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A B S T R A C T   

Anodal transcranial direct current stimulation (tDCS) can enhance the retention of a previously practiced motor 
skill. However, the effects of tDCS on the performance of the choice reaction time task are not fully understood. 
We examined the effects of anodal tDCS over the left primary motor cortex (M1) on the retention of a 4-choice 
visual-motor reaction time task (4-ChRT). Right-handed healthy participants (n = 100) were randomly assigned 
to five groups: three groups received anodal tDCS: before (tDCSbefore), during (tDCSduring), or after (tDCSafter) 
motor practice. In addition, there were two control groups: with (CONmp) and without (CON) motor practice. We 
evaluated the speed and precision of the 4-ChRT task before (PRE), during, and 24 h (POST) after the in-
terventions. All groups, including the non-stimulation (CONmp) and non-practice groups (CON), improved (p <
0.05) motor retention (Δ4-ChRT: 35.8 ± 36.0 ms). These findings suggest that the tDCS effects over M1 may 
differ for serial versus choice RT tasks, perhaps due to the different brain areas involved in each motor task.   

1. Introduction 

A critical element of motor learning is the ability to retain and recall 
a previously practiced motor skill. Performance may be enhanced 
immediately after the practice period (online skill gains). However, 
memory consolidation may also result in motor skill improvements that 
outlast the practice period (offline skill gains). The offline skill gains or 
motor retention occur within a specific time window after training and 
up to 24–48 h [1,2]. Newly learned motor skills are associated with 
functional and structural changes in the nervous system [3]. Specif-
ically, the primary motor cortex (M1) is involved in movement control 
during the early learning phase [4-7]. 

Non-invasive brain stimulation techniques, such as transcranial 
direct current stimulation (tDCS), have gained popularity for their 

potential to enhance motor and cognitive functions both in healthy and 
patient populations. tDCS is a non-invasive, safe, and painless technique 
that can modulate cortical excitability and affect the function of several 
cortical areas [8,9]. Anodal tDCS of M1 has been examined using serial 
reaction time (RT) paradigms in which participants learn a motor 
sequence either implicitly or explicitly [10-18] and tDCS seems to 
enhance motor performance and retention. A serial RT task typically 
includes an embedded repeated cycle of responses, and a reduction of RT 
in these cycles without explicit knowledge is thought to reflect implicit 
learning [19]. Conversely, a 4-choice reaction time task (4-ChRT) pre-
sents the stimuli in a random and unpredictable fashion and is thought 
to mostly reflect response selection processes [20,21]. The 4-ChRT uses 
random stimuli and involves predominantly motor processes compared 
to other serial-learning tasks, which require more cognitive processes. 

Abbreviations: tDCS, transcranial direct current stimulation; M1, primary motor cortex; 4-ChRT, 4-choice visual-motor reaction time; RT, reaction time; tDCSbefore, 
tDCS applied immediately before motor practice; tDCSduring, tDCS applied during motor practice; tDCSafter, tDCS applied immediately after motor practice; CONMP, 
control group with motor practice; CON, control group without motor practice; PRE, pre-test or baseline; POST, post-test after 24 h. 
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Only a few studies evaluated the acute effect of tDCS in a choice RT task. 
In these studies, the task was used as a control condition to explore the 
effects of tDCS on a serial RT task [11,22,23]. The findings of these 
studies remain inconclusive since different tDCS protocols were used, as 
well as a small sample of participants. Furthermore, the effects of tDCS 
on a simple choice RT task can often be masked by fatigue [23] or due to 
a lack of attention resulting in a ceiling effect [22]. Thus, we examined 
the effects of tDCS on motor retention by evaluating the performance of 
the choice RT task 24 h after practice. 

The facilitatory effects of tDCS on learning may vary whether it is 
applied before, during, or after the practice. tDCS before motor practice 
enhances performance by priming M1 [10,23-26] but most studies 
delivered tDCS during motor practice [12,13,16,27-30]. Anodal tDCS 
over M1 seemed to facilitate the motor retention in a serial RT task 
[12,13]. tDCS after motor practice can also improve skill retention [31]. 
However, there were no effects of tDCS on motor retention of an RT task 
when tDCS was applied before [32], during [14,29], or after [33] motor 
practice. Therefore, further studies are needed to clarify the tDCS effects 
on motor retention in these tasks. 

Taken together, the aim of the present study was to determine the 
timing effects of tDCS, over M1, on motor retention, by evaluating the 
performance of choice RT task 24 h after the practice session. 

2. Material and methods 

The present study used a randomised blind design. 

2.1. Participants 

Right-handed participants with no current or a history of neurolog-
ical disease, psychological disorder, drug or alcohol abuse, or use of 
neuropsychiatric medication were recruited (n = 100, 68 males, age 
20–34 years). This sample size was determined using a power analysis 
(G*Power 3.1) based on medium effect size (0.25) and critical alpha and 
b-errors of 0.05. Participants signed an informed consent document 
approved by the university’s ethics committee (Appendix B). The study 
was conducted according to the declaration of Helsinki. Participants 
were asked to refrain from caffeine or alcohol the day before the 
experimental session. 

2.2. Procedures 

Participants were randomly assigned to five groups, 20 per group. 
Three groups received anodal tDCS: before (tDCSbefore), during 
(tDCSduring), or after (tDCSafter) motor practice. Two control groups 
were: with (CONmp) and without (CON) motor practice. The pre-test 
(PRE) and the post-test 24 h after intervention (POST) consisted of a 
single block of 40 trials with the right-dominant hand. Motor practice 
consisted of 12 blocks of 40 trials (a total of 480 trials), with 15 s of rest 
between blocks also with the right hand (Fig. 1). We selected this period 
motor practice based on studies of serial reaction times suggesting that 
performance started to decrease after 480 total trials possibly due to 
fatigue [11]. 

2.3. tDCS 

The 1-mA current was induced through saline-soaked sponge elec-
trodes (size: 7x5cm; surface area: 35 cm2; current density: 0.03 mA/ 
cm2) for 20 min connected to aDC stimulator (tDCS Stimulator Clinical 
Version, TCT research Limited, Hong-Kong), with a 10-s on and off 
ramping. The stimulating anode electrode was positioned over electrode 
site C3 (international 10–20 EEG system), i.e., left M1, contralateral to 
the right-hand performing the tests and the motor practice. The refer-
ence cathode electrode was placed over the right supraorbital cortex 
[34,35]. We applied anodal stimulation over M1 because of its role in 
motor retention [5,6] and based on evidence suggesting that anodal 
tDCS of M1 improves the retention of serial RT task [17,36]. 

2.4. Visuomotor reaction time task 

We used a version of the RT task named 4-ChRT [19]. Participants sat 
in a chair in front of a computer screen positioned at eye level. The tests 
and the motor practice were performed with the right-dominant hand 
only. Participants placed the right index, middle, ring, and little fingers 
on the “C”, “V”, “B”, and “N” keyboard keys. Four 3 × 3 cm horizontally 
aligned white squares with black trim were presented in the middle of a 
computer monitor on a white background; the squares were 1.5 cm 
apart. At the beginning of the 4-ChRT, the blank squares were presented 
for 1000 ms before the first stimulus was displayed. As soon as a visual 
stimulus (asterisk) appeared in one of the four squares (for up to 500 
ms), participants were instructed to make a response with the spatially 

Fig. 1. Study design. Experimental protocol. tDCS, transcranial direct current stimulation; CONMP, control group with motor practice; CON, control group without 
motor practice; PRE: the pre-test or baseline; POST: the post-test 24 h after intervention. 
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corresponding key. Once a response was given, the stimulus dis-
appeared, and then the next visual stimulus appeared. The sequence was 
always presented in a pseudorandom fashion order in which the stim-
ulus appeared with the same frequency in each of the four positions. The 
number of errors and the RT between the appearance of the visual 
stimulus and the pressing of the key were recorded. The task was 
designed using Superlab Pro v.4.0 software (Cedrus Corporation, San 
Pedro, CA). 

2.5. Data processing 

The speed was evaluated by measuring the mean RT between the 
stimulus onset and the correct key press. A response was considered 
correct when the participants pressed the correct key paired with a 
particular stimulus. Each participant’s mean RT was calculated sepa-
rately for each block of trials of a given experimental condition. Indi-
vidual trials exceeding ± 2SDs were excluded from the analysis (about 
3% of trials) [37]. One of the assessors administered tDCS and a second 
technician analysed the data. 

2.6. Statistical analysis 

We report the data as mean ± SD. Normality was checked with the 
Shapiro-Wilk test (Jamovi software [38], GAMLj module [39], lme4 R 
package [40]). GAMLj estimates variance components with restricted 
(residual) maximum likelihood (REML), which produces unbiased esti-
mates of variance and covariance parameters. To compare the online 
performance for RT and errors, two independent mixed models were 
used with the following configuration: Group as the inter-subject factor 
(tDCSbefore, tDCSduring, tDCSafter, and CONmp), Block as the intra-subject 
factor (from block 1 to block 12), and the interaction (Group × Block). 
To compare the offline performance for RT and errors in two indepen-
dent mixed models, we used for both model Group (tDCSbefore, 
tDCSduring, tDCSafter, CONmp, and CON), Time (PRE and POST), and 
Group × Time interactions as independent variables (fixed effect). Sex 
and age were not introduced as a fixed factor and covariate, respec-
tively, because these variables did not improve the model (i.e., parsi-
monious method), as evaluated by the Akaike information criterion 
(AIC). The participant intercept was set as the random effect. Within- 
subject and between-subject changes were evaluated by ANOVA F 
omnibus test employing the Satterthwaite approximation of degrees of 
freedom and estimating the coefficients with their 95% confidence in-
tervals for the fixed effects in the mixed model. Furthermore, the vari-
ance of the random coefficients was obtained. Simple effects analysis 

was applied with ANOVA (type III sums of squares) and employing the 
Kenward-Roger method for degrees of freedom calculation. The level of 
significance was established at p < 0.05. 

3. Results 

Every participant completed the study without adverse effects due to 
tDCS. 

3.1. The effect of tDCS on speed 

Fig. 2 shows the speed performance during motor practice. There 
were no between-group differences in RT (F3,76 = 2.20, p = 0.09), Blocks 
(F11,836 = 1.38, p = 0.18) nor was there a Group*Block interaction 
(F33,836 = 1.01, p = 0.46) (p > 0.05 across the comparisons, β = -17 and 
CI95%= − 41 to 7; β = 14 and CI95%=-10 to 38; β = -4 and CI95%=-28 to 
20, for tDCSbefore vs CONmp, tDCSduring vs CONmp and tDCSafter vs 
CONmp, respectively). The use of mixed model was an appropriate 
because variability was high in the random component (participant 
intercept) (δ = 1.449; ICC = 0.82). 

There were no between-group differences in RT at PRE (p > 0.05). 
Fig. 3 shows the RT values by groups at PRE and POST. There were main 
effects for Time (F1, 97 = 99.08, p < 0.001) and a trend for Group (F4, 97 
= 2.13, p = 0.08). However, there was no significant Time*Group 
interaction (F4, 97 = 1.66, p = 0.17). The mean RT was faster at POST 
(384 ± 35 ms) compared to the PRE condition (419 ± 48 ms), irre-
spective of the stimulation condition (ß= 35, CI95%= 28 to 42, t97 =

9.95, p < 0.001) (Δ4-ChRT: 35.8 ± 36.0 ms). tDCSafter was the only group 
that showed a higher performance in the Test compared to CON (ß= 27, 
CI95%= 3 to 50, t97 = 2.23, p = 0.02). In addition, there was no signif-
icant Time × Group interaction in the mixed model. 

3.2. The effect of tDCS on accuracy 

During motor practice, there were no between-group differences in 
error (F376 = 0.94, p = 0.43). However, there were differences between 
Blocks (F11,836 = 2.18, p = 0.01) without a significant Group*Block 
interaction (F33,836 = 1.16, p = 0.25). Overall, the average error 
increased in the middle of the motor practice (block numbers 
3,5,6,7,8,9,10) compared to block number 1 (p < 0.05). 

There were no between-group differences in error at PRE (p > 0.05, 
Table 1). In the 4-ChRT, there were no main effects for Time (F1,97 =

0.09, p = 0.77) or for Group (F4,97 = 1.94, p = 0.11), nor Time*Group 
interaction (F4,97 = 1.58, p = 0.19). 

Fig. 2. Online effects of tDCS on motor practice in the 4-ChRT. Individual data cluster by groups at the motor practice are reported, and the thick blue line and the 
triangles is the group means. No difference was seen in the motor performance between the groups. Data are mean ± 95% confident interval. tDCS, transcranial 
direct current stimulation; COMMP, control group with motor practice. 
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4. Discussion 

We examined the effects of the timing of tDCS, relative to the motor 
practice, 4-ChRT performance. All the groups, including the non- 
stimulation (CONmp) and non-practice (CON) groups, improved RT 24 
h after practice. tDCS over M1 does not enhance motor retention in 4- 
ChRT. 

Our findings demonstrate that the groups, which performed the 
practice blocks, did not improve their performance compared to the 
control group without motor practice. Thus, tDCS, regardless of its 
application time, did not potentiate motor improvement. Likewise, 
although the task in this study was not sensitive to the effects of motor 
practice, tDCS could have enhanced the effects of training per se, 
showing a superior performance to the control groups. The lack of effect 
of tDCS has been reported for simple [32] and choice RT tasks 
[11,22,23]. However, it is possible that the tDCS effects were masked 
because participants lost their focus and concentration during practice 
[22,23]. 

All the groups improved performance 24 h after, regardless of 
whether or not they had completed the practice blocks. Thus, our 
findings show that the application of tDCS before, during, or after the 
practice blocks did not improve task retention. These data agree with 
previous data showing no effects of M1 tDCS on motor retention 24 h 
after practicing a choice RT task [11-13]. Our findings differ from other 
studies that reported a potentiating effect of tDCS on motor retention 
before [10], during [16], and after [31] motor practice in choice RT 
tasks. Pre-practice tDCS improved motor performance 48 h after prac-
tice as expressed through reduced variability [10]. In contrast, we did 
not observe tDCS-induced improvements in accuracy at a shorter follow- 
up interval at 24 h. In the study that applied tDCS during motor practice 
[16], the authors selected a visuomotor task with 8 targets, a much more 
complex task than our 4-ChRT task. Moreover, the effects of tDCS on 
retention diffeed from our results when tDCS was applied after motor 

practice in a bi-hemispheric configuration [31]. That is, tDCS-effects on 
motor retention of a choice RT task are inconclusive. 

The highly variable responses to tDCS may in part underlie the in-
consistencies between studies. For example, ~50% of healthy volunteers 
had no or minimal response to tDCS [41,42]. Indeed, individual re-
sponses to tDCS are highly variable [43-45]. A ceiling effect in the choice 
RT task could have also abolished tDCS effects. The control group, which 
did not perform the practice blocks, reached a retention level similar to 
that of the other groups that did perform the motor practice, suggesting 
that the test trials were already sufficient for participants to reach peak 
performance. 

While participants performed 480 trials as in a previous RT study 
[46], our groups improved little across training. Participants were 
healthy young adults and perhaps performed already at a peak level. 
Still, stroke patients with motor impairments could benefit from tDCS 
while practicing (extensively) combined with drugs [47] and trans-
cranial magnetic stimulation [46,48]. A lack of tDCS effects may be due 
to task simplicity. tDCS may be effective when the task is complex [46]. 
The stimulation area over M1 may also be sub-optimal as M1′s role in 
learning this particular task might be limited. Indeed, anodal tDCS over 
the supplementary motor area improved RT [49]. 

One limitation is that although we used a stimulation protocol rec-
ommended previously [34,35], stimulation parameters other than the 
ones used here could have produced different results. Also, the stimu-
lation location did not impact the areas associated with the choice RT 
task. A lack of differences in performance between intervention groups 
vs. the no-practice control group is another limitation. We also failed to 
measure any neurophysiological outcomes. Future studies using trans-
cranial magnetic stimulation are warranted to explore the mechanisms 
underlying improvements in choice RT performance after tDCS. 

5. Conclusion 

A single motor practice session accompanied by tDCS before, during, 
or after motor practice does not enhance the retention in a choice RT 
task. tDCS effects over M1 may differ for serial versus choice RT tasks, 
perhaps due to the different brain areas involved in each motor task. 

6. Availability of data and material 

The datasets generated and/or analysed during the current study are 
available from the corresponding author on reasonable request. 

Fig. 3. The performance during motor retention in the 4-ChRT. Individual data by groups at PRE and POST are reported, and the thick blue line and the triangles is 
the group mean. tDCS, transcranial direct current stimulation; CONmp, control group with motor practice; CON, control group without motor practice. #p < 0.001. 

Table 1 
Accuracy performance in the 4-ChRT. The number of errors mean in absolute 
values at PRE and POST conditions by groups (Mean ± SD).   

tDCSbefore tDCSduring tDCSafter CONmp CON  

n = 20 n = 20 n = 20 n = 20 n = 20 
PRE 2 ± 2 2 ± 2 2 ± 1 2 ± 1 1 ± 1 
POST 2 ± 2 2 ± 1 2 ± 1 2 ± 1 1 ± 2 

Note: tDCS, transcranial direct current stimulation; CONmp, control group with 
motor practice; CON, control group without motor practice. * p < 0.05, ** p < 
0.01. 
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7. Code availability 

The code for running the experimental control software is available 
from the corresponding author on reasonable request. 

8. Consent to participate 

All participants provided written informed consent before study- 
specific procedures were conducted. 

9. Consent for publication 

Participants signed informed consent to publish their data. 

10. Open access 

This article is licensed under a Creative Commons Attribution 4.0 
International License, which permits use, sharing, adaptation, distribu-
tion, and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link 
to the Creative Commons licence, and indicate if changes were made. 
The images or other third-party material in this article are included in 
the article’s Creative Commons licence unless indicated otherwise in a 
credit line to the material. If material is not included in the article’s 
Creative Commons licence and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of 
this licence, visit https://creativecommons.org/licenses/by/4.0/. 

11. Ethics approval 

The research protocol was approved by the local Ethics University 
Committee and carried out according to the Declaration of Helsinki 
principles. 
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G. Cohen, G. Dowthwaite, J. Ellrich, A. Flöel, F. Fregni, M.S. George, R. Hamilton, 
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