
1 1 0

] ,

(A1, B1, C1) =

0.2 0 0

0 0.1 0

0 0 1

 ,

01
0

 ,
[
1 0 1

] , J1 =

2 0 0

0 3 0

0 0 5


and the single switching signal

σ(t) =

{
0, on (t0, s1),

1, on (s1, tf ).
(3.2)

It is easily seen, that each mode is unreachable and unobservable. However,
the switched system is reachable in the sense that each value x(t−f ) ∈ R3 can be
reached from zero by a suitable input and it is also observable in the sense that
(for a vanishing input) only a zero initial value leads to a zero output.

On the other hand, the second state is unreachable in the 1st mode and unob-
servable in the 2nd mode. In particular, when starting with a zero initial value,
for any input the value of the second state does not effect the output (because in
the first mode it is identically zero and in the second mode the corresponding
coefficient in the C-matrix is zero). Therefore, one can remove the second state
without altering the input-output behavior.

Remark 3.2. The above definition of reduced realizations is not specifying any
method how to obtain a reduced realization from a given switched system. In
particular, it does not take into account constraints like the requirement that the
reduced state is obtained via a uniform projection map (cf. [49, 50] in the context
of model reduction). In general, a reduced realization can only be obtained by
considering each mode individually (and by properly taking into account the
effect from the other modes).

It is important to note that a naive approach to reduce each individual mode
by removing unreachable and unobservable states will not work in general, this is
illustrated with the following example.

Example 3.2. Consider a switched linear system with modes

(A0, B0, C0) =

([
1 0

0 0

]
,

[
1

1

]
,
[
1 0

])
,

(A1, B1, C1) =

([
1 0

0 0

]
,

[
1

0

]
,
[
1 1

])
,



26 3. Reduced realization for switched linear systems with a single switch

with switching signal (3.2) and without jump.
It is clearly observed that the second state is not observable in the first mode

and not reachable in the second mode, hence one may be tempted to remove this
state to obtain an (unswitched) minimal realization given by

ẋ1 = x1 + u, y = x1. (3.3)

However, it is easily seen that a non-zero input leads to a non-zero second state
during the first mode, which then will effect the output of the second mode, i.e.
system (3.3) obtained by simply reducing each mode individually does not have
the same input-output behavior as the original switched system.

Another important challenge for obtaining a reduced realization is the fact,
that even when one starts with a classical switched system (i.e. all states have the
same dimensions and the jump map is the identity), a reduced realization may
have different state-space dimensions and/or requires the definition of a jump
map. This is illustrated with the following example.

Example 3.3. Consider a switched linear system with two modes

A0 = A1 =

0 0 0

1 0 0

0 0 0

 , B0 = B1 =

10
0

 ,

C0 =
[
0 1 0

]
, C1 =

[
1 0 0

]
,

with switching signal (3.2) and without jumps. It is easily seen that the first mode
corresponds to a double integrator, while the second mode corresponds to a single
integrator. Hence, a minimal realization is given by the following switched linear
system with mode-dependent state dimensions:

on [t0, s1) :

ż0 =

[
0 0

1 0

]
z0 +

[
1

0

]
u,

y =
[
0 1

]
z0,

∣∣∣∣∣∣∣∣∣∣
on [s1, tf ) :

ż1 = 0 · z1 + u,

y = z1,

with z1(s1) =
[
1 0

]
z0(s1).

The possible mode-dependence of a reduced realization is the main motivation
to study switched system (2.4) with mode-dependent state dimensions and jumps,
so that both systems (original system and the reduced realization) are from the
same overall system class.

In Section 3.3, a method will be proposed which takes into account the effect of
the different modes have on each other. Although, this method will not simply
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consider a minimal realization of each mode individually, the method of reducing
a given (unswitched) linear system to a minimal one will play an important role
and is recall first.

3.3 Minimal realization

The minimal realization of a linear system with non-zero initial values is given
in Section 3.3.1 and the minimality for switched linear systems is discussed in
Section 3.3.2.

3.3.1 Minimal realization for linear systems

Consider a linear system

Σ :

{
ẋ(t) = Ax(t) +Bu(t), x(0) = 0,

y(t) = Cx(t),
(3.4)

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n.
As discussed in Section 2.4.2, the well known Kalman decomposition (KD)

is a coordinate transformation x = Tz which leads the system matrices to the
following form

(T−1AT, T−1B,CT ) =



A11 A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A44

 ,


B1

B2

0

0

 ,
[
0 C2 0 C4

] ,

where
([

A11 A12

0 A22

]
,

[
B1

B2

])
is reachable and

([
A22 A24

0 A44

]
,
[
C2 C4

])
is observ-

able. A minimal realization of (3.4) is now given by (A22, B2, C2).
This method is based on the assumption that the initial value is zero. If arbitrary

initial values are considered, it is easy to see that only the unobservable states can
be removed. In the context of switched systems, the initial values for the second
mode are neither zero nor completely arbitrary, but are constraint to the reachable
subspace of the first mode, this motivates to find a minimal realization for the
linear system

ΣX0 :

{
ẋ(t) = Ax(t) +Bu(t), x(0) ∈ X0,

y(t) = Cx(t),
(3.5)

where X0 ⊆ Rn is the subspace of relevant initial values.
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Inspired by the fact, that the ODE ẋ = Ax with initial condition x(0) = x0

has the same solution as the impulsive ODE ẋ = Ax + x0δ, x(0−) = 0 (see
Appendix B.5), the following input-extended system corresponding to (3.5) (cf. [57]
in the context of model reduction) is proposed as follows

ΣX0
e :

{
ẋe(t) = Axe(t) +

[
B X0

] [ u(t)
u0(t)

]
, xe(0) = 0,

ye(t) = Cxe(t),

(3.6)

where imX0 = X0. Now apply the KD on the extended system and obtain a
minimal extended realization

Σ̂X0
e :

{
˙̂xe(t) = Âex̂e(t) +

[
B̂e X̂0

] [ u(t)
u0(t)

]
, x̂e(0) = 0,

ŷe(t) = Ĉex̂e(t),

(3.7)

and the corresponding minimal realization

Σ̂X0 :

{
˙̂x(t) = Âex̂(t) + B̂eu(t), x̂(0) = x̂0 ∈ im X̂0,

ŷ(t) = Ĉex̂(t).
(3.8)

The properties of the reduced system Σ̂X0 can be formalized in the following
lemma.

Lemma 3.3. Consider ΣX0 as in (3.5) and Σ̂X0 as in (3.8) obtained by first extending
(3.5) to (3.6), then reducing it via the KD to a minimal extended realization (3.7) and
finally removing the extension. Then, ΣX0 and Σ̂X0 are input-output equivalent in the
sense that for all trajectories (x, u, y) satisfying (3.5), there exists x̂ such that (x̂, u, y)
satisfies (3.8). Furthermore, Σ̂X0 has the minimal state dimension under all systems which
are input-output equivalent to ΣX0 .

Proof. The output equation of ΣX0 as in (3.5) with initial value x(0) = x0 ∈ X0 is
given by

y(t) = CeAtx0 +

∫ t

0

CeA(t−τ)Bu(τ) dτ. (3.9)

Construct an input-extended system ΣX0
e as in (3.6), and let x0 = X0z0 for some

z0, where the columns of X0 form the basis of X0. Then, the system (3.5) is input-
output equivalent to system (3.6) with the input u0 = z0δ, where δ denotes the
Dirac delta distribution.
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Again, the output equation of ΣX0
e as in (3.6), can be written by

ye(t) =

∫ t

0

CeA(t−τ)
[
B X0

] [ u(t)
u0(t)

]
dτ

=

∫ t

0

CTeT
−1AT (t−τ)T−1

[
B X0

] [ u(t)
u0(t)

]
dτ,

where T is the KD transformation matrix which transforms (A, [B,X0], C) into a
KD, i.e.

T−1AT =


∗ ∗ ∗ ∗
0 Âe 0 ∗
0 0 ∗ ∗
0 0 0 ∗

 ,

T−1[B X0] =


∗ ∗
B̂e X̂0

0 0

0 0

 , CT =
[
0 Ĉe 0 ∗

]
.

So utilizing T−1eAT = eT
−1AT ,

ye(t) =

∫ t

0

Ĉee
Âe(t−τ)

[
B̂e X̂0

] [ u(t)
u0(t)

]
dτ, (3.10)

which is the output of minimal extended realization as in (3.7). Again, for u0 = z0δ,
equation (3.10) can be written as

ye(t) = Ĉee
Âetx̂0 +

∫ t

0

Ĉee
Âe(t−τ)Ĉeu(τ) dτ, (3.11)

where x̂0 = X̂0z0 and it represents the output equation for (3.8) with the solution
x̂. Therefore, for any arbitrary trajectories (x, u, y) satisfying (3.5) there exists x̂

such that (x̂, u, y) satisfies (3.8).

2nd part: By construction, it is true that Σ̂X0
e is the minimal realization of ΣX0

e .
Consider a system Σ̃X0 which is input-output equivalent to ΣX0 . Then, for all
x0 ∈ X0, there exists x̃0 ∈ X̃0 such that for all input u(·),

y(·, u, x0) = ỹ(·, u, x̃0).

Inspired by [57], an input-extended system Σ̃X0
e as in (3.7) can be constructed for
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Σ̃X0 such that

ỹe(·,
[
u

u0

]
, 0) = ye(·,

[
u

u0

]
, 0), ∀u, u0. (3.12)

Then
dim Σ̃X0 = dim Σ̃X0

e ⩾ dim Σ̂X0
e = dim Σ̂X0 ,

because Σ̂X0
e has by construction the minimal state dimension under all (extended)

systems satisfying (3.12), i.e., Σ̂X0 has indeed the minimal state dimension under
all systems which are input-output equivalent to ΣX0 .

3.3.2 Minimal realization for switched linear systems: single
switch

In this section, a method is proposed to find the minimal realization of switched
linear systems

(A0, B0, C0), on (t0, s1),

(A1, B1, C1), on (s1, tf ),
(3.13)

where Ai ∈ Rni×ni , Bi ∈ Rni×mi , Ci ∈ Rpi×ni , i ∈ {0, 1} with the single switching
signal given by (3.2) and jump matrix is given by J1.

The proposed technique consists of three main steps. First, a minimal real-
ization of the second mode is constructed by taking into account the reachable
subspace of the first mode. Second, a minimal realization of the first mode is found
by taking into account the observable states of the second mode. The final step
consists of defining the reduced jump map from first mode to second mode.

Step 1: Reduction of second mode

As discussed above, the second mode does in general not start with initial value
zero, instead the values of x(s−1 ) covers the whole reachable subspace

R0 = im[B0 A0B0 · · · An0−1
0 B0],

consequently x(s+1 ) ∈ J1R0.
Using the method described in Section 3.3.1, the second mode is extended to

(A1, B1, C1) with
B1 := [B1 J1R0],

where imR0 = R0 and the reduction method is applied to obtain the reduced
mode (Â1, B̂1, Ĉ1) which is input-output equivalent with the second mode (under
the assumption that the initial values for the second mode are determined by the
reachable states of first mode).
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Step 2: Reduction of first mode

Restricted to the first interval, all unobservable and unreachable states can be re-
moved from the first mode without changing the input-output behavior. However,
some unobservable, but reachable state from the first mode may become observ-
able in the second mode and hence, the input of the first mode may indirectly
influence the output of the second mode (via the initial value for the second mode).
Therefore, the following general problem is arrived: Given a linear system (3.4)
and a subspace L ⊆ Rn of indirectly-observable states, find a minimal realization
of (3.4) which does not “remove” indirectly-observable states.

To be more precise, assume that the reduction of (3.4) is achieved via a left
projection Πl and a right projection Πr, i.e. ΠlΠr = I and the reduced system of
(A,B,C) is given by

(Â, B̂, Ĉ) = (ΠlAΠr,ΠlB,CΠr).

In particular, kerΠl corresponds to the removed states. The condition that the sub-
space of indirectly-observed states L is not “removed” by the reduction procedure,
can be formalized by the condition

kerΠl ∩ L = {0}.

Similar as in Step 1 where the input matrix is extended to enlarge the reachable
subspace, a method is now proposed to extend the output matrix for extending
the observable subspace, i.e. consider

ΣL
e :


ẋe(t) = Axe(t) +Bu(t), xe(0) = 0,

ye(t) =

[
C

L⊤

]
xe(t),

(3.14)

where imL = L. Very similar as before, one can utilize the KD to obtain a minimal
realization of (3.14) given by

Σ̂L
e :


˙̂xe(t) = Âex̂e(t) + B̂eu(t), x̂e(0) = 0,

ye(t) =

[
Ĉe

L̂⊤

]
x̂e(t).

(3.15)

Removing the additional rows in the output matrix, the proposed minimal realiza-
tion of (3.4) is obtained which does not “remove” states from L:

Σ̂L :

{
ẋ(t) = Âex̂(t) + B̂eu(t), x̂(0) = 0,

ŷ(t) = Ĉex̂(t).
(3.16)
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Now, investigate the properties of the reduced system Σ̂L.

Lemma 3.4. The two systems (3.4) and (3.16) have the same input-output behavior.
Furthermore, let Πl and Πr be the two projectors transforming (3.4) into (3.16), i.e.
ΠlΠr = I , Âe = ΠlAΠr, B̂e = ΠlB and Ĉe = CΠr, and assume L is contained in the
reachable subspace, then

kerΠl ∩ L = {0}.

Proof. The output equation of system (3.4) is

y(t) =

∫ t

0

CeA(t−τ)Bu(τ) dτ

=

∫ t

0

[
I 0

] [ C
L⊤

]
TeT

−1AT (t−τ)T−1Bu(τ) dτ,

where T is the transformation for obtaining a KD for (A,B, [C⊤ L]⊤), i.e.

T−1AT =


∗ ∗ ∗ ∗
0 Âe 0 ∗
0 0 ∗ ∗
0 0 0 ∗

 , T−1B =


∗
B̂e

0

0

 ,

[
C

L⊤

]
T =

[
0 Ĉe 0 ∗
0 L̂⊤ 0 ∗

]
.

Now, together with

[
I 0

] [ C
L⊤

]
T =

[
0 Ĉe 0 ∗

]
, T−1eAT = eT

−1AT ,

the output equation is given by

y(t) =

∫ t

0

Ĉee
Âe(t−τ)B̂eu(τ) dτ = ŷ(t),

where ŷ(t) is the output of minimal realization as in (3.16).

2nd part: Let the transformation matrices to obtain a KD of system (3.14) be

T̂ =
[
V̂1 V̂2 V̂3 V̂4

]
, T̂−1 =


Ŵ1

Ŵ2

Ŵ3

Ŵ4

 .
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Clearly, Πl = Ŵ2, Πr = V̂2, imL ⊆ im

[
C

L⊤

]⊤
=: (kerCe)

⊥ and it follows that

imL ⊆

ker


Ce

CeA
...

CeA
n−1




⊥

=
(
im[V̂1 V̂2]

)⊥
= im[Ŵ⊤

2 Ŵ⊤
4 ].

Furthermore, by assumption L is contained in the reachable subspace, imL ⊆
im[V̂1 V̂2] (the reachable subspace). Hence,

imL ⊆ im[V̂1 V̂2] ∩ im[Ŵ⊤
2 Ŵ⊤

4 ].

Consider an arbitrary z ∈ imL ∩ kerΠl. From Πrz = 0 and

z ∈ imL ⊆ im[V̂1 V̂2],

it follows that there exists z1, z2 such that z = V̂1z1 + V̂2z2, so

0 = Πlz = ΠlV̂1z1 +ΠlV̂2z2 = z2,

where ΠlV̂1 = 0, ΠlV̂2 = I . Therefore, z = V̂1z1 and

z ∈ im V̂1 = ker

Ŵ2

Ŵ3

Ŵ4

 ⊆ ker

[
Ŵ2

Ŵ4

]
=
(
im[Ŵ⊤

2 Ŵ⊤
4 ]
)⊥

.

Altogether,

z ∈ im[Ŵ⊤
2 Ŵ⊤

4 ] ∩
(
im[Ŵ⊤

2 Ŵ⊤
4 ]
)⊥

= {0}.

This concludes that
kerΠl ∩ L = {0}.

The proof is now complete.

The following statement is intuitively clear, however, the formal proof is not
yet available and therefore it is formulated as an open conjecture.

Conjecture 3.5. Let (Ã, B̃, C̃) be a system which is input-output equivalent to
(3.4) and which is obtained via a projection method with left-projector Π̃l. If
ker Π̃l ∩ L = {0} then, the state dimension ñ of (Ã, B̃, C̃) is at least the state
dimension of (3.16).
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Step 3: Reduced jump map

Assume the mode (A0, B0, C0) before the jump J1 : Rn0 → Rn1 was reduced
by a projection method with left- and right-projectors Π0

l and Π0
r , and the mode

(A1, B1, C1) after the jump was reduced by left- and right-projectors Π1
l and Π1

r .
Then, the reduced jump Ĵ1 : Rn̂0 → Rn̂1 is defined as

Ĵ1 := Π1
l J1Π

0
r. (3.17)

3.3.3 Algorithm and results

Combining all results from above sections, overall the algorithm is summarized as
follows.
Step 1a. Compute the reachable subspace R0 = imR0 of the first subsystem
(A0, B0, C0) and extend the input matrix of the second mode to

B1 := im[B1 J1R0].

Step 1b. Calculate the KD of (A1, B1, C1) with corresponding transformation
matrix T1 and, left- and right-projectors Π1

l ,Π
1
r (i.e. the corresponding rows and

columns of T−1
1 and T1) and let

(Â1, B̂1, Ĉ1) = (Π1
lAΠ1

r,Π
1
lB1, C1Π

1
r).

Step 2a. Calculate the subspace L0 = R0 ∩ F0 =: imL0 of additional observable
states, where F0 = imF0 for some full column rank matrix F0 ∈ Rn0×nJ

0 such that
J1F0 = V J

0 for a full column rank matrix V J
0 ∈ Rn0×nJ

0 with imV J
0 := imΠ1

r∩im J1.
Then extend the output matrix of the first mode as

C0 := im

[
C0

L⊤
0

]
.

Step 2b. Calculate the KD of (A0, B0, C0) with corresponding transformation
matrix T0 and, left- and right-projectors Π0

l ,Π
0
r (i.e. the corresponding rows and

columns of T−1
0 and T0) and let

(Â0, B̂0, Ĉ0) = (Π0
lA0Π

0
r,Π

0
lB0, C0Π

0
r).

Step 3. Calculate the reduced jump Ĵ1 according to (3.17). The overall reduced
switched system is then given by

Σ̂σ :

{
˙̂x0 = Â0x̂0 + B̂0u, on (t0, s1), x̂0(s

+
0 ) = 0,

˙̂x1 = Â1x̂1 + B̂1u, on (s1, tf ), x̂1(s
+
1 ) = Ĵ1x̂0(s

−
1 ).
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The steps of the algorithm are illustrated by the following example.

Example 3.4 (Example 3.1 revisited). Recall the switched linear system in Exam-
ple 3.1 and apply the reduction method to Example 3.1.

Step 1a. R0 =

1 0

0 0

0 1

 (reachable subspace of first mode (A0, B0, C0)).

Step 1b. Via the KD of the extended second mode (A1, [B1 J1R0], C1], the left-
and right-projectors are obtained by

Π1
l =

[
1 0 0

0 0 1

]
, Π1

r =

1 0

0 0

0 1

 ,

and the corresponding reduced second mode

(Â1, B̂1, Ĉ1) = (Π1
lA1Π

1
r,Π

1
lB1, C1Π

1
r) =

([
0.2 0

0 1

]
,

[
0

0

]
,
[
1 1

])
.

Step 2a. Calculate im J1 ∩Π1
r = im

1 0

0 0

0 1

 := imV J
0 = J1F0 with F0 = im

1 0

0 0

0 1


and then imR0 ∩ F0 = im

1 0

0 0

0 1

 =: imL0.

Step 2b. Via the KD of the extended first mode (A0, B0, [C
⊤
0 L0]

⊤), the left- and
right-projectors are obtained by

Π0
l =

[
1 0 0

0 0 1

]
, Π0

r =

1 0

0 0

0 1

 ,

and the corresponding reduced first mode is given by

(Â0, B̂0, Ĉ0) = (Π0
lA0Π

0
r,Π

0
lB0, C0Π

0
r) =

([
0.1 0

0 0.3

]
,

[
1

1

]
,
[
1 0

])
.

Step 3. The reduced jump map is given by

Ĵ1 = Π1
l J1Π

0
r =

[
2 0

0 5

]
.
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Figure 3.1 shows the output of the original and its reduced switched linear
system for input u(t) = 1 and switching signal (3.2) with switching time s1 = 2

and clearly both outputs coincide.
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Figure 3.1: Outputs of the original system and its reduced system for Example 3.4.

Consider now Example 3.1 with the reversed switching signal

σ1(t) =

{
1, on (t0, s1),

0, on (s1, tf ),
(3.18)

and the same jump matrix J1. The reduced realization is obtained as follows.

Step 1a. R1 =

01
0

 (reachable subspace of first mode (A1, B1, C1).

Step 1b. Via the KD of the extended 2nd mode (A0, [B0 J1R1], C0], the left- and
right-projectors are given by

Π1
l =

[
1 0 0

0 1 0

]
, Π1

r =

1 0

0 1

0 0

 ,

and the corresponding reduced second mode is given by

(Â0, B̂0, Ĉ0) = (Π1
lA0Π

1
r,Π

1
lB0, C0Π

1
r) =

([
0.1 0

0 0.2

]
,

[
1

0

]
,
[
1 1

])
.
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Step 2a. Calculate im J1 ∩Π1
r = im

1 0

0 1

0 0

 := imV J
1 = J1F1 with F1 = im

1 0

0 1

0 0


and then imR1 ∩ F1 = im

01
0

 =: imL1.

Step 2b. Via the KD of the extended first mode (A0, B0, [C
⊤
0 L1]

⊤), the left- and
right-projectors are obtained by

Π0
l =

[
0 1 0

]
, Π0

r =

01
0

 ,

and the corresponding reduced first mode is given by

(Â1, B̂1, Ĉ1) = (Π0
lA1Π

0
r,Π

0
lB1, C1Π

0
r) = (0.1, 1, 0).

Step 3. The reduced jump map is

Ĵ1 = Π1
l J1Π

0
r =

[
0

3

]
.

Figure 3.2 shows the output of the original and its reduced system for input
u(t) = 1 and switching signal (3.18) with switching time s1 = 2 and clearly both
outputs coincide.
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Figure 3.2: Outputs of the original system and its reduced system for Example 3.4
with reversed switching signal.
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3.3.4 Correctness of algorithm

Theorem 3.6. Consider the switched linear system Σσ with the single switch switching
signal (3.2) and the reduced system Σ̂σ obtained via the above algorithm. Then, both
systems are input-output equivalent in the sense of Definition 3.1.

Proof. Consider the switched system Σσ as in (3.13) then the output equation is
given by

yσ(t) =

{∫ t

t0

C0e
A0(t−τ)B0u(τ) dτ, t ∈ [t0, s1),

C1e
A1(t−s1)J1x0(s

−
1 )︸ ︷︷ ︸

yJ (t)

+

∫ t

s1

C1e
A1(t−τ ′)B1u(τ

′) dτ ′, t ∈ [s1, tf ).

From Lemma 3.4,∫ t

t0

C0e
A0(t−τ)B0u(τ) dτ =

∫ t

t0

Ĉ0e
Â0(t−τ)B̂0u(τ) dτ.

Furthermore, from x0(s
−
1 ) = Π0

rx̂0(s
−
1 ) and C1T1e

T−1
1 A1T1 = [0 C1Π

1
re

Π1
l A1Π

1
r ∗ ∗]

and T−1
1 J1Π

0
r =


∗

Π1
l J1Π

0
r

0

0

, it follows that

yJ(t) = C1e
A1(t−s1)J1 x0(s

−
1 )

= C1T1e
T−1
1 A1T1(t−s1)T−1

1 J1 Π0
r x̂0(s

−
1 )

= C1Π
1
re

Π1
l A1Π

1
r(t−s1)Π1

l J1 Π0
r x̂0(s

−
1 )

= Ĉ1e
Â1(t−s1)Ĵ1 x̂0(s

−
1 )

= ŷJ(t).

Now from Lemma 3.3,∫ t

s1

C1e
A1(t−τ)B1u(τ) dτ =

∫ t

s1

Ĉ1e
Â1(t−τ)B̂1u(τ) dτ.

The above results conclude that

yσ(t) = ŷσ(t) ∀t,

where ŷσ(t) is the output of the reduced system Σ̂σ .
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Theorem 3.7. The reduced system Σ̂σ has minimal total dimension under all possible
input-output equivalent system of Σσ , provided Conjecture 3.5 is true.

Proof. Consider a system Σ̃σ with modes (Ã0, B̃0, C̃0), (Ã1, B̃1, C̃1) and jump map
J̃1 which is input-output equivalent to Σσ .

First of all, this implies that the second mode (Ã1, B̃1, C̃1) with initial values
x̃0 ∈ J̃1R̃0 (R̃0 is the reachable subspace of 1st mode (Ã0, B̃0, C̃0)) is input-output
equivalent with the original second mode (A1, B1, C1) with initial value x0 ∈
J1R0 (where R0 is the reachable subspace of the 1st mode (A0, B0, C0)). Hence,
Lemma 3.3 yields ñ1 ⩾ n̂1.

Furthermore, input-output equivalence implies that for L0 as calculated in
Step 2a, the left-projector Π̃0

l used to obtain Ã0, has to satisfy ker Π̃0
l ∩ L0 = {0}.

Hence, Conjecture 3.5 implies ñ0 ⩾ n̂0. Altogether,

dim Σ̂σ := (n̂0 + n̂0) ⩽ (ñ0 + ñ1) := dim Σ̃σ.

Therefore, Σ̂σ has minimal total dimension under all possible input-output equiv-
alent system of Σσ .





4 Reduced realization for switched linear
systems

4.1 Introduction

In Chapter 3, a reduced realization for switched linear systems is discussed for
single switch case. In this chapter, a method is proposed for reduced realization of
switched linear systems with general switching signals. Nonetheless, the results
in this chapter differ from those in Chapter 3 in a way that the methods presented
in this chapter do not directly rely on the system matrices but only the (unique)
extended reachable / restricted unobservable subspaces. Without discussing
realization theory, observability and reachability of switched systems have been
studied in e.g., [71, 104, 127, 128, 134], the proposed approach is strongly inspired
by these results.

Recall the switched linear system with general switching signals (as in (2.4)) of
the form

Σσ :

{ ẋk(t) = Aσ(t)xk(t) +Bσ(t)u(t), t ∈ (sk, sk+1)

xk(s
+
k ) = Jσ(s+k ),σ(s−k )xk−1(s

−
k ), k ∈ N

y(t) = Cσ(t)xk(t
+), t ∈ [sk, sk+1),

(4.1)

and the reduced size (with the same switching signal σ) as in (3.1) of the form

Σ̂σ :

{ ˙̂xk(t) = Âσ(t)x̂k(t) + B̂σ(t)u(t), t ∈ (sk, sk+1)

x̂k(s
+
k ) = Ĵσ(s+k ),σ(s−k )x̂k−1(s

−
k ), k ∈ N

y(t) = Ĉσ(t)x̂k(t
+), t ∈ [sk, sk+1),

(4.2)

which has the same input-output behavior as the original system Σσ .
As already highlighted in Chapter 3, a mode-wise reduction is not possible in

general. Furthermore, Example 3.1 in Chapter 3 showed that a switched system
which is reachable and observable, is not necessarily minimal. In order to obtain
a reduced realization in the following, the notion of extended reachable and
restricted unobservable subspaces will be introduced and utilized in the weak
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Kalman decomposition.

This chapter is organized as follows. In Section 4.2, some preliminaries are
given with the characterization of reachability and observability of SLSs and
extended reachable / restricted unobservable subspaces are proposed. Section 4.3
discusses the main results and provides a reduction algorithm. Finally, some
numerical results are shown in Section 4.4.

4.2 Preliminaries

As mentioned in Chapter 3, the well known Kalman decomposition is only valid
for vanishing initial values; if arbitrary initial values are considered, only the un-
observable part can be removed without altering the corresponding input-output
behavior. In this section, an extended version of the Kalman decomposition, weak
Kalman decomposition will be introduced which is crucial for further analysis of
non-minimal switched systems with extended reachable and restricted unobserv-
able subspaces. Later, the exact reachable/unobservable subspaces as well as
the proposed extended reachable / restricted unobservable subspaces will be dis-
cussed. Some examples are given to show that overall reachability/observability
of switched systems depend on the switching times.

4.2.1 Weak Kalman decomposition

In the context of switched systems all, apart from the first mode, will in general
have non-trivial initial states but also not arbitrary initial states, which means that
the classical KD cannot directly be used to obtain a reduced realization.

In addition to consider an extended reachable subspace for each mode (due
to the partially nonzero initial state) also the local unobservable subspace may
need to be restricted, due to the fact, that an unobservable state in the current
mode may become observable in the future and hence cannot be removed without
altering the overall input-output behavior of the switched system. This motivates
to define a weak KD which takes into account an extended reachable subspace
and restricted unobservable subspace.

Lemma 4.1 (Weak Kalman decomposition). Consider a classical LTI system (A,B,C)

and let, R ⊇ imB and U ⊆ kerC be two A-invariant subspaces (an extended reachable
subspace and a restricted unobservable subspace). For any coordinate transformation
T =

[
V

1
V

2
V

3
V

4
]

with imV
1
:= R∩U , im

[
V

1
V

2
]
:= R, im

[
V

1
V

3
]
:= U ,
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leads to the following block triangular form

(T
−1
AT, T

−1
B,CT ) =



A11 A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A44

 ,


B1

B2

0

0

 ,
[
0 C2 0 C4

] .

(4.3)
In particular, CeAtB = C2eA

22tB2, ∀t ∈ R.

Proof. Since R∩U = imV
1

is A-invariant there is a matrix A11 of appropriate size
such that AV

1
= V

1
A11. The A-invariance of R implies that AV

2 ⊆ im
[
V

1
V

2
]
,

hence there exists A12, A22 such that

AV
2
= V

1
A12 + V

2
A22.

Similarly, A-invariance of U implies AV
3 ⊆ im

[
V

1
V

3
]
, hence there exists A13,

A33 such that
AV

3
= V

1
A13 + V

3
A33.

Finally, im
[
V

1
V

2
V

3
V

4
]
= Rn implies existence of A14, A24, A34, A44 such

that
AV

4
= V

1
A14 + V

2
A24 + V

3
A34 + V

4
A44.

Combining all of the above,

A
[
V

1
V

2
V

3
V

4
]
=
[
V

1
V

2
V

3
V

4
]

A11 A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A44

 ,

which shows that T
−1

AT has the desired block structure. Since imB ⊆ R =

im
[
V

1
V

2
]
, there exists B1, B2 such that

B = V
1
B1 + V

2
B2 =

[
V

1
V

2
V

3
V

4
]

B1

B2

0

0

 ,

from which the desired block structure of T
−1

B follows. Finally, kerC ⊇ U =

im
[
V

1
V

3
]

implies that C[V
1

V
3
] = {0}, and hence, for C2 := CV

2
and C4 :=
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CV
4
, it follows that

CT = C
[
V

1
V

2
V

3
V

4
]
=
[
0 C2 0 C4

]
.

With these block structure, simple matrix multiplication leads to

CeAtB = C2eA
22tB2,∀ t ∈ R.

This completes the proof.

It is well known that for a linear system (A,B,C), the reachable subspace
R is given by R = ⟨A | imB⟩ and the unobservable subspace U is given by
U = ⟨kerC | A⟩ as Definition 2.3.

Remark 4.2. Clearly, the choice R = R and U = U in Lemma 4.1 leads to the well
known KD. Furthermore, any A-invariant subspace R ⊇ imB will be a superset of
R, because R is the smallest A-invariant subspace containing imB; analogously,
any A-invariant subspace U ⊆ kerC will be contained in U . This motivation to
call R ⊇ R an extended reachable subspace and U ⊆ U a restricted unobservable
subspace in Lemma 4.1.

For a linear system (A,B,C) with given extended reachable subspace R and
restricted unobservable subspace U , the weak KD (4.3) immediately leads to the
reduced system (A22, B2, C2) which can be obtained from (A,B,C) by suitable
left- and right-projections defined as follows.

Definition 4.3. For any coordinate transformation T = [V
1
V

2
V

3
V

4
] as in

Lemma 4.1, let 
W

1

W
2

W
3

W
4

 := T
−1

,

such that the sizes of (W
i
)⊤ matches the size of V

i
, i = 1, 2, 3, 4. Then, W

2
and V

2

are called the weak KD left-projector and weak KD right-projector, respectively.

By definition of the weak KD left- and right-projectors, W
2
V

2
= I and

(A22, B2, C2) = (W
2
AV

2
,W

2
B,CV

2
).

4.2.2 Exact (time-varying) reachable subspace

The proposed reduction approach in this chapter relies on identifying suitable
extended reachable and restricted unobservable subspaces for each mode of the
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switched system (4.1). Towards this goal, first provide expression for the exact
(time-varying) reachable and unobservable subspaces for (4.1) in the following.
Before doing so, it is briefly highlighted from Chapter 2 that the solution of (4.1) is
given recursively by, for t ∈ [sk, sk+1) and k = 1, . . . ,m,

x(t) := eAk(t−sk)Jkx(s
−
k ) +

∫ t

sk

eAk(t−s)Bku(s) ds, (4.4)

and the output equation is given by

y(t) = Ckx(t), t ∈ [sk, sk+1), k = 0, 1, . . . ,m. (4.5)

Now in the following, the formal definition of the reachable subspace of (4.1) is
given.

Definition 4.4. The reachable subspace of the switched system (4.1) on time
interval [t0, t) is defined by

Rσ
[t0,t)

:=
{
x(t−)

∣∣ ∃ solution (x, u) of (4.1) with x(t−0 ) = 0
}
.

The switched system (4.1) is called reachable (on (t0, tf )) if, and only if,

Rσ
[t0,tf )

= Rnm .

To calculate the reachable subspaces of (4.1), the known reachability informa-
tion from the previous modes needs to carry over appropriately to the current
mode. Let Rk = ⟨Ak | imBk⟩ be the local reachable subspace for mode k. It will
be shown that the reachable subspace at the end of the k-th mode is defined by
the following recursive equation, k = 1, 2, . . . ,m:

Mσ
0 := R0,

Mσ
k := Rk + eAkτkJkMσ

k−1,
(4.6)

where τk := sk+1 − sk is the duration of mode k.

The intuition behind the sequence (4.6) is as follows. By starting with a zero
initial value in the initial mode, clearly Rσ

[t0,s1)
= R0; continuing recursively, the

reachable subspace at the end of mode k, is obtained by propagating forward the
reachable subspace Mσ

k−1 at the end of the previous mode, i.e. first jump via Jk
and then propagate according to the matrix exponential (the time-evolution for a
zero input). Finally, to take into account the effect of the input, the local reachable
subspace of mode k is added. This intuition is formalized as follows.
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Lemma 4.5 (Cf. [70]). For all 0 ⩽ k ⩽ m,

Mσ
k = Rσ

[t0,sk+1)
.

In particular, (4.1) is reachable if, and only if Mσ
m = Rnm .

Proof. Clearly, Mσ
0 = Rσ

[t0,s1)
. Inductively, assume that for some k ∈ {1, 2, . . . ,m},

Mσ
k−1 = Rσ

[t0,sk)
,

it will then be shown that Mσ
k = Rσ

[t0,sk+1)
.

Let xk+1 ∈ Mσ
k , then there exists xk ∈ Mσ

k−1 and xu ∈ Rk such that xk+1 =

eAkτkJkxk + xu. From Mσ
k−1 = Rσ

[t0,sk)
, it follows that there exists a solution (x̂, û)

on [t0, sk) with x̂(0−) = 0 and x̂(s−k ) = xk.

In view of (4.4), the extension of (x̂, û) on the interval [t0, sk+1) via (x̂(t), û(t)) :=
(eAk(t−sk)Jkxk, 0) is a solution of (4.1) on the larger interval [t0, sk+1). Further-
more, there exists a solution (x̃, ũ) of mode k on (sk, sk+1) with x̃(s+k ) = 0 and
x̃(s−k+1) = xu.

By setting, (x̃(t), ũ(t)) = (0, 0) for all t ∈ [t0, sk), it is easily seen that (x̃, ũ) is a
solution of the switched system (4.1) on [t0, sk+1) with x̃(t−0 ) = 0.

Altogether, by linearity it is true that (x, u) := (x̂, û) + (x̃, ũ) is a solution of
(4.1) on [t0, sk+1) with x(t−0 ) = 0 and

x(s−k+1) = x̂(s−k+1) + x̃(s−k+1) = eAkτkJkxk + xu = xk+1,

which implies that xk+1 ∈ Rσ
[t0,sk+1)

. Hence,

Mσ
k ⊆ Rσ

[t0,sk+1)
.

To show the converse subspace relationship, let xk+1 ∈ Rσ
[t0,sk+1)

, then there exists
a solution (x, u) of (4.1) with x(sk+1) = xk+1.

From x(s−k ) ∈ Rσ
[t0,sk)

= Mσ
k−1 and

xu :=

∫ sk+1

sk

eAk(sk+1−s)Bku(s) ds ∈ Rk,

it follows immediately from (4.4) that xk+1 = x(sk+1) = eAkτkJkx(s
−
k ) + xu ∈

eAkτkJkMσ
k−1 +Rk = Mσ

k .

Now if the system (4.1) is reachable, then

Rσ
[t0,sm+1)

= Rnm ,
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and consequently,
Mσ

m = Rnm .

This concludes the proof.

From (4.6), it is clear that the reachable subspaces depend on the switching
times (in fact, on the mode durations τk) and this dependency cannot be avoided
in general as the following example shows. In particular, the overall reachability
of the switched system (4.1) on (t0, tf ) depends on the switching times and how
long each mode is active.

Example 4.1 (Dependency on the switching times). Consider the switched sys-
tem (4.1) given by

A0 = A2 =

[
0 0

0 0

]
, A1 =

[
0 −1

1 0

]
,

B0 = B2 =

[
1

0

]
, B1 =

[
0

0

]
,

with J1 = J2 = I . It is noted that none of the pairs (Ai, Bi) are reachable. Consider
the switching signal σ with the mode sequence 0 → 1 → 2 and switching times s1,
s2. Let {e1, e2} denote the standard basis vectors for R2.

Clearly, R0 = R2 := span{e1}, R1 := {0}, eA1τ =

[
cos τ − sin τ

sin τ cos τ

]
and

eA2τ =

[
1 0

0 1

]
. Hence

Mσ
0 = R0 = span{e1},

Mσ
1 = R1 + eA1τ1J1Mσ

0 = span

{[
cos τ1
sin τ1

]}
,

Mσ
2 = R2 + eA2τ2J2Mσ

1 = span{e1}+ span

{[
cos τ1
sin τ1

]}
.

If τ1 = kπ for any k ∈ N then Mσ
2 = span{e1}, otherwise, Mσ

2 = R2. This clearly
shows that the overall reachability of a switched system depends on the switching
times.

Note that, although Mσ
k ⊇ Rk ⊇ imBk, the subspace Mσ

k is not a suitable
extended reachable subspace for the mode (Ak, Bk, Ck) in the sense of Lemma 4.1,
because it is not Ak-invariant in general. Before addressing this problem in Sec-
tion 4.2.4, recall first the “dual” subspace of the reachable subspaces: the unob-
servable subspaces.



48 4. Reduced realization for switched linear systems

4.2.3 Exact (time-varying) unobservable subspace

Definition 4.6. The unobservable subspace of the switched system (4.1) on time
interval [t, tf ) is defined by

Uσ
[t,tf )

:=
{
x(t+)

∣∣ ∃ solution (x, u = 0) such that y = 0 of (4.1) on [t, tf )
}
.

The switched system (4.1) is called observable (on [t0, tf )) if, and only if,

Uσ
[t0,tf )

= {0}.

Similar as for the reachable subspaces, it is aimed to express the unobservable
subspaces recursively. Starting from the last mode it is clear that the unobservable
subspace is the same as the classical unobservable subspace Um = ⟨kerCm | Am⟩.
Recursively, the unobservable subspace at switch number k + 1 can now be
propagated backwards in time by first taking the preimage under the jump Jk+1

and then further propagating it back with the continuous flow of mode k, i.e. by
e−Akτk . Finally, this propagated subspace needs to be combined with the local
unobservable subspace of mode k given by Uk = ⟨kerCk | Ak⟩. This motivates the
definition of the following sequence of subspaces, k = m− 1,m− 2, . . . , 0:

N σ
m := Um,

N σ
k := Uk ∩

(
e−AkτkJ−1

k+1N
σ
k+1

)
.

(4.7)

Lemma 4.7 (Cf. [70, 133]). For all 0 ⩽ k ⩽ m,

N σ
k = Uσ

[sk,tf )
.

In particular, (4.1) is observable if, and only if N σ
0 = {0}.

Proof. For k = m, clearly N σ
m = Uσ

[sm,tf )
. Inductively, assume now that for k ∈

{m− 1,m− 2, . . . , 0},
N σ

k+1 = Uσ
[sk+1,tf )

,

and it will be shown that N σ
k = Uσ

[sk,tf )
.

Let xk ∈ N σ
k , then xk ∈ Uk and there exists xk+1 ∈ N σ

k+1 = Uσ
[sk+1,tf )

such
that xk+1 = Jk+1e

Akτkxk. Consequently, the unique solution (x, u = 0) of (4.1)
on [sk, tf ) with x(s+k ) satisfies y = 0 on [sk, sk+1) because xk ∈ Uk and y = 0 on
[sk+1, tf ) because x(sk+1) = xk+1 ∈ Uσ

[sk+1,tf )
. This shows that xk ∈ Uσ

[sk,tf )
.

Now, let xk ∈ Uσ
[sk,tf )

, then the unique solution (x, u = 0) of (4.1) on [sk, tf )

with x(s+k ) = xk has zero output. Consequently, xk+1 := x(s+k+1) ∈ Uσ
[sk+1,tf )

=

N σ
k+1. From xk+1 = Jk+1e

Akτkxk, it follows that xk ∈ e−AkτkJ−1
k+1{xk+1} ⊆

e−AkτkJ−1
k+1N σ

k+1 = N σ
k , which concludes the proof.



4.2. Preliminaries 49

Similar as for reachability, observability of the switched system in general
depends on the switching times. This is illustrated by considering again Example
4.1 with an additional output.

Example 4.2 (Dependency on the switching times). Recall Example 4.1 with output
submatrices

C0 = C2 =
[
0 1

]
, C1 =

[
0 0

]
.

It is noted that none of the pairs (Ai, Ci) is observable.

Clearly, U0 = U2 = span{e1}, U1 = R2, e−A1τ =

[
cos τ sin τ

− sin τ cos τ

]
and e−A2τ =[

1 0

0 1

]
. Hence,

N σ
2 = U2 = span{e1},

N σ
1 = U1 ∩ e−A1τ1J−1

2 N σ
2 = R2 ∩ span

{[
cos τ1
− sin τ1

]}
,

N σ
0 = U0 ∩ e−A0τ0J−1

1 N σ
1 = span{e1} ∩ span

{[
cos τ1
− sin τ1

]}
.

If τ1 = kπ for any k ∈ N, then N σ
0 := span{e1}, otherwise N σ

0 = {0}. Therefore,
the overall observability of (4.1) depends on the switching times.

Note that, similar to the reachable subspaces, although the unobservable sub-
spaces Nk satisfy Nk ⊆ Uk ⊆ kerC, they are not Ak-invariant and hence, they are
not restricted unobservable subspaces in the sense of Lemma 4.1.

4.2.4 Extended reachable / restricted unobservable subspaces

So far, it is seen that the reachable and unobservable subspaces of (4.1) depend on
the switching time. Even worse, when looking at the reachable / unobservable
subspaces at a particular time t ∈ (sk, sk+1) between two switches, then it is easily
seen that these subspaces in general also depend on the considered time t and a
reduction method based on the exact reachable / unobservable subspaces will
necessarily result in general time-varying coordinate transformations / projections
(cf. Chapter 5) and would not lead to a reduced system of the desired form (4.2).

To circumvent this problem, suitable extended reachable and restricted unob-
servable subspaces are introduced for the switched system (4.1). The key idea is
based on the fact that for any subspace H ⊆ Rn and any matrix A ∈ Rn×n, the
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following subspace relationship holds for all t:

⟨H | A⟩ ⊆ eAtH ⊆ ⟨A | H⟩. (4.8)

By replacing the matrix exponential in the constructions of the reachable /
unobservable subspaces by the corresponding A-invariant subspace, the following
sequences (cf. [133] for the unobservable subspaces) can be derived:

R0 := R0,

Rk := Rk + ⟨Ak | JkRk−1⟩, k = 1, . . . ,m;
(4.9)

Um := Um,
Uk := Uk ∩ ⟨J−1

k+1Uk+1 | Ak⟩, k = m− 1, . . . , 0.
(4.10)

In view of (4.8), it is easy to see that

Rk ⊇ Mσ
k ⊇ Rk and Uk ⊆ N σ

k ⊆ Uk.

In particular, Rm = Rnm and U0 = {0} respectively, are necessary conditions for
reachability and unobservability of the overall switched system (4.1).

Finally, observe that by construction both Rk and Uk are Ak-invariant, i.e.
they are extended reachable / restricted unobservable subspaces in the sense
of Lemma 4.1 and now one can propose the main result about the reduction of
switched systems of the form (4.1).

This section is concluded by highlighting an interesting special case, which
is motivated by the following “application”: Consider a large-scale network
whose dynamics can be described by a linear ODE. The network can be controlled
through several actuators at different locations and several sensors are distributed
throughout the network. However, due to resource limitation at any given time
only one or a limited number of actuators can be used and the data of only one or
a limited number of sensors is available. This situation can be modelled by the
following switched system (without jumps)

ẋ = Ax+Bσu,

y = Cσx,
(4.11)

where the switching signal is determined by the schedule of the actuator and
sensor usages.

In this scenario, it seems rather natural that the mode sequence is fixed a priori
(e.g. to make sure that all sensors and actuators are equally used), while the time
duration may depend on the actual measured outputs. For this setup the following
result is given:
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Proposition 4.8 (Constant A-case). Consider the switched linear system (4.11) with cor-
responding time-dependent reachable subspace Rσ

[t0,t)
and unobservable subspace Uσ

[t,tf )
.

Then, for all t ∈ (sk, sk+1),

Rσ
[t0,t)

= Rk and Uσ
[t,tf )

= Uk,

i.e. the time-varying reachable and unobservable subspaces are piecewise-constant and can
be calculated recursively via (4.9) and (4.10).

Proof. Inductively, it is easily seen that Rσ
[t0,t)

and Uσ
[t,tf )

are A-invariant, from
which the claim follows.

4.3 Proposed reduction method

In the following, a method is proposed to compute a reduced realization (4.2)
of (4.1) for a given switching signal with known mode sequence.

Step 1. Compute the sequence of extended reachable R0,R1, . . . ,Rm and
restricted unobservable subspaces U0,U1, . . . ,Um as in (4.9) and (4.10).
Step 2. Apply Lemma 4.1 to (Ak, Bk, Ck) with (Rk,Uk) to compute the left-
and right-projectors W

2

k, V
2

k , and let(
Âk, B̂k, Ĉk

)
=
(
W

2

kAkV
2

k,W
2

kBk, CkV
2

k

)
.

Step 3. Calculate the reduced jump map

Ĵk := W
2

kJkV
2

k−1.

Before showing that the resulting reduced system (4.2) is indeed a realization
of (4.1), first highlight an important connection between the solutions of both
systems.

Lemma 4.9. Consider the switched system Σσ as in (4.1) and the reduced system Σ̂σ as
in (4.2) obtained by the left- and right-projectors W

2

σ(·), V
2

σ(·). If x(·) is a solution of Σσ

then x̂(·) := W
2

σ(·)x(·) is a solution of Σ̂σ .

Proof. Consider any time interval (sk, sk+1) between two switches, then for t ∈
(sk, sk+1),

˙̂x(t) = W
2

kẋ = W
2

kAkx(t) +W
2

kBu(t)

= [0 Âk 0 ∗]T−1

k x(t) +B2
ku(t),
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where T k =
[
V

1

k V
2

k V
3

k V
4

k

]
is the coordinate transformation according to

Lemma 4.1 for mode k. Since x(t) ∈ Rσ
[t0,t)

⊆ Rk = im[V
1

k V
2

k], it follows

that T
−1

k x(t) = [∗ x̂(t)⊤ 0 0]⊤ and hence, as claimed, for all t ∈ (sk, sk+1)

˙̂x(t) = Âkx̂(t) + B̂ku(t).

In particular, due to unique solvability of linear ODEs, for any solutions x of Σσ

and x̂ of Σ̂σ the following implication holds:

W
2

kx(s
+
k ) = x̂(s+k ) =⇒ ∀t ∈ (sk, sk+1) : W

2

kx(t) = x̂(t).

To show that x̂ = W
2

σx is indeed a global solution of Σ̂σ , it therefore remains to be
shown that

W
2

kx(s
+
k ) = ĴkW

2

k−1x(s
−
k ). (4.12)

In fact,

W
2

kx(s
+
k ) = W

2

kJkx(s
−
k ) = W

2

kJkT k−1T
−1

k−1x(s
−
k )

= W
2

kJk

[
V

1

k−1 V
2

k−1 V
3

k−1 V
4

k−1

]
∗

W
2

k−1x(s
−
k )

0

0

 .

From (4.10), it is easily seen that Jk Uk−1 ⊆ Uk, hence

im Jk V
1

k−1 ⊆ im Jk

[
V

1

k−1 V
3

k−1

]
= Jk Uk−1

⊆ Uk = im
[
V

1

k V
3

k

]
⊆ kerW

2

k,

i.e. W
2

k JkV
1

k−1 = 0, from which it follows that

W
2

kx(s
+
k ) = W

2

kJkV
2

k−1W
2

k−1x(s
−
k )

as desired.

As a consequence of the above and of the uniqueness of solutions, it follows
that every solution x̂ of Σ̂σ with zero initial value and given input u satisfies
x̂ = W

2

σx where x is the solution of Σσ with zero initial value and the same input
u.

Now it can be proved in the following that the corresponding outputs are
indeed equal.
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Theorem 4.10. Consider the switched system Σσ as in (4.1) and the reduced system Σ̂σ

as in (4.2) obtained by the above reduction method. Then, Σσ and Σ̂σ are input-output
equivalent in the sense that for all inputs u the output y of (4.1) with initial condition
x(t−0 ) = 0 equals the output ŷ of (4.2) with initial condition x̂(t−0 ) = 0.

Proof. The output of Σσ on [sk, sk+1) is given by

y(t) = Cke
Ak(t−sk)Jkx(s

−
k ) +

∫ t

sk

Cke
Ak(t−s)Bku(s) ds

=: yJ(t) + yu(t).

Inserting suitable identity matrices,

yJ = CkT ke
T

−1
k AkTk(t−sk)T

−1

k JkT k−1T
−1

k−1x(s
−
k ),

yu(t) =

∫ t

sk

CkT ke
T

−1
k AkTk(t−s)T

−1

k Bku(s) ds,

where T k =
[
V

1

k V
2

k V
3

k V
4

k

]
is the coordinate transformation according to

Lemma 4.1 for mode k. The special block structure of the matrices T
−1

k AkT k,
T

−1

k Bk, CkT k implied by Lemma 4.1 immediately leads to

yu(t) =

∫ t

sk

Ĉke
Âk(t−s)B̂ku(s) ds.

Hence, for showing ŷ(t) = y(t) = yJ(t) + yu(t), it remains to be shown that

yJ(t) = Ĉke
Âk(t−sk)Ĵkx̂(s

−
k ). (4.13)

With similar arguments as used to establish (4.12) in Lemma 4.9, it can show that

T
−1

k JkT k−1T
−1

k−1x(s
−
k ) =


∗

Ĵk,k−1W
2

kx(s
−
k )

0

0

 .

Using the already established fact in Lemma 4.9, that W
2

kx(s
−
k ) = x̂(s−k ) together

with the special block structures of T
−1

k AkT k, T
−1

k Bk, CkT k, it can be concluded
that (4.13) holds.

Remark 4.11 (Non-zero initial values). The proposed method can easily be adjusted
to account for non-zero initial values. Assume x(t−0 ) ∈ X0 for some subspace
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X0 ⊆ Rn, then in (4.6) the initial definition just needs to be replaced by

Mσ
0 := R0 + eA0τ0J0X0,

and in (4.9), the initial subspace needs to be adjusted to

R0 := R0 + ⟨A0 | J0X0⟩,

while the definition of the other subspaces remain unchanged.

A key feature of the proposed method is that it is independent of the actual
switching times (or mode durations) and only requires knowledge of the mode
sequence. The following example shows however that the size of a minimal
realization depends on the mode durations, hence one cannot expect that the
proposed method results in a minimal realization in general.

Example 4.3. Consider a switched system with modes

A0 = A2 =

0 0 0

0 0 0

0 0 0

 , A1 =

0 0 0

0 0 −1

0 1 0

 , B0 =

11
0

 ,

B1 = B2 =

10
0

 , C0 = C1 =
[
1 0 0

]
, C2 =

[
1 1 0

]
,

with J1 = J2 = I . Assume the mode sequence 0 → 1 → 2. Fix the switching
time duration τ1 = π/2 for second mode. Then, the original solution x and the
corresponding output y of each time interval can be characterized as follows:

t ∈ (t0, s1) : x(t) =

∗∗
0

 , y(t) = C0x(t) =
[
1 0 0

] ∗∗
0

 ,

t ∈ (s1, s1+
π
2 ) : x(t) =

∗∗
∗

 , y(t) = C1x(t) =
[
1 0 0

] ∗∗
∗

 ,

x(s2) = x(s1 +
π
2 ) =

∗0
∗

 ,

t ∈ (s2, tf ) : x(t) =

∗0
∗

 , y(t) = C2x(t) =
[
1 1 0

] ∗0
∗

 .

Clearly, the second and third state do not effect the output for this specific switch-
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ing signal. In particular, it is easily seen that the overall input-output behavior is
described by the (nonswitched) system ˙̂x = u, y = x̂. However, if the proposed
method is applied, the sequence of reachable and unobservable subspaces are
given by

Mσ
1 = imB0, N σ

0 = {0},
Mσ

2 = R3, N σ
1 = {0},

Mσ
3 = R3, N σ

2 = span{e3}.

Indeed, the sequences produce a reduced switched system with modes in di-
mensions 1, 3 and 2, respectively, instead of a one dimensional minimal system.
Nevertheless, one should note that for τ1 ̸= kπ/2, the proposed method actually
produces a minimal realization.

The previous example however indicates that the proposed method results in
a minimal realization for almost all switching times. While it has not been possible
to prove this conjecture, it is possible to show that the proposed method is optimal
in the sense that a repeated application does not lead to a further reduction.

Theorem 4.12. Consider the switched system Σσ and the reduced switched system Σ̂σ

resulting from the proposed method. Let R̂σ(·) and Ûσ(·) be the sequences of extended
reachable and restricted unobservable subspaces, respectively, of Σ̂σ . Then

R̂σ(·) = Rn̂σ(·) , Ûσ(·) = {0}.

In particular, the left- and right-projectors for a potential further reduction are given by
identity matrices, i.e. no further reduction occurs.

Proof. The proposed methods yields for each mode k a coordinate transformation
T k such that (Ak, Bk, Ck) is transformed to


A11

k A12
k A13

k A14
k

0 Âk 0 A24
k

0 0 A33
k A34

k

0 0 0 A44
k

 ,


B1

k

B̂k

0

0

 ,
[
0 Ĉk 0 C4

k

] , (4.14)

where (Âk, B̂k, Ĉk) is the input-output equivalent reduced system for mode k. By
construction, the reachable and unobservable subspaces respectively, are given by

Rk = T k


I 0

0 I

0 0

0 0

 , Uk = T k


I 0

0 0

0 I

0 0

 .
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Seeking a contradiction assume R̂k ⊊ Rn̂k (Case I), or Ûk ̸= {0} (Case II) for
some k.

Case I: For k = 0, it can see that from R0 = R0, the pair (Â0, B̂0) must be

reachable and hence, R̂0 = R̂0 = Rn̂0 . Assume now inductively that for some k,

R̂k−1 = Rn̂k−1 and R̂k ⊊ Rn̂k .

Since R̂k is Âk-invariant and contains im B̂k, choose a coordinate transformation
T̂ k such that (Âk, B̂k) is transformed to([

Â1
k ∗
0 Â2

k

]
,

[
B̂1

k

0

])
, (4.15)

and im T̂ k

[
I

0

]
= R̂k. By adjusting the original coordinate transformation T k,

assume in the following that (Âk, B̂k) is actually equal to (4.15). In particular,

im

[
I

0

]
= R̂k = R̂k + ⟨Âk | ĴkR̂k−1⟩.

Since R̂k = ⟨Âk | B̂k⟩ ⊆ im

[
I

0

]
, it follows that

im

[
I

0

]
⊇ ⟨Âk | ĴkR̂k−1⟩ = ⟨Âk | im Ĵk⟩ ⊇ im Ĵk.

Therefore, (Ak, Bk, Jk) is actually transformed to


∗ ∗ ∗ ∗

0

[
Â1

k ∗
0 Â2

k

]
0 ∗

0 0 ∗ ∗
0 0 0 ∗

 ,


∗[
B̂1

k

0

]
0

0

 ,


∗[
J1
k

0

]
0

0



 .

From this one can arrive at the following contradiction:

im


I 0

0 I

0 0

0 0

 = Rk = Rk + ⟨Ak | JkRk−1⟩ ⊆ im


I 0

0

[
I 0

0 0

]
0 0

0 0

 .
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Hence, it has inductively been shown that R̂k = Rn̂k , for all modes k.
Case II: Assume Ûk ̸= {0}. Analogously as in Case I, the contradiction

Uk ̸= im


I 0

0 0

0 I

0 0

 ,

arises, thus the details are omitted.

For the special case of constant A-matrices, the proposed method does in fact
result in a minimal realization.

Corollary 4.13. Consider the switched system (4.11) with mode-independent A-matrix.
Then, the reduced switched system obtained via the proposed reduction method is minimal.

Proof. This is a simple consequence from Proposition 4.8, because in any mode a
smaller reduced model would necessarily remove some reachable and observable
states and hence cannot lead to the same input-output behavior.

4.4 Numerical results

This section demonstrates the operation of the proposed reduction method for the
switched linear system. The proposed method is illustrated by means of numerical
examples. The source code for the numerical examples is available from [60].

Example 4.4. Consider a switched linear system with modes:

(A0, B0, C0) =

2 0 1

0 1 0

0 0 −1

 ,

10
0

 ,
[
1 0 1

] ,

(A1, B1, C1) =



0 −1 0 0

1 0 0 0

0 0 1 0

0 0 0 2

 ,


0

1

0

0

 ,
[
0 0 0 1

] ,

(A2, B2, C2) =

1 0 1

0 1 0

0 −1 2

 ,

01
1

 ,
[
0 1 0

] ,

J1 =


1 1 0

0 2 1

0 0 1

0 −1 1

 , J2 =

2 1 0 0

0 1 0 1

0 0 2 1

 .
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Assume the mode sequence 0 → 1 → 2. Now apply the proposed reduction
method and the reduced realization can be obtained as follows.

Step 1. Here, R0 =

10
0

, R1 =


1 0

0 1

0 0

0 0

, R2 =

1 0

0 1

0 1

, U0 =

01
0

, U1 =


1 0 0

0 1 0

0 0 1

0 0 0

,

U2 =

1 0

0 0

0 1

. Now the sequence of reachable and unobservable subspaces is

computed:

R0 = R0 =

10
0

 , R1 = R1 + ⟨A1 | J1R0⟩ =


1 0

0 1

0 0

0 0

 ,

R2 = R2 + ⟨A2 | J2R1⟩ = R3,

U2 = U2 =

1 0

0 0

0 1

 , U1 = U1 ∩ ⟨J−1
2 U2 | A1⟩ =


0

0

1

0

 ,

U0 = U0 ∩ ⟨J−1
1 U1 | A0⟩ = {0}.

Step 2. Via the proposed method, the sequence of left- and right-projectors are
obtained by

(W
2

0, V
2

0) =


 1

−2

−2

⊤

,

10
0


 ,

(W
2

1, V
2

1) =



1 0

0 1

0 0

0 0


⊤

,


1 0

0 1

0 0

0 0


 ,

(W
2

2, V
2

2) =


 0

−1

0

⊤

,

 0

−1

−1


 .
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The reduced switched system is given by

(Â0, B̂0, Ĉ0) = (W
2

0A0V
2

0,W
2

0B0, C0V
2

0) = (2, 1, 1) ,

(Â1, B̂1, Ĉ1) =
(
W

2

1A1V
2

1,W
2

1B1, C1V
2

1

)
=

([
0 −1

1 0

]
,

[
0

1

]
,
[
0 0

])
,

(Â2, B̂2, Ĉ2) =
(
W

2

2A2V
2

2,W
2

2B2, C2V
2

2

)
= (1,−1,−1) .

Step 3. The reduced jump maps are given by

Ĵ1 =

[
1

0

]
, Ĵ2 =

[
0 −1

]
.

Figure 4.1 shows the output of the original and its reduced system for input
u(t) = 1 with switching times s1 = 2 and s2 = 5 over [0, 6] and clearly both
outputs coincide.

0 1 2 3 4 5 6

Time(sec)

0

5

10

15

20

25

30

O
u

tp
u

t

Original

Reduced

Figure 4.1: Outputs of the original system and the proposed reduced system.

4.5 Discussion

In this chapter, a method is proposed for obtaining a reduced realization for
switched linear systems with jumps and mode-dependent state dimensions; the
switching signal is assumed to be fixed with known mode sequence. The proposed
reduction method is independent of the switching times and hence in principle
also applicable for state dependent switched systems if a certain mode sequence is
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known a-priori. The proposed reduction method is based on a weak Kalman de-
composition of each mode by defining suitable extended reachable and restricted
unobservable subspaces. It is conjectured that the proposed method results in a
minimal realization for almost all switching times, however, a definite answer to
this question is still ongoing research. It cannot be expected that the proposed
method will result in a minimal realization for all switching times, an example
is provided for which the dimension of the minimal realization depends on the
specific switching times.

So far, it is assumed that all subspace related operations (intersections, sums,
pre-images) can be carried out with exact arithmetics, however, for large-scale
systems and/or for systems with numerical coefficient matrices the involved
subspace calculations are in general ill-posed. A suitable adaption of the proposed
algorithm utilizing e.g. the singular value decomposition to carry out the subspace
calculations approximately is a topic of future research.



Part II

Model reduction for switched
systems





5 Model reduction (time-varying) for
switched linear systems

5.1 Introduction

In Chapters 3 and 4, realization theory is discussed for switched linear systems.
This chapter investigates the model reduction method for switched linear systems
by considering the overall system as a time-varying system.

As mentioned in the introduction (Chapter 1), model reduction techniques turn
out to be an important tool in the context of the simulation of various applications
and problems. In the last decades, switched systems gained much interest as a
modelling framework with applications, cf. [76, 127]. MOR of switched systems is
highly relevant for large-scale applications in the systems and control community.
It is well known that the key purpose of MOR is to find a lower order approxi-
mation of a dynamical system which can be used in simulation and optimization
instead of the original system.

Consider the switched linear system (as in (2.4) without state jumps) of the
form

Σσ :

{
ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), t ∈ R,
y(t) = Cσ(t)x(t),

(5.1)

where σ : R → M = {0, 1, 2, . . . ,m} with finitely many switching times s1 < s2 <

s3 < · · · < sm in the bounded interval [t0, tf ) of interest. The system matrices are
Ai ∈ Rn×n, Bi ∈ Rn×m, Ci ∈ Rp×n, where i ∈ M and n is the number of state
variables, called the order of the subsystems. It is noted that all states have the same
dimension. Here, the k-th mode is active in the interval [sk, sk+1), k = 0, 1, . . . ,m

and the duration of k-th mode is τk = sk+1 − sk. The input function u is assumed
to be piecewise continuous and bounded. For notational convenience, let s0 := t0,
sm+1 := tf of length τk := sk+1 − sk, k ∈ {0, 1, 2, . . . ,m}.

As discussed in Chapter 1, there are some approaches on MOR of switched
systems e.g., [11, 49, 83, 92, 101, 103, 106, 117, 119, 120]. However, it is clear
from the previous chapter that the (time-variant) switching signal recognises



64 5. Model reduction (time-varying) for switched linear systems

switched systems as a special time-varying system. In contrast to these existing
works, the main gap is to find a (time-varying) model reduction depending on
a given (known) switching signal. While some results are available on model
reduction for general linear time-varying systems, e.g., [61, 94, 121, 122, 142], they
usually assume at least continuity of the coefficient matrices (which of course is
not satisfied for switched systems). This limitation provides indeed an interesting
topic to analysis model reduction of switched systems in a time-varying nature
which will be discussed here.

The chapter is organized as follows. In Section 5.2, the research problem is
illustrated with a simple example, why a naive model reduction approach is not
working. In Section 5.3, balanced truncation is reviewed for general time-varying
systems. In Section 5.4, model reduction of switched linear systems is discussed
by proposing an approximating time-varying system. Finally, Section 5.5 contains
some numerical results.

5.2 Problem statement

As mentioned in Chapter 1, the key idea of model reduction is to represent a
complex dynamical system by a much simpler one, this may refer to many dif-
ferent techniques. Moreover, only projection-based method, known as balanced
truncation is presented here which is considered as a prominent projection-based
model reduction method (cf. [14]).

In projection-based technique, the original state variables x is approximated
by a vector x̂ so that the system (5.1) can be approximated by the reduced system

Σ̂σ :

{
˙̂x(t) = Âσ(t)x̂(t) + B̂σ(t)u(t), t ∈ R,

ŷ(t) = Ĉσ(t)x̂(t),
(5.2)

where the system matrices are Âi ∈ Rr×r, B̂i ∈ Rr×m, Ĉi ∈ Rp×r, for i ∈ M and
r ≪ n.

A question arises: Is the balanced truncation approach applicable to switched
systems by reducing each individual subsystems independently? The following
simple example shows that the naive idea of balanced truncation does not work in
general.

Example 5.1. Consider the switched linear system (5.1) with system matrices

A0 = A1 =

[
−0.5 0.01

0.01 −0.5

]
, B0 = C⊤

0 =

[
0.001

1

]
,

B1 = C⊤
1 =

[
1

0.001

]
,
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and the switching signal is given by

σ(t) =

{
0 on [0, 1),

1 on [1, 2).
(5.3)

Applying standard balanced truncation for linear systems on the two intervals
[0, 1) and [1, 2) separately, the same one-dimensional reduced order model can be
obtained by

˙̃x(t) = −0.5 x̃(t) + u(t),

ỹ(t) = x̃(t).

Figure 5.1 shows the output of the original and reduced system with the input
u(t) = (sin(5t) + 0.05)e−.5t. Clearly, the output of the reduced model does not
match the original output after the switch, although each individual mode is
approximated sufficiently well with a small (known) error bound.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t (sec)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

y
(t

)

Original

Reduced

Figure 5.1: Outputs of the original system and 1st order reduced system for Exam-
ple 5.1.

The above example shows, that a piecewise balanced truncation method will
not result in good approximations of a switched system in general. The underlying
problem is the time-varying nature of the switched system, so a method will be
proposed to use a time-varying balanced truncation method for the switched
system (5.1).
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5.3 Balanced truncation for time-varying systems

In this section, balanced truncation of general time-varying systems on a finite
time interval is discussed. Consider the linear time-varying system

ẋ(t) = A(t)x(t) +B(t)u(t), t ∈ [t0, tf ],

y(t) = C(t)x(t),
(5.4)

with time-varying (continuous) system matrices A(·), B(·) and C(·).

5.3.1 Reachability and observability Gramians

It is well known that balanced truncation relies on reachability and observability
Gramians. This section deals with balancing of general time-varying systems, so
the time-varying reachability and observability Gramians are reviewed first. In-
spired by [113, 121, 142], the time-varying reachability and observability Gramians
are defined as follows.

Definition 5.1. Consider the linear time-varying system (5.4) with system matrices
A(·), B(·) and C(·). The time-varying reachability and observability Gramians at
t ∈ [t0, tf ] are defined as

P (t) := P0 +

∫ t

t0

Φ(t, τ)B(τ)B(τ)⊤Φ(t, τ)⊤ dτ, (5.5)

Q(t) := Qf +

∫ tf

t

Φ(τ, t)⊤C(τ)⊤C(τ)Φ(τ, t) dτ, (5.6)

where P0, Qf are some symmetric positive semidefinite matrices and Φ(t, τ) is the
transition matrix of the system, satisfying for all t and τ ,

∂

∂t
Φ(t, τ) = A(t)Φ(t, τ),

with the initial condition Φ(τ, τ) = I .

It can be shown that these Gramians are the solution of the following differen-
tial Lyapunov equations:

Ṗ (t) = A(t)P (t) + P (t)A(t)⊤ +B(t)B(t)⊤, (5.7)

Q̇(t) = −(A(t)⊤Q(t) +Q(t)A(t) + C(t)⊤C(t)), (5.8)

with initial/final conditions P (t0) = P0, Q(tf ) = Qf .
However, all existing works have considered zero initial/final Gramians and

then the analysis is only carried out for the compact time interval (t0, tf ), cf.
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[74, 121, 142]. Here, the choice for non-zero initial/final Gramians is made due to
the fixed time interval [t0, tf ]. In the case P0 = 0, Qf = 0, the reachability Gramian
will be zero at the starting point and gradually builds up while the observability
Gramian decreases and will be zero at the final time. Those points are therefore
singular points for the balancing transformation and will being unbounded as t
approaches to t0 or tf . This motivates to consider nonzero initial/final Gramians.

Remark 5.2. If the dynamical system is considered on the whole time axis (as is
usually for the time-invariant case, then P0 and Qf are chosen such that P (−∞) =

0 and Q(∞) = 0. This however makes it necessary to assume that the linear system
is asymptotically stable. This chapter is only interested in the behavior on the finite
interval [t0, tf ], which basically arbitrarily assign the values for P0 and Qf ; in other
words, one can choose arbitrarily how the system behaves outside the interval of
interest as long as it is exponentially stable. Moreover, the choice of the initial/final
Gramians is crucial in the sense that they play an important role for the magnitude
of the time-varying Gramians. In the context of time-varying case, two versions
can be proposed for the initial/final Gramians. One choice would be to assume
that the first mode is active in whole past i.e., (−∞, t0] and the Gramian of the first
mode is considered as the initial reachability Gramian. Similarly, by assuming
that the last mode is active in whole future i.e., [tf ,∞) and the Gramian of the
last mode is considered as the final value for observability Gramian. However, in
this case the computation of infinite Gramians are only possible for stable modes,
so it is more restricted for the considered systems. On the other hand, a second
choice could be the identity matrix which would not affect the direction of the
states which are difficult to control and difficult to observe. By scaling the identity
matrix with a smaller magnitude, one can restrict the influence of these artificial
initial/final Gramians relatively to the time-varying Gramians and also for the
bounded time-varying coordinate transformation matrices.

Note that, P (t) and Q(t) are both symmetric and positive semidefinite for
all t ∈ [t0, tf ]. It is assumed that the input-output balancing with respect to the
reachability and observability Gramians is defined over specific time intervals.
Hence, no assumption is needed with regard to the stability of the system.

Remark 5.3. The pair (A(·), B(·)) is completely reachable on [t0, tf ] if, and only
if P0 is positive definite, and the pair (A(·), C(·)) is completely observable on
[t0, tf ] if, and only if Qf is positive definite. In the literature [142], on time-varying
Gramians P (·), Q(·), the notions of boundedly completely reachable/observable
is defined with following inequalities:

0 < αI ⩽ P (t) ⩽ ᾱI < ∞, ∀ t ∈ R,

0 < βI ⩽ Q(t) ⩽ β̄I < ∞, ∀ t ∈ R,
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for any 0 < α < ᾱ < ∞ and 0 < β < β̄ < ∞. However, these are equivalent to the
notions of the finite time interval if P0 and Qf are positive definite.

5.3.2 Balancing and model reduction

As mentioned earlier, the balancing of a system is accomplished by a transfor-
mation of the state vector. In time-varying systems, such a transformation is
also time-varying and it is common to restrict the class of allowed coordinate
transformations so called Lyapunov transformations.

Definition 5.4. The mapping T : [t0, tf ] → Rn×n is called a Lyapunov transforma-
tion (or, short, Lyapunov) iff T (t), T (t)−1 and Ṫ (t) are well defined and bounded
on [t0, tf ].

Now it highlights that bounded reachability/observability ensures that the
Gramians P (·) and Q(·) are Lyapunov transformations.

Lemma 5.5. If P0 and Qf are positive definite then P (·) and Q(·) are Lyapunov.

Definition 5.6. The linear time-varying system (5.4) is called balanced on [t0, tf ] if
there exists positive definite P0, Qf such that

P (t) = Q(t) = Ξ(t), ∀ t ∈ [t0, tf ],

where Ξ(t) is a diagonal matrix.

Theorem 5.7. For every time-varying system (5.4) on [t0, tf ] with P0 and Qf which
are positive definite, there exists a Lyapunov transformation T such that the transformed
system is balanced on [t0, tf ] and the transformed system matrices are given by

A(t) := T (t)−1(A(t)T (t)− Ṫ (t)),

B(t) := T (t)−1B(t),

C(t) := C(t)T (t).

Proof. Consider P0 and Qf are positive definite then P (t) and Q(t) are Lyapunov
for all t ∈ [t0, tf ]. Consider the Cholesky decomposition of the reachability and
observability Gramians:

P (t) = R(t)R(t)⊤, Q(t) = L(t)L(T )⊤,

and the singular value decomposition

R⊤(t)L(t) := U(t)⊤Ξ(t)V (t)⊤,
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where Ξ(t) is a diagonal matrix containing the Hankel singular values (HSVs)
and let, the HSVs are ordered decreasingly, i.e., ξ1(t) ⩾ ξ2(t) ⩾ · · · ⩾ ξn(t) > 0,
t ∈ [t0, tf ].

It is shown in [142] that for any continuous system, there exists a continuously
differentiable nonsingular transformation matrix T (t), t ∈ [t0, tf ], defined as

T (t) = R(t)U(t)Ξ(t)−1/2,

T (t)−1 = Ξ(t)−1/2V (t)⊤L(t)⊤.

Under these transformation, it is easily seen that the reachability and observability
Gramians transform to

P (t) = T (t)−1P (t)T (t)−⊤ = Ξ(t),

Q(t) = T (t)⊤Q(t)T (t) = Ξ(t),

with P 0 = T (t0)
−1P0T (t0)

−⊤ and Qf = T (tf )
−1QfT (tf )

−⊤.

In particular,

P (t)Q(t) = T (t)−1P (t)Q(t)T (t).

Then, the input-output equivalent balanced system of (5.4) is obtained by

ẋ(t) = A(t)x(t) +B(t)u(t),

y(t) = C(t)x(t),

where the transformed system matrices are given by

A(t) := T (t)−1(A(t)T (t)− Ṫ (t)),

B(t) := T (t)−1B(t),

C(t) := C(t)T (t).

Hence, the transformed system is balanced with the Gramians P (t), Q(t).

For balanced system, one can decide which HSVs are important and so the
singular value decomposition can be divided into two parts:

R⊤(t)L(t) :=
[
Û(t) Ũ(t)

] [Ξ̂(t) 0

0 Ξ̃(t)

] [
V̂ (t) Ṽ (t)

]⊤
,

where all HSVs in Ξ̂(t) are larger than all HSVs in Ξ̃(t).
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According to the partition, an input-output equivalent (balanced) system has
the form [

˙̂x(t)
˙̃x(t)

]
=

[
Â(t) Ā12(t)

Ā21(t) Ã(t)

] [
x̂(t)

x̃(t)

]
+

[
B̂(t)

B̃(t)

]
u(t),

y(t) =
[
Ĉ(t) C̃(t)

] [x̂(t)
x̃(t)

]
,

(5.9)

where x̂(t) ∈ Rr, Â(t) ∈ Rr×r, B̂ ∈ Rr×m, Ĉ ∈ Rp×r, r < n is the dimension of Ξ̂.
By deleting the lower part, the reduced (and balanced) system of (5.9) is given

by
˙̂x(t) = Â(t)x̂(t) + B̂(t)u(t),

ŷ(t) = Ĉ(t)x̂(t).
(5.10)

The error bound for time-varying system (5.4) can be computed as follows.

Theorem 5.8. ([113, Thm 1]). Assume the system (5.4) has a balanced reduced realiza-
tion (5.10) on [t0, tf ] with

Ξ(·) = diag(Ξ̂(·), Ξ̃(·)),

where each singular value ξi(·), i = r + 1, . . . , n in Ξ̃(·) is either nonincreasing or non-
decreasing over time. Then, the ROM is balanced by Ξ̂(·) = diag(ξ1(·), ξ2(·), · · · , ξr(·))
and

∥y − ŷ∥L2
⩽ 2

(
n∑

k=r+1

sup
t∈[t0,tf ]

ξk(t)

)
∥u∥L2

.

The overall procedure for the reduced system is summarized by the following
algorithm.

Step 1. Compute the Cholesky decomposition

P (t) = R(t)R(t)⊤, Q(t) = L(t)L(T )⊤.

Step 2. Calculate the singular value decomposition

R⊤(t)L(t) =
[
Û(t) Ũ(t)

] [Ξ̂(t) 0

0 Ξ̃(t)

] [
V̂ (t) Ṽ (t)

]⊤
,

where Ξ̂(t) = diag(ξ1(t), . . . , ξr(t)) and Ξ̃(t) = diag(ξr+1(t), . . . , ξn(t)).
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Step 3. Compute the reduced system (5.10) with

Â(t) = Πl(t)(A(t)Πr(t)− Π̇r(t)),

B̂(t) = Πl(t)B(t), Ĉ(t) = C(t)Πr(t),

where Πl(t) = Ξ̂(t)−1/2V̂ (t)⊤L̂(t)⊤ and Πr(t) = R̂(t)Û(t)Ξ̂(t)−1/2 .

5.4 Balanced truncation for switched systems via ap-
proximations

As mentioned earlier, the available balanced truncation for time-varying systems
assume that the coefficient matrices are at least continuous. However, the switched
system (5.1) has discontinuous coefficient matrices.

5.4.1 Approximated switched systems

In order to still be able to use the existing methods, the following approximation
of the switched system (5.1) is proposed by the following (continuously) time-
varying systems:

Σε :

{
ẋε(t) = Aε(t)xε(t) +Bε(t)u(t), xε(t0) = 0,

yε(t) = Cε(t)xε(t),
(5.11)

where Aε(·), Bε(·) and Cε(·) are defined as follows, for sufficiently small ε > 0,

(Aε(t), Bε(t), Cε(t)) := (A0, B0, C0), : t ∈ [t0, s1),

Aε(t) =

{
Ai−1 +

t−si
ε (Ai −Ai−1) : t ∈ [si, si + ε],

Ai : t ∈ (si + ε, si+1],

Bε(t) =

{
Bi−1 +

t−si
ε (Bi −Bi−1) : t ∈ [si, si + ε],

Bi : t ∈ (si + ε, si+1],

Cε(t) =

{
Ci−1 +

t−si
ε (Ci − Ci−1) : t ∈ [si, si + ε],

Ci : t ∈ (si + ε, si+1],

where i = 1, . . . ,m.
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Remark 5.9. It is clear that the coefficient matrices in time-varying system (5.11)
are bounded and continuous even for small ε, since the term t−si

ε ∈ (0, 1), ∀
t ∈ (si, si + ε). Furthermore, the coefficient matrices are differentiable almost
everywhere, however, the derivatives grow proportional to 1/ε.

The solution of the time-varying state equations in system (5.11) is given by

xε(t) = Φε(t, t0)xε(t0) +

∫ t

t0

Φε(t, τ)Bε(τ)u(τ) dτ,

where Φε(t, τ) is known as state transition matrix.

The error of the approximation can be derived as follows.

Theorem 5.10. Consider the system (5.1) and its approximation (5.11) with the same
input u, and let x and xε be the corresponding solutions. Then, there exist ε > 0 and a
constant c > 0 such that for all ε ∈ (0, ε)

∥xε(t)− x(t)∥ < c ε, ∀t ∈ [t0, tf ). (5.12)

Proof. Clearly, for t ∈ [t0, s1), ∥xε(t)−x(t)∥ = 0. Assume that the statement is true
on [sk−1, sk), then for some ck−1

∥xε(t)− x(t)∥ < ck−1 ε, ∀t ∈ [sk−1, sk]. (5.13)

Now for ε > 0,

∥xε(sk + ε)− x(sk + ε)∥ = ∥Φε(sk + ε, sk)xε(sk)− Φ(sk + ε, sk)x(sk)∥

+

∫ sk+ε

sk

∥Φε(sk + ε, τ)− Φ(sk + ε, τ)∥∥u∥ dτ

⩽ ∥Φε(sk + ε, sk)∥∥xε(sk)− x(sk)∥+ ∥Φε(sk + ε, sk)− Φ(sk + ε, sk)∥∥x(sk)∥
+ ε∥Φε(sk + ε, sk)− Φ(sk + ε, sk)∥∥u∥.

From Taylor’s theorem, Φε(sk+ε, sk) = I+O(ε), ∥Φε(sk+ε, sk)∥ ⩽ c1, and hence,
∥Φε(sk+ε, sk)−Φ(sk+ε, sk)∥ ⩽ c2ε. Again, ∥x(sk)∥ ⩽ (sk−t0)∥Φ(sk, t0)∥∥u∥ = ĉk.
Now putting all together, it follows that

∥xε(sk + ε)− x(sk + ε)∥ ⩽ c1ck−1ε+ c2ĉkε+ c2c3ε
2 = c̃kε,

where c̃k = c1ck−1 + c2ĉk + c2c3ε. Inductively, the proof can now be concluded. It
is clearly seen that the constant c in (5.12) depends on the input u, on the length of
the interval [t0, tf ) and on the (magnitude of the) matrices Ai and Bi.
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Remark 5.11. A similar bound for the output does not hold for all t ∈ [t0, tf ),
in general the output of (5.1) is discontinuous (because the C-matrix switches)
while the output of (5.11) is continuous. Nevertheless, away from the switching
times (where Cε(t) = Cσ(t)) the error bound (5.12) trivially carries over to a
corresponding error bound for the outputs.

The main goal is now to derive a reduce model for the approximate sys-
tem (5.11) of the form

Σ̂ε :

{
˙̂xε(t) = Âε(t)x̂ε(t) + B̂ε(t)u(t), x̂(t0) = 0,

ŷε(t) = Ĉε(t)x̂ε(t).
(5.14)

5.4.2 Computational aspects of Gramians

In literature, there exist several different approaches for computing the Gramians
for linear time-varying systems, e.g., in [65, 113, 121, 122, 142]. The Gramians can
be computed either by solving the differential Lyapunov equations (5.7), (5.8) (see
[12]), or by explicitly computing the transition matrix and integration. For the
latter approach the following property of the Gramians can be exploited.

Lemma 5.12. Given the time steps s0 < s1 < · · · < sk, k ∈ N, the Gramians defined in
(5.5) and (5.6) at si can be calculated recursively as follows

Pε(si) = Φε(si, si−1)Pε(si−1)Φ
⊤
ε (si, si−1)

+

∫ si

si−1

Φε(si, τ)Bε(τ)B
⊤
ε (τ)Φ⊤

ε (si, τ) dτ,

Qε(si) = Φ⊤
ε (si+1, si)Qε(si+1)Φε(si+1, si)

+

∫ si+1

si

Φ⊤
ε (τ, si)C

⊤
ε (τ)Cε(τ)Φε(τ, si) dτ,

for i = 1, 2, . . . , k.

Proof. This is simple consequence from the definition and the property of the
transition matrix, in particular,

Φε(si, τ) = Φε(si, si−1)Φε(si−1, τ),

for any i = 1, 2, . . . , k and τ ∈ R.

Remark 5.13. From Lemma 5.12, it is clear that computation of Gramians could
be expensive, however, this computation will speed up for the special (piecewise
constant) structure of the considered switched linear system.
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In the following, balanced truncation given in Section 5.3.2 can be applied
to the system (5.11) with (Aε(t), Bε(t), Cε(t)) and the balancing transformation
matrices are computed using the Gramians.

Lemma 5.14. Assume P0 and Qf are positive definite. Then, there exists a Lyapunov
transformation Tε : [t0, tf ] → Rn×n such that for all t ∈ [t0, tf ],

Tε(t)
−1Pε(t)Tε(t)

−⊤ = Tε(t)
⊤Qε(t)Tε(t) = Ξε(t),

for a diagonal matrix Ξε(t). In fact,

Tε(t) = Rε(t)Uε(t)Ξε(t)
−1/2,

Tε(t)
−1 = Ξε(t)

−1/2Vε(t)
⊤Lε(t)

⊤,

where Uε(t)Ξε(t)Vε(t)
⊤ is the singular value decomposition of Rε(t)

⊤Lε(t), and where
Rε(t)Rε(t)

⊤ = Pε(t) and Lε(t)Lε(t)
⊤ = Qε(t) are the Cholesky decompositions of Pε

and Qε, respectively.

Proof. First observe that from positive definiteness of P0 and Qf , it follows that
Pε(t) and Qε(t) are positive definite for all t, which ensures that Pε(t)Qε(t) is
invertible, hence Ξε(t)

−1/2 is well defined.
Furthermore, it can be shown that all involved matrices to define Tε are Lya-

punov. From Theorem 5.7,

P ε(t) := Tε(t)
−1Pε(t)Tε(t)

−⊤ = Ξε(t),

Qε(t) := Tε(t)
⊤Qε(t)Tε(t) = Ξε(t).

Corollary 5.15. Consider the system (5.1) and its time-varying approximation (5.11)
(with sufficiently small ε). With the balanced form in Lemma 5.14, one can find a reduced
system as in (5.14) which approximates the original system (5.1).

5.5 Numerical results

In this section, two examples are presented to illustrate the proposed method.
First, recall the Example 5.1 and then a switched linear system is considered with
two modes where the system matrices are arbitrarily generated.

Example 5.2 (Example 5.1 revisited). Recall the switched system from Example 5.1
and approximate it as in (5.11) with ε = 0.1 and ε = 10−3. Figure 5.2 shows the
output of the approximation compared to the output of the original switched
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system and it is clearly visible that indeed (5.11) is a good approximation of (5.1)
for sufficiently small ε.

Next from Lemma 5.14, apply the proposed reduction technique. It is ex-
pected that a first order reduced (time-varying) system approximates the original
switched system well. Figure 5.3 shows that for the given input as Example 5.1
the output of the first order reduced system is a good approximation of the output
of the original switched system.
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Figure 5.2: Outputs of the original system and its approximation with ε = 0.1 and
ε = 0.001 for Example 5.2.
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Figure 5.3: Outputs of the original system, approximation with ε = 0.001, and 1st
order reduced system for Example 5.2.
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Example 5.3. Consider a randomly generated switched linear system with modes

A0 =


−0.74 0.3 0.2 −0.01 −0.06

0.965 −1.43 −0.5 0.8 −0.26

0.922 −0.0487 −0.44 0.03 0.054

−0.98 0.28 0.31 −0.764 0.07

−0.634 −1.26 0.534 0.662 −0.48

 ,

B0 =
[
2 1.4 1.1 −0.06 0.08

]T
,

C0 =
[
2.5 2 1.6 0.02 −0.03

]
,

A1 = A0 − 0.5I5(I denotes identity matrix),

B1 =
[
2.5 1.8 0.3 0.6 −1

]T
,

C1 =
[
1.5 1.4 0.7 0.1 0.2

]
, ε = 10−3.

Consider u(t) = (sin(5t) + 0.05)e−0.5t and the switching signal σ : [0, 6] → {0, 1}

σ(t) =

{
0 : t ∈ [0, 1) ∪ [2, 4),

1 : t ∈ [1, 2) ∪ [4, 6].

In Figure 5.4, it is seen that the first singular value is significantly larger than
the others (by taking Pε(0) = Qε(6) = 0.2I). Hence, by applying the proposed
balanced truncation method and by truncating the small four singular values
one can obtain a first order reduced model. Figure 5.5 displays the output of the
original switched system, its full order approximation with ε = 0.001 and the first
order reduced system which shows that they are nicely matching.
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Figure 5.4: Hankel singular values of pointwise Gramians for Example 5.3.
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Figure 5.5: Outputs of the original system, approximation with ε = 0.001, and 1st
order reduced system for Example 5.3.

Note that from Figure 5.4, it is apparent that the truncated Hankel singular
values do not satisfy the assumption in Theorem 5.8, hence, currently to make a
general statement about the error bounds is not possible for this example.

5.6 Discussion

In this chapter, a time-varying approach have been presented for proposing a
reduced order approximation of switched linear systems. The key idea is to
approximate the discontinuous switched system by a continuously time-varying
system and use available balanced truncation methods for time-varying linear
systems. Some error bounds are also proposed. Two numerical examples illustrate
the applicability and good performance.

The overall error bound is composed of two error bounds: One between the
switched system and its (full order) approximation and another error bound comes
from the time-varying balanced truncation. For the former quantitative bounds are
not yet available and for the latter it is not clear yet, how smaller values for ε effect
the error bound. Furthermore, calculation for the time-varying Gramians may be
computationally infeasible for higher-order systems and it has to be investigated
whether efficient approximation methods can be derived. Finally, it is noted that
the reduced model is not a simple switched system anymore. Hence, the model
complexity significantly increases and an alternative approach will be presented
in Chapter 6.





6 Model reduction for switched linear
systems

6.1 Introduction

As discussed in Chapters 1 and 5, several approaches of model reduction for
switched linear systems have been proposed, e.g., [11, 48, 49, 50, 101, 103, 119, 120].
It is mentioned that none of the existing model reduction approaches consider
the switched system as a piecewise-constant linear time-varying system for a
given switching signal. Consequently, all of the existing methods which do not
consider a known switching signal will usually not results in the best reduced
switched system for a specific switching signal. Moreover, a reduced realization
of switched systems is proposed in Chapter 4 and, observed that the minimal
realization depends on the specific mode sequences as well as the mode durations.

In Chapter 5, a model reduction method is discussed for switched linear
systems where the switched system is considered as a (fully) time-varying system.
The main idea was to first approximate the given time-varying system by assuming
continuity of the coefficient matrices with a sufficiently small tolerance and then
apply balanced truncation for the time-varying system. However, even when
relaxing the continuity assumptions (e.g. by approximating the switched system
with a continuous piecewise linear system) the resulting reduced system is fully
time-varying and not piecewise-constant as usually desired. Furthermore, the
studies on reduced realization of switched systems also showed that the reduced
switched system will in general have mode-dependent state dimension and it is
necessary to consider jump maps between the states of the different modes.

Likewise, in the case of model reduction it is reasonable to aim for a reduced
switched system with mode-dependent state dimension and to consider jumps of
the states at the switches. In order to stay within the same system class, recall the
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switched linear system (2.4) with a given switching signal

Σσ :

{ ẋk(t) = Aσ(t)xk(t) +Bσ(t)u(t), t ∈ (sk, sk+1),

xk(s
+
k ) = Jσ(s+k ),σ(s−k )xk−1(s

−
k ), k ∈ M,

y(t) = Cσ(t)xk(t
+), t ∈ [sk, sk+1),

(6.1)

and the main aim of this chapter is to obtain a lower dimensional SLS (with the
same switching signal σ) of the form

Σ̂σ :

{ ˙̂xk(t) = Âσ(t)x̂k(t) + B̂σ(t)u(t), t ∈ (sk, sk+1),

x̂k(s
+
k ) = Ĵσ(s+k ),σ(s−k )x̂k−1(s

−
k ), k ∈ M,

ŷ(t) = Ĉσ(t)x̂k(t
+), t ∈ [sk, sk+1),

(6.2)

where x̂k ∈ Rrk , rk ≪ nk and the output ŷ of the reduced system is similar to the
output y of the original system (for the same input).

This chapter is organized as follows. In Section 6.2, the problem formulation is
reviewed with a simple example, then the definition and characterization of the
time-varying reachable and unobservable subspaces of the switched linear system
(6.1) are recalled. In Section 6.3, the time-varying reachability and observability
Gramians are proposed and their relationship to the corresponding reachable and
unobservable subspaces is highlighted; furthermore, a precise connection to input-
and output energy is proven. Then, in Section 6.4 a mode-wise midpoint balanced
truncation method is proposed to obtain a reduced model which disregards si-
multaneously difficult to reach and difficult to observe states. It also provides a
discussion about the numerical implementation of the algorithm and its feasibility
for large-scale systems. Finally, in Section 6.5 some numerical experiments are
provided which illustrate the effectiveness of the approach.

6.2 Preliminaries

In this section, some problem setting and preliminaries for switched systems are
given.

From the Example 5.1, it is clear that the naive idea of balanced truncation
does not work in general. There are two underlying main reason why mode-wise
balanced truncation will in general not work for switched systems:
1) Balancing each mode individually results in a mode-dependent coordinate trans-
formation, so even without reducing the state dimension, the resulting switched
system will not preserve the input-output behavior unless an additional state-jump
is introduced to take into account the mode-dependent coordinate transformations;
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2) A mode-wise reduction removes difficult to observe and difficult to reach states
in each mode, however, a difficult to observe state in one mode may be easily observ-
able in another mode, hence in order to approximately preserve the input-output
behavior, one should not be removed such a state.

In order to resolve the second issue, the (time-varying) reachable and unob-
servable subspaces of switched systems will be recalled first. Recall the formal
definition of the reachable subspace (Definition 4.4) and unobservable subspace
(Definition 4.6) on the intervals [t0, t) and [t, tf ), respectively.

Definition 6.1. The reachable subspace of the switched system (6.1) on time
interval [t0, t) is

R[t0,t) :=

{
x(t−)

∣∣∣∣ ∃ solution (x, u) of (6.1)
with x(t−0 ) = 0

}
.

The switched system (6.1) is called reachable (on (t0, tf )) if, and only if,

R[t0,tf ) = Rnm .

Definition 6.2. The unobservable subspace of the switched system (6.1) on time
interval [t, tf ) is

U[t,tf ) :=

{
x(t+)

∣∣∣∣ ∃ solution (x, u = 0) such that
y = 0 of (6.1) on [t, tf )

}
.

The switched system (6.1) is called observable (on [t0, tf )) if, and only if,

U[t0,tf ) = {0}.

In [70], it is shown that the exact (time-varying) reachable and unobservable
subspaces can be calculated by the following recursive formulas. The reachable
subspaces are given by, for k = 1, 2, . . . ,m,

R[t0,t) = R0, t ∈ (t0, s1],

R[t0,t) = eAkτkJkR[t0,sk) +Rk, t ∈ (sk, sk+1],
(6.3)

and the unobservable subspaces are given by, for k = m− 1,m− 2, . . . , 0,

U[t,tf ) = Um, t ∈ [sm, tf ),

U[t,tf ) =
(
e−Ak(sk+1−t)J−1

k+1U[sk+1,tf )

)
∩ Uk, t ∈ [sk, sk+1).

(6.4)

Here, Rk := ⟨Ak | imBk⟩ and Uk := ⟨kerCk | Ak⟩ are the classical local reach-
able and unobservable subspaces of mode k, and J−1

k+1 stands for the preimage
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(the jump maps are not assumed to be invertible and are rectangular in general
anyway).

It should be noted that these subspaces do not contain quantitative information
about how easy/difficult it is to reach a reachable state or observe an observable
state. Consequently, while these subspaces are quite helpful to derive a reduced
realization, they cannot be used directly to obtain reduced model which discards
difficult to reach and difficult to observe states. To quantify reachability and
observability, it is necessary to introduce suitable Gramians.

6.3 Exact (time-varying) Gramians for switched linear
systems

The proposed reduction method is a generalization of the well established balanced
truncation method and therefore relies on a suitable definition of Gramians which
then need to be balanced.

6.3.1 Reachability Gramian

Consider the system (6.1) with the mode (Ak, Bk, Ck) and the k-th switching
time duration τk := sk+1 − sk. Moreover, it is seen from Section 4.2.2 that the
reachable subspaces of the overall switched systems depend on the switching
time durations. This motivates to propose following recursive definition for the
reachability Gramians of (6.1), for k = 1, 2, . . . ,m:

Pσ
0 (t) := P0(t), t ∈ [t0, s1),

Pσ
k (t) := eAk(t−sk)JkPσ

k−1(s
−
k )J

⊤
k eA

⊤
k (t−sk) + Pk(t), t ∈ [sk, sk+1),

(6.5)

where Pk(t) =
∫ t

sk
eAk(τ−sk)BkB

⊤
k eA

⊤
k (τ−sk) dτ is the classical reachability Gramian

of mode k on the interval (sk, t).
The intuition behind the sequence is as follows: Since the first system starts

with zero initial value, the reachability Gramian in the first mode is the classical
reachability Gramian of the first mode. Continuing recursively, the Gramian
between the switching time sk and sk+1 is obtained by propagating forward the
Gramian just before switch k in time, i.e., first jump via Jk and then propagating
according to the matrix exponential and finally, take into account the classical
reachability Gramian for mode k.

First it will be shown that the reachability Gramian Pσ
k (t) indeed spans the

reachable subspace R[t0,t).
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Lemma 6.3. For all k = 0, 1, . . . ,m and t ∈ (sk, sk+1],

imPσ
k (t

−) = R[t0,t).

In particular, (6.1) is reachable on [t0, t) i.e., R[t0,t) = Rnk for t ∈ (sk, sk+1] if, and only
if, Pσ

k (t
−) is positive definite (and hence nonsingular).

Proof. It is well known (see e.g. [2]) that R[t0,t) = R0 = P0(t) = imPσ
0 (t

−) for all
t ∈ (t0, s1]. Proceeding inductively, assume that for some k ⩽ m,

imPσ
k−1(s

−
k ) = R[t0,sk).

From (6.3), the reachable subspace at t ∈ (sk, sk+1] is given by

R[t0,t) = eAk(t−sk)JkR[t0,sk) +Rk. (6.6)

Furthermore, Pσ
k−1(s

−
k ) is by construction symmetric and positive semidefinite,

hence Pσ
k−1(s

−
k )

1/2 is well defined and imPσ
k−1(s

−
k ) = imPσ

k−1(s
−
k )

1/2 and, there-
fore,

im eAk(t−sk)Jk(Pσ
k−1(s

−
k ))

1
2 = eAk(t−sk)JkR[t0,sk).

Note that for any matrix M , imM = im(MM⊤) and consequently

im eAk(t−sk)Jk(Pσ
k−1(s

−
k ))

1
2 = im eAk(t−sk)JkPσ

k−1(s
−
k )J

⊤
k eA

⊤
k (t−sk).

Together with Rk = imPk(t) and the general fact that im(M1 +M2) = imM1 +

imM2 for any two symmetric positive semidefinite matrices M1 and M2 of the
same size, one can now conclude from (6.6) the desired subspace equation

imPσ
k (t

−) = im eAk(t−sk)JkPσ
k−1(s

−
k )J

⊤
k eA

⊤
k (t−sk) + imPk(t)

= R[t0,t).

As already highlighted above, by definition Pσ
k (t

−) is symmetric and positive
semidefinite. Consequently, positive-definiteness of Pσ

k (t
−) is equivalent to invert-

ibility which in turn is equivalent to imPσ
k (t

−) = Rnk .

Remark 6.4 (Singularity of reachability Gramian). If the switched system (6.1)
is reachable for all t ∈ (t0, tf ), i.e. R[t0,t) = Rnk for t ∈ (sk, sk+1], Lemma 6.3
implies that the reachability Gramians Pσ

k (t
−) are all nonsingular. However,

the right limits at the switching times Pσ
k (s

+
k ) = JkPσ

k−1(s
−
k )J

⊤
k are in general

singular, because a full row rank assumption has not been made on the jump
map Jk (which in fact cannot hold if nk > nk−1). In particular, any time-varying
coordinate transformation defined in terms of the singular Pσ

k (t
−) will result in an
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unbounded behavior to the right of each switching time (unless the corresponding
jump map Jk has full row rank).

One of the main theoretical results will now be presented which is the connec-
tion of the reachability Gramian with minimal input energy required to reach a
given final state in a given time.

Theorem 6.5 (Reachability Gramian and input energy). Consider the switched system
(6.1) with zero initial value and given switching signal. For some t ∈ (sk, sk+1) ⊆
(t0, tf ) assume that the corresponding reachability Gramian Pσ

k (t) as well as the classical
Gramians Pk(t) and all previous Gramians Pσ

j (s
−
j+1), j = 0, 1, . . . , k − 1 are positive

definite. Then, for all xt ∈ Rnk

min
u

∫ t

t0

u(τ)⊤u(τ) dτ = x⊤
t Pσ

k (t
−)

−1
xt,

where the minimum is taken over all u : [t0, t) → Rm which result in a solution of (6.1)
with x(t−) = xt. In other words, the directions of eigenvectors of Pσ

k (t
−) corresponding

to the smallest eigenvalues require the most energy to be reached from zero.

Proof. For t ∈ (t0, s1], Lemma 2.11 (with x0 = 0) already shows the claim of the
theorem. Proceeding inductively, assume that the claim is shown for t = sk,
and it will be then shown for t ∈ (sk, sk+1]. In particular, the minimal input
energy to reach any z from zero on the interval [t0, sk) is given by z⊤Pσ

k−1(s
−
k )z

and from Lemma 2.11, it follows that the minimal input energy to reach any
xt from Jkz is given by (xt − eAk(t−sk)Jkz)

⊤Pk(t)
−1(xt − eAk(t−sk)Jkz), where

Pk(t) :=
∫ t

sk
eAk(τ−sk)BkB

⊤
k eA

⊤
k (τ−sk)dτ . Clearly, to reach xt from zero on the

time interval [t0, t) with minimal energy, one needs to find z∗ which minimize the
sum of the minimal energy to reach z on [t0, sk) and the minimal energy to reach
xt from Jkz on [sk, t), i.e. it needs to be shown that

min
z

(
z⊤Pσ

k−1(s
−
k )

−1z + (xt − eAk(t−sk)Jkz)
⊤Pk(t)

−1(xt − eAk(t−sk)Jkz)
)

= x⊤
t P

σ
k (t)

−1xt.

The above minimization has the form

min
z

(z⊤Mz − 2c⊤z + α),

with M=Pσ
k−1(s

−
k )

−1+J⊤
k eA

⊤
k (t−sk)Pk(t)

−1eAk(t−sk)Jk, c⊤= x⊤
t Pk(t)

−1eAk(t−sk)Jk,
α = x⊤

t Pk(t)
−1xt. Note that, M is the sum of a symmetric positive definite matrix

Pσ
k−1(s

−
k )

−1 and a symmetric positive semidefinite matrix and hence, it is itself a
symmetric positive definite matrix. Consequently, the unique minimizer is given
by z∗ := M−1c and the minimal value is then α− c⊤M−1c. Hence, it remains to
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be shown that

Pk(t)
−1 − Pk(t)

−1eAk(t−sk)JkM
−1J⊤

k eA
⊤
k (t−sk)Pk(t)

−1 = Pσ
k (t)

−1

=
(
eAk(t−sk)JkPσ

k−1(s
−
k )J

⊤
k eA

⊤
k (t−sk) + Pk(t)

)−1

.
(6.7)

Recall the well known Woodbury matrix identity which states that for any G0 ∈
Rn0×n0 , G1 ∈ Rn1×n1 invertible and F1 ∈ Rn1×n0 ,

(F1G0F
⊤
1 +G1)

−1 = G−1
1 −G−1

1 F1(G
−1
0 + F⊤

1 G−1
1 F1)

−1F⊤
1 G−1

1 .

With G0 = Pσ
k−1(s

−
k ), G1 = Pk(t), F1 = eAk(t−sk)Jk, this identity equals exactly

the desired relationship (6.7).

Before presenting the main results, the observability Gramian of switched
system is discussed as follows.

6.3.2 Observability Gramian

The following recursive definition is proposed for the (time-varying) observability
Gramian of the switched system (6.1):

Qσ
m (t) := Qm(t), t ∈ [sm, tf ),

Qσ
k(t) := eA

⊤
k (sk+1−t)J⊤

k+1Qσ
k+1(s

+
k+1)Jk+1e

Ak(sk+1−t) +Qk(t), t ∈ [sk, sk+1),
(6.8)

where Qk(t) :=
∫ sk+1

t
eA

⊤
k (sk+1−τ)C⊤

k Cke
Ak(sk+1−τ) dτ is the classical observability

Gramian of mode k on the interval (t, sk+1).
The intuition for this definition is that starting from the time-limited observ-

ability Gramian of the last mode, the observability Gramian for the interval (t, tf )
is composed of the Gramian for k + 1-st mode on (sk+1, tf ) which is propagated
backwards in time under the jump Jk+1 together with the matrix exponential
of k-th mode and the classical observability Gramian of mode k on the interval
(t, sk+1). It will now be shown that the kernel of the observability Gramian is
indeed the unobservable subspace of the switched system.

Lemma 6.6. For all k = m, . . . , 0 and t ∈ [sk, sk+1),

U[t,tf ) = kerQσ
k(t

+).

In particular, (6.1) is observable on [t, tf ) i.e., U[t,tf ) = {0} for t ∈ [sk, sk+1) if, and only
if, Qσ

k(t
+) is positive definite.

Proof. It is well known (see e.g. [2, Prop. 4.10]) that U[t,tf ) = Um = Qm(t) =

kerQσ
m (t

+) for all t ∈ [sm, tf ). Proceeding inductively, assume now that for some
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k < m,
U[sk+1,tf ) = kerQσ

k+1(s
+
k+1),

and it will be shown that for t ∈ [sk, sk+1),

U[t,tf ) = kerQσ
k(t

+).

First observe that Qσ
k+1(s

+
k+1)

1/2 is well defined because Qσ
k+1(s

+
k+1) is symmet-

ric and positive semidefinite, furthermore, kerQσ
k+1(s

+
k+1) = kerQσ

k+1(s
+
k+1)

1/2.
Together with the general property M−1 kerN = kerNM for arbitrary suitable
matrices M and N , it follows that

e−Ak(sk+1−t)J−1
k+1 kerQ

σ
k+1(s

+
k+1) = kerQσ

k+1(s
+
k+1)

1/2Jk+1e
Ak(sk+1−t).

Utilizing further that for any matrix M , it holds that kerM = kerM⊤M , then
U[t,tf ) is equal to

ker
(
eA

⊤
k (sk+1−t)J⊤

k+1Qσ
k+1(s

+
k+1)Jk+1e

Ak(sk+1−t)
)
∩ Uk.

Since Uk = kerQk(t) for all t ∈ [sk, sk+1), the claim follows from the fact that
ker(M1 +M2) = ker(M1)∩ ker(M2) for any two positive semidefinite matrices M1

and M2. Now positive-definiteness of Qσ
k(t

+) is equivalent to invertibility which
in turn is equivalent to kerQσ

k(t
+) = {0}. This completes the proof.

Before stating the relationship between the observability Gramian and the
output energy, similar to Remark 6.4 a remark about the singularity of the observ-
ability Gramian is given in the following.

Remark 6.7 (Singularity of observability Gramian). By Lemma 6.6, the observability
Gramian Qσ

k(t
+) is nonsingular for all t ∈ [sk, sk+1) ⊆ [t0, tf ) if, the switched

system is observable for all t ∈ [t0, tf ), i.e. U[t,tf ) = {0}. However, the left limit
at the switching times Qσ

k(s
−
k+1) = J⊤

k+1Qσ
k+1(s

+
k+1)Jk+1 is in general singular,

because any full column rank assumption is not made on the jump matrix Jk+1

(which in fact cannot be satisfied if nk > nk+1).

Theorem 6.8. (Observability Gramian and output energy). Consider a solution of
the switched system (6.1) with zero input on the interval [t, tf ) for t ∈ [sk, sk+1) and
corresponding observability Gramian Qσ

k(t). Then, the corresponding output satisfies∫ tf

t

y(τ)⊤y(τ) dτ = x(t+)⊤Qσ
k(t

+)x(t+). (6.9)

In other words, states values at time t which are in the direction of an eigenvector corre-
sponding to the smallest eigenvalue of Qσ

k(t
+) produce only a small amount of output
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energy and are therefore hard to observe.

Proof. For t ∈ [sm, tf ), y(τ) = eAm(τ−t)x(t+) and hence,∫ tf

t

y(τ)⊤y(τ) dτ = x(t+)⊤Qm(t)x(t
+) = Qσ

m (t
+).

Proceeding inductively, assume now that for some k = m− 1,m− 2, . . . , 0,∫ tf

sk+1

y(τ)⊤y(τ) dτ = x(s+k+1)
⊤Qσ

k+1(s
+
k+1)x(s

+
k+1) (6.10)

and it will then be shown that for all t ∈ [sk, sk+1) the equation (6.9) holds for any
solution x(·) of (6.1) with zero input on [t, tf ). Then,∫ tf

t

y(τ)⊤y(τ) dτ =

∫ sk+1

t

y(τ)⊤y(τ) dτ +

∫ tf

sk+1

y(τ)⊤y(τ) dτ.

For τ ∈ [t, sk+1), y(τ) = eAk(τ−t)x(t+) and hence∫ sk+1

t

y(τ)⊤y(τ) dτ = x(t+)⊤Qk(t)x(t
+).

From (6.10) together with x(s+k+1) = Jk+1e
Ak(sk+1−t)x(t+), it can be concluded

that
∫ tf
sk+1

y(τ)⊤y(τ)dτ is equal to

x(t+)⊤eA
⊤
k (sk+1−t)J⊤

k+1Qσ
k+1(s

+
k+1)Jk+1e

Ak(sk+1−t)x(t+).

Altogether, it arrives at (6.9).

6.4 Midpoint balanced truncation

6.4.1 Motivation and algorithm

For any specific time t ∈ (sk, sk+1) ⊆ (t0, tf ), the corresponding reachability
Gramian Pσ

k (t
−) and observability Gramian Qσ

k(t
+) give precise quantitative

information about which state direction is difficult to reach from zero on the
interval [t0, t) and which state direction is difficult to observe from the output on
[t, tf ). While in the reduced realization context, the property of unreachability or
unobservability is to some degree independent from the actual mode duration,
this is not the case for the quantitative measure of reachability or observability.

In fact, the values of the integrals in the definitions of the Gramians explicitly
depend on the mode duration and due to the positive semidefinite nature of the
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involved matrices, the magnitude of the Gramians will increase with an increased
mode duration. This implies that it is in principle not possible to have a good
model reduction method for switched systems which is independent of the mode
duration.

In addition to the dependence of the Gramians on the mode duration, the
Gramians also depend on the time t ∈ (sk, sk+1) within a given mode. Since the
goal is to obtain a switched linear system of the form (6.2) as a reduced model, each
mode needs to be reduced in a time-invariant fashion and it needs to be decided
which information of the time-varying Gramians is utilized for the reduction
method. In the following, it is proposed to take the Gramians evaluated at the
midpoints

gk =
sk + sk+1

2
, k = 0, 1, . . . ,m,

of each mode as the basis of the model reduction, i.e. the following midpoint
Gramians are considered:

Pσ

k := Pσ
k (gk),

Qσ

k := Qσ
k(gk).

In particular, the implicit assumption is made that a state-direction which is diffi-
cult to reach/observe at the midpoint of a mode is also difficult to reach/observe
in the whole time interval (sk, sk+1) in which mode k is active.

The key intuition behind the midpoint Gramians is that mode k needs to be
active for a while so that one can really see which states are easy to reach in
this mode (i.e. the corresponding reachability Gramian is changed sufficiently).
The same applies to the observability Gramian, but there it is needed to stay
long enough in mode k. So, in this sense, the middle point is ’optimal’ as any
other choice would make relative reachability and observability properties smaller
compared to the already calculated reachability/observability properties from the
past/future. Another aspect to consider is the potential singularity of the Gramians
around the switching times as pointed out in Remarks 6.4 and 6.7, which indicates
that balancing each mode based on Gramians close to the switching times would
lead to coordinate transformations which are close to being singular; again this
motivates to choose the midpoint Gramians because they are “farthest away” from
potential singularities.

As a first step of the model reduction, it is first necessary to identify states
which are simultaneously difficult to reach and difficult to observe (quantified via
the midterm Gramians). This can be achieved by constructing a mode-dependent
coordinate transformation x̃k = Tkxk in such a way that the corresponding mid-
point Gramians (w.r.t. to the new coordinates) become equal and diagonal (i.e.
balanced). Before continuing the discussion, it is highlighted how a mode-wise
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coordination transformation effects the form of the switched system and the corre-
sponding Gramians.

Lemma 6.9. Consider the switched system (6.1) and a mode-wise coordinate transfor-
mation x̃k = Tkxk for a family of invertible matrices Tk ∈ Rnk×nk , k ∈ M. Then, the
input-output behavior of (6.1) with zero initial value is equal to the input-output behavior
of

Σ̃σ :

{ ˙̃xk(t) = Ãkx̃k(t) + B̃ku(t), t ∈ (sk, sk+1),

x̃k(s
+
k ) = J̃kx̃k−1(s

−
k ), k ∈ M,

y(t) = C̃kx̃k(t
+), t ∈ [sk, sk+1),

(6.11)

where
Ãk = TkAkT

−1
k , B̃k = TkBk, C̃k = CkT

−1
k ,

and
J̃k = TkJkT

−1
k−1.

Furthermore, the corresponding Gramians satisfy

P̃σ
k (t) = TkPσ

k (t)T
⊤
k , Q̃σ

k(t) = T−⊤
k Qσ

k(t)T
−1
k ,

in particular, the eigenvalues of Pσ
k (t)Qσ

k(t) are invariant under mode-wise coordinate
transformations.

Proof. This can easily be verified inductively.

Remark 6.10 (Necessity of jumps). It should be noted that a mode-wise coordinate
transformation applied to a switched linear system without jumps necessarily
introduced jumps of the form J̃k = TkT

−1
k−1.

The following lemma is a well known result and shows how a balancing
coordinate transformation can be found.

Lemma 6.11 ([84]). For P,Q ∈ Rn×n symmetric and positive definite, there exists
invertible T ∈ Rn×n and a diagonal positive definite matrix Ξ ∈ Rn×n such that

TPT⊤ = Ξ = T−⊤QT−1.

In fact, T = Ξ−1/2V ⊤L⊤ and T−1 = RUΞ−1/2 where P = RR⊤ and Q = LL⊤ is a
Cholesky decomposition and R⊤L = UΞV ⊤ is a singular value decomposition.

The idea is now to carry out a mode-wise balancing of the original switched
system (6.1) based on the midpoint Gramians to obtain the transformed switched
system (6.11) whose corresponding midpoint Gramians are equal and diagonal.
Then, one can remove all state-components (in the balanced coordinate system)
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corresponding to sufficiently small entries in the diagonal balanced midpoint
Gramians to obtain a reduced system which will have a similar input-output
behavior because only those state-components have been removed which are
simultaneously difficult to reach and difficult to observe.

The overall midpoint balanced truncation method is summarized in Algo-
rithm 1. Note that, the algorithm will only be able to run successfully if each
midterm Gramian is nonsingular, which in view of Lemmas 6.3 and 6.6 implies
that the switched system is reachable and observable at each midpoint of each
mode. If this condition is not satisfied, it is possible to first eliminate unreachable
and unobservable states via the method proposed in Chapter 4.

Algorithm 1: Midpoint balanced truncation

Data: Modes (Ak, Bk, Ck, Jk), k = 0, 1, . . . ,m, switching times sk,
k = 0, . . . ,m+ 1, reduction threshold εk or desired reduction size
rk ⩽ nk, k = 0, 1, . . . ,m.

Result: Reduced modes (Âk, B̂k, Ĉk, Ĵk), k = 0, . . . ,m.
1 Compute the sequence of midpoint reachability Gramians Pσ

0 ,P
σ

1 , . . . ,P
σ

m .
2 Compute the sequence of midpoint observability Gramians Qσ

m ,Q
σ

m−1, . . . ,

Qσ

0 .
3 for k = 0, . . . ,m do
4 if Pσ

k and Qσ

k nonsingular then
5 Compute Cholesky decompositions Pσ

k =: RkR
⊤
k and Qσ

k =: LkL
⊤
k .

6 Compute singular value decomposition R⊤
k Lk =: UkΞkV

⊤
k with

decreasing diagonal entries in Ξk.
7 In case threshold εk is given: choose maximal rk ⩽ nk such that

rk-th entry of Ξk is bigger than εk.
8 Calculate transformation matrices Tk := Ξ−1/2V ⊤

k L⊤
k and

T−1
k := RkUkΞ

−1/2.
9 Define left-projector Πl

k as the first rk rows of Tk and the
right-projector Πr

k as the first rk columns of T−1
k .

10 Compute: Âk := Πl
kAkΠ

r
k, B̂k := Πl

kBk, Ĉk := CkΠ
r
k.

11 if k > 0 then
12 Compute: Ĵk := Πl

kJkΠ
r
k−1.

13 end
14 end
15 else
16 Abort: Midterm Gramians not positive definite, no balanced

truncation possible, apply reduced realization algorithm first.
17 end
18 end



6.4. Midpoint balanced truncation 91

6.4.2 Numerical aspects

The main motivation for model reduction is usually that the state dimensions of
the original system is very large so that running (many) simulations or designing
feedback controllers is not feasible. Hence, it is necessary to critically reflect
whether the proposed reduction method is in fact feasible for large-scale systems.
Clearly, the calculations of the midpoint Gramians (lines 1 and 2) in Algorithm 1
are by far the most expensive part of the whole method, followed by the Cholesky
decompositions (line 5) and the singular value decomposition (line 6). Since the
latter are also used in classical balanced truncation methods, there are already
many efficient implementations available and they will not be further discussed
here.

In the following, only the calculation of the reachability Gramians will be dis-
cussed, because the calculation of the observability Gramians is just a “transposed”
version thereof.

In order to obtain the midpoint reachability Gramians, one needs efficient meth-
ods for 1) the calculation of the classical reachability Gramians Pk(gk) and Pk(sk+1)

for each mode k on the intervals [sk, gk) and [sk, sk+1); and 2) the left- and right-
multiplication action of the matrix exponential eAk(gk−sk) = eAkτk/2 on the already
calculated matrix JkPσ

k−1(s
−
k )J

⊤
k . Note that, eAk(sk+1−sk) = eAkτk = (eAkτk/2)2

which can be utilized in the calculation of the matrix eAkτkJkPσ
k−1(s

−
k )J

⊤
k eA

⊤
k τk .

The calculation of the classical reachability Gramian
∫ t

0
eAτBB⊤eA

⊤τdτ for
a given matrices A, B and a time duration t has already been addressed in the
context of time-limited balanced truncation [42], with further investigations in
[33, 69, 109]. In particular, it can be shown that the reachability Gramian P (t1) =∫ t1
t0

eA(τ−t0)BB⊤eA
⊤(τ−t0) dτ for ẋ = Ax + Bu considered on the interval (t0, t1]

is the solution of the Lyapunov equation

AP + PA⊤ +BB⊤ − eA(t1−t0)BB⊤eA
⊤(t1−t0) = 0.

Hence, the calculation of Pk(gk) and Pk(sk+1) reduces to the ability to efficiently
calculate the matrix exponential and the ability to efficiently solve a Lyapunov
equation. These are standard numerical tasks and efficient implementations
exist for example in Matlab. The overall calculation of the midpoint reachability
Gramian is summarized in Algorithm 2.

For switched systems (6.1) with state dimensions up to one thousand, the ma-
trix exponentials and the solution of the Lyapunov equations can be obtained on a
current laptop within seconds with the standard Matlab functions expm and lyap,
so the proposed method is already feasible for many practical problems without
any further code optimization and sophisticated approximation techniques. How
to adapt the approach to very large-scale systems (state dimensions in the order of
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millions) is a numerical challenge but outside the scope of this chapter.

Algorithm 2: Computation of midpoint reachability Gramians

Data: Modes (Ak, Bk, Jk), k = 0, 1, . . . ,m and mode durations τk,
k = 0, . . . ,m.

Result: Midpoint Gramians Pσ

k , k = 0, . . . ,m.
1 Initialization: Pσ

0 = 0.
2 for k = 0, 1 . . . ,m do
3 Calculate: Fk,1/2 := eAkτk/2.
4 Obtain Pk,1/2 as solution of the Lyapunov equation

AkPk,1/2 + Pk,1/2A
⊤
k +BkB

⊤
k − Fk,1/2BkB

⊤
k F⊤

k,1/2 = 0.

5 Calculate: Pσ

k := Fk,1/2JkP
σ
k−1J

⊤
k F⊤

k,1/2 + Pk,1/2.
6 Calculate Fk := (Fk,1/2)

2.
7 Obtain Pk as solution of the Lyapunov equation

AkPk + PkA
⊤
k +BkB

⊤
k − FkBkB

⊤
k F⊤

k = 0.
8 if k < m then
9 Calculate Pσ

k+1 := FkJkP
σ
k−1J

⊤
k F⊤

k + Pk.
10 end
11 end

6.5 Numerical results

In the following, some academic examples are presented to illustrate the proposed
method. First, the Example 5.1 is revisited, which was used to motivate that a
naive mode-wise balanced truncation is not resulting in a suitable reduced system.

Example 6.1 (Example 5.1 revisited). Consider the switched linear system from
Example 5.1 with system matrices

A0 = A1 =

[
−0.5 0.01

0.01 −0.5

]
, B0 = C⊤

0 =

[
0.001

1

]
,

B1 = C⊤
1 =

[
1

0.001

]
,

and a switching signal σ : [0, 2) given by σ(t) = 0 on [0, 1) and σ(t) = 1 on [1, 2).
The proposed method is applied to obtain a reduced system, the steps are

given as follows.
Step 1. Following Algorithm 2, the midpoint Gramians of the time intervals [0, 1)
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and [1, 2) are calculated:

Pσ

0 =

[
10−5 0.0013

0.0013 0.3935

]
,

Pσ

1 =

[
0.3935 0.0052

0.0052 0.3834

]
,

Qσ

0 =

[
0.3834 0.0052

0.0052 0.3935

]
,

Qσ

1 =

[
0.3935 0.0013

0.0013 10−5

]
.

Step 2. The corresponding balanced Gramians are

Ξ0 = Ξ1 =

[
0.3935 0

0 0.0006

]
.

Since the last diagonal entry is significantly smaller than the first, one can re-
duce both modes to first order without significantly influencing the input-output
behavior.

Step 3. The calculated left- and right-projectors according to Algorithm 1 are
obtained by

(Π
l

0,Π
r

0) =

([
0.0164

1

]⊤
,

[
0.0033

0.9999

])
,

(Π
l

1,Π
r

1) =

([
−0.9999

−0.0033

]⊤
,

[
−1

−0.0164

])
.

Step 4. The corresponding first order reduced switched system is then given by

(Â0, B̂0, Ĉ0) =
(
Π

l

0A0Π
r

0,Π
l

0B0, C0Π
r

0

)
= (−0.4998, 1, 1) ,

(Â1, B̂1, Ĉ1)=
(
Π

l

1A1Π
r

1,Π
l

1B1,C1Π
r

1

)
=(−0.4998,−1,−1) ,

and the jump matrix is given by Ĵ1 = −0.0066.

Figure 6.1 depicts the output of the original switched system and its 1st order
approximation with input u(t) = (sin(5t) + 0.05)e−.5t. Clearly, both outputs
match nicely. The related relative errors between the two outputs are depicted in
Figure 6.2, which shows that the relative error is less then 0.5%.

In the following, a larger system is considered with more switches and also
mode-dependent state dimensions.
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Figure 6.1: Outputs of the original system and the proposed 1st order system.
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Figure 6.2: Relative errors of the original system and the proposed 1st order system.

Example 6.2. Consider a switched linear system with modes:

(A0, B0, C0) =



0.2 0.1 0.01 0.02

0.02 0.1 0.2 0.01

0.3 0.02 0.5 0.01

0.04 0.1 0.01 0.6

 ,


2

3

−2

1

 ,


3

0.7

1

0.01


⊤ ,

(A1, B1, C1) =


−0.2 0.01 0

0.1 0.1 0.2

0 0.1 −0.3

 ,

 1

0.2

−0.02

 ,

 0.1

0.01

0.004

⊤ ,
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(A2, B2, C2) =




0.8 0.1 0 −0.1 0.01

0.07 0.5 0 0.1 0

0.1 0.2 0.3 0.01 0

0.1 0 0 0.1 0.01

0 0 0.1 0 0.4

 ,


1

2

−1

−0.2

0.1

 ,


1

−2

0.2

0.1

0.2


⊤ ,

J1 =

0.3 1 0 0

0.1 0.2 0.1 −1

0 0.1 0 1

 ,

J2 =


1 0.1 0

0.02 −0.2 0.1

0 0.01 0.1

0.1 0 1

0 0 1

 ,

and a switching signal given by σ(t) = 0 on [0, 2), σ(t) = 1 on [2, 3) and σ(t) = 2

on [3, 5). A reduced system is obtained as follows:
Step 1. Following Algorithm 2, the midpoint Gramians are calculated for the time
intervals [0, 2), [2, 3) and [3, 5):

Pσ

0 =


5.7006 7.0498 −5.1347 3.8804

7.0498 8.8090 −6.3863 4.7298

−5.1347 −6.3863 4.6396 −3.4675

3.8804 4.7298 −3.4675 2.6942

 ,

Pσ

1 =

 23.6495 −11.9148 2.6197

−11.9148 8.4388 −1.4232

2.6197 −1.4232 0.2991

 ,

Pσ

2 =


91.0695 19.9927 0.9495 14.3635 5.0961

19.9927 10.1823 −1.8749 2.2150 1.0600

0.9495 −1.8749 0.8944 0.5362 0.0800

14.3635 2.2150 0.5362 2.4461 0.8301

5.0961 1.0600 0.0800 0.8301 0.3060

 ,

Qσ

0 =


14.2249 7.2736 6.3552 −2.8392

7.2736 10.4901 4.4036 −7.4309

6.3552 4.4036 3.0521 −2.2824

−2.8392 −7.4309 −2.2824 5.8998

 ,

Qσ

1 =

 7.9665 3.6209 −1.0210

3.6209 1.6646 −0.4353

−1.0210 −0.4353 0.1814

 ,
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Qσ

2 =


2.1060 −3.6360 0.3586 −0.1436 0.3697

−3.6360 6.3082 −0.6224 0.2310 −0.6410

0.3586 −0.6224 0.0614 −0.0226 0.0632

−0.1436 0.2310 −0.0226 0.0193 −0.0237

0.3697 −0.6410 0.0632 −0.0237 0.0651

 .

Step 2. The corresponding balanced Gramians are

Ξ0 =


10.3447 0 0 0

0 1.0422 0 0

0 0 0.0020 0

0 0 0 10−6

 ,

Ξ1 =

10.5854 0 0

0 0.2399 0

0 0 0.0063

 ,

Ξ2 =


10.6192 0 0 0 0

0 0.5082 0 0 0

0 0 0.0014 0

0 0 0 10−5 0

0 0 0 0 10−10

 .

With a truncation threshold of 0.1, the reduced dimensions is two for all three
modes.
Step 3. The calculated left- and right-projectors according to Algorithm 1 are
obtained by

(Π
l

0,Π
r

0) =



−1.1180 1.0923

−0.8135 −1.8677

−0.5399 0.0753

0.4345 1.9427


⊤

,


−0.7395 0.2032

−0.9227 −0.0423

0.6694 −0.0653

−0.4972 0.3624


 ,

(Π
l

1,Π
r

1) =


−0.8674 −0.0995

−0.3935 −0.3247

0.1122 −0.4054

⊤

,

−1.4672 1.8930

0.6475 −4.0771

−0.1586 0.3347


 ,

(Π
l

2,Π
r

2) =




−0.4453 −0.0207

0.7694 −0.2092

−0.0759 0.0226

0.0301 0.1375

−0.0782 0.0182


⊤

,


−2.3741 −7.8328

−0.0888 −4.4533

−0.1811 0.9209

−0.4449 −0.7821

−0.1374 −0.4051



.
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Step 4. Applying the left- and right-projectors according to Algorithm 1, the
reduced switched system (6.2) is given by

(Â0, B̂0, Ĉ0) =
(
Π

l

0A0Π
r

0,Π
l

0B0, C0Π
r

0

)
=

([
0.0264 0.0389

−1.1032 0.4960

]
,

[
−3.1623

−1.6263

]
,

[
−2.2001

0.5182

]⊤)
,

(Â1, B̂1, Ĉ1) =
(
Π

l

1A1Π
r

1,Π
l

1B1,C1Π
r

1

)
=

([
−0.2028 0.3664

0.0385 0.2969

]
,

[
−0.9483

−0.1563

]
,

[
−0.1466

0.1619

]⊤)
,

(Â2, B̂2, Ĉ2) =
(
Π

l

2A2Π
r

2,Π
l

2B2,C2Π
r

2

)
=

([
0.6373 0.7872

0.0500 0.6001

]
,

[
1.1555

−0.4875

]
,

[
−2.3047

1.0988

]⊤)
,

Ĵ1 = Π
l

1J1Π
r

0 =

[
0.8566 0.1279

0.0722 0.1011

]
,

Ĵ2 = Π
l

2J2Π
r

1 =

[
0.4940 0.0110

0.0205 −0.1383

]
.

Figure 6.3 depicts the output of the original switched system and its approximation
for the input u(t) = 0.5 sin(0.5t). Clearly, both outputs match nicely. The related
relative errors between the two outputs are depicted in Figure 6.4, which shows
that the relative error is less then 0.5%.
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Figure 6.3: Outputs of the original system and the proposed reduced system with
truncation threshold 0.1.
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Figure 6.4: Relative errors of the original system and the proposed reduced system
with truncation threshold 0.1.

Next, another reduced system is computed by considering the larger threshold
0.25, then the dimensions of the reduced modes will be 2, 1 and 2, respectively.
Figure 6.5 shows that the input-output behavior and the related relative errors
between the two outputs are depicted in Figure 6.6, which still results in a good
approximation (but the relative error is already significantly larger).
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Figure 6.5: Outputs of the original system and the proposed reduced system with
truncation threshold 0.25.

Finally, consider another larger threshold 1.5, then the dimension of each
reduced mode will be one. The input-output behavior is depicted in Figure 6.7
which does not result in a good approximation especially in the last mode.
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Figure 6.6: Relative errors of the original system and the proposed reduced system
with truncation threshold 0.25.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(sec)

0

0.5

1

1.5

2

2.5

3

3.5

O
u

tp
u

t

Original

Reduced

Figure 6.7: Outputs of the original system and the proposed reduced system with
truncation threshold 1.5.

The examples show that there is clear relationship between the size of the
removed eigenvalues of the balanced Gramians and the error between the output
of the original and reduced system. However, it is not clear whether an explicit
error bound similar to the classical balanced truncation method can be obtained.
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6.6 Discussion

In this chapter, a reduction method is proposed for switched linear systems. First,
suitable reachability and observability Gramians are defined such that they pro-
vide precise quantitative information about how difficult to reach/observe a state
is at a specified time. Based on this information, a mode-wise midpoint balanced
truncation method is proposed which results in a reduced switched system whose
input-output behavior is similar to the original one. Some numerical issues are
discussed and for moderately large sized original systems the proposed method is
applicable, while for very large-scale systems (e.g. millions of state variables) the
proposed method is not directly applicable and further adjustments are necessary.
Furthermore, no error bound is given at the moment, although due to the proven
energy interpretation the method results in a very good approximation of the
input-output behavior.



7 Model reduction for switched DAEs

7.1 Introduction

As mentioned in the Introduction (in Chapter 1), DAEs naturally occur for mod-
elling and simulation in many applications such as multi-body systems, circuit
simulation, control theory, fluid dynamics, and many other areas. Many practical
systems nowadays exhibit impulsive dynamical behaviors due to abrupt changes
at certain instants during the dynamical processes.

Switched DAEs arise when the system dynamics undergo sudden structural
changes and the dynamics of each mode are algebraically constrained. In particu-
lar, switched DAEs occur when dynamic behaviors change suddenly by failure or
an external (given) switching signal, cf. [66, 75, 110, 141] for details.

Consider the switched DAEs of the form

Eσ(t)ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), x(t0) = 0,

y(t) = Cσ(t)x(t),
(7.1)

where σ : R → M and, x, u, y denote respectively, the state, input and output.
Throughout this chapter, regularity (as forthcoming Definition 7.1) of the matrix
pairs (Ei, Ai) will be assumed. The active mode is defined by the quadruple
(Ek, Ak, Bk, Ck) in appropriate dimension. If Ek = I for all k ∈ M, system (7.1) is a
switched linear system (studied in the previous Chapters).

In general, Ek is not assumed to be invertible, which means that in addition
to differential equations the state x has to satisfy certain algebraic constraints. At
a switching instant the algebraic constraints before the switch and the algebraic
constraints after the switch do not match in general, i.e., the state variable has to
jump in order to satisfy the algebraic constraints after the switch. These induced
jumps are a major difference to switched ODE without jumps. Another major
difference is the possible presence of Dirac impulses in the state variable x in
response to a state jump, see [136] for details.
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Clearly, switched DAEs allow jumps and impulsive behaviors in the solution
at switching times, moreover, a distributional solution theory for switched DAEs
is well investigated in [135]. As was pointed out in this work, switched DAEs
are particularly challenging as they give rise to behaviors that are found neither
in regular switched systems, nor in LTI DAEs. Despite these difficulties, many
properties of such systems are now understood, cf. [43, 70, 71, 77, 112, 129, 131,
134, 136, 146, 147]. To the author’s best knowledge, model reduction of such
system is first investigated in this chapter.

The chapter is organized as follows. In Section 7.2, some preliminaries for
linear DAEs are given. In Section 7.3, it is shown that a switched DAE can be
written as a switched ODE with jumps and impulses and it will be proven that both
systems have the same input-output behavior. Some conditions are provided here
such that the switched ODE has no input dependent jump and no Dirac presents
in output. In Section 7.4, the model reduction procedure is discussed. The reduced
realization is computed first by removing the unreachable and unobservable states
via the method discussed in Chapter 4 and then a reduced system is computed via
the method proposed in Chapter 6. Finally, these results are illustrated by means
of an example in Section 7.5.

7.2 DAE preliminaries

In this section, some notations and properties are discussed for the (non-)switched
DAE

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(7.2)

where E,A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n.
As discussed in Chapter 1, the algebraic constraints may cause that the solu-

tions of an initial value problem are no longer unique or that there does not exist
solutions at all. Furthermore, the inhomogeneity has to be consistent with the DAEs
in order for solutions to exist. A comprehensive representation of the solution
theory of general LTI DAEs along with possible distributional solutions based on
the theory is developed in [135], see Appendix B for a concise recapitulation.

7.2.1 Regularity and quasi-Weierstrass form

Regularity of a matrix pair is closely related to the solution behavior of the cor-
responding DAEs. In particular, regularity is necessary and sufficient for the
property that for every sufficiently smooth inhomogeneity the DAE is solvable
and the solution is unique for every consistent initial value. To show sufficiency,
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one can return to the problem of finding an appropriate canonical form, which can
be derived on the basis of the Jordan canonical form of a single matrix cf. [68].

Definition 7.1 (Regularity). A matrix pair (E,A) is called regular if, and only if,
det(Es − A) ∈ R[s] is not the zero polynomial. Furthermore, the DAE Eẋ(t) =

Ax(t) + Bu(t) and the switched DAE (7.1) will be called regular, if and only if,
the matrix pairs (E,A), (Ek, Ak), k ∈ N are regular, otherwise they are said to be
singular.

Following theorem for Quasi-Weierstrass Form (QWF) is an important character-
ization of regularity.

Theorem 7.2 (Quasi-Weierstrass Form, cf. [18, 41]). A matrix pair (E,A) is regular
if and only if, there exists invertible matrices S, T ∈ Rn×n such that

(SET, SAT ) =

([
I 0

0 N

]
,

[
J 0

0 I

])
, (7.3)

where N ∈ RnN×nN is nilpotent,1 J ∈ RnJ×nJ (nJ := n − nN ) and I stands for an
identity matrix of appropriate size. The decoupling (7.3) is called quasi-Weierstrass form.

Under the regularity assumption, for every regular matrix pair (E,A) there
exists unique subspaces V,W ⊆ Rn with V ⊕W = Rn such that for any choice of
full column rank matrices V,W with imV = V and imW = W , the nonsingular
matrices T = [V W ] and S = [EV AW ]−1 transform into a decoupled DAE
according to (7.3) with an ODE part

v̇ = Jv +Bvu,

and a nilpotent DAE part
Nẇ = w +Bwu.

Note that, the first subsystem is called slow subsystem and the second subsys-
tem is known as fast subsystem. The matrices J and N depend on the specific
coordinates chosen for V and W , but in the original coordinates in Rn these dy-
namics are of course independent of the coordinates chosen for V and W (for
details see [29]). In the original coordinates, the dynamics can be described by
defining following projector and selectors.

1Recall that a matrix N ∈ Rn×n is called nilpotent, when there is a ν ∈ N such that Nν = 0; the
smallest number ν with this property is called nilpotency index of N .
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Definition 7.3. Consider a regular matrix pair (E,A) and its QWF (7.3) by choos-
ing transformation matrices S, T . Then, the consistency projector is

Π(E,A) := T

[
I 0

0 0

]
T−1,

the differential selector is

Πdiff
(E,A) := T

[
I 0

0 0

]
S,

the impulse selector is

Πimp
(E,A) := T

[
0 0

0 I

]
S.

Note that the projectors do not depend on the specific choice of S and T (see
[135, Section 4.2.2]). In general, it is obvious that the differential projector and im-
pulse selectors are not projectors because they are not idempotent 2. Furthermore,
the consistency projector is the unique projector onto V along W . These projector
and selectors are crucial for providing an explicit solution formula for DAEs, in
particular, the specific choice of QWF is not necessary but it suffices to find the
unique subspace decomposition V ⊕W = Rn.

7.2.2 QWF via Wong sequences

The two subspaces V and W can efficiently be calculated by a direct approach via
the so called Wong sequences (first given in [144]) which are defined as follows:

V0 := Rn, Vi+1 := A−1(EVi), i ∈ N,
W0 := {0}, Vj+1 := E−1(AWj), j ∈ N,

(7.4)

where M−1(N ) := {x ∈ Rn | Mx ∈ N} denotes the preimage of a linear subspace
N ⊆ Rn of a matrix M ∈ Rn×n. After finitely many steps the sequences in (7.4)
converge and the limits are given by

V∗ :=
⋂
i∈N

Vi, W∗ :=
⋃
i∈N

Wi.

Furthermore, it is easily seen that

kerA ⊆ V∗, kerE ⊆ W∗.

Note that the QWF can be formulated by the Wong sequences as follows.

2A matrix Π is called idempotent if, and only if, Π2 = Π.
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Theorem 7.4. (QWF via Wong sequences [135, Thm. 4.2.4]). Consider the regular matrix
pair (E,A) with corresponding Wong limits V∗ and W∗. For any full rank matrices V
and W such that imV = V∗ and imW = W∗, the invertible matrices T := [V W ],
S := [EV AW ]−1 transform (E,A) into QWF (7.3).

7.2.3 Explicit solution formula

Assume that the regular DAEs (7.2) is decoupled into two subsystems

v̇(t) = Jv(t) +Bvu(t),

Nẇ(t) = w(t) +Bwu(t),
(7.5)

where N is nilpotent whose nilpotent index is denoted by ν.
It is clear that the ODE v̇(t) = Jv(t) +Bvu(t) has a unique solution

v(t) = eJtv0 +

∫ t

0

eJ(t−s)Bvu(s) ds,

for any integrable input u(t) and any given initial value v0.
The nilpotent subsystem Nẇ(t) = w(t) +Bvu(t) has a unique solution

w(t) = −
ν−1∑
i=0

N iBwu
(i)(t),

with nilpotency index ν ∈ N and u(t) is ν-times piecewise continuously differen-
tiable. It is necessary that the input function u(t) is sufficiently smooth and the
initial value w0 satisfies

w0 = −
ν−1∑
i=0

N iBwu
(i)(0).

For any scalar ε > 0, the properties of u(τ), 0 ⩽ τ ⩽ t− ε have no contribution to
w(t). This shows an interesting phenomenon between the substates v and w: v(t)
represents a cumulative effect of u(τ), 0 ⩽ τ ⩽ t, with no relation to u(t) while
w(t) responses so rapidly that it instantaneously reflects the properties of u(t) at
time t. This is why they are called the slow and fast subsystems respectively.

The solution formula discusses above so far, depends on the non-unique system
matrices T , J , N , Bv, Bw, and is therefore not coordinate free. In order to find a
coordinate free, geometric solution formula define as follows:
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Adiff := Πdiff
(E,A)A, Bdiff := Πdiff

(E,A)B, Cdiff := CΠ(E,A),

Eimp := Πimp
(E,A)E, Bimp := Πimp

(E,A)B, C imp := C(I −Π(E,A)).
(7.6)

The solution formula based on the projected matrices is formalized as follows.

Theorem 7.5. (Explicit solution formula [136, Thm. 6.4.4]). Consider the triplet
(E,A,B) from (7.2) with regular matrix pair (E,A) and corresponding projectors Π(E,A),
Πdiff

(E,A) and Πimp
(E,A) as Definition 7.3. Calculate Adiff , Bdiff , Eimp, Bimp as in (7.6), then

for a given smooth input u, all solutions of the DAE (7.2) satisfy

x(t) = eA
diff tΠ(E,A)x(0) +

∫ t

0

eA
diff (t−s)Bdiffu(s) ds−

n−1∑
i=0

(Eimp)iBimpu(i)(t).

(7.7)

Remark 7.6. For a regular matrix pair (E,A) with QWF (7.3) and the decomposition
V ⊕W = Rn, it is seen that

Adiff := Πdiff
(E,A)A = T

[
I 0

0 0

]
SA = T

[
J 0

0 0

]
T−1,

Eimp := Πimp
(E,A)E = T

[
0 0

0 I

]
SA = T

[
0 0

0 N

]
T−1.

Moreover, imAdiff ⊆ V = imΠ(E,A) = imΠdiff
(E,A) and imEimp ⊆ W = imΠimp

(E,A).
Consequently, the solution x given by (7.7) can be decomposed as

x = xdiff ⊕ ximp,

with xdiff(t) ∈ V and ximp(t) ∈ W for all t ∈ R, and they are the unique solutions
of

ẋdiff = Adiffxdiff +Bdiffu, xdiff(0) = Π(E,A)x(0),

Eimpẋimp = ximp +Bimpu.

Furthermore, the following equivalence holds

Eẋ = Ax ⇐⇒ ẋ = Adiffx and x(0) ∈ imΠ(E,A).
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Finally, observe that

imAdiff ⊆ V∗, imBdiff ⊆ V∗,

imEimp ⊆ W∗, imBimp ⊆ W∗.

An important feature for DAEs is the so called consistency space, defined as
follows.

Definition 7.7. The consistency space is defined by

V(E,A) :=

{
x0 ∈ Rn

∣∣∣∣ ∃ smooth solution (x, u) of
Eẋ = Ax and x(t−0 ) = x0

}
.

Definition 7.8. The augmented consistency space is defined by

V(E,A,B) :=

{
x0 ∈ Rn

∣∣∣∣ ∃ smooth solution (x, u) of
Eẋ = Ax+Bu and x(t−0 ) = x0

}
.

Lemma 7.9. ([17, Corollary 4.5]). Consider the regular DAE (7.2) then,

V(E,A) = V∗ = imΠ(E,A) and V(E,A,B) = V∗ ⊕ ⟨Eimp | imBimp⟩.

7.2.4 Initial trajectory problems

The inconsistent initial value can only occur, when it is assumed that the DAE (7.2)
does not hold in the past but that the past trajectory was governed by something
else or given. It also arises in the context of switched DAEs. In fact, for given input
u and the initial value at some t0 ∈ R, the solution satisfies

x(t0) = Π(E,A)x(t0)−
n−1∑
i=0

(Eimp)iBimpu(i)(t)︸ ︷︷ ︸
=:−xu,t0

,

then x(t0) is restricted to the affine subspace

imΠ(E,A) + xu,t0 . (7.8)

For switched DAEs (7.1), these mode-dependent affine subspaces are not equal.
In that case, the study of inconsistent initial values come into play. To under-
stand the problem, an initial trajectory problem (ITP) corresponding to (E,A,B) is
constructed by

x(−∞,0) = x0
(−∞,0),

(Eẋ)[0,∞) = (Ax+Bu)[0,∞),
(7.9)
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where x0 is some given (past) trajectory. In general, the trajectory x0 will not
evolve within the affine subspace (7.8), while the solution x will have to evolve in
the subspace (7.8) for positive times.

Consequently, any solution x will exhibit a jump in response to an inconsistent
initial value, but the derivative of this jump appears as a Dirac impulse in the
expression Eẋ. The restriction to the open interval (0,∞) would neglect this
Dirac impulse, the restriction to the closed interval [0,∞) keeps the Dirac impulse
in the second equation of (7.9) and hence, the past trajectory can influence the
future. Furthermore, distributional solutions are necessary for which a restriction
to intervals is well defined. The space of piecewise-smooth distribution DpwC∞

(see Appendix B) satisfies these requirements and it is possible to prove the
following existence and uniqueness result for the ITP (7.9) embedded into this
special distributional solution space.

Theorem 7.10. (Existence and uniqueness of ITP solutions, [136, Thm. 6.5.1]). Consider
the ITP (7.9) with regular matrix (E,A). Then, for all initial trajectories x0 ∈ Dn

pwC∞

and all inputs u ∈ Dm
pwC∞ , there exist a unique x ∈ Dn

pwC∞ which satisfies the ITP (7.9).

7.3 Equivalent solution for switched DAEs

The main objective of this section is to find a switched ODE whose solution
represents the solution of switched DAEs.

7.3.1 Switched ODEs with jumps and impulses

The switched DAEs (7.1) can be expressed as the switched ODE with jumps and
Dirac impulses of the form

ż = Adiff
k z +Bdiff

k u, on (sk, sk+1),

z(s+k ) = Πk(z(s
−
k ) + U−

k ), z(t−0 ) = 0,

w = Cdiff
k z +DkU, on (sk, sk+1),

(7.10a)

w[sk] = −
n−1∑
i=0

Ck(E
imp
k )i+1z(s−k )δ

(i)
sk

+ U imp
k , (7.10b)

where

U−
k :=

n−1∑
j=0

(Eimp
k−1)

jBimp
k−1u

(j)(s−k ),

Dk := −Ck[E
imp
k Bimp

k , . . . , (Eimp
k )(n−1)Bimp

k ],
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U :=
[
u⊤, u̇⊤, . . . , u(n−1)⊤

]⊤
,

U imp
k :=

n−1∑
i=1

Ck(E
imp
k )i

(
U−
k δ(i)sk

−Bimp
k (uk)

(i)[sk]
)
,

with uk := u[sk,sk+1).
In the following, it will be seen that the switched ODE (7.10) with jumps and

impulses gives a solution formula for the switched DAE (7.1).

Theorem 7.11 (Connection between (7.1) and (7.10)). The switched DAE (7.1)
with regular matrix pair (Ek, Ak) has the same input-output behavior as the switched
ODE (7.10) with jumps and output-impulses.

Proof. To simplify the notation, assume in this proof that the input u is smooth on
each interval (sk, sk+1), however, the following arguments remain valid even for
the general case that u is a piecewise-smooth distribution.

Let x denote the solution of the switched DAEs (7.1) and z the solution of the
ODE (7.10) for the same input u. The proof can be divided into three steps as
follows.
Step 1: It is first shown that z = Πkx on (sk, sk+1) where Πk is the consistency
projector for mode k. From Theorem 7.5, the solution of switched DAEs (7.1) is
given by, for t ∈ (sk, sk+1)

x(t) = eA
diff
k (t−sk)Πkx(s

−
k ) +

∫ t

sk

eA
diff
k (t−τ)Bdiff

k u(τ) dτ −
n−1∑
i=0

(Eimp
k )iBimp

k u(i)(t),

(7.11)
and it is easily seen that (I −Πk)x(t) = −

∑n−1
i=0 (E

imp
k )iBimp

k u(i)(t).
For k = 0 (on (t0, s1)), the solution is given by, for t ∈ (t0, s1)

x(t) =

∫ t

t0

eA
diff
0 (t−τ)Bdiff

0 u(τ) dτ −
n−1∑
i=0

(Eimp
0 )iBimp

0 u(i)(t)

= z(t) + (I −Π0)x(t).

This implies that z(t) = Π0x(t). Inductively, assume that for t ∈ (sk, sk+1), z(t) =
Πkx(t) and z(s−k+1) = Πkx(s

−
k+1). Now for t ∈ (sk+1, sk+2),

x(t) = eA
diff
k+1(t−sk+1)Πk+1x(s

−
k+1) +

∫ t

sk+1

eA
diff
k+1(t−τ)Bdiff

k+1u(τ) dτ

−
n−1∑
i=0

(Eimp
k+1)

iBimp
k+1u

(i)(t),
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and for (7.10), it follows that

z(t) = eA
diff
k+1(t−sk+1)z(s+k+1) +

∫ t

sk+1

eA
diff
k+1(t−τ)Bdiff

k+1u(τ) dτ.

Furthermore,

Πk+1x(t) = eA
diff
k+1(t−sk+1)Πk+1x(s

−
k+1) +

∫ t

sk+1

eA
diff
k+1(t−τ)Bdiff

k+1u(τ) dτ,

and from U−
k+1 = (I −Πk)x(s

−
k+1), it follows that

z(s+k+1) = Πk+1(z(s
−
k+1) + U−

k+1) = Πk+1x(s
−
k+1).

Consequently, it follows that z(t) = Πk+1x(t). Therefore, the statement is true for
k + 1 and hence, for all k ∈ {0, 1, . . . ,m},

z(t) = Πkx(t), t ∈ (sk, sk+1).

Step 2: It is shown that the corresponding outputs on (sk, sk+1) are equal. The
output equation on (sk, sk+1) is given by, t ∈ (sk, sk+1)

y(t) = Ckx(t)

= Ck(ΠkΠk + I −Πk)x(t)

= Cdiff
k z(t)− Ck

n−1∑
i=1

(Eimp
k )iBimp

k u(i)(t)

= w(t).

Step 3: Finally, it is shown that the impulse parts of the outputs are equal. The
impulse solution with Dirac impulses and jumps at the switching times t = sk is
given by (see Appendix B.8):

x[sk]=−
n−1∑
i=0

(Eimp
k )i+1x(s−k )δ

(i)
sk

−
n−1∑
i=1

(Eimp
k )iBimp

k (uk)
(i)[sk],

where uk := u[sk,sk+1). Hence, the impulsive output is given by

y[sk] = Ckx[sk]

= −
n−1∑
i=0

Ck(E
imp
k )i+1x(s−k )δ

(i)
sk

−
n−1∑
i=1

Ck(E
imp
k )iBimp

k (uk)
(i)[sk]
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= −
n−1∑
i=0

Ck(E
imp
k )i+1

z(s−k )−
n−1∑
j=0

(Eimp
k−1)

jBimp
k−1u

(j)(sk
−)

 δ(i)sk
−

n−1∑
i=1

Ck(E
imp
k )iBimp

k (uk)
(i)[sk]

= −
n−1∑
i=0

Ck(E
imp
k )i+1z(s−k )δ

(i)
sk

+

n−1∑
i=1

Ck(E
imp
k )i

(
U−
k δ(i)sk

−Bimp
k (uk)

(i)[sk]
)

= w[sk],

where U−
k :=

∑n−1
j=0 (E

imp
k−1)

jBimp
k−1u

(j)(s−k ).

This completes the proof.

As mentioned earlier, a method is proposed for reduced realization of switched
ODEs with jumps in Chapter 4, and Chapter 6 discusses model reduction method
for the reduced realization of switched ODE with jumps. In this chapter, it will be
shown how the results of previous chapters can be used and then it is important
to highlight the main differences between the switched ODE (7.10) with jumps
and impulses, and switched ODE (2.4) with jumps. These differences can be
distinguished into three cases.

Case I: Additional input dependent jump (U−
k ̸= 0) may occur in (7.10a), e.g., for

mode k

z(s+k ) = Πk(z(s
−
k ) + U−

k ).

Case II: Input dependent feedthrough term DkU ̸= 0 can appear in the output
of (7.10a) as

w = Cdiff
k z +DkU.

Case III: Additional Dirac impulse in the output (7.10b) induced by an inconsis-
tent state before the switch as well as by the input

w[sk] = −
n−1∑
i=0

Ck(E
imp
k )i+1z(s−k )δ

(i)
sk

+ U imp
k .

In the context of reduced realization and model reduction (discussed in Chapters 4
and 6, respectively), these differences can be handled under some assumptions
which will be discussed as follows.
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7.3.2 Solution for input free jump

From equation (7.10a), it is visible that an additional input dependent term

ΠkU
−
k = Πk

n−1∑
j=0

(Eimp
k−1)

jBimp
k−1u

(j)(s−k ),

appears in the state jumps which is a significant difference to switched ODE with
jumps. Currently, it is not possible to handle this input dependent term in jumps.
Therefore, the following result is important for further analysis.

Theorem 7.12. The switched system (7.10a) has no input dependent jump if, and only if,

Πk(E
imp
k−1)

jBimp
k−1 = 0, ∀j ⩾ 0.

In particular, a sufficient condition for an input independent jump rule of (7.10a) is

ΠkΠ
imp
k−1 = 0,∀k ∈ {1, . . . ,m}.

Proof. The solution of (7.10a) has an input independent jump rule if, and only if,
ΠkU

−
k = 0, i.e.

Πk

n−1∑
j=0

(Eimp
k−1)

jBimp
k−1u

(j)(s−k ) = 0,

which is true if, and only if,

Πk(E
imp
k−1)

jBimp
k−1 = 0, ∀j ⩾ 0. (7.12)

Furthermore, since Eimp
k−1 := Πimp

k−1Ek−1 and Bimp
k−1 := Πimp

k−1Bk−1, the condi-
tion (7.12) is satisfied if

ΠkΠ
imp
k−1 = 0.

7.3.3 State dependent Dirac impulse free output

The impulse output from (7.10b) is given by

w[sk] = −
n−1∑
i=0

Ck(E
imp
k )i+1z(s−k )δ

(i)
sk

+ U imp
k . (7.13)

The presence of Dirac impulses in response to inconsistency initial values reduces
the unobservable subspaces, hence the methods used in previous chapters cannot
be directly used. Therefore, following result gives a necessary condition for
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impulse free output (there could still be impulse coming from U imp
k , but these do

not influence the observability properties at all).

Theorem 7.13. The output of system (7.10) has no Dirac impulse induced by inconsistent
initial values if the following sufficient condition holds

Ck(E
imp
k )iRk−1 = {0}, i = 1, 2, · · · .

Here, Rk−1 is the extended reachable subspace (introduced in Section 4.2.4) for mode k−1

of the switched system (7.10a).

Proof. It is clear that the output equation (7.13) will not contain Dirac impulses
induced by an inconsistent value z(s−k ) if

Ck(E
imp
k )i+1z(s−k ) = 0, i = 0, 1, 2, · · · .

From Chapter 4, z(s−k ) ∈ R[t0,sk) ⊆ Rk−1,

Ck(E
imp
k )i+1Rk−1 = {0}, i = 0, 1, 2, · · · ,

which gives a sufficient condition.

It is noted that for the case when Ck(E
imp
k )iRk−1 ̸= {0}, i = 1, 2, . . . , the

unobservable subspaces for the mode k need to be adjusted. Anyway, this chapter
will not pursue this case.

7.4 Model reduction

In this section, a model reduction method will be discussed for the switched
DAE (7.1). It is well known that the additional feedthrough term (which does not
depend on state variable) in the output equation does not affect the analysis of
realization theory and model reduction techniques. Furthermore, the additional
impulsive output depending on the input only is also not effecting the reduced
realization and model reduction.

The overall procedure can be summarized in three main steps as follows:

Step 1: Under the assumptions in Theorems 7.12 and 7.13, a switched DAE of the
form (7.1) or, switched ODE as in (7.10) is transformed to following switched
ODE with jumps and impulses:

ż = Adiff
k z +Bdiff

k u, on (sk, sk+1),

z(s+k ) = Πkz(s
−
k ), z(t−0 ) = 0,

w = Cdiff
k z +DkU, on (sk, sk+1),

(7.14)
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together with the additional impulsive output

w[sk] = U imp
k . (7.15)

Step 2: From the system (7.14), the unreachable and unobservable states can be
removed via the method proposed in Chapter 4 with the corresponding
left- and right-projectors (Ŵ 2

k , V̂
2
k ), k = {0, 1, . . . ,m}. Then, the reduced

realization is given by

˙̂z = Âdiff
k ẑ + B̂diff

k u, on (sk, sk+1),

ẑ(s+k ) = Jkẑ(s
−
k ), ẑ(t−0 ) = 0,

w = Ĉdiff
k ẑ +DkU, on (sk, sk+1),

(7.16)

with unaltered impulsive output (7.15), and Âdiff
k = Ŵ 2

k Adiff
k V̂ 2

k , B̂diff
k =

Ŵ 2
k Bdiff

k , Ĉdiff
k = Cdiff

k V̂ 2
k , and Jk = Ŵ 2

kΠkV̂
2
k−1. Then, the system (7.16) has

the same input-output behavior as (7.10) and (7.14).

Step 3: Finally, under the assumption that the midpoint Gramians of the sys-
tem (7.16) are nonsingular, a reduced model can be obtained from system
(7.16) via the algorithm given in Chapter 6. Let the corresponding left- and
right-projectors be given by (Π

l

k,Π
r

k), k = {0, 1, . . . ,m}. Then, the reduced
system is

ḣ = Âdiff
k h+ B̂diff

k u, on (sk, sk+1),

h(s+k ) = Ĵkh(s
−
k ), h(t−0 ) = 0,

ŵ = Ĉdiff
k h+DkU, on (sk, sk+1),

(7.17)

where Âdiff
k = Π

l

k Â
diff
k Π

r

k, B̂diff
k = Π

l

k B̂
diff
k , Ĉdiff

k = Ĉdiff
k Π

r

k and Ĵk =

Π
l

k Jk Π
r

k−1 and with unaltered impulsive output (7.15).

7.5 Numerical results

This section demonstrates the steps of the proposed reduction techniques for a
switched DAE. The proposed method is illustrated by a numerical example.

Example 7.1. Consider a switched DAE of the form (7.1) with two modes

(E0, A0, B0, C0) =


 1 1 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

 ,

 1 0 0 0 0 0
−1 1 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0

 ,

 0.7
0.2

−0.01
0.1
0.1
0.2

 ,

 1
0.2
1

0.02
−0.1
0.2

⊤
 ,
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(E1, A1, B1, C1) =


 1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

−1 0 0 0 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −1
0 0 0 0 1 0

 ,

 0
0.1
0.02
0.01
−1
0.1

 ,

 0
0.05
0.01
0.2
1
−2

⊤
 ,

and the switching signal is given by σ(t) = 0 on [0, 2), and σ(t) = 1 on [2, 4).

After some matrix calculation, the matrices for QWF (7.3) of the given switched
DAE are obtained by

(S0, T0, J0, N0) =

 1 −1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

 ,

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

[
2 −1 0 0
−1 1 0 0
0 0 0 1
0 0 −1 0

]
, [ 0 1

0 0 ]

 ,

(S1, T1, J1, N1) =

 1 0 0 0 0 0
0 1 0 0 0 0
0 −1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

 ,

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,
[−1 0 0

0 0 1
0 −1 −1

]
,
[
0 0 0
0 0 0
0 0 0

] .

Clearly, the 1st mode has index-2 because, N0 ̸= 0, N2
0 = 0, and the 2nd mode has

index-1 because N1 = 0. All three projectors and selectors (7.6) are given by

(Π0,Π
diff
0 ,Πimp

0 ) =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

 1 −1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

 ,

(Π1,Π
diff
1 ,Πimp

1 ) =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

 1 0 0 0 0 0
0 1 0 0 0 0
0 −1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

 ,

and then, the projected matrices are given by

(Eimp
0 ,Adiff

0 , Bdiff
0 , Bimp

0 , Cdiff
0 , C imp

0 ) =
 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0

 ,

 2 −1 0 0 0 0
−1 1 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 0.5
0.2

−0.01
0.1
0
0

 ,

 0
0
0
0
0.2
−0.1

 ,

 1
0.2
1

0.02
0
0

⊤

,

 0
0
0
0

−0.1
0.2

⊤
 ,

(Eimp
1 ,Adiff

1 , Bdiff
1 , Bimp

1 , Cdiff
1 , C imp

1 ) =
 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

−1 0 0 0 0 0
0 0 1 0 0 0
0 −1 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

 0
0.1

−0.08
0
0
0

 ,

 0
0
0

0.01
0.1
1

 ,

 0
0.05
0.01
0
0
0

⊤

,

 0
0
0
0.2
1
−2

⊤
 .

Step 1: Clearly, Π1Π
imp
0 = 0 (sufficient condition), Π1E

imp
0 Bimp

0 = 0 and C1E
imp
1 =

0. From Theorem 7.12 and 7.13, the switched ODE as in (7.14) which is input-
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output equivalent to the given switched DAE, is constructed by(
Adiff

0 , Bdiff
0 , Cdiff

0

)
,(

Adiff
1 , Bdiff

1 , Cdiff
1

)
,

(7.18)

with the jump matrix Π1 and feedthrough terms D0U and D1U are calculated
from the impulsive matrices (C imp

i , Eimp
i , Bimp

i ), i ∈ {0, 1} and the derivatives of
the input. Clearly, the additional Dirac impulse term U imp

1 = 0.
Step 2: From the method discussed in Chapter 4 for reduced realization, the pair
of left- and right-projections is obtained by

(Ŵ 2
0 , V̂

2
0 ) =





0 0 0.5 0

0 0 −1 −1

−1 1 0 −1

1 −2 −0.5 1

0 0 0 0

0 0 0 0



⊤

,



1 −1 2 −2

1 0 0 −1

−2 −1 0 0

−1 −1 0 0

0 0 0 0

0 0 0 0




,

(Ŵ 2
1 , V̂

2
1 ) =





0 0

0.5 −1

0 −1

0 0

0 0

0 0



⊤

,



1 0

2 0

−2 −1

1 0

0 0

0 0




.

Then, the reduced realization is given by

(Âdiff
0 , B̂diff

0 , Ĉdiff
0 ) = (Ŵ 2

0 Adiff
0 V̂ 2

0 , Ŵ
2
0 Bdiff

0 , Cdiff
0 V̂ 2

0 )

=




3 2 0 0

−5 −3 0 0

−0.5 −2.5 4 −2.5

3 1 2 −1

 ,


0.11

−0.21

0

−0.09

 ,


−0.82

−2.02

2

−2.2


⊤ ,

(Âdiff
1 , B̂diff

1 , Ĉdiff
1 ) = (Ŵ 2

1 Adiff
1 V̂ 2

1 , Ŵ
2
1 Bdiff

1 , Cdiff
1 V̂ 2

1 )

=

([
−1 −0.5

2 0

]
,

[
0.05

−0.02

]
,

[
0.08

−0.01

]⊤)
,

and the jump matrix is calculated as

J1 = W
2

1Π1V
2

0 =

[
0.5 0 0 −0.5

1 1 0 1

]
.
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Figure 7.1 shows the output of the original system and the proposed reduced
realization for input u(t) = sin(t) with switching time s1 = 2 and clearly both
outputs coincide.

0 0.5 1 1.5 2 2.5 3 3.5 4

Time(sec)

-2

-1

0

1
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3

4

5

6

7
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u
tp

u
t
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Reduced

Figure 7.1: Outputs of the original system and the reduced realization.

Step 3: Consider the reduced realization(
Âdiff

0 , B̂diff
0 , Ĉdiff

0

)
,(

Âdiff
1 , B̂diff

1 , Ĉdiff
1

)
,

and the jump matrix is given by J1. Now the model reduction method via
Chapter 6 is applied. Following Algorithm 2, the midpoint Gramians are given by

P0 =


0.0040 −0.0090 0.0206 0.0037

−0.0090 0.0219 −0.1085 −0.0352

0.0206 −0.1085 2.3316 0.9919

0.0037 −0.0352 0.9919 0.4298

 ,

P1 =

[
18.8692 −7.0257

−7.0257 2.6184

]
,

Q0 =


1.1030 −3.3867 6.0882 −4.5096

−3.3867 28.8824 −44.7221 35.9538

6.0882 −44.7221 70.2726 −56.0252

−4.5096 35.9538 −56.0252 44.8814

 ,
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Q1 =

[
0.0018 −0.0007

−0.0007 0.0005

]
.

The corresponding balanced Gramians are obtained by

Ξ0 =


8.9481 0 0 0

0 0.1168 0 0

0 0 0.0015 0

0 0 0 10−7

 ,

Ξ1 =

[
0.2136 0

0 0.0007

]
.

With a truncation threshold of 0.1, the dimension of the reduced modes will be 2

and 1, respectively. Then, the left- and right-projectors are obtained by

(Π
l

0,Π
r

0) =



−0.2496 2.1017

1.7767 2.3227

−2.8013 −0.6869

2.2290 1.9020


⊤

,


−0.0074 −0.1669

0.0298 0.3396

−0.5050 0.6531

−0.2106 0.5313


 ,

(Π
l

1,Π
r

1) =

([
−0.0920

0.0386

]⊤
,

[
−9.3980

3.4997

])
.

Applying the left- and right-projectors according to Algorithm 1, the reduced
switched system is given by

(Âdiff
0 , B̂diff

0 , Ĉdiff
0 ) =

(
Π

l

0 Âdiff
0 Π

r

0,Π
l

0 B̂diff
0 , Ĉdiff

0 Π
r

0

)
=

([
2.5147 −0.4561

−0.4745 0.7582

]
,

[
−0.6012

−0.4277

]
,

[
−0.6008

−0.4120

]⊤)
,

(Âdiff
1 , B̂diff

1 , Ĉdiff
1 ) =

(
Π

l

1 Âdiff
1 Π

r

1,Π
l

1 B̂diff
1 , Ĉdiff

1 Π
r

1

)
= (−1.4290,−0.0054,−0.7868) .

The reduced jump map is given by

Ĵ1 = Π
l

1 J1 Π
r

0 =
[
−0.0166 0.0593

]
.

Figure 7.2 depicts the output of the original switched DAE and its approximation
for the input u(t) = 0.5 sin(0.5t). Clearly, both outputs match nicely. The related
relative errors between the two outputs are depicted in Figure 7.3, which shows
that the relative error is less then 1%.
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Figure 7.2: Outputs of the original system and the proposed reduced system.
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Figure 7.3: Relative errors of the original system and the proposed reduced system.

7.6 Discussion

In this chapter, a reduction method for switched DAEs is proposed. First, a
formula is derived which shows that the switched DAEs can be transformed to
a switched ODE with jumps and impulses, which preserves same input-output
behavior. The proposed formula contains input dependent jumps, and Dirac
impulses may occur in output at the switching times. However, these additional
terms can be eliminated by assuming some conditions. In particular, due to the
algebraic constraints the model reduction method from Chapter 6 cannot be used
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directly, instead the inconsistent states which are unreachable need to be removed
first with the method from Chapter 4. At this moment, it is not proven how to
deal with the input dependent jumps and Dirac impulses coming from the states.



8 Model reduction for singular linear
switched systems in discrete time

8.1 Introduction

In Chapter 7, a model reduction method for switched DAEs is presented in
continuous-time. This chapter is devoted to model reduction of singular lin-
ear switched systems in discrete time. The key motivation of this chapter comes
from [1] where authors have proposed a solution formula for SLSSs which is
time-varying system in discrete time. Loosely speaking, the dynamics of a SLSS in
discrete time with certain property can be recovered from a time-varying system.

Consider the SLSSs in discrete time of the form

Eσ(k)x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k),

y(k) = Cσ(k)x(k), k ∈ M,
(8.1)

where x(k) ∈ Rn is the state at time k ∈ M and σ : N → M = {0, 1, 2, . . . ,m}, m ∈ N,
is the switching signal with the switching times 0 < s1 < s2 < · · · < sm in the
bounded interval [k0, kf ) := {k0, k0 + 1, . . . , kf − 1} of interest.

The system matrices are Ei, Ai ∈ Rn×n, Bi ∈ Rn×m, Ci ∈ Rp×n, where i ∈ M.
The matrices Ei are in general singular, which is related to the presence of (mode-
dependent) algebraic constraints. Assume that the i-th mode is active in the
interval [si, si+1), for i = 0, 1, . . . ,m (where s0 := 0) and define the duration of the
i-th mode as τi = si+1 − si − 1. This chapter is concerned about the input-output
behavior of (8.1) so assume in the following that x(0) = 0.

There are already some existing results on MOR for switched systems for
discrete time case, e.g. [9, 10, 21, 120]. However, in contrast to the existing
literature, here, the system (8.1) is viewed as a time-varying linear system. In
particular, the reduction generally depends on the specifically given switching
signal and results in a time-varying reduced model. The concept of balanced
realization to time-varying systems (in continuous-time) is discussed in [26, 74, 121,
142] and provides some inspiration for this work; in particular, for the proposed
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balanced truncation of switched linear systems in Chapter 5. The resulting reduced
model is not a switched system anymore, but fully time-varying, which is not very
practicable to the continuous time case. However, in discrete time, such a fully
time-varying reduced model may still be feasible in practical applications and is a
motivation to apply this time-varying balanced truncation to SLSS (8.1).

This introduction concludes with an example, which illustrates the fact that a
straight forward mode-wise reduction to obtain a reduced switched system does
not work in general.

Example 8.1. Consider an (ordinary) switched linear system in discrete time
composed by two modes with

A0 = A1 =

 −1 0.01 0.001

0.01 −1 0.001

0.001 0.0002 −1

 ,

B0 = C⊤
0 =

 3

0.1

0.001

 , B1 = C⊤
1 =

0.0010.01

3

 .

The switching signal is given by σ(t) = 0 on t ∈ [0, 4) and σ(t) = 1 on [4, 7].

0 1 2 3 4 5 6 7

-50

0

50 Original system

Reduced system

0 1 2 3 4 5 6
-4

-2

0

2

4

Figure 8.1: Comparison between outputs of original system and its reduced system.
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It is easily seen that on each of the intervals [0, 4) and [4, 7], the following one
dimensional reduced order model is a good approximation for the input-output
behavior of the individual modes

x̂(k + 1) = −x̂(k) + 3u(k),

ŷ(k) = 3 x̂(k).

However, when considering the overall switched system, the input-output behav-
ior of the reduced system is not a good matching with the original input-output
behavior, see Figure 8.1.

The remaining chapter is structured as follows. In Section 8.2. some results
are presented for the so-called one-step-map which play an important role for an
explicit solution formula for SLSS (8.1). Section 8.2.2 provides the computation
procedure of time-varying balanced realizations in discrete time. In Section 8.3,
time-varying balanced truncation method for SLSS (8.1) is discussed. Finally, some
numerical results are presented in Section 8.4.

8.2 Preliminaries

In this section, it is shown that the solutions of a SLSS can equivalently expressed
in terms of a time-varying system.

8.2.1 Equivalent solution of SLSSs and time-varying systems

For the existence and uniqueness of the solution of the SLSS (8.1), the following
assumption is needed, cf. [1].

Assumption 8.1. The SLSS (8.1) is jointly index-1, i.e.

Si ⊕ kerEj = Rn, ∀i, j ∈ M,

where Si = A−1
i (imEi).

Under the jointly index-1 assumption, the solution of (8.1) with x(0) = 0 exists.
This solution is unique and satisfies the following lemma.

Lemma 8.2 ([1]). Assume the SLSS (8.1) is jointly index-1. For a given switching signal
σ, there exist corresponding matrices Ãk, B̃k and F̃k, such that all solutions of (8.1) with
x(0) = 0 satisfy

x(k + 1) = Ãkx(k) + B̃ku(k) + F̃ku(k + 1), k ∈ M. (8.2)
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Proof. Let σ(−1) := σ(0) and, for k ∈ M,

Ãk := Vσ(k)

[
Ā1

σ(k),σ(k−1) 0

−Ā2
σ(k+1),σ(k)Ā

1
σ(k),σ(k−1) 0

]
V −1
σ(k−1), (8.3a)

B̃k := Vσ(k)

[
B̄1

σ(k),σ(k−1)

−Ā2
σ(k+1),σ(k)B̄

1
σ(k),σ(k−1)

]
, (8.3b)

F̃k := Vσ(k)

[
0

−B̄2
σ(k+1),σ(k)

]
, (8.3c)

where [
Ā1

i,j 0

−Ā2
i,j In2

]
= V −1

i G−1
i,j AiVj ,

[
B̄1

i,j

B̄2
i,j

]
= V −1

i G−1
i,j Bi,

Gi,j = Ei +AiQi,j , Qi,j = Vj

[
0 0

0 In2

]
V −1
i ,

here Vi := [g1i . . . gn1
i hn1+1

i . . . hn
i ] such that g1i , . . . , g

n1
i and hn1+1

i , . . . , hn
i are

the bases of Si and kerEi, respectively, for i = 1, . . . , n. The remaining proof is
similar to the proof of [1, Thm. 5.1] and is therefore omitted.

Remark 8.3. The one-step-map from x(k) to x(k+1) depends on the modes at time
k − 1, k and k + 1. This implies that the allowed space of consistent initial values
also depends on the choice of σ(−1), here, it will be assumed that σ(−1) = σ(0).
As pointed out in [1, Rem. 5.2], the effect of a different choice of σ(−1) is not yet
fully understood and is still under investigation; nevertheless, since the initial
condition x(0) = 0, this is of no further concern here. This is considered as one of
the assumptions considered in this study.

Motivated by Lemma 8.2, consider the following time-varying surrogate sys-
tem for (8.1) with a given switching signal σ:

x(k + 1) = Ãkx(k) +
[
B̃k F̃k

]
ũ(k),

y(k) = Ckx(k), k ∈ M,
(8.4)

where x(0) = 0, ũ(k) =
[

u(k)

u(k + 1)

]
, Ck := Cσ(k) and Ãk, B̃k, F̃k are given by (8.3).

Writing ũ =

[
I

T1

]
u, where T1{u}(k) := u(k + 1) denotes the time-shift operator, it

is clear that (8.1) and (8.4) have the same input-output behavior.
Note that the solution of a jointly index-1 SLSS (8.1) does not exist for any

initial value x(0) ∈ Rn. In fact, the consistency space of jointly index-1 (8.1),
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under the assumption σ(−1) = σ(0), is imVσ(0)

[
I 0

−Â2
σ(0),σ(0) B̂2

σ(0),σ(0)

]
. This

has some implications on the relationship between system (8.1) and (8.4) in terms
of observability and reachability. Here, observability means that if the input and
output are identically zero on [k0, kf ), the state has to be zero as well. On the other
hand, reachability means that for each xf ∈ Rn, there exists an input such that
the corresponding solution satisfies x(kf − 1) = xf . Clearly, reachability of (8.1)
implies a reachable time-varying surrogate system (8.4), whereas observability
of (8.1) does not imply the observability of its surrogate system (8.4). However,
observability of (8.4) implies that (8.1) is also observable.

The main goal is to find a reduced size time-varying system for the time-
varying system (8.4) of the form

x̂(k + 1) = Âkx̂(k) +
[
B̂k F̂k

] [ u(k)

u(k + 1)

]
,

ŷ(k) = Ĉkx̂(k), k ∈ M,

(8.5)

with reduced system matrices Âi ∈ Rn̂×n̂, B̂i, F̂i ∈ Rn̂×m, Ĉi ∈ Rp×n̂ and n̂ ≪ n,
such that ŷ ≈ y for input u. Due to the input-output equivalence between (8.1)
and (8.4), the reduced system (8.5) will also be a good surrogate model for the
original switched system (8.1).

8.2.2 Balanced truncation for time-varying systems

First the balanced truncation of time-varying systems in discrete time is reviewed,
for details see [26, 121, 142]. Consider a time-varying system in discrete time of
the form

x(k + 1) = Akx(k) +Bku(k), k ∈ [k0, kf ),

y(k) = Ckx(k),
(8.6)

with corresponding system matrices Ak, Bk, Ck, k ∈ [k0, kf ).

8.2.3 Time-varying Gramians

Reachability and observability Gramians play an important role in balancing-
based theory.

Definition 8.4. The time-varying reachability and observability Gramians of (8.6)
are defined recursively by, for k ∈ [k0, kf )

P (k) = Ak−1P (k − 1)A⊤
k−1 +Bk−1B

⊤
k−1, (8.7)

Q(k) = A⊤
k Q(k + 1)Ak + C⊤

k Ck, (8.8)
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with some positive semidefinite initial/final values P (k0) = P0 and Q(kf ) = Qf ,
the intuition for these initial/final values are given in Remark 5.2.

Note that, the reachability Gramian is constructed forward in time, while the
observability Gramians evolve backward constructions. It is clear that P (k) and
Q(k) are both symmetric and positive semidefinite for all k ∈ [k0, kf ]. Due to the
finiteness of the interval [k0, kf ), no assumption is needed with regard to stability
of the system.

8.2.4 Balanced realization

As mentioned in Chapter 5, the system (8.6) will be balanced if the Gramians are
equal.

Definition 8.5. The system (8.6) is balanced on time interval [k0, kf ] if there exist
positive definite matrices P0, Qf such that

P (k) = Q(k) = Ξ(k), ∀ k ∈ [k0, kf ],

where Ξ(k) is a diagonal matrix at time k.

From [26] and Theorem 5.7, one can find a time-varying coordinate transfor-
mation as x(k) = T (k)x(k) with positive definite P0, Qf such that the system (8.6)
is balanced. Under these transformation, it is easily seen that the corresponding
Gramians satisfy

P (k) = T (k)P (k)T (k)⊤,

Q(k) = T (k)−⊤Q(k)T (k)−1,

where P 0 = T (k0)P0T (k0)
⊤, and Qf = T (kf )

−⊤QfT (kf )
−1. In particular,

P (k)Q(k) = T (k)P (k)Q(k)T (k)−1.

Then, the input-output equivalent balanced system of (8.6) is given by

x(k + 1) = Akx(k) +Bku(k),

y(k) = Ckx(k),

where the transformed system matrices are obtained by Ak := T (k + 1)AkT (k)
−1,

Bk := T (k + 1)Bk, Ck := CkT (k)
−1.
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8.3 Model reduction

Consider the time-varying system (8.4). Assume that the corresponding time-
varying reachability and observability Gramians for (Ãk, [B̃k, F̃k], C̃k) , are given
by P̃ (k) and Q̃(k) respectively, with some initial / final Gramians P̃0, Q̃f . Now an
assumption is needed for model reduction methods.

Assumption 8.6. Assume a transformation T̃ such that the balanced Gramians of
(8.4) are obtained by

T̃ (k)P̃ (k)T̃ (k)⊤ = T̃ (k)−⊤Q̃(k)T̃ (k)−1 = Ξ̃(k),

and let, the (uniformly) partitioned form Ξ̃(k) =

[
Ξ̂(k) 0

0 Ξ(k)

]
where all diagonal

entries in Ξ(k) are significantly smaller than those in Ξ̂(k) and Ξ̂(k) ∈ Rn̂×n̂.

With the Assumption 8.6, consider the singular value decomposition

R̃(k)⊤L̃(k) =
[
Û(k) U(k)

] [Ξ̂(k) 0

0 Ξ(k)

] [
V̂ (k) V (k)

]⊤
,

where R̃(k)R̃(k)⊤ = P̃ (k) and L̃(k)L̃(k)⊤ = Q̃(k) are obtained by a Cholesky
decomposition. Then, the reduced system of the form (8.5) can be obtained by

Âk := Π̂l(k + 1)ÃkΠ̂
r(k),[

B̂k F̂k

]
:= Π̂l(k + 1)

[
B̃k F̃k

]
,

Ĉk := C̃kΠ̂
r(k).

where the left- and right-projectors are calculated as

Π̂l(k) := Ξ̂(k)−1/2V̂ (k)⊤L̃(k)⊤ ∈ Rn̂×n,

Π̂r(k) := R̃(k)Û(k)Ξ̂(k)−1/2 ∈ Rn×n̂.

8.4 Numerical results

This section illustrates the proposed method by providing an example.
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Example 8.2. Consider a SLSS (8.1) with two modes

(E0, A0, B0, C0) =



1 0 0 0

1 1 0 0

0 0 1 0

0 0 0 0

 ,


1 0 0 0

1 0 1 0

1 1 1 0

0 0 0 1

 ,


0.02

2

1

0.2

 ,


−0.1

0.1

0.1

2


⊤ ,

(E1, A1, B1, C1) =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 ,


1 0 0 0

0 1 1 0

1 0 1 0

0 0 0 1

 ,


0.01

2

0.5

0.1

 , C0

 ,

Consider a switching signal σ : [0, 9) → {0, 1},

σ(k) =

{
0 : k ∈ [0, 4) ∪ [7, 9),

1 : k ∈ [4, 7).

It can easily be verified that the pairs (E0, A0) and (E1, A1) are jointly index-1.
Hence, by Lemma 8.2, the time-varying system (8.4) is obtained with the following
system matrices

(Ãk, B̃k) =





1 0 0 0

0 0 1 0

1 1 1 0

0 0 0 0

 ,


0.02

1.98

1

0


 : k = 0, 1, 2, 3, 7, 8,



1 0 0 0

0 1 1 0

1 0 1 0

0 0 0 0

 ,


0.01

2

0.5

0


 : k = 4, 5, 6,

F̃k =




0

0

0

−0.2

 : k = 0, 1, 2, 6, 7, 8,


0

0

0

−0.1

 : k = 3, 4, 5.
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The corresponding reachability and observability Gramians are calculated re-
spectively, P̃ (k) and Q̃(k) for k ∈ [0, 9) with initial/final values P̃0 = 0.002I and
Q̃f = 0.002I . The corresponding HSVs are depicted in Figure 8.2 and it is apparent
that the last two HSVs are significantly smaller than the first two. Hence, a two
dimensional reduced system is obtained which approximates the time-varying
system (8.4) and hence, the original SLSS.

1 2 3 4 5 6 7 8

k

0

0.5

1

1.5

2

2.5

3

3.5

4

i(k
)

Figure 8.2: Hankel singular values of balanced Gramians at each time instance.

The computed two dimensional reduced systems at each time steps are given
by (Âk, [B̂k, F̂k], Ĉk) =([

0.9206 −0.0051

−0.0107 0.0012

] [
−1.8615 0.0046

−0.0535 0.6305

] [
−0.1410

−0.6334

]⊤)
,([

0.9761 −0.0071

−0.0058 −0.0076

] [
−1.0832 0.0074

−0.0603 0.6287

] [
−0.2387

−0.6332

]⊤)
,([

0.9887 −0.0116

−0.0027 −0.0071

] [
−0.7265 0.0117

−0.0445 0.8861

] [
−0.3859

−0.4449

]⊤)
,([

1.1336 −0.0155

−0.4762 −0.0398

] [
−0.3934 0.0143

−0.0311 0.4016

] [
−0.7193

−0.4515

]⊤)
,([

0.9856 −0.0335

−0.0019 0.1912

] [
−0.2249 0.0206

−0.0536 0.4158

] [
−1.0114

−0.4262

]⊤)
,([

0.9719 −0.0475

−0.0036 0.0701

] [
−0.1850 0.0286

−0.0047 0.2986

] [
−1.3323

−0.5423

]⊤)
,



130 8. Model reduction for singular linear switched systems in discrete time

([
0.8014 −0.0770

−0.8119 0.0689

] [
−0.1249 0.0523

0.1196 −0.5938

] [
−1.4777

0.5432

]⊤)
,([

0.9471 0.0834

−0.0047 0.0125

] [
−0.1026 0.1118

−0.0261 0.4245

] [
−2.8391

−0.1943

]⊤)
.

Consider randomly generated input u(·) with u(0) = 0, and the input-output
behavior is calculated for the system (8.4) and its reduced system with relative
errors. Figures 8.3 displays the outputs, the input signal, and the relative errors
for original system and the proposed two dimensional reduced system. Clearly,
both outputs match nicely and the relative error is less then 6%.

1 2 3 4 5 6 7 8

0

2

4

6
Original system

Reduced system

1 2 3 4 5 6 7 8
-1

0

1

2

1 2 3 4 5 6 7 8
0

0.02

0.04

0.06
Relative error

Figure 8.3: Outputs and relative errors of original system (8.4) and the proposed
2nd order approximation.

Next, another initial /final value of the Gramians is considered by increasing
the magnitudes as P̃0 = 0.5I and Q̃f = 0.5I . With the same input sequence as
in Figure 8.3, the input-output behavior with the relative error is depicted in
Figure 8.4, which shows that the choice of the initial /final values of Gramians
plays an important role in the error analysis. Therefore, it is concluded that taking
small magnitude with identity matrix could be the best choice for the initial /final
values of the Gramians.
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1 2 3 4 5 6 7 8

0

2

4

6
Original system

Reduced system

1 2 3 4 5 6 7 8
-1

0

1

2

1 2 3 4 5 6 7 8
0

0.5

1

Relative error

Figure 8.4: Outputs and relative errors of the original system (8.4) and the proposed
2nd order approximation with initial/final values P̃0 = 0.5I , Q̃f = 0.5I .

8.5 Discussion

In this chapter, a model reduction method for index-1 singular linear switched
systems is presented. The key novelty is the viewpoint of the SLSS as a piecewise-
constant time-varying system. First, an input-extended time-varying system
is presented which has identical input-output behavior as the original index-1
SLSS. Then, a time-varying reduced system is proposed by applying balanced
truncation for time-varying system which approximates the original SLSS. For the
computation of Gramians in discrete time, the initial / final Gramians are also
considered. An example is given for the performance of the reduced system.





9 Conclusions

9.1 Conclusions

In this thesis, the reduced realization and model reduction for switched systems
have been considered. It has been mentioned in introduction (Chapter 1) that
existing realization methods generally do not consider the switched system as a
piecewise-constant time-varying linear system, they allow the switching signal
as an input. It has been seen that a reduced realization in general depends on the
specifically known switching signal. Therefore, the main objective of this thesis
was the construction of reduced realization and model reduction procedures on
this system class. Later, the proposed methods have been used for underlying
problem of switched DAEs and finally, model reduction for singular switched
system in discrete time has been investigated.

The main contributions of the thesis can be summarized as follows:

⋄ In Chapter 3, a method for reduced realization of switched linear systems
with mode-dependent state dimensions has been proposed and the technique
has been investigated only for single switch case. The key novelty is the
viewpoint of switched systems as a piecewise-constant time-varying system.
A reduced realization is obtained by first constructing an input-extended
version of the second mode, and an output-extended version of the first
mode and then, removing unreachable and unobservable states and finally,
reduce the jump map between the modes. More specifically, the proposed
technique consists two main steps; first, a minimal realization of the second
mode is constructed by taking into account the reachable subspace of the
first mode. Secondly, a minimal realization of the first mode is calculated by
taking into account the observable states of the second mode. The method is
basically relies on the Kalman decomposition of each mode and on finding
the reachable and observable states for each mode individually.
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In Chapter 4, a reduced realization procedure has been proposed for switched
linear systems with fixed switching signal and known mode sequence; the
results is extended for general switching signals. It has clearly been shown
that the reachable and unobservable subspaces of the given switched system
depend on the switching time duration which results in a reduced (fully)
time-varying systems. To circumvent this problem, suitable extended reach-
able and restricted unobservable subspaces have been defined according
to the known mode sequences and a sequence of corresponding projectors
is obtained. To do so, a weak Kalman decomposition based on extended
reachable / restricted unobservable subspaces is introduced which allows
the proposed extended reachable / restricted unobservable subspaces, and
which then can be used to remove certain unreachable and unobservable
states for each mode. The computed reduced switched system then preserves
the same input-output behavior as the original system. A conjecture has
been stated that the resulting reduced system has minimal size for almost
all switching times and it is not possible to reduce it further. An example is
provided to claim that, in general the dimension of the minimal realization
depends on the specific switching times.

⋄ In Chapter 5, a model reduction procedure has been proposed for switched
linear systems where each mode has the same state dimension. The key
feature is the time-varying nature of switched systems. The methods has
two main steps; first, a continuously time-varying system is proposed which
approximates the (discontinuous) switched system by allowing some errors
and secondly, available balanced truncation for time-varying linear systems
is applied to find a lower order reduced system. Moreover, balanced trun-
cation is reviewed in finite time horizon with initial/final condition of the
Gramians. Finally, it has been shown that the reduced system approximates
the original switched linear system; some error bounds are also proposed.

In Chapter 6, a model reduction method has been investigated for switched
linear systems with known mode duration. It has been shown that the time-
varying reachability/observability Gramians of a switched linear system
depend on the mode duration and they provide quantitative measure for
the states at a specified time. It has also been proved that the proposed
Gramians provide a quantitative measure for the input-output energy. A
midpoint based balanced truncation has been investigated for a balanced
system with similar input-output behavior as the given system. Moreover,
these Gramians matrices span the original reachable/observable subspaces
for switched systems. The computation of Gramians and some numerical
issues have also been discussed so that the proposed method is applicable
for moderately large-scale system.
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In Chapter 7, switched DAEs have been studied, and a switched ODE with
jumps and impulses is constructed which has identical input-output be-
havior as the original switched DAE. Under some assumptions, a reduced
realization can be computed for the proposed switched ODE with jumps
via the method given in Chapter 4, and the computed reduced system has
the same input-output behavior as the original switched DAE. Finally, the
model reduction method from Chapter 6 has been applied to obtain a good
approximation of the input-output behavior. Numerical example has been
illustrated the results of the two reduction processes.

In Chapter 8, singular linear switched systems are considered in discrete time.
It has been shown that under some assumptions, certain time-varying system
has the same input-output behavior as the given singular switched system.
Balanced truncation has been proposed for the time-varying system to obtain
a lower dimensional time-varying system which then approximates the
original singular system. There, the reachability and observability Gramians
are also computed by introducing initial/final values. Finally, an example
demonstrates the proposed reduction techniques.

9.2 Future work

In what follows, some ideas are provided for future work. In Chapters 3 and 4, re-
duced realization is gained insight with some results for continuous time switched
systems. These results are also of interest for the discrete time case. Furthermore,
the minimality is not proven yet, and is still on ongoing research. Since all opera-
tions in the reduced realization method are calculated with exact arithmetic, the
computational efficiency of the proposed method in large-scale setting is not clear
at the moment, and further research is necessary.

Mode-wise balanced truncation method is developed in Chapter 6 by defining
suitable Gramians; no error bound is proven, although, the proposed Gramians
have a precise energy interpretation. Finding a suitable error bound is impor-
tant topic for future research. Numerical issues for computation of Gramians is
discussed there, while for very large-scale setting the proposed method is not
applicable without further investigation.

Model reduction for switched DAEs is investigated by making the assumptions
that the DAE does not produce state dependent Dirac impulses in output at switch-
ing time and that the jump map is independent from the input. It is of interest to
extend the existing model reduction methods such that these assumptions are not
necessary anymore.





A Some basics on linear algebra

In this appendix, a self-contained introduction is presented to some control theory
tools that are useful in this thesis.

Lemma A.1 ([20]). Let A : Rn → Rn be a linear mapping, and S1 and S2 are subspaces
of Rn. Then, the following statements holds:

(i) (kerA)⊥ = imA⊤ and (imA)⊥ = kerA⊤,

(ii) (S1 + S2)
⊥ = S⊥

1 ∩ S⊥
2 and (S1 ∩ S2)

⊥ = S⊥
1 + S⊥

2 .

Definition A.2. A symmetric matrix A ∈ Rn×n is positive semidefinite if z⊤Az ⩾ 0

for all z ∈ Rn. Again, if z⊤Az > 0 for all z ̸= 0, then A is called positive definite.

Definition A.3 (Cholesky decomposition). Let A ∈ Rn×n be a positive definite
matrix. The Cholesky decomposition is given by

A = R⊤R,

where R is lower triangular with positive diagonal elements.

Theorem A.4 ([2]). For every matrix A of rank r, there exists orthogonal matrices U and
V such that

A = UΞV ⊤ =

r∑
i=1

uiξivi,

where U = [u1 . . . ur · · ·um] and V = [v1 . . . vr · · · vn], and Ξ = diag(ξ1 . . . ξr 0 . . . 0)

contains the singular values of A.





B Distribution theory

B.1 Review of classical distribution theory

In this section, some well known results for the analysis of switched DAEs are
reviewed from [135].

Let C∞ := { f : R → R | f is arbitrarily often differentiable } be the space of
smooth functions. The support of f ∈ C∞ is given by supp f := cl { x ∈ R | f(x) ̸= 0 }
where clM is the closure of the set M ⊆ R. The space of test functions C∞

0 : R → R
is given by

C∞
0 := { φ ∈ C∞ | suppφ is bounded } .

Definition B.1 (Distributions). The space of distributions, denoted by D, is then
the dual of the space of test functions, i.e.,

D := { D : C∞
0 → R | D is linear and continuous } .

Here, continuity is with respect to a certain topology on the space of test functions.

The main two properties of distributions are 1) that they can be interpreted as
generalized functions, and 2) that they are arbitrarily often differentiable. To be
more precise, let L1,loc be the space of locally integrable functions, then

L1,loc → D, f → fD := φ 7→
∫
R
fφ,

is well defined (i.e. fD is indeed a distribution) and an injective homomorphism.
For i ⩾ 1, the i-th derivative of an arbitrary distribution D ∈ D is given by

D(i)(φ) := D(i−1)(φ′), φ ∈ C∞
0 ,

where D(0)(φ) := −D(φ). Distributions can be multiplied with smooth functions:

(αD)(φ) := D(αφ), α ∈ C∞, D ∈ D, φ ∈ C∞
0 .
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The simplest distribution which is not induced by a function is the Dirac impulse.
The Dirac impulse at t ∈ R is given by

δt : C∞
0 → R, φ 7→ δt(φ) := φ(t).

The Dirac impulse is the distributional derivative of the so called Heaviside function
1[0,∞), i.e.

∀t ∈ R : δt =
dD
dt

(1[t,∞))D.

B.2 Piecewise-smooth distributions

Switched DAEs of the form Eσẋ = Aσx + Bσu, y = Cx do not have classical
solutions as the consistency spaces of different modes do not have to coincide
and then jumps or Dirac impulses might occur. However, it can be shown that
the space of distributions is not a suitable solution space as it is ”too large”. In
general, it is impossible to define restrictions to intervals and multiplications for
distributions, for details see [135, Thm 2.2.2]. To overcome this problem, the space
of piecewise-smooth distributions is introduced in [135].

Definition B.2 (Piecewise-smooth functions, [135]). The space of piecewise-smooth
functions is defined by

C∞
pw :=

{∑
i∈Z

1[ti,ti+1)αi

∣∣∣∣∣ (αi)i∈Z ∈ (C∞)Z, { ti ∈ R | i ∈ Z }
locally finite with ti < ti+1, i ∈ Z

}
.

Definition B.3 (Piecewise-smooth distributions, [135]). The space of piecewise-
smooth distributions is given by

DpwC∞ :=

{
fD +

∑
t∈T

Dt

∣∣∣∣∣ f ∈ C∞
pw, Dt ∈ span{δt, δ′t, · · · }

}
,

where T ⊂ R is locally finite, and span{δt, δ′t, · · · } denotes the set of all finite linear
combinations of the Dirac impulse at t ∈ R and its derivatives. The set DpwC∞ is a
subspace of D and closed under differentiation and restriction to intervals.

B.3 Distributional solution

Definition B.4 (Classical solution). A classical solution of DAE Eẋ(t) = Ax(t) +

f(t) is any differential function x ∈ C1(R → Rn) such that Eẋ(t) = Ax(t) + f(t)

holds for all t ∈ R.
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Lemma B.5. The ODE ẋ = Ax + Bu with initial condition x(0) = x0 has the same
solution as the impulsive ODE ẋ = Ax+Bu+ x0δ, x(0−) = 0 on (0,∞).

Proof. The (distributional) solution of system ẋ = Ax+Bu+ δ0x0 with x(0−) = 0

is given by

x = eA·
∫
0−

e−A·(Bu+ δ0x0),

where H =:
∫
0−

D ∈ DpwC∞ for D ∈ DpwC∞ , is the distributional antiderivative
operator such that H ′ = D and H(0−) = 0. Since e−A0 = I , it follows that

eA·
∫
0−

e−A·δ0x0 = eA·x01[0,∞),

which is the solution of system ẋ = Ax+ x0δ with x(0−) = 0.

Lemma B.6 ([136]). For (E,A,B) = (I, A,B), the unique solution of the corresponding
ODE-ITP (7.9) is given by

x = x0
(−∞,0) +

((
eA·x0(0−)

)
D + eA·

∫
0−

eA·Bu

)
[0,∞)

.

Lemma B.7 ([136]). For (E,A,B) = (N, I,B) with nilpotent N , the unique solution
of the corresponding DAE-ITP (7.9) is given by

x = x0
(−∞,0) −

ν−2∑
i=0

N i+1x0(0−)δ(i) −
ν−1∑
i=0

N iB
d

dt

i

(u[0,∞)),

where 1 ⩽ ν ⩽ n is the nilpotency index of N and δ(i) denotes the i-th derivative of the
Dirac impulse δ.

Lemma B.8 (Solution of switched DAEs, [136]). Consider the regular switched DAE
Eσẋ = Aσx+Bσu with switching signal σ : R → N. Then, for every u ∈ Du

pwC∞ , there
exists a unique (distributional) solution x ∈ Dn

pwC∞ satisfies the following properties: for
any t ∈ (sk, sk+1)

x(t+) = eA
diff
k (t−sk)Πkx(s

−
k ) +

(
eA

diff
k ·
∫
0−

eA
− diff
k ·Bdiff

k u

)
−

ν−1∑
i=0

(E
imp
k )iBimp

k u(i),
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and the impulsive part at the switching times sk is given by

x[sk] =

(
eA

diff
k ·
∫
0−

eA
− diff
k ·Bdiff

k u

)
[sk]−

ν−2∑
i=0

(Eimp
k )i+1x(s−k )δ

(i)
sk

−
ν−1∑
i=0

(Eimp
k )iBimp

k (uk)
(i)[sk],

where (uk)
(i)[sk] :=

∑i−1
j=0 u

(i−j−1)(s+k )δ
(j) − uk[sk]

(i), uk := u[sk,sk+1), δ
(i) denotes

the i-th derivative of the Dirac impulse δ.
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435–498. Birkhäuser, Boston, MA, 1999.

[39] C. Führer and B. J. Leimkuhler. Numerical solution of differential-algebraic
equations for constrained mechanical motion. Numer. Math., 59:55–69, 1991.

[40] K. Gallivan, E. Grimme, and P. Van Dooren. Asymptotic waveform evalua-
tion via a Lanczos method. Appl. Math. Lett., 7(5):75–80, 1994.

[41] F. R. Gantmacher. The Theory of Matrices (Vol. I & II). Chelsea, New York,
1959.

[42] W. Gawronski and J.-N. Juang. Model reduction in limited time and fre-
quency intervals. International Journal of Systems Science, 21(2):349–376, 1990.

[43] A. H. W. T. Geerts. Solvability conditions, consistency and weak consistency
for linear differential-algebraic equations and time-invariant linear systems:
The general case. Linear Algebra Appl., 181:111–130, 1993. doi: 10.1016/
0024-3795(93)90027-L.

[44] E. G. Gilbert. Controllability and observability in multivariable control
systems. Journal of the Society for Industrial and Applied Mathematics, Series A:
Control, 1(2):128–151, 1963.

[45] K. Glover. All optimal Hankel-norm approximations of linear multivariable
systems and their L∞-error bounds. Int. J. Control, 39(6):1115–1193, 1984.

[46] R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid dynamical systems. Princeton
University Press, Princeton, NJ, 2012. Modeling, stability, and robustness.



BIBLIOGRAPHY 147

[47] I. V. Gosea and A. C. Antoulas. On the H2 norm and iterative model order
reduction of linear switched systems. In 2018 European Control Conference
(ECC), pages 2983–2988, 2018.

[48] I. V. Gosea, M. Petreczky, and A. C. Antoulas. Data-driven model order
reduction of linear switched systems in the Loewner framework. SIAM
Journal on Scientific Computing, 40(2):B572–B610, 2018.

[49] I. V. Gosea, M. Petreczky, A. C. Antoulas, and C. Fiter. Balanced truncation
for linear switched systems. Advances in Computational Mathematics, 44(6):
1845–1886, 2018.

[50] I. V. Gosea, I. P. Duff, P. Benner, and A. C. Antoulas. Model order reduction of
switched linear systems with constrained switching. In IUTAM Symposium
on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25,
2018, pages 41–53. Springer, 2020.

[51] I. V. Gosea, M. Petreczky, J. Leth, R. Wisniewski, and A. C. Antoulas. Model
reduction of linear hybrid systems. In 2020 59th IEEE Conference on Decision
and Control (CDC), pages 110–117, 2020.

[52] P. M. Gresho. Incompressible fluid dynamics: Some fundamental formula-
tion issues. Annu. Rev. Fluid Mech., 23:413–453, 1991.

[53] T. B. Gross, S. Trenn, and A. Wirsen. Solvability and stability of a power
system DAE model. Syst. Control Lett., 29:12–17, 2016. doi: 10.1016/j.
sysconle.2016.08.003.

[54] R. L. Grossman and R. G. Larson. An algebraic approach to hybrid systems.
Theoretical computer science, 138(1):101–112, 1995.

[55] S. Gugercin and A. C. Antoulas. A survey of model reduction by balanced
truncation and some new results. Int. J. Control, 77(8):748–766, 2004.

[56] S. J. Hammarling. Numerical solution of the stable, non-negative definite
Lyapunov equation. IMA J. Numer. Anal., 2:303–323, 1982.

[57] M. Heinkenschloss, T. Reis, and A. C. Antoulas. Balanced truncation model
reduction for systems with inhomogeneous initial conditions. Automatica,
47(3):559–564, 2011.

[58] M. S. Hossain and S. Trenn. A time-varying gramian based model reduction
approach for linear switched systems. IFAC-PapersOnLine, 53(2):5629–5634,
2020.



148 BIBLIOGRAPHY

[59] M. S. Hossain and S. Trenn. Minimal realization for linear switched systems
with a single switch. In 2021 European Control Conference (ECC), pages 1168–
1173, 2021.

[60] M. S. Hossain and S. Trenn. rrSLS - Reduced realization for switched
linear systems, April 2022. URL https://doi.org/10.5281/zenodo.

6410136.

[61] J. Imae, J. E. Perkins, and J. B. Moore. Towards time-varying balanced
realization via riccati equations. In 1992 American Control Conference, pages
338–342. IEEE, 1992.

[62] I. M. Jaimoukha and E. M. Kasenally. Krylov subspace methods for solving
large Lyapunov equations. SIAM J. Numer. Anal., 31:227–251, 1994.

[63] K. Jbilou. A survey of krylov-based methods for model reduction in large-
scale mimo dynamical systems. Applied and Computational Mathematics, 15
(2):117–148, 2016.

[64] I. Jikuya and I. Hodaka. Kalman canonical decomposition of linear time-
varying systems. SIAM Journal on Control and Optimization, 52(1):274–310,
2014.

[65] T. Kailath. Linear Systems. Prentice-Hall, Englewood Cliffs, NJ, 1980.

[66] R. E. Kalman. Mathematical description of linear dynamical systems. SIAM
J. Control Optim., 1:152–192, 1963. doi: 10.1137/0301010.

[67] R. E. Kalman, P. L. Falb, and M. A. Arbib. Topics in Mathematical System
Theory. McGraw-Hill, New York, 1969.

[68] P. Kunkel and V. Mehrmann. Differential-Algebraic Equations. Analysis and
Numerical Solution. EMS Publishing House, Zürich, Switzerland, 2006. doi:
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[69] P. Kürschner. Balanced truncation model order reduction in limited time
intervals for large systems. Advances in Computational Mathematics, 44(6):
1821–1844, 2018.
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Summary

This thesis addresses several problems related to reduced models of switched
systems. In particular, three switched system classes are considered; switched
linear systems as well as switched differential-algebraic equations in continuous
time, and singular linear switched systems in discrete time. In general, the study
aims to find a reduced model for a given switched system with fixed switching
signal and known mode sequence. The proposed solutions studied in this thesis
can be distinguish into two main parts.

Part I deals with reduced realization for switched linear systems with known
mode sequence. First, some results are given for the single switch case. The key
feature of the method is to obtain a reduced realization by removing certain states
from an input-extended second mode and output-extended first mode, and this can
be done by applying Kalman decomposition. The reduced system preserves the
same input-output behavior as original systems. Secondly, a technique is proposed
for reduced realization for switched linear systems with general switching signals.
It is shown that the reachable and unobservable subspaces of a switched system
are time-varying and depend on the switching time duration. A weak Kalman
decomposition based on extended reachable / restricted unobservable subspaces is
introduced to overcome the problem of time variance. Based on this weak Kalman
decomposition, it is possible to remove certain unreachable and unobservable
states for each mode. The proposed reduced system has the same input-output
behavior as original switched systems. Finally, it is conjectured that the proposed
reduced system has a smallest order for almost all switching time duration.

Contrary to Part I, Part II deals with model reduction techniques for switched
linear systems and switched differential-algebraic equations. First, the discontinu-
ity property in the time-varying nature of switched systems is approximated by a
continuous time-varying system by introducing some errors. Thereto, balanced
truncation for time-varying system is applied to obtain a reduced system which
then approximates the original switched system. For large-scale systems, the over-
all computation for the reduced system may be computationally infeasible. Later,
another method is proposed for a known mode sequence and the reduced system
preserves then the system classes. The quantitative information for each mode
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is carried out by defining suitable Gramians and, these Gramians are exploited
at midpoint of the given switching time duration. Finally, balanced truncation
leads to a mode-wise reduction. The proposed method provides a good model
with suitable thresholds for the given switched system. Moreover, the proposed
method is applicable in a moderately large-scale setting.

A model reduction method for switched differential-algebraic equations in
continuous time is proposed. A switched linear system with jumps and impulses
is constructed which has the identical input-output behavior as original systems.
The resulting switched linear system contains then two additional features; state
dependent Dirac impulses at switching time instant and input dependent jumps.
Then, assuming some conditions, a reduced realization can be obtained via the
method proposed in Chapter 4 which preserves the same input-output behavior
as the original switched differential-algebraic equation. Later, an approximation is
obtained via the method given in Chapter 6.

Finally, a model reduction approach for singular linear switched systems in
discrete time is studied. It is shown that the solution of the given singular system
can be recovered by an input-extended time-varying system. Then, balanced
truncation for time-varying systems in discrete time is implemented to obtain an
approximation. The choice of initial/final values of the reachability and observ-
ability Gramians are also investigated.

Summarizing, several methods are developed in this thesis for reduced realiza-
tion and model reduction for switched linear systems as well as singular switched
systems.



Samenvatting

Dit proefschrift behandelt verschillende problemen gerelateerd aan gereduceerde
modellen van zogenaamde switched systems. In het bijzonder worden drie klassen
switched systems beschouwd: switched linear systems, switched differential-
algebraic equations in continue tijd, en singular switched systems in discrete tijd.
In het algemeen is het doel van de studie om een gereduceerd model te vinden
voor een bepaald switched system met een vast switching signal en een bekende
volgorde van modi. De voorgestelde oplossingen die in dit proefschrift worden
bestudeerd kunnen worden onderscheiden in twee hoofdonderdelen.

Deel I behandelt gereduceerde realisatie voor switched linear systems met
bekende volgorde van modi. Eerst worden enkele resultaten gegeven voor het
geval van een enkele switch. Het belangrijkste kenmerk van de methode is om
een gereduceerde realisatie te verkrijgen door bepaalde toestanden te verwijderen
uit een input-extended tweede modus en output-extended eerste modus. Dit
wordt gedaan door Kalmandecompositie toe te passen. Het gereduceerde systeem
behoudt hetzelfde ingangs-uitgangsgedrag als het originele systeem. Ten tweede
wordt een techniek voorgesteld voor gereduceerde realisatie voor switched linear
systems met algemene switching signals. Er wordt aangetoond dat de bereikbare
en niet-waarneembare deelruimten van een switched system in de tijd variëren
en afhankelijk zijn van de duur van de switching time. Een zwakke Kalmande-
compositie op basis van uitgebreide bereikbare / beperkte niet-waarneembare
deelruimten wordt geı̈ntroduceerd om het probleem van tijdsvariantie op te lossen.
Op basis van deze zwakke Kalmandecompositie, is het mogelijk om bepaalde
onbereikbare en niet-waarneembare toestanden voor elke modus te verwijderen.
Het voorgestelde gereduceerde systeem heeft hetzelfde ingangs-uitgangsgedrag
als het originele switched system. Ten slotte wordt verondersteld dat het voor-
gestelde gereduceerde systeem de kleinste orde heeft voor bijna alle duur van
switching times.

In tegenstelling tot deel I, behandelt deel II modelreductietechnieken voor
switched linear systems en switched differential-algebraic equations. Ten eerste
wordt de discontinuı̈teitseigenschap van tijdsvariante switched systems benaderd
door een continu tijdsvariant systeem door enkele fouten te introduceren. Daartoe



160 Samenvatting

wordt gebalanceerde afkapping voor het tijdsvariant systeem toegepast om een
gereduceerd systeem te verkrijgen dat dan het oorspronkelijke switched system
benadert. Voor grootschalige systemen kan de totale berekening voor het geredu-
ceerde systeem rekenkundig onhaalbaar zijn. Later wordt een andere methode
voorgesteld voor een bekende volgorde van modi, en het gereduceerde systeem
behoudt dan de systeemklassen. De kwantitatieve informatie voor elke modus
wordt uitgevoerd door geschikte Gramianen te definiëren en deze Gramianen
worden gebruikt halverwege de gegeven duur van de switching time. Ten slotte
leidt gebalanceerde afkapping tot een modusgewijze reductie. De voorgestelde
methode biedt een goed model met geschikte drempelwaarden voor het gege-
ven switched system. Bovendien is de voorgestelde methode toepasbaar in een
gematigd grootschalige setting.

Een modelreductiemethode voor switched differential-algebraic equations in
continue tijd wordt voorgesteld. Er wordt een switched linear system met spron-
gen en impulsen geconstrueerd dat hetzelfde ingangs-uitgangsgedrag heeft als
het originele systeem. Het resulterende switched linear system bevat dan twee
extra functies: toestandsafhankelijke Dirac impulsen op switching times en in-
gangsafhankelijke sprongen. Vervolgens kan, onder bepaalde voorwaarden, een
gereduceerde realisatie worden verkregen via de methode voorgesteld in Hoofd-
stuk 4 die hetzelfde ingang-uitgangsgedrag behoudt als de originele switched
differential-algebraic equation. Later wordt een benadering verkregen via de
methode gegeven in Hoofdstuk 6.

Ten slotte wordt een modelreductiemethode voor singular linear switched
systems in discrete tijd bestudeerd. Er wordt aangetoond dat de oplossing van het
gegeven singular system kan worden teruggevonden door een input-extended
tijdsvariant systeem. Vervolgens wordt gebalanceerde afkapping voor tijdsvari-
ante systemen in discrete tijd geı̈mplementeerd om een benadering te verkrijgen.
De keuze van begin-/eindwaarden van de bereikbaarheids- en de waarneembaar-
heidsgramianen worden ook onderzocht.

Samenvattend zijn er in dit proefschrift verschillende methoden ontwikkeld
voor gereduceerde realisatie en modelreductie voor zowel switched linear systems
als singular switched systems.
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