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Abstract

The hunting of marine mammals as a source of subsistence, trade, and commercial revenue has formed an important part of
human cultures across the North Atlantic. One important prey species has been the Atlantic walrus (Odobenus rosmarus
rosmarus), sought after for meat, skin, blubber, ivory, and bone. Unfortunately, biological studies of current walrus
populations and studies across the humanities and social sciences into past use and hunting of walruses, have been poorly
integrated. Disciplinary boundaries have left a gap in understanding the reciprocal effects of human-walrus interactions.
Emerging interdisciplinary methods offer new opportunities to write the historical ecology of Atlantic walruses. The inte-
gration of methods such as ancient DNA, isotopes, past population modelling, zooarchaeological assemblages, and
ethnographic interviews can now be used to answer previously intractable questions. For example, how has walrus hunting
shaped and been influenced by changes in human settlement and trade, what have been the cumulative impacts on
walrus populations, the extent of anthropogenic selective pressures or the effect of changing hunting regimes on particular
populations of walruses? New, collaborative research approaches applied to the wealth of Arctic archaeological faunal
remains already housed in museum collections offer a unique chance to explore the past dynamics of human-animal
interactions.
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THE ARCTIC CHALLENGE

The extreme climatic conditions, seasonal changes in light
availability, limited resources, and comparative isolation
makes the Arctic a unique yet challenging environment,
requiring specific cultural and biological adaptations for
plants, animals, and humans to occupy these northernmost
latitudes. Studying these regions is particularly important as
dramatic environmental and social changes are underway,
including melting of the permafrost, reduced sea ice, altered
ocean currents, and human pressures from extractive indus-
tries, tourism, and settlement (Dickson et al., 2000; Visbeck
et al., 2001; Driesschaert et al., 2007; Fay and Karlsdóttir,
2011; Becker and Pollard, 2016). These changes are likely to

have profound consequences for Arctic species, ecosystems,
and the traditional human lifeways that rely upon them. Our
ability to understand future responses, however, is limited
by our knowledge of human-animal-environmental interac-
tions. The nature of many such interactions remains obscure,
as research traditionally separated between the humanities
and natural and social sciences has focused on different
time scales, and tended to artificially separate biological
and human cultural components of Arctic ecosystems. Inter-
disciplinary research offers a unique opportunity to reveal the
stories, past lives, and dynamics of people, animals, and
plants at a critical time of change and uncertainty.

Museum collections and archaeological sites across the
subarctic and Arctic hold “paleoarchives” of biological and
cultural material that can provide insight into the characteris-
tics and effects of human activities. The past can reveal the
extent, rate, and nature of change likely to emerge. Knowl-
edge of past interactions can ensure future decisions are
well-informed, and may even mitigate against predicted
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environmental and ecological changes. A limited number of
studies have already shown the dynamics of human-animal
interactions for a few extinct and extant Arctic and subarctic
species, such as mammoths (Mammuthus spp.; e.g., Drucker
et al., 2015; Metcalfe, 2017), musk ox (Ovibos moschatus;
e.g., Campos et al., 2010; Markova et al., 2015) and bowhead
whales (Balaena mysticetus; e.g., Borge et al., 2007; McLeod
et al., 2008), however much remains unknown. The aim of
this paper is to highlight current knowledge, and key knowl-
edge gaps in the historical ecology (sensu Stahl, 2014) of a
single species—the Atlantic walrus (Odobenus rosmarus
rosmarus)— in order to reveal the nature, scale, and duration
of impacts on both humans and animals (Fig. 1). We begin
with an introduction to walrus hunting in the North Atlantic1,
and then highlight four questions key to developing a
holistic historical ecology of the species. Although we
focus only on the Atlantic walrus, the questions, approaches,
and methods explored could also be applied to a wide range
of other species.

AN INTRODUCTION TO HUMANS AND
WALRUSES

Human cultures occupying the North Atlantic have long uti-
lised mammals, birds, fish, and bivalves for food, tools, cloth-
ing, fuel, and trade goods. In particular, Arctic marine
mammals (AMMs) have played a central, albeit varied, role
in human subsistence over at least six millennia of human
population expansion, abandonment and recolonisation
events (Fig. 3; Murray, 2008). Most parts of the Arctic
could not have been settled without maritime cultural and
technological adaptations (Fitzhugh, 2016), but these took
time to develop. Some of the earliest human Arctic maritime
specialisations in the North Atlantic began in northern
Europe, with hunting of AMMs from the Younger Stone
Age (4450 BC–AD 150) around Varangerfjord, in what is
today northern Norway (Renouf, 1986). Reliance on mari-
time resources slowly developed across Arctic Canada and
Greenland following the first human migration wave by the
Arctic Small Tool traditions around 4000 BC from the Bering
Strait to Canada, and eventually Greenland (Ackerman, 1998;
Raghavan et al., 2014).
One AMM frequently found at archaeological sites across

the North Atlantic is the walrus. Walruses are the largest
extant Arctic pinniped, and were particularly important to
early human maritime cultures lacking in social and techno-
logical developments for large whale hunting (Murray,
1999). Walrus hunting by humans was widespread across
the North Atlantic, however the intensity and location of
activities has varied following changing motivations from
subsistence hunting, long-distance trade, and eventually

commercial exploitation. There are two currently recognised
subspecies of walrus, the Atlantic (O. r. rosmarus [Linnaeus,
1758]) and the Pacific (O. r. divergens [Illiger, 1815]), with
distinct geographic distributions (Fig. 2; Cronin et al.,
1994). The more abundant and generally larger Pacific walrus
occurs in northern Russia and Alaska within the Bering,
Chukchi, and Laptev seas (Fay, 1982; Lindqvist et al.,
2009) and has been found at archaeological sites relating to
the Old Bering Sea, Birnirk, Punuk, and Thule cultural peri-
ods (Hill, 2011). In contrast, the Atlantic walrus is currently
found across northeastern Canada, Greenland, Svalbard,
Franz Josef Land, and the Kara and southern Barents seas
(Born et al., 1995). Faunal remains and artefacts of the Atlan-
tic walrus have been documented from Pre-Dorset, Dorset,
Thule, Norse, and historical European archaeological sites
across an expanded geographic area of the current distribution
of the subspecies (Fig. 1; e.g., Møbjerg, 1999; Murray, 1999;
Hacquebord, 2001; Desjardins, 2013). Prior to recent centu-
ries of intensified hunting pressure, Atlantic walrus were
also found in areas further south such as the southeastern
Canadian Maritimes (North Atlantic Marine Mammal
Commission [NAMMCO], 2005; McLeod et al., 2014). Wal-
ruses remain an important resource for many Arctic commu-
nities and are hunted across much of their range, subject to
regulations and quotas (Wiig et al., 2014; Born et al., 2017;
Andersen et al., 2018; NAMMCO, 2018).
The distinction between the methods and topics of interest

of various research traditions means that many of the cultural
and ecological dimensions of human-walrus interactions
remain unknown (Born et al., 1995; Murray, 1999). Archae-
ologists and historians have considered walrus from an
anthropocentric perspective. In particular, archaeological
research has been concentrated on the role of walrus in
local subsistence strategies; the use of bone, hide, and
tusks for tools and equipment; the extent and nature of long-
range trade or exchange; and the importance of walrus in
local worldviews. Archaeologists have generally studied
tools, settlement organisation, and faunal assemblages to
reconstruct hunting strategies as well as carcass processing,
storage, use, and exchange. Additional insights have been
incorporated from anthropology, history, and literature that
have drawn upon written records (e.g., catch records and
exploration logs) and modern-day parallels (e.g., inference
from contemporary hunting practices). Although it is well-
established that walruses have been subjected to numerous
phases of human hunting, it remains unclear what distinct
or cumulative biological impacts this may have had on
local walrus populations, and how this may be linked to
known human cultural changes.
In contrast, biological research has typically focused on

contemporary walrus populations to provide population size
estimates, fundamental biological information, and stock
characterisation to determine sustainable hunting quotas,
appropriate conservation efforts, and management practices
within frameworks such as NAMMCO (Stewart et al.,
2014a) and the Convention on International Trade in Endan-
gered Species (CITES, 2017). Data have been obtained using

1Please note, in this article “North Atlantic” refers to the area encompass-
ing the current distribution of Atlantic walrus from Subarctic to High Arctic
environments (Fig. 2). Specifically, this ranges from 100°W to 70°E, and
northwards from 50°N around North America or 60°N for the comparatively
milder European side.
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a wide range of methods, including satellite telemetry,
genetic analyses, behavioural observations, thermal imagery,
and physiological examinations.

Thus, despite the knowledge of current walrus biology and
ecology, the impact of human activities or environmental
changes and details about local walrus populations in the

Figure 1. (A) Photograph of a group of live Atlantic walruses, hauled-out on Svalbard. Photograph courtesy of Frits Steenhuisen.
(B) Photograph of a surface find from northern Foxe Basin during fieldwork, showing the cranial remains following ivory removal.

Figure 2.Map of the Arctic showing all regions, places, and oceanographic features (coloured blue) mentioned in the text. Archaeological sites
and specific places are marked with a point and coloured in aqua. The shading in purple and yellow represent the current distribution of Atlantic
and Pacific walrus, respectively. The area within the black dotted lines represents the “North Atlantic” as defined within this article. All maps
made using QGIS v.2.18.13 (QGIS 2018) and Inkscape v.0.48 (Inkscape 2011).
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past is comparatively poorly understood, particularly for
deeper time scales.

THE NEED FOR INTERDISCIPLINARITY

Due to the disciplinary divide explored above, there are sev-
eral key, as yet unanswered, questions relating to human-
walrus interactions.

(1) How have human motivations for walrus hunting and
utilisation varied across time and space? How has this
been reflected in different hunting strategies, exploita-
tion sites, as well as the trade and exchange of products
such as ivory?

(2) Have there been substantial changes to prehistoric,
historic, and contemporary walruses in terms of abun-
dance, diversity, and distribution (including population
crashes and local extinctions), associated with a partic-
ular human hunting or trade regime?

(3) Have there been particular morphological or demo-
graphic changes to walrus populations as a result of

particular human hunting practices or strategies? Do
any impacts show discrete or cumulative effects?

(4) Has the behavioural ecology of walruses, including
migratory pathways, dispersal, haul-out sites, foraging,
and mating behaviour, changed in response to differing
phases of human exploitation and disturbance?

Emerging interdisciplinary methods now allow these questions
to be investigated, as well as the potential impact of climatic and
environmental conditions on walruses and humans. Integrated
research approaches will make greater use of existing archaeo-
logical and historical collections, and create a shared point of
reference for the humanities and natural and social sciences to
understand human-walrus interactions through time. For archae-
ology, insights from new methodologies and ecological data
will expand inference from a single site to broader geographical
regions, and from an anthropocentric approach to a more com-
prehensive ecosystem scale. In contrast, biologists will now be
able to extend the time depth of studies based upon greater
sample material with contextual information about collection
localities, possible human impacts, and sample ages.

Figure 3. Distribution map of contemporary walrus, focusing on the North Atlantic and Arctic. Each of the ten recognised populations (or
stocks) has been given a unique colour and label: (A) Baffin Bay (northwest Greenland and Canadian High Arctic), (B) northern Foxe
Basin, (C) southern Foxe Basin, (D) southern and eastern Hudson Bay, (E) west Greenland–southeast Baffin Island (Hudson Bay–Davis
Strait), (F) eastern Greenland, (G) Franz Josef Land–Svalbard, (H) Novaya Zemlya and east Laptev–Novosibirskie Islands, and (I) Pacific
walrus (Odobenus rosmarus divergens). Adapted from Dietz et al. (2014), Lydersen and Kovacs (2014), McLeod et al. (2014), and Stewart
(2014b).
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CURRENT ARCHAEOLOGICAL AND
BIOLOGICAL KNOWLEDGE

In order to adequately explore the key questions outlined
above, this section provides a summary of current biological
and archaeological research. The following content is not
intended to serve as a comprehensive review, rather it is
included to provide readers of any discipline with sufficient
background knowledge to enable discussion of future inter-
disciplinary opportunities at the core of this paper.

Biology of contemporary walruses

Morphology

Walruses are one of the largest pinnipeds, and the only extant
species of what was previously a rich and diverse family, the
Odobenidae (Bouchard et al., 1993; Boessenecker and Chur-
chill, 2013). Walruses are easily recognised by their charac-
teristic tusks formed from elongated upper canines
emerging from an upper snout covered in vibrissae (Fig. 1;
Fay, 1985). Atlantic and Pacific walruses share similar mor-
phologies (Fay, 1985), although the Pacific is generally
heavier and possibly longer than the Atlantic (Fay, 1982;
Knutsen and Born, 1994). Within the Atlantic subspecies,
adult males can reach up to 1300 kg and 3.2 m in length
(Knutsen and Born, 1994; Wiig and Gjertz, 1996; Garlich-
Miller and Stewart, 1998), although there is some variation
in size between populations. For example, walruses from
Foxe Basin and Greenland are longer on average than animals
from Hudson Bay (Mansfield, 1958; McLaren, 1993; Knut-
sen and Born, 1994). Walruses are sexually dimorphic,
with females typically 20% smaller than males (Fay, 1985),
with a higher proportion of blubber, fewer skin nodules or
scarring, and smaller straighter tusks (Fay, 1982; Knutsen
and Born, 1994). Walrus morphology, particularly tusk
size, also varies according to age, health, and population
(Fay, 1982; Knutsen and Born, 1994; Garlich-Miller and
Stewart, 1998). It is not known how representative contempo-
rary morphological variation is for historic populations, with
only a few studies that have characterised historic remains
(e.g., Laptev walrus [Lindqvist et al., 2009] and Maritimes
walrus [McLeod et al., 2014]). Conducting such analyses is
challenging due to small sample sizes and the potential for
degradation to mask or be indistinguishable from physiolog-
ical differences between animals or populations.

Subspecies and populations

The split between Atlantic and Pacific walruses has been con-
firmed by numerous genetic studies (e.g., Cronin et al., 1994;
Lindqvist et al., 2009, 2016) and estimated to have occurred
almost one million years ago during the Pleistocene (Andersen
et al., 2017). There is very limited gene flow between the two
subspecies (Andersen et al., 2017), and substructure within the
Atlantic shows distinct clades on the “eastern” and “western”
side of the North Atlantic also with limited gene flow (Fay,
1985; Cronin et al., 1994; Andersen et al., 1998; Born et al.,

2001; Andersen et al., 2014; Star et al., 2018). These two rela-
tively isolated clades have numerous recognised populations as
determined by genetic (e.g., Andersen and Born, 2000; Ander-
sen et al., 2009, 2017; Lindqvist et al., 2009), isotopic (Outridge
and Stewart, 1999; Outridge et al., 2003), trace element (Shafer
et al., 2014), and tracking studies (e.g., Dietz et al., 2014). There
are currently eight recognised populations2 (Fig. 4): Baffin Bay
(northwest Greenland and Canadian High Arctic); west Green-
land–southeast Baffin Island (Hudson Bay–Davis Strait); north-
ern Foxe Basin; southern Foxe Basin; southern and eastern
Hudson Bay; eastern Greenland; Franz Josef Land–Svalbard;
and southern Novaya Zemlya and east Laptev–Novosibirskie
Islands (Outridge and Stewart, 1999; Stewart et al., 2003;
NAMMCO, 2005, 2018; Stewart, 2008; Andersen et al.,
2014). There may also be additional as yet unknown Russian
populations, as population designation remains unclear given
the limited data concerning their migratory behaviour, abun-
dance, and distribution (NAMMCO, 2005; Andersen et al.,
2017).

Measuring abundance

There have been ongoing attempts to obtain accurate abun-
dance estimates across Atlantic walrus populations in order to
infer population trends, conservation status, and calculate sus-
tainable catch sizes. Historically, this typically involved visual
survey from boats, on land, or by plane, with aerial surveys, in
particular, still being used today (e.g., Heide-Jørgensen et al.,
2016; Hammill et al., 2016b; NAMMCO, 2018). Newer, alter-
native methods such as thermal imagery and high-resolution
digital photography have been tested (Burn et al., 2006; Ude-
vitz et al., 2008), and developing technology, such as drones,
may offer new insights into population size, health, and behav-
iour (for examples from other marine mammals see Panigada
et al., 2011; Christiansen et al., 2016). Depending on the tech-
nology, survey design, geographical region, and season, appro-
priate correction factors must be applied to abundance counts to
obtain realistic population size estimates, considering factors
such as the proportion of animals hauled-out or demographic
composition (Born and Knutsen, 1997; Lydersen et al., 2008;
Heide-Jørgensen et al., 2013).

Current population estimates

Based on recent surveys for each population, total abundance
for the Atlantic walrus is estimated at approximately 40,000
animals (Table 1). Absolute numbers are impossible to deter-
mine, as surveys are not exhaustive and the same animal may
be included multiple times when surveys are repeated in dif-
ferent geographic regions across different seasons. Despite
this uncertainty, the Atlantic walrus population is substan-
tially smaller than that for the Pacific walrus, which is

2Please note, for simplicity we use “population” to refer to discrete bio-
logical and management units of walruses, acknowledging that in the broader
literature there can be a distinction between biological populations and man-
agement stocks (e.g., Stewart, 2008).
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predicted to be close to carrying capacity (Fay et al., 1997;
Andersen et al., 2017), currently numbering between
129,000 and 283,000 animals (MacCracken et al., 2017).

Determining population trends and future
trajectories

The current populations of Atlantic walrus show varying
degrees of decline and growth over the last 100–150 years,
according to population modelling based upon catch history
records and life-history characteristics (e.g., Witting and
Born, 2005, 2014). There have been substantial declines for
populations such as west Greenland–southeast Baffin Island
(estimated 80% decline during the first half of the twentieth
century), but positive population growth for others, such as
eastern Greenland (Witting and Born, 2005, 2014). Although
data are limiting for certain populations thereby reducing
confidence in the reconstructed population dynamics
(NAMMCO, 2005), genetic information has also been used
to infer similar trends. For example, genetic assessments sug-
gest that west Greenland–southeast Baffin Island walruses
underwent a substantial population decline (bottleneck;

Shafer et al., 2015), whereas populations across Svalbard,
Franz Josef Land, and the Pechora Sea show population
expansion (Andersen et al., 2017).

Movements and migrations

Walrus movements have been studied from daily to annual
time scales, with movements found to often correlate with
ice cover, food availability, and reproductive requirements
(Born et al., 2005, 2017; Dietz et al., 2014). Some walruses
follow the same migration each year between wintering and
summering sites (Lowther et al., 2015). For example, many
Baffin Bay walruses travel west following retreating ice dur-
ing summer towards Canada’s Ellesmere Island, where they
remain for the warmer months before returning to winter
along Greenlandic coasts (NAMMCO, 2013, 2018;
Heide-Jørgensen et al., 2017). In contrast, other walruses
do not undertake any large-scale seasonal migration, such
as females from eastern Greenland (NAMMCO, 2005).
General habitat preference for walruses is sea ice or land suit-
able for hauling-out, close to shallow coastal water with easy
access to bivalve prey (Sjare and Stirling, 1996; Andersen and

Figure 4.Map showing key cultural phases with large-scale population movement in the North Atlantic and Atlantic Arctic beginning with the
earliest Pre-Dorset cultures until the most recent European and North American whalers and sealers. Arrows are colour-coded based upon cul-
ture and symbolically represent the origin, movement, and hunting/settlement localities of cultural complexes mentioned in the text. Numbers
associated with each arrow represent the time at which each humanmigration or period of intensive hunting activities began. Adapted frommaps
by Raghavan et al (2014) and Star et al. (2018).
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Born, 2000; Heide-Jørgensen et al., 2014). In winter, wal-
ruses can be found in areas with up to 97% ice cover (Born
et al., 2005), although most wintering sites are found near
permanent open water, or “polynyas,” such as the North
Water Polynya (Heide-Jøorgensen et al., 2016). Outside the
breeding season of late winter and spring, females and
males typically occupy different areas, potentially to mini-
mise food competition (Born et al., 2005; Krupnik and
Ray, 2007). Annual migration and choice of daily haul-out
sites by walrus has changed over recent decades and centu-
ries. Observations of migratory patterns, particularly by
indigenous hunters, indicate changes to the timing and loca-
tion of walruses across the Arctic with shortened migratory
cycles and altered haul-out patterns (Krupnik, 2000; Krupnik
and Ray, 2007; Born et al., 2017; Andersen et al., 2018). The
extent, variability, and rate of change, however, are difficult to
quantify with limited empirical information.

Hauling-out behaviour

A combination of traditional ecological and scientific knowl-
edge has revealed information about behaviours such as
hauling-out, mating, and feeding. Walruses frequently
group together in herds of three or more animals to swim or
haul-out, although males in particular can also be found
alone (Born et al., 1995; Sjare and Stirling, 1996). Kinship
groups commonly share haul-out sites, and numerous differ-
ent haul-out sites can be used within a season by the same
individuals (Andersen and Born, 2000; Andersen et al.,
2014). Walruses spend approximately 25–30% of their time
hauled-out (Sjare and Stirling, 1996; Born and Knutsen,
1997; Born et al., 2014), although where the population is
highly mobile or there are only limited ice haul-outs (e.g.,

Smith Sound), this can fall to 15% (Garde et al., 2018).
The timing and duration of haul-outs has been linked primar-
ily to temperature, wind speed, and precipitation (Born and
Knutsen, 1997), rather than other factors such as diurnal pat-
terns (Nyholm, 1975; Mansfield and St Aubin, 1991). Wal-
ruses spend most of their time concentrated within a few
kilometres of a coast or fjord opening in shallow waters
within 2 m of the surface (Born et al., 2014; Dietz et al.,
2014), however individual walruses have also been recorded
in areas of much deeper water, particularly in eastern
Greenland (Born et al., 2005).

Feeding behaviour

When not hauled-out, walruses spend the rest of their time
diving for food, travelling between sites, or “milling” as a col-
lective in a less-defined social activity (Sjare and Stirling,
1996). Much of the diet of walruses is benthic bivalves
(e.g.,Mya truncata, Hiatella arctica, or Serripes groenlandi-
cus) typically found at depths of less than 100 m (Vibe, 1950;
Mansfield, 1958; Fisher and Stewart, 1997). To reach their
prey, walruses dive repeatedly over several hours, with each
dive lasting an average of 3–5 minutes depending on depth
to prey (Wiig et al., 1993; Knutsen and Born, 1994; Acquar-
one et al., 2006). A fully grown adult walrus must consume
large number of bivalves to obtain enough energy, particu-
larly during summer to ensure ample lipid stores are built
up for the cooler months (Born and Acquarone, 2007). Met-
abolic studies support daily food requirements of approxi-
mately 4–6% of total body mass (Fay, 1982; Born et al.,
2003; Born and Acquarone, 2007; Garde et al., 2018), mean-
ing that an average fully grown adult can easily consume
95kg of bivalves a day (Acquarone et al., 2006). Walruses

Table 1:Corrected population estimates for each of the five populations of Atlantic walrus (O.r. rosmarus) separated by region surveyed, year,
season, and publication. Depending on the study, correction refers to quantitative adjustment to allow for walruses submerged at the time of
survey or missed from observation. Cautionmust be taken when interpreting numbers within a population due to connectivity between regions.
As all surveys were not taken simultaneously, numbers cannot account for movement and may easily underestimate total population size or
double count animals. For example, seasonal migration may result in animals fromWest Greenland being confounded in abundance estimates
of Baffin Island during summer. Furthermore, not all haul-out sites are surveyed so the corrected estimates generally represent minimum
abundances for each region.

Population Region Year and season surveyed
Corrected
estimate Publication

Western Greenland–central
Arctic

Western Greenland Spring 2012 1408 Heide-Jørgensen et al., 2014
Baffin Island, Canada Summer/

autumn 2007
2500 Stewart et al., 2014

Foxe Basin Summer/
autumn 2011

14,093 Hammill et al., 2016a

Hudson Bay Autumn 2014 7100 Hammill et al., 2016b
Northwest Greenland–High
Arctic

Baffin Bay (North Water Polynya) Winter 2018 1279 NAMMCO, 2018

Eastern Greenland Eastern Greenland (Northeast Water) Summer 2017 279 NAMMCO, 2018
Franz Josef Land–Svalbard Svalbard Summer 2012 3886 Kovacs et al., 2014;

Lydersen and Kovacs, 2014
Novaya Zemlya, eastern
Barents– Pechora Seas

Pechora Sea Summer 2011 3943 Lydersen et al., 2012
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not only remove large amounts of biomass but also structur-
ally alter benthic communities through bioturbation, as they
feed by selectively ripping off partial or whole bivalve bodies
from the seafloor while moving their head and tusks laterally
within the sediment (Vibe, 1950; Mansfield, 1958; Oliver
et al., 1983; Fisher and Stewart, 1997; Born et al., 2003).Wal-
ruses have also been documented feeding on awide variety of
other prey items such as seals, squid, or polychaetes, proba-
bly allowing them to occur in areas with limited shallow
water bivalve communities (Mansfield, 1958; Fisher and
Stewart, 1997; Born et al., 2005).

Reproduction and life-history traits

Walruses are relatively long-lived, attaining ages of 20–30 yr,
and are slow to develop and reproduce. Breeding is typically
between February and April, depending on ice cover (Born et.
al, 1995; Born, 2001, 2003). Commonly used breeding areas
feature open water, such as the North Water Polynya in north-
west Greenland (Vibe, 1950; Born, 2001; Born, 2003), east-
ern Greenlandic polynyas (Born et al., 1997) or the
northeastern islands of Svalbard (Lowther et al., 2015). At
least for the Pacific walrus, breeding is highly associated
with ice, and, according to traditional Yupik knowledge,
fresh snow is thought to protect young calves from cold expo-
sure on the ice (Krupnik, 2000). The Atlantic walrus breeding
season overlaps with the period of peak male fertility (pri-
marily from late winter until early spring, irrespective of
age; Born, 2003) and female oestrus (generally spring;
Born, 2001). Breeding is initiated by numerous different
male walruses “singing” underwater in rotation to groups of
hauled-out females, with each mature male performing for
several days at a time (Sjare and Stirling, 1996). Calves are
born after about 11 months of active gestation (Garlich-Miller
and Stewart, 1999), typically with an even sex ratio and
already 1.1–1.6 m long (Born, 2001). Females suckle calves
for 2–3 yr (Mansfield, 1958). Walruses continue to grow
past sexual maturity, approximately 11 yr for males and 6
yr for females (Born, 2001, 2003), until physical maturity,
approximately 10–15 yr (Knutsen and Born, 1994; Born,
2003). Female walruses typically birth a new calf every 3
years, although it is possible every second year (Born, 2001).

Conservation and management concerns

The future prospects of walruses in the North Atlantic are
likely to depend upon the extent of human hunting, anthropo-
genic disturbances, environmental pollution, and climate
change. Climatic changes are predicted to affect not only
ice cover, habitat availability, ocean productivity, and the
availability of prey, but also walrus social structure, migration
patterns, and vulnerability to pollutants and pathogens (Krup-
nik, 2000; MacCracken et al., 2017). Warmer temperatures
and reduced ice cover will reduce sea-ice haul-out sites for
many populations, increasing the use of terrestrial haul-out
sites, in turn making walruses more vulnerable to predators
such as polar bears or human hunters (NAMMCO, 2005).

Walruses may also experience increased physiological stress
by requiring greater daily energy expenditure if suitable ice
haul-out sites are lost or are further away from feeding
grounds (Krupnik, 2000; NAMMCO, 2005). Conversely,
environmental changes might lead to increased ocean produc-
tivity, hence improving prey availability for walruses (Krup-
nik, 2000; NAMMCO, 2005). Current research shows
negative impacts on health and social dynamics for the Pacific
walrus due to changing ice floe movements, increased sea-
sonal variability, and earlier ice breakup (Ray et al., 2016).
This trend is not universal, however, as regular abundance
estimates have shown increasing, rather than decreasing, pop-
ulation size despite substantial sea-ice loss, in areas such as
Svalbard (Kovacs et al., 2014; Laidre et al., 2015) and west
Greenland (NAMMCO, 2018). This suggests a complex
and challenging dynamic between changing climatic condi-
tions and future walrus population size across the North
Atlantic, with the overall effect still unclear. In addition to cli-
mate change, there are ongoing concerns regarding levels of
environmental pollution in the Arctic, particularly polychlo-
rinated biphenyls and heavy metals (Wiig et al., 1999,
2000; Wolkers et al., 2006; Rigét et al., 2007) as well as
anthropogenic threats from settlements, waste management,
extractive industries, shipping, and tourism (NAMMCO,
2005, 2015; Krupnik, 2000).

Overview of prehistoric and historic trends in
walrus hunting and utilisation

From the beginning of North Atlantic
Archaeological research

Human occupation of the North Atlantic Arctic has been
recorded in writing by Europeans since the sixteenth century
with explorers including Sir Martin Frobisher (McGhee,
2001), Rasmussen (1927), and Peary (2012) often gathering
ethnographic descriptions, tools, and artefacts from the Arctic
indigenous people they encountered (Hastrup, 2009; Stewart
et al., 2014d; Gulløv, 2016). Since the era of European explo-
rations ended in the twentieth century, researchers across
social sciences and the humanities have continued to investi-
gate how past and present Arctic cultures survived, and in
many cases thrived, in the extreme conditions and distances
of the northernmost latitudes. Interpretations of archaeologi-
cal material have sought to describe and interpret both tempo-
ral and spatial patterns of human activities and ways of life.
Important for our understanding of human-animal interac-

tions, archaeological excavations, including those conducted
in the North Atlantic, began to consider faunal assemblages
from the second half of the twentieth century onwards.
With time, unworked faunal remains have been increasingly
collected, there is greater concern for site stratigraphy, sieves
are increasingly used to retain small bones or fragments, and
findings are now generally documented in official reports or
international publications (McGovern, 1983; Kruse, 2017).
These changes have led to a growing archaeological interest
in hunting strategies (e.g., Norman and Friesen, 2010;
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Arneborg et al., 2012; Monchot et al., 2016), prey availabil-
ity, consumption, and the use and exchange of meat, skin,
blubber, bone, and ivory (e.g., McGhee, 1977; Gotfredsen
and Møbjerg, 2004; Alix, 2016; Gotfredsen et al., 2018).

Pre-Dorset and Dorset walrus hunting

Archaeological research on the use of AMMs, particularly
walruses, has largely followed artefact- or site-feature-based
approaches to infer hunting and storage practices, and the
extent of resource sharing and exchange. Analyses of organic
and lithic artefacts focusing on the style and function of tools
such as harpoons, scrapers, and spears have revealed when
tools best suited to marine mammal hunting were introduced
and spread (Gotfredsen and Møbjerg, 2004). The earliest evi-
dence for hunting of Atlantic walrus has been suggested from
Paleo-Indian tools from as early as 7500 BC, from what is
today eastern Canada, particularly Nova Scotia and the
Gulf St. Lawrence (Keenlyside, 1985). Subsequent increases
in the diversity of tools suitable for marine mammal exploita-
tion coincided with the first phase of human occupation in the
Atlantic Arctic (Pre-Dorset cultures; Fig. 2). The use of wal-
rus bone, hide, teeth, and ivory to develop hunting tools
amongst other items has also revealed much about how ani-
mals were hunted, how carcasses were processed, and their
final use (e.g., Monchot et al., 2013). Bone, and particularly
ivory, was used for a wide variety of tools including harpoon
foreshafts, barbed spears, pressure flakers, and hand wedge
tools (Gotfredsen and Møbjerg, 2004). Later, around 700–
500 BC, tool use, settlement, subsistence patterns, and geo-
graphic distribution changed considerably, marking a shift
to Dorset culture (Monchot et al., 2013; Ryan, 2016). Ivory
and baculum were both increasingly being used in western
Greenland for spears, figurines, harpoon foreshafts, awls,
show knives, and wedges (Gulløv and Appelt, 1999) as
well as carvings, spatulas, sled shoes, and several projectiles
in the eastern Canadian Arctic (LeMoine and Darwent,
1998). Changes in the utilisation of walrus by the Dorset
are also evident from settlement patterns and debitage. The
development of specialised tools and ivory extraction meth-
ods appears to have emerged at the same time as meat caches,
more permanent settlements, and a growing focus on ivory
carving (LeMoine and Darwent, 1998; Murray, 1999).

Pre-Dorset and Dorset walrus utilisation

These patterns of walrus utilisations characterised from arte-
fact analyses are supported by zooarchaeological evidence.
Site-based quantification measures have revealed an overall
trend of increasing consumption and utilisation of walrus
from Pre-Dorset to early Dorset, before a decline until com-
mercial hunting by the Norse and European whalers (Born
et al., 1995; Murray, 1999; Murray, 2008; Monchot et al.,
2013). Zooarchaeological assemblages show less than 1%
walrus from early Pre-Dorset cultures of the North Atlantic,
such as Saqqaq and Independence I (<1% of zooarchaeolog-
ical assemblages; Dyke et al., 1999; Murray, 1999; Darwent,

2004). For sites with longer occupations, however, the reli-
ance on walrus increases through time, as determined by
the presence of blubber, waste materials, and tools (e.g., Got-
fredsen and Møbjerg, 2004). Walrus use continued to
increase during the early Dorset period (approximately 50
BC–AD 750), most likely due to communal hunting strate-
gies, new hunting technologies, and more abundant walrus
populations in response to changing climatic conditions
(Dredge, 1992; Harington, 2008). The increasing importance
of walrus was not unique to the North Atlantic, with a similar
trend in early Pacific maritime cultures such as the Choris and
Ipiutak, suggesting ongoing knowledge sharing across the
Arctic or widespread environmental changes (Krupnik,
2000). Towards the Late Dorset, walrus hunting appears to
have declined again, potentially due to unsustainable hunting,
human disturbance, changing social settlement patterns, and
a return to ringed seal hunting (Murray, 1999).

Thule walrus hunting and utilisation

The declining use of walrus by the Dorset continued during
the Thule culture (D.B. Stewart et al., 2014), which began fol-
lowing a second major human migration from the Bering
Strait region around the twelfth to fourteenth centuries
(Fig. 2; Friesen and Arnold, 2008; Raghavan et al., 2014;
Gulløv, 2016). Walrus catches became less important as in
many regions the Thule increasingly focused on hunting
large whales, such as bowhead (Maxwell, 1985; D.B. Stewart
et al., 2014). However, a decline during the Thule period was
not ubiquitous. In regions such as Foxe Basin, with abundant
year-round access to small walrus herds and shallow waters
potentially limiting whale abundance, zooarchaeological
finds of walruses remained high (Murray, 1999; Desjardins,
2018). Indeed, walrus hunting increased in this region during
the Thule period based upon evidence of walrus used as food,
raw tool materials, and cached stores (Desjardins, 2013).

Norse walrus hunting and the ivory trade

Amajor change in North Atlantic walrus hunting arrived with
the expansion of the Norse (Vikings) during the medieval
period, who introduced the first phase of international, long-
distance commercial walrus hunting and trade. Walrus ivory
was one of several luxury goods traded with Europe, the Bal-
tic, and the Middle East and is one of the likely underlying
reasons behind Norse expansion to Iceland, Greenland, and
exploration of coastal North America (McGovern, 1983;
Vebæk, 1993; Keller, 2010; Frei et al., 2015). In Greenland,
in particular, the Norse sought high-value prestige goods
including walrus tusks and furs as commodities to pay tithes
and to exchange for ornamental goods and raw materials not
locally available (McGovern, 1985; Keller, 2010; Caldwell
and Hall, 2014). Despite the importance of ivory, knowledge
about where and how the Norse hunted walrus in Greenland is
still very limited, with only a single genetic (Star et al., 2018)
and a preliminary isotopic study to date (Frei et al., 2015).
Historical references suggest Norse walrus hunting was
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concentrated in western Greenland in the area of Disko Bay
(McGovern, 1985; Gulløv, 2016), known at the time as
‘Norðsetur’. Based on zooarchaeological evidence and his-
torical sources, it appears walrus skulls were often brought
back to the Eastern and Western settlements as part of an
annual, long-distance summer hunt (Degerbøl, 1936;
Vebæk, 1993). Blubber and marine mammal meat were
largely sourced from other species of seals found closer to set-
tlements, such as harp (Pagophilus groenlandicus), ringed
(Pusa hispida), and hooded seals (Cystophora cristata;
Degerbøl, 1929, 1934, 1941, 1943). Remains from ivory
extraction are most common in the Western Settlement
(McGovern, 1983) or northerly parts of the Eastern Settle-
ment (Vebæk, 1993). Ivory was removed with specialised
tools after any soft tissue had decomposed, or more rarely
simply sawn off (Degerbøl, 1929; Frei et al., 2015). There
may also have been limited exchange of ivory between the
Norse, Dorset, and, more likely, Thule (Gulløv, 2008,
2016; Sutherland, 2000; Park, 2008). According to both his-
torical and archaeological sources, Norse Greenlandic human
settlements began to decline in the first half of the fifteenth
century, coinciding with a range of factors including declin-
ing walrus ivory demand in mainland Europe, an increased
supply of alternative sources of ivory, environmental degra-
dation in Greenland, climatic changes, and reduced contact
with Europe (Rijkelijkhuizen, 2009; Keller, 2010; Frei
et al., 2015; Hambrecht, 2015).

Industrial-scale commercial walrus hunting by whalers
and sealers

Beginning around the sixteenth century, walrus hunting
reached an industrial scale, with heavy exploitation in many
regions by commercial European and North American whal-
ers, sealers, and to a much lesser extent, Inuit communities.
Walruses were sought after for their hide, oil, ivory, blubber,
and meat, either for human consumption or to feed dog teams
(Born et al., 1995; D.B. Stewart et al., 2014). Areas such as
Svalbard were heavily impacted by numerous phases of
intense commercial hunting by Dutch, English, and Basque
whalers (Gjertz et al., 1998; Hacquebord, 2001; McLeod
et al., 2008; Rijkelijkhuizen, 2009), as well as subsequent
Russian Pomor and Norwegian hunting expeditions (Fig. 2;
Kruse, 2017). In some instances, hundreds of walruses were
killed in single events, such as those on Tusenøyane during
the 1850s (Lindqvist et al., 2016). North American and Euro-
pean whalers and sealers also acquired walrus hides, ivory,
and meat through trade, with substantial exchange of worked
walrus ivory and furs with the Canadian Inuit during the nine-
teenth and twentieth centuries (Hastrup, 2009; D.B. Stewart
et al., 2014). Despite variation in the timing and geographic
extent of hunting operations, historical records confirm a
general trend towards intensification of hunting, particularly
during the nineteenth and twentieth centuries, following the
introduction of key technologies such as motorised boats
and firearms (Born et al., 1995; Witting and Born, 2014).
Since the 1950s, however, much of walrus hunting was

restricted to Inuit communities, as the demand for walrus
ivory from Europe collapsed and various governmental pro-
tection measured were introduced regarding the capture and
trade of walrus (Born et al., 1995; D.B. Stewart et al.,
2014; Wiig et al., 2014).
Catch sizes and loss estimates during this most recent

period of exploitation indicate removals of at least 41,000
from the Canadian North Atlantic (D.B. Stewart et al.,
2014), over 12,000 for Franz Josef Land (Gjertz et al.,
1998) and 25,000–60,000 from Svalbard (Hacquebord,
2001; Kruse, 2017). These are likely to be underestimates,
however, as existing reports are often vague, inconsistent,
incomplete, or missing and do not account properly for
poaching or loss rates (NAMMCO, 2004, 2005; Witting
and Born, 2005; Kruse, 2017). Today, walruses are still
hunted in areas across the Canadian North Atlantic and
Greenland for their importance as dog food, human food,
and as a source of income through ivory sales (Freeman,
1974; Born et al., 2017; Desjardins, 2018). In 2015, catches
including struck and loss totalled 131 across Greenland, con-
centrated on the northwest and west coast (NAMMCO,
2015). Hunting trends and catch sizes vary considerably
between regions, with some areas experiencing increased
hunting pressure as human populations grow and where
ivory remains an income source, while in other areas the
demand for walrus has fallen with the replacement of dog
teams by motorised transportation (Freeman, 1974; Born
et al., 2017; Andersen et al., 2018).

HISTORICAL ECOLOGY OF WALRUSES

Greater information about past dynamics between walruses
and humans is needed to aid conservation and management
efforts. In particular, to find a balance that maintains the cul-
tural and economic benefits of walrus hunting for Inuit com-
munities but also ensures the survival of walrus populations.
This leads to the first question, namely;

(1) How have human motivations for walrus
hunting, utilisation, and trade varied across time
and space?

Humans have hunted walruses with a wide range of hunting
practices and motivations, ranging from opportunistic scav-
enging, subsistence hunting, regional exchange, commercial
international trade, and industrialised international commod-
ification. Walrus ivory was valued and traded well before
human expansion into the Arctic North Atlantic, as demon-
strated by finds of walrus ivory in Paleo-Indian archaeological
sites inBritish Columbia, well south of the expected prehistoric
range of walruses (Dyke et al., 1999). Once humans began to
occupy areas across Greenland and the eastern Canadian Arc-
tic, walruses were probably hunted locally, as well as being
traded regionally. Although the presence of unworked bone,
butchered bones, and juvenile remains are generally seen as
evidence of local hunting, valuable worked tools and other
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artefacts may have had very different origins (LeMoine and
Darwent, 1998; Murray, 2008). Information regarding artefact
origin, age, use, and eventual destination is vital to reconstruct-
ing past trade and economic networks, as well as the timing,
location, and intensity of hunting efforts.

Using genetics to provenance samples

Palaeogenetic analyses (ancient DNA [aDNA]) allow genetic
information of a particular artefact to be compared with a ref-
erence collection of walrus populations across the North
Atlantic to identify the source population fromwhich that ani-
mal was taken. One recent study using mitochondrial DNA
has already attempted this, and found a haplotype unique to
the eastern North Atlantic (Star et al., 2018). Although Star
et al. (2018) were able to show a likely shift from “eastern”
to “western”North Atlantic walruses, the ability to determine
more precise geographic origins will probably require entire
mitochondrial or nuclear genomes. In order to assign any cer-
tainty to the provenance of an artefact, however, there must be
sufficient spatial genetic variation in the putative ancient
source populations. If Atlantic walruses were highly con-
nected and showed little phylogeographical differentiation,
it may not be possible to determine with genetic data alone
if a particular tool, jewellery, game piece, or other artefact
was carved from a walrus tusk hunted in Svalbard, eastern
Greenland, Iceland, or northern Norway.

Using isotopes to provenance samples

An alternative approach to provenancing samples based on
their DNA involves the use of stable isotopes. The potential
for provenancing based on isotopes also looks promising,
with a pilot study of modern and archaeological walrus yield-
ing distinct isotopic signatures from Greenland, Iceland, and
the White Sea (Frei et al., 2015). Additionally, Norse Green-
landic material from the West Settlement shows a similar iso-
topic signature to contemporary west Greenland–southeast
Baffin Island walruses found in Disko Bay, supporting the
surrounding Nassutooq area of western Greenland as the
famous Norse “Norðsetur” hunting grounds (Frei et al.,
2015). As with genetics, however, the resolution of a source
locality depends upon the spatial variation in isotopic signa-
tures of the underlying geology and sea water, meaning iso-
topes are likely to only reveal the broad geographic region
where a walrus would have spent most of its life, or an
extended period of time prior to death (Stewart et al.,
2003). Additionally, stable isotopic comparisons may be
obscured if numerous locations have similar isotopic signa-
tures, making it important to develop a more comprehensive
North Atlantic “isoscape” to resolve finer isotopic variation.

Sampling considerations

The ability to reconstruct shared human-walrus histories
using an interdisciplinary combination of zooarchaeological,
isotopic, hormonal, ancient DNA, and dating approaches is
dependent upon the distribution, abundance, and preservation

of archaeological finds. Unfortunately, faunal material col-
lected from much of the North Atlantic is limited in number,
patchily distributed across space and time (McGovern, 1983),
logistically challenging to excavate, and ranging in preserva-
tion quality (e.g., Graf and Buvit, 2017). Moreover, with
ongoing climate change and thawing of permafrost, hitherto
“frozen palaeoarchives” of archaeological samples and sites
are currently deteriorating at increasing speed across the Arc-
tic. Sample availability thereby limits, and in some cases pre-
vents, certain research questions. Thus, although not
currently possible, it would be ideal for multiple biomolecu-
lar analyses to be performed from a single destructive sam-
pling event, allowing complementary lines of information
to be obtained for key samples of good preservation quality.

Although the benefits of methods such as aDNA and iso-
topes have been explored above, it is important to consider
some of the limitations of each of these approaches. For iso-
topes, the process of bone remodelling throughout an ani-
mal’s lifetime can confound signals (Nelson et al., 2012)
and bone chemistry may be affected by the depositional envi-
ronment (Budd et al., 2000). Furthermore, isotopic signatures
can be affected by a samples’ lipid content, lab pretreatment,
the faunal element under consideration, and whether bulk or
amino acid specific analyses are conducted (Boecklen et al.,
2011), making comparisons between studies, species, and
sites challenging.

For genetic analyses using current methods, some samples
must be excluded or yield very limited data if endogenous
content (proportion of target DNA) is found to be too low.
Depending on environmental conditions the quantity and
quality of endogenous DNA decreases with time (Orlando
et al., 2015). Although the cold, relatively stable subarctic
and Arctic environments offer relatively good preservation
conditions, treatments such as cooking, curation, and storage
can lead to unpredictable decay patterns (Burger et al., 1999;
Nicholson et al., 2002; Hansen et al., 2006; Pruvost et al.,
2007; Oskam et al., 2011). Low endogenous content is partic-
ularly problematic for sequencing of nuclear DNA
(O’Rourke et al., 2000; Allentoft et al., 2012), although ongo-
ing methodological developments aid in the retrieval of DNA
from particularly contaminated, damaged, or small samples
(Orlando et al., 2015). In cases where degradation makes
genetic sequencing infeasible, other ancient biomarkers
may be more suitable, such as ancient proteins (Cappellini
et al., 2012).

(2) What have been the changes to prehistoric,
historic and contemporary walrus abundance,
diversity and distribution associated with
particular hunting or trade regimes?

The role of human hunting in the extinction, decline, conser-
vation, and altered distribution or diversity of many species,
including walrus, can be a controversial issue. Current
debates range from the role of humans in terrestrial mega-
fauna extinctions (e.g., Grayson and Meltzer, 2002), the
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conservation merit of commercial game hunting (e.g., Nelson
et al., 2013), and contemporary whaling (e.g., Mangel, 2016).
Evidence so far concerning human disturbance on walrus is
largely from anecdotal observations, which have recorded
the abandonment of haul-out sites by walruses (e.g., Stewart,
2002; Born et al., 2017) and the return of walruses to certain
sites once humans have left (NAMMCO, 2015). In addition,
from an archaeological perspective there has also been some
consideration of the presence or absence of walruses from
particular sites or during specific time periods as potential
indicators of species relative abundance (e.g., Møbjerg,
1999; Murray, 1999, 2008). Across a shorter time scale of
the last few centuries, biologists have reconstructed historical
population sizes and some ecological interactions of walruses
over the last few centuries using population models and
genetics (e.g., Born et al., 1997; Gjertz et al., 1998; Weslaw-
ski et al., 2000; Andersen et al., 2014; Heide-Jørgensen et al.,
2014; Witting and Born, 2014; Laidre et al., 2015). However
much of the possible effects of human-walrus interactions
over the last 6000 years have not yet been tested. Fortunately,
new opportunities for the analysis of zooarchaeological mate-
rial using ancient DNA, radiocarbon dating, and prehistorical
modelling offer the possibility to provide empirical data on
the shared history and prehistory of humans and walrus.

Genetic analyses

Ancient DNA can be used not only to provenance samples,
but also to reconstruct population demographic trajectories
and therefore test for population declines, bottlenecks, and
extinctions. Additionally, population genetic analyses can
examine the detailed mechanisms and changes through time
in genetic diversity, population connectivity, effective popu-
lation size, and the phylogenetic relationship of lineages.
Some of these analyses have already been conducted using
modern genetics and modelling approaches (e.g., Shafer
et al., 2015; Andersen et al., 2017), however the unique
opportunity of aDNA is that, by directly analysing rather
than reconstructing ancient genomes, evidence for past events
cannot be hidden by more recent population dynamics (Sha-
fer et al., 2014; Lindqvist et al., 2016).
Ancient DNA approaches can also uncover the origins,

existence, and fate of extinct populations, such as the Atlantic
“Icelandic walrus” and “Maritimes walrus” in Nova Scotia
and Gulf St. Lawrence. As no modern Icelandic or Maritimes
population exists, modern walrus genetics cannot determine
if animals inhabiting those areas were part of an existing,
larger population (see Petersens, 1993; Pierce, 2009), or a
unique evolutionary lineage. The origin and fate of such
“lost” walrus populations can only be determined genetically
by comparing aDNA from (pre)historic walrus finds to past
and present surrounding reference populations. Determining
whether putative “lost” genetic lineages went extinct or
dispersed, ending up interbreeding with neighbouring popu-
lations, is important to identify. Particularly whether diversity
and adaptive capacity may have been lost entirely from the
species. For example, walruses previously inhabiting sites

south of the current range may have had local adaptations
such as reduced ice dependency or heat tolerance, which, if
lost or admixed into modern populations, could have impor-
tant impacts on the future resilience of Atlantic walrus in a
warming Arctic (Dyke et al., 1999).
Recent new approaches to laboratory and analytical aDNA

methods during the last decade allow the past distribution and
relative abundance of species to be reconstructed even in
cases where no faunal remains are found. Ancient DNA
obtained from sediment samples (sedaDNA) can reconstruct
ecosystems with respect to species composition and approx-
imate relative abundance by recovering traces of faecal,
hair, skin, and other physical remains that may not be visible
but have become incorporated into the soil (Lydolph et al.,
2005). Several studies have demonstrated the suitability of
these methods in identifying species across numerous Arctic
palaeoecosystems (Willerslev et al., 2003; Hebsgaard et al.,
2009), with findings that support traditional zooarchaeologi-
cal abundances. For example, the declining importance of
cattle relative to wild animals throughout Norse occupation
of Greenland (Enghoff, 2003; Hebsgaard et al., 2009) and
changes in marine mammal use, including walrus, across
four Greenlandic archaeological sites (Seersholm et al.,
2016). sedaDNA is particularly helpful in understanding
the importance of species with heavy or bulky bones that
may be butchered or processed off-site, such as bowhead
whales (Seersholm et al., 2016) or walrus (Freeman, 1974;
Desjardins, 2013, 2018; Frei et al., 2015).
It is essential to select an appropriate reference point, or ref-

erence points, for any method attempting to compare levels of
genetic diversity, abundance, distribution, behaviour, selec-
tive pressure, or population structure through time. For exam-
ple, to determine the cumulative impact of human hunting on
walrus genetic diversity levels a suitable reference could be a
“pre-Anthropocene baseline” or a series of snapshots through
time. An appropriate baseline is particularly critical when
using results for management and conservation efforts to pre-
vent inferring false trends based upon shifting baselines
(Pauly, 1995; Roman et al., 2015; Betts, 2016). Reference
points can be determined directly from ancient remains and
historical records when available. In other cases, however,
baselines may need to be modelled with corrections made
for changes in climatic conditions, habitat, food availability,
and life-history traits. Such (pre)historic ecological or biolog-
ical reconstructions are likely to have inherently high uncer-
tainties, or rely on overly simplistic assumptions such as
constant life-history traits. Despite these limitations, how-
ever, they can still provide vital information as one of the
few comparisons to contemporary populations.

Sample context

In order to gain a complete and accurate understanding of past
ecological and cultural dynamics it is important to incorpo-
rate contextual information from each sample used in analy-
ses of past abundance, distribution, or diversity. In
particular, having accurate and reliable dates for samples is
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critical to accurately inferring the timing of population demo-
graphic events. For walrus samples, dating could either be
through direct radiocarbon dating of faunal remains with
appropriate local marine reservoir corrections (Dyke et al.,
1999), or through shared context with other dated material
and/or clear cultural contexts (e.g., Møbjerg, 1999; Savelle
et al., 2012). In the future genetic dating may also be possible
once population and time-period specific substitution rates
are known (Orlando et al., 2015). The possible impact of
incorrect stratigraphic assignment due to factors as diverse
as scavengers or sea level changes makes the integration of
archaeological knowledge particularly important in determin-
ing the age of samples (Erlandson and Moss, 2001). Addi-
tional information from site context, such as location of
find, settlement seasonality, sea level, climatic conditions,
and prey availability can also offer insights into human
impacts and guide hypotheses about walrus availability, loca-
tion, and human settlement characteristics.

(3) Are there any discrete or cumulative effects on
walruses of human-mediated selection?

Accounts of hunters targeting walrus for meat or ivory sup-
port the occurrence of selective hunting of walruses, at least
during certain cultural periods, and indicate that these pat-
terns have changed over time depending on hunting regimes
and motivations. For example, contemporary Inuit hunters
subject to hunting quotas often aim to maximise resource
gain from a kill by selecting larger walruses (e.g., Born
et al., 2017; NAMMCO, 2018), whereas zooarchaeological
evidence supports preferential hunting of juveniles by the
Saqqaq (Pre-Dorset) of western Greenland (Gotfredsen and
Møbjerg, 2004). These, and other periods of selective hunting
may have resulted in population- or species-wide changes in
characteristics such as average tusk length, body size, popu-
lation demographics, or behaviour. The question therefore
arises whether selective hunting of walruses has been suffi-
ciently intensive and prolonged to have resulted in discrete
or cumulative impacts, and whether walrus populations
have had sufficient time or genetic capacity to recover. The
outcome of selection as morphological or physiological
changes can be tested from traditional osteological examina-
tion (e.g., Etnier, 2007) or possibly indirectly with a high
quality annotated reference genome (e.g., Foote et al., 2015).

Sexing of walrus remains

Morphological and genetic analyses can also reveal the sex
of (pre)historic walrus remains, indicating whether there
has been any sex bias in hunting, or demographic changes
within a population (e.g., Wiig et al., 2007; Fischbach
et al., 2008). Modern Greenland catch records support a sex
bias in walrus hunts, due to regulations limiting the hunting
of females (NAMMCO, 2013), however in the past the sex
ratio of catches and motivations behind these would have
been different. For example, males have larger body and
tusk sizes, but females typically have softer skin and flesh,

more intact tusks and a higher percentage of blubber (Born
et al., 2017; Hill, 2011). Sexing of walruses with osteometric
examination may be possible for recent or extremely well-
preserved faunal assemblages, however diagnostic bones
such as the baculum are rare and bone fragments commonly
found at archaeological sites cannot be sexed (LeMoine and
Darwent, 1998; Keller, 2010). Relying solely upon differ-
ences in size of particular bones can also be problematic, par-
ticularly for small or degraded assemblages, as differences
may reflect taphonomy rather than awalruses’ sex or develop-
ment (Wiig et al., 2007). Indeed, morphological characterisa-
tion of the proposed “Laptev” subspecies by Chapskii (1940),
have since been questioned by subsequent morphometric
findings and molecular evidence (Lindqvist et al., 2009).

(4) How has human hunting and disturbance altered
the behaviour of walruses?

Human hunting and other disturbances may also have left
more subtle impacts on walruses, particularly behaviours
such as seasonal migration, daily dispersal, choice of haul-out
sites, feeding, and mating. Historical documentation and
anecdotal records support some relatively recent changes.
However, studies using genetics, isotope or trace element sig-
natures, and hormone concentrations are required to under-
stand these changes in more detail and over a longer period
of time.

Stable isotope analysis: carbon and nitrogen

Stable isotopes are particularly useful in revealing dietary pat-
terns, life-history traits, and seasonal migratory behaviour
(Newsome et al., 2010). Carbon and nitrogen isotopes are
commonly used across taxa to compare dietary patterns
such as trophic level and the relative contribution of terrestrial
or marine components (Katzenberg and Harrison, 1997;
Boecklen et al., 2011). As walruses primarily feed on
bivalves, they typically have low levels of nitrogen compared
with other marine mammals. Interestingly, some populations
have enriched nitrogen values, suggestive of a higher trophic
niche (Linnebjerg et al., 2016), which is concordant with
observations of walruses eating birds and other seals (Fay,
1982). In cattle and humans, higher-trophic-level signatures
are also noted in suckling infants (Nelson et al., 2012; e.g.,
Balasse and Tresset, 2002), which, if also true of walrus,
would allow weaning age and other life-history traits of
(pre)historic populations to be determined (Nelson et al.,
2012; e.g., Balasse and Tresset, 2002).

Additional stable isotope and trace element analyses

In addition to diet, stable isotopes can assign awalrus to a par-
ticular geographic region based upon levels of other stable
isotopes and trace elements in the underlying geology and
local seawater (Katzenberg and Harrison, 1997). The bivalve
diet and haul-out site fidelity common to walruses creates
highly localised, distinctive isotopic signatures in tissues
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such as bone and teeth (Outridge and Stewart, 1999; Stewart
et al., 2003; Frei et al., 2015). Unfortunately not all isotopes
are appropriate for analysis. For example strontium signatures
are typically uniform across marine systems and hence not
suited for the study spatial patterns (Stewart et al., 2003).
Lead isotopes and trace elements have been successful in
studies of contemporary walruses across Foxe Basin and
the central Arctic, which revealed finer resolution of popula-
tions than genetic data (Outridge and Stewart, 1999). Addi-
tionally, a preliminary study on ancient samples revealed
distinct lead isotopic signatures between Iceland, Greenland,
andWhite Seawalruses (Frei et al., 2015). Isotopic signatures
can also be determined sequentially throughout an animal’s
life, as elements such as lead are deposited annually in walrus
tooth cementum in “growth layer groups”which, unlike bone,
are not subject to remobilisation or remodelling (Garlich-
Miller et al., 1993; Stewart et al., 2003). These isotopic chro-
nologies can reveal the location of early infancy, major dis-
persal events, migratory patterns, abandonment of particular
haul-out sites, and the most recently inhabited area of a wal-
rus. Trace element and stable isotope studies from contempo-
rary Canadian walruses have revealed juvenile and older
males as likely migrants based upon isotopic signatures that
were different from the broader population (Outridge and
Stewart, 1999). Subsequent incremental lead isotope analyses
of Foxe Basin walruses showed similar major long-distance
dispersal primarily in males around the age of sexual maturity
(around 7–10 yr) but also found some returned to their orig-
inal location much later in life (Stewart et al., 2003). If applied
to (pre)historic walrus remains, these isotopic methods are
likely to offer unique and detailed insights into walrus behav-
iour that has so far remained impossible to study. Detecting
changes in the dispersal or seasonal migration of walruses
in response to human disturbance, climatic changes, or habi-
tat availability will be possible with fine-scale isotopic anal-
yses as long as there is sufficient variation in local or
regional background isotopic signatures.
When combined with sexing information, isotope and trace

element studies into the movements of ancient walruses can
reveal different sex-based responses to human hunting. For
example, historical records and faunal remain distributions
support the abandonment of certain haul-out sites, reduction
in group size, and a strong demographic shift towards
male-dominated herds across much of Svalbard following
the intense hunting of the seventeenth to eighteenth centuries
(Wiig et al., 2007; Rijkelijkhuizen, 2009). Whether this is a
common trend or a unique response to the intensity of hunting
in these areas remains to be determined.

Stress and reproductive hormones

Human hunting is typically characterised as an acute period
of stress in walruses, resulting in short-term fleeing of a haul-
out site as well as long-term changes in distribution explored
above. Additionally, prolonged periods of stress can also
occur in walruses in response to additional disturbances or
ecological conditions, such as extended periods of limited

prey availability or high intraspecific competition (Charapata,
2016). These prolonged stress events can be determined in
both contemporary and (pre)historic walrus populations by
analysing steroid levels collected from both hard and soft tis-
sues (e.g., Tryland et al., 2009; Muraco et al., 2012; Chara-
pata, 2016; Charapata et al., 2018). In the Pacific
subspecies, ancient walruses were found to have similar lev-
els of cortisol to modern walruses suggesting similar levels of
chronic stress. Interestingly, however, cortisol concentrations
rose between the 1950–2010s, most likely due to exponential
population growth as Pacific walrus populations recovered
(Charapata, 2016; Charapata et al., 2018). Additionally, hor-
monal concentrations may a useful proxy for past population
size, as there is an inverse correlation between population size
and both progesterone and testosterone levels (Charapata,
2016; Charapata et al., 2018), at least for certain populations.

CONCLUSION

Humans and walruses have interacted in the North Atlantic
for thousands of years yet the reciprocal and cumulative
effects on walrus evolution and human culture are poorly
understood. To reveal the extent and impact of human-walrus
interactions, new methods and interdisciplinary approaches
are needed. These will extend the scale of biological studies
and provide greater ecological context to archaeological and
historical information about human activities. Using isotopes
(Stewart et al., 2003; Frei et al., 2015), mitochondrial DNA
(McLeod et al., 2014; Lindqvist et al., 2016; Star et al.,
2018), and sediment aDNA (Hebsgaard et al., 2009; Seer-
sholm et al., 2016) a handful of recent studies have already
demonstrated the potential of such approaches in provenanc-
ing artefacts, reconstructing walrus behaviour, and determin-
ing the relative importance of walrus for particular human
settlements. Further interdisciplinary studies are required,
however, to characterise the pace, timing, and impacts of
human hunting on walrus populations, and to reveal patterns
of human hunting, motivations, walrus utilisation, and trade.
When framed within a well-defined cultural, biological, and
palaeoclimatological chronology, the underlying causes and
relationships behind observed changes in the cultural and bio-
logical past may finally emerge and offer a much more holis-
tic historical ecology of walruses.
Although this paper specifically refers to Atlantic walrus,

the approaches outlined here could be applied to a wide
range of other species, each important to understanding the
cultural history, ongoing management, and future ecology
of the North Atlantic. In some cases, this will require modify-
ing or developing new methodologies specific to the species
or cultural context in question. The increased feasibility,
affordability and application of many of the techniques
explained above offers great promise in uncovering the
human-animal interactions from all perspectives, while mak-
ing the most of expertise within disciplines such as archaeol-
ogy, history, and biology.
The wealth of archaeological and zoological material in

museums, private, and institutional collections has major—
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yet untapped— research potential to reveal past human-
animal interactions across the North Atlantic and Arctic
more broadly. With ongoing methodological development
and an abundance of archaeological material available, col-
lections can be revitalised as a research resource to answer
questions from the humanities and natural and social sci-
ences, as well as their areas of overlap. Comprehensive inter-
disciplinary characterisation of human-animal interactions is
a major undertaking, but this paper has highlighted the scope
of opportunity, as well as the key rewards and challenges
intrinsic to this endeavour.
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