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Environmental factors shaping the gut 
microbiome in a Dutch population

R. Gacesa1,2,10, A. Kurilshikov2,10, A. Vich Vila1,2, T. Sinha2, M. A. Y. Klaassen1,2, L. A. Bolte1,2, 
S. Andreu-Sánchez2,3, L. Chen2,3, V. Collij1,2, S. Hu1,2, J. A. M. Dekens2,4, V. C. Lenters5, 
J. R. Björk1,2, J. C. Swarte1,2, M. A. Swertz2,6, B. H. Jansen1,2, J. Gelderloos-Arends2, 
S. Jankipersadsing2, M. Hofker3,12, R. C. H. Vermeulen5,7, S. Sanna2,8, H. J. M. Harmsen9,11, 
C. Wijmenga2,11, J. Fu2,3,11 ✉, A. Zhernakova2,11 ✉ & R. K. Weersma1,11 ✉

The gut microbiome is associated with diverse diseases1–3, but a universal signature of 
a healthy or unhealthy microbiome has not been identified, and there is a need to 
understand how genetics, exposome, lifestyle and diet shape the microbiome in 
health and disease. Here we profiled bacterial composition, function, antibiotic 
resistance and virulence factors in the gut microbiomes of 8,208 Dutch individuals 
from a three-generational cohort comprising 2,756 families. We correlated these to 
241 host and environmental factors, including physical and mental health, use of 
medication, diet, socioeconomic factors and childhood and current exposome. We 
identify that the microbiome is shaped primarily by the environment and 
cohabitation. Only around 6.6% of taxa are heritable, whereas the variance of around 
48.6% of taxa is significantly explained by cohabitation. By identifying 2,856 
associations between the microbiome and health, we find that seemingly unrelated 
diseases share a common microbiome signature that is independent of 
comorbidities. Furthermore, we identify 7,519 associations between microbiome 
features and diet, socioeconomics and early life and current exposome, with 
numerous early-life and current factors being significantly associated with 
microbiome function and composition. Overall, this study provides a comprehensive 
overview of gut microbiome and the underlying impact of heritability and exposures 
that will facilitate future development of microbiome-targeted therapies.

Alterations in gut microbiota composition and function are associated 
with a broad range of human health disorders, including gastrointes-
tinal and metabolic diseases and mental disorders1,2. The influence of 
gut bacteria and microbial pathways on host metabolism and immu-
nity, together with the fact that the microbiota can be modified, have 
heightened interest in developing microbiome-targeted therapies3 and 
multiple microbiome-targeting therapies are currently in clinical trials4. 
However, the characteristics of a healthy microbiome remain largely 
unclear, as does the extent to which the gut microbiome is driven by 
intrinsic factors (such as genetics) versus modifiable environmental 
factors (such as pollutants, diet or lifestyle) or health-related factors 
(such as gut disorders or body mass index (BMI)) that might be ame-
nable to microbiome-targeted therapies.

The capacity to define a healthy microbiome has been hampered 
by differences in the processing of faecal samples between studies 
and the large interindividual variation in microbiome composition. 

Population-based studies have shown that the interindividual variation 
is partially accounted for by diet, lifestyle, host genetics and environ-
mental factors, including early-life exposures5–7. However, in-depth 
integrative analyses of large, standardized, cohorts with well-defined 
phenotypes remain scarce, even though this integrative perspective is 
essential for disentangling meaningful host–microbiota associations 
and identifying potential targets for microbiota-directed interventions.

The Dutch Microbiome Project
To address these issues, we initiated the Dutch Microbiome Project 
(DMP) within Lifelines, a three-generational population cohort and 
biobank from the northern Netherlands with well-defined pheno-
types. In the DMP, we characterized the composition and function of 
the gut microbiota of 8,208 individuals (age range 8–84 years, 57.4% 
female, 99.5% Dutch European ancestry; 4,745 of the individuals were 
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clustered into 2,756 families; Fig. 1a, Supplementary Table 2d). The 
dataset (processed by Metaphlan2 and HUMAnN2) contained 1,253 taxa 
(4 kingdoms, 21 phyla, 35 classes, 62 orders, 128 families, 270 genera 
and 733 species) and 564 metabolic pathways, including 257 archaeal 
and bacterial taxa and 277 pathways with a relative abundance higher 
than 0.01 and present in more than 5% of individuals.

Our sample size enabled us to cover more than 90% of the total 
expected number of microbial functional features estimated by boot-
strap analysis: 564 out of 574.4 (standard error = 4.2) expected MetaCyc 
pathways, 190 out of 190 (standard error = 0.05) virulence factors, 303 
out of 303 (standard error = 0.03) antibiotic resistance genes and 128 
out of 136.5 (standard error = 2.7) microbial taxa at family level or higher 
(Fig. 1b). By subsampling the cohort, we estimated that the presence 
rates of these microbial features become relatively stable (within 90% 
of the numbers observed for the whole cohort) when at least 40% of 
the cohort is sampled (approximately 3,300 samples). However, the 
number of microbial species discovered continued to increase with 
increased sample size, with the total number of species in the popu-
lation estimated to be 600 (standard error = 27) at 25,000 samples, 
suggesting that other rare microbial species remain undiscovered 
(Fig. 1b, Extended Data Fig. 1). Gut microbiota composition was highly 
variable across the population, for example the relative abundance of 
Bacteroidetes ranged from 5% to more than 95% (Extended Data Fig. 2c). 
The most abundant microbial pathways were significantly less variable 
than the majority of phyla (one-sided F-test of variances false discovery 
rate (FDR) < 0.05, Extended Data Fig. 2d, Supplementary Table 2g).

Core and keynote species
To pinpoint microbial species and pathways potentially critical for the 
organization and maintenance of the gut ecosystem, we investigated 

our cohort for microbial taxa present in more than 95% of individuals 
(we designated these ‘core microbes’) and taxa that form central nodes 
in microbial co-abundance networks8 (designated ‘keystone features’). 
We identified nine core species (Subdoligranulum sp., Alistipes onder-
donkii, Alistipes putredinis, Alistipes shahii, Bacteroides uniformis, Bac-
teroides vulgatus, Eubacterium rectale, Faecalibacterium prausnitzii 
and Oscillibacter sp.) that are highly consistent with those found in UK, 
US, European and non-western populations (Supplementary Table 1a). 
We also identified 28 species and 53 pathways as potential keystone 
features defined by more than 109 and 337 significant co-abundances, 
respectively (empirical FDR < 0.05). The networks defined by these fea-
tures showed 20.2% overlap for species and 25.3% overlap for pathways.

Five of the nine identified core microbes (A. putredinis, A. shahii,  
F. prausnitzii, Oscillibacter sp. and Subdoligranulum sp.) are also key-
stone species, implying that they also have central roles in the gut micro-
biome ecosystem in the Dutch population. For example, F. prausnitzii, 
a major butyrate producer that is depleted in many chronic diseases9, 
shows significant co-abundance with the majority of Bacteroidetes 
and Bifidobacterium species (Supplementary Table 1e). However, we 
also identified potential keystone species with low prevalence (≤10%), 
including Ruminococcus gnavus and multiple species from the genus 
Clostridium, that are positively associated with multiple diseases (Sup-
plementary Table 3b), consistent with previous studies10,11.

Prevotella copri defines clustering
We examined the microbiome data clustering in our cohort using 
principal coordinate analysis (PCoA) and identified that the first 
principal coordinate is driven by Prevotella copri (Spearman r = 0.68, 
P value = 3.6 × 10−180; Fig. 1c, Supplementary Table 9). This bacterium 
is bimodally distributed in our cohort and defines two clusters on the 
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relation to sample size. Dots denote mean values. Error bars display SD of 100 
resamplings. c, PCoA visualizing the beta-diversity of the cohort. Colour 
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basis of its presence or absence (Extended Data Fig. 3a, b). As suggested 
by previous studies12, we observed that the cluster with high abundance 
of P. copri associates with a lower risk of irritable bowel syndrome (IBS) 
(odds ratio = 0.72, 95% confidence interval 0.61–0.86). We also found 
that P. copri positively associates with general health (odds ratio = 1.24, 
95% confidence interval 1.11–1.40, FDR < 0.05; Extended Data Fig. 3c). 
Although previous studies reported distinct enterotypes dominated 
by Bacteroides, Prevotella and Ruminococcaceae13, we only observed 
two such clusters, possibly because our cohort is ethnically uniform 
and from a constrained geographic area.

The PCoA of functional potential was highly correlated with many 
pathways rather than any individual one, and the top features explaining 
variance were queuosine biosynthesis, peptidoglycan biosynthesis and 
l-isoleucine biosynthesis pathways (Supplementary Table 9). Similar to 
pathways, the PCoA of virulence factors was correlated with multiple 
gene families that encode various bacterial functions, including a flagel-
lin involved in bacterial invasion of intestinal cells (gene family VF0114, 
Spearman r = −0.60, P value ≈ 0.0), bacterial siderophores (VF0136, 
VF0228 and VF0256; Spearman r = 0.55, 0.58 and 0.51, respectively; 
P values < 1.0 × 10−100), a secretion system (VF0333; Spearman r = 0.76, 
P value ≈ 0.0) and bacterial adherence factors (VF0221 and VF0404; 
Spearman r = 0.581 and 0.561, respectively; P values < 1.0 × 10−100). By 
contrast, the PCoA of antibiotic resistance genes was dominated by just 
three gene families that confer resistance to tetracycline antibiotics: 
gene families encoding ribosomal protection proteins ARO_30001914 
and ARO_3000191 (Spearman r = 0.81 and −0.68, respectively; 
 P values ≈ 0.0) and the gene family encoding efflux pump, ARO_3000567 
(Spearman r = 0.50, P value ≈ 0.0).

Cohousing dominates over heritability
We next explored the relative contributions of family structure, cohabi-
tation and other exposome factors in shaping the gut microbiome. 
We used the multi-generational family structure of our cohort to 
estimate the heritability of microbial taxa and identified 17 heritable 
taxa (6.6% of the tested taxa) at FDR-corrected empirical P value < 0.1 
(determined using 30,000 permutations) (Fig. 2a, Supplementary 
Table 5). The highest heritability was observed for Proteobacteria 
(h2 = 0.308, where h = narrow sense heritability (the proportion of vari-
ance in the abundance of microbial taxon caused by additive genetic 
effect)), followed by Akkermansia muciniphila (h2 = 0.302) with its 
higher-level taxa Bacteroidaceae (h2 = 0.299), Bacteroidaceae species 
Parabacteroides goldsteinii (h2 = 0.266) and Bacteroides coprocola 
(h2 = 0.228), Bifidobacterium longum (h2 = 0.247), the genus Phascolarc-
tobacterium (h2 = 0.245) and a genus-level cluster from the Clostridiales 
order (h2 = 0.237). Among microbial pathways, only 7 were heritable 
at FDR-corrected empirical P value < 0.1, including the lipid IVA bio-
synthesis pathway (NAGLIPASYN-PWY), two pathways of pyridoxal 
5-phosphate biosynthesis (PWY0-845 and PYRIDOXSYN-PWY), the 
isoleucine biosynthesis II pathway (PWY-5101) and the pre-quinone 
biosynthesis pathway (PWY-6703). The heritability of pathways and 
taxa showed a degree of concordance: the NAGLIPASYN-PWY is highly 
correlated with Proteobacteria (R = 0.64), and the other heritable 
pathways are mostly linked with the family Bacteroidaceae and some 
Bacteroidaceae species.

Heritability of some of these taxa have been observed previously. 
Akkermansia and Bifidobacterium and some genera from the order 
Clostridiales have been reported to be heritable in a study of UK twins14, 
and the heritability of members of the Bacterioidaceae family, including 
Bacteroides and Parabacteroides, was reported in a family-based analy-
sis in a Canadian population15. Our results did not replicate some of the 
heritable taxa from these studies, possibly owing to differences in tech-
niques used (use of 16S versus metagenomic sequencing and differing 
DNA isolation methods) or reference databases—that is, some taxa were 
not present in the reference databases (such as Christensenellaceae in 

the Metaphlan2 database), did not pass the 5% presence threshold (the 
genus Turicibacter), or showed very low power for detecting heritabil-
ity owing to a low presence rate (Euryarchaeota, Christensenellaceae 
profiled using the Metaphlan3 database).

Cohabitation has a much larger effect than heritability, with 125 out 
of 257 taxa (48.6%) being significantly affected by cohabitation, and 
history of cohabitation explained significant variance in 22 taxa (8.6%) 
(Supplementary Table 5a). The microbiomes of cohabiting participants 
were also more similar than those of participants living separately, 
regardless of the relatedness of the participants, with the microbi-
omes of parent–child pairs, sibling pairs and unrelated partners all 
resembling each other more than those of non-cohabiting partici-
pants (Fig. 2c–e, permutation-based Wilcoxon test FDR < 1.0 × 10−5). 
We further observed similar patterns in the compositions of microbial 
pathways, virulence factors and antibiotic resistance genes (Extended 
Data Fig. 4a–c).

These results indicate that whole-microbiome composition is signifi-
cantly influenced by cohabitation, with genetics having a smaller role, 
although a small subset of microbiota species—such as A. muciniphila, 
B. longum and Bacteriodaceae—are significantly heritable and show a 
degree of replication across cohorts. However, given the setting of our 
cohort (Methods) and the large cohabitation effect observed for several 
taxa and pathways, our estimates of heritability may be slightly inflated.

Overview of associations
We then explored the associations of microbial features to 241 meas-
urements including technical factors, anthropometrics, early-life and 
current exposome, diet, self-reported diseases and use of medication, 
medical measurements and socioeconomics (Extended Data Fig. 5). 
These phenotypes explained 12.9% of microbiome taxonomic composi-
tion and 16.3% of microbiome function, with the largest contribution 
coming from technical factors, stool characteristics, diseases, use of 
medication and anthropometrics (Fig. 3b, Supplementary Tables 4a–c).

After correcting for technical factors, we observed 4,530 associa-
tions of phenotypes with taxa, 5,224 with pathways, 1,848 with antibi-
otic resistance genes and 385 with virulence factors (Supplementary 
Table 3g, Extended Data Fig. 5). Individually, the largest number of 
associations were with keystone and core taxa, including Flavonifrac-
tor salivarius, F. prausnitzii, Alistipes senegalensis and Clostridium and 
Subdogranulum species (Supplementary Tables 3b, h). A. senegalensi 
has previously been associated with Crohn’s disease and hepatitis B 
virus–related acute chronic liver failure16. In our cohort, A. senegalensi 
was associated with 43 phenotypes (FDR < 0.05), highlighting a poten-
tial role across multiple diseases. Similarly, Clostridium asparagiforme, 
which has been associated with type 2 diabetes (T2D), hypertension 
and ankylosing spondylitis10,17, was associated with an additional 23 
unrelated diseases (FDR < 0.05). Further associations are discussed 
below. Supplementary Tables 3a–h provide a complete overview.

Age, sex and BMI ranked among the top phenotypes in our analysis of 
interindividual variation of beta-diversity, explaining 0.6%, 0.53% and 
0.32% of individual variation, respectively. Bristol stool scale explained 
the largest proportion of beta-diversity (R2 = 0.77%, FDR = 0.012), with 
sampling season also explaining a significant proportion of variance 
(R2 = 0.36%, FDR = 0.012, Supplementary Table 4a), together high-
lighting the importance of assessing faecal consistency and collection 
timeframe effects in microbiome studies. On the basis of these results, 
we included corrections for age, sex, BMI, Bristol stool scale and sam-
pling season into our association models alongside the corrections for 
technical factors (Supplementary Tables 3a–e).

Definition of healthy and unhealthy microbiomes
To define the microbiome signatures of health and disease, we associ-
ated microbiome features with self-reported health and 81 diseases with 
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at least 20 cases (Supplementary Table 2d). This identified 1,206 sig-
nificant associations with bacterial taxa, 1,182 with microbial pathways, 
390 with antibiotic resistance genes and 76 with bacterial virulence 
factors (FDR < 0.05, Supplementary Tables 3b–f). Different diseases 
had different numbers of associations, and the strongest signatures 
were observed for cardiovascular and metabolic disorders, such as 
non-alcoholic fatty liver disease and T2D, and for gastrointestinal dis-
orders including inflammatory bowel disease and IBS (Supplementary 
Table 3f). We observed consistent microbiome–disease patterns across 
the majority of diseases (Fig. 4a), enabling us to pinpoint microbiome 
signatures that were shared between unrelated diseases as well as fea-
tures that define a healthy (that is, absence of disease) microbiome.

The shared microbiome signatures of diseases (see Supplementary 
Discussion for details) mainly consisted of increases in Anaerotruncus, 
Ruminococcus, Bacteroides, Holdemania, Flavonifractor, Eggerthella 
and Clostridium species and decreases in Faecalibacterium, Bifidobac-
terium, Butyrivibrio, Subdoligranulum, Oxalobacter, Eubacterium and 
Roseburia. Gut microbiome pathways shared across unrelated diseases 

consisted mainly of increases in biosynthesis of l-ornithine, ubiquinol 
and menaquinol, enterobacterial common antigen, Kdo-2-lipid-A and 
molybdenum cofactor and decreases in biosynthesis of amino acids, 
deoxyribonucleosides and nucleotides, anaerobic energy metabolism 
and fermentation to short chain fatty acids (mainly butanoate). Viru-
lence factors were increased in some diseases, including T2D and gas-
trointestinal disorders, with the largest effects observed for bacterial 
adherence and iron-uptake factors (VF036, VF0228, VF0236, VF0404 
and VF0394). We further validated these signals by constructing L1/L2 
regularized regression models for prediction of the 36 most common 
diseases and identified high consistency with association analysis, 
with 22 out of 31 species selected by the models associated with more 
than 5 diseases (Supplementary Discussion). The predictive features 
showed high correlation despite the low disease comorbidities in our 
cohort (Fig. 4b, Supplementary Table 6e).

Finally, we calculated the recently developed Gut Microbiome 
Health Index18 (GMHI) and identified a significant difference between 
healthy and unhealthy individuals (P value = 6.16 × 10−22; Extended 
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PWY-5101: L-isoleucine biosynthesis II

  1CMET2-PWY: N10-formyl-tetrahydrofolate biosynthesis
NAGLIPASYN-PWY: lipid-IVA biosynthesis (E. coli)

PYRIDOXSYN-PWY: pyridoxal 5′-phosphate biosynthesis I
PWY0-845: superpathway, pyridoxal 5′-phosphate biosynthesis and salvage

0 0.25 0.50 0.75 1.00

d Microbiome distances, non-cohabiting pairs e Microbiome distances, �rst-degree relatives     

**FDR = 6.2 × 10–34

**FDR = 8.2 × 10–17

First-degree 
relatives, 

non-cohabiting

First-degree 
relatives, 
cohabiting

Fig. 2 | Heritability and effect of cohabitation on the gut microbiome. a, Top 
20 heritable species. b, Top 20 heritable pathways. **Taxa significantly 
heritable at FDR < 0.1; *taxa with nominally significant heritability (P < 0.05). 
Error bars show 95% confidence interval of heritability. Results in a, b, were 
calculated from 3,571 distinct individuals from 1,432 families. c–e, Pairwise 
microbiome distance comparisons. Centre line is the median, box limits 
indicate upper and lower quartiles, whiskers show 1.5× interquartile range, 
points indicate outliers and the outline displays the distribution of the data. 

Bray–Curtis dissimilarities were calculated using microbial species of groups 
of random non-cohabiting pairs (n = 2,000) compared with cohabiting 
partners (n = 1,710), parent–child pairs (n = 285) and sibling pairs (n = 144) (c), 
random pairs (n = 2,000) compared with non-cohabiting parent–child pairs 
(n = 301) and sibling pairs (n = 299) (d) and random pairs (n = 2,000) compared 
with non-cohabiting first-degree relative pairs (n = 600) and cohabiting 
first-degree relative pairs (n = 429) (e). In c–e, **FDR < 1.0 × 10−5, *FDR < 0.05 
(permutation-based Wilcoxon test, two-sided).
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Data Fig. 6). Our microbiome signature of health replicated 43 out of  
50 GMHI signals18 at genus or species level (Supplementary Table 10).  
In addition, we identified 55 microbiome–health associations that 
were not seen in the GMHI study, including with species from Butyrivi-
brio, Akkermansia and Prevotella genera (Supplementary Tables 3b, 10)  
that were previously linked to gastrointestinal disorders but not to 
other diseases1,2.

The microbiome reflects diseases and treatments
We observed high consistency in the microbiome effects of common 
non-communicable diseases and the medications used to treat them 
(Extended Data Fig. 7, Supplementary Tables 3a–g). Among these, 
we identified the strongest effects for proton pump inhibitors (PPIs), 
antibiotics, biguanide antidiabetics, osmotic laxatives and intestinal 
anti-inflammatory agents (84, 56, 47 and 32 associations with microbial 
taxa, respectively, at FDR < 0.05). To disentangle the effects of diseases 
and medications, we performed multivariate linear regression of three 
common diseases and their corresponding common medications: 
antidiabetics in T2D, selective serotonin reuptake inhibitors (SSRIs) 
in depression and PPIs in functional gastrointestinal disorders and 
IBS. We observed that effect of diseases and corresponding drugs are 
associated with microbiome with high consistency, even when con-
ditioned on each other (Supplementary Table 7), indicating that the 
unhealthy gut microbiome signature reflects both the disease and the 
associated medication.

Childhood is linked to the adult microbiome
As the first two to three years of life are crucial for microbiome develop-
ment, we examined the influence of early-life (less than four years of 
age) factors on the adult microbiome. We identified 106 associations 
with taxa, 30 with pathways, 22 with antibiotic resistance genes and 2 
with virulence factors (FDR < 0.05), with only minimal effects observed 
for birth mode, breastfeeding and preterm birth (Fig. 3b, Extended 
Data Fig. 8). Childhood living environment (scale from 1, rural to 5, 
highly urban) was significantly associated with the adult microbiome 
(54, 8 and 7 associations with taxa, pathways and CARDs, respectively, 
at FDR < 0.05) despite a very low correlation between childhood and 
adult urbanicity (Spearman r < 0.015).

Rural childhood environment was associated with an increase in 
various bacteria, including P. copri, F. prausnitzii, Rothia mucilagi-
nosa and species from the Bifidobacterium and Mitsuokella genera, 
whose abundances were also associated with increased general health. 
By contrast, the gut abundances of multiple species from genera  
Bacteroides, Alistipes and Biophila were reduced in participants with 
an urban childhood environment.

Parental smoking was associated with the microbiome of their chil-
dren (15, 9 and 4 associations with taxa, pathways and CARDs, respec-
tively, at FDR < 0.05). Here we observed associations between parental 
smoking and decreased abundances of Veillonella and Oscillibacter 
species and of P. copri (R2 = 0.0012, FDR = 0.033), consistent with obser-
vations for current smokers. Finally, childhood pet ownership was 
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Fig. 3 | Microbiome–phenotype associations. a, Microbiome–phenotype 
associations for diet, childhood and current exposome and socioeconomics in 
comparison to healthy microbiome signature. Top 40 microbial species with 
the highest number of significant associations are clustered by association 
Z-score using hierarchical clustering and coloured by direction of effect (blue, 
positive; orange, negative), with associations significant at study-wide 

FDR < 0.05 marked with plus and minus for positive and negative correlations, 
respectively. Coloured associations without a mark indicate nominally 
significant associations (P < 0.05). b, Variance in microbiome composition and 
function explained by phenotype groups in multivariate PERMANOVA analysis. 
NDVI, Normalized Difference Vegetation Index; PWYs, pathways.
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associated with the adult microbiome (7 associations at FDR < 0.05), 
including decreases in Alistipes finegoldii, Lactobacillus delbrueckii 
and Dialister and Bilophila species observed in participants who had 
childhood pets.

Exposome is associated with gut microbiome
We studied environmental factors at time of sampling and identified 
shared association patterns of healthy microbiome signatures with pet 
ownership, rural living environment and greenspace surface area in 
living environment (Fig. 3b), including increases in P. copri, Bacteroides 
plebeius, Desulfovibrio piger and Mitsuokella species, and decreases in 
Bacteroides fragilis and Bilophila wadsworthia. These signals contrast 
with the microbiome associations of increased measurements of NO2 
and small particulate matter pollutants, which are negatively associated 
with health (Extended Data Fig. 9). Smoking phenotypes, including 
current active and passive smoking and a history of smoking, showed 
consistent directions of microbiome associations, which also matched 
the signatures of microbiome–disease associations (Extended Data 
Fig. 9). Active smoking was associated with 41 species and 84 pathways 
(FDR < 0.05, Fig. 3b), with 60% of these also being associated with smok-
ing history, suggesting a long-lasting effect of smoking. Of note, 15 of 
these were also associated with passive smoking, highlighting the need 
to consider passive smoking in disease risk models.

We observed 220 associations (FDR < 0.05) between socioeconomic 
factors (for example, monthly income and neighbourhood income) 
and gut microbiome, of which 72 were between bacterial abundances 
and monthly income; higher income was associated with a healthy 

microbiome signature. Income showed low, but significant, correla-
tions with neighbourhood greenspace area, rural living environment 
and Lifelines diet score (LLDS) (Spearman correlations 0.22, 0.17 and 
0.07, respectively; correlation test FDRs < 1.0 × 10−6), implying that the 
microbiome–income association probably reflects a combination of 
factors, including healthier diet and lifestyle and less-urban living envi-
ronment. These results support the hypothesis that gut microbiome 
might be a mediator of the well-known differences in health across the 
socioeconomic spectrum19.

We identified 378 associations between 20 dietary factors and 82 
species (Supplementary Table 3b). Diet was also found to be relatively 
stable over the 5-year period between food frequency questionnaire 
(FFQ) collection and faecal sampling, with 30 FFQ items that represent 
major dietary items and dietary trends being more than 95% conserved 
across measurements and the remaining items being more than 50% 
conserved (Supplementary Table 8, Supplementary Discussion).

The LLDS, a diet score based on international nutrition literature, 
showed the highest number of associations (79 associations with taxa, 
44 with pathways, 20 with antibiotic resistance genes and 8 with viru-
lence factors at FDR < 0.05), followed by total alcohol intake, glycaemic 
load, protein diet score (reflecting quantity and source of protein) 
and total carbohydrate intake. The LLDS and protein intake scores 
showed association patterns that overlapped with microbiome signals 
of increased general health—for example, decreases in Clostridia spe-
cies and increases in Butyrivibrio and Roseburia genera and pathways 
involved in ubiquinol and menaquinol synthesis. By contrast, total 
dietary carbohydrate intake and glycaemic load showed the opposite 
associations (Fig. 3b, Extended Data Fig. 10).
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Fig. 4 | Microbiome signatures of health and diseases. a, Heat map of 
microbial species associated with categories of diseases and health status. 
Diseases are sorted and labelled by disease type. Top 40 microbial species with 
the highest number of associations are clustered by association Z-score 
(indicated by colour intensity) using hierarchical clustering. Associations are 
coloured by direction of effect (blue, positive; orange, negative), with 
associations significant at study-wide FDR < 0.05 marked with plus and minus 

for positive and negative correlations, respectively. Coloured associations 
without a label indicate nominally significant associations (P < 0.05, no 
multiple-testing correction). b, Comparison of Pearson correlations between 
signatures predictive for diseases (bottom left triangle) and comorbidities of 
these diseases in the cohort (top right triangle). CD, Crohn’s disease; COPD, 
chronic obstructive pulmonary disease; IBD, inflammatory bowel disease; IBS, 
irritable bowel syndrome; RSI, repetitive strain injury; UC, ulcerative colitis.
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Discussion
In addition to confirming known microbiome associations with age, sex 
and BMI20, our results highlight the importance of frequently omitted 
confounders related to stool samples21 (stool consistency), sampling 
season22 and sample processing23 (DNA concentration or sequencing 
batch). This is especially important when studying diseases in which 
age, sex, BMI and faecal consistency are associated with the disease or 
exploring phenotypes with seasonal variation such as diet24, physical 
activity25 and diseases such as allergies, flu and common cold.

Our observation that the microbiome is primarily associated with 
cohabitation and environment rather than genetic relatedness cor-
roborates previous studies that identified limited overall microbi-
ome heritability26, shared microbiome patterns between cohabiting 
family members and their pets27 and microbial divergence in twins 
who stopped cohabiting28. These results suggest that bacteria with 
low heritability, such as Ruminococcus, Streptococcus and Veillonella 
species, might be more susceptible to microbiome-altering therapies 
than more heritable bacteria, such as Akkermansia, Collinsella and 
Bacteroides species.

By comparing associations between microbiome, health and diverse 
diseases, we identified a common signal for gut dysbiosis (Fig. 4a) 
that was largely consistent with a previous study18. The existence 
of shared dysbiosis has considerable implications for microbiome 
research and microbiota-targeting diagnostics and therapies. Shared 
dysbiosis implies that the gut microbiome is a biomarker of general 
health, as supported by our prediction models and previous stud-
ies18,29, but also complicates microbiome-based diagnosis of individual 
diseases. As single-disease models might be confounded by signals 
shared across unrelated diseases, testing such models for specificity 
in mixed-disease cohorts will be an important step before clinical 
implementation. The shared microbiome signature also suggests that 
microbiome-targeting interventions could improve overall human 
health. This is supported by our observations that lifestyle factors 
generally considered healthy—for example, adherence to current 
dietary recommendations and not smoking—associate with microbi-
ome patterns similar to those associated with general health. Although 
microbiome–drug interactions are well described in vitro30 and have 
been characterized in vivo for antibiotics, PPIs31 and antidiabetics32, 
our results suggest that general microbiome dysbiosis arises as a result 
of a combination of drug and disease effects, implying that many cur-
rently understudied drugs, such as SSRIs, might have a negative effect 
on the gut microbiome.

The presence of disease-like microbiome signatures in population 
participants not reporting diseases or medication use indicates the 
presence of pre-clinical ‘hidden’ disorders in the population and sug-
gests that gut dysbiosis might precede clinical onset of chronic diseases 
such as T2D. Although this hypothesis requires experimental validation 
or analysis of long-timeframe longitudinal cohorts, our observations 
suggest that the gut microbiome might be used to monitor long-term 
health and detect disorders in the pre-clinical stage.

Linking healthy and unhealthy microbiome patterns to childhood 
and current exposome, diet and socioeconomics, we observed that 
healthier diet, childhood and current exposures to rural environment 
and pets, exposure to green space and higher income share signals 
with healthy microbiome patterns. These observations support the 
microbiome diversity hypothesis (also called the hygiene hypothesis), 
which postulates that reduced exposure to microbiota contributes to 
an increase in the frequency of autoimmune and allergic diseases33. 
Notably, whereas the classic hygiene hypothesis focuses on patho-
gens and early-life exposures, our results suggest that adult exposures 
also contribute to healthy or unhealthy microbiome patterns and that 
the environment shapes the microbiome throughout life, meaning 
that microbiome-targeted therapies could be effective throughout 
an individual’s life. Furthermore, we identified negative correlations 

of diet scores, pets and rural environment with opportunistic patho-
gens such as Clostridia species as well as positive correlations with 
commensals such as butyrate producers from Bacteroides, Alistipes 
and Faecalibacterium, implying that exposure to pathogens and com-
mensals from the environment has an important role in establishing a 
healthy gut ecosystem.

We also observed that smoking, a high-carbohydrate diet and 
exposure to NO2 and small particulate matter (PM2.5) are positively 
correlated with disease-linked Clostridia and Ruminococcus species. 
Whereas air pollutants have been associated with gastrointestinal dis-
eases such as IBS34 and have been shown to affect the gut microbiota 
of mice, their effects on the human gut microbiota remain largely 
unexplored35. Our results agree with a previous analysis of association 
of air pollution in an American cohort36 and suggest that air pollutants 
negatively affect the human gut microbiota and might increase the 
risk of gastrointestinal diseases by contributing to general dysbiosis. 
This is further supported by our observation that the presence of 
IBS correlates with PM2.5 pollutants (Spearman r = 0.15), whereas the 
correlations between pollutants and other diseases, socioeconomic 
factors and diet are very low (Spearman r < 0.05) (Supplementary 
Table 2c).

We found that childhood exposures to smoking, pets and rural 
environment are associated with the adult microbiome. Although the 
effect sizes for these associations were lower than for current expo-
sures, the effect directions and patterns were consistent, suggesting 
that environmental exposures can have a long-lasting effect and that 
the microbiome reflects an individual’s history of exposures. This is 
further supported by our finding that former smokers still showed 
microbiome associations similar to those of current smokers, albeit 
with lower effect sizes.

We measured a broad range of 241 phenotypes, but we could only 
explain around 15% of the interindividual variation in microbiome 
composition and function, which is consistent with previous large-scale 
studies5,26,37. This implies that the gut microbiome is highly individual, 
contains rare taxa that might be difficult to disentangle from arte-
facts in the data38, and that our current understanding of the factors 
that shape the gut microbiome is still limited. This low explanatory 
power might also reflect the use of database-centred microbiome 
classification which, while facilitating standardization of studies and 
a low false-positive rate, precludes identification of uncatalogued 
microbes39. Future quantification of ‘missing variance’, potentially by 
assembly-based and database-independent methods and longitudinal 
studies, will have a critical role in development of microbiome-targeting 
diagnostics and therapies.

Conclusion
We have generated and analysed a large, multi-generational gut micro-
biome cohort that has been collected and profiled in a highly standard-
ized matter and linked it to extensive phenotype data. We define and 
describe a gut dysbiosis shared across diverse diseases and identify 
links between this dysbiosis and heritability, childhood and current 
exposome, lifestyle and socioeconomics. This study demonstrates 
the power of large-scale, well-phenotyped cohorts for dissecting the 
links between gut microbiome, health, genetics and environment and 
provides a rich resource for future studies for microbiome-directed 
interventions.
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Methods

Population cohort and metadata collection
The Lifelines Dutch Microbiome Project (DMP) cohort was developed 
as a part of Lifelines cohort study. Lifelines is a multi-disciplinary 
prospective population-based cohort study which utilizes a unique 
three-generation design to examine health and health-related behav-
iours in 167,729 people living in the northern Netherlands. Lifelines 
employs a broad range of investigative procedures to assess the bio-
medical, socio-demographic, behavioural, physical and psychological 
factors that contribute to health and disease, with a special focus on 
multi-morbidity and complex genetics40,41. To form the DMP cohort, 
8,719 distinct fresh-frozen faecal and blood samples were collected 
from Lifelines participants in 2015 and 2016 (one sample per individual). 
Whole-genome shotgun sequencing was performed on one aliquot 
from each of 8,534 faecal samples, and 8,208 were retained for down-
stream analysis after stringent quality control. Metadata information 
collected from the participants was grouped into the following catego-
ries: family structure, diseases, gastrointestinal complaints, general 
health score, medication use, anthropometrics, birth-related factors, 
reported childhood (< 16 years) exposures, current exposome (air pol-
lutants, greenspace, urbanicity, pets and smoking), socioeconomic 
characteristics and diet (Supplementary Table 2d).

Informed consent
The Lifelines study was approved by the medical ethical committee of 
the University Medical Center Groningen (METc number: 2017/152). 
Additional written consent was signed by all DMP participants or their 
parents or legal representatives (for children aged under 18).

Metadata
Metadata was collected by questionnaires and curated as described 
previously41 and below. We included 241 phenotypes from a broad 
range of categories, including socioeconomic factors, self-reported 
diseases and medications, quality of life, mental health, education and 
employment, nutrition, smoking, stress and childhood environmental 
factors. Questionnaires were developed and processed by the Lifelines 
cohort study41 as described at www.lifelines.nl. Additional in-depth 
data curation and acquisition was performed to assess dietary intake, 
air pollution and environmental exposures, medication use and gut 
health, as described below.

Diet
Habitual diet was assessed through a semiquantitative FFQ collected 
4 years prior to DMP faecal sampling41. The FFQ was designed and 
validated by the division of Human Nutrition of Wageningen Univer-
sity, using standardized methods42. It assesses how often a food was 
consumed over the previous month on a scale ranging from ‘never’ to 
‘6–7 days per week’ and the usual amount taken. Average daily nutrient 
intake was calculated using the Dutch Food Composition database 
(NEVO, RIVM) and a mono- and disaccharide-specific food composition 
table43, resulting in the generation of data on 21 dietary factors. Energy 
adjustment was performed by means of the nutrient density method44. 
Published dietary scores and inter-nutrient ratios were calculated as 
indicators of dietary quality and composition45,46.

To validate the assumed stability of FFQs across time43,47, we used 
questionnaires from 128,501 Lifelines participants to study diet consist-
ency between the baseline questionnaire collected 4 years prior to the 
DMP study and a second smaller-scope nutrient-specific questionnaire 
collected concurrently with DMP faecal sampling. 65 dietary questions, 
reflecting consumption of major food categories such as fruits, veg-
etables, fish, meat, bread, grains and sweets, as well as special dietary 
regimes (e.g. vegan or macrobiotic diet), were compared between the 
first and second time point. The majority of dietary items were available 
for > 44,000 individuals at both time points (Supplementary Table 8). 

For each food item, we computed the mean (absolute) change between 
results of FFQs at time point 1 and time point 2. The FFQ results were 
encoded as numbers corresponding to FFQ answers (e.g. 1 = participant 
reports “never” consuming the food item, 4 = the food item is consumed 
“always” or “every day”). The changes were calculated as:

∑n
x yMC =

1
× −i

j

n

ij ij
=1

where MC is mean (absolute) change, n is the number of individuals 
who answered FFQs at the two time points for food item i, and x and y 
represent results of baseline and follow-up FFQs. Each of the items in 
the sum corresponds to FFQ results of one participant (Supplementary 
Table 8).

Exposome
Elements of the exposome, neighbourhood urbanicity and income 
were assessed for the participant’s home address at the time of fae-
cal sampling. Exposure to two air pollutants, particulate matter with 
aerodynamic diameter ≤ 2.5 μm (PM2.5) and nitrogen dioxide (NO2), was 
assigned based on land-use regression models developed in the Euro-
pean Study of Cohorts for Air Pollution Effects (ESCAPE) project48,49. 
These estimates are based on measurement data from 2009 and reflect 
long-term ambient air pollution exposures50.

Greenspace was assigned using the NDVI, which reflects the average 
density of green vegetation within a 100 m circular buffer around the 
participant’s residential address. The NDVI was derived from a LANDSAT 
5 (Thematic Mapper) satellite image taken in 2016 and captures the 
density of green vegetation at a spatial resolution of 30 × 30 m based 
on land surface reflectance of the visible (red) and near-infrared parts 
of the spectrum.

Neighbourhood urbanicity was assigned based on a five-category 
scale of surrounding address density developed by Statistics Nether-
lands (1, very urban, ≥2,500 addresses per km2 to 5, very rural, <500 
addresses per km2, data for 2015). Neighbourhood income was consid-
ered a proxy for neighbourhood socioeconomic position and defined as 
the proportion of individuals with low (<40th percentile) income (Sta-
tistics Netherlands, data for 2015; https://opendata.cbs.nl/#/CBS/en/).  
Childhood neighbourhood urbanicity was defined based on the 
self-reported answer to the Lifelines biobank questionnaires ques-
tion “What is the best description of the place where you lived most 
of the time when you were younger than 5 years old?", with possible 
answers being ‘farm’, ‘rural/village’, ‘small town or large village’, ‘suburb 
of a large city’ and ‘city centre’.

Stool characteristics, diseases and medication
For 7 days in the week of stool sample collection, DMP participants 
recorded a bowel movement diary, Bristol stool scale, daily medication 
use and gastrointestinal symptoms daily, and these records were used 
to extract information on stool frequency, stool characteristics, drug 
use and gastrointestinal symptoms during the week of stool collec-
tion. The validated ROME III questionnaires51 were used to characterize 
functional gastrointestinal disorders, and participants were classi-
fied as having either no functional gastrointestinal diseases or IBS, 
functional diarrhoea, functional constipation or functional bloating. 
Information about the presence of other diseases was self-reported 
and collected using Lifelines questionnaires. Diseases were grouped 
into 11 disease categories. The presence of cancer was grouped into a 
separate category defined as ‘any cancer’, independent of cancer type. 
Non-alcoholic fatty liver disease fibrosis score52 and fatty liver index53 
were calculated from the anthropometrics and blood measurements, 
as described previously52,53. Diseases with < 20 cases were excluded 
from further analysis. Self-reported medications were grouped into 
categories based on Anatomical Therapeutic Chemical classification  
(ATC codes) at the most specific ATC level (5-digit ATC code if possible). 

http://www.lifelines.nl
https://opendata.cbs.nl/#/CBS/en/
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ATC categories with < 20 users were grouped into a higher (4-digit or 
3-digit) ATC class. Categories with < 20 individuals that could not be 
grouped according to ATC classification were excluded from further anal-
ysis. In total, 62 drug groups were included (Supplementary Table 2a).

Faecal sample collection, DNA extraction and sequencing
Faecal sample collection was performed by participants at home. Partic-
ipants were asked to freeze stool samples within 15 min of stool produc-
tion. Frozen samples were collected by Lifelines personnel, transported 
to the Lifelines biorepository on dry ice and stored at −80 oC until DNA 
extraction. Microbial DNA was isolated with the QIAamp Fast DNA Stool 
Mini Kit (Qiagen), according to the manufacturer’s instructions, using 
the QIAcube (Qiagen) automated sample preparation system. Library 
preparation for samples with total DNA yield lower than 200 ng (as 
determined by Qubit 4 Fluorometer) was performed using NEBNext 
Ultra DNA Library Prep Kit for Illumina, while libraries for other samples 
were prepared using NEBNext Ultra II DNA Library Prep Kit for Illumina. 
Metagenomic sequencing was performed at Novogene, China using 
the Illumina HiSeq 2000 platform to generate approximately 8 Gb 
of 150 bp paired-end reads per sample (mean = 7.9 Gb, s.d. = 1.2 Gb).

Profiling microbiome composition and function
Metagenomes were profiled consistent with previous data analysis of 
1000IBD54 and Lifelines-DEEP41 cohorts, as follows. KneadData tools 
(v0.5.1)55 were used to process metagenomic reads (in fastq format) 
by trimming the reads to PHRED quality 30 and removing Illumina 
adapters. Following trimming, the KneadData integrated Bowtie2 tool 
(v2.3.4.1)56 was used to remove reads that aligned to the human genome 
(GRCh37/hg19).

Taxonomic composition of metagenomes was profiled by Met-
aPhlAn2 tool (v2.7.2)57 using the MetaPhlAn database of marker genes 
mpa_v20_m200. Profiling of genes encoding microbial biochemical 
pathways was performed using the HUMAnN2 pipeline (v0.11.1)58 inte-
grated with the DIAMOND alignment tool (v0.8.22)59, UniRef90 protein 
database (v0.1.1)60 and ChocoPhlAn pan-genome database (v0.1.1)58. 
As a final quality control step, samples with unrealistic microbiome 
composition (eukaryotic or viral abundance >25% of total microbi-
ome content or total read depth <10 million) were excluded, leaving 
8,208 samples for further analyses. Analyses were performed using 
locally installed tools and databases on CentOS (release 6.9) on the 
high-performance computing infrastructure available at our institu-
tion and using the MOLGENIS data platform61.

In total, we detected 1,253 taxa (4 kingdoms, 21 phyla, 35 classes, 62 
orders, 128 families, 270 genera and 733 species) and 564 pathways in at 
least one of the samples in the quality-controlled dataset. To deal with 
sparse microbial data in the downstream analysis, we focused on bac-
terial and archaeal species/pathways with a mean relative abundance 
>0.01% that were present in at least 5% of participants. This yielded 257 
taxa (6 phyla, 11 classes, 15 orders, 30 families, 59 genera and 136 spe-
cies) and 277 pathways. Together, these microbial features accounted 
for 97.86% and 87.82% of the average taxonomic and functional com-
positions, respectively.

Based on the abundance profiles of the taxa that passed the filtering 
process, we calculated alpha diversity, as measured by richness and 
Shannon entropy, at family-, genus- and species-level using specnumber 
and the function diversity, respectively, in R package vegan (v.3.6.1)62. 
Rarefaction and extrapolation (R/E) sampling curves for estimation of 
total richness of species and genera in the population were constructed 
using a sample size–based interpolation/ extrapolation algorithm 
implemented in the iNEXT package for R63.

Profiling of bacterial virulence factor and antibiotic resistance 
genes
Metagenomes were searched for bacterial virulence factors using the 
shortBRED toolkit (v0.9.5)64 and the virulence factors of pathogenic 

bacteria (VFDB) core dataset of DNA sequences65 (downloaded on 1 
November 2018). The shortBRED tool shortbred_identify.py (v0.9.5) 
was used to identify unique markers for virulence factors, with the 
UniRef90 database (downloaded on 1 November 2018) used as negative 
control, and the shortbred_quantify.py tool (v0.9.5) was used to per-
form a quantification of these markers in metagenomes. Quantification 
of antibiotic resistance genes was performed using the shortBRED tool 
shortbred_quantify.py (v0.9.5), with markers generated using short-
bred_identify.py (v0.9.5) on the CARD database of bacterial antibiotic 
resistance genes66 (downloaded 1 November 2018), with the UniRef90 
database used as negative control. This identified 190 virulence fac-
tors and 303 antibiotic resistance gene families, of which 47 virulence 
factors and 98 antibiotic resistance genes were present in at least 5% 
of participants with a relative abundance > 0.01%. These accounted 
for 95.22% of virulence factor composition and 98.08% of antibiotic 
resistance composition, respectively.

Estimation of heritability of microbiome
We estimated the heritability of bacterial taxa and pathways using 
linear mixed models. In particular, we fitted the following model using 
the function relmatLmer from the lme4qtl package (v.0.1.10)67 for R:

Y ~ age + age + sex + read depth + stool frequency

+1|ID + 1|FAM + 1|cohousing

2

where Y is the relative abundance of the bacterial taxon or pathway, 
transformed using the centred additive log-ratio (CLR) transforma-
tion, with the geometric mean calculated on the taxonomic level of 
species used as denominator68. Age, age2, sex, read depth and stool 
frequency are participant-specific factors modelled as fixed-effect 
covariates, while the remaining three terms are random effects repre-
senting a polygenic additive effect (1|ID, equivalent to twice the kinship 
matrix), history of a familial shared environment (1|FAM, implemented 
as unique family identifier) and current cohabitation (1|cohousing, 
implemented as unique housing location identifier). We note that this 
model may still provide heritability estimates that are slightly inflated 
due to residual correlation between the polygenic additive effect and 
the cohabitation effect in our dataset, where 42% of participants share 
the same household. Narrow-sense heritability was estimated as the 
proportion of variance explained by the polygenic additive effect over 
total variance, using the profile function of the same R package. We 
restricted the analysis of heritability to the relative abundances of the 
257 microbial taxa and 277 pathways present in at least 5% of individu-
als and focused on 3,571 individuals in 1,432 families in which at least 
two individuals had available microbiome data. In total, the analysis 
included 1,004 first-degree relative pairs, 210 second-degree relative 
pairs and 85 pairs with third-degree or more distant relationships.

The significance of random variables in heritability models (herit-
ability, cohabitation and history of a familial shared environment) 
was assessed using a permutation test to determine empirical P value. 
For each microbiome feature, the link between the participant ID and 
relative abundance of microbial taxa was randomly permuted 30,000 
times, while retaining the data structure of the rest of data to maintain 
families, cohabitation and other associations in the dataset. To maintain 
consistency, each microbiome feature was permuted using the set of 
identical randomization seeds. A heritability model was constructed 
for each permuted dataset, and the empirical P values for heritability, 
family ID and cohabitation were calculated as a proportion of the values 
of these variables higher than, or equal to, values of heritability, family 
ID or cohabitation in the model constructed from non-permuted data. 
Significance of fixed effects was calculated using type-II analysis of 
variance using Wald tests implemented in the anova function for R 
package car, while the significance of random effects was calculated 
using likelihood ratio tests implemented in the ranova function for 
R package lmerTest. Confidence intervals were estimated using the 



function profile from the R stats package. As this approach could not 
estimate confidence intervals for taxa or pathway models for which one 
or more random effects estimate was approximately 0, we estimated 
the confidence intervals of these traits using reduced models without 
random variables with effect size ≤1.0 × 10−3. All empirical P values were 
corrected for multiple testing using Benjamini–Hochberg correction, 
and results with an empirical FDR < 0.1 were considered significant.

Estimation of the effect of cohabitation on microbiome
We estimated the effect of cohabitation on overall microbiome com-
position, function, antibiotic resistance genes and virulence factors by 
comparing the beta-diversities of the microbiomes of cohabiting study 
participants (1,710 unrelated pairs, 285 parent–child pairs and 144 sibling 
pairs) to those of participants who did not share housing (2,000 unre-
lated pairs, 301 parent–child pairs and 299 sibling pairs). Microbiome 
distance was calculated for each pair using Bray–Curtis dissimilarity, and 
mean dissimilarities within groups were compared using Mann-Whitney 
U tests using the Benjamini–Hochberg correction to control multiple 
testing FDR. Results were considered significant at FDR < 0.05.

Calculation of microbiome–phenotype associations
The proportion of variance in microbiome composition that can be 
explained by individual phenotypes was calculated by permutational 
multivariate analysis of variance using distance matrices (adonis) 
implemented in the adonis function of R package vegan (v.2.4–6)62. 
Analysis was performed on the microbiome beta-diversity (Bray–Curtis 
distance matrix calculated using relative abundances of microbial 
species) and separately for each phenotype using univariate adonis 
with 20,000 permutations. To calculate the proportion of microbiome 
functional potential explained by individual phenotypes, an equivalent 
analysis was performed on the Bray–Curtis distance matrix calculated 
using relative abundances of MetaCyc microbial biochemical pathways.

The total proportion of microbiome composition variance and func-
tion explained by groups of phenotypes was calculated by multivariate 
adonis analyses. These analyses included all phenotypes that showed 
significant (FDR < 0.05) association with microbiome composition or 
function in the univariate analyses.

The associations between each individual microbiome feature (Shan-
non alpha diversity index, microbial taxa, MetaCyc pathways, virulence 
factor and antibiotic resistance gene families) and each phenotype 
were calculated using linear regression. To correct for potential batch 
effects and confounders, the regression model also included age, sex, 
BMI, Bristol stool scale and technical factors (DNA concentration, 
sequencing read depth, sequencing batch and sampling season). The 
microbiome data was transformed using the CLR transformation to 
break compositionality of the data and normalize skewed distributions 
of microbiome features.

All microbial taxa, regardless of taxonomic level, were CLR- 
transformed using the geometric mean of the relative abundance of 
microbial species as the CLR denominator. The other microbiome data 
layers (pathways, virulence factor and antibiotic resistance genes) 
used geometric mean of relative abundances of these features as the 
CLR denominator. As CLR transformation cannot be applied to zero 
values, zeros in the tables were adjusted by adding half of the lowest 
value in the table to each cell. Benjamini-Hochberg correction was 
used to control for multiple testing, with the number of tests equal to 
the number of feature–phenotype pairs tested (64,764 tests for taxa, 
87,444 for pathways, 111,889 for VFDB and 24,444 for CARD). Results 
were considered significant at FDR < 0.05.

Quantification of microbiome–disease–drug interactions
To disentangle interactions between the gut microbiome, medication 
and diseases, we explored the effect of a selection of drug–disease 
pairs for three common diseases and the drugs used to treat them: 
functional gastrointestinal disorders PPIs (N = 545 (disease only), 375 

(drug only) and 108 (overlap)), T2D with antidiabetic drugs (N = 83 
(disease only), 10 (drug only) and 98 (overlap)) and depression with 
SSRIs (N = 268 (disease only), 158 (drug only) and 78 (overlap)). For each 
disease–drug pair, we used multivariate linear regression including 
the drug and disease as independent variables and microbiome traits 
as outcomes to calculate the conditional effects of drugs and diseases 
on the microbial traits. Details of the models and approaches used are 
described in ‘Calculation of microbiome–phenotype associations’.

Definition of core microbiome and prediction of keystone 
microbiome features
We used a bootstrapping-based selection approach to identify the 
expected number of microbial traits in the DMP. We created rand-
omized subsamples with a size of 1% to 100% of the cohort, one hundred 
times for each subsampling size, and calculated mean and standard 
deviation of the number of microbial features for each subsampling 
level. The expected cohort richness was estimated using the specpool 
function in vegan package v.2.5.7 using the bootstrap method. Micro-
bial features with a prevalence >95% in the cohort were defined as the 
core microbiome, which included 9 core microbial species and 143 
core microbial pathways (Supplementary Table 1a, b). To validate the 
consistency of our approach, we compared the results to previously 
published studies that defined the core microbiota in UK, US, European 
and non-Western populations5,20,69–71.

To analyse the structure of the microbiome community, we con-
structed microbial species and pathway co-abundance networks using 
SparCC, as previously published72,73. Relative abundances of taxa were 
converted to estimated read counts by multiplying abundance per-
centages by total sequenced reads per sample after quality control. 
For pathway analysis, the read counts (RPKM) from HUMAnN2 were 
used directly for SparCC.

Co-abundances were deemed significant at an empirical FDR < 0.05, 
calculated using 100 permutations. In each permutation, the abun-
dance of each microbial feature was randomly shuffled across samples. 
This identified 6,473 species and 55,407 pathway co-abundances at 
empirical FDR < 0.05. Features that ranked in the top 20% in the num-
ber of network connections (node degree) were considered keystone 
species or pathways, resulting in 28 keystone species and 53 keystone 
pathways (Supplementary Table 1e).

Identification of microbiome clusters
To identify microbial clusters and assess the presence of gut entero-
types in our cohort, we performed the partitioning around the medoid 
method on the relative abundances of microbial species and used the 
Calinski–Harabasz index to select the optimal number of clusters, as 
previously published in a study of gut enterotypes74. Enrichment of 
phenotypes in each cluster was assessed by logistic regression in R.

Calculation of microbiome signatures predictive of diseases and 
health
We calculated the microbial signatures predictive of the 36 most com-
mon (number of cases > 100) diseases in our dataset. In addition, we 
defined a healthy phenotype as absence of any self-reported disease, 
with 2,937 (36%) out of 8,208 individuals defined as healthy.

We used fivefold cross-validation to train prediction models for 
common diseases, with 4 out of 5 of the data used as a training set and 
1 out of 5 as a test set. Next, we performed elastic net L1/L2 regularized 
regression (R package glmnet v.4.0) on the training set, using Shannon 
diversity, CLR-transformed microbial taxa, CLR-transformed MetaCyc 
bacterial pathways and age, sex and BMI as fixed covariates. Within 
each fold, the model for each disease was calculated independently 
using nested tenfold cross-validation to select the optimal lambda 
penalization factor (at L1/L2 mixing parameter alpha fixed at 0.5). The 
lambda with minimal cross-validation error was used in the downstream 
analysis.
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In total, we defined three probabilistic models: a ‘null’ signature that 

only includes effects of general covariates (age, sex and BMI), a ‘micro-
biome’ signature that includes all selected microbiome features and 
a ‘combined’ signature that includes both the effects of microbiome 
features and general covariates. Correlations of predictive signatures 
of diseases were calculated as Pearson correlation of predicted values 
for diseases from the test set of each fold, while disease comorbidities 
were calculated as Pearson correlations of the presence of diseases in 
the population (encoded 0 for controls and 1 for presence of disease).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The raw microbiome sequencing data, processed microbiome data 
(including taxonomy, pathway, virulence factor and antibiotic resistance 
gene profiles) and basic phenotypes (including age, sex and BMI) used 
in this study are available at the European Genome-Phenome Archive 
under accession EGAS00001005027. These datasets can be accessed 
from https://forms.gle/eHeBdXJMXbVvCJRc8 or by email from the corre-
sponding author (R.K.W.) at the address listed at the EGA data access com-
mittee EGAC00001001996. The phenotype data can be requested, for a 
fee, by filling the application form at https://www.lifelines.nl/researcher/
how-to-apply/apply-here. Lifelines will not charge an access fee for con-
trolled access to the full dataset used in the manuscript (including phe-
notype and sequencing data), for the specific purpose of replication 
of the results presented in this Article or for further assessment by the 
reviewers, for a period of three months. Researchers interested in such a 
replication study or review assessment can contact Lifelines at research@
lifelines.nl. Source data are provided with this paper.

Code availability
Open source codes and scripts used for the analyses or figures  
are available at the GitHub repository (https://github.com/GRONINGEN- 
MICROBIOME-CENTRE/DMP) and Zenodo (https://doi.org/10.5281/
zenodo.5910709). To facilitate the re-use of the codes, the repository 
also includes example datasets that enable users to test the codes  
without the need to apply for access to phenotypes.
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Extended Data Fig. 1 | Estimation of total number of species and genera in 
the DMP population. Figure shows rarefaction and extrapolation sampling 
curve for a, genera and b, species richness calculated using Hill numbers 

implemented in the iNEXT package for R. The extrapolated part of rarefaction 
curve is shown dotted. The SD of the estimate is shaded and the asymptotic 
richness estimate is shown.
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Extended Data Fig. 2 | Overview of DMP microbiome composition and 
function. a, First two principal coordinates of the Bray-Curtis distance matrix 
calculated on microbial species of the DMP cohort, coloured by the relative 
abundance of Prevotella copri bacterium. b, Average relative abundances of 
bacterial phyla present in > 0.1% of the DMP cohort. Red vertical line indicates 
rare phyla (abundance < 0.1%). c, Phylum-level composition of all samples in the 
cohort, sorted by abundance of phylum Bacteroidetes. Each vertical line 
indicates one sample. * phylum has significantly higher variance when 

compared to each of pathway classes (one-sided F test of variances FDRs < 0.05, 
Supplementary Table 1G) d, Relative abundances of the top 10 MetaCyc 
pathways of all samples (sorted to match panel c). Each vertical line indicates 
one sample. The means of standard deviations of taxa and pathways were found 
to be significantly different (mean(sd(tax1),...,sd(taxn)) - mean(sd(pwy1),..., 
sd(pwnm) > 0, two-sided permutation test (1,000 permutations) P < 1.0 x 10−3). 
All panels show results generated from n = 8,208 independent samples.



Extended Data Fig. 3 | Clusters determined by bi-modally distributed 
Prevotella copri. a, Density plots of log2-transformed relative abundances of 
the 10 most abundant bacterial species. b, Log2-transformed relative 
abundance of Prevotella copri per microbiome cluster (n (cluster1, red) = 6,346, 
n (cluster2, blue) = 1,862; boxplot: centre line, median; box limits, upper and 

lower quartiles; whiskers, 1.5x interquartile range; points, outliers; outer line, 
distribution of data). The clusters were determined using the partitioning 
around the medoid method on the relative abundances of microbial species.  
c. Association of P. copri with metadata (n = 8,208 independent samples; dot, 
mean; lines, 95% confidence intervals).
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Extended Data Fig. 4 | Bray-Curtis distances of microbiome features of 
cohabiting and non-cohabiting participants. Pairwise microbiome 
Bray-Curtis dissimilarity comparisons of groups of random, non-cohabiting 
pairs (RND.PAIR, n = 2,000) compared to cohabitating partners (PARTNERS, 
n = 1,710); cohabiting parent–child pairs (PAR_CH, n = 285) and cohabiting 
siblings (SIBL, n = 144); and random pairs (n = 2,000) compared to 

non-cohabiting 1st-degree relatives (1stDEG.SEP, n = 600) and cohabiting 
1st-degree relatives (1stDEG.COH, n = 429). a, MetaCyc pathways. b, Virulence 
factor gene families. c, antibiotic resistance gene families (centre line, median; 
box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, 
outliers; outer line: distribution of data). Significantly different groups are 
marked with ** for FDR < 1.0e–5 or * for FDR < 0.05 (two-sided Wilcoxon test).



Extended Data Fig. 5 | Overview of microbiome–phenotype associations. 
Figure shows the number of study-wide significant associations (FDR < 0.05) 
per phenotype group, clustered by taxonomy. Bar heights represent the 
number of associations relative to the maximal number of associations for the 
phenotype group.
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Extended Data Fig. 6 | Gut Microbiome Health Index calculated for DMP 
cohort. Box-plots of the Gut Microbiome Health Index (GMHI) for healthy 
participants of the DMP cohort samples (Y, n = 1,876 independent participants) 
vs participants who reported one or more diseases (N, n = 6,332 independent 

participants) (centre line, median; box limits, upper and lower quartiles; 
whiskers, 1.5x interquartile range; points, outliers; outer line, distribution of 
data). P-value is shown for two-sided Wilcoxon rank-sum test.



Extended Data Fig. 7 | Microbiome associations with diseases and 
medication use. Heatmap of microbiome–phenotype associations, with 
microbial species clustered by Z scores (multivariate linear regression of 
CLR-transformed relative abundance of taxa, correcting for age, Sex, BMI, 
Bristol stool scale of the faecal sample and technical factors (DNA 
concentration, sequencing read depth, sequencing batch and sampling 

season)) using hierarchical clustering and coloured by the direction of 
association. Study-wide significant associations (Benjamini-Hochberg 
corrected p-value < 0.05) are marked with +/−. Coloured associations without a 
label indicate nominally significant associations (Benjamini-Hochberg 
corrected p-value < 0.05).
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Extended Data Fig. 8 | Microbiome association with early-life exposures. 
Heatmap of microbiome–phenotype associations, with microbial species 
clustered by Z scores (multivariate linear regression of CLR-transformed relative 
abundance of taxa, correcting for age, Sex, BMI, Bristol stool scale of the faecal 
sample and technical factors (DNA concentration, sequencing read depth, 

sequencing batch and sampling season)) using hierarchical clustering and 
coloured by the direction of association. Study-wide significant associations 
(Benjamini-Hochberg corrected p-value < 0.05) are marked with +/−. Coloured 
associations without a label indicate nominally significant associations 
(Benjamini-Hochberg corrected p-value < 0.05).



Extended Data Fig. 9 | Microbiome association with smoking, pollutants 
and greenspace. Heatmap of microbiome–phenotype associations, with 
microbial species clustered by Z scores (multivariate linear regression of 
CLR-transformed relative abundance of taxa, correcting for age, Sex, BMI, 
Bristol stool scale of the faecal sample and technical factors (DNA 
concentration, sequencing read depth, sequencing batch and sampling 

season)) using hierarchical clustering and coloured by the direction of 
association. Study-wide significant associations (Benjamini-Hochberg 
corrected p-value < 0.05) are marked with +/−. Coloured associations without a 
label indicate nominally significant associations (Benjamini-Hochberg 
corrected p-value < 0.05).
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Extended Data Fig. 10 | Microbiome association with diet. Heatmap of 
microbiome–phenotype associations, with microbial species clustered by Z 
scores (multivariate linear regression of CLR-transformed relative abundance 
of taxa, correcting for age, Sex, BMI, Bristol stool scale of the faecal sample and 
technical factors (DNA concentration, sequencing read depth, sequencing 

batch and sampling season)) using hierarchical clustering and coloured by the 
direction of association. Study-wide significant associations 
(Benjamini-Hochberg corrected p-value < 0.05) are marked with +/−. Coloured 
associations without a label indicate nominally significant associations 
(Benjamini-Hochberg corrected p-value < 0.05).
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