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ARTICLE

Age-specific modifications in healthy adults’ knee joint position sense

J�anos N�egyesia , Kata Galambb, Borb�ala Szil�agyic, Ryoichi Nagatomia,d , Tibor Hortob�agyie and
J�ozsef Tihanyic

aDepartment of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; bDepartment
of Movement, Human and Health Sciences, University of Rome, Rome, Italy; cDepartment of Biomechanics, Kinesiology and Informatics,
University of Physical Education, Budapest, Hungary; dDivision of Biomedical Engineering for Health & Welfare, Tohoku University Graduate
School of Biomedical Engineering, Sendai, Japan; eCenter for Human Movement Sciences, University Medical Center Groningen, University
of Groningen, Groningen, the Netherlands

ABSTRACT
Aim: Right-handed young adults perform target-matching tasks more accurately with the non-domin-
ant (ND) compared to the dominant (D) limb, but it is unclear if age affects this disparity. We deter-
mined if age affects target-matching asymmetry in right-side dominant healthy adults.
Method: Young (n¼ 12, age: 23.6 y, 6 females) and older (n¼ 12; age: 75.1 y, 7 females) adults per-
formed a passive joint position-matching task with the D and ND leg in a randomized order.
Result: Age affected absolute, constant, and variable knee JPS errors but, contrary to expectations, it
did not affect target-matching asymmetries between the D and ND knees. However, older participants
tended to underestimate while young subjects overestimated the target angles. Moreover, older as
compared to young subjects performed the target-matching task with higher variability.
Conclusion: Altogether, age seems to affect passive knee target-matching behaviour in right-side
dominant healthy adults. The present data indicate that healthy aging produces age-specific modifica-
tions in passive joint position sense.

Abbreviations: ANOVA: Analysis of variance; JPS: joint position sense; MMSE: Mini-mental state exam-
ination; SPPB: Short physical performance battery; SQUASH: Short questionnaire to assess health-
enhancing physical activity
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Introduction

Proprioception is the sensation of the static and dynamic
position and motion of limbs, an ability that also contributes
to joint stability (McCloskey 1978; Gandevia et al. 2002;
Proske 2005; Chapman et al. 2009). Right-handed participants
tend to perform proprioceptive target-matching tasks with
greater accuracy when using the non-dominant left thumb
(Roy and MacKenzie 1978; Nishizawa 1991), elbow (Kurian
et al. 1989; Goble et al. 2006; Goble and Brown 2008) or mul-
tiple joints of the upper limb (ankle, knee, shoulder, finger)
(Han et al. 2013) as compared to left-handed participants
performing the same task with the non-dominant right hand.
It is possible that right-handed healthy participants’ kinaes-
thesia is associated with a network of active brain areas, i.e.,
motor areas, cerebellum, high-order somatosensory areas,
providing evidence for a right hemisphere dominance for
perception of limb movement (Naito et al. 2005).

This is in line with the observation that the non-preferred
arm/hemisphere system is specialized for static limb position
control, whereas the preferred arm/hemisphere system is
responsible for dynamic limb trajectory control (Sainburg
2002, 2005). Nevertheless, this asymmetry appears to be
selective for right-handers, but not for left-handers (Schmidt,
Artinger, et al. 2013), suggesting that right hemisphere

specialization underlies proprioceptive feedback (Naito et al.
2005; Goble and Brown 2007). On the other hand, in a few
cases left-handed individuals also had smaller target-
matching task errors when matching with the non-dominant
compared to the dominant arm (Goble, Noble, et al. 2009),
and some previous studies even failed to present target-
matching asymmetry between upper limb joints on the right
and left sides of the body probably due to the inconsisten-
cies in experimental modalities (Roy and MacKenzie 1978;
Bullock-Saxton et al. 2001; Naughton et al. 2002). It is how-
ever also possible that asymmetries in joint position sense
(JPS) predominantly result from a difference in perception
and/or reproduction between the sensory-motor systems of
the two hemispheres (Adamo and Martin 2009).

Data for target-matching asymmetry between the domin-
ant and non-dominant joints of the lower extremity are also
controversial, so that some (Symes et al. 2010; Han et al.
2013) but not all studies (Bullock-Saxton et al. 2001; Galamb
et al. 2018) found more accurate JPS in the non-dominant
compared with the dominant knee joint in both older and
young participants. The preponderance of studies measuring
the differences in JPS between the dominant and non-
dominant leg investigated the effect of external supports on
proprioception (for review, see (Ghai et al. 2017)) and found
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no differences between the dominant and non-dominant leg
during the application (Ghai et al. 2018) or in the absence
(Zhang et al. 2019) of a compression garment. Nevertheless,
results from neuroanatomical studies also support the limb
asymmetry-effects in knee JPS because while proximal
muscles are innervated by both hemispheres, distal muscles
are innervated predominantly by the contralateral hemi-
sphere (Kuypers 1982; M€uller et al. 1991). Therefore, proprio-
ceptive asymmetry may be more likely to be evident in the
distal than in the proximal joints (Roy and MacKenzie 1978;
Scott and Loeb 1994).

Because of age-related declines in neuromuscular func-
tion, it is reasonable to expect that JPS declines with age
even in the absence of disease (Ribeiro and Oliveira 2007).
This is because there is a reduction in the number of motor
neurons and functioning motor units (Campbell et al. 1973;
Hunter et al. 2016) and the ability to control automatic
movements also becomes impaired (Hortob�agyi and DeVita
1999; Tirosh and Sparrow 2005; Wu and Hallett 2005). While
early studies failed to demonstrate age-effects on JPS
(Kokmen et al. 1978; Lovelace and Aikens 1990) recent stud-
ies (Adamo et al. 2007, 2009; Wright et al. 2011; Relph and
Herrington 2016) reported age-related decreases in proprio-
ception acuity and efficiency of feedback processing
(Stelmach et al. 1988; Van Halewyck et al. 2015). Moreover,
age did not affect the accuracy and precision of arm position
sense (Schmidt, Depper, et al. 2013) most probably due to
the different task demands (Cressman et al. 2010). The extent
to which limb’s JPS is influenced by aging depends on many
aspects i.e., the tested joint/limb segment, active/passive
task, type of analyzed error (for a review, see Goble, Coxon,
et al. 2009) or task goal (Jones et al. 2012).

Although there is some evidence for an age-related
decline in JPS, it remains unknown whether age affects tar-
get-matching asymmetries between the right-dominant and
left non-dominant knee. Therefore, the purpose of the pre-
sent study was to determine the effects of age on passive JPS
in the right-dominant and left non-dominant knee. Based on
the preponderance of studies showing that right-handed par-
ticipants perform proprioceptive target-matching tasks with
greater accuracy when using the left non-dominant limb, we
hypothesized an age-related increase in the asymmetry in tar-
get-matching accuracy so that young compared with older
participants would perform knee joint target-matching tasks
more accurately with their left non-dominant leg as compare
with the right-dominant leg. Voluntarily moving the leg
(active repositioning) measures (1) movement and (2) stop-
ping (position) of the leg, so that movement precedes the
stopping action We were particularly interested in the effects
of age on the ability to sense purely joint position per se
without the added influence of voluntarily moving the limb
on joint position. For this reason we used a passive JPS task.

Materials and methods

Participants

A sample size calculation (G�Power, version 3.1.7, Germany)
(Faul et al. 2007) for knee position sense was based on our

previous study (Galamb et al. 2018) which evaluated the
effects of handedness on knee JPS in healthy participants
using results from a study that used the exact same equip-
ment and procedures as the present study. The power ana-
lysis for repeated measures analysis of variance (rANOVA)
indicated the need for a total of 24 participants to detect
changes in the measured variables, assuming type I error of
0.05 and power of 0.80.

Twenty-four right-side dominant healthy volunteers
(young adults: n¼ 12; age¼ 23.6 ± 3.2 years; range 20–32, 6
females; older adults: n¼ 12; age¼ 75.1 ± 9.6 years; range
55–87, 7 females) participated in the study. All participants
were right side-dominant, determined by hand and leg dom-
inance questionnaires. Handedness was determined using
the Edinburgh Handedness Inventory (Oldfield 1971). Leg
dominance was determined by one- or two-foot item skill
tests such as kicking a ball or stepping up on a chair (Spry
et al. 1993). None of the participants had a history of or pre-
sented with neurological or orthopaedic disorders. To deter-
mine general cognitive function, and lower extremity
function, each participant completed the mini-mental state
examination (MMSE; young adults: 28.8 ± 1.3; older adults:
27.1 ± 1.4) and the short physical performance battery (SPPB
young adults: 11.6 ± 0.5; older adults: 10.3 ± 1.6). After a ver-
bal and written explanation of the experimental protocol,
participants signed an informed consent that conformed to
the Declaration of Helsinki and was approved by the local
institutional Committee of Science and Research Ethics.

Experimental procedure

All participants visited the laboratory once. JPS, the per-
ceived sense of knee joint position, and joint movement per
se of the left and right leg was measured in a random order
on an isokinetic dynamometer (HUMAC NORM, Computer
Sports Medicine Inc., Stoughton, MA). Participants wore
blindfolds and headphones emitting white noise to eliminate
visual and auditory cues. Participants sat on the dynamom-
eter seat in an upright position. One leg hung freely over
the edge of the dynamometer seat and the other leg was
attached to the dynamometer’s lever arm. Based on the
manufacturer’s instructions, external straps were provided for
optimal stabilization to avoid compensation at the lower
extremities, pelvis, and trunk while the load cell ensemble
was set perpendicular to the limb being tested. The centre
of the knee joint was aligned with the dynamometer’s head
and the hip angle was kept constant (90� of hip flexion) dur-
ing the measurement.

By moving the limb attached to the lever arm, we meas-
ured JPS passively (Galamb et al. 2018), using the experimen-
tal procedure of a previous study (Dieling et al. 2014). This
method eliminates input from muscle contractions that could
influence the perception of joint position. After one familiar-
ization trial, we collected data in a random order at three
target positions, i.e., 30�, 45�, and 60�. Each target angle was
repeated five times. The initial starting position was 90� of
knee flexion. Participants were instructed to focus on the
position of the leg and then the leg was passively moved at
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4�/s toward the target angle. The leg was held in this pos-
ition for 5 s and then returned to the 90� starting position.
After 5 s, the knee joint was passively extended again at 4�/s,
and the participant was instructed to press the stop button
as soon as the participant thought that the previously prac-
ticed target position was reached. To maintain attentional
alert, after every 5 trials participants counted backwards by
seven, starting from a two-digit number given by the
experimenter.

JPS was evaluated using four types of error: (1) absolute
error, i.e., the measure of the magnitude of the error, without
directional bias; (2) relative error, i.e., % of error, considering
the range of motion between the initial position and the tar-
get angle; (3) constant error, i.e., the measure of the devi-
ation from the target with directional bias and (4) variable
error, i.e., the measure of the consistency in performance,
determined as the standard deviation from the mean of the
constant errors. Although most of the previous studies have
measured only absolute repositioning error (Bjorklund et al.
2003; Angyan et al. 2007; Van Tiggelen et al. 2008; Ghai
et al. 2018), evaluating relative (Ribeiro et al. 2007, 2008),
variable (Romero-Franco et al. 2017; Zhang et al. 2019) and
constant (Worringham et al. 1987; Schmidt, Depper, et al.
2013) errors might provide a different information on the
integrity of the sensorimotor system by reflecting how accur-
ately the target is represented in the nervous system
(Rossetti et al. 1994; Vafadar et al. 2015).

In the present study, any deviation from the target pos-
ition, discounting direction, was defined as the absolute pos-
ition error:

Eabsolute ¼ jXparticipant � Xtargetj (1)

The relative error was calculated as the % of absolute
error, considering the range of motion between the initial
position and the target angle:

Erelative ¼
�
Eabsolute=distanceinitial–targetð�Þ

�
� 100 (2)

For constant error, the difference between reproduced
and actual target angle was used, considering the direction
of the error:

Econstant ¼ ðXparticipant � XtargetÞ (3)

The variable error was calculated as the overall standard
deviation (SD) of constant error from 15 trials, irrespective of
the target range:

Evariable ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

ðXparticipant �EconstantÞ2
q

(4)

Statistical analyses

Statistical analyses were performed with SPSS 20 software
(SPSS Inc, Chicago, IL, USA). All data were checked for normal
distribution using the Shapiro–Wilk test. To examine the
effect of age on three type (absolute, relative, constant) of
repositioning error (the dependent measure), an age (young/
older) � leg (dominant/non-dominant) � target angles (30�/
45�/60�) rANOVA was conducted with repeated measures on

the last two factors. Moreover, an age (young/older) � leg
(dominant/non-dominant) rANOVA was performed to detect
age-related changes in variable error (irrespective of the tar-
get range). When significant differences were detected, the
multiple comparison post-hoc test (Bonferroni correction)
was performed. Compound symmetry was evaluated with
the Mauchly’s test and the Greenhouse–Geisser correction
was used when required. Additional post-hoc analyses (com-
plementary one-way ANOVAs and paired sample t-tests)
were used to determine where specific differences occurred.
Cohen’s effect size, d, was also computed as appropriate.
Furthermore, effect sizes of the independent variables were
expressed using partial eta squared (gp

2) (Peat et al. 2008).
Statistical significance was set at p< 0.05.

Results

A Shapiro–Wilk’s test (p> 0.05) (Shapiro and Wilk 1965) and
a visual inspection of their histograms, normal Q–Q plots
and box plots revealed that the exam scores were approxi-
mately normally distributed in each age groups, leg and tar-
get angles.

Table 1 shows the descriptive data for each type of pro-
prioceptive target-matching errors in each leg, target angles,
and age group. A three-way rANOVA with age as a between
subject variable and leg, and target angles as within subjects
variables revealed a significant effect of age (F1, 22¼ 8.5,
p¼ 0.008, gp

2¼ 0.279) but no overall effect of leg (F1, 22¼ 0.2,
p¼ 0.895, gp

2¼ 0.001) or target angles (F2, 44¼ 0.9, p¼ 0.410,

Table 1. Effects of age on passive knee joint position sense in the
right dominant and left non-dominant knee.

Young Older

Absolute JPS errors (�) TA
Overall� 3.7 (0.2) 4.6 (0.2)
Dominant 30� 3.9 (0.3) 4.9 (0.6)

45� 3.9 (0.5) 3.2 (0.4)
60� 3.9 (0.3) 5.0 (0.7)

Non-Dominant 30� 3.9 (0.3) 5.2 (0.5)
45� 4.1 (0.6) 5.0 (0.5)
60� 2.4 (0.3) 4.5 (0.7)

Relative JPS errors (%) TA�
Overall 9.1 (0.6) 10.9 (0.7)
Dominant 30� 8.9 (1.4) 9.5 (0.9)

45� 8.7 (1.1) 7.1 (0.9)
60� 11.8 (1.1) 13.2 (1.2)

Non-Dominant 30� 9.4 (2.0) 9.5 (0.5)
45� 7.4 (0.7) 11.2 (1.1)
60� 8.3 (1.5) 15.1 (2.9)

Constant JPS errors (�) TA
Overall� 2.1 (0.4) �1.6 (0.5)
Dominant 30� 2.5 (1.2) �0.9 (1.2)

45� 3.0 (0.8) �1.6 (1.4)
60� 3.6 (0.3) �3.1 (1.5)

Non-Dominant 30� 0.2 (0.7) �0.8 (1.0)
45� 2.4 (0.9) 0.0 (1.2)
60� 0.8 (0.8) �2.9 (1.4)

Variable JPS errors (�)
Overall� 4.0 (0.2) 5.1 (0.3)
Dominant 3.9 (0.2) 4.9 (0.4)
Non-Dominant 4.2 (0.3) 5.2 (0.3)

Absolute, relative, constant and variable position errors in each group,
leg and target angles.
JPS: joint position sense; TA: target angles.�Significant group main effect (p< 0.05).
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gp
2¼ 0.040) and no age group by leg (F1, 22¼ 3.2, p¼ 0.085,

gp
2¼ 0.129) or age group by target angles (F2, 44¼ 1.6,

p¼ 0.206, gp
2¼ 0.069) interactions for the mean absolute

repositioning errors.
When analyzing relative JPS errors, no significant effect of

age (F1, 22¼ 3.8, p¼ 0.063, gp
2¼ 0.149) or leg (F1, 22¼ 0.2,

p¼ 0.676, gp
2¼ 0.008), but an overall effect of target angles

(F2, 44¼ 5.1, p¼ 0.012, gp
2¼ 0.190) were found without the

interaction with age (F2, 44¼ 1.5, p¼ 0.232, gp
2¼ 0.065) or leg

(F2, 44¼ 15.4, p¼ 0.963, gp
2¼ 0.390). To further explore the

significant effect of block on overall performance, planned
Bonferroni post-hoc test was conducted and revealed lower
relative JPS errors when matching 45� (8.6 ± 0.6%) as com-
pared with 60� (12.1 ± 1%), irrespective of leg or age
(Figure 1).

The analysis of the direction of error (constant error)
revealed a significant effect of age (F1, 22¼ 10.2, p¼ 0.004,
gp

2¼ 0.317, Figure 2) but no overall effect of leg (F1, 22¼ 1.1,
p¼ 0.305, gp

2¼ 0.048) or target angles (F2, 44¼ 2.4, p¼ 0.102,
gp

2¼ 0.099). Furthermore, age group by leg (F1, 22¼ 4.4,
p¼ 0.047, gp

2¼ 0.167) and leg by target angles (F2, 44¼ 3.8,
p¼ 0.031, gp

2¼ 0.148) interactions were found. Post hoc

analyses showed that although both young and older sub-
jects performed target-matching task more accurately with
their non-dominant leg, young adults tended to overesti-
mate-, while older subjects tended to underestimate more
with their dominant (3 ± 0.9�, �1.9 ± 0.9�, respectively) com-
pared to their non-dominant knee joint (1.1 ± 0.9�,
�1.2 ± 0.9�, respectively) (Figure 2).

Finally, a two-way rANOVA with age as a between subject
variable and leg as a within subjects variable revealed a sig-
nificant effect of age (F1, 22¼ 8.0, p¼ 0.010, gp

2¼ 0.267) but
no overall effect of leg (F1, 22¼ 1.9, p¼ 0.177, gp

2¼ 0.081)
and no age group by leg (F1, 22¼ 0.008, p¼ 0.929, gp

2

<0.000) interaction for the variable position errors. Older
subject tended to perform the passive target-matching task
with significantly larger variability (5.1 ± 0.3�) as compared
with young adults (3 ± 0.9�).

Discussion

We determined the effects of age on passive knee JPS in the
right-dominant and left non-dominant leg. We evaluated not
only the absolute and relative but also the constant and

Figure 2. Constant JPS errors in young and older subjects’ right-dominant and left non-dominant knee. There were a significant age group� leg (†). The boxplots
show the median, the upper, and lower quartiles and the min and max value of the age groups. �p< 0.05.

Figure 1. Relative joint position sense (JPS) errors for young and older adults in the right-dominant and the left non-dominant leg. The three target angles (30� ,
45� and 60�) are shown next to each other. The boxplots show the median, the upper, and lower quartiles and the min and max value of the age
groups. �p< 0.05.
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variable errors, making it possible to detect the direction and
the variability of the errors, respectively. We found significant
age-effect when analyzing absolute, constant, and variable
errors. Both older and young subjects performed target-
matching tasks more accurately with their non-dominant as
compared to the non-dominant leg hence age did not affect
JPS asymmetry between the two knees. However, in contrast
to young participants’ overestimation of the target angles,
older adults tended to underestimate target angles more
with their dominant compared to their non-dominant knee
joint. Moreover, older subjects tended to perform the passive
target-matching task with greater variability.

In line with the well-documented age-related deterior-
ation in neuromuscular and central nervous system function
(Campbell et al. 1973; Goble et al. 2012; Hunter et al. 2016)
that could affect JPS, we also found an age-effect on pro-
prioception as measured by a passive target-matching task
(Table 1). The age-related increased deterioration on limb-
target control may be explained by impaired proprioceptive
acuity (Goble, Coxon, et al. 2009) and feedback processing
efficiency (Stelmach et al. 1988; Van Halewyck et al. 2015).
Nevertheless, results from some previous studies showed no
age-effects on JPS (Pickard et al. 2003; Boisgontier et al.
2012). One reason for the inconsistent data among studies is
the differences in the methods used to measure JPS. For
example, low (3–5) trial numbers (Bullock-Saxton et al. 2001;
Adamo et al. 2009) can reduce the sensitivity of the target-
matching tests, therefore may be insufficient to determine
parameters in proprioceptive tests (Ashton-Miller 2000).
Another reason could be related to the excessive inter-sub-
ject variability in JPS (Adamo et al. 2007; Herter et al. 2014).
Individual JPS values at the hip and knee joints can range
from 0.6� up to 8.8� (Domingo and Lam 2014; Qaiser et al.
2016) making the detection of an age-effect inconsistent.
Age, musculoskeletal dysfunctions, neurological impairments,
and physical activity history can all affect JPS and increase
between-subject variation (Hasan 1992). Although we also
found considerable inter-subject variability in JPS (Figure 3),
our data nonetheless yielded statistically significant age-
effect on JPS by increasing the number of repetition in the
trials and by assigning sufficient number of subjects com-
pared with previous studies.

In agreement with some (Symes et al. 2010; Han et al.
2013) but not all studies (Bullock-Saxton et al. 2001; Galamb
et al. 2018), our data show that target-matching is more
accurate in the non-dominant compared with the dominant
knee joint in both older and young participants (Figure 2).
Neuroanatomical organization would also favour the limb
asymmetry-effects in knee JPS because while proximal
muscles are innervated by both hemispheres, distal muscles
are innervated predominantly by the contralateral hemi-
sphere (Kuypers 1982; M€uller et al. 1991). Therefore, proprio-
ceptive asymmetry may be more likely to be evident in the
distal than in the proximal joints (Roy and MacKenzie 1978;
Scott and Loeb 1994). As stated above, differences in meth-
odology (e.g., number of testing trials, active vs. passive
repositioning, degree of joint loading) among studies may
contribute to the lack of asymmetry in proprioceptive match-
ing tasks. Although both age groups performed target-
matching task more accurately with their non-dominant leg,
young adults tended to overestimate while older subjects
tended to underestimate the target more with the dominant
(3 ± 0.9�, �1.9 ± 0.9�, respectively) compared to their non-
dominant leg (1.1 ± 0.9�, �1.2 ± 0.9�, respectively) (Figure 2).
This somewhat unexpected result may be related to an age-
related increase in the involvement of cortical and cognitive
control of joint motions in general and JPS in particular
(Piitulainen et al. 2018; Berghuis et al. 2019). Older adults
even without overt cognitive and motor dysfunctions tend
to execute the simplest motor tasks with overactivation of
putative brain areas and activation of remote areas (Berghuis
et al. 2019), leading to an altered JPS.

Movement variability is essential for flexibility and stability
(Mathiassen et al. 2003). However, when increased beyond
its optimal level, the neuromuscular system gets too noisy
and less adaptable (Stergiou et al. 2006). On the other hand,
when it is reduced below its optimal value, the individual
cannot have all the beneficial effects of redundancy in the
motor system (Madeleine et al. 2008). Therefore, each condi-
tion leads to an increased chance of injury. In the present
study, we found that older subjects tended to perform the
passive target-matching task with significantly higher vari-
ability. Although the age-differences in variable JPS errors
were minimal (1–2�), the variability data may help us better
understand how an increased variability in JPS by aging can
increase the risk of musculoskeletal injuries during daily life
or sport activities. To the best of our knowledge, our study is
the first calculating variable knee JPS errors for different age
groups, it is therefore difficult to judge if such age-differen-
ces in variable JPS errors may provide evidence for increased
risk of musculoskeletal injuries.

Previously we reported that despite the randomization of
the target positions, an increase in the range of motion
increases the cognitive difficulty of the task, resulting in
greater JPS errors in more extended knee joint positions
(Negyesi et al. 2018). In contrast with the expectation, in the
present study, we found that relative target matching errors
were less at a more extended knee joint position, i.e., 45�

(8.6 ± 0.6%) compared with 60� (12.1 ± 1%), irrespective of leg
or age (Figure 1).

Figure 3. Variable JPS errors in young and older subjects. The boxplots show
the median, the upper, and lower quartiles and the min and max value of the
age groups. �Significant main effect of age (p< 0.05).
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Age-related decline in proprioception of the lower
extremity joints can modify gait (Nurse and Nigg 1999;
Courtine et al. 2001). The data are inconsistent concerning
the relationship between neural feedback and gait patterns
in patients with sensory impairments as in some (Lin 2005)
but not all cases (Okuda et al. 2006) there was an effect of
JPS on gait. Furthermore, knee JPS was more accurate in
stroke patients who had no history of falls or were one-time
fallers compared with repeat fallers (Soyuer and Ozturk
2007). To the best of our knowledge, there is no data in the
literature on the relationship between knee JPS and gait per-
formance in healthy adults, however, results from clinical
studies suggest a weak but significant correlation between
gait patterns/falls and knee JPS error, placing our data into a
functional perspective. Our data provide evidence for altered
knee JPS through ageing reflecting age-specific adaptations
in the neuromuscular system that may contribute to the
altered gait patterns in the elderly.

In the current study, JPS was measured passively by mov-
ing the limb attached to the lever arm of the dynamometer.
Although this method eliminates input from muscle contrac-
tions that could influence the perception of joint position, it
may also contribute to the different target matching behav-
iour between young and older participants. MMSE scores
(27.1 ± 1.4) suggest that older participants were cognitively
healthy, however, is might be not sufficient enough to
remove such confounding factors like reaction time and cog-
nitive process that could impact JPS, as participants had to
push a button while their knee was passively extended at
4�/s. Moreover, memory can be also a confounding factor
and it is therefore impossible to detect if the age-related dif-
ference is due to proprioceptive differences or ability to
remember (Boisgontier and Nougier 2013). A contralateral
concurrent matching paradigm would therefore have been a
better test for JPS in older individuals. This may explain part
of the difference between young and adults, therefore we
acknowledge it as a limitation of the study. Nevertheless, we
found lower relative JPS errors when matching 45� (ROM:
45�) as compared with 60� (ROM: 30�), irrespective of leg
or age.

In our previous studies (Galamb et al. 2018; Negyesi et al.
2018) we discussed that active vs. passive repositioning
measurement paradigms are more suitable to assess JPS, due
to the involvement of the fusimotor drive and muscle spin-
dle feedback during an active movement (Zazulak et al.
2007). However, voluntarily moving the leg during active
repositioning measures 1) movement and 2) stopping (pos-
ition) of the leg, so that movement precedes the stopping
action In this study, we were particularly interested in the
effects of age on the ability to sense purely joint position
per se without the added influence of voluntarily moving the
limb on joint position, hence we used a passive JPS task.
Nevertheless, future studies should use active repositioning
measurements to measure proprioception and kinaesthetic
movement reproduction without a potential bias of memory.
Also, because it was shown that age-related declines in JPS
ability cannot be clearly identified when the task is relatively
simple, future studies may need to consider using more

challenging dual-task paradigms. Finally, it is recommended
to determine the effects of age on the functional relevance
of JPS in walking, running, jumping, stair climbing and
changing directions while ambulating.

The interpretations of our results are based on significant
differences, nevertheless, differences in each type of JPS
errors were minimal taking our data into consideration
whether such minimal detectable differences have any
physiological/functional importance. Because the magnitude
of differences in JPS errors between groups and conditions
of 1–3� we observe are similar to effects of 1–3� after the
application of external supports (Tiggelen et al. 2008; Van
Tiggelen et al. 2007; Ghai et al. 2018; Negyesi et al. 2018;
Zhang et al. 2019), or other experimental manipulations
(Galamb et al. 2018) or between different age groups (Relph
and Herrington 2016), it is likely that our results are not due
to measurement error.

Conclusion

Healthy aging produces age-specific modifications in JPS.
Older as compared to young participants produced more
knee JPS errors measured by passive repositioning, but tar-
get-matching asymmetry was not altered through ageing.
However, while young adults tended to overestimate-, older
subjects tended to underestimate more with their dominant
compared to their non-dominant knee joint. Moreover, older
subjects tended to perform the passive target-matching task
with significantly greater variability. Finally, it is possible that
age selectively affects JPS when the knee is more flexed.
Future work will consider how age affects active JPS and its
relationship with function such as walking speed, ability to
change directions, and climb stairs.
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