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The gut microbiome is associated with diverse diseases', but a universal signature of
ahealthy or unhealthy microbiome has not beenidentified, and thereisaneed to
understand how genetics, exposome, lifestyle and diet shape the microbiome in
health and disease. Here we profiled bacterial composition, function, antibiotic
resistance and virulence factors in the gut microbiomes of 8,208 Dutch individuals
fromathree-generational cohort comprising 2,756 families. We correlated these to
241host and environmental factors, including physical and mental health, use of
medication, diet, socioeconomic factors and childhood and current exposome. We
identify that the microbiome is shaped primarily by the environment and
cohabitation. Only around 6.6% of taxa are heritable, whereas the variance of around
48.6% of taxa is significantly explained by cohabitation. By identifying 2,856
associations between the microbiome and health, we find that seemingly unrelated
diseases share acommon microbiome signature that isindependent of
comorbidities. Furthermore, we identify 7,519 associations between microbiome
features and diet, socioeconomics and early life and current exposome, with
numerous early-life and current factors being significantly associated with
microbiome function and composition. Overall, this study provides acomprehensive
overview of gut microbiome and the underlying impact of heritability and exposures
that will facilitate future development of microbiome-targeted therapies.

Alterations in gut microbiota compositionand functionare associated
with abroad range of human health disorders, including gastrointes-
tinal and metabolic diseases and mental disorders* The influence of
gut bacteria and microbial pathways on host metabolism and immu-
nity, together with the fact that the microbiota can be modified, have
heightened interestin developing microbiome-targeted therapies®and
multiple microbiome-targeting therapies are currently in clinical trials*.
However, the characteristics of a healthy microbiome remain largely
unclear, as does the extent to which the gut microbiome is driven by
intrinsic factors (such as genetics) versus modifiable environmental
factors (such as pollutants, diet or lifestyle) or health-related factors
(such as gut disorders or body mass index (BMI)) that might be ame-
nable to microbiome-targeted therapies.

The capacity to define a healthy microbiome has been hampered
by differences in the processing of faecal samples between studies
and the large interindividual variation in microbiome composition.

Population-based studies have shown that the interindividual variation
is partially accounted for by diet, lifestyle, host genetics and environ-
mental factors, including early-life exposures®”’. However, in-depth
integrative analyses of large, standardized, cohorts with well-defined
phenotypes remainscarce, even though this integrative perspectiveis
essential for disentangling meaningful host-microbiota associations
andidentifying potential targets for microbiota-directed interventions.

The Dutch Microbiome Project

To address these issues, we initiated the Dutch Microbiome Project
(DMP) within Lifelines, a three-generational population cohort and
biobank from the northern Netherlands with well-defined pheno-
types. Inthe DMP, we characterized the composition and function of
the gut microbiota of 8,208 individuals (age range 8-84 years, 57.4%
female, 99.5% Dutch European ancestry; 4,745 of the individuals were
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Fig.1|Summary of the Dutch Microbiome Project. a, Graphical summary of
the cohortand overview of available metadata (n=number of variables
collected, N=samplessize). b, Number of microbial features discoveredin
relation to sample size. Dots denote mean values. Error bars display SD of100
resamplings. ¢, PCoA visualizing the beta-diversity of the cohort. Colour

clustered into 2,756 families; Fig. 1a, Supplementary Table 2d). The
dataset (processed by Metaphlan2 and HUMANN2) contained 1,253 taxa
(4 kingdoms, 21 phyla, 35 classes, 62 orders, 128 families, 270 genera
and 733 species) and 564 metabolic pathways, including 257 archaeal
and bacterial taxa and 277 pathways with arelative abundance higher
than 0.01 and presentin more than 5% of individuals.

Our sample size enabled us to cover more than 90% of the total
expected number of microbial functional features estimated by boot-
strap analysis: 564 out of 574.4 (standard error = 4.2) expected MetaCyc
pathways, 190 out of 190 (standard error = 0.05) virulence factors, 303
out of 303 (standard error = 0.03) antibiotic resistance genes and 128
out of136.5 (standard error = 2.7) microbial taxa at family level or higher
(Fig. 1b). By subsampling the cohort, we estimated that the presence
rates of these microbial features become relatively stable (within 90%
of the numbers observed for the whole cohort) when at least 40% of
the cohort is sampled (approximately 3,300 samples). However, the
number of microbial species discovered continued to increase with
increased sample size, with the total number of species in the popu-
lation estimated to be 600 (standard error =27) at 25,000 samples,
suggesting that other rare microbial species remain undiscovered
(Fig.1b, Extended DataFig.1). Gut microbiota composition was highly
variable across the population, for example the relative abundance of
Bacteroidetes ranged from 5% to more than 95% (Extended DataFig. 2c).
The most abundant microbial pathways were significantly less variable
thanthe majority of phyla (one-sided F-test of variances false discovery
rate (FDR) < 0.05, Extended Data Fig. 2d, Supplementary Table 2g).

Core and keynote species

To pinpoint microbial species and pathways potentially critical for the
organization and maintenance of the gut ecosystem, we investigated
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indicatesrelative abundance of P. copri. Arrows indicate influence of
self-reported health, anthropometrics and faecal sample metadata. CARDs,
antibiotic resistance gene families from the Comprehensive Antibiotic
Resistance Database; PCo, principal coordinate; VFs, bacterial virulence
factors.

our cohort for microbial taxa present in more than 95% of individuals
(we designated these ‘core microbes’) and taxa that form centralnodes
in microbial co-abundance networks® (designated ‘keystone features’).
Weidentified nine core species (Subdoligranulum sp., Alistipes onder-
donkii, Alistipes putredinis, Alistipes shahii, Bacteroides uniformis, Bac-
teroides vulgatus, Eubacterium rectale, Faecalibacterium prausnitzii
and Oscillibacter sp.) that are highly consistent with those found in UK,
US, European and non-western populations (Supplementary Table 1a).
We also identified 28 species and 53 pathways as potential keystone
features defined by more than109 and 337 significant co-abundances,
respectively (empirical FDR < 0.05). The networks defined by these fea-
tures showed 20.2% overlap for species and 25.3% overlap for pathways.
Five of the nine identified core microbes (A. putredinis, A. shahii,
F. prausnitzii, Oscillibacter sp. and Subdoligranulum sp.) are also key-
stonespecies,implying that they also have central rolesin the gut micro-
biome ecosysteminthe Dutch population. For example, F. prausnitzii,
amajor butyrate producer that is depleted in many chronic diseases’,
shows significant co-abundance with the majority of Bacteroidetes
and Bifidobacterium species (Supplementary Table 1e). However, we
alsoidentified potential keystone species with low prevalence (<10%),
including Ruminococcus gnavus and multiple species from the genus
Clostridium, that are positively associated with multiple diseases (Sup-
plementary Table 3b), consistent with previous studies'".

Prevotella copridefines clustering

We examined the microbiome data clustering in our cohort using
principal coordinate analysis (PCoA) and identified that the first
principal coordinate is driven by Prevotella copri (Spearman r = 0.68,
Pvalue =3.6 x10™; Fig. 1c, Supplementary Table 9). This bacterium
isbimodally distributed in our cohort and defines two clusters onthe



basis of its presence or absence (Extended Data Fig. 3a, b). As suggested
by previous studies’, we observed that the cluster with high abundance
of P.copriassociates with alower risk of irritable bowel syndrome (IBS)
(oddsratio = 0.72,95% confidence interval 0.61-0.86). We also found
thatP. copripositively associates with general health (odds ratio =1.24,
95% confidenceinterval1.11-1.40, FDR < 0.05; Extended Data Fig. 3c).
Although previous studies reported distinct enterotypes dominated
by Bacteroides, Prevotella and Ruminococcaceae®, we only observed
two such clusters, possibly because our cohort is ethnically uniform
and from a constrained geographic area.

The PCoA of functional potential was highly correlated with many
pathwaysrather thananyindividual one, and the top features explaining
variance were queuosine biosynthesis, peptidoglycan biosynthesis and
L-isoleucine biosynthesis pathways (Supplementary Table 9). Similar to
pathways, the PCoA of virulence factors was correlated with multiple
gene families that encode various bacterial functions, including a flagel-
lininvolvedin bacterial invasion of intestinal cells (gene family VFO114,
Spearman r=-0.60, Pvalue = 0.0), bacterial siderophores (VF0136,
VF0228 and VF0256; Spearman r = 0.55, 0.58 and 0.51, respectively;
Pvalues <1.0 x107%°), asecretion system (VF0333; Spearmanr = 0.76,
Pvalue = 0.0) and bacterial adherence factors (VF0221 and VF0404;
Spearman r=0.581and 0.561, respectively; Pvalues <1.0 x 107°°), By
contrast, the PCoA of antibiotic resistance genes was dominated by just
three gene families that confer resistance to tetracycline antibiotics:
gene families encoding ribosomal protection proteins ARO_30001914
and ARO_3000191 (Spearman r=0.81 and -0.68, respectively;
Pvalues = 0.0) and the gene family encoding efflux pump, ARO_3000567
(Spearmanr=0.50, Pvalue = 0.0).

Cohousing dominates over heritability

We next explored the relative contributions of family structure, cohabi-
tation and other exposome factors in shaping the gut microbiome.
We used the multi-generational family structure of our cohort to
estimate the heritability of microbial taxa and identified 17 heritable
taxa (6.6% of the tested taxa) at FDR-corrected empirical Pvalue < 0.1
(determined using 30,000 permutations) (Fig. 2a, Supplementary
Table 5). The highest heritability was observed for Proteobacteria
(h*=0.308, where h =narrow sense heritability (the proportion of vari-
ance in the abundance of microbial taxon caused by additive genetic
effect)), followed by Akkermansia muciniphila (h* = 0.302) with its
higher-level taxa Bacteroidaceae (h*= 0.299), Bacteroidaceae species
Parabacteroides goldsteinii (h* = 0.266) and Bacteroides coprocola
(h*=0.228), Bifidobacterium longum (h* = 0.247), the genus Phascolarc-
tobacterium (h* = 0.245) and agenus-level cluster from the Clostridiales
order (h*=0.237). Among microbial pathways, only 7 were heritable
at FDR-corrected empirical Pvalue < 0.1, including the lipid IV, bio-
synthesis pathway (NAGLIPASYN-PWY), two pathways of pyridoxal
5-phosphate biosynthesis (PWY0-845 and PYRIDOXSYN-PWY), the
isoleucine biosynthesis Il pathway (PWY-5101) and the pre-quinone
biosynthesis pathway (PWY-6703). The heritability of pathways and
taxashowed adegree of concordance: the NAGLIPASYN-PWY is highly
correlated with Proteobacteria (R = 0.64), and the other heritable
pathways are mostly linked with the family Bacteroidaceae and some
Bacteroidaceae species.

Heritability of some of these taxa have been observed previously.
Akkermansia and Bifidobacterium and some genera from the order
Clostridiales have beenreported to be heritable inastudy of UK twins™,
and the heritability of members of the Bacterioidaceae family, including
Bacteroides and Parabacteroides, was reported in afamily-based analy-
sisina Canadian population®. Our results did not replicate some of the
heritable taxa from these studies, possibly owing to differencesintech-
niques used (use of 16S versus metagenomic sequencing and differing
DNA isolation methods) or reference databases—that is, some taxawere
not presentin the reference databases (such as Christensenellaceaein

the Metaphlan2 database), did not pass the 5% presence threshold (the
genus Turicibacter), or showed very low power for detecting heritabil-
ity owingto alow presence rate (Euryarchaeota, Christensenellaceae
profiled using the Metaphlan3 database).

Cohabitation hasamuch larger effect than heritability, with 125 out
of 257 taxa (48.6%) being significantly affected by cohabitation, and
history of cohabitation explained significant variance in 22 taxa (8.6%)
(Supplementary Table 5a). The microbiomes of cohabiting participants
were also more similar than those of participants living separately,
regardless of the relatedness of the participants, with the microbi-
omes of parent-child pairs, sibling pairs and unrelated partners all
resembling each other more than those of non-cohabiting partici-
pants (Fig. 2c-e, permutation-based Wilcoxon test FDR <1.0 x 1075).
We further observed similar patternsin the compositions of microbial
pathways, virulence factors and antibiotic resistance genes (Extended
DataFig. 4a-c).

Theseresultsindicate that whole-microbiome composition is signifi-
cantly influenced by cohabitation, with genetics having asmallerrole,
although a small subset of microbiota species—such as A. muciniphila,
B.longum and Bacteriodaceae—are significantly heritable and show a
degree of replicationacross cohorts. However, given the setting of our
cohort (Methods) and the large cohabitation effect observed for several
taxaand pathways, our estimates of heritability may be slightly inflated.

Overview of associations

We then explored the associations of microbial features to 241 meas-
urementsincluding technical factors, anthropometrics, early-life and
currentexposome, diet, self-reported diseases and use of medication,
medical measurements and socioeconomics (Extended Data Fig. 5).
These phenotypes explained 12.9% of microbiome taxonomic composi-
tion and 16.3% of microbiome function, with the largest contribution
coming from technical factors, stool characteristics, diseases, use of
medication and anthropometrics (Fig.3b, Supplementary Tables 4a-c).

After correcting for technical factors, we observed 4,530 associa-
tions of phenotypes with taxa, 5,224 with pathways, 1,848 with antibi-
otic resistance genes and 385 with virulence factors (Supplementary
Table 3g, Extended Data Fig. 5). Individually, the largest number of
associations were with keystone and core taxa, including Flavonifrac-
torsalivarius, F. prausnitzii, Alistipes senegalensis and Clostridium and
Subdogranulum species (Supplementary Tables 3b, h). A. senegalensi
has previously been associated with Crohn’s disease and hepatitis B
virus-related acute chronicliver failure'. In our cohort, A. senegalensi
was associated with 43 phenotypes (FDR < 0.05), highlighting a poten-
tial role across multiple diseases. Similarly, Clostridium asparagiforme,
which has been associated with type 2 diabetes (T2D), hypertension
and ankylosing spondylitis'®"”, was associated with an additional 23
unrelated diseases (FDR < 0.05). Further associations are discussed
below. Supplementary Tables 3a-h provide a complete overview.

Age, sexand BMIranked among the top phenotypes in our analysis of
interindividual variation of beta-diversity, explaining 0.6%, 0.53% and
0.32% of individual variation, respectively. Bristol stool scale explained
thelargest proportion of beta-diversity (R*= 0.77%, FDR = 0.012), with
sampling season also explaining a significant proportion of variance
(R*=0.36%, FDR = 0.012, Supplementary Table 4a), together high-
lighting the importance of assessing faecal consistency and collection
timeframe effects in microbiome studies. On the basis of these results,
weincluded corrections for age, sex, BMI, Bristol stool scale and sam-
pling seasoninto our association models alongside the corrections for
technical factors (Supplementary Tables 3a-e).

Definition of healthy and unhealthy microbiomes

To define the microbiome signatures of health and disease, we associ-
ated microbiome features with self-reported health and 81 diseases with
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Fig.2|Heritability and effect of cohabitation on the gut microbiome. a, Top
20 heritablespecies. b, Top 20 heritable pathways. **Taxa significantly
heritable at FDR < 0.1; *taxa with nominally significant heritability (P< 0.05).
Error bars show 95% confidence interval of heritability. Resultsina, b, were
calculated from 3,571distinctindividuals from1,432 families. c-e, Pairwise
microbiome distance comparisons. Centrelineis the median, box limits
indicate upper and lower quartiles, whiskers show1.5x interquartile range,
pointsindicate outliers and the outline displays the distribution of the data.

at least 20 cases (Supplementary Table 2d). This identified 1,206 sig-
nificant associations with bacterial taxa, 1,182 with microbial pathways,
390 with antibiotic resistance genes and 76 with bacterial virulence
factors (FDR < 0.05, Supplementary Tables 3b-f). Different diseases
had different numbers of associations, and the strongest signatures
were observed for cardiovascular and metabolic disorders, such as
non-alcoholicfatty liver disease and T2D, and for gastrointestinal dis-
ordersincludinginflammatory bowel disease and IBS (Supplementary
Table 3f). We observed consistent microbiome-disease patterns across
the majority of diseases (Fig.4a), enabling us to pinpoint microbiome
signatures that were shared between unrelated diseases as well as fea-
tures that define a healthy (that is, absence of disease) microbiome.
The shared microbiome signatures of diseases (see Supplementary
Discussion for details) mainly consisted of increases in Anaerotruncus,
Ruminococcus, Bacteroides, Holdemania, Flavonifractor, Eggerthella
and Clostridium species and decreases in Faecalibacterium, Bifidobac-
terium, Butyrivibrio, Subdoligranulum, Oxalobacter, Eubacterium and
Roseburia. Gut microbiome pathways shared across unrelated diseases
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Bray-Curtis dissimilarities were calculated using microbial species of groups
of random non-cohabiting pairs (n=2,000) compared with cohabiting
partners (n=1,710), parent-child pairs (n = 285) and sibling pairs (n =144) (c),
random pairs (n =2,000) compared with non-cohabiting parent-child pairs
(n=301) and sibling pairs (n =299) (d) and random pairs (n =2,000) compared
with non-cohabiting first-degree relative pairs (n = 600) and cohabiting
first-degreerelative pairs (n=429) (e).Inc-e,**FDR<1.0 x107%,*FDR < 0.05
(permutation-based Wilcoxon test, two-sided).

consisted mainly of increases in biosynthesis of L-ornithine, ubiquinol
and menaquinol, enterobacterial common antigen, Kdo-2-lipid-A and
molybdenum cofactor and decreases in biosynthesis of amino acids,
deoxyribonucleosides and nucleotides, anaerobic energy metabolism
and fermentation to short chain fatty acids (mainly butanoate). Viru-
lence factors wereincreased in some diseases, including T2D and gas-
trointestinal disorders, with the largest effects observed for bacterial
adherence and iron-uptake factors (VF036, VF0228, VF0236, VF0404
and VF0394). We further validated these signals by constructing L1/L2
regularized regression models for prediction of the 36 most common
diseases and identified high consistency with association analysis,
with 22 out of 31 species selected by the models associated with more
than 5 diseases (Supplementary Discussion). The predictive features
showed high correlation despite the low disease comorbidities in our
cohort (Fig. 4b, Supplementary Table 6e).

Finally, we calculated the recently developed Gut Microbiome
Health Index'® (GMHI) and identified a significant difference between
healthy and unhealthy individuals (P value = 6.16 x 10"%; Extended



Fig.3|Microbiome-phenotype associations. a, Microbiome-phenotype
associations for diet, childhood and current exposome and socioeconomicsin
comparison to healthy microbiome signature. Top 40 microbial species with
the highest number of significant associations are clustered by association
Z-score using hierarchical clustering and coloured by direction of effect (blue,
positive; orange, negative), with associations significant at study-wide

DataFig. 6). Our microbiome signature of health replicated 43 out of
50 GMHI signals™® at genus or species level (Supplementary Table 10).
In addition, we identified 55 microbiome-health associations that
were not seen in the GMHI study, including with species from Butyrivi-
brio, Akkermansiaand Prevotella genera (Supplementary Tables 3b,10)
that were previously linked to gastrointestinal disorders but not to
other diseases'?.

The microbiome reflects diseases and treatments

We observed high consistency in the microbiome effects of common
non-communicable diseases and the medications used to treat them
(Extended Data Fig. 7, Supplementary Tables 3a-g). Among these,
we identified the strongest effects for proton pump inhibitors (PPIs),
antibiotics, biguanide antidiabetics, osmotic laxatives and intestinal
anti-inflammatory agents (84, 56,47 and 32 associations with microbial
taxa, respectively, at FDR < 0.05). To disentangle the effects of diseases
and medications, we performed multivariate linear regression of three
common diseases and their corresponding common medications:
antidiabetics in T2D, selective serotonin reuptake inhibitors (SSRIs)
in depression and PPIs in functional gastrointestinal disorders and
IBS. We observed that effect of diseases and corresponding drugs are
associated with microbiome with high consistency, even when con-
ditioned on each other (Supplementary Table 7), indicating that the
unhealthy gut microbiome signature reflects both the disease and the
associated medication.
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significant associations (P<0.05). b, Variance in microbiome composition and
function explained by phenotype groupsin multivariate PERMANOVA analysis.
NDVI, Normalized Difference Vegetation Index; PWYs, pathways.

Childhood s linked to the adult microbiome

Asthefirsttwotothreeyears of life are crucial for microbiome develop-
ment, we examined the influence of early-life (less than four years of
age) factors on the adult microbiome. We identified 106 associations
with taxa, 30 with pathways, 22 with antibiotic resistance genes and 2
withvirulence factors (FDR < 0.05), with only minimal effects observed
for birth mode, breastfeeding and preterm birth (Fig. 3b, Extended
DataFig. 8). Childhood living environment (scale from 1, rural to 5,
highly urban) was significantly associated with the adult microbiome
(54,8and 7 associations with taxa, pathways and CARDs, respectively,
at FDR < 0.05) despite a very low correlation between childhood and
adult urbanicity (Spearmanr < 0.015).

Rural childhood environment was associated with an increase in
various bacteria, including P. copri, F. prausnitzii, Rothia mucilagi-
nosa and species from the Bifidobacterium and Mitsuokella genera,
whose abundances were also associated with increased general health.
By contrast, the gut abundances of multiple species from genera
Bacteroides, Alistipes and Biophila were reduced in participants with
anurban childhood environment.

Parental smoking was associated with the microbiome of their chil-
dren (15,9 and 4 associations with taxa, pathways and CARDs, respec-
tively, at FDR < 0.05). Here we observed associations between parental
smoking and decreased abundances of Veillonella and Oscillibacter
speciesand of P.copri (R? = 0.0012, FDR = 0.033), consistent with obser-
vations for current smokers. Finally, childhood pet ownership was
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Fig.4|Microbiomesignatures ofhealthand diseases. a, Heat map of
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associated with the adult microbiome (7 associations at FDR < 0.05),
including decreases in Alistipes finegoldii, Lactobacillus delbrueckii
and Dialister and Bilophila species observed in participants who had
childhood pets.

Exposomeis associated with gut microbiome

We studied environmental factors at time of sampling and identified
shared association patterns of healthy microbiome signatures with pet
ownership, rural living environment and greenspace surface areain
living environment (Fig. 3b), includingincreasesin P. copri, Bacteroides
plebeius, Desulfovibrio piger and Mitsuokella species, and decreasesin
Bacteroidesfragilis and Bilophila wadsworthia. These signals contrast
with the microbiome associations of increased measurements of NO,
and small particulate matter pollutants, which are negatively associated
with health (Extended Data Fig. 9). Smoking phenotypes, including
currentactive and passive smoking and a history of smoking, showed
consistent directions of microbiome associations, which also matched
the signatures of microbiome-disease associations (Extended Data
Fig.9). Active smoking was associated with 41 species and 84 pathways
(FDR < 0.05, Fig.3b), with 60% of these also being associated with smok-
ing history, suggesting a long-lasting effect of smoking. Of note, 15 of
these were also associated with passive smoking, highlighting the need
to consider passive smoking in disease risk models.

We observed 220 associations (FDR < 0.05) between socioeconomic
factors (for example, monthly income and neighbourhood income)
and gut microbiome, of which 72 were between bacterial abundances
and monthly income; higher income was associated with a healthy
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for positive and negative correlations, respectively. Coloured associations
withoutalabelindicate nominally significantassociations (P< 0.05,no
multiple-testing correction). b, Comparison of Pearson correlations between
signatures predictive for diseases (bottom left triangle) and comorbidities of
these diseasesin the cohort (top right triangle). CD, Crohn’s disease; COPD,
chronicobstructive pulmonary disease; IBD, inflammatory bowel disease; IBS,
irritable bowel syndrome; RSI, repetitive straininjury; UC, ulcerative colitis.

microbiome signature. Income showed low, but significant, correla-
tions with neighbourhood greenspace area, rural living environment
and Lifelines diet score (LLDS) (Spearman correlations 0.22, 0.17 and
0.07, respectively; correlation test FDRs < 1.0 x10°%),implying that the
microbiome-income association probably reflects a combination of
factors, including healthier diet and lifestyle and less-urban living envi-
ronment. These results support the hypothesis that gut microbiome
mightbe amediator of the well-known differences in health across the
socioeconomic spectrum®,

We identified 378 associations between 20 dietary factors and 82
species (Supplementary Table 3b). Diet was also found to be relatively
stable over the 5-year period between food frequency questionnaire
(FFQ) collection and faecal sampling, with 30 FFQitems that represent
major dietaryitems and dietary trends being more than 95% conserved
across measurements and the remaining items being more than 50%
conserved (Supplementary Table 8, Supplementary Discussion).

The LLDS, a diet score based on international nutrition literature,
showed the highest number of associations (79 associations with taxa,
44 with pathways, 20 with antibiotic resistance genes and 8 with viru-
lencefactors at FDR < 0.05), followed by total alcohol intake, glycaemic
load, protein diet score (reflecting quantity and source of protein)
and total carbohydrate intake. The LLDS and protein intake scores
showed association patterns that overlapped with microbiome signals
ofincreased general health—for example, decreases in Clostridia spe-
cies and increases in Butyrivibrio and Roseburia genera and pathways
involved in ubiquinol and menaquinol synthesis. By contrast, total
dietary carbohydrate intake and glycaemic load showed the opposite
associations (Fig. 3b, Extended DataFig. 10).



Discussion

Inaddition to confirming known microbiome associations with age, sex
and BMI?, our results highlight the importance of frequently omitted
confounders related to stool samples? (stool consistency), sampling
season® and sample processing® (DNA concentration or sequencing
batch). This is especially important when studying diseases in which
age, sex, BMland faecal consistency are associated with the disease or
exploring phenotypes with seasonal variation such as diet®, physical
activity” and diseases such as allergies, flu and common cold.

Our observation that the microbiome is primarily associated with
cohabitation and environment rather than genetic relatedness cor-
roborates previous studies that identified limited overall microbi-
ome heritability?, shared microbiome patterns between cohabiting
family members and their pets®” and microbial divergence in twins
who stopped cohabiting®. These results suggest that bacteria with
low heritability, such as Ruminococcus, Streptococcus and Veillonella
species, might be more susceptible to microbiome-altering therapies
than more heritable bacteria, such as Akkermansia, Collinsella and
Bacteroides species.

By comparing associations between microbiome, health and diverse
diseases, we identified a common signal for gut dysbiosis (Fig. 4a)
that was largely consistent with a previous study’®. The existence
of shared dysbiosis has considerable implications for microbiome
research and microbiota-targeting diagnostics and therapies. Shared
dysbiosis implies that the gut microbiome is a biomarker of general
health, as supported by our prediction models and previous stud-
ies’®* butalso complicates microbiome-based diagnosis of individual
diseases. As single-disease models might be confounded by signals
shared across unrelated diseases, testing such models for specificity
in mixed-disease cohorts will be an important step before clinical
implementation. The shared microbiome signature also suggests that
microbiome-targeting interventions could improve overall human
health. This is supported by our observations that lifestyle factors
generally considered healthy—for example, adherence to current
dietary recommendations and not smoking—associate with microbi-
ome patterns similar to those associated with general health. Although
microbiome-druginteractions are well described in vitro*® and have
been characterized in vivo for antibiotics, PPIs* and antidiabetics®,
our results suggest that general microbiome dysbiosis arises asaresult
of acombination of drug and disease effects, implying that many cur-
rently understudied drugs, such as SSRIs, might have a negative effect
on the gut microbiome.

The presence of disease-like microbiome signatures in population
participants not reporting diseases or medication use indicates the
presence of pre-clinical ‘hidden’ disorders in the population and sug-
gests that gut dysbiosis might precede clinical onset of chronic diseases
suchas T2D. Although this hypothesis requires experimental validation
or analysis of long-timeframe longitudinal cohorts, our observations
suggest that the gut microbiome might be used to monitor long-term
health and detect disorders in the pre-clinical stage.

Linking healthy and unhealthy microbiome patterns to childhood
and current exposome, diet and socioeconomics, we observed that
healthier diet, childhood and current exposures to rural environment
and pets, exposure to green space and higher income share signals
with healthy microbiome patterns. These observations support the
microbiome diversity hypothesis (also called the hygiene hypothesis),
which postulates that reduced exposure to microbiota contributes to
anincrease in the frequency of autoimmune and allergic diseases®.
Notably, whereas the classic hygiene hypothesis focuses on patho-
gensand early-life exposures, our results suggest that adult exposures
also contribute to healthy or unhealthy microbiome patterns and that
the environment shapes the microbiome throughout life, meaning
that microbiome-targeted therapies could be effective throughout
anindividual’s life. Furthermore, we identified negative correlations

of diet scores, pets and rural environment with opportunistic patho-
gens such as Clostridia species as well as positive correlations with
commensals such as butyrate producers from Bacteroides, Alistipes
and Faecalibacterium,implying that exposure to pathogens and com-
mensals from the environment has animportantroleinestablishing a
healthy gut ecosystem.

We also observed that smoking, a high-carbohydrate diet and
exposure to NO, and small particulate matter (PM, ) are positively
correlated with disease-linked Clostridia and Ruminococcus species.
Whereas air pollutants have been associated with gastrointestinal dis-
easessuch asIBS** and have been shown to affect the gut microbiota
of mice, their effects on the human gut microbiota remain largely
unexplored®. Our results agree with a previous analysis of association
of air pollutioninan American cohort® and suggest that air pollutants
negatively affect the human gut microbiota and mightincrease the
risk of gastrointestinal diseases by contributing to general dysbiosis.
This is further supported by our observation that the presence of
IBS correlates with PM, s pollutants (Spearman r = 0.15), whereas the
correlations between pollutants and other diseases, socioeconomic
factors and diet are very low (Spearman r < 0.05) (Supplementary
Table 2c).

We found that childhood exposures to smoking, pets and rural
environment are associated with the adult microbiome. Although the
effect sizes for these associations were lower than for current expo-
sures, the effect directions and patterns were consistent, suggesting
that environmental exposures can have a long-lasting effect and that
the microbiome reflects an individual’s history of exposures. This is
further supported by our finding that former smokers still showed
microbiome associations similar to those of current smokers, albeit
with lower effect sizes.

We measured a broad range of 241 phenotypes, but we could only
explain around 15% of the interindividual variation in microbiome
compositionand function, whichis consistent with previous large-scale
studies®***. This implies that the gut microbiome is highly individual,
contains rare taxa that might be difficult to disentangle from arte-
facts in the data®, and that our current understanding of the factors
that shape the gut microbiome is still limited. This low explanatory
power might also reflect the use of database-centred microbiome
classification which, while facilitating standardization of studies and
alow false-positive rate, precludes identification of uncatalogued
microbes®. Future quantification of ‘missing variance’, potentially by
assembly-based and database-independent methods and longitudinal
studies, willhave a critical role in development of microbiome-targeting
diagnostics and therapies.

Conclusion

We have generated and analysed alarge, multi-generational gut micro-
biome cohort that hasbeen collected and profiled in a highly standard-
ized matter and linked it to extensive phenotype data. We define and
describe a gut dysbiosis shared across diverse diseases and identify
links between this dysbiosis and heritability, childhood and current
exposome, lifestyle and socioeconomics. This study demonstrates
the power of large-scale, well-phenotyped cohorts for dissecting the
links between gut microbiome, health, genetics and environment and
provides arichresource for future studies for microbiome-directed
interventions.
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Methods

Population cohort and metadata collection

The Lifelines Dutch Microbiome Project (DMP) cohort was developed
as a part of Lifelines cohort study. Lifelines is a multi-disciplinary
prospective population-based cohort study which utilizes a unique
three-generation design to examine health and health-related behav-
iours in 167,729 people living in the northern Netherlands. Lifelines
employs a broad range of investigative procedures to assess the bio-
medical, socio-demographic, behavioural, physical and psychological
factors that contribute to health and disease, with a special focus on
multi-morbidity and complex genetics***'. To form the DMP cohort,
8,719 distinct fresh-frozen faecal and blood samples were collected
from Lifelines participantsin2015and 2016 (one sample per individual).
Whole-genome shotgun sequencing was performed on one aliquot
fromeach of 8,534 faecal samples, and 8,208 were retained for down-
stream analysis after stringent quality control. Metadata information
collected fromthe participants was grouped into the following catego-
ries: family structure, diseases, gastrointestinal complaints, general
healthscore, medication use, anthropometrics, birth-related factors,
reported childhood (<16 years) exposures, current exposome (air pol-
lutants, greenspace, urbanicity, pets and smoking), socioeconomic
characteristics and diet (Supplementary Table 2d).

Informed consent

The Lifelines study was approved by the medical ethical committee of
the University Medical Center Groningen (METc number: 2017/152).
Additional written consent was signed by all DMP participants or their
parents or legal representatives (for children aged under 18).

Metadata

Metadata was collected by questionnaires and curated as described
previously* and below. We included 241 phenotypes from a broad
range of categories, including socioeconomic factors, self-reported
diseases and medications, quality of life, mental health, education and
employment, nutrition, smoking, stress and childhood environmental
factors. Questionnaires were developed and processed by the Lifelines
cohort study* as described at www.lifelines.nl. Additional in-depth
data curation and acquisition was performed to assess dietary intake,
air pollution and environmental exposures, medication use and gut
health, as described below.

Diet

Habitual diet was assessed through a semiquantitative FFQ collected
4 years prior to DMP faecal sampling*. The FFQ was designed and
validated by the division of Human Nutrition of Wageningen Univer-
sity, using standardized methods*. It assesses how often a food was
consumed over the previous month on a scale ranging from ‘never’ to
‘6-7 days per week’ and the usual amount taken. Average daily nutrient
intake was calculated using the Dutch Food Composition database
(NEVO, RIVM) and amono- and disaccharide-specific food composition
table®, resultingin the generation of data on 21 dietary factors. Energy
adjustment was performed by means of the nutrient density method*.
Published dietary scores and inter-nutrient ratios were calculated as
indicators of dietary quality and composition**,

To validate the assumed stability of FFQs across time**, we used
questionnaires from 128,501 Lifelines participants to study diet consist-
ency between the baseline questionnaire collected 4 years prior to the
DMP study and asecond smaller-scope nutrient-specific questionnaire
collected concurrently with DMP faecal sampling. 65 dietary questions,
reflecting consumption of major food categories such as fruits, veg-
etables, fish, meat, bread, grains and sweets, as well as special dietary
regimes (e.g. vegan or macrobiotic diet), were compared between the
firstand second time point. The majority of dietary items were available
for>44,000individuals at both time points (Supplementary Table 8).

43,47

Foreachfooditem, we computed the mean (absolute) change between
results of FFQs at time point 1and time point 2. The FFQ results were
encoded as numbers corresponding to FFQ answers (e.g.1=participant
reports “never” consuming the fooditem, 4 =the food itemis consumed
“always” or “every day”). The changes were calculated as:

n

1
MCi:Exglxy—yij

where MC is mean (absolute) change, n is the number of individuals
who answered FFQs at the two time points for food itemi,and xand y
represent results of baseline and follow-up FFQs. Each of the items in
the sum corresponds to FFQ results of one participant (Supplementary
Table 8).

Exposome

Elements of the exposome, neighbourhood urbanicity and income
were assessed for the participant’s home address at the time of fae-
cal sampling. Exposure to two air pollutants, particulate matter with
aerodynamic diameter <2.5 pm (PM, ) and nitrogen dioxide (NO,), was
assigned based on land-use regression models developed in the Euro-
pean Study of Cohorts for Air Pollution Effects (ESCAPE) project*5*°,
These estimates are based on measurement data from2009 and reflect
long-term ambient air pollution exposures®.

Greenspace was assigned using the NDVI, which reflects the average
density of green vegetation within a100 m circular buffer around the
participant’sresidentialaddress. The NDVIwas derived froma LANDSAT
5 (Thematic Mapper) satellite image taken in 2016 and captures the
density of green vegetation at a spatial resolution of 30 x 30 m based
onlandsurface reflectance of the visible (red) and near-infrared parts
ofthe spectrum.

Neighbourhood urbanicity was assigned based on a five-category
scale of surrounding address density developed by Statistics Nether-
lands (1, very urban, >2,500 addresses per km?to 5, very rural, <500
addresses per km?, data for 2015). Neighbourhood income was consid-
ered a proxy for neighbourhood socioeconomic position and defined as
the proportion ofindividuals with low (<40th percentile) income (Sta-
tistics Netherlands, datafor 2015; https://opendata.cbs.nl/#/CBS/en/).
Childhood neighbourhood urbanicity was defined based on the
self-reported answer to the Lifelines biobank questionnaires ques-
tion “What is the best description of the place where you lived most
of the time when you were younger than 5 years old?", with possible
answers being ‘farmy’, ‘rural/village’, ‘small town or large village’, ‘suburb
of alarge city’ and ‘city centre’.

Stool characteristics, diseases and medication

For 7 days in the week of stool sample collection, DMP participants
recorded abowel movement diary, Bristol stool scale, daily medication
use and gastrointestinal symptoms daily, and these records were used
to extractinformation on stool frequency, stool characteristics, drug
use and gastrointestinal symptoms during the week of stool collec-
tion. The validated ROME Il questionnaires™ were used to characterize
functional gastrointestinal disorders, and participants were classi-
fied as having either no functional gastrointestinal diseases or IBS,
functional diarrhoea, functional constipation or functional bloating.
Information about the presence of other diseases was self-reported
and collected using Lifelines questionnaires. Diseases were grouped
into 11 disease categories. The presence of cancer was grouped into a
separate category defined as ‘any cancer’,independent of cancer type.
Non-alcoholic fatty liver disease fibrosis score’ and fatty liver index*
were calculated from the anthropometrics and blood measurements,
as described previously®***, Diseases with < 20 cases were excluded
from further analysis. Self-reported medications were grouped into
categories based on Anatomical Therapeutic Chemical classification
(ATC codes) at the most specific ATC level (5-digit ATC code if possible).
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ATC categories with <20 users were grouped into a higher (4-digit or
3-digit) ATC class. Categories with <20 individuals that could not be
grouped accordingto ATC classification were excluded from further anal-
ysis. Intotal, 62 drug groups were included (Supplementary Table 2a).

Faecal sample collection, DNA extraction and sequencing

Faecal sample collection was performed by participants at home. Partic-
ipants were asked to freeze stool samples within 15 min of stool produc-
tion. Frozen samples were collected by Lifelines personnel, transported
tothe Lifelines biorepository ondryice and stored at—80 °C until DNA
extraction. Microbial DNA was isolated with the QIAamp Fast DNA Stool
MiniKit (Qiagen), according to the manufacturer’s instructions, using
the QIAcube (Qiagen) automated sample preparation system. Library
preparation for samples with total DNA yield lower than 200 ng (as
determined by Qubit 4 Fluorometer) was performed using NEBNext
UltraDNA Library Prep Kit for Illumina, while libraries for other samples
were prepared using NEBNext Ultrall DNA Library Prep Kit for [llumina.
Metagenomic sequencing was performed at Novogene, China using
the lllumina HiSeq 2000 platform to generate approximately 8 Gb
of 150 bp paired-end reads per sample (mean =7.9 Gb, s.d.=1.2 Gb).

Profiling microbiome composition and function

Metagenomes were profiled consistent with previous data analysis of
1000IBD** and Lifelines-DEEP* cohorts, as follows. KneadData tools
(v0.5.1)* were used to process metagenomic reads (in fastq format)
by trimming the reads to PHRED quality 30 and removing Illumina
adapters. Following trimming, the KneadDataintegrated Bowtie2 tool
(v2.3.4.1)** was used to remove reads that aligned to the human genome
(GRCh37/hg19).

Taxonomic composition of metagenomes was profiled by Met-
aPhlAn2tool (v2.7.2)% using the MetaPhlAn database of marker genes
mpa_v20_m200. Profiling of genes encoding microbial biochemical
pathways was performed using the HUMAnN2 pipeline (v0.11.1)*® inte-
grated with the DIAMOND alignment tool (v0.8.22)*, UniRef90 protein
database (v0.1.1)°° and ChocoPhlAn pan-genome database (v0.1.1)*s.
As afinal quality control step, samples with unrealistic microbiome
composition (eukaryotic or viral abundance >25% of total microbi-
ome content or total read depth <10 million) were excluded, leaving
8,208 samples for further analyses. Analyses were performed using
locally installed tools and databases on CentOS (release 6.9) on the
high-performance computing infrastructure available at our institu-
tion and using the MOLGENIS data platform®,

Intotal, we detected 1,253 taxa (4 kingdoms, 21 phyla, 35 classes, 62
orders, 128 families, 270 genera and 733 species) and 564 pathwaysin at
least one of the samplesin the quality-controlled dataset. To deal with
sparse microbial datainthe downstream analysis, we focused on bac-
terial and archaeal species/pathways with amean relative abundance
>0.01% that were presentin atleast 5% of participants. This yielded 257
taxa (6 phyla, 11 classes, 15 orders, 30 families, 59 genera and 136 spe-
cies) and 277 pathways. Together, these microbial features accounted
for 97.86% and 87.82% of the average taxonomic and functional com-
positions, respectively.

Based onthe abundance profiles of the taxa that passed the filtering
process, we calculated alpha diversity, as measured by richness and
Shannonentropy, at family-, genus- and species-level using specnumber
and the functiondiversity, respectively, in R package vegan (v.3.6.1)%%.
Rarefaction and extrapolation (R/E) sampling curves for estimation of
total richness of species and generain the population were constructed
using a sample size-based interpolation/ extrapolation algorithm
implemented in the iNEXT package for R®.

Profiling of bacterial virulence factor and antibiotic resistance
genes

Metagenomes were searched for bacterial virulence factors using the
shortBRED toolkit (v0.9.5)* and the virulence factors of pathogenic

bacteria (VFDB) core dataset of DNA sequences® (downloaded on 1
November 2018). The shortBRED tool shortbred_identify.py (v0.9.5)
was used to identify unique markers for virulence factors, with the
UniRef90 database (downloaded on1November 2018) used as negative
control, and the shortbred_quantify.py tool (v0.9.5) was used to per-
formaquantification of these markers in metagenomes. Quantification
ofantibioticresistance genes was performed using the shortBRED tool
shortbred_quantify.py (v0.9.5), with markers generated using short-
bred_identify.py (v0.9.5) on the CARD database of bacterial antibiotic
resistance genes® (downloaded 1 November 2018), with the UniRef90
database used as negative control. This identified 190 virulence fac-
torsand 303 antibiotic resistance gene families, of which 47 virulence
factors and 98 antibiotic resistance genes were present in at least 5%
of participants with arelative abundance > 0.01%. These accounted
for 95.22% of virulence factor composition and 98.08% of antibiotic
resistance composition, respectively.

Estimation of heritability of microbiome

We estimated the heritability of bacterial taxa and pathways using
linear mixed models. In particular, we fitted the following model using
the function relmatLmer from the Ime4qtl package (v.0.1.10)¥’ for R:

Y - age +age? +sex +read depth +stool frequency
+1|ID +1|FAM +1|cohousing

where Yis the relative abundance of the bacterial taxon or pathway,
transformed using the centred additive log-ratio (CLR) transforma-
tion, with the geometric mean calculated on the taxonomic level of
species used as denominator®®, Age, age?, sex, read depth and stool
frequency are participant-specific factors modelled as fixed-effect
covariates, while the remaining three terms are random effects repre-
sentinga polygenic additive effect (1/ID, equivalent to twice the kinship
matrix), history of afamilial shared environment (1/FAM, implemented
as unique family identifier) and current cohabitation (1/cohousing,
implemented as unique housing locationidentifier). We note that this
model may still provide heritability estimates that are slightly inflated
duetoresidual correlation between the polygenic additive effect and
the cohabitation effectin our dataset, where 42% of participants share
the same household. Narrow-sense heritability was estimated as the
proportion of variance explained by the polygenic additive effect over
total variance, using the profile function of the same R package. We
restricted the analysis of heritability to the relative abundances of the
257 microbial taxaand 277 pathways presentin at least 5% of individu-
als and focused on 3,571 individuals in 1,432 families in which at least
two individuals had available microbiome data. In total, the analysis
included 1,004 first-degree relative pairs, 210 second-degree relative
pairs and 85 pairs with third-degree or more distant relationships.
The significance of random variables in heritability models (herit-
ability, cohabitation and history of a familial shared environment)
was assessed using a permutation test to determine empirical Pvalue.
For each microbiome feature, the link between the participantID and
relative abundance of microbial taxawas randomly permuted 30,000
times, whileretaining the data structure of the rest of data to maintain
families, cohabitation and other associationsin the dataset. To maintain
consistency, each microbiome feature was permuted using the set of
identical randomization seeds. A heritability model was constructed
foreach permuted dataset, and the empirical Pvalues for heritability,
family ID and cohabitation were calculated as a proportion of the values
ofthese variables higher than, or equal to, values of heritability, family
ID or cohabitationinthe model constructed from non-permuted data.
Significance of fixed effects was calculated using type-Il analysis of
variance using Wald tests implemented in the anova function for R
package car, while the significance of random effects was calculated
using likelihood ratio tests implemented in the ranova function for
R package ImerTest. Confidence intervals were estimated using the



function profile from the R stats package. As this approach could not
estimate confidenceintervals for taxa or pathway models for which one
or more random effects estimate was approximately O, we estimated
the confidenceintervals of these traits using reduced models without
random variables with effect size <1.0 x 107, Allempirical Pvalues were
corrected for multiple testing using Benjamini-Hochberg correction,
and results with an empirical FDR < 0.1 were considered significant.

Estimation of the effect of cohabitation on microbiome

We estimated the effect of cohabitation on overall microbiome com-
position, function, antibiotic resistance genes and virulence factors by
comparingthe beta-diversities of the microbiomes of cohabiting study
participants (1,710 unrelated pairs, 285 parent-child pairs and 144 sibling
pairs) to those of participants who did not share housing (2,000 unre-
lated pairs, 301 parent-child pairs and 299 sibling pairs). Microbiome
distance was calculated for each pair using Bray-Curtis dissimilarity, and
meandissimilarities withingroups were compared using Mann-Whitney
U tests using the Benjamini-Hochberg correction to control multiple
testing FDR. Results were considered significant at FDR < 0.05.

Calculation of microbiome-phenotype associations

The proportion of variance in microbiome composition that can be
explained by individual phenotypes was calculated by permutational
multivariate analysis of variance using distance matrices (adonis)
implemented in the adonis function of R package vegan (v.2.4-6)%%.
Analysis was performed on the microbiome beta-diversity (Bray-Curtis
distance matrix calculated using relative abundances of microbial
species) and separately for each phenotype using univariate adonis
with 20,000 permutations. To calculate the proportion of microbiome
functional potential explained by individual phenotypes, an equivalent
analysis was performed on the Bray-Curtis distance matrix calculated
usingrelative abundances of MetaCyc microbial biochemical pathways.

Thetotal proportion of microbiome composition variance and func-
tionexplained by groups of phenotypes was calculated by multivariate
adonis analyses. These analyses included all phenotypes that showed
significant (FDR < 0.05) association with microbiome composition or
functionin the univariate analyses.

Theassociations between eachindividual microbiome feature (Shan-
nonalphadiversity index, microbial taxa, MetaCyc pathways, virulence
factor and antibiotic resistance gene families) and each phenotype
were calculated using linear regression. To correct for potential batch
effectsand confounders, the regression model also included age, sex,
BMI, Bristol stool scale and technical factors (DNA concentration,
sequencingread depth, sequencing batch and sampling season). The
microbiome data was transformed using the CLR transformation to
break compositionality of the dataand normalize skewed distributions
of microbiome features.

All microbial taxa, regardless of taxonomic level, were CLR-
transformed using the geometric mean of the relative abundance of
microbial species as the CLR denominator. The other microbiome data
layers (pathways, virulence factor and antibiotic resistance genes)
used geometric mean of relative abundances of these features as the
CLR denominator. As CLR transformation cannot be applied to zero
values, zeros in the tables were adjusted by adding half of the lowest
value in the table to each cell. Benjamini-Hochberg correction was
used to control for multiple testing, with the number of tests equal to
the number of feature-phenotype pairs tested (64,764 tests for taxa,
87,444 for pathways, 111,889 for VFDB and 24,444 for CARD). Results
were considered significant at FDR < 0.05.

Quantification of microbiome-disease-druginteractions

Todisentangle interactions between the gut microbiome, medication
and diseases, we explored the effect of a selection of drug-disease
pairs for three common diseases and the drugs used to treat them:
functional gastrointestinal disorders PPIs (N = 545 (disease only), 375

(drug only) and 108 (overlap)), T2D with antidiabetic drugs (V=83
(disease only), 10 (drug only) and 98 (overlap)) and depression with
SSRIs (V=268 (disease only), 158 (drug only) and 78 (overlap)). For each
disease-drug pair, we used multivariate linear regression including
the drug and disease asindependent variables and microbiome traits
asoutcomes to calculate the conditional effects of drugs and diseases
onthe microbial traits. Details of the models and approaches used are
described in ‘Calculation of microbiome-phenotype associations’.

Definition of core microbiome and prediction of keystone
microbiome features

We used a bootstrapping-based selection approach to identify the
expected number of microbial traits in the DMP. We created rand-
omized subsamples with asize of 1% to100% of the cohort, one hundred
times for each subsampling size, and calculated mean and standard
deviation of the number of microbial features for each subsampling
level. The expected cohort richness was estimated using the specpool
functioninvegan packagev.2.5.7 using the bootstrap method. Micro-
bial features with a prevalence >95% in the cohort were defined as the
core microbiome, which included 9 core microbial species and 143
core microbial pathways (Supplementary Table 1a, b). To validate the
consistency of our approach, we compared the results to previously
published studies that defined the core microbiotain UK, US, European
and non-Western populations>?¢°71,

To analyse the structure of the microbiome community, we con-
structed microbial species and pathway co-abundance networks using
SparCC, as previously published””, Relative abundances of taxa were
converted to estimated read counts by multiplying abundance per-
centages by total sequenced reads per sample after quality control.
For pathway analysis, the read counts (RPKM) from HUMANN2 were
used directly for SparCC.

Co-abundances were deemed significant at an empirical FDR < 0.05,
calculated using 100 permutations. In each permutation, the abun-
dance of each microbial feature was randomly shuffled across samples.
This identified 6,473 species and 55,407 pathway co-abundances at
empirical FDR < 0.05. Features that ranked in the top 20% in the num-
ber of network connections (node degree) were considered keystone
species or pathways, resulting in 28 keystone species and 53 keystone
pathways (Supplementary Table 1e).

Identification of microbiome clusters

To identify microbial clusters and assess the presence of gut entero-
typesinour cohort, we performed the partitioning around the medoid
method on therelative abundances of microbial species and used the
Calinski-Harabasz index to select the optimal number of clusters, as
previously published in a study of gut enterotypes™. Enrichment of
phenotypes in each cluster was assessed by logistic regressioninR.

Calculation of microbiome signatures predictive of diseases and
health

We calculated the microbial signatures predictive of the 36 most com-
mon (number of cases >100) diseases in our dataset. In addition, we
defined a healthy phenotype as absence of any self-reported disease,
with 2,937 (36%) out of 8,208 individuals defined as healthy.

We used fivefold cross-validation to train prediction models for
common diseases, with4 out of 5 of the dataused as a training set and
loutof5asatestset. Next, we performed elasticnet L1/L2 regularized
regression (R package glmnet v.4.0) on the training set, using Shannon
diversity, CLR-transformed microbial taxa, CLR-transformed MetaCyc
bacterial pathways and age, sex and BMI as fixed covariates. Within
each fold, the model for each disease was calculated independently
using nested tenfold cross-validation to select the optimal lambda
penalization factor (at L1/L2 mixing parameter alpha fixed at 0.5). The
lambda withminimal cross-validation error was used in the downstream
analysis.
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Intotal, we defined three probabilistic models: a ‘null’ signature that
onlyincludes effects of general covariates (age, sexand BMI), a‘micro-
biome’ signature that includes all selected microbiome features and
a‘combined’ signature that includes both the effects of microbiome
features and general covariates. Correlations of predictive signatures
of diseases were calculated as Pearson correlation of predicted values
for diseases from the test set of each fold, while disease comorbidities
were calculated as Pearson correlations of the presence of diseases in
the population (encoded O for controls and 1for presence of disease).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The raw microbiome sequencing data, processed microbiome data
(including taxonomy, pathway, virulence factor and antibiotic resistance
gene profiles) and basic phenotypes (including age, sex and BMI) used
in this study are available at the European Genome-Phenome Archive
under accession EGAS00001005027. These datasets can be accessed
fromhttps://forms.gle/eHeBdXJMXbVvCJRc8 or by email fromthe corre-
spondingauthor (R.K.W.) at the addresslisted at the EGA dataaccess com-
mittee EGACO0001001996. The phenotype datacanberequested, fora
fee, by filling the application form at https://www.lifelines.nl/researcher/
how-to-apply/apply-here. Lifelines will not charge anaccess fee for con-
trolled access to the full dataset used in the manuscript (including phe-
notype and sequencing data), for the specific purpose of replication
of the results presented in this Article or for further assessment by the
reviewers, for aperiod of three months. Researchersinterestedinsucha
replicationstudy or review assessment can contact Lifelines at research@
lifelines.nl. Source data are provided with this paper.

Code availability

Open source codes and scripts used for the analyses or figures
areavailableatthe GitHubrepository (https://github.com/GRONINGEN-
MICROBIOME-CENTRE/DMP) and Zenodo (https://doi.org/10.5281/
zen0do.5910709). To facilitate the re-use of the codes, the repository
also includes example datasets that enable users to test the codes
without the need to apply for access to phenotypes.
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Extended DataFig.2|Overview of DMP microbiome compositionand
function. a, First two principal coordinates of the Bray-Curtis distance matrix
calculated on microbial species of the DMP cohort, coloured by the relative
abundance of Prevotella copribacterium.b, Average relative abundances of
bacterial phyla presentin>0.1% of the DMP cohort. Red vertical line indicates
rare phyla (abundance < 0.1%). ¢, Phylum-level composition of allsamplesin the
cohort, sorted by abundance of phylum Bacteroidetes. Each vertical line
indicates one sample. *phylum has significantly higher variance when

Taxon

. Bacteroidetes

Firmicutes

Proteobacteria
Actinobacteria
Verrucomicrobia
Spirochaetes
Euryarchaeota
Synergistetes
Fusobacteria

Tenericutes

Candidatus_Saccharibacteria

Phylum

. Bacteroidetes
Firmicutes
Proteobacteria
Actinobacteria
Verrucomicrobia

Tenericutes

Pathway class

. nucleosides and nucleotides biosynthesis
. amino acids biosynthesis

. cell structures biosynthesis

. vitamin biosynthesis

. fatty acid and lipid biosynthesis

. secondary metabolites biosynthesis

. cofactor biosynthesis

. carbohydrates biosynthesis

- glycolysis
. Other

compared to each of pathway classes (one-sided F test of variances FDRs < 0.05,
Supplementary Table1G) d, Relative abundances of the top 10 MetaCyc
pathways of allsamples (sorted to match panel ¢). Each vertical line indicates
onesample. The means of standard deviations of taxa and pathways were found
to besignificantly different (mean(sd(tax,),...,sd(tax,)) - mean(sd(pwyy),...,
sd(pwn,;) >0, two-sided permutation test (1,000 permutations) P<1.0 x 107).
All panels show results generated fromn = 8,208 independent samples.
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Extended DataFig. 5| Overview of microbiome-phenotype associations.
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Extended DataFig.7|Microbiome associations with diseasesand season)) using hierarchical clustering and coloured by the direction of
medication use. Heatmap of microbiome-phenotype associations, with association. Study-wide significant associations (Benjamini-Hochberg
microbial species clustered by Z scores (multivariate linear regression of corrected p-value <0.05) are marked with +/-. Coloured associations without a
CLR-transformed relative abundance oftaxa, correcting for age, Sex, BMI, labelindicate nominally significant associations (Benjamini-Hochberg
Bristol stool scale of the faecal sample and technical factors (DNA corrected p-value<0.05).
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Extended DataFig. 9 |Microbiome association with smoking, pollutants season)) using hierarchical clustering and coloured by the direction of
and greenspace. Heatmap of microbiome-phenotype associations, with association. Study-wide significant associations (Benjamini-Hochberg
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Extended DataFig.10|Microbiome association with diet. Heatmap of
microbiome-phenotype associations, with microbial species clustered by Z
scores (multivariate linear regression of CLR-transformed relative abundance
of'taxa, correcting for age, Sex, BMI, Bristol stool scale of the faecal sample and
technical factors (DNA concentration, sequencing read depth, sequencing

batchand sampling season)) using hierarchical clustering and coloured by the
direction of association. Study-wide significant associations
(Benjamini-Hochberg corrected p-value < 0.05) are marked with +/-. Coloured
associations without alabel indicate nominally significant associations
(Benjamini-Hochberg corrected p-value < 0.05).
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Software and code

Policy information about availability of computer code

Data collection  For full details see Methods; KneadData tools (v0.5.1), Bowtie2 tool (v2.3.4.1), MetaPhlAn2 tool (v2.7.2), HUMANN2 (v0.11.1), DIAMOND
alignment tool (v0.8.22), shortBRED toolkit (v0.9.5) were used to process the microbiome sequencing data.

Data analysis Custom codes and scripts are avaliable at GitHub: https://github.com/GRONINGEN-MICROBIOME-CENTRE/DMP and Zonedo: https://
doi.org/10.5281/zen0do0.5910709. Other software used: Microsoft Excel v 14.0.4734, R version 3.6.0 (2019-04-26), R packages: vegan
(v.2.5-6), INEXT (v.2.0.20), Ime4qtl (v.0.1.10), car (v.3.0-12), ImerTest (v.3.1-3), stats (v.3.6.0), glmnet (v.4.0)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Access to raw microbiome sequencing data and basic phenotypes:
The raw microbiome sequencing data, processed microbiome data (including taxonomy, pathway, VF and antibiotic resistance gene profiles) and basic phenotypes
(including age, sex and BMI) used in this study are available at the European Genome-Phenome Archive (EGA, https://ega-archive.org/) as EGA study
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EGAS00001005027 (https://ega-archive.org/studies/EGASO0001005027). These datasets require a minimal access procedure (data access form at https://forms.gle/
eHeBdXJMXbVvCIRc8 or email request to corresponding author at address listed on EGA data access committee EGAC00001001996: https://ega-archive.org/dacs/
EGAC00001001996) to ensure that the data is being requested for research/scientific purposes only and thus complies with the informed consent signed by
Lifelines participants, which specifies that the collected data will not be used for commercial purposes. Submitted data access forms will be evaluated by the data
access committee and Lifelines, and a response to requests will be given within two weeks. For requests from verified academic parties, access will be given without
further delay. For requests from commercial parties, Lifelines will perform a pre-DPIA (Data Privacy Impact Assessment) to assess the risks of the proposed
processing of personal data (e.g. purpose, storage, access, archiving, etc.) with respect to the GDPR (EU privacy laws) subject rights. Based on the outcome of the
pre-DPIA, Lifelines will decide whether sharing data with the commercial entity is allowed and/or whether additional measures have to be taken.

Access to other phenotype data:

To ensure adherence to participant’s privacy and informed consent, the rights of participants as described in the GDPR and Lifelines biobank regulations, the
complete phenotype data cannot be provided open-access and is available from the Lifelines under controlled-access in a secure Lifelines Workspace or High
Performance Cluster (HPC) environment. As Lifelines is a non-profit organization dependent on (governmental) subsidies, a fee is required to cover the costs of
controlled data access and supporting infrastructure.

In brief, the step-by-step data access procedure is as follows: 1) Data is requested by filling the application form to request “Available Lifelines-data” at https://
www.lifelines.nl/researcher/how-to-apply/apply-here, 2) Lifelines will evaluate project proposals to ensure compliance with the Lifelines data access policy,
informed consent of Lifelines participants and the GDPR and that the data is being requested for non-commercial research, 3) upon approval, Lifelines will send
Data and Material Transfer Agreement (DMTA) contracts to the applicants and 4) after the required contracts are signed, Lifelines will provide access to data via the
Workspace or HPC and link the raw and processed DMP sequencing data to the Lifelines phenotypes. Lifelines strives to accomplish steps 2—4 at 2-weeks per step,
assuming that no extra actions by the applicant or Lifelines are required.

The fee for data access on the HPC is €3,500 for one year and the fee for the Lifelines Workspace environment is €4,500 for one year, or less for shorter periods of
time. There are no restrictions on downstream re-use of aggregated, non-identifiable results (as approved by Lifelines), nor are there authorship requirements, but
Lifelines does request that it is acknowledged in publications using these data. The data access policy and data access fees are described in detail at https://
www.lifelines.nl/researcher/how-to-apply. Further information and an example DMTA (which includes details on how to acknowledge the use of Lifelines data in
publications) can be obtained from Lifelines at https://www.lifelines.nl/researcher/how-to-apply/information-request or by contacting Lifelines at
research@lifelines.nl. Finally, Lifelines will not charge an access fee for controlled-access to the full dataset used in the manuscript (including phenotype and
sequencing data) for a period of 3 months, for the specific purpose of replication of the results presented in the current manuscript or for further assessment by the
reviewers. Researchers interested in such a replication study or review assessment can contact Lifelines at research@lifelines.nl.

Other supporting data: Source data for Figures 1-4 are provided with the paper. The authors declare that all other data supporting the findings of this study are
available within the paper and its supplementary information files.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size calculation was not performed before the study because of unknown effect sizes of many of studied factors. Instead the study
focused on obtaining the largest possible sample size to capture microbiome variation in the population. As previous studies have identified
significant microbiome-disease associations with 50-100 samples, our sample size was deemed sufficient to capture significant associations
with moderately rare traits (prevalence >=1%).

Data exclusions  Out of 8,719 samples, 8,534 samples were successfully sequenced. Sequenced samples with with eukaryotic or viral abundance > 25% of
total microbiome content or total read depth < 10 million were excluded, and 8,208 samples were retained for statistical analyses.

Replication As this was a hypothesis generating study, no explicit replication attempts were made, but we compared our results to previously published
studies where possible. These comparisons are described in details in the manuscript and include:

1) core gut microbiome species identified in our study were found to be highly consistent with those found in previous studies of UK, US and
European and non-western populations (https://pubmed.ncbi.nlm.nih.gov/27126040/, https://www.nature.com/articles/nature06244/,
https://pubmed.ncbi.nim.nih.gov/22699611/, https://pubmed.ncbi.nlm.nih.gov/20203603/, https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4255478/) (Supplementary Table 1a).

2) We compared results of our microbiome heritability analysis to previously published data (https://pubmed.ncbi.nlm.nih.gov/27173935/,
https://pubmed.ncbi.nim.nih.gov/27694960/) and found moderate consistency (heritability of Genera Akkermansia, Bifidobacterium,
Bacteroides and Parabacteroides, as well as some of the genera from order Clostridiales), but did not replicate certain previous results (family
Christensenellaceae, genus Turicibacter), possibly due to differences in cohort ethnicities, experimetnal methodology (we used metagenomic
sequencing as opposed to previous studies using 16S sequencing) and used software and databases (e.g. Christensenellaceae was not present
in Metaphlan2 database we used for classification and showed very low prevalence ( < 1% ) in our cohort when using Metaphlan3 database.

3) As described in the manuscript, we performed 5-fold cross-validation of disease-prediction models on our data as internal replication /
test of data consistency. Cross-validation found that results are highly consistent across the folds (for example, prediction of no-disease status
had AUC of 0.572 with standard error = 0.005);

4) We calculated Gut Microbiome Health Index (GMHI, https://pubmed.ncbi.nlm.nih.gov/32934239/) using our data and found high
consistency with previously published results, with 43/50 GMHI signals replicating across the two studies at genus- or species-level
(Supplementary Table 10).
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Randomization  Study did not include any interventions and thus the randomization (as used in clinical trials or intervention studies) was not appropriate for
this study. However, samples were randomly assigned to batches for all procedures which requires batch processing (DNA isolation,
metagenomic sequencing and data preprocessing). As such, we do not anticipate any bias which might be caused by the potential lack of
randomization.

Blinding Study did not include any interventions and thus the conventional blinding (as used in clinical trials or intervention studies) was not
appropriate for this study. However, the experimental procedures (DNA isolation, metagenomic sequencing) were in-effect blinded by
samples being given group-unrelated identifiers and barcodes and by staff performing these procedures being unaware of sample metadata.
As the data processing was performed computationally using standardized pipeline, it was effectively blinded as identical settings and
software were used to process all data. The only unblinded part of the study was initial metadata collection by study data collection
personnel, who due to the design of the study (data collection from medical records and self-reporting of data by study participants) cannot
be blinded. We do anticipate any resulting bias which might be caused by the lack of blinding.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChlIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
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Clinical data

Dual use research of concern

XXOXXXNX s
AOXOdOooo

Human research participants

Policy information about studies involving human research participants

Population characteristics Lifelines is a multi-disciplinary prospective population-based cohort study using a unique three-generation design to examine
the health and health-related behaviours of people living in the North of the Netherlands. The participants age-range was 8 -
84 years, 57.4% were female and 4,745 individuals clustered into 2,756 families.The participants were largely (99.5%) of
Dutch European ancestry. A total of 241 host and environmental factors, including physical and mental health, medication
use, diet, socioeconomic factors and childhood and current exposome were collected. These variables are described in detail,
including summary statistics, in Methods section and Supplementary tables.

Recruitment Between 2006 and 2013, inhabitants of the northern part of the Netherlands and their families were invited to participate in
the Lifelines cohort study. Initially, eligible participants between 25 and 50 years of age were recruited through their general
practitioner, and these individuals were then asked to indicate whether their family members (parents, partner, children,
parents-in-law) would also be willing to participate in the study, if so they were sent an invitation to participate. In addition,
other interested individuals could self-register as participants via the website during a limited period of time. This approach
has resulted in a three-generation cohort of over 167,000 participants. DMP cohort was formed from volunteers from
Lifelines cohort study who donated fecal samples.

Ethics oversight The Lifelines study was approved by the medical ethical committee from the University Medical Center Groningen (METc
number: 2017/152). Additional written consent was signed by all DMP participants or their parents or legal representatives
(for children aged under 18).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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