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Abstract

We examine the homogeneity of the highly improbable returns, what practi-

tioners and the mainstream economic press also call black swan events. By set-

ting up a simple framework and using the benchmark stock market indices of

all OECD countries, we find that the frequency of black swans varies greatly

over the last two decades often with dramatic changes that can be related to

major economic events. Moreover, during the global financial crisis, black

swans were substantially more frequent for most countries even after control-

ling for the level of volatility. This implies that, despite the plethora of appro-

priate financial instruments to counter this effect, during an obvious economic

turmoil, stock markets are still more likely to experience highly improbable

events.
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1 | INTRODUCTION

Remarkable in many ways is that, despite the spectacular
econometric advances of the last few decades, the ever-
debated distribution of stock market returns remains an
excitedly controversial issue. At its core, the presence and
abnormal frequency of extreme returns, currently beyond
the reach of existing theoretical structures, reveal inter-
mittent model failures with real consequences in areas of
the utmost interest to institutional and individual finan-
cial market practitioners and researchers, such as asset
pricing and risk management. This is what the Goldman
Sachs' Chief Financial Officer was referring to when in
August 2007 he famously lamented “We were seeing
things that were 25 standard deviation moves, several days
in a row.” Market practitioners label these improbable
stock market events black swans.1 And the quick spread

of the so-called “black swan” funds is one of the latest
manifestations of their unyielding interest in them.

Using a parsimonious mean–variance specification,
we test a predominant assumption in the respective liter-
ature namely the homogeneity of black swans against the
possibility that they are clustered over time. One such
cluster of black swans would be made apparent only by
comparing it to its neighbouring cluster, effectively by
discerning what we call here black swan swarms2: periods
during which (at least) the frequency of black swans is
different from the periods just before and after. In other
words, our primary objective is to robustly test for the
presence of black swan swarms which implies that the
distribution of extreme events varies over time and is
driven by the arrival of news – although in our methodol-
ogy, this clustered time variation is based on no assump-
tions as to whether the news process causes extreme
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events or extreme events cause (changes in) the news
process or both.

One possibility why black swans may be clustered in
such a way may be that news follows a process that
resembles the succession of swarms each of which may
differ in size from its neighbouring ones but also in the
number of black swans that they contain. In other words,
the explanation for processes that yield black swan
swarms may lie either in the arrival process of extraordi-
nary news or in market dynamics in response to the
news.3

If information comes in clusters, each with its own
characteristics, then the frequency of black swans in asset
returns or prices may also exhibit clusters. Alternatively,
the mechanisms through which expectational differences
of traders with heterogeneous priors and private informa-
tion are resolved may go through distinct phases if, for
example, the mechanisms by which processing informa-
tion and responding to it changes due to changes in the
legislative framework or technological means including
the available financial instruments.4 In either case, mar-
ket dynamics lead to black swan swarms. In either case,
market expectation based on public information could be
unbiased at every time point, hence consistent with
market efficiency and with a view that major sources of
disturbances (extraordinary news) are changes in
country-specific fundamentals.

Using a comprehensive set of daily stock market
returns from the benchmark indices of all OECD coun-
tries (34 in total5) over a long period, we find that when
we account for the potential heterogeneity of black
swans: (a) highly improbable events are dramatically less
frequent, (b) the country-specific element of the black
swans distribution becomes substantially less prominent,
and the distributions of positive and negative black swans
seem dramatically more similar; (c) the frequency of
black swans changes over time, and in some cases, these
changes are quite dramatic even for contiguous segments;
(d) the frequency of black swans is (at least) uncorrelated
to the levels of volatility, across different measures of the
latter. These four findings suggest that our notion of dif-
ferent black swan swarms is well justified and can com-
plement existing approaches of modelling tail events.
Consequently, the framework we propose may well be
directly relevant not only to the valuation practices of
“black swan” funds but also to the pricing of a large class
of derivatives, for example, out-of-the-money vanilla
options and to the estimation of jump processes, given
for example the sensitivity of the Poisson rate estimate to
the sample size. When we apply this framework to exam-
ine the aggregate effect of market participants' behaviour
during the 2007/8 crisis, we find that black swans become
notably more frequent irrespective of the levels of

volatility, an effect that could be attributed to self-
fulfilling expectations. Moreover, if we view black swans
as model failures, then our findings suggest that these
failures do come in clusters but for practical purposes, a
flexible mean–variance specification that proxies the ret-
rospective model (which in turn can be viewed as a proxy
of the actual albeit unknown stochastic process) seems
capable to keep them low and stable over the medium
term even when such dramatic events take place.

The remainder of the paper is organized as follows.
Section 2 provides the rationale of our approach and dis-
tinguishes it from the conventional routes that could
have been used potentially in the literature for the same
purpose while Section 3 overviews the data. Section 4
describes the methodology and Section 5 presents our
results. Finally, Section 6 contains our concluding
remarks.

2 | THEORETICAL
UNDERPINNINGS

Unsurprisingly, there are several major strands of the
academic literature that are tangent to the study of black
swans, such as the literature on jump and tail risk. In
fact, if one associates asset price movements with the
(unknown) news process, then the entire literature of
modelling the news process and its impact on economic
and financial variables becomes relevant. This is for
example what Ehrmann and Fratzscher (2003) do when
they look at monetary policy announcements made by
the Federal Reserve, Bundesbank and ECB and show
their importance in capturing the links between mone-
tary policy and money markets. Or what Fratzscher and
Straub (2013) do, within a structural VAR setup, when
they link fluctuations in asset prices to news shocks,
which they interpret as anticipated changes to technol-
ogy, and show their substantial effect on trade balances.
Or what Dergiades, Milas, and Panagiotidis (2015) do
when they illustrate the predictive ability of the Google
search queries and social media posts for the short run
movements of the financial crises. Or even, within the
early warning system (EWS) literature, what Bussiere
and Fratzscher (2006) do when they caution against the
use of the typical binomial-logit EWS, and in favour of its
multinomial-logit extension, due to the former's biased
estimation and, in turn, worse ability to anticipate finan-
cial crises by failing to distinguish between tranquil and
crisis/post-crisis periods.

And yet, so far, the attention has been predominantly
the size of specific extreme movements, typically cata-
strophic events such as stock market crashes. Interest-
ingly, and despite the fact that it has long been shown
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that the tail behaviour of returns is fundamentally differ-
ent from the remainder of the return distribution (with
evidence as early as Akgiray & Booth, 1988 and Jansen &
De Vries, 1991), it is hardly challenging to notice a cru-
cial implicit albeit strong assumption that is made in the
vast majority of the relevant papers. Black swans (overall,
positive or negative) are assumed as a relatively homoge-
neous group of observations that, at most, may differ in
size – which often prompts each specific case study. We
examine how the frequency of black swans evolves in the
presence of structural changes and/or latent non-
linearities with the purpose of providing some historical
grounding of their likelihood of occurrence that can be
used for inference. By doing so, as we demonstrate in
Section 5.1, we can readily gain further intuition about
the operations of financial markets without resorting to
some possible alternative methods that, apart from being
much more sensitive and demanding in terms of data,
their asymptotic properties cannot overcome the natural
scepticism that they inspire because of their mostly
unknown albeit intuitively very demanding in terms of
sample sizes properties.6

In the remainder of this section, we explain how the
notion of black swans is distinguished from similar
notions; then we discuss what the homogeneity of black
swans' assumption entails and why it should be tested.

2.1 | What is (and is not) a black swan?

To set ideas let us define rt, the daily (log)returns process,
to be given by the very general:

rt = μt + σt �ut, ð1Þ

where the (conditional) mean μt and/or variance σt
2 of

the return process may be constant or change over time.
The standardized unexpected return is denoted by the ut
terms, which by construction have mean equal to zero
and variance equal to one. The customary practice is to
classify an observation as a black swan if its standardized
unexpected return value is beyond a threshold value,
namely three standard deviations above and below the
mean. In other words, rt is a black swan if jutj < 3.7

For market practitioners, the notion of black swan is
used primarily as an established heuristic to readily iden-
tify dramatic stock return movements during trading
days with no reference to any specific model – not least
for the purposes of communicating to one another their
modelling approach and performance.8 Likewise, by
being both straightforward to calculate and model-free, it
proved particularly appealing to the popular press:
extreme stock market returns effortlessly grab the

attention of the general public; hence they are a favourite
source of prominent news headlines and elaborate finan-
cial/economic analyses about their possible causes and
consequences all while remaining tacit about the under-
lying modelling intricacies. And maybe for exactly that
reason, market participants do care about them, and
react to them, and in turn yield their striking real effects.
However, amongst academics, it is a notion that is often
confused with four fuzzily defined (albeit distinctly popu-
lar in the finance and econometric literature) notions:
the notion of stock market crashes; the notion of outliers;
the notion of extreme value and the notion of breaks.

The notion of black swans overlaps but does not coin-
cide with the notion of stock market crashes. Indeed, a
stock market crash is unlikely to take place with returns
that are not extreme. Therefore, a stock market crash is
typically a black swan, albeit one that is principally char-
acterized by its extreme size, often reflecting or entailing
a systemic collapse, rather than its infrequent occurrence,
which is primarily the emphasis of the black swan
notion. In such cases, for example, portfolio choice
models such as the one proposed by Liu and
Loewenstein (2013) are effectively about addressing the
possibility of negative black swans for optimal portfolio
selection. However, black swans may well be positive,
and even when negative, they may also refer to magni-
tudes that do not involve catastrophic drawdowns, such
as those that often follow speculative stock market bub-
bles, but which nevertheless have attracted the attention
of the financial press and the general public.

The notion is also often confused with the notion of
outliers, which are widely viewed as extreme observa-
tions as well, even though typically attributed to mea-
surement errors in contrast to black swans, the frequency
of which is often used as a model failure diagnostic. In
both cases, the magnitude/size of the extreme observa-
tion is a decisive determinant. However, there is a key
difference between the two notions. Outliers can be the
source of substantial econometric modelling concerns,
especially in the context of time series modelling,9 but
despite the lack of a firm mathematical definition, they
are in essence an econometric tool which aims to
robustify the evidence from an analysis in favour or
against some underlying theory. This is why there is a
plethora of outlier-identification methods each of which
is built upon some set of assumptions to make it suitable
for the targeted family of models which may also be
multivariate so as to account for any possible cross-
correlations or at least interdependence between the vari-
ates. In contrast, black swans in financial markets are
both defined and identified as the returns that are at least
three standard deviations away from the (unconditional)
mean of a specific portfolio or series,10 and they
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constitute an integral part of the “normal” operation of
the markets although typically beyond the counterfactual
normality assumption.

The notion of extreme value is the third notion that is
often confused with the notion of black swan. Following
Pickands III (1975) and Balkema and de Haan (1974),
who proved that for a large class of distribution func-
tions, the tails are approximated by the Generalized
Pareto distribution, this strand of the literature continues
to grow. When it comes to the notion itself, we can
observe that from a certain perspective, there can be a lot
of overlap between the two notions because the sample
estimates of the (conventionally parametric) extreme
value distribution parameters are obtained by fixing the
frequency of extreme observations.11 In practice, this
means that the threshold that classifies observations as
extreme values is found through a grid search over the
outermost quantiles of the empirical density, or selected
in such a way so as to provide a “reasonable” number of
observations to estimate the tail distribution parameters.
In contrast, for distributions with finite mean and vari-
ance, we can use Chebychev's inequality to obtain an
upper boundary for the probability of a black swan occur-
rence; but the lower boundary is 0, that is, 0 ≤ Prob
(jX – μj ≤ 3σ) ≤ 1/32 ≈ 11.1%. In other words, unlike
extreme values, which by definition must exist for the tail
distribution to be proxied in a sample, black swans may
well not exist. Consequently, even in sufficiently large
samples, the defined extreme values may not be extreme
enough to be considered extraordinary and thus be classi-
fied as black swans. This is, for example, the case for the
normal distribution (about 0.3% in total for both sides of
such samples would be classified as black swans) and for
the Student-t distribution with more than 2 degrees of
freedom (about 1.2% in total for both sides of such sam-
ples would be classified as black swans). In this respect,
for financial markets data, the notion of black swans can
be viewed as a very conservative version of extreme
values. However, the difference is more than a simple sta-
tistical particularity because it explains why black swan
events are perceived to be closer to being the quantitative
equivalent of extraordinary events. The reverse, having
black swans that do not classify as extreme values, is also
true at least theoretically – because in samples, we can
always calculate mean and variance estimates. This is, for
example, the case for some distributions with undefined
mean or variance (e.g., Cauchy, Pareto or Student-t distri-
bution with 2 degrees of freedom).

The notion of breaks is the fourth notion that is often
confused with black swans. In fact, had we adopted a less
explicit definition for the notion of black swan, a break
could also be viewed as a black swan, the first or, more
fittingly in our context, the leader of each black swan

swarm. Indeed, a break as a manifestation of a structural
change is quite sporadic and highly improbable. And
although they are barely a handful of observations over
two decades of data to have any impact upon our infer-
ence, if we view them as black swans, it is interesting to
mention three features that justify the use of different
terms.

First, a break signifies a change in the stochastic pro-
cess without, however, any indication as to what this
change involves and for how long. For example, it could
be a change in the unconditional mean of the stochastic
process or in the unconditional variance or in the mem-
ory of the process or some other characteristic or even a
combination of all these. In contrast, a one-observation
spike is only about the magnitude of the change.

Second, and building on the above, it is far from
being straightforward for a market participant with
superior information only about the timing of a break to
construct a successful strategy to “beat” the market.
S/he would need to also know, for example, what fea-
ture of the underlying process will this break change,
how long will it take until a suitable strategy can yield
economic profits, if and when a next break will take
place and so on. In sharp contrast, a market participant
who can predict, even roughly, when a one-observation
spike will take place can easily obtain abnormal eco-
nomic gains with, say, a combination of out-of-the
money options.

Third, a break may be due to some important eco-
nomic event that attracts the attention of the public
and/or the mainstream economic press.12 But, it may
well be a much more latent event that can be identified
only in retrospection. Or it may be what a much more
complex and/or unknown data generating process yields
whenever we attempt to approximate its behaviour at a
particular point in time. In fact, these are some of the
main reasons why statistical tools that reveal such
events ex-post are vital for any ex-ante modelling.13 In
contrast, in today's world, it is rather hard to imagine an
unlikely one-observation change that will not attract the
attention of the public and/or the mainstream press.
Apparently, distinguishing breaks from black swans is
not only an econometric convenience of separation of
concerns.14

2.2 | The assumption of homogeneity of
black swans

In terms of the mainstream academic literature, its long-
challenged foundational normality assumption dictates
that black swan events should be expected to be excep-
tionally rare, occurring at daily frequency at most once
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every 370 trading days. In contrast, the distribution-free
Chebychev's theorem implies that they could occur on
average even every 9 trading days. Interestingly, a gener-
ally accepted “good” fit of the empirical distribution, such
as the student-t distribution with 5 degrees of freedom,
sets the frequency to a bit more than twice per year.

Evidently, this remarkable difference is the reason
why there are so many radically different instruments for
and approaches to asset pricing and risk management –
which in turn offers a simple explanation as to the
undiminished and often avid interest of market practi-
tioners and the research community.15 It also explains
why despite the fact that the notion of black swans, a
stylized fact with inherently no theoretical foundations,
is at the core of the “battle” of models, an often used cri-
terion to evaluate the real-world applicability of theories
that aim to explain the nature of the returns distribution.

The most straightforward and, for that reason, main-
stream approach of a large strand of the literature is to
assume that the answer to the non-normality puzzle lies
in describing the distribution of stock returns as a mix-
ture of normal distributions (see e.g., Kim & Kon, 1996
and references therein). In that way, the gap between the
empirical evidence and the theoretical views of informa-
tionally efficient markets is elegantly bridged. The new
problem that arises is to determine how the mixture of
normals is composed.

A non-parametric approach to define the mixture of
normals that appears to gain in popularity lately, primar-
ily due to various albeit fundamental deficiencies of para-
metric specifications, uses data-driven methods to
identify multiple breaks in the mean and/or volatility
dynamics.16 The appeal of this approach is especially
enhanced by a well-established empirical finding: the
aforementioned conditional volatility models are typi-
cally estimated with implausibly high levels of volatility
persistence, which is consistent with the presence of mul-
tiple structural changes that are not taken into account
(see e.g., Hillebrand, 2005, and references therein, who
shows the direct link between omitted breaks and high
levels of persistence). Incorporating some break detection
procedure into the existing financial modelling para-
digms has already been recognized as essential (see
e.g., Kim & Kon, 1999).

Nonetheless, the possibility of breaks, irrespective of
whether they are actually attributed to structural changes
and/or some ephemeral effect of some unknown
nonlinear stochastic process, inevitably questions the
validity of the assumption that the frequency of black
swans remains unchanged. In other words, the frequency
of black swans in one segment of a given sample may or
may not be the same to the one of its contiguous seg-
ment. In the former case, we can infer that the black

swans in the two segments belong in the same black
swan swarm. In the latter case, however, we have to
accept that they belong in different black swan swarms –
which also indicates that the particular breakdate can be
thought of as a reasonable proxy of the start of a period
that is characterized by a higher or lower black swans'
frequency.

What makes this observation most critical is that its
inevitable consequence is to challenge the robustness and
validity of analyses that lack provision for differences
between black swan swarms – effectively making the
rather strong assumption that there is a single black swan
swarm. And although in case of trivial changes in the fre-
quencies of black swans, a possible bias-reducing method
would be to adopt a rolling window of a short time
span,17 under the rather strong assumption that the prop-
erties of any estimation undertaken remain unaffected
from the width of the sub-sample, in all other cases such
an approach is misleading.

For example, the homogeneity of black swans
assumption may well lead to substantial mispricing of a
large class of out-of-the-money options; averaging out the
frequencies of black swans inevitably underestimates
(if the most recent swarm features more black swans per
time unit than the one just before) or overestimates
(if the most recent swarm features less black swans per
time unit than the one just before) the actual probability
for a black swan to occur. The main aspiration of this
paper is to empirically investigate the validity of this
assumption and, en route, to offer a simple structure
upon which the many affected areas can address the pos-
sibility of different black swan swarms.18

3 | DATA

The dataset consists of all the reported daily closing
values of stock market indices of 34 OECD countries
obtained from Thompson Reuters, Datastream. The sam-
ple period runs from as early as January 1, 1965 to May
20, 2016 but not for all countries because most bench-
mark indices were introduced at different times. Table 1
provides some descriptive statistics for our stock index
(log) returns also demonstrating the well-documented
negative skewness and especially leptokurtosis that yield
the characteristic non-normality of stock market returns.

4 | METHODOLOGY

Capturing the heterogeneity of black swans demands an
explicit definition of a black swan and a structure that
captures the potential heterogeneity. However, these two

3206 CHATZIKONSTANTI AND KAROGLOU



issues are not only inherently interrelated but, most
importantly, they are also depended upon the stochastic
process that governs the realizations of stock returns for
which, as we have briefly illustrated in Section 2, the
research community has not succeeded yet in providing a
model that is accepted, if not universally at least by some
majority. These constitute the core challenges that we
need to surmount.

Our approach is to err at the side of caution and be as
agnostic as possible about the dynamics that govern the
stock returns. For that reason, we assume (a) that the afore-
mentioned structure can be proxied non-parametrically by

splitting our samples in continuous segments that are
homogenous in terms of mean and variance dynamics
(irrespective of whether this segmentation is attributed to
actual structural changes taking place in the underlying sto-
chastic process or to latent non-linearities the impact of
which in determining the statistical properties of the under-
lying stock returns can be captured to some extent by this
segmentation)19 and (b) that the definition of black swans is
segment-specific. Subsequently, for (a) we identify breaks in
the mean and/or volatility dynamics using a battery of break
tests and for (b) we identify black swans within each seg-
ment. Then, a black swan swarm is identified whenever the

TABLE 1 Data overview

Australia Austria Belgium Canada Chile Czech Rep. Denmark

Obs. 6,255 7,923 9,493 8,950 6,883 5,772 6,904

Mean 0.02% 0.02% 0.03% 0.02% 0.06% −0.002% 0.03%

St.dev. 0.95% 1.33% 0.98% 1.03% 1.12% 1.33% 1.17%

Skewness −0.4 −0.3 −0.2 −0.7 0.2 −0.4 −0.3

Kurtosis 5.7 7.6 10.4 12.7 6.8 12.2 5.8

Finland France Germany Greece Hungary Estonia Iceland

Obs. 7,665 7,531 13,406 7,210 6,622 5,209 6,101

Mean 0.03% 0.01% 0.02% 0.01% 0.05% 0.04% 0.02%

St.dev. 1.61% 1.38% 1.22% 1.86% 1.61% 1.51% 1.71%

Skewness −0.4 −0.1 −0.2 −0.1 −0.5 −1.01 −45.3

Kurtosis 9.01 5.3 7.5 5.9 11.8 24.7 2,825.9

Ireland Israel Italy Japan Korea Luxembourg Mexico

Obs. 8,707 7,586 4,797 13,406 10,798 4,534 7,404

Mean 0.03% 0.04% −0.01% 0.02% 0.03% −0.01% 0.08%

St.dev. 1.22% 1.45% 1.56% 1.24% 1.50% 1.68% 1.52%

Skewness −0.6 −0.4 −0.1 −0.4 −0.3 0.2 0.1

Kurtosis 11.1 6.3 3.8 10.3 8.3 59.4 7.5

Netherlands New Zealand Norway Poland Portugal Slovakia Slovenia

Obs. 8,709 4,015 7,665 5,764 6,101 5,918 2,383

Mean 0.03% 0.01% 0.03% 0.01% 0.01% 0.02% −0.01%

St.dev. 1.32% 0.69% 1.50% 1.80% 1.16% 1.44% 1.66%

Skewness −0.3 −0.5 −0.97 −0.2 −0.4 1.5 −0.1

Kurtosis 8.3 5.6 15.6 5.4 7.2 41.9 292.6

Spain Sweden Switzerland Turkey UK USA

Obs. 7,402 7,664 7,014 7,142 9,731 13,406

Mean 0.02% 0.04% 0.03% 0.13% 0.03% 0.02%

St.dev. 1.38% 1.43% 1.14% 2.60% 1.09% 1.01%

Skewness −0.1 0.01 −0.4 −0.04 −0.5 −1.04

Kurtosis 5.8 4.6 8.2 4.5 21.8 28.4

Note: Obs. refers to the number of observations in the sample; St.dev. refers to the sample standard deviation; and Kurtosis refers to the excess
kurtosis observed in the respective sample.
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frequency of the black swans within a segment differs from
that of its neighbouring segments.

With respect to the number and timing of the potential
breaks in the mean and/or volatility dynamics, we identify
them using the Nominating-Awarding procedure of
Karoglou (2010) with the proposed battery of break tests
which require at most β-mixing conditions (see Appendix
S1 for more details). There are several alternative proce-
dures that exist in the literature which could have been
used instead. However, most of them, and often the most
popular ones, demand α-mixing or even uniform-mixing
conditions making them intrinsically inappropriate for use
with high-frequency stock market returns. To our knowl-
edge, so far, the rest are typically isomorphic functions of
one or more of the tests in the battery of tests we adopt
here so the interested reader will most likely end up, if not
with the same, at least with very similar to ours results.

With respect to the identification of black swans
within each segment, we follow the widespread 3-sigma
customary practice (namely an observation with value
beyond the three standard deviations above or below the
mean threshold value – following the notation of our main
model, jutj < 3). To robustify our results, apart from the
4-sigma and 6-sigma threshold (i.e., jutj < 4 and jutj < 6,
respectively), we have also considered an alternative defi-
nition of the threshold namely the six and seven times the
interquartile range (see, e.g., Stock & Watson, 2005 and
Breitung & Eickmeier, 2011). This last type of threshold is
even closer in spirit to using the extreme value theory
approach although it is still based on sidestepping the esti-
mation of the extreme value distributions.20 Predictably,
the different thresholds yield very similar results, and for
that reason, we report only those of the first and more
widely accepted definition of black swans.

The remainder of this section describes our main
model and how we use it to draw inference.

4.1 | The main model

Schematically, for rt the daily (log)returns, our main
model, which is kept agnostic about the presence of
mean and/or volatility persistence by leaving unspecified
all respective terms, could be given by the very general:

rt =

μ0 + σ0 �u0,t for 0≤ t< τ1,

μ1 + σ1 �u1,t for τ1 ≤ t< τ2,
…

μn + σn �un,t
…

for τn ≤ t<T

8
>>><

>>>:

where T is the sample size, n denotes the number of
breaks, which occur at dates τ1, τ2, …, τn when the

(unconditional) mean μ and/or variance σ2 of the return
process change. The standardized unexpected return is
denoted by the ut terms, which by construction have
mean equal to zero and variance equal to one.

At this point, and in anticipation of the discussion on
breaks that follows, it is worth noting that we make mini-
mal assumptions about the underlying dynamics for both
specifications, namely that only for any two adjacent seg-
ments (denoted as j and j + 1) it holds that only μj ≠ μj
+1 or only σj ≠ σj+1 or both (μj, σj) ≠ (μj+1, σj+1). By
doing so, we bypass the pitfalls of fully specifying the
underlying model, hence making our results relevant to a
wide range of modelling paradigms, while preserving sta-
tistically endorsed changes in the first two moments
(as explained later) – even if only for the given samples.

In this paper, by arguing that blacks swans may not
be a homogenous group of observations, we are effec-
tively claiming that there may be one or more ui,t terms
that differ substantially from its neighbouring ones, at
least in terms of the frequency of its extreme observa-
tions. This suggests that all (or a subset) of the identified
breaks can serve as an indicator of changes either in the
arrival process of extraordinary news or in market
dynamics in response to the news. Consequently, we
hypothesize that there is an explicit relationship between
the two, namely that breaks in the mean and/or volatility
dynamics can be used to proxy the beginning and end of
black swan swarms, effectively identifying them (but
without necessarily causing them).21

This setup enables us to have a very straightforward
way of testing the assumption of homogeneity of black
swans: if in a series, we can identify even one break in
the mean and/or volatility dynamics that also entails a
(statistically significant with, say, the standard t-test for
proportions) change in the frequency of black swans,
then for that series, the assumption does not hold. Most
importantly, the inference that we can draw from this
non-parametric approach22 is based on minimal assump-
tions that ground it even within the prevalent mean–
variance paradigm. And yet, it is consistent with the
strands of the finance literature that emphasizes the
importance of moments beyond the second one since it
remains valid even if the underlying unknown stochastic
process is actually, say, some regime-switching condi-
tional kurtosis or piecewise mixture of jump-diffusion
process because it would be capturing locally the average
effect of these processes.

Introducing mean and/or volatility persistence within
each segment in the main model would not necessarily
invalidate our inference about the presence or absence of
different black swan swarms.23 However, for robustness,
we are also looking at the same segments in the standard-
ized residuals of the full-sample ARMA-AP(G)ARCH. In
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FIGURE 1 Histograms of all, negative only, and positive only black swans. Note: All histograms are based on the standardized values

of all 34 markets to facilitate comparison across graphs. Each of these histograms has been obtained by first pooling and then standardizing

the respective black swans frequencies of all 34 countries. See also footnote 30 for further details

FIGURE 2 (a): Average number of days until a black swan appears over time – eurozone. (b): Average number of days until a black

swan appears over time – rest of the world. Note: The left-hand side plots are based on the returns series, while the right-hand side plots are

based on the residuals that the best fit ARMA-APGARCH model yields in each case. The dotted lines represent the average days of one black

swan to appear for each country and the dots the identified black swans. Discontinuities are due to the absence of black swans. It is worth

noting that if the black swans was a homogenous group of observations then no changes would take place across the different segments
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this way, even if we assume that the identified breaks are
the result of size distortions of the tests due to the condi-
tional mean–variance persistence,24 we can still test the
presence or absence of different black swan swarms. In
such case, our model can be given by25:

ri,t =mi +
X4

j=1

φj � ri,t−k +
X4

k=1

ψk � εi,t−k + εi,t,

εi,t = σi,t �ui,t,

σdi,t =ω+
X6

l=1

al � εdi,t− l +
X6

s=1

βs �σdi,t−s + γ � εdi,t−1 �ht

where the index i = {1, 2, …, n} denotes the segment and
ht = 1 if εi,t-1 < 0 otherwise 0. The standardized return
term ui,t is as before.

26 Unlike our main model, this flexi-
ble specification explicitly captures the possibility of
mean persistence of stock returns (when φ's and ψ 's are
non-zero), with agents that may exhibit herding behav-
iour which may or may not cause symmetric volatility
clustering (when α's and β's and/or γ's are non-zero).

Nevertheless, the reader should bear in mind that by
fitting retrospectively such a flexible model onto our data,
we are effectively averaging out much of the variability of
the series hence disguising many black swans as typical
observations. Still, there is some value to this exercise
because the bias that it incorporates is different in nature
from the bias of assuming a single black swan swarm and
therefore can provide insights when the latter is juxta-
posed against the multiple black swan swarm proposi-
tion. Moreover, it can be considered as a proxy of the best
possible ex-ante model that an economic agent can
employ for each series and therefore illustrates if there is

any added value to considering multiple black swan
swarms.

5 | EMPIRICAL RESULTS

In general, we find that the stochastic behaviour of all
indices yields about three to eleven breaks during the
sample period, roughly one every one and a half to four
years on average.27 The predominant feature of the
underlying segments is that mainly changes in variance
are found statistically significant. Finally, there are sev-
eral breakdates that are identical to all series and others
that are very close to one another, which apparently sig-
nify economic events with a global impact.

Table 2 provides a detailed account of some possible
associations that can be drawn between major economic
events and the identified breakdates, when changes in
the frequency of black swans take place.28 It appears that
dates for the extraordinary events of the Asian financial
crisis of 1997, the global financial crisis of 2007/08, the
European sovereign-debt crisis that followed and the
2015–16 Chinese stock market crash are very clearly
identified in most stock return series and with very little
or no variability. Other less spectacular events such as
the Russian financial crisis of 1998 or the dot com bubble
can also be associated with breakdates that have been
identified in some series.

Overall, there are three findings that are particularly
insightful. The first finding is about the effect of dis-
tinguishing between black swan swarms when determin-
ing the total number of black swans. Table 3 summarizes
the relevant results.

FIGURE 2 (Continued)
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FIGURE 3 Number of black swans per country around the 2007/8 crisis. Note: The left panels (panels a and c) are based on the

residuals from the best fit ARMA-APGARCH model in each series, and the right panels (panels b and d) are based on the returns series. The

top panels (panels a and b) impose a single black swan swarm; the bottom panels (panels c and d) allow for multiple black swan swarms
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We observe that with the exceptions of Slovenia and
Iceland, the impact of distinguishing the different black
swan swarms yields on average about 22% less black
swans in total. In other words, highly improbable events
are dramatically less frequent when there is provision for
possible breaks in the mean and/or volatility dynamics.
The identified breaks are quite sporadic; we identify 3–11
breaks in each stock market index, despite the fact that
the data span about three decades on average. On aggre-
gate, black swans constitute on average 1.56% of all trad-
ing days when there is no provision for breaks, a figure
which drops to 1.26% when breaks are taken into
account. The case of Iceland is especially informative as
to the extent to which latent non-linearities and/or struc-
tural changes, such as the banking collapse of 2008 which
was also identified by the Nominating-Awarding proce-
dure, can severely bias inference about the frequency of
black swans. Table 4 confirms the same finding even
though not always and much more moderately.

The effect also persists even when making the distinc-
tion between negative and positive black swans29; in fact,
it appears that it is notably more pronounced with the
positive black swans (21% reduction of the frequency of

positive black swans as compared to the 19% decrease of
the frequency of the negative black swans). Interestingly,
the partitioning of black swans into negative and positive
reveals that there is a higher proportion of negative black
swans, irrespective of whether there is or there is no pro-
vision for breaks (accounting for 55 and 56% of the over-
all black swans respectively) which also offers a partial
explanation as to the negative asymmetry of the stock
market returns.30 As before, the same finding is also
observed in Table 4 although not as prominently espe-
cially in regards to negative black swans.

The second finding involves the broad relationship
between the negative and positive black swans across
markets. Figure 1 presents the respective histograms for
all identified black swans, for only the negative black
swans that have been identified and for only the positive
black swans that have been identified (standardized to
facilitate comparison). Each of these histograms has been
obtained by first pooling and then standardizing the
respective black swan frequencies of all 34 countries.31

The histograms suggest that the impact of dis-
tinguishing the different black swan swarms yields a
noticeably less different set of stock markets. This

FIGURE 4 Average number of black swans per group around the 2007/8 crisis. Note: The left panels (panels a and c) are based on the

residuals from the best-fit ARMA-APGARCH model in each series, and the right panels (panels b and d) are based on the returns series. The

top panels (panels a and b) impose a single black swan swarm; the bottom panels (panels c and d) allow for multiple black swan swarms
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effectively implies that the country-specific element when
examining black swans becomes less prominent when
breaks in the mean and/or volatility dynamics are taken
into account. Furthermore, the distributions of positive
and negative black swans seem more similar although
not for the residuals from the best-fit ARMA-APGARCH
model.

The third finding involves the homogeneity of black
swan swarms, that is, to what extent the frequency of
black swans changes over time as each economy enters
into a different regime. Figure 2 presents the respective
graphs (for illustration purposes, Figure 2a for the
Eurozone economies and Figure 2b for the rest of the
world) by expressing the underlying relative frequency of
a black swan into the corresponding average days until
one appears, as obtained from the reciprocal of the
underlying frequency.32

For almost all stock markets, the frequency of black
swans changes over time, and in some cases, these
changes are quite dramatic even for contiguous segments.
In fact, there are very few exceptions to the rule that the

identified black swan swarms are quite different to one
another.33 It appears that identifying breaks in the mean
and/or volatility dynamics can indeed be a reliable proxy
for capturing changes in the frequencies of black swans
since only in the cases of Denmark, Israel, Slovakia and
Turkey, the breaks do not always seem to have identified
very different black swan swarms across the selected
sample. In all other markets, they capture either only
dramatic changes or also gradual ones that end up very
different from where they started. From a different albeit
relevant perspective, these empirical findings provide fur-
ther support to the importance of incorporating some
break detection procedure into the existing financial
modelling paradigms for ex-post but especially for ex-
ante analysis and decision-making, what Kim and
Kon (1999), amongst others, emphatically urge the
research community and market practitioners to do. We
revisit the same figures in the next section.

In sum, the notion of black swan swarms seems
robustly justified. The simple, and suitable for a large
class of modelling paradigms, approach we adopt, the use

FIGURE 5 More (in pink), equal (in grey) or less (in blue) black swans during 2008–2011 than during 2004–2007? Note: The left panels
(panels a and c) are based on the residuals from the best fit ARMA-APGARCH model in each series, and the right panels (panels b and d)

are based on the full samples returns series. The top panels (panels a and b) impose a single black swan swarm; the bottom panels (panels c

and d) allow for multiple black swan swarms. Grey indicates statistically insignificant changes at 5% level [Colour figure can be viewed at

wileyonlinelibrary.com]
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of a data-driven break-detection procedure to proxy the
different swarms, when employed on a comprehensive
set of stock market returns yields several plausible econo-
metric results all while remaining quite agnostic about
the underlying stochastic processes and the likely inter-
dependencies amongst the series. Consequently, the use
of the notion can be used to improve our intuition about
the operation of financial markets. In the section that fol-
lows, we make use of this notion to examine what can we
observe about the aggregate behaviour of investors and
traders before and after the global financial crisis.

5.1 | The frequency of black swans
before and after the 2007/8 financial crisis

The 2007/8 financial crisis, with an “official” starting date
the collapse of the Lehman Brothers, is widely considered
by many economists as one of the worst financial crises
in history, often compared to the Great Depression of the
1930s. One of its most characteristic features is its world-
wide effect part of which is the sovereign debt crisis that
succeeded it, granting it rather justifiably the title global
financial crisis. Consequently, it is an economic

phenomenon that can exemplify how the notion of black
swan swarms can deepen our understanding of the
response of financial markets to such shocks.

What we do here is to look at the differences in the
black swans around the 2007/8 crisis. Figure 3 compares
the frequencies of black swans before the 2007/8 crisis
with the frequencies of black swans after the 2007/8
crisis.

Panels a and c, which are based on the standard-
ized residuals obtained from the best-fit ARMA-AP(G)
ARCH model, show mixed results which suggest that
the recent period is not much different from the longer
period before. Allowing either for one black swan
swarm or for multiple, the frequency of black swans
before and after the 2007/08 crisis is statistical signifi-
cant in 10 and 8 series, respectively, out of 34. This
should actually be expected given that, as we note in
the respective section, by fitting such a model, we are
averaging out much of the variability in the series,
effectively imposing that the whole sample exhibits
the same stochastic behaviour. When we look at
panels b and d, we see more notably that the recent
period is not the same as the longer period, at least in
terms of the (average) frequencies of black swans. The

FIGURE 6 More (in pink), equal (in grey) or less (in blue) black swans during 2012–2015 than during 2008–2011? [Colour figure can
be viewed at wileyonlinelibrary.com]

3222 CHATZIKONSTANTI AND KAROGLOU

http://wileyonlinelibrary.com


frequency of black swans before and after the 2007/08
crisis is statistical different in 32 out of 34 countries
under the assumption of a single black swan swarm
and in 24 out 34 countries when allowing for multiple
black swan swarms. In particular, we see that in most
(but not all) countries, black swans are more frequent
that what they used to be. In other words, it seems that
the black swan swarms after the 2007/8 crisis contain
some pieces of information about the still on-going
global economic turmoil.

When we revisit Figure 2a,b and focus on the post
2007/8 period, we can observe that in many markets, the
average number of days that a black swan appears
changes and often dramatically, but the so-called lead–
lag effects make it hard to discern whether these changes

are associated with the period of the crisis. Therefore, to
draw a clear conclusion as to the effect of the 2007/8 cri-
sis, we focus on three 4-year periods namely the 2004/7,
2008/11 and 2012/15.

Figures 3 and 4 illustrate this information for each of
the four specifications we consider, while Figures 5 and 6
graph the statistically significant differences. The results
are quite straightforward: in the 4 years, after the start of
the 2007/8 crisis, the number of black swans was higher.
This could effectively be interpreted as a natural conse-
quence of the increased systemic risk that stock market
participants expect and experience; apparently stock mar-
kets are more likely to generate extreme returns when
their participants expect them.34 Also, the specifications
that condition on black swan swarms can yield

FIGURE 7 Scatterplots of volatility against the frequency of black swans. Note: The six scatterplots depict the combinations of a

volatility estimate and the frequency of black swans for every identified segment. Four different volatility estimators have been examined

namely: (a) using the sample standard deviation, which is also the one depicted; (b) using the Bartlett kernel; (c) using the Quadratic

Spectral kernel (both [b] and [c] implemented with the Newey-West automatic bandwidth selection procedure); and (d) using the VARHAC

kernel of den Haan and Levin (1998). All volatility estimators yield the same results and for that reason only (a) is depicted. The six

regression lines are based on the log volatility to conform to the positivity constraint and all have statistically insignificant elasticities

(slopes) at 5% level (the Heteroskedasticity and Autocorrelation Consistent (HAC) standard errors are based on the Bartlett kernel with the

Newey-West automatic bandwidth selection procedure). The same outcome (i.e., non-significance of elasticities) is observed even when we

make a distinction between pre- and post-crisis periods
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substantially different results that those that do not both
in the number of black swans and in the period that
occurred. The US and Czech Republic markets are partic-
ularly telling: both the number of black swans and their
timing can be overwhelmingly different, effectively rein-
forcing the message of Kim and Kon (1999) that incorpo-
rating a break-detection process in financial modelling
should be considered essential.

What makes this finding particularly interesting is
that if we plot the frequency of black swans against a vol-
atility measure, as we do in Figure 7, we cannot identify
any significant positive or negative relationship between
the two. The absence of a relationship between the two
remains irrespective of whether we look at all the black
swans or only the positive or negative ones, not even
when we condition the analysis on only the pre 2007/8
period and in the post 2007/8 period. In other words, a
higher volatility cannot be associated with either a higher
or a lower frequency of black swans. Therefore, the fact
that in the post 2007/8 crisis period, the frequency of
black swans rises cannot be attributed to the underlying
higher or lower volatility.

6 | CONCLUSIONS

This study examines empirically the homogeneity of
highly improbable events, black swan events, and in par-
ticular whether their frequency changes over time. Our
analysis endeavours to remain as agnostic as possible
about the underlying distribution of stock returns, and
for that reason, it is built upon the notion of breaks in
the mean and/or volatility dynamics to capture structural
changes in the stock markets and to moderate the inevi-
table bias of latent nonlinearities that might be present in
the underlying stock returns. Subsequently, we introduce
the notion of black swan swarm to describe the frequency
of black swans within a homogenous, in terms of mean
and volatility dynamics, periods of time which enables us
to investigate how the frequency of black swans evolves.

All 34 stock market return series display a large num-
ber of black swans, which is considerably reduced when
we relax the assumption of black swan homogeneity, a
feature that is prominent even when black swans are dis-
tinguished into negative and positive, whereas the pro-
portion of negative is higher. Moreover, the country-
specific statistical features become less pronounced, and
the distribution of negative and positive black swans less
dissimilar. Finally, the evolution of the frequency of
black swans reveals a smaller likelihood of a black swan
occurring before and after the recent financial crisis in
most stock markets which is particularly interesting
given that the likelihood of a black swan and the

underlying volatility level are not correlated. That also
suggests that it is worth exploring the possibility of using
changes in the frequency of black swans within an early
warning system of crises either by itself as a leading indi-
cator or in conjunction with other predictors. Given the
poor performance of existing approaches in this literature
(see e.g., Christofides, Eicher, & Papageorgiou, 2016;
Obstfeld, Shambaugh, & Taylor, 2009, 2010), it is cer-
tainly a possibility worth exploring.

If the rise in the frequency of black swans during the
2008 crisis is interpreted as a feature of the arrival pro-
cess of extraordinary news, then it suggests that during
periods of widespread economic turmoil extraordinary
news become more frequent. Alternatively, if this is
interpreted as a feature of market dynamics in response
to the news, it implies a self-fulfilling expectations
mechanism but with a twist: when market participants
become wary that extreme events may take place, their
collective actions increase the likelihood of such extreme
events actually taking place hence validating their expecta-
tions. The twist? They may be completely wrong as to
whether these extreme events are favourable or not.

An important feature of our analysis that is worth
noting is that it is based upon data from the benchmark
stock market indices of a number of countries. These
benchmark indices can also be thought of as dynamically
reconfigured portfolios of shares which, at least in princi-
ple, have been selected in such a way so as to proxy the
respective market portfolio. Consequently, the frame-
work we propose to improve control over the occurrence
of black swans, say for pricing out of the money vanilla
options, and the inference we draw by using it are also
directly relevant to the portfolio and risk management
practices of the individual or institutional investor, while
its parsimony and minimal assumptions make it readily
available as an instrumental device of real-time comput-
erized trading algorithms.
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ENDNOTES
1 We acknowledge that the term “black swan” has been used in
other contexts as well which may also imply a rather qualitative
interpretation (Taleb, 2007 for example includes an interesting
anthology of such uses of the term). It must be underlined,
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however, that our focus is the predominant (and quantitative)
usage of the term amongst financial markets practitioners.

2 We have used the term ‘swarm’ because, apart from the fact that
it sounds very similar to the word “swan” and contracts the finan-
cial from ornithological jargon, we became aware from colleagues
that the more unfamiliar albeit appropriate “wedge” may convey
a meaning different from what is intended.

3 This is similar to the heat waves explanation of the country-
specific volatility clustering that Engle et al (1990) proposed.

4 The launch of exchange-traded derivatives markets or automatic
trading built upon the electronic trading platforms as opposed to
the traditional forms, such as open outcry or pit trading, can be
considered as two clear-cut examples of such changes.

5 Latvia, which joined rather recently (on the 1 July 2016) is not
included.

6 See for example, Beirlant, Goegebeur, Segers, and Teugels (2005)
who discusses dynamic extreme value models to handle clustering
of extremes (Chapter 10) or Jondeau, Poon, and Rockinger (2007)
who discusses the modelling of volatility jumps and higher
moments (Chapters 4 and 5).

7 Following the practices of engineers other thresholds have also
been considered by financial practitioners (most notably the
6-sigma events) but this is the predominant value.

8 For example, “I've been bitten by a black swan” is a widespread
playful metaphor amongst them.

9 For example, they may erroneously suggest or hide true
heteroscedasticity (van Dijk, Franses, & Lucas, 1999), they induce
bias even in the case of a single instance to the maximum likeli-
hood estimators (Carnero, Pena, & Ruiz, 2007; Sakata &
White, 1998) and they may also bias out-of-sample forecasts
(Charles, 2008; Chen & Liu, 1993a; Franses & Ghijsels, 1999;
Ledolter, 1989). Moreover, they are inherently associated to
“smearing” and “masking” effects (see e.g., Bruce &
Martin, 1989), the former referring to the presence of outliers that
may bias the diagnostics which results in false identification of
other outliers, and the latter being associated to the occurrence of
large outliers which prevent the identification of other outliers.

10 The identification method is apparently associated with the
adoption by financial market practitioners of statistical model-
ling methods devised and used initially for manufacturing pro-
cesses. This is why black swans are sometimes referred to as
3-sigma events or 3σ's since this is the boundary point that Wal-
ter A. Shewhart, the father of statistical quality control, deter-
mined to signal the difference between events that are ordinary
and predictable and those that are unusual and unpredictable.
However, there is nothing special about that boundary; other
boundaries have also been used but only the 6-sigma may be
somewhat noteworthy.

11 Predictably, the most popular method to pick up the extreme
values is named peaks-over-thresholds but the statement is
broader.

12 In our paper, we provide a list of major economic events that
could be associated with the identified breaks in each case in
Table 3.

13 For example, they prescribe a more robust window of observa-
tions from which the coefficient estimates need to be derived to
avoid potentially large biases.

14 From a somewhat different angle, this distinction can also be
viewed as pertinent to the decision maker's problem of detecting
if a regime shift has actually taken place as in Massey and
Wu (2005) which is effectively about separating “signal” from
“noise.”

15 In this respect, it is hardly surprising that works such as
Taleb (2007) periodically become the focal topic of heated aca-
demic and popular press debate.

16 Markov-regime-switching extensions of the aforementioned
parametric models can be thought of as having been developed
in the same spirit. They may be intuitively less appealing (e.g., it
is rather hard to convince a market practitioner or academic that
groups of observations of vastly different periods belong in the
same regime) and, unlike modelling with some break identifica-
tion method, for most applications practically intractable when
considering the possibility of more than a handful of regimes,
but they do implement a data-driven identification of a specific
number of regimes –which can also be thought of a special form
of breaks. And their importance in, say, portfolio decisions has
been convincingly demonstrated in several papers (see
e.g., Tu, 2010).

17 Rolling techniques are often adopted by market practitioners but
in the finance literature they are generally discussed in the con-
text of technical analysis.

18 For example, in the pricing of out-of-the-money call and put
options.

19 In other words, the breaks we are referring to may not necessar-
ily correspond to structural changes but they may be an artifice
of the (unknown) underlying stochastic process. However, they
do signify when the unconditional mean and/or variance
changes (either due to a structural change or due to the dynamics
of the stochastic process). Therefore, they can constitute a satis-
factory proxy for the start and end points of a black swan swarm.

20 Alternatively, we could have followed the conventional route of
the extreme value theory instead by focussing on, say, the 1st
and 99th quantiles and examine the sizes of the thresholds or the
parameter estimates of the Generalised Pareto distributions.
However, in our series there are several segments with less than
500 observations making this approach unsuitable for our pur-
poses even in its simplest variants. More elaborate methods to
encompass, say, dynamic clustering of the extreme values are
even more data demanding to provide any reasonable estimates.
The simulation study included in the tail-index test for
stationarity of Kim and Lee (2009) is rather indicative of this
issue.

21 It is worth underlying at this point that we do not need to make
any additional assumptions about the properties of the stochastic
process within each segment. However, by referring to the results
of the relevant literature which we mention before, and in antici-
pation of the results of the next section, we could confidently
expect typically no or very low levels of volatility persistence.

22 We acknowledge that the notion of “non-parametric” tests in the
time series framework is somewhat misleading since the fact that
the time ordering inherently implies a modelling structure. Here,
we use the notion as is intended in the relevant literature,
namely to signify tests that make very weak assumptions about
the properties of the underlying stochastic process and hence are
valid under a very large set of modelling structures.
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23 Strictly speaking it is conceivable to have a nonlinear process for
which our selection of τ1, τ2,…, τn is not only biased but biased in
such a devilish way that the actual presence or absence of differ-
ent black swan swarms is perfectly masqueraded for all the stock
market series we are examining. Our view is that we can reason-
ably safely assume that this is not the case.

24 Note however that, as explained later on, we use also tests that
do not suffer from size distortions even in the presence of most
IGARCH structures.

25 The order of each element in this process was chosen in order to
capture the maximum order of the corresponding element that
was identified in all estimated processes. It has therefore been
selected ex post, and not ex ante.

26 The orders of each term are found according to the maximum
best-fit model for all series (i.e., they have been determined ex-
post, not ex-ante).

27 As seen in Appendix.
28 A most interesting feature is that the vast majority of the timings

of the identified breaks and the respective economic events either
coincide or can effortlessly be explained by the all too known
lead–lag stock market responses. It is important to bear in mind,
however, that for these established financial markets even if we
cannot identify a proximate cause for an event it can hardly
mean that it is not there.

29 Such distinction is particularly important for various strands of
the finance literature; for example, the frequency of negative
black swans is the primary focus of the literature on the negative
tail risk.

30 Although not reported here to conserve space, the negative skew-
ness decreases substantially when we drop from the samples the
black swan observations, especially when breaks are taken into
account.

31 In other words, after we count the respective black swans for
each country (first, all black swans irrespective of sign, then only
the positive black swans that is, those that are above zero, and
finally only the negative black swans that is, those that are below
zero), we standardise these counts (subtract from each count the
arithmetic mean of all counts and then divide this difference by
the standard deviation of all counts) and draw the respective his-
togram for the resulting values.

32 This means that due to the absence of black swans in some seg-
ments the underlying graph may show discontinuities.

33 From a visual inspection the occurrence of black swans within
each swarm seems rather arbitrary, with only a handful of seg-
ments showing signs that could be viewed as clusters of black
swans.

34 This is in contrast with the findings of Burnie and de
Ridder (2010) who examine the frequency of extreme day
returns, defined as the absolute return equal to or greater than
1.5%, on the Stockholm Stock Exchange and who find that the
frequency of extreme day returns increased over time. However,
they are in line with the results of Ané, Ureche-Rangau, Gambet,
and Bouverot (2008) who analyse the Asian stock markets, and
find an accumulation of abnormal observations in 1997, 1998
and 2001.
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