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Acetylcholine plays a major role in brain cognitive and motor functions with regional
cholinergic terminal loss common in several neurodegenerative disorders. We describe
age-related declines of regional cholinergic neuron terminal density in vivo using the posi-
tron emission tomography (PET) ligand ['8F](-)5-Fluoroethoxybenzovesamicol (['®F]
FEOBV), a vesamicol analogue selectively binding to the vesicular acetylcholine transporter
(VACKT). A total of 42 subjects without clinical evidence of neurologic disease (mean 50.55

ﬁ?elzvy%ﬁiline transporter [range 20-80] years, 24 Male/18 Female) underwent ['®FJFEOBV brain PET imaging. We
Aging used SPM based voxel-wise statistical analysis to perform whole brain voxel-based para-
Normal persons metric analysis (family-wise error corrected, FWE) and to also extract the most significant
VAChT PET clusters of regions correlating with aging with gender as nuisance variable. Age-related

VAChHT binding reductions were found in primary sensorimotor cortex, visual cortex, cau-
date nucleus, anterior to mid-cingulum, bilateral insula, para-hippocampus, hippocampus,
anterior temporal lobes/amygdala, dorsomedial thalamus, metathalamus, and cerebellum
(gender and FWE-corrected, P < 0.05). These findings show a specific topographic pattern
of regional vulnerability of cholinergic nerve terminals across multiple cholinergic systems
accompanying aging.
© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Abbreviations: AChE, Acetylcholinesterase; BFCC, Basal Forebrain
Cholinergic Corticopetal complex; COTC, Cingulo-Opercular Task Control;
FEOBV, Fluoroethoxybenzovesamicol; IBVM, lodobenzovesamicol; MVC,

Introduction

Medial Vestibular Complex; PPN/LDTC, pedunculopontine nucleus/lateral
dorsal tegmental complex; PET, Positron Emission Tomography; SChls,
Striatal Cholinergic Interneurons; SPECT, Single Photon Emission Com-
puted Tomography; VAChT, vesicular acetylcholine transporter.
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Normal aging is associated with cholinergic system
losses in the brain (see [1-3] for review). Most data rele-
vant to age-related declines of cholinergic systems derives
from older post-mortem studies of the basal forebrain
cholinergic corticopetal complex (BFCC) evaluating mark-
ers of cholinergic terminal and perikaryal integrity [3].

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Other important brain cholinergic systems were largely
ignored in these studies.

Important cholinergic projection systems include the
BFCC, notably the nucleus basalis of Meynert (nbM), which
provides the principal cholinergic input of the entire corti-
cal mantle and amygdala [4]. The medial septal and verti-
cal limb of the diagonal band nuclei of the BFCC innervate
the hippocampal formation. The pedunculopontine
nucleus/lateral dorsal tegmental complex (PPN/LDTC) pro-
vides cholinergic inputs to the basal ganglia, thalamus,
cerebellum, several brainstem nuclei, and the spinal cord
[5]. The medial vestibular nucleus (MVN) is a major source
of cholinergic input to the cerebellum [6]. The striatum
exhibits the highest density of cholinergic terminal mark-
ers in the brain. Cholinergic nerve terminals in the stria-
tum may derive from striatal cholinergic interneurons
(SChls) or from extrinsic projections from the PPN/LDTC,
with available evidence indicating that the great majority
of striatal cholinergic terminals emanate from SChls [7,8].
There is a paucity of information about the relationship
between normal aging and changes in brain cholinergic
systems other than the BFCC. Our recent positron emission
tomography (PET) study using the vesicular acetylcholine
transporter (VAChT) ligand ['®F](-)5-fluoroethoxybenzove
samicol (['8F]JFEOBV) found significant age-associated
decreases in ['8F]JFEOBV binding in striatum (approxi-
mately 4% binding loss per decade) and approximately
2.5% per decade FEOBV binding losses in primary sensori-
motor corteX, anterior cingulum, and thalamus of neuro-
logically intact adults [9]. VAChT expression is unique to
cholinergic terminals and ['F]JFEOBV PET is thought to
be a specific and robust measure of regional cholinergic
terminal density [10]. Assessment of aging effects in this
study was based on limited volume-of-interest analysis
using a priori selection of relatively high binding regions.
This approach lacks sensitivity to assess cholinergic aging
effects in regions with lower tracer binding and also in
characterizing changes within larger preselected
volumes-of-interest, such as the striatum. A more system-
atic analysis requires a spatially unbiased approach.

The goal of this paper is to perform a whole brain voxel-
based analysis to investigate the topography of age-related
cholinergic terminal changes using [®F]FEOBV PET in nor-
mal adults and across a wide age range and complemented
by a cluster peak analysis. Identification of the topographic
vulnerability of cholinergic systems during aging is rele-
vant to understand the contributions of normal aging to
age-related neurodegenerative disorders exhibiting cholin-
ergic systems degenerations, such as Parkinson’s or Alzhei-
mer’s disease. Identifying the topography of normal age-
related changes in cholinergic systems may also be rele-
vant to understand potential sensitivity to the use of com-
monly prescribed anticholinergic drugs in older adults.

Subjects and methods

Subjects

This cross-sectional study involved 42 neurologically
intact normal control subjects (24 males, 18 females),
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mean age 50.55 + 19.35, age range 20-80 years. Data from
29 subjects was used in a previous study describing the
normal biodistribution of VAChT binding with limited
(volume-of-interest method only) aging effects analyses
[9]. Ten subjects (5/5 M/F) out of 42 were part of the Dutch
Parkinson Cohort (DUPARC) study [11]. No subjects had
histories of the neurologic or psychiatric disease, none took
medications that might affect cholinergic neurotransmis-
sion (either cholinergic or anticholinergic drugs) and all
had a normal neurological examination at the time of this
study. The study was approved by and study procedures
were followed in accordance with the ethical standards
of the Institutional Review Board of the University of
Michigan and medical ethical committee of the University
of Groningen. Written informed consent was obtained
from all subjects.

Imaging techniques All subjects underwent brain MRI
and VAChT ['®F]FEOBV PET imaging. MRI was performed
on a 3 Tesla Philips Achieva system (Philips, Best, The
Netherlands) at the University of Michigan and a 3 Tesla
Philips Intera system (Philips, The Netherlands) at the
University Medical Center Groningen (UMCG). PET imaging
was performed in 3D imaging mode with an ECAT Exact
HR + tomograph (Siemens Molecular Imaging, Inc., Knox-
ville, TN) as previously reported [12] or Biograph 6 Tru-
Point PET/CT scanner (Siemens Molecular Imaging, Inc.,
Knoxville, TN) as previously described [13] at the Univer-
sity of Michigan and Biograph 40-mCT or 64-mCT TruPoint
PET/CT scanner (Siemens Molecular Imaging, Inc., Knox-
ville, TN) at the UMCG as previously described [11]. [*8F]
FEOBV were prepared as described previously [14]. Inter-
camera data harmonization was performed as described
[15]. We constructed TruePoint images with 3 mm filters
to match the resolution and to account for differences
between the scanners. To reduce the scanner variability,
the acquisition parameters used at the University of Michi-
gan were followed at the UMCG. We reconstructed all ['8F]
FEOBV PET images obtained at the UMCG using software,
methodology and reconstruction parameters identical to
those used at the University of Michigan.

Image analysis

Spatial preprocessing

We constructed parametric images to reflect Distribu-
tion Volume Ratios (DVR) of ['F] FEOBV in the brain by
using the supratentorial white matter as a reference region
as previously reported [16-18]. All structural MRI images
were segmented into native and ‘Dartel-imported’ gray
matter, white matter and cerebrospinal fluid using the Sta-
tistical Parametric mapping 12 (SPM12) software package

(https://www.fil.ion.ucl.ac.uk/spm/). Using this segmenta-
tion, a Muller-Gartner partial-volume correction method
was used to remove the partial volume effect (PVE) on
our PET images [19]. Each subject’s structural MRI along
with registered PVE corrected PET image is then normal-
ized to the study specific template in Montreal Neurologi-
cal Institute (MNI) space using high-dimensional DARTEL
registration. To remove random noise, normalized PVE cor-
rected PET images were spatially smoothed to 8 mm full
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width at half maximum (FWHM). We performed the
images preprocessing steps from both the centers at the
University of Michigan. Before including the Groningen
subjects in our analysis and to account for any biases pre-
sent in the images due to scanning at two sites, we applied
an inter-scanner normalization method as listed above
[15] between age and gender-matched subjects between
the center and found no significant difference between
any of the images. The mask of the basal forebrain in
MNI space was drawn from a multilevel atlas framework
based on the Julich Brain atlas (https://www.fz-juelich.
de/inm/inm-1/EN/Forschung/JulichBrain/JulichBrain_
Webtools/JulichBrain_Webtools_node.html) using the pre-
viously described method [20-22].

Statistical analysis

To evaluate the effect of neurologically intact adults on
['8F] FEOBV DVR in the brain, a voxel-based correlation
analysis of the parametric images in MNI space was per-
formed using SPM12, with age as the variance of interest
and gender as the nuisance covariate. Both positive and
negative correlations were evaluated. A cluster-based anal-
ysis was also performed and statistical parametric map-
ping results were thresholded at voxel level p < 0.001 and
corrected for whole-brain comparisons using cluster-level
family-wise error rate (p < 0.05). Clusters that survived
the cluster-level family-wise error rate were interpreted
as significant.

Results

Age-related reductions of VAChT binding were found in
primary sensorimotor cortex, visual cortex, caudate
nucleus, anterior to mid cingulum, bilateral insulae, para-
hippocampus, hippocampus, anterior temporal lobes/
amygdala, metathalamus (lateral and medial geniculate
nuclei), dorsomedial thalamus, and cerebellum (gender
and FWE-corrected, P < 0.05; Fig. 1).

Scatter plots of distribution volume ratio of parahip-
pocampal gyrus and caudate nucleus show age-
associated reductions of VAChT binding (Fig. 2). Similarly,
a voxel-based morphometric analysis of the basal forebrain
detects age-related reduction of volume in basal forebrain
in neurologically intact adults, gender and FWE-corrected,
P <0.05 (Fig. 3).

Table 1 lists the major clusters with cluster size 50 vox-
els or more, FWE-corrected p-values, the coordinates (X, Y,
Z) of the local maxima within that cluster in MNI space,
peak voxel z and t-score at the local maxima, and brain
regions associated with the clusters.

Discussion

Post-mortem studies show that neurologically intact
control persons exhibit age-related declines of BFCC peri-
karyal density, and within the cortex, in biochemical and
histochemical markers of cholinergic terminal density.
Other cholinergic systems are less studied. Molecular
imaging methods allow in vivo evaluation of cholinergic
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systems integrity but there is only scarce in vivo molecular
imaging data on the relationships between normal aging
and cholinergic systems integrity. A prior VAChT ligand
123]_jodobenzovesamicol (IBVM) single photon emission
computed tomography (SPECT) imaging study in neurolog-
ically intact controls found cortical IBVM binding declined
3.7% per decade between the ages of 21 and 91 [23]. The
limited resolution of SPECT precluded more detailed anal-
ysis and results in subcortical structures were not
reported. A ouB, '231-5-1A-85380 SPECT study of nicotinic
cholinergic receptors found an inverse correlation between
age and receptor binding availability in neurologically
intact adults aged 18-85 years [24]. Declines ranged from
32% (thalamus) to 18% (occipital cortex) over the adult
lifespan, or up to 5% per decade, but these results may
partly reflect post-synaptic changes. Our more recent
VAChHT ['8F]FEOBV PET study, with a subset of the normal
participants (n=29) used for this analysis, found signifi-
cant age-associated decreases in [!F]JFEBOV binding of
the striatum (approximately 4% binding loss per decade)
with approximately 2.5% per decade binding losses in the
primary sensorimotor cortex, the anterior cingulum, and
the thalamus. Other regions did not show significant age-
related reductions [9].

Our current analysis, performed with a larger study
sample and using a whole-brain voxel-based analysis
method, as opposed to the volumes-of-interest analyses
of prior studies, confirms our prior results and depicts a
more granular topography of age-related cholinergic ter-
minal declines. Novel findings include preferential vulner-
ability of the caudate nucleus cholinergic terminals
relative to those of the putamen, and similar relative vul-
nerability of the metathalamus cholinergic terminals com-
pared to those of the thalamus. Other novel findings
include age-related declines of ['®F]JFEOBV binding in hip-
pocampal and parahippocampal regions, the calcarine cor-
tex, and parts of the cerebellar cortex. The striatal and
cerebellar results show the potential strengths of this
voxel-by-voxel analysis. The striatal cluster of significant
voxels suggests preferential involvement of caudate SChls.
The prior volume-of-interest analysis did not detect any
changes in the cerebellum, even in regions of high ['8F]
FEOBV binding such as nodulus and flocculus.

A FEOBV PET study of aging rodents [25] found aging
associated with hippocampal and parietotemporal cortical
cholinergic losses. Our study in neurologically intact adults
found evidence of more widespread age-related losses
extending beyond these regions. This may either reflect a
critical difference between rodents and the human brain
versus more detailed neuroimaging analysis techniques
applied to the anatomically larger human brain.

Our present results indicate age-related changes in all
major brain cholinergic systems, including declines of
BFCC terminals, PPN-LDTC cholinergic terminals, MVN
cholinergic terminals, and likely SChI terminals. Our find-
ings suggest that the BFCC afferents to limbic and paralim-
bic cortices appear more vulnerable than BFCC afferents to
most of the neocortex with the exception of primary sen-
sorimotor and calcarine cortices. These results suggest
preferential age-related effects on medial septal/vertical
limb of the diagonal band nucleus and nBM subpopula-
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Fig. 1. Age-related reduced VAChT binding reductions are shown in primary sensorimotor cortex, visual cortex, caudate nucleus, anterior to mid cingulum,
bilateral insula, para-hippocampus, hippocampus, anterior temporal lobes/amygdala, epithalamus, and cerebellum (gender and FWE-corrected, P < 0.05).

tions. Recent studies indicate that the BFCC is not a diffuse
projections system but rather composed clusters of cholin-
ergic projection neurons with terminals in limited num-
bers of cortical fields [26,27]. What factors might account
for BFCC subpopulation specific cholinergic terminal losses
is unclear. In the case of calcarine cortex, it is plausible that
this may be a “dying back” phenomenon. Cholinergic effer-
ents from the nBM traverse 2 major pathways, one project-
ing initially anterior and coursing around the corpus
callosum and one traveling through the external capsule
[2,26]. Some BFCC afferents to calcarine cortex might travel
through the anterior projection with their extended length
making them particularly vulnerable to metabolic

impairments.
Similarly, our results in regions innervated by other
cholinergic systems - metathalamus/thalamus (PPN/

LTDC), cerebellum (MVN), and striatum (SChls) - suggest
preferential involvement of subpopulations of cholinergic
neurons.

We recently reported that cholinergic terminals in com-
ponents of the cingulo-opercular task control (COTC) net-
work in patients with PD correlated with the degree of
cognitive impairment [28]. The identification of age-
related cholinergic terminal deficits within the anterior
cingulum, thalamus, metathalamus, insula, and caudate
nucleus point to greater vulnerability of COTC hubs [29].
The COTC network plays important roles in the mainte-
nance of tonic alertness and task performance [30]. Main-
tenance of alertness is a critical function subserving
multiple higher cognitive domain functions, such as exec-
utive functions and memory. Age-associated cholinergic
terminal deficits within COTC nodes may provide a partial
explanation of why normal aging is associated with decli-
nes in cognitive abilities such as processing speed and cer-
tain memory, language, visuospatial, and executive
functions [31]. Our finding that cholinergic terminals
within COTC nodes may be vulnerable to aging effects
expands the growing literature that normal aging is associ-



P. Kanel, S. van der Zee, C.A. Sanchez-Catasus et al.

Age vs. Parahippocampal

& p-value = 3.4028e-05
p ° °

—~~ L

o

>

)]

~

®

3.

IS

(4]

O

o

Q.

2 * i
'_E 11 . ° a "

©

6 L]
o 1.05 3

1zu 30 40 50 60 70 80 9

Age (years)

Aging Brain 2 (2022) 100039

Age vs. Caudate

p-value = 0.00050708

6.5

Caudate (DVR)

20 30 40 50 60 70 80 920

Age (years)

Fig. 2. Scatter plot of the DVR of parahippocampal gyrus and caudate nucleus with age.

Fig. 3. Voxel-based analysis of basal forebrain loss over time in neurologically intact elderly. Findings show evidence of significant age-associated
cholinergic forebrain volume losses in neurologically intact adults, FWE-corrected P < 0.05.

ated with loss of large-scale neural network functions [32]
and may increase vulnerability to age-associated neurode-
generations, such as Alzheimer’s disease (AD). FEOBV PET
has also potential to be used as a diagnostic test for AD
or other types of dementia. For example, a recent VAChT
['8F]FEOBV PET study found that cholinergic denervation
in AD was more accurate and sensitive in differentiating
AD from normal controls compared to [''C]-PIB amyloid
PET and ['®F]-Fluorodeoxyglucose (FDG) tracers [33]. Sim-
ilarly, our voxel-based metabolic covariance group analysis
between AD and DLB using VAChT ['®F]FEOBV PET reveals
a specific covarying pattern of cholinergic losses in DLB
supporting the use of VAChT ['8F]FEOBV PET to distinguish
DLB from AD [34].

Our results also implicate age-related brain cholinergic
deficits in other common age-related clinical phenomena.

Given the involvement of the metathalamus and caudate
nucleus cholinergic deficits in postural imbalance and falls
in PD, cholinergic deficits of these regions in normal aging
may increase risk of falling in normal older adults, particu-
larly those taking anti-cholinergic drugs [35]. Our findings
emphasize the importance of avoiding anti-cholinergic
drugs in the elderly.

Our current findings underscore the notion that brain
cholinergic deficits found neurodegenerative disorders
such as PD reflect both disease-specific and normal
aging-related degenerative processes. Similar mixed
effects of disease and normal aging were shown for nigros-
triatal dopaminergic losses in PD [36,37].

There are several limitations of this study. First, gender
distribution was not equally distributed across the older
(relatively more males) vs. the younger (relatively more
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Table 1
Table 1 lists of significant age-associated FEOBV PET clusters with a minimum of 50 voxels with the location of the peak voxel, peak voxel z and t-score, and the
regions associated with the clusters.

Clusters (voxels) P Peak MNI coordinates z T Regions
[xy.z]
1146 <0.001 -6810 7.8 12.28 Left and Right Caudate

Left and Right Thalamus
Left and right lateral geniculate nuclei
Left and right medial geniculate nuclei
Left and Right Olfactory
2289 <0.001 -2826 7.58 11.57 Left and Right Mid Cingulum
Left and Right Ant Cingulum
Left and Right Precuneus
Left and Right Supp Motor Area
Left and Right Frontal sup medial
Left and Right paracentral lobule
Left post cingulum
244 <0.001 18 —24 -18 6.74 9.37 Right Parahippocampal
Right Lingual
Right Cerebellum lobules 3,4 & 5
Right Hippocampus
Right Fusiform gyrus
967 <0.001 44 —12 2 6.72 9.33 Right Insula
Right Temporal sup
Right Heschl gyrus
Right temporal superior pole
Right parahippocampal gyrus
Right Rolandic operculum
Right Amygdala
Right Hippocampus
Right frontal inferior orbitofrontal lobe
1386 <0.001 —-14 -8 —-16 6.52 8.86 Left Hippocampus
Left Superior temporal pole
Left Insula
Left Parahippocampal gyrus
Left Frontal inferior orbitofrontal lobe
Left Heschl gyrus
Left Amygdala
Left Cerebellum lobules 3, 4 &5
Left Olfactory cortex
Left Rolandic operculum
Left fusiform gyrus
Left lingual gyrus
Left inferior frontal gyrus triangular part
362 <0.001 42 —-34 50 6.49 8.79 Right postcentral cortex
Right precentral cortex
Right inferior parietal lobe
36 <0.001 2-3818 6.13 8.02 Left and Right posterior cingulate cortex
267 <0.001 0 -602 6.12 7.99 Vermis sections of lobules 4,5 & 6
Left and right lingual gyrus
Left Cerebellum lobules 4, 5 & 6
Left and Right Calcarine cortex
308 <0.001 —40 -38 —42 5.72 7.33 Left Cerebellum Crus 1 & 2
Left Cerebelum lobules 7b & 8
Left Inferior Temporal lobe

102 <0.001 40 —-40 —42 5.84 7.44 Right Cerebellum Crus 1 & 2
Right Cerebellum lobules 7b & 8
157 <0.001 —40 —-20 52 5.69 7.16 Left Postcentral cortex
Left Precentral cortex
110 <0.001 4-98 -4 5.68 7.15 Left Calcarine cortex
129 0.007 -30 -34 50 5.08 6.10 Left Postcentral cortex
Left Inferior parietal cortex
50 0.002 58 —66 -32 5.35 6.55 Right Cerebellum Crus1
51 0.004 -56 —-22 12 5.24 6.36 Left superior temporal lobe

Left postcentral cortex

Left supramarginal gyrus
53 0.004 2024 5.21 6.32 Right Putamen

Right Pallidum
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females) age groups in the study participants. Our analysis,
however, was adjusted for the effects of gender. Further-
more, despite the smaller number of women in the older
age group, post hoc analysis showed similar regional topo-
graphic effects of aging in women in uncorrected analyses.
Second, we did not assess the presence of asymptomatic or
prodromal biomarkers of Alzheimer and Lewy body disor-
ders, which might have resulted in possible inclusion of
otherwise neurologically intact adults in our study.

We conclude that all major cholinergic cell groups and
projections, including the BFCC, PPN-LDTC, MVN and SChls,
are vulnerable to effects of normal aging. Our results sug-
gest that subpopulations of these cholinergic systems are
particularly vulnerable. Our findings may have clinical
implications and may help to explain the deleterious
effects of anti-cholinergic drugs in the otherwise neurolog-
ically intact elderly without the history of neurological
disease.
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